WO2023171005A1 - Cooling/heating equipment diagnostic system - Google Patents

Cooling/heating equipment diagnostic system Download PDF

Info

Publication number
WO2023171005A1
WO2023171005A1 PCT/JP2022/035199 JP2022035199W WO2023171005A1 WO 2023171005 A1 WO2023171005 A1 WO 2023171005A1 JP 2022035199 W JP2022035199 W JP 2022035199W WO 2023171005 A1 WO2023171005 A1 WO 2023171005A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
heating equipment
diagnostic system
normality
input energy
Prior art date
Application number
PCT/JP2022/035199
Other languages
French (fr)
Japanese (ja)
Inventor
道治 渡部
禎夫 関谷
陽子 國眼
浩伸 川村
秀雄 熊倉
一朗 藤林
孝治 米沢
侑雄 村田
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Priority to CN202280049967.1A priority Critical patent/CN117693656A/en
Publication of WO2023171005A1 publication Critical patent/WO2023171005A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • the present invention relates to technology for a thermal equipment diagnostic system.
  • Refrigerators, heat pump water heaters, washer/dryers, etc. are known as general-purpose equipment that cools or heats food, water, clothing, etc. These devices have the function of controlling cold or hot heat to a predetermined temperature and providing a predetermined amount of heat, and play an essential role in maintaining food and hygiene everywhere. Therefore, when a failure occurs or signs of failure are confirmed, prompt repair is required.
  • Patent Document 1 By the method described in Patent Document 1, it is possible to detect the normality (degree of abnormality) and the abnormal location based on the operating principle of the device, so it is possible to provide a physically valid diagnosis.
  • the relationship between the degree of abnormality and the seriousness with respect to the main function of the device is ambiguous.
  • the main function of a refrigerator is to cool the stored items inside the refrigerator to a predetermined temperature, but it is difficult to understand the correspondence between the degree of abnormality determined using conventional methods and the severity of the decline in cooling function. , it is difficult to judge the normality of the diagnostic results.
  • the present invention provides a drive source that drives according to the amount of input energy, and a temperature control device that controls the temperature of a temperature-controlled space using the drive source. Based on the information, calculate the input energy amount input to the drive source, calculate change amount information that is information on the amount of change in the input energy amount over time, and calculate the amount of change in the input energy amount based on the change amount information.
  • the device is characterized by having a calculation device that diagnoses the normality of the device.
  • FIG. 3 is a diagram showing the relationship between the input energy amount of the washer/dryer and the mass of clothes (clothing mass) inputted into the washing tub of the washer/dryer. It is a figure showing a time change of a deviation degree.
  • FIG. 1 is a diagram showing the configuration of a cooling and heating equipment system Z in the first embodiment.
  • the first embodiment shows a cooling and heating equipment system Z that performs a normality diagnosis (diagnosis of normality) of a refrigerator.
  • the cooling device system Z includes a refrigerator main body (cold device, cooling device) 100B and a diagnostic device (cold device diagnostic system) 200. Diagnostic device 200 may be built into refrigerator main body 100B, or may be installed as a separate device from refrigerator main body 100B.
  • the interior space (temperature-controlled space, cold storage space) 102 of the refrigerator main body 100B and the outside of the refrigerator are separated by a heat-insulating box filled with foam insulation material.
  • the refrigerator main body 100B is equipped with a heat absorption device 111, a compressor 112, a heat radiation device 113, and an expansion device 114 that constitute a refrigeration cycle.
  • the refrigerator main body 100B includes a blower fan 104.
  • the refrigerator main body 100B includes a display device (output device) 101.
  • a refrigerant circulates through a flow path in which a heat absorption device (temperature control device) 111, a compressor 112, a heat radiating device 113, and an expansion device 114 are connected in an annular manner. is formed.
  • the heat absorption device 111 is a heat exchanger that absorbs heat from the internal space 102, and specifically includes an evaporator.
  • a compressor (drive source) 112 that is driven according to the amount of input energy compresses the refrigerant vapor evaporated by the heat absorption device 111. The input energy amount will be described later.
  • the heat radiating device 113 cools the refrigerant vapor compressed by the compressor 112 with cooling water or air (controls the temperature of the interior space 102), thereby radiating the heat contained in the refrigerant vapor. At this time, the refrigerant vapor is liquefied and becomes refrigerant liquid.
  • the heat dissipation device 113 is specifically configured with a condenser.
  • the expansion device 114 expands the refrigerant liquid discharged from the heat radiating device 113 to turn refrigerant vapor into a low-pressure, low-temperature refrigerant liquid, and sends it to the heat absorbing device 111 .
  • the blower fan 104 blows the cold air generated by the heat absorption device 111 to the internal space 102 (the temperature of the internal space 102 is controlled by the compressor 112). Further, the refrigerator main body 100B has a door 103 that can be opened and closed.
  • the display device 101 displays the diagnosis results etc. by the diagnostic device 200. As shown in FIG. 1, the display device 101 is preferably installed on the door 103 of the refrigerator main body 100B, but may be installed on the side surface of the refrigerator main body 100B.
  • the diagnostic device 200 includes a calculation device 210, a storage device 220, and a control device 230.
  • the arithmetic device 210 includes a CPU (Central Processing Unit) and the like.
  • the processing performed by the diagnostic device 200 is executed.
  • the storage device 220 is composed of an HD (Hard Disk) and a RAM (Random Access Memory), and stores programs and information necessary for calculating the input energy amount acquired from the cooling and heating equipment (refrigerator body 100B). Although the input energy amount will be described later, the information necessary for calculating the input energy amount includes the rotational speed of the compressor 112 and the like.
  • the control device 230 refers to instructions from the arithmetic device 210 and information stored in the storage device 220 to control the compressor 112 of the refrigerator main body 100B, and to control the display device 101 provided in the refrigerator main body 100B. Display information. Further, the control device 230 acquires information such as the rotational speed of the compressor 112 (operation information).
  • FIG. 2 is a diagram showing a diagnostic period 303 by the diagnostic device 200. Reference is made to FIG. 1 as appropriate.
  • the horizontal axis indicates time
  • numeral 301 indicates the rotation speed of the compressor 112
  • numeral 302 indicates the opening of the refrigerator main body 100B.
  • a diagnostic period 303 by the diagnostic device 200 is performed during a period when the door (302) of the refrigerator main body 100B is not opened. Specifically, it is preferable to perform this at a time when the user of the refrigerator body 100B is not using the refrigerator body 100B, such as late at night. In this way, the normality diagnosis is performed in a state where the internal space 102 is closed (a situation in which the closed state continues).
  • the diagnostic processing may be stopped, and when the refrigerator main body 100B is closed, the diagnostic processing may be performed again from the beginning.
  • the diagnosis period is about 1 to 2 hours, but is not limited to this time (during the diagnosis period, it is preferable that the internal space 102 is closed).
  • FIG. 3 is a diagram showing changes over time in the input energy amount.
  • the input energy amount is the energy input into the refrigerator main body 100B for temperature control, which is the main function of the refrigerator main body 100B.
  • the input energy amount is the electric power input into the refrigerator main body 100B for temperature control of the refrigerator main body 100B.
  • the time integral of the rotational speed of the compressor 112 is calculated as the input energy amount. Calculation of the input energy amount is performed at predetermined time intervals (for example, every day).
  • the diagnostic device 200 calculates a difference 312 (amount of change) in the input energy amount with respect to a predetermined reference line as change amount information that is information on the amount of change in the input energy amount over time. Diagnostic device 200 estimates the severity of the abnormality in refrigerator main body 100B based on this difference 312.
  • a normal line 314 calculated based on the input energy amount during a period when the refrigerator main body 100B is normally operating, a maximum output 315 based on the rated output, etc. can be considered. The example shown in FIG.
  • the diagnostic device 200 diagnoses the normality of the refrigerator main body 100B based on the information regarding the maximum input energy amount and the input energy amount.
  • the degree of margin for the maximum output 315 can be clearly indicated, so that the severity can be clearly indicated.
  • the cumulative amount of input energy time integral of the rotational speed of the compressor 112 during the period when the door 103 is closed, that is, when the internal space 102 is closed, is used.
  • the influence of outside air that is, noise from being added to the amount of input energy.
  • the diagnostic device 200 estimates the degree of urgency based on the magnitude of the slope 311 as change amount information that is information on the amount of change in the amount of input energy over time.
  • change amount information that is information on the amount of change in the amount of input energy over time.
  • the maximum output 315 may be the rated power or may be the time integral of the maximum rotational speed of the compressor 112. Note that the input energy amount does not exceed the maximum output of 315.
  • the slope 311 when the slope 311 is small, it is predicted that it will take a long time for the input energy amount to reach the maximum output 315, and therefore the emergency level is diagnosed as low.
  • the slope 311 of the input energy amount when diagnosing the degree of urgency may be calculated based on the method of least squares or the like.
  • code 313 indicates the latest input energy amount.
  • FIG. 4 is a diagram showing an example of the diagnosis result display screen 330 displayed on the display device 101.
  • the caution level based on the diagnosis by the diagnostic device 200 is displayed.
  • the caution level is determined by the difference 312, 316 (see FIG. 3: Severity) between the input energy amount and the reference line which is the normal line 314 or the maximum output 315 in the time change of the actually measured input energy amount shown in FIG. This is based on the slope 311 (see FIG. 3: degree of urgency: slope of input energy amount over time).
  • the caution level is calculated by the weighted sum of the difference 312 between the input energy amount and the reference line (severity: the difference between the predetermined standard and the input energy amount) and the slope 311 (urgency).
  • the caution level may be based on only the difference 312 (see Figure 3: severity) between the input energy amount and the reference line, or may be based on the slope 311 (see Figure 3: urgency). ) may be set as the caution level. That is, the diagnosis result display screen 330 displays information regarding at least one of the slope of the input energy amount over time and the difference between the predetermined standard and the input energy amount. Note that the example shown in FIG. 4 shows an example in which the caution level is relatively good (the caution level is low).
  • the refrigerator main body 100B it is possible to diagnose an abnormality related to the main function of a cooling/heating device such as the refrigerator main body 100B only from the input energy amount. For example, if the insulation function of the refrigerator main body 100B is malfunctioning, in order to maintain the temperature of the internal space 102, the refrigerator main body 100B attempts to lower the temperature of the internal space 102 by increasing the rotation speed of the compressor 112. . Therefore, the input energy amount increases. Therefore, there is a proportional relationship between the degree of abnormality of the refrigerator main body 100B and the input energy amount. When the diagnostic device 200 detects such an increase in the amount of input energy, it determines that there is an abnormality. By doing this, the normality diagnosis (normality diagnosis )It can be performed.
  • the normality diagnosis is performed based on the input energy amount.
  • the input energy amount is the time integral of the rotation speed of the compressor 112, and an abnormality in the refrigerator main body 100B can be recognized as an abnormality in the compressor 112.
  • the provision status of the main functions can be directly known. For example, when the insulation state of the refrigerator main body 100B deteriorates, it is necessary to increase the amount of energy input to maintain the temperature inside the refrigerator, and the magnitude of the abnormality and the amount of input energy are in a proportional relationship. Therefore, since the seriousness of the main function of the refrigerator main body 100B can be directly monitored, highly accurate and explainable diagnosis is possible.
  • the normality diagnosis of the refrigerator main body 100B can be easily performed based on the input energy amount.
  • the degree of severity of abnormality in the refrigerator main body 100B (cooling/heating equipment) is determined by the difference 312 and 316 in input energy amount, and the degree of urgency is determined by (the magnitude of) the slope 311 of input energy amount. can be diagnosed.
  • the cooling and heating equipment system Z is applied to the refrigerator main body 100B.
  • the amount of input energy can be calculated based on the rotational speed of the compressor 112 and the operating time, so that accurate diagnosis can be performed.
  • the manufacturer can also grasp the refrigerator main body 100B that is likely to malfunction, and can repair or prepare for repair before the malfunction occurs. This allows you to minimize the impact on food and daily life.
  • FIG. 5 is a diagram showing an example of the configuration of the cooling and heating equipment system Za in the second embodiment.
  • the refrigerator system Za shown in FIG. 5 includes a refrigerator 100a and a diagnostic device 200a.
  • the refrigerator 100a includes a refrigerator main body 100Ba, a control device 131, and a communication device (transmission device) 132.
  • Refrigerator main body 100Ba differs from refrigerator main body 100B shown in FIG. 1 in the following points.
  • an outside temperature sensor 121 is provided outside the refrigerator main body 100Ba for measuring the outside air temperature
  • an inside temperature sensor 121 is provided in the inside space 102 of the refrigerator main body 100Ba for measuring the temperature of the inside space 102.
  • a sensor 122 is provided.
  • the refrigerator main body 100Ba is equipped with a control device 131 and a communication device 132.
  • the control device 131 collects temperature information (temperature information) measured by the outside temperature sensor 121 and the inside temperature sensor 122, the rotation speed of the compressor 112, etc., and sends it to the diagnostic device 200a via the communication device 132.
  • the display device 101 that is included in the refrigerator main body 100B in FIG. 1 is not provided in the refrigerator main body 100Ba shown in FIG.
  • control device 131 acquires the temperature measured by the outside temperature sensor 121 and the internal temperature sensor 122 as temperature information. Then, the control device 131 transmits the rotation speed and temperature information of the compressor 112 acquired via the communication device 132 to the diagnostic device 200a.
  • the diagnostic device 200a is installed in a different location from the refrigerator 100a (it is a separate device). Furthermore, the diagnostic device 200a can communicate with the control device 131 of the refrigerator 100a via the communication devices 132, 241 (receiving devices). That is, the communication device 132 communicates with the refrigerator 100a.
  • the diagnostic device 200a may construct a so-called cloud environment and may be a server installed in a company or the like. As described above, the diagnostic device 200a acquires the rotational speed of the compressor 112 sent from the control device 131 of the refrigerator 100a via the communication device 132, and the temperature information sent from the outside temperature sensor 121 and the inside temperature sensor 122. do. The diagnostic device 200a then diagnoses the normality of the refrigerator main body 100Ba based on the acquired rotational speed of the compressor 112 and temperature information sent from the outside temperature sensor 121 and the inside temperature sensor 122.
  • the terminal device T which is also an output device, is a device different from the diagnostic device 200a and the refrigerator 100a.
  • the diagnostic device 200a can communicate with a terminal device T such as a smartphone, a tablet terminal, or a notebook computer via the communication device 241.
  • a diagnosis result display screen 400 which will be described later in FIG. 8, is displayed. This allows a user or a maintenance service person to view a diagnosis result display screen 400, which will be described later in FIG. 8.
  • FIG. 6 is a diagram showing temporal changes in input energy amount and internal temperature in the refrigerator main body 100Ba.
  • the horizontal axis is the date.
  • the expected performance (external factor) 342 is the input energy amount calculated in advance based on the outside air temperature (detected value) measured by the outside air temperature sensor 121.
  • the horizontal axis in FIG. 6 indicates dates, and time 349a is summer and time 349b is winter. That is, in the summer, the outside air temperature is high, so the expected performance 342 is high, and in the winter, the outside temperature is low, so the expected performance 342 is low.
  • a circular plot 346 is the amount of input energy obtained as a result of time-integrating the measured rotational speed of the compressor 112.
  • the maximum output (information regarding the maximum value of the input energy amount) 341 is similar to the maximum output 315 shown in FIG. 3, and may be the rated power or the time integral of the maximum rotational speed of the compressor 112. .
  • the star plot 347 shows the temporal change in temperature measured by the internal temperature sensor 122.
  • the refrigerator main body 100Ba malfunctions.
  • the input energy amount (circular plot 346) reaches the maximum output 341, it becomes constant at the maximum output 341 as shown in FIG. Therefore, as shown in FIG. 6, after the input energy amount reaches the maximum output 341, the severity is diagnosed based on the internal temperature (star plot 347). Note that the measurement of the temperature inside the refrigerator may be started when the input energy amount reaches the maximum output 341, or the measurement of the temperature inside the refrigerator may be performed at all times.
  • the difference 343 between the actually measured input energy amount and the assumed performance 342 is calculated as the severity level.
  • the assumed performance 342 is the reference line.
  • the severity level may be kept constant at the maximum level, or the severity level may be determined by the difference between the failure line 345 and the temperature inside the refrigerator.
  • the difference between the failure line 345 and the temperature inside the refrigerator is defined as the severity, the smaller the difference between the failure line 345 and the temperature inside the refrigerator, the higher the severity.
  • the difference 343a between the internal temperature shown by the star plot 347 and the normal internal temperature is It is used as the degree of severity as the amount of change over time in the temperature acquired by the internal temperature sensor 122 installed inside the refrigerator.
  • the diagnostic device 200a diagnoses that an abnormality has occurred in the refrigerator main body 100Ba. Specifically, it is possible that there is an abnormality in the heat insulation structure. In the example shown in FIG. 6, the reason why the amount of input energy and the temperature inside the refrigerator are gradually increasing is considered to be that the abnormality of the heat insulation structure is gradually increasing.
  • the diagnostic device 200a uses the input energy amount (circle plot 346) and the slope 344 of the internal temperature (star plot 347) as the degree of urgency.
  • the internal temperature slope 344 is the amount of change in temperature acquired by the internal temperature sensor 122 over time.
  • the diagnosable range can be expanded.
  • the input energy amount and the internal temperature in FIG. 5 may be updated every predetermined period, such as every day, every week (one cycle of regularly repeated operation), or during a defrosting cycle. .
  • the input energy amount and the internal temperature are updated every two weeks. By doing so, it is possible to reduce the processing load on the diagnostic device 200a and the communication cost between the terminal device T and the diagnostic device 200a.
  • the processing shown in FIG. 7 is performed during times when communication charges are low, such as late at night, the communication load from the diagnostic device 200a to the terminal device T can be further reduced, and the communication cost can be further reduced. be able to.
  • FIG. 7 is a flowchart showing the procedure of processing performed by the diagnostic device 200a in the second embodiment.
  • the diagnostic device 200a acquires operating information via the control device 131 (S101).
  • the operation information includes the rotational speed of the compressor 112, the operating time, and temperature information of the outside temperature sensor 121 and the inside temperature sensor 122. Note that the operating time is the operating time of the compressor 112.
  • the diagnostic device 200a calculates the input energy amount by calculating the time integral of the rotation speed of the compressor 112 using the rotation speed and operation time of the compressor 112 in the operation information (S111). . Then, the diagnostic device 200a calculates the degree of risk, which will be described later, from the input energy amount and the internal temperature, and calculates the difference and slope of the calculated degree of risk (S112). In FIG. 6, differences 343, 343a and slope 344 between the input energy amount and the internal temperature are determined. However, in the flowchart of FIG. 7, the difference and slope of the degree of risk are calculated based on the amount of input energy and the temperature inside the refrigerator. The difference and slope of risk level will be described later. However, in step S112, the difference 343, 343a and the slope 344 between the input energy amount and the internal temperature may be determined as shown in FIG.
  • the diagnostic device 200a performs a normality diagnosis based on the risk difference and slope calculated in step S112 (S113).
  • step S113 the diagnostic device 200a diagnoses the degree of severity based on the difference and the degree of urgency based on the slope.
  • the diagnostic device 200a diagnoses it as "abnormal" in step S113.
  • step S113 If the result of step S113 is that it is diagnosed as normal (S113 ⁇ normal), the diagnostic device 200a transmits information indicating that the refrigerator is normal to the terminal device T (information regarding the normality of the refrigerator main body 100aB).
  • the terminal device T which has received the information indicating that the device is normal, outputs information indicating that the device is normal (normality) on the screen of the terminal device T (S114).
  • the diagnostic device 200a advances the process to step S131. At this time, the diagnostic device 200a transmits abnormality information to the terminal device T.
  • the abnormality information includes information regarding severity (difference in risk) and urgency (slope 344 in FIG. 6).
  • the diagnostic device 200a estimates the cause of the abnormality using temperature information among the operating information (S121). Estimation of the cause of the abnormality will be described later. Note that the process in step S121 may be performed after the abnormality is determined in step S113.
  • step S131 the terminal device T outputs the risk level, history of input energy amount, prediction, urgency, cause of abnormality, etc. on the screen. The prediction will be described later.
  • FIG. 8 is a diagram showing an example of a diagnosis result display screen 400 displayed on the screen of the terminal device T in the second embodiment.
  • Diagnosis result display screen 400 shown in FIG. 8 is the screen displayed in step S131 of FIG. 7.
  • the diagnosis result display screen 400 includes a driving state display section 410, an emergency level display section 420, a history display section 430, an abnormality cause display section 440, and an abnormality cause candidate display section 450.
  • the diagnosis result normality/abnormality: normality
  • the diagnosis result in the driving state display section 410 is diagnosed based on the difference 436a in the degree of risk shown in the history display section 430 (solid line graph 433).
  • the degree of urgency is displayed on the degree of urgency display section 420.
  • the degree of urgency (degree of urgency related to normality) is determined as "urgent" in the degree of urgency display section 420 if the slope 436b of the degree of danger shown by the solid line graph 433 in the history display section 430 is greater than or equal to a predetermined value. is displayed.
  • the history display section 430 a graph shown in FIG. 6 is displayed. However, the history display section 430 shown in FIG. 8 is adjusted so that the reference line 431 shows "0" and the danger line 432 shows "1".
  • a solid line graph 433 indicates the time conversion of the degree of risk (history of the degree of normality).
  • the degree of risk is the sum of the normalized value of the input energy amount (circle plot 346) in FIG. 6 and the normalized value of the internal temperature (star plot 347).
  • Normalizing the input energy amount means that the input energy amount is normalized so that the assumed performance 342 in FIG. 6 becomes “0" and the maximum output 341 becomes “1". Such normalization can be easily calculated by, for example, (amount of input energy ⁇ value of expected performance)/(value of maximum output 341 ⁇ value of expected performance).
  • normalizing the temperature inside the refrigerator means that the temperature inside the refrigerator is normalized so that the temperature inside the refrigerator is "0" when the refrigerator main body 100Ba is operating normally, and the failure line 345 in FIG. 6 is "1". It is to be made into Such normalization is, for example, (internal temperature - internal temperature when the refrigerator main body 100Ba is operating normally)/(value of failure line 345 - It can be easily calculated based on the temperature inside the refrigerator.
  • the normalized input energy amount and the internal temperature are added together.
  • the risk level shown in FIG. 8 is calculated by further normalizing the summed values so that the minimum value is "0" and the maximum value is "1".
  • the degree of risk is information regarding the normalized amount of input energy.
  • a normality diagnosis is performed based on the degree of risk, which is information regarding the normalized input energy amount.
  • the degree of risk is the sum of the input energy amount and the internal temperature, but for the sake of simplicity, the effect of normalizing the input energy amount will be explained. The same applies to the effect of normalizing the internal temperature.
  • the expected performance 342 itself is large in summer (time 349a), so the gap between the expected performance 342 and the maximum output 341 is narrow. Therefore, the amount of input energy, that is, the degree of risk, is shown to be an overall raised value. That is, in the summer, the outside air temperature is high, so even if the refrigerator main body 100Ba is normal, a high input energy amount is detected, and accordingly, a high risk value is detected. Therefore, it appears as if the risk is high.
  • FIG. 8 it is shown in what proportion of the input energy amount exists between the assumed performance 342 and the maximum output 341 shown in FIG. , it becomes possible to evaluate summer and winter on the same level. In this way, the normality diagnosis of the refrigerator main body 100B is performed based on the assumed performance 342, which is an external factor.
  • the degree of risk does not have to be limited to the above.
  • the degree of risk may be determined by simply connecting the time change of the input energy amount (circle plot 346) and the time change of the internal temperature (star plot 347) in FIG. That is, the time change in the input energy amount (round plot 346) and the time change in the internal temperature (star plot 347) in FIG. 6 may themselves be shown as the risk level (solid line graph 433) in FIG. .
  • the time change in the amount of input energy is shown as the degree of risk
  • the time change in the internal temperature is shown as the risk.
  • the expected performance 342 in FIG. 6 is normalized to be "0" (reference line 431 in FIG. 8), and the failure line 345 in FIG. 6 is normalized to be "1".
  • a broken line graph 434 indicates the predicted degree of risk (prediction of normality), and reference numeral 435 indicates the current degree of risk.
  • the predicted risk level shown by the broken line graph 434 may be calculated by the diagnostic device 200a or the terminal device T based on the previous risk level (solid line graph 433).
  • the predicted risk level is calculated by, for example, machine learning using regression.
  • the history display section 430 shows a risk difference 436a indicating the degree of severity and a slope 436b indicating the degree of urgency. Either one of the risk level difference 436a and the slope 436b may be displayed.
  • the degree of urgency displayed in the degree of urgency display section 420 in FIG. Specifically, when the predicted degree of risk changes over time, the degree of risk is predicted to reach a predetermined value (for example, danger line 432 in FIG. 8) within a predetermined period (for example, within one month). , the diagnostic device 200a determines that it is an "emergency". In other words, the diagnostic device 200a determines that the situation is "urgent” if the slope 436b of the degree of risk is greater than or equal to a predetermined value.
  • a predetermined value for example, danger line 432 in FIG. 8
  • the abnormality cause candidate display section 450 displays a plurality of abnormality cause candidates.
  • candidates for abnormality causes are displayed in order of likelihood.
  • the abnormality cause display section 440 displays the most probable abnormality cause among the abnormality cause candidates displayed on the abnormality cause candidate display section 450.
  • the cause of the abnormality is identified by the diagnostic device 200a, for example, based on the history of the internal temperature and the outside temperature (obtained using the outside temperature sensor 121). For example, if the internal temperature of the refrigerator compartment is higher than a predetermined temperature, the diagnostic device 200a diagnoses that there is an abnormality in the insulation structure of the refrigerator compartment. Alternatively, an abnormality in a heat exchanger (not shown) for an ice making device (not shown) is diagnosed based on a temperature change in the heat exchanger (not shown). The temperature of a heat exchanger (not shown) for the ice making device (not shown) is measured by a temperature sensor (not shown) attached to the heat exchanger (not shown). Alternatively, the cause of the abnormality in the refrigerator 100a may be classified by machine learning based on the pattern of temporal changes in temperature information from the outside temperature sensor 121 and the inside temperature sensor 122.
  • the diagnostic device 200a can also diagnose the heat balance at a maximum load (maximum output 341 in FIG. 6) or higher using the internal temperature sensor 122.
  • the diagnostic device 200a in a state where the cooling capacity is sufficient in terms of heat balance below the maximum output 341 (see FIG. 6), and in a state where the cooling capacity is sufficient in terms of heat balance above the maximum output 341. It is diagnosed that there is a lack of
  • the assumed performance 342 in FIG. 6 is set to "0" (straight broken line 351 in FIG. 8), and the failure line 345 in FIG. 6 is normalized to "1" (reference line 431 in FIG. 8).
  • the normality diagnosis in consideration of the outside air temperature (external factor) in this way, it is possible to perform the normality diagnosis for the ambient conditions (outside air temperature) of the refrigerator main body 100Ba.
  • the diagnostic device 200a can give advice such as checking the opening/closing of the door 103 and checking gaps.
  • diagnosis result display screen 400 shown in FIG. 8 displays an urgency display section 420 and a risk prediction (broken line graph 434), so that the user can easily recognize the severity and urgency of the abnormality. I can do it.
  • the diagnostic device 200a is a separate device from the refrigerator 100a. If the function of the diagnostic device 200a is installed in the refrigerator 100a, the cost of securing a calculation area and a storage area will be incurred. By using the diagnostic device 200a as a separate device from the refrigerator 100a as in the second embodiment, these costs can be reduced. Further, by using the diagnostic device 200a as a separate device from the refrigerator 100a, the maintenance of the diagnostic device 200a and the refrigerator 100a can be separated. Therefore, the maintainability of the service can be improved.
  • the diagnosis result is displayed on the terminal device T.
  • diagnosis result display screen 400 shown in FIG. 8 may display a display indicating how many days it will take for the refrigerator 100a to reach the danger line 432.
  • FIG. 9 is a diagram showing the configuration of the cooling and heating equipment system Zb in the third embodiment.
  • the thermal equipment system Zb shown in FIG. 9 includes a plurality of refrigerators 100a1 to 100a4 (100a) and a diagnostic device 200a.
  • a plurality of refrigerators 100a1 to 100a4 (100a) are communicably connected to the diagnostic device 200a.
  • Each of the refrigerators 100a1 to 100a4 has the same configuration as the refrigerator 100a shown in FIG. 5, so the description in FIG. 9 will be omitted.
  • the four refrigerators 100a1 to 100a4 are communicably connected to the diagnostic device 200a and are therefore the diagnostic targets of the diagnostic device 200a.
  • the number of refrigerators 100a installed in the cooling and heating equipment system Zb may be one.
  • regarding the configuration of the refrigerators 100a1 to 100a4 refer to the refrigerator 100a shown in FIG. 5.
  • the diagnostic device 200a has the same configuration as the diagnostic device 200a shown in FIG. 5, the explanation in FIG. 9 will be omitted. Similar to the diagnostic device 200a shown in FIG. 5, the diagnostic device 200a shown in FIG. 9 may also construct a so-called cloud environment and be a server installed in a company or the like.
  • the diagnostic device 200a obtains information (from each of the plurality of refrigerators 100a1 to 100a4) of the rotational speed of the compressor 112 (see FIG. 5), and the temperature measured by the outside temperature sensor 121 and the internal temperature sensor 122 (see FIG. 5, respectively). temperature information) is received (obtained) as operating information via the communication device 132 (see FIG. 5) provided in each of the refrigerators 100a1 to 100a4.
  • the diagnostic device 200a transmits abnormality information to the terminal device (output device) T, as in the second embodiment.
  • the abnormality information is similar to that explained in FIG.
  • the terminal device T includes a camera (photographing device) T1
  • the diagnostic device 200a receives an image regarding the installed state of the refrigerator main body 100Ba (see FIG. 5), which is captured by the camera T1 of the terminal device T.
  • information regarding the normal state and the usage state of the refrigerator main body 100Ba is output in consideration of the usage state of the refrigerator body 100Ba, but below, the installation state, which is one form thereof, will be described as the usage state.
  • FIG. 10 is a diagram showing the procedure of usage state determination processing performed in the third embodiment.
  • FIG. 9 As appropriate.
  • FIGS. 5 and 9 as appropriate.
  • the installed state of the refrigerator main body 100Ba (see FIG. 5) in the refrigerator 100a (any of the refrigerators 100a1 to 100a4) owned by the user is photographed using a camera T1 provided in a terminal device T owned by the user. (S201).
  • the user captures an image that shows the distance between the side surface of the refrigerator body 100Ba and the wall.
  • the user transmits the photographed image of the installed state to the diagnostic device 200a (S202).
  • the diagnostic device 200a evaluates whether the refrigerator main body 100Ba is appropriately installed based on the transmitted image (S203).
  • the evaluation is performed, for example, as follows. First, an evaluation value based on the distance between the side surface of the refrigerator main body 100Ba and the wall is set in advance in the storage device 220 of the diagnostic device 200a. The diagnostic device 200a then estimates the distance between the side surface of the refrigerator main body 100Ba and the wall from the transmitted image. Subsequently, the diagnostic device 200a determines an evaluation value regarding the installation state (usage state) of the refrigerator main body 100Ba based on the estimated distance and the evaluation value stored in the storage device 220.
  • the diagnostic device 200a transmits the evaluation result of step S203 to the terminal device T, and the terminal device T outputs the transmitted evaluation result (S204).
  • the process shown in FIG. 10 is performed for each refrigerator 100a. That is, the diagnostic device 200a diagnoses the normality of each of the plurality of cooling and heating devices based on the amount of input energy based on the operation information acquired from each of the plurality of cooling and heating devices.
  • FIG. 11 is a diagram showing an example of a diagnosis result display screen 700 displayed on the terminal device T in step S204 of FIG.
  • the diagnosis result display screen 700 includes a history display section 710, a normality comparison section 720, a driving state display section 731, and a usage state display section 732.
  • the history display section 710 is similar to the display of the history display section 430 shown in FIG. 8, but the display of the history display section 710 shown in FIG. 11 differs from the display of the history display section 430 shown in FIG. It is normal. This is achieved by reversing the risk levels in FIG. Therefore, danger line 713 corresponds to danger line 432 in FIG. 8, and reference line 712 corresponds to reference line 431 in FIG.
  • the temporal change in normality (solid line 711) shown in FIG. 11 takes into account the installation state (usage state) of the refrigerator main body 100Ba.
  • the installation state is the installation state evaluated in step S203 of FIG. 10.
  • the diagnostic device 200a determines in advance a value to be subtracted from the normality level according to the distance between the side surface of the refrigerator body 100Ba and the wall. This value to be subtracted is set based on the evaluation value calculated in step S203 of FIG. 10.
  • a value determined according to the distance between the side surface of the refrigerator body 100Ba and the wall is subtracted (newly calculated normality), and the change in normality over time ( It is displayed as a solid line 711).
  • a value determined according to the distance between the side surface of the refrigerator main body 100Ba and the wall may be subtracted from the input energy amount before calculating the normality level.
  • the diagnostic device 200a may add a value determined according to the distance between the side surface of the refrigerator body 100Ba and the wall to the assumed performance 342 (see FIG. 6) before calculating the normality level. good.
  • the influence of the installation state (usage state) of the refrigerator main body 100Ba is taken into consideration in the normality level. Even if it is said that the installation condition is inappropriate, ordinary users are often unable to respond. Therefore, as shown in FIG. 11, by adding the installation state of the refrigerator main body 100Ba to the normality degree, the user can confirm the normality degree in which the influence of the installation state is taken into account. Note that the evaluation value of the installation state itself may be output on the diagnosis result display screen 700, and the user himself may diagnose the installation state.
  • the installed state of the refrigerator main body 100Ba is uploaded as an image to the diagnostic device 200a, and the normality diagnosis is performed by removing the installation state factor (evaluation value) from the normality level.
  • the evaluation value for the setting state may be calculated by machine learning. Since evaluation values for the installation state and machine learning parameters are stored in advance in a database (not shown), the diagnostic device 200a can calculate the evaluation value for the installation state in a short time upon receiving an image. I can do it. Thereby, for example, when the refrigerator 100a is delivered, the manufacturer's service person can use the method of the third embodiment to check the installation state of the refrigerator main body 100Ba.
  • a normality histogram is displayed in the normality comparison section 720. As shown in FIG. 11, the horizontal axis of the normality histogram is the normality shown in the history display section 710, and the vertical axis is the number of devices. Note that the normality histogram is generated based on the current normality.
  • the normality histogram indicates the number of refrigerators 100a that belong to the corresponding normality range. Further, in the normality comparison unit 720 shown in FIG. 11, the normality histogram to which the refrigerator 100a owned by the person who owns the terminal device T belongs is indicated by diagonal lines. By doing so, the user can compare the normality level between himself and other people. In other words, the normality of each of the plurality of refrigerators 100a is outputted so as to be comparable. Note that, as described above, the installation state (usage state) is taken into consideration in the normality level. For example, the distance between the side surface of the refrigerator main body 100Ba and the wall is also related to the degree of energy saving. Therefore, it can be said that the normality reflects the energy saving degree. Therefore, the energy saving level may be displayed in the normality comparison section 720 instead of the normality level.
  • evaluation values such as the set temperature and the degree of filling of the internal space 102 (see FIG. 5) may be calculated.
  • the user takes an image that shows the set temperature and the degree of filling of the internal space 102, and sends it to the diagnostic device 200a.
  • the set temperature may be directly transmitted from the refrigerator 100a to the diagnostic device 200a.
  • the diagnostic device 200a determines (evaluates) a preset evaluation value according to the set temperature and the degree of filling of the internal space 102.
  • the usage status display section 732 displays the usage status of the user shown in the normality comparison section 720.
  • the usage state display section 732 shows the installed state of the refrigerator main body 100Ba, which is one form of the usage state.
  • the person using the terminal device T in the third embodiment is a user, it may also be used by a service person who performs maintenance or the like.
  • the history display section 710 in FIG. 11 allows the user to know where the user's usage status (usage status) is in the overall position, and the user can check the status (energy saving level) of the refrigerator 100a that the user owns. etc.) may help to reconsider.
  • the influence of the installation state can be reflected in the normality level.
  • FIG. 12 is a diagram showing the configuration of the cooling and heating equipment system Zc in the fourth embodiment.
  • the cooling and heating equipment system Zc performs a normality diagnosis of the heat pump water heater 500.
  • the cooling and heating equipment system Zc includes a heat pump water heater 500 and a diagnostic device 200a.
  • Heat pump water heater 500 includes a heat pump unit 510, a hot water storage unit 520, a control device 131, and a communication device 132.
  • the heat pump unit 510 is equipped with a heat pump cycle H that heats cold water and boils it into hot water during a boiling operation.
  • the hot water storage unit 520 is equipped with a water side cycle (heating flow path) W that operates during boiling operation and a hot water supply flow path group F that operates during hot water supply.
  • the control device 131 and the communication device 132 will be described later.
  • a compressor (drive source) 511 a water/refrigerant heat exchanger (heat radiation device, temperature control device) 512, an expansion valve (expansion device) 513, and an evaporator (heat absorption device) 514 are connected in a ring. This is the flow path where The evaporator 514 is equipped with a blower fan 515.
  • the water side cycle W has a configuration in which a hot water storage container (temperature control space, heat storage space) 521, a boiling circulation pump 522, and a water/refrigerant heat exchanger 512 are connected in a ring.
  • the hot water supply channel group F includes a channel in which a water pipe 524, a hot water storage container 521, and a water supply port (water supply device) 523 are connected in series, and a pipe 525 that directly connects the water pipe 524 and the inlet of the water supply port 523. configured.
  • Heat pump cycle H The heat pump cycle H is sealed with R744, which is a CO2 refrigerant, as a heat transfer medium, but the refrigerant is not limited to R744, and various refrigerants such as R32 and R410A can be selected depending on the purpose.
  • R744 is a CO2 refrigerant, as a heat transfer medium, but the refrigerant is not limited to R744, and various refrigerants such as R32 and R410A can be selected depending on the purpose.
  • the heat pump water heater 500 is equipped with an outside temperature sensor 531 that measures outside air temperature. Furthermore, the heat pump water heater 500 includes a control device 131 and a communication device 132. The control device 131 transmits information such as the rotation speed of the compressor 511 and the temperature measured by the outside air temperature sensor 531 (temperature information) to the diagnostic device 200a via the communication device 132.
  • the heat pump water heater 500 when supplying hot water will be briefly described using FIG. 12.
  • the water/refrigerant heat exchanger 512 heats the cold water sent from the hot water storage container 521 by the boiling circulation pump 522, and instead It performs a heat exchange action by dissipating its own heat.
  • the refrigerant becomes a low-temperature, low-pressure state by passing through the expansion valve 513, receives heat from the outside air sent by the blower fan 515 in the evaporator 514, and then flows into the compressor 511 again.
  • the water/refrigerant heat exchanger 512 the water and the refrigerant flow in opposite directions, and hot water heated by the refrigerant and heated to a higher temperature is returned to the hot water storage container 521.
  • hot water flows from the upper part of the hot water storage container 521 to the water supply port 523, and at the same time, tap water is supplied from the water pipe 524 to the water supply port 523 via the pipe 525.
  • the hot water and tap water are mixed at the inlet of the water supply port 523 and then flowed out from the water supply port 523. Note that during hot water supply, the opening degree of the valve 527 is adjusted.
  • tap water is replenished from the water pipe 524 via the pressure reducing valve 526.
  • the blower fan 515 rotates, thereby generating a flow of outside air from the evaporator 514 toward the blower fan 515.
  • the refrigerant flowing into the evaporator 514 branches into a plurality of channels at a distribution section (not shown), passes through each channel, absorbs heat from the outside air, and then evaporates. The liquid is discharged from the container 514.
  • the refrigerant flows from the end of the evaporator 514, passes through the evaporator 514 in a substantially horizontal direction, reaches the opposite end, and then turns around and returns to the next stage, where it flows into the outside air. get heat from
  • Control device 131 The control device 131 acquires information on the rotational speed of the compressor 511 and the outside air temperature measured by the outside air temperature sensor 531, and transmits the acquired information to the diagnostic device 200a via the communication device 132.
  • the diagnostic device 200a estimates the input energy amount based on information acquired from the heat pump water heater 500 via the control device 131 and the communication devices 132, 241, and performs a normality diagnosis based on the estimated input energy amount.
  • the configuration of the diagnostic device 200a is the same as that of the diagnostic device 200a shown in FIG. 5, so the description in FIG. 11 will be omitted.
  • the diagnostic device 200a estimates the input energy amount of the heat pump water heater 500 by integrating the rotational speed of the compressor 511 in the heat pump water heater 500 over time.
  • the diagnostic device 200a acquires the outside air temperature of the heat pump water heater 500 from the outside air temperature sensor 531.
  • the diagnostic device 200a may be a server installed in a company or the like by constructing a so-called cloud environment. Further, since the terminal device T is similar to that shown in FIG. 5, etc., the explanation in FIG. 11 will be omitted.
  • FIG. 13 is a diagram showing temporal changes in the amount of input energy in the cooling and heating equipment system Zc.
  • the same components as those in FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted.
  • the input energy amount of the heat pump water heater 500 is small in the summer, and the input energy amount is large in the winter, so summer and winter are interchanged with those in FIG. 6.
  • the expected performance 342 is low in summer (time 349a) and high in winter (time 349b).
  • the input energy amount is the input energy amount of the heat pump water heater 500, and the time change of the temperature by the chamber temperature sensor 122 (see FIG.
  • the processing procedure for diagnosing the normality of the heat pump water heater 500 by the diagnostic device 200a is also similar to the temporal change in input energy amount shown in FIG.
  • the normality of the cooling and heating equipment system Zc in the fourth embodiment is also determined by comparing the input energy amount with the assumed performance 342 estimated based on the outside air temperature.
  • the diagnostic device 200a performs a normality diagnosis of the heat pump water heater 500 every predetermined period (for example, one day), and transmits the diagnosis result to the terminal device T.
  • a screen similar to the diagnosis result display screen 400 shown in FIG. 8 is displayed on the screen of the terminal device T, and the time change (history) of the input energy amount, the degree of urgency, the predicted value of the input energy amount, etc. are displayed. It's okay. Further, information regarding the cause of the abnormality may be displayed similarly to the diagnosis result display screen 400 shown in FIG.
  • the fourth embodiment describes the normality diagnosis of the heat pump water heater 500
  • the normality diagnosis of the gas type water heater may also be performed.
  • the input gas amount is used as the input energy amount.
  • the technology described in the fourth embodiment may be applied to a heat pump-type and gas-type hybrid water heater. In such a hybrid water heater, the sum of the time integral value of the rotational speed of the compressor 511 and the input gas amount is used as the input energy amount. Note that when the time integral value of the rotational speed of the compressor 511 and the input gas amount are added, it is preferable to convert the time integral value of the rotational speed of the compressor 511 and the input gas amount into joules or the like, for example.
  • the normality diagnosis is performed while the hot water in the hot water storage container 521 is not being used. For example, it is preferable to do it late at night.
  • the diagnostic device 200a may cancel the normality diagnosis. It is preferable that the diagnostic device 200a collects input energy amount and temperature information and stores them in the storage device 220 while the normality diagnosis is not being performed.
  • a cooling and heating equipment system Zc is applied to a heat pump water heater 500.
  • the normality diagnosis of the heat pump water heater 500 can be easily performed based on the input energy amount.
  • the amount of energy input used for daily boiling can be calculated, it can be correlated with the frequency of use of the heat pump water heater 500, and if the amount of heat for boiling is large even though the heat pump water heater 500 is used less, it can be determined that heat leakage, etc. has occurred. can be diagnosed.
  • FIG. 14 is a diagram showing the configuration of the cooling and heating equipment system Zd in the fifth embodiment.
  • abnormality diagnosis of the washer/dryer 600 is performed.
  • the cooling and heating equipment system Zd includes a washer/dryer 600 and a diagnostic device 200a.
  • the washer/dryer 600 illustrated in the fifth embodiment is an electric washer/dryer.
  • the washer/dryer 600 includes a washer/dryer main body (drying device) 600B, a control device 131, and a communication device 132.
  • the washer/dryer main body 600B includes a washing tub (clothes holding section) 601, a motor 603, and a load sensor (sensor) 604.
  • the washer/dryer main body 600B includes a heater (drive source) 605, a blower (air blower) 606, and an outside temperature sensor 607. Further, inside the heater 605, there is provided an electric heater (temperature control device) 605a that is made of nichrome wire or the like and generates heat when energized.
  • the user opens the door 602, puts the clothes to be washed into the washing tub 601, and closes the door 602. As a result, clothes are held in the washing tub 601. At this time, the mass of the clothes placed in the washing tub 601 (the detected value of the detected internal factor) is measured by the load sensor 604. Thereafter, the motor 603 rotates the washing tub 601 to perform a washing process, a dehydration process, and a drying process. The water coming out of the clothes is drained through the drain port 621.
  • a drying process is performed.
  • the blower 606 takes in air from outside the washer/dryer main body 600B through a first duct 608 and blows the taken air into the washing tub 601 through a second duct 609.
  • the second duct 609 is equipped with a heater 605, and in the drying process, the air blown by the blower 606 is warmed by the heater 605 and then blown into the washing tub 601.
  • an electric heater 605a provided in the heater 605 generates heat, and after the heat warms the air sent by the blower 606, it is blown into the inside of the washing tub 601.
  • outside air temperature sensor 607 measures the outside air temperature of the washer/dryer main body 600B.
  • control device 131 transmits information such as the power input to the heater 605 and the temperature measured by the outside air temperature sensor 607 (temperature information) to the diagnostic device 200a via the communication device 132.
  • the diagnostic device 200a estimates the input energy amount based on information acquired from the washer/dryer 600 via the control device 131 and the communication devices 132, 241, and performs a normality determination based on the estimated input energy amount.
  • the configuration of the diagnostic device 200a is similar to the diagnostic device 200a shown in FIG. Estimate the input energy amount of 600B. Specifically, the amount of energy input to the washer/dryer 600 is estimated by the time integral of (supply voltage x input current) to the heater 605 .
  • the diagnostic device 200a also acquires the mass of the clothes put into the washing tub 601 from the load sensor 604 of the washer/dryer main body 600B, and calculates the expected performance 811 (see FIG.
  • the diagnostic device 200a diagnoses an abnormality in the washer/dryer main body 600B based on the difference between the assumed performance 811 and the input energy amount.
  • the assumed performance 811 of the washer/dryer main body 600B will be described later.
  • the diagnostic device 200a also acquires the outside air temperature measured by the outside air temperature sensor 607.
  • the diagnostic device 200a also acquires the mass of the clothing from the load sensor 604.
  • the diagnostic device 200a may be a server installed in a company or the like by constructing a so-called cloud environment. Further, since the terminal device T is similar to that shown in FIG. 5, etc., the explanation in FIG. 11 will be omitted.
  • FIG. 15 is a diagram showing the relationship between the amount of energy input into the washer/dryer main body 600B and the mass of clothes (clothing mass) put into the washing tub 601 of the washer/dryer main body 600B.
  • the assumed performance 811 of the washer/dryer main body 600B is the minimum value of the input energy amount input to the heater 605 to dry the clothes placed in the washing tub 601. Therefore, the greater the mass of clothing, the greater the amount of energy input. In this way, the mass of the clothing is used when calculating the amount of energy input to the heater 605.
  • a plot 812 is the amount of input energy input to the heater 605.
  • the diagnostic device 200a determines an abnormality in the washer/dryer main body 600B based on the difference between the assumed performance 811 and the actually measured input energy amount.
  • the difference between the assumed performance 811 and the input energy amount is defined as follows. First, a perpendicular line, such as a straight line 813, is drawn from the plot 812 indicating the amount of input energy to the x-axis (axis of clothing mass). Then, the difference between the expected performance 811 and the amount of input energy shown by the plot 812 is defined by the length of the straight line 813 between the point where it intersects with the expected performance 811 and the plot 812 indicating the amount of input energy.
  • the difference between the assumed performance 811 and the actually measured amount of input energy will be referred to as the degree of deviation.
  • FIG. 15 shows a large number of plots 812, and each of the plots 812 indicates the estimated input energy amount each time washing and drying is performed.
  • the diagnostic device 200a When performing a normality diagnosis, the diagnostic device 200a only needs to calculate the degree of deviation with respect to the input energy amount corresponding to the current washing and drying.
  • the assumed performance 811 when the outside air temperature is high, such as in the summer, the assumed performance 811 becomes small, and when the outside air temperature is low, such as in the winter, the assumed performance 811 becomes large.
  • An increase in the assumed performance 811 means that the slope of the expected performance 811 shown in FIG. 15 becomes large, and a decrease in the expected performance 811 means that the slope of the expected performance 811 shown in FIG. 15 becomes small.
  • FIG. 16 is a diagram showing changes in the degree of deviation over time.
  • the horizontal axis shows the number of times of drying, and the vertical axis shows the degree of deviation.
  • the degree of deviation is the degree of deviation shown in FIG. 15 (the length of straight line 813 in FIG. 15).
  • the diagnostic device 200a diagnoses an abnormality. That is, when the magnitude of the degree of deviation 823 reaches a predetermined magnitude (the magnitude of the threshold value 822), the diagnostic device 200a diagnoses an abnormality.
  • a predetermined magnitude the magnitude of the threshold value 822
  • the diagnostic device 200a diagnoses the degree of urgency based on the magnitude of the slope 824 of the degree of deviation. Note that the degree of deviation indicated by reference numeral 831 indicates the current degree of deviation. In this way, in the fifth embodiment, the normality diagnosis of the washer/dryer main body 600B is performed based on the mass of the clothing, which is an internal factor.
  • an electric washer/dryer is shown as the washer/dryer 600, but a heat pump washer/dryer may also be applied.
  • the normality of the heat pump washer/dryer may be diagnosed using the same method as in the fourth embodiment.
  • a gas washer/dryer may be applied. When a gas washer/dryer is applied, the input gas amount is used as the input energy amount.
  • a screen similar to the diagnosis result display screen 400 shown in FIG. 8 is displayed on the display screen of the terminal device T, and the time change (history) of the input energy amount, the degree of urgency, the prediction of the input energy amount, etc. are displayed. Good too. Further, information regarding the cause of the abnormality may be displayed similarly to the diagnosis result display screen 400 shown in FIG.
  • the mass of the clothes put into the washing tub 601 is measured by the load sensor 604, but the load sensor 604 is omitted and the load current value of the motor 603 that drives the washing tub 601 is used. Accordingly, the amount of clothes thrown into the washing tub 601 may be measured. Furthermore, in addition to the amount of energy input to the heater 605 as the input energy amount in the fifth embodiment, the amount of energy input to the blower 606 may be used as the input energy amount at the time of normality diagnosis. The amount of energy input to the blower 606 is represented by the time integral of the power input to the blower 606.
  • the washer/dryer 600 may be a dryer that does not have a washing function.
  • the normal line diagnosis is preferably performed while the drying function of the washer/dryer main body 600B is not being used. For example, it is preferable to do it late at night.
  • the diagnostic device 200a may cancel the normality diagnosis. At this time, information regarding the input energy amount may be accumulated in the storage device 220, and the normality diagnosis result for each drying session may be displayed.
  • the normality with respect to predetermined conditions such as the mass of the clothes placed inside the washing tub 601 can be determined. Diagnosis can be made.
  • a heating and cooling equipment system Zd is applied to a washer/dryer 600.
  • the normality diagnosis of the washer/dryer 600 can be easily performed based on the input energy amount. Note that if the amount of input energy (power) used to dry the clothes is excessively large, it is possible to diagnose leakage in the air passages or heat leakage in the first duct 608 and the second duct 609.
  • the same normality diagnosis as in this embodiment can be performed for an air conditioner by using the time integral of the rotational speed of the compressor as the input energy amount.
  • the diagnosis of the refrigerator main body 100B, the heat pump water heater 500, and the washer/dryer 600 is described, but the cooling and heating equipment system Z of this embodiment may be applied to the diagnosis of an air conditioner.
  • the time integral of the rotational speed of the compressor 112 is used as the input energy amount.
  • the third embodiment shows an example in which the normality diagnosis is performed on a plurality of refrigerators 100a (100a1 to 100a4)
  • the present invention is not limited to this.
  • a plurality of heat pump water heaters 500, a plurality of washer/dryers 600, and a plurality of air conditioners may be subjected to the normality diagnosis.
  • the usage status is evaluated by calculating an evaluation value for the usage status (installation status) of the refrigerator 100a, but the present invention is not limited to this.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • a part or all of the above-described configurations, functions, arithmetic device 210, storage device 220, etc. may be realized in hardware by designing, for example, an integrated circuit.
  • each of the above-mentioned configurations, functions, etc. may be realized by software by a processor such as a CPU (arithmetic unit 210) interpreting and executing a program for realizing each function.
  • a processor such as a CPU (arithmetic unit 210) interpreting and executing a program for realizing each function.
  • a recording device such as an SSD (Solid State Drive), or an IC (Integrated Circuit) card.
  • SD Secure Digital
  • DVD Digital Versatile Disc
  • control lines and information lines are shown that are considered necessary for explanation, and not all control lines and information lines are necessarily shown in the product. In reality, almost all configurations can be considered interconnected.
  • Refrigerator 100B Refrigerator body (thermal equipment, cooling device) 100Ba Refrigerator body (cooling equipment, cooling device) 100a1 Refrigerator 100a2 Refrigerator 100a3 Refrigerator 100a4 Refrigerator 101 Display device (output device) 102 Internal space (temperature-controlled space, cold storage space) 103 Door 104 Blower fan 111 Heat absorption device (temperature control device, refrigeration cycle) 112 Compressor (drive source, refrigeration cycle) 113 Heat dissipation device (refrigeration cycle) 114 Expansion device (refrigeration cycle) 121 Outside temperature sensor (sensor) 122 Internal temperature sensor (temperature sensor) 131 Control device 132 Communication device (transmission device) 200 Diagnostic equipment (thermal equipment diagnostic system) 200a Diagnostic device (thermal equipment diagnostic system) 210 Arithmetic device 220 Storage device 230 Control device 241 Communication device (receiving device) 301 Code 302 Code 303 Diagnosis period 311 Slope (change amount information) 312 Difference (change amount information) 313 Sign 314 Normal line

Abstract

In order to diagnose the normality of the main functions of cooling/heating equipment by a simple method, the present invention includes a diagnostic device (100) that, on the basis of operating information acquired from a refrigerator body (100B), calculates the amount of input energy to be input to a compressor (112), calculates change amount information that is information regarding an amount of change relative to an elapsed time regarding the amount of input energy, and diagnoses the normality of the refrigerator body (100) on the basis of the change amount information. The refrigerator body includes: the compressor (112) that is driven in accordance with the amount of input energy obtained by time-integrating the rotational speed of the compressor (112); and a heat absorbing device (111) that controls the temperature of a refrigerator internal space (102) by using the compressor (112).

Description

冷熱機器診断システムRefrigeration equipment diagnostic system
 本発明は、冷熱機器診断システムの技術に関する。 The present invention relates to technology for a thermal equipment diagnostic system.
 食品、水、衣類等の冷却または加熱を行う汎用機器として、冷蔵庫、ヒートポンプ給湯機、洗濯乾燥機等が知られている。これらの機器は、冷熱や温熱を所定の温度に制御して、所定の熱量を提供する機能を有し、食品、衛生面の維持等の至るところで必要不可欠な役割を担っている。このため、故障が発生した場合や、故障の兆候が確認された場合に迅速な修理を必要とする。 Refrigerators, heat pump water heaters, washer/dryers, etc. are known as general-purpose equipment that cools or heats food, water, clothing, etc. These devices have the function of controlling cold or hot heat to a predetermined temperature and providing a predetermined amount of heat, and play an essential role in maintaining food and hygiene everywhere. Therefore, when a failure occurs or signs of failure are confirmed, prompt repair is required.
 このような課題を解決する技術として、従来文献1には「 冷凍サイクルの運転状態を総合的に把握することにより、理想値からの変位から故障個所を推定する。本発明によれば、修理時に故障部位の特定を効率よく行うことができる」空気調和機が開示されている(要約参照)。 As a technique for solving such problems, Conventional Document 1 states, ``By comprehensively understanding the operating state of the refrigeration cycle, the failure location is estimated from the deviation from the ideal value.According to the present invention, the failure location is estimated from the deviation from the ideal value. Discloses an air conditioner that allows efficient identification of a faulty part (see abstract).
特開2006-090614号公報Japanese Patent Application Publication No. 2006-090614
 特許文献1に記載の方法により、機器の動作原理に基づいて正常性(異常度)と、異常個所を検知することが可能となるため、物理的に妥当な診断が提供できる。 By the method described in Patent Document 1, it is possible to detect the normality (degree of abnormality) and the abnormal location based on the operating principle of the device, so it is possible to provide a physically valid diagnosis.
 一方で、従来技術では、異常度の大きさと機器の主機能に対する深刻さの関係が曖昧である。例えば冷蔵庫は庫内の保管物を所定の温度に冷却することが主機能であるが、従来技術のような方法で求めた異常度と、冷却機能の低下状態の深刻さの対応がわかりにくいため、診断結果の正常性の判断が難しい。 On the other hand, in the conventional technology, the relationship between the degree of abnormality and the seriousness with respect to the main function of the device is ambiguous. For example, the main function of a refrigerator is to cool the stored items inside the refrigerator to a predetermined temperature, but it is difficult to understand the correspondence between the degree of abnormality determined using conventional methods and the severity of the decline in cooling function. , it is difficult to judge the normality of the diagnostic results.
 前記した課題を解決するため、本発明は、投入エネルギ量に応じて駆動する駆動源と、前記駆動源により温調空間の温度を制御する温調装置と、を備える冷熱機器から取得される稼働情報を基に、前記駆動源に投入される前記投入エネルギ量を算出し、前記投入エネルギ量の時間経過に対する変化量の情報である変化量情報を算出し、前記変化量情報を基に前記冷熱機器の正常性を診断する演算装置を有することを特徴とする。
 その他の解決手段は実施形態中において適宜記載する。
In order to solve the above-mentioned problems, the present invention provides a drive source that drives according to the amount of input energy, and a temperature control device that controls the temperature of a temperature-controlled space using the drive source. Based on the information, calculate the input energy amount input to the drive source, calculate change amount information that is information on the amount of change in the input energy amount over time, and calculate the amount of change in the input energy amount based on the change amount information. The device is characterized by having a calculation device that diagnoses the normality of the device.
Other solutions will be described as appropriate in the embodiments.
第1実施形態における冷熱機器システムの構成を示す図である。It is a figure showing the composition of the cooling equipment system in a 1st embodiment. 診断装置による診断期間を示す図である。It is a figure showing the diagnosis period by a diagnostic device. 投入エネルギ量の時間変化を示す図である。It is a figure showing a time change of input energy amount. 表示装置に表示される診断結果表示画面の例を示す図である。It is a figure showing an example of a diagnosis result display screen displayed on a display device. 第2実施形態における冷熱機器システムの構成例を示す図である。It is a figure showing the example of composition of the cooling equipment system in a 2nd embodiment. 冷蔵庫における投入エネルギ量及び庫内温度の時間変化を示す図である。It is a figure showing the time change of input energy amount and refrigerator temperature in a refrigerator. 第2実施形態において診断装置が行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which a diagnostic device performs in 2nd Embodiment. 第2実施形態において端末装置の画面に表示される診断結果表示画面の例を示す図である。It is a figure which shows the example of the diagnostic result display screen displayed on the screen of a terminal device in 2nd Embodiment. 第3実施形態における冷熱機器システムの構成を示す図である。It is a figure showing the composition of the cooling equipment system in a 3rd embodiment. 第3実施形態で行われる利用状態判定処理の手順を示す図である。It is a figure showing the procedure of usage state judgment processing performed in a 3rd embodiment. 第3実施形態において端末装置に表示される診断結果表示画面の例を示す図である。It is a figure showing an example of a diagnosis result display screen displayed on a terminal device in a 3rd embodiment. 第4実施形態における冷熱機器システムの構成を示す図である。It is a figure showing the composition of the cooling equipment system in a 4th embodiment. 冷熱機器システムにおける投入エネルギ量の時間変化を示す図である。It is a figure showing a time change of input energy amount in a cooling equipment system. 第5実施形態における冷熱機器システムの構成を示す図である。It is a figure showing the composition of the cooling equipment system in a 5th embodiment. 洗濯乾燥機の投入エネルギ量と、洗濯乾燥機の洗濯槽に投入された衣類の質量(衣類質量)との関係を示す図である。FIG. 3 is a diagram showing the relationship between the input energy amount of the washer/dryer and the mass of clothes (clothing mass) inputted into the washing tub of the washer/dryer. 乖離度の時間変化を示す図である。It is a figure showing a time change of a deviation degree.
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。 Next, modes for carrying out the present invention (referred to as "embodiments") will be described in detail with reference to the drawings as appropriate.
 [第1実施形態]
 まず、図1~図4を参照して、本発明の第1実施形態について説明する。
 <冷熱機器システムZの構成>
 図1は、第1実施形態における冷熱機器システムZの構成を示す図である。
 第1実施形態では、冷蔵庫の正常性診断(正常性の診断)を行う冷熱機器システムZを示す。
 冷熱機器システムZは、冷蔵庫本体(冷熱機器、冷却装置)100Bと診断装置(冷熱機器診断システム)200とを有する。診断装置200は、冷蔵庫本体100Bに内蔵されていてもよいし、冷蔵庫本体100Bとは別の装置として設置されてもよい。
[First embodiment]
First, a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
<Configuration of cooling equipment system Z>
FIG. 1 is a diagram showing the configuration of a cooling and heating equipment system Z in the first embodiment.
The first embodiment shows a cooling and heating equipment system Z that performs a normality diagnosis (diagnosis of normality) of a refrigerator.
The cooling device system Z includes a refrigerator main body (cold device, cooling device) 100B and a diagnostic device (cold device diagnostic system) 200. Diagnostic device 200 may be built into refrigerator main body 100B, or may be installed as a separate device from refrigerator main body 100B.
 (冷蔵庫本体100B)
 冷蔵庫本体100Bの庫内空間(温調空間、保冷空間)102及び庫外は、発泡断熱材が充填された断熱箱体によって隔てられている。冷蔵庫本体100Bには、冷凍サイクルを構成する吸熱装置111、圧縮機112、放熱装置113、膨張装置114が備えられている。また、冷蔵庫本体100Bは、送風ファン104を備えている。さらに、冷蔵庫本体100Bは表示装置(出力装置)101を備えている。
(Refrigerator body 100B)
The interior space (temperature-controlled space, cold storage space) 102 of the refrigerator main body 100B and the outside of the refrigerator are separated by a heat-insulating box filled with foam insulation material. The refrigerator main body 100B is equipped with a heat absorption device 111, a compressor 112, a heat radiation device 113, and an expansion device 114 that constitute a refrigeration cycle. Further, the refrigerator main body 100B includes a blower fan 104. Furthermore, the refrigerator main body 100B includes a display device (output device) 101.
 冷凍サイクルにおいて、冷媒(伝熱媒体)が、吸熱装置(温調装置)111、圧縮機112、放熱装置113、膨張装置114のそれぞれが環状に接続されている流路を循環することによって冷凍サイクルが形成される。吸熱装置111は、庫内空間102の熱を吸熱する熱交換器であり、具体的には蒸発器で構成される。投入エネルギ量に応じて駆動する圧縮機(駆動源)112は、吸熱装置111で蒸発した冷媒蒸気を圧縮する。投入エネルギ量については後記する。放熱装置113は、圧縮機112によって圧縮した冷媒蒸気を冷却水又は空気で冷やす(庫内空間102の温度を制御する)ことで、冷媒蒸気が有する熱を放熱する。この際、冷媒蒸気は液化して冷媒液となる。放熱装置113は、具体的には凝縮器で構成される。膨張装置114は、放熱装置113から出た冷媒液を膨張させることで、冷媒蒸気を低圧かつ低温の冷媒液とし、吸熱装置111へ送りだす。 In the refrigeration cycle, a refrigerant (heat transfer medium) circulates through a flow path in which a heat absorption device (temperature control device) 111, a compressor 112, a heat radiating device 113, and an expansion device 114 are connected in an annular manner. is formed. The heat absorption device 111 is a heat exchanger that absorbs heat from the internal space 102, and specifically includes an evaporator. A compressor (drive source) 112 that is driven according to the amount of input energy compresses the refrigerant vapor evaporated by the heat absorption device 111. The input energy amount will be described later. The heat radiating device 113 cools the refrigerant vapor compressed by the compressor 112 with cooling water or air (controls the temperature of the interior space 102), thereby radiating the heat contained in the refrigerant vapor. At this time, the refrigerant vapor is liquefied and becomes refrigerant liquid. The heat dissipation device 113 is specifically configured with a condenser. The expansion device 114 expands the refrigerant liquid discharged from the heat radiating device 113 to turn refrigerant vapor into a low-pressure, low-temperature refrigerant liquid, and sends it to the heat absorbing device 111 .
 送風ファン104は、吸熱装置111で生じた冷気を庫内空間102へ送風する(圧縮機112により庫内空間102の温度を制御する)。また、冷蔵庫本体100Bは開閉可能な扉103を有する。 The blower fan 104 blows the cold air generated by the heat absorption device 111 to the internal space 102 (the temperature of the internal space 102 is controlled by the compressor 112). Further, the refrigerator main body 100B has a door 103 that can be opened and closed.
 表示装置101は、診断装置200による診断結果等を表示するものである。図1に示すように、表示装置101は、冷蔵庫本体100Bの扉103に設置されるのが望ましいが、冷蔵庫本体100Bの側面等に設置されてもよい。 The display device 101 displays the diagnosis results etc. by the diagnostic device 200. As shown in FIG. 1, the display device 101 is preferably installed on the door 103 of the refrigerator main body 100B, but may be installed on the side surface of the refrigerator main body 100B.
 (診断装置200)
 診断装置200は、演算装置210、記憶装置220、制御装置230を備えている。
 演算装置210は、CPU(Central Processing Unit)等で構成され。診断装置200が行う処理を実行する。
 記憶装置220は、HD(Hard Disk)や、RAM(Random Access Memory)で構成され、プログラムや、冷熱機器(冷蔵庫本体100B)から取得した投入エネルギ量の算出に必要な情報等が格納される。投入エネルギ量については後記するが、投入エネルギ量の算出に必要な情報とは圧縮機112の回転速度等である。
 制御装置230は、演算装置210による指示や、記憶装置220に格納されている情報を参照して、冷蔵庫本体100Bの圧縮機112を制御したり、冷蔵庫本体100Bに備えられている表示装置101に情報を表示したりする。また、制御装置230は、圧縮機112の回転速度等の情報(稼働情報)を取得する。
(Diagnostic device 200)
The diagnostic device 200 includes a calculation device 210, a storage device 220, and a control device 230.
The arithmetic device 210 includes a CPU (Central Processing Unit) and the like. The processing performed by the diagnostic device 200 is executed.
The storage device 220 is composed of an HD (Hard Disk) and a RAM (Random Access Memory), and stores programs and information necessary for calculating the input energy amount acquired from the cooling and heating equipment (refrigerator body 100B). Although the input energy amount will be described later, the information necessary for calculating the input energy amount includes the rotational speed of the compressor 112 and the like.
The control device 230 refers to instructions from the arithmetic device 210 and information stored in the storage device 220 to control the compressor 112 of the refrigerator main body 100B, and to control the display device 101 provided in the refrigerator main body 100B. Display information. Further, the control device 230 acquires information such as the rotational speed of the compressor 112 (operation information).
 (診断期間)
 図2は、診断装置200による診断期間303を示す図である。適宜、図1を参照する。
 図2において、横軸は時間を示し、符号301は圧縮機112の回転速度を示しており、符号302は冷蔵庫本体100Bの開扉を示している。
 図2に示すように、診断装置200による診断期間303は冷蔵庫本体100Bの開扉(符号302)が行われていない期間に行われる。具体的には、深夜帯等、冷蔵庫本体100Bの使用者が冷蔵庫本体100Bを使用していない時間帯に行われるとよい。このように、正常性診断は、庫内空間102が閉じられた状態(閉じられた状態が継続する状況)において行われる。あるいは、診断処理中に冷蔵庫本体100Bが開扉されると、診断処理が中止され、冷蔵庫本体100Bが閉扉されると診断処理が最初から再度行われるようにしてもよい。ちなみに、診断期間は1~2時間程度であるが、この時間に限らない(診断期間中は庫内空間102が閉じられた状態であることが好ましい)。
(Diagnosis period)
FIG. 2 is a diagram showing a diagnostic period 303 by the diagnostic device 200. Reference is made to FIG. 1 as appropriate.
In FIG. 2, the horizontal axis indicates time, numeral 301 indicates the rotation speed of the compressor 112, and numeral 302 indicates the opening of the refrigerator main body 100B.
As shown in FIG. 2, a diagnostic period 303 by the diagnostic device 200 is performed during a period when the door (302) of the refrigerator main body 100B is not opened. Specifically, it is preferable to perform this at a time when the user of the refrigerator body 100B is not using the refrigerator body 100B, such as late at night. In this way, the normality diagnosis is performed in a state where the internal space 102 is closed (a situation in which the closed state continues). Alternatively, when the refrigerator main body 100B is opened during the diagnostic processing, the diagnostic processing may be stopped, and when the refrigerator main body 100B is closed, the diagnostic processing may be performed again from the beginning. Incidentally, the diagnosis period is about 1 to 2 hours, but is not limited to this time (during the diagnosis period, it is preferable that the internal space 102 is closed).
 (投入エネルギ量の時間変化)
 図3は、投入エネルギ量の時間変化を示す図である。
 投入エネルギ量とは、冷蔵庫本体100Bの主機能である温度制御のために冷蔵庫本体100Bに投入されるエネルギである。具体的には、冷蔵庫本体100Bの温度制御のために冷蔵庫本体100Bに投入される電力を投入エネルギ量とする。本実施形態では、圧縮機112の回転速度の時間積分が投入エネルギ量として算出される。投入エネルギ量の算出は、所定時間毎(例えば、1日毎)に行われる。
(Time change in input energy amount)
FIG. 3 is a diagram showing changes over time in the input energy amount.
The input energy amount is the energy input into the refrigerator main body 100B for temperature control, which is the main function of the refrigerator main body 100B. Specifically, the input energy amount is the electric power input into the refrigerator main body 100B for temperature control of the refrigerator main body 100B. In this embodiment, the time integral of the rotational speed of the compressor 112 is calculated as the input energy amount. Calculation of the input energy amount is performed at predetermined time intervals (for example, every day).
 ここで、診断装置200は、所定の基準ラインに対する投入エネルギ量の差分312(変化量)を投入エネルギ量の時間経過に対する変化量の情報である変化量情報として算出する。診断装置200は、この差分312によって冷蔵庫本体100Bの異常に対する深刻度を推定する。基準ラインとして、例えば、冷蔵庫本体100Bが正常に作動している期間における投入エネルギ量を基に算出される正常ライン314や、定格出力等に基づく最大出力315等が考えられる。図3に示す例では、正常ライン314と、投入エネルギ量との差分312を示しているが、最大出力315と、投入エネルギ量との差分316を深刻度とすることで、最大出力315まで、どのくらいの余裕があるかを深刻度とすることができる。このように、診断装置200は、投入可能エネルギ量の最大値に関する情報と、投入エネルギ量とを基に、冷蔵庫本体100Bの正常性を診断する。最大出力315と、投入エネルギ量との差分316を深刻度とすることにより、最大出力315に対する余裕度が明示できるため、深刻さをわかりやすく示すことができる。 Here, the diagnostic device 200 calculates a difference 312 (amount of change) in the input energy amount with respect to a predetermined reference line as change amount information that is information on the amount of change in the input energy amount over time. Diagnostic device 200 estimates the severity of the abnormality in refrigerator main body 100B based on this difference 312. As the reference line, for example, a normal line 314 calculated based on the input energy amount during a period when the refrigerator main body 100B is normally operating, a maximum output 315 based on the rated output, etc. can be considered. The example shown in FIG. 3 shows the difference 312 between the normal line 314 and the input energy amount, but by setting the difference 316 between the maximum output 315 and the input energy amount as the severity level, up to the maximum output 315, The degree of severity can be determined by how much leeway there is. In this manner, the diagnostic device 200 diagnoses the normality of the refrigerator main body 100B based on the information regarding the maximum input energy amount and the input energy amount. By setting the difference 316 between the maximum output 315 and the input energy amount as the severity level, the degree of margin for the maximum output 315 can be clearly indicated, so that the severity can be clearly indicated.
 また、図2に示すように、扉103が閉じられた期間、即ち、庫内空間102が閉じられた状態における投入エネルギの積算量(圧縮機112の回転速度の時間積分)が用いられる。これにより、外気の影響、即ち、ノイズが投入エネルギ量にのることを防止することができる。 Furthermore, as shown in FIG. 2, the cumulative amount of input energy (time integral of the rotational speed of the compressor 112) during the period when the door 103 is closed, that is, when the internal space 102 is closed, is used. Thereby, it is possible to prevent the influence of outside air, that is, noise from being added to the amount of input energy.
 また、診断装置200は、投入エネルギ量の時間経過に対する変化量の情報である変化量情報として傾き311の大きさによって緊急度を推定する。つまり、傾き311が大きい場合、実測される投入エネルギ量が最大出力(投入可能エネルギ量の最大値に関する情報)315に到達するまでの時間が短いと予想されるため、緊急度が高いと診断される。最大出力315とは、定格電力でもよいし、圧縮機112の最大回転速度の時間積分でもよい。なお、投入エネルギ量は最大出力315以上とはならない。逆に、傾き311が小さい場合、投入エネルギ量が最大出力315に到達するまでの時間が長いと予想されるため、緊急度が低いと診断される。緊急度を診断する際の投入エネルギ量の傾き311は最小二乗法等に基づいて算出されればよい。 Furthermore, the diagnostic device 200 estimates the degree of urgency based on the magnitude of the slope 311 as change amount information that is information on the amount of change in the amount of input energy over time. In other words, when the slope 311 is large, it is predicted that the time required for the actually measured input energy amount to reach the maximum output (information regarding the maximum value of the inputtable energy amount) 315 will be short, and therefore the emergency level is diagnosed as high. Ru. The maximum output 315 may be the rated power or may be the time integral of the maximum rotational speed of the compressor 112. Note that the input energy amount does not exceed the maximum output of 315. On the other hand, when the slope 311 is small, it is predicted that it will take a long time for the input energy amount to reach the maximum output 315, and therefore the emergency level is diagnosed as low. The slope 311 of the input energy amount when diagnosing the degree of urgency may be calculated based on the method of least squares or the like.
 なお、符号313は、最新の投入エネルギ量を示している。 Note that the code 313 indicates the latest input energy amount.
 <診断結果表示画面330>
 図4は、表示装置101に表示される診断結果表示画面330の例を示す図である。
 診断結果表示画面330では、診断装置200による診断に基づいた注意レベルが表示される。注意レベルは、図3に示す実測される投入エネルギ量の時間変化における投入エネルギ量と、正常ライン314や、最大出力315である基準ラインとの差分312,316(図3参照:深刻度)及び傾き311(図3参照:緊急度:投入エネルギ量の時間経過に対する傾き)に基づくものである。例えば、投入エネルギ量と基準ラインとの差分312(深刻度:所定の基準と投入エネルギ量との差分)及び傾き311(緊急度)の重み付き和によって注意レベルが算出される。
<Diagnosis result display screen 330>
FIG. 4 is a diagram showing an example of the diagnosis result display screen 330 displayed on the display device 101.
On the diagnosis result display screen 330, the caution level based on the diagnosis by the diagnostic device 200 is displayed. The caution level is determined by the difference 312, 316 (see FIG. 3: Severity) between the input energy amount and the reference line which is the normal line 314 or the maximum output 315 in the time change of the actually measured input energy amount shown in FIG. This is based on the slope 311 (see FIG. 3: degree of urgency: slope of input energy amount over time). For example, the caution level is calculated by the weighted sum of the difference 312 between the input energy amount and the reference line (severity: the difference between the predetermined standard and the input energy amount) and the slope 311 (urgency).
 なお、注意レベルは、ユーザの必要性に応じて、投入エネルギ量と基準ラインとの差分312(図3参照:深刻度)のみを注意レベルとしてもよいし、傾き311(図3参照:緊急度)のみを注意レベルとしてもよい。つまり、診断結果表示画面330には、投入エネルギ量の時間経過に対する傾き、及び、所定の基準と投入エネルギ量との差分のうち、少なくとも一方に関する情報が表示されている。
 なお、図4に示す例では、注意レベルが比較的良好(注意レベルが低い状態)である例を示している。
Depending on the user's needs, the caution level may be based on only the difference 312 (see Figure 3: severity) between the input energy amount and the reference line, or may be based on the slope 311 (see Figure 3: urgency). ) may be set as the caution level. That is, the diagnosis result display screen 330 displays information regarding at least one of the slope of the input energy amount over time and the difference between the predetermined standard and the input energy amount.
Note that the example shown in FIG. 4 shows an example in which the caution level is relatively good (the caution level is low).
 第1実施形態によれば、冷蔵庫本体100B等の冷熱機器の主機能に関する異常を投入エネルギ量のみから診断することができる。例えば、冷蔵庫本体100Bの断熱機能が故障している場合、庫内空間102の温度を維持するため、冷蔵庫本体100Bは圧縮機112の回転速度を上げて庫内空間102の温度を下げようとする。そのため、投入エネルギ量が上昇する。そのため、冷蔵庫本体100Bの異常度と投入エネルギ量とは比例関係にある。診断装置200は、そのような投入エネルギ量の上昇を検知すると異常と判定する。このようにすることで、投入エネルギ量(具体的には圧縮機112の回転速度の時間積分)による簡易なデータによって、冷熱機器である冷蔵庫本体100Bの主機能について正常性診断(正常性の診断)を行うことができる。 According to the first embodiment, it is possible to diagnose an abnormality related to the main function of a cooling/heating device such as the refrigerator main body 100B only from the input energy amount. For example, if the insulation function of the refrigerator main body 100B is malfunctioning, in order to maintain the temperature of the internal space 102, the refrigerator main body 100B attempts to lower the temperature of the internal space 102 by increasing the rotation speed of the compressor 112. . Therefore, the input energy amount increases. Therefore, there is a proportional relationship between the degree of abnormality of the refrigerator main body 100B and the input energy amount. When the diagnostic device 200 detects such an increase in the amount of input energy, it determines that there is an abnormality. By doing this, the normality diagnosis (normality diagnosis )It can be performed.
 加えて、第1実施形態によれば、投入エネルギ量を基に正常性診断が行われている。具体的には、投入エネルギ量とは、圧縮機112の回転数の時間積分であり、冷蔵庫本体100Bに異常が生じていることが、圧縮機112の異常として認識できる。これにより、例えば、メンテナンスのサービスマンがユーザに対して説明する際、圧縮機112に異常が生じているため、現在のような状態となっていることをユーザに対して分かりやすく説明することができる。 In addition, according to the first embodiment, the normality diagnosis is performed based on the input energy amount. Specifically, the input energy amount is the time integral of the rotation speed of the compressor 112, and an abnormality in the refrigerator main body 100B can be recognized as an abnormality in the compressor 112. As a result, for example, when a maintenance service person explains to a user, it is possible to explain to the user in an easy-to-understand manner that the current state is due to an abnormality occurring in the compressor 112. can.
 つまり、投入エネルギ量に基づいて冷蔵庫本体100Bの正常性を診断するため、主機能の提供状況を直接的に知ることができる。例えば、冷蔵庫本体100Bの断熱状態が悪化した場合には、庫内の温度を維持するために投入するエネルギ量を増やす必要があり、異常の大きさと投入エネルギ量は比例関係となる。従って、冷蔵庫本体100Bの主機能の深刻さを直接監視できることから、精度と説明性の高い診断が可能となる。 In other words, since the normality of the refrigerator main body 100B is diagnosed based on the input energy amount, the provision status of the main functions can be directly known. For example, when the insulation state of the refrigerator main body 100B deteriorates, it is necessary to increase the amount of energy input to maintain the temperature inside the refrigerator, and the magnitude of the abnormality and the amount of input energy are in a proportional relationship. Therefore, since the seriousness of the main function of the refrigerator main body 100B can be directly monitored, highly accurate and explainable diagnosis is possible.
 また、第1実施形態によれば、冷蔵庫本体100Bの正常性診断を投入エネルギ量によって簡易に行うことができる。そして、第1実施形態によれば、投入エネルギ量の差分312,316による冷蔵庫本体100B(冷熱機器)の異常に対する深刻度と、投入エネルギ量の傾き311(の大きさ)による緊急度との2つを診断することができる。 Furthermore, according to the first embodiment, the normality diagnosis of the refrigerator main body 100B can be easily performed based on the input energy amount. According to the first embodiment, the degree of severity of abnormality in the refrigerator main body 100B (cooling/heating equipment) is determined by the difference 312 and 316 in input energy amount, and the degree of urgency is determined by (the magnitude of) the slope 311 of input energy amount. can be diagnosed.
 また、第1実施形態では、冷蔵庫本体100Bに冷熱機器システムZを適用している。冷蔵庫本体100Bのように所定の温度に保冷する装置は、圧縮機112の回転速度と運転時間とで投入エネルギ量を算出することができるため、精度よく診断をすることができる。さらに、故障が生じる前にユーザへ通知を行うことで突然の故障を回避することができる。また、メーカ側においても、故障が生じそうな冷蔵庫本体100Bを把握することができ、故障前において修理や、修理の準備を行うことができる。これにより、食材や、生活への影響を最小限にとどめることができる。 Furthermore, in the first embodiment, the cooling and heating equipment system Z is applied to the refrigerator main body 100B. In a device that keeps the refrigerator at a predetermined temperature, such as the refrigerator main body 100B, the amount of input energy can be calculated based on the rotational speed of the compressor 112 and the operating time, so that accurate diagnosis can be performed. Furthermore, by notifying the user before a failure occurs, sudden failures can be avoided. Further, the manufacturer can also grasp the refrigerator main body 100B that is likely to malfunction, and can repair or prepare for repair before the malfunction occurs. This allows you to minimize the impact on food and daily life.
 [第2実施形態]
 次に、図5~図8を参照して、本発明の第2実施形態について説明する。
 <冷熱機器システムZaの構成>
 図5は、第2実施形態における冷熱機器システムZaの構成例を示す図である。
 図5において、図1と同様の構成については同一の符号を付して説明を省略する。
 図5に示す冷熱機器システムZaは、冷蔵庫100aと、診断装置200aとを備える。
 また、冷蔵庫100aは、冷蔵庫本体100Baと、制御装置131と、通信装置(送信装置)132とを備える。
 冷蔵庫本体100Baが、図1に示す冷蔵庫本体100Bと異なる点は以下の点である。まず、冷蔵庫本体100Baの庫外に外気温度を測定するための外気温センサ121が備えられ、さらに、冷蔵庫本体100Baの庫内空間102に、庫内空間102の温度を測定するための庫内温度センサ122が備えられている。
[Second embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. 5 to 8.
<Configuration of cooling equipment system Za>
FIG. 5 is a diagram showing an example of the configuration of the cooling and heating equipment system Za in the second embodiment.
In FIG. 5, the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
The refrigerator system Za shown in FIG. 5 includes a refrigerator 100a and a diagnostic device 200a.
Further, the refrigerator 100a includes a refrigerator main body 100Ba, a control device 131, and a communication device (transmission device) 132.
Refrigerator main body 100Ba differs from refrigerator main body 100B shown in FIG. 1 in the following points. First, an outside temperature sensor 121 is provided outside the refrigerator main body 100Ba for measuring the outside air temperature, and an inside temperature sensor 121 is provided in the inside space 102 of the refrigerator main body 100Ba for measuring the temperature of the inside space 102. A sensor 122 is provided.
 さらに、冷蔵庫本体100Baには制御装置131及び通信装置132が備えられている。制御装置131は、外気温センサ121及び庫内温度センサ122で測定された温度の情報(温度情報)や、圧縮機112の回転速度等を収集し、通信装置132を介して診断装置200aに送る。また、図1において冷蔵庫本体100Bに備えられていた表示装置101が図5に示す冷蔵庫本体100Baには備えられていない。 Furthermore, the refrigerator main body 100Ba is equipped with a control device 131 and a communication device 132. The control device 131 collects temperature information (temperature information) measured by the outside temperature sensor 121 and the inside temperature sensor 122, the rotation speed of the compressor 112, etc., and sends it to the diagnostic device 200a via the communication device 132. . Further, the display device 101 that is included in the refrigerator main body 100B in FIG. 1 is not provided in the refrigerator main body 100Ba shown in FIG.
 制御装置131は、図1に示す制御装置230の機能に加え、外気温センサ121及び庫内温度センサ122で測定された温度を温度情報として取得する。そして、制御装置131は、通信装置132を介して取得した圧縮機112の回転速度や、温度情報を診断装置200aへ送信する。 In addition to the functions of the control device 230 shown in FIG. 1, the control device 131 acquires the temperature measured by the outside temperature sensor 121 and the internal temperature sensor 122 as temperature information. Then, the control device 131 transmits the rotation speed and temperature information of the compressor 112 acquired via the communication device 132 to the diagnostic device 200a.
 また、診断装置200aは、冷蔵庫100aとは異なる場所に設置されている(別の装置である)。さらに、診断装置200aは、通信装置132,241(受信装置)を介して冷蔵庫100aの制御装置131と通信可能である。つまり、通信装置132は、冷蔵庫100aと通信を行うものである。 Furthermore, the diagnostic device 200a is installed in a different location from the refrigerator 100a (it is a separate device). Furthermore, the diagnostic device 200a can communicate with the control device 131 of the refrigerator 100a via the communication devices 132, 241 (receiving devices). That is, the communication device 132 communicates with the refrigerator 100a.
 診断装置200aは、いわゆるクラウド環境を構築し、企業等に設置されるサーバとしてもよい。前記したように、診断装置200aは、通信装置132を介して冷蔵庫100aの制御装置131から送られた圧縮機112の回転速度、外気温センサ121及び庫内温度センサ122から送られる温度情報を取得する。そして、診断装置200aは、取得した圧縮機112の回転速度、外気温センサ121及び庫内温度センサ122から送られる温度情報を基に冷蔵庫本体100Baの正常性診断を行う。 The diagnostic device 200a may construct a so-called cloud environment and may be a server installed in a company or the like. As described above, the diagnostic device 200a acquires the rotational speed of the compressor 112 sent from the control device 131 of the refrigerator 100a via the communication device 132, and the temperature information sent from the outside temperature sensor 121 and the inside temperature sensor 122. do. The diagnostic device 200a then diagnoses the normality of the refrigerator main body 100Ba based on the acquired rotational speed of the compressor 112 and temperature information sent from the outside temperature sensor 121 and the inside temperature sensor 122.
 また、出力装置でもある端末装置Tは診断装置200a及び冷蔵庫100aとは別の装置である。そして、診断装置200aは、通信装置241を介して、スマートフォンや、タブレット端末、ノートパソコン等の端末装置Tと通信可能である。端末装置Tでは、図8で後記する診断結果表示画面400が表示される。これにより、ユーザや、メンテナンスのサービスマンが、図8において後記する診断結果表示画面400を閲覧することができる。 Further, the terminal device T, which is also an output device, is a device different from the diagnostic device 200a and the refrigerator 100a. The diagnostic device 200a can communicate with a terminal device T such as a smartphone, a tablet terminal, or a notebook computer via the communication device 241. On the terminal device T, a diagnosis result display screen 400, which will be described later in FIG. 8, is displayed. This allows a user or a maintenance service person to view a diagnosis result display screen 400, which will be described later in FIG. 8.
 <投入エネルギ量及び庫内温度の時間変化>
 図6は、冷蔵庫本体100Baにおける投入エネルギ量及び庫内温度の時間変化を示す図である。適宜、図5を参照する。
 図6において、横軸は日付となっている。
 そして、図6において想定性能(外部の因子)342は、外気温センサ121によって測定される外気温度(検知値)に基づいて予め算出される投入エネルギ量である。図6の横軸は、日付を示しており、時点349aは夏であり、時点349bは冬である。即ち、夏は外気温度が高くなるため、想定性能342が高くなり、冬は外気温度が低いため、想定性能342が低くなる。
<Time change in input energy amount and internal temperature>
FIG. 6 is a diagram showing temporal changes in input energy amount and internal temperature in the refrigerator main body 100Ba. Refer to FIG. 5 as appropriate.
In FIG. 6, the horizontal axis is the date.
In FIG. 6, the expected performance (external factor) 342 is the input energy amount calculated in advance based on the outside air temperature (detected value) measured by the outside air temperature sensor 121. The horizontal axis in FIG. 6 indicates dates, and time 349a is summer and time 349b is winter. That is, in the summer, the outside air temperature is high, so the expected performance 342 is high, and in the winter, the outside temperature is low, so the expected performance 342 is low.
 丸型プロット346は、測定される圧縮機112の回転速度を時間積分した結果、得られる投入エネルギ量である。
 そして、最大出力(投入可能エネルギ量の最大値に関する情報)341は、図3に示す最大出力315と同様のものであり、定格電力でもよいし、圧縮機112の最大回転速度の時間積分でもよい。
A circular plot 346 is the amount of input energy obtained as a result of time-integrating the measured rotational speed of the compressor 112.
The maximum output (information regarding the maximum value of the input energy amount) 341 is similar to the maximum output 315 shown in FIG. 3, and may be the rated power or the time integral of the maximum rotational speed of the compressor 112. .
 そして、図6に示す図では、最大出力341を境に、最大出力341より下が投入エネルギ量のグラフとなっており、最大出力341より上が庫内温度のグラフとなっている。つまり、図6において星型プロット347は庫内温度センサ122による温度の時間変化を示している。 In the diagram shown in FIG. 6, below the maximum output 341 is a graph of input energy amount, and above the maximum output 341 is a graph of internal temperature. That is, in FIG. 6, the star plot 347 shows the temporal change in temperature measured by the internal temperature sensor 122.
 また、庫内温度が故障ライン345を超えると、冷蔵庫本体100Baが故障する。
 投入エネルギ量(丸型プロット346)は最大出力341に達すると、図6に示すように最大出力341で一定となる。従って、図6に示すように、投入エネルギ量が最大出力341に到達した後は、庫内温度(星型プロット347)によって深刻度の診断が行われる。なお、投入エネルギ量が最大出力341に到達したことを契機として庫内温度の測定が開始されてもよいし、常時、庫内温度の測定が行われていてもよい。
Moreover, when the temperature inside the refrigerator exceeds the failure line 345, the refrigerator main body 100Ba malfunctions.
When the input energy amount (circular plot 346) reaches the maximum output 341, it becomes constant at the maximum output 341 as shown in FIG. Therefore, as shown in FIG. 6, after the input energy amount reaches the maximum output 341, the severity is diagnosed based on the internal temperature (star plot 347). Note that the measurement of the temperature inside the refrigerator may be started when the input energy amount reaches the maximum output 341, or the measurement of the temperature inside the refrigerator may be performed at all times.
 また、図6に示す例では、実測された投入エネルギ量と想定性能342との差分343が深刻度として算出される。つまり、想定性能342が、基準ラインとなっている。なお、投入エネルギ量が最大出力341を超えた後は、深刻度を最大レベルで一定にしたり、故障ライン345と庫内温度との差を深刻度としたりしてもよい。故障ライン345と庫内温度との差を深刻度とする場合、故障ライン345と庫内温度との差が小さいほど、深刻度が大きいとする。また、最大出力341より上では星型プロット347で示される庫内温度と、正常時の庫内温度(図6に示す例ではx軸(日付の軸))との差分343aが庫内空間102内に設けられている庫内温度センサ122により取得した温度の時間経過に対する変化量としての深刻度として用いられる。 In the example shown in FIG. 6, the difference 343 between the actually measured input energy amount and the assumed performance 342 is calculated as the severity level. In other words, the assumed performance 342 is the reference line. Note that after the input energy amount exceeds the maximum output 341, the severity level may be kept constant at the maximum level, or the severity level may be determined by the difference between the failure line 345 and the temperature inside the refrigerator. When the difference between the failure line 345 and the temperature inside the refrigerator is defined as the severity, the smaller the difference between the failure line 345 and the temperature inside the refrigerator, the higher the severity. Moreover, above the maximum output 341, the difference 343a between the internal temperature shown by the star plot 347 and the normal internal temperature (in the example shown in FIG. 6, the x-axis (date axis)) is It is used as the degree of severity as the amount of change over time in the temperature acquired by the internal temperature sensor 122 installed inside the refrigerator.
 冬(時点349b)になると、想定性能342にみられるように投入エネルギ量が下がることが予想される。しかし、図6に示す例では、冬になったにもかかわらず、投入エネルギ量が上昇し続けている。また、庫内温度も上昇し続けている。このことから、診断装置200aは、冷蔵庫本体100Baに異常が発生していると診断する。具体的には、断熱構造に異常があること等が考えられる。なお、図6に示す例において、投入エネルギ量や、庫内温度が徐々に上昇している理由として、徐々に断熱構造の異常が大きくなっていることが考えられる。 In winter (time point 349b), the amount of input energy is expected to decrease as seen in the assumed performance 342. However, in the example shown in FIG. 6, the amount of input energy continues to increase even though winter has arrived. Additionally, the temperature inside the warehouse continues to rise. From this, the diagnostic device 200a diagnoses that an abnormality has occurred in the refrigerator main body 100Ba. Specifically, it is possible that there is an abnormality in the heat insulation structure. In the example shown in FIG. 6, the reason why the amount of input energy and the temperature inside the refrigerator are gradually increasing is considered to be that the abnormality of the heat insulation structure is gradually increasing.
 また、第1実施形態と同様、診断装置200aは、投入エネルギ量(丸型プロット346)や、庫内温度(星型プロット347)の傾き344を緊急度とする。庫内温度の傾き344は、庫内温度センサ122により取得した温度の時間経過に対する変化量である。 Also, similarly to the first embodiment, the diagnostic device 200a uses the input energy amount (circle plot 346) and the slope 344 of the internal temperature (star plot 347) as the degree of urgency. The internal temperature slope 344 is the amount of change in temperature acquired by the internal temperature sensor 122 over time.
 図6に示すように、正常性判定に投入エネルギ量だけでなく庫内温度も使用することで、投入エネルギ量が最大出力341を超えた後も庫内温度を用いた正常性診断を続けることができる。従って、診断可能域を広げることができる。 As shown in Fig. 6, by using not only the amount of input energy but also the temperature inside the refrigerator for normality determination, it is possible to continue the normality diagnosis using the temperature inside the refrigerator even after the amount of input energy exceeds the maximum output 341. I can do it. Therefore, the diagnosable range can be expanded.
 図6に示すように庫内温度、外気温度(想定性能342)といった複数のセンサによる情報を用いることで、精度の高い正常性診断を実現することができる。 As shown in FIG. 6, by using information from multiple sensors such as the internal temperature and the outside temperature (estimated performance 342), highly accurate normality diagnosis can be achieved.
 また、図5における投入エネルギ量及び庫内温度の更新は、例えば、1日毎や、1週間毎(定期的に繰り返す運転の1サイクル)、除霜サイクル等、所定の期間毎に行われるとよい。図6に示す例では、2週間毎に投入エネルギ量及び庫内温度の更新が行われている。このようにすることで、診断装置200aの処理負荷の軽減や、端末装置Tと診断装置200aとの間の通信コストを低減することができる。 In addition, the input energy amount and the internal temperature in FIG. 5 may be updated every predetermined period, such as every day, every week (one cycle of regularly repeated operation), or during a defrosting cycle. . In the example shown in FIG. 6, the input energy amount and the internal temperature are updated every two weeks. By doing so, it is possible to reduce the processing load on the diagnostic device 200a and the communication cost between the terminal device T and the diagnostic device 200a.
 また、深夜帯等、通信料が低い時間帯に、図7に示す処理を行うようにすれば、診断装置200aから端末装置Tへの通信負荷のさらなる軽減や、通信コストのさらなる低減を実現することができる。 Furthermore, if the processing shown in FIG. 7 is performed during times when communication charges are low, such as late at night, the communication load from the diagnostic device 200a to the terminal device T can be further reduced, and the communication cost can be further reduced. be able to.
 <フローチャート>
 図7は、第2実施形態において診断装置200aが行う処理の手順を示すフローチャートである。適宜、図5を参照する。
 まず、診断装置200aは、制御装置131を介して稼働情報を取得する(S101)。稼働情報には、圧縮機112の回転速度、運転時間、外気温センサ121及び庫内温度センサ122の温度情報が含まれている。なお、運転時間とは、圧縮機112の運転時間である。
<Flowchart>
FIG. 7 is a flowchart showing the procedure of processing performed by the diagnostic device 200a in the second embodiment. Refer to FIG. 5 as appropriate.
First, the diagnostic device 200a acquires operating information via the control device 131 (S101). The operation information includes the rotational speed of the compressor 112, the operating time, and temperature information of the outside temperature sensor 121 and the inside temperature sensor 122. Note that the operating time is the operating time of the compressor 112.
 続いて、診断装置200aは、稼働情報のうち、圧縮機112の回転速度及び運転時間を用いて、圧縮機112の回転速度の時間積分を算出することによって、投入エネルギ量を計算する(S111)。
 そして、診断装置200aは、投入エネルギ量及び庫内温度から、後記する危険度を算出し、算出した危険度の差分及び傾きを計算する(S112)。図6では、投入エネルギ量及び庫内温度の差分343,343a及び傾き344が求められている。しかし、図7のフローチャートでは投入エネルギ量及び庫内温度を基に計算される危険度の差分及び傾きが算出される。危険度の差分及び傾きについては後記する。ただし、ステップS112で、図6のように投入エネルギ量及び庫内温度の差分343,343a及び傾き344が求められてもよい。
Next, the diagnostic device 200a calculates the input energy amount by calculating the time integral of the rotation speed of the compressor 112 using the rotation speed and operation time of the compressor 112 in the operation information (S111). .
Then, the diagnostic device 200a calculates the degree of risk, which will be described later, from the input energy amount and the internal temperature, and calculates the difference and slope of the calculated degree of risk (S112). In FIG. 6, differences 343, 343a and slope 344 between the input energy amount and the internal temperature are determined. However, in the flowchart of FIG. 7, the difference and slope of the degree of risk are calculated based on the amount of input energy and the temperature inside the refrigerator. The difference and slope of risk level will be described later. However, in step S112, the difference 343, 343a and the slope 344 between the input energy amount and the internal temperature may be determined as shown in FIG.
 次に、診断装置200aは、ステップS112で算出した危険度の差分及び傾きから正常性診断を行う(S113)。ステップS113において、診断装置200aは、差分で深刻度を診断し、傾きで緊急度を診断する。また、正常性診断において、深刻度及び緊急度のうち、少なくとも一方が所定の値より大きい場合、診断装置200aはステップS113で「異常」と診断する。 Next, the diagnostic device 200a performs a normality diagnosis based on the risk difference and slope calculated in step S112 (S113). In step S113, the diagnostic device 200a diagnoses the degree of severity based on the difference and the degree of urgency based on the slope. In addition, in the normality diagnosis, if at least one of the severity level and the urgency level is greater than a predetermined value, the diagnostic device 200a diagnoses it as "abnormal" in step S113.
 ステップS113の結果、正常であると診断された場合(S113→正常)、診断装置200aは、端末装置Tに正常である旨の情報を送信する(冷蔵庫本体100aBの正常性に関する情報)。正常である旨の情報を受信した端末装置Tは、端末装置Tの画面に正常である旨の情報(正常性)を出力する(S114)。
 ステップS113の結果、異常であると診断された場合(S113→異常)、診断装置200aは、ステップS131へ処理を進める。この際、診断装置200aは異常情報を端末装置Tへ送信する。異常情報には、深刻度(危険度の差分)や、緊急度(図6の傾き344)に関する情報が含まれる。
If the result of step S113 is that it is diagnosed as normal (S113→normal), the diagnostic device 200a transmits information indicating that the refrigerator is normal to the terminal device T (information regarding the normality of the refrigerator main body 100aB). The terminal device T, which has received the information indicating that the device is normal, outputs information indicating that the device is normal (normality) on the screen of the terminal device T (S114).
If the result of step S113 is that it is diagnosed as abnormal (S113→abnormal), the diagnostic device 200a advances the process to step S131. At this time, the diagnostic device 200a transmits abnormality information to the terminal device T. The abnormality information includes information regarding severity (difference in risk) and urgency (slope 344 in FIG. 6).
 また、診断装置200aは、稼働情報のうち、温度情報を用いて異常原因の推定を行う(S121)。異常原因の推定については後記する。なお、ステップS121の処理はステップS113で異常が判定された後に行われてもよい。 Furthermore, the diagnostic device 200a estimates the cause of the abnormality using temperature information among the operating information (S121). Estimation of the cause of the abnormality will be described later. Note that the process in step S121 may be performed after the abnormality is determined in step S113.
 ステップS131において、端末装置Tは、危険度、投入エネルギ量の履歴と、予測、緊急性、異常原因等を画面に出力する。予測については後記する。 In step S131, the terminal device T outputs the risk level, history of input energy amount, prediction, urgency, cause of abnormality, etc. on the screen. The prediction will be described later.
 <診断結果表示画面400>
 図8は、第2実施形態において端末装置Tの画面に表示される診断結果表示画面400の例を示す図である。図8に示す診断結果表示画面400は図7のステップS131で表示される画面である。
 診断結果表示画面400は、運転状態表示部410、緊急度表示部420、履歴表示部430、異常原因表示部440、異常原因候補表示部450を有している。
 運転状態表示部410では、図7のステップS113における診断結果(正常・異常:正常性)が表示される。運転状態表示部410における診断結果は、履歴表示部430に示されている危険度(実線グラフ433)における危険度の差分436aを基に診断される。
<Diagnosis result display screen 400>
FIG. 8 is a diagram showing an example of a diagnosis result display screen 400 displayed on the screen of the terminal device T in the second embodiment. Diagnosis result display screen 400 shown in FIG. 8 is the screen displayed in step S131 of FIG. 7.
The diagnosis result display screen 400 includes a driving state display section 410, an emergency level display section 420, a history display section 430, an abnormality cause display section 440, and an abnormality cause candidate display section 450.
In the driving state display section 410, the diagnosis result (normality/abnormality: normality) in step S113 in FIG. 7 is displayed. The diagnosis result in the driving state display section 410 is diagnosed based on the difference 436a in the degree of risk shown in the history display section 430 (solid line graph 433).
 緊急度表示部420には、緊急度が表示される。前記したように、緊急度(正常度に関する緊急度)は履歴表示部430において実線グラフ433で示される危険度の傾き436bが所定の大きさ以上であれば、緊急度表示部420において「緊急」と表示される。 The degree of urgency is displayed on the degree of urgency display section 420. As described above, the degree of urgency (degree of urgency related to normality) is determined as "urgent" in the degree of urgency display section 420 if the slope 436b of the degree of danger shown by the solid line graph 433 in the history display section 430 is greater than or equal to a predetermined value. is displayed.
 履歴表示部430では、図6に示すグラフが表示されている。ただし、図8に示す履歴表示部430では、基準ライン431が「0」を示し、危険ライン432が「1」となるよう調整されている。 In the history display section 430, a graph shown in FIG. 6 is displayed. However, the history display section 430 shown in FIG. 8 is adjusted so that the reference line 431 shows "0" and the danger line 432 shows "1".
 そして、図8の履歴表示部430において、実線グラフ433は、危険度の時間変換を示している(正常度の履歴)。危険度とは、図6における投入エネルギ量(丸型プロット346)を正規化した値と、庫内温度(星型プロット347)を正規化した値とを足し合わせたものである。危険度が低いほど、冷蔵庫本体100Baが正常であることを示しているので、履歴表示部430は正常度についての診断結果を示しており、危険度は正常度と言い換えることができる。 In the history display section 430 of FIG. 8, a solid line graph 433 indicates the time conversion of the degree of risk (history of the degree of normality). The degree of risk is the sum of the normalized value of the input energy amount (circle plot 346) in FIG. 6 and the normalized value of the internal temperature (star plot 347). The lower the degree of danger, the more normal the refrigerator body 100Ba is, so the history display section 430 shows the diagnosis result regarding the degree of normality, and the degree of danger can be rephrased as the degree of normality.
 投入エネルギ量を正規化するとは、図6における想定性能342が「0」、最大出力341が「1」となるよう投入エネルギ量が正規化されることである。このような正規化は、例えば、(投入エネルギ量-想定性能の値)/(最大出力341の値-想定性能の値)によって容易に計算できる。 Normalizing the input energy amount means that the input energy amount is normalized so that the assumed performance 342 in FIG. 6 becomes "0" and the maximum output 341 becomes "1". Such normalization can be easily calculated by, for example, (amount of input energy−value of expected performance)/(value of maximum output 341−value of expected performance).
 また、庫内温度を正規化するとは、冷蔵庫本体100Baが正常に稼働している際における庫内温度が「0」、図6の故障ライン345が「1」となるよう、庫内温度が正規化されることである。このような正規化は、例えば、(庫内温度 - 冷蔵庫本体100Baが正常に稼働している際における庫内温度)/(故障ライン345の値 - 冷蔵庫本体100Baが正常に稼働している際における庫内温度)によって容易に計算できる。 In addition, normalizing the temperature inside the refrigerator means that the temperature inside the refrigerator is normalized so that the temperature inside the refrigerator is "0" when the refrigerator main body 100Ba is operating normally, and the failure line 345 in FIG. 6 is "1". It is to be made into Such normalization is, for example, (internal temperature - internal temperature when the refrigerator main body 100Ba is operating normally)/(value of failure line 345 - It can be easily calculated based on the temperature inside the refrigerator.
 このように、それぞれ正規化した投入エネルギ量と、庫内温度とが足し合わされる。そして、足し合わされた値の最低値が「0」、最大値が「1」となるよう、さらに正規化されることで、図8に示す危険度が算出される。このように、危険度は正規化された投入エネルギ量に関する情報である。そして、図7のステップS113では、正規化された投入エネルギ量に関する情報である危険度を基に正常性診断が行われている。 In this way, the normalized input energy amount and the internal temperature are added together. Then, the risk level shown in FIG. 8 is calculated by further normalizing the summed values so that the minimum value is "0" and the maximum value is "1". Thus, the degree of risk is information regarding the normalized amount of input energy. Then, in step S113 in FIG. 7, a normality diagnosis is performed based on the degree of risk, which is information regarding the normalized input energy amount.
 このように、正規化された危険度が示されることで、危険度を相対評価することができる。前記したように危険度は投入エネルギ量と、庫内温度とが足し合わされたものであるが、説明を簡易にするため、投入エネルギ量について正規化を行う効果を説明する。庫内温度について正規化を行う効果についても同様である。 In this way, by showing the normalized degree of risk, it is possible to relatively evaluate the degree of risk. As described above, the degree of risk is the sum of the input energy amount and the internal temperature, but for the sake of simplicity, the effect of normalizing the input energy amount will be explained. The same applies to the effect of normalizing the internal temperature.
 例えば、図6では、夏場(時点349a)では想定性能342そのものが大きいため、想定性能342と最大出力341との間が狭い。そのため、投入エネルギ量、つまり、危険度も全体的に底上げされた値が示されてしまう。つまり、夏場は、外気温度が高いため、冷蔵庫本体100Baが正常でも、高い投入エネルギ量が検出されてしまい、それにともない危険度も高い値が検出されてしまう。そのため、あたかも危険度が高いようにみえてしまう。これに対して、図8のように正規化が行われることにより、図6に示す想定性能342と最大出力341の間において、どの割合の場所に投入エネルギ量が存在しているのかが示され、夏場と冬場とを同列に評価することが可能となる。このように外部の因子である想定性能342を基に冷蔵庫本体100Bの正常性診断が行われる。 For example, in FIG. 6, the expected performance 342 itself is large in summer (time 349a), so the gap between the expected performance 342 and the maximum output 341 is narrow. Therefore, the amount of input energy, that is, the degree of risk, is shown to be an overall raised value. That is, in the summer, the outside air temperature is high, so even if the refrigerator main body 100Ba is normal, a high input energy amount is detected, and accordingly, a high risk value is detected. Therefore, it appears as if the risk is high. On the other hand, by performing normalization as shown in FIG. 8, it is shown in what proportion of the input energy amount exists between the assumed performance 342 and the maximum output 341 shown in FIG. , it becomes possible to evaluate summer and winter on the same level. In this way, the normality diagnosis of the refrigerator main body 100B is performed based on the assumed performance 342, which is an external factor.
 なお、危険度は、上記したものに限らなくてもよい。例えば、図6における投入エネルギ量(丸型プロット346)の時間変化と、庫内温度(星型プロット347)の時間変化とが、単純に接続されたものを危険度としてもよい。すなわち、図6における投入エネルギ量(丸型プロット346)の時間変化と、庫内温度(星型プロット347)の時間変化そのものが、図8の危険度(実線グラフ433)として示されてもよい。この場合、図6の最大出力341より下は投入エネルギ量の時間変化が危険度として示されており、図6の最大出力341より上は庫内温度の時間変化が危険度として示される。このような場合、図6の想定性能342が「0」(図8の基準ライン431)、図6の故障ライン345が「1」となるよう正規化される。 Note that the degree of risk does not have to be limited to the above. For example, the degree of risk may be determined by simply connecting the time change of the input energy amount (circle plot 346) and the time change of the internal temperature (star plot 347) in FIG. That is, the time change in the input energy amount (round plot 346) and the time change in the internal temperature (star plot 347) in FIG. 6 may themselves be shown as the risk level (solid line graph 433) in FIG. . In this case, below the maximum output 341 in FIG. 6, the time change in the amount of input energy is shown as the degree of risk, and above the maximum output 341 in FIG. 6, the time change in the internal temperature is shown as the risk. In such a case, the expected performance 342 in FIG. 6 is normalized to be "0" (reference line 431 in FIG. 8), and the failure line 345 in FIG. 6 is normalized to be "1".
 また、図8の履歴表示部430において、破線グラフ434は予測される危険度(正常度の予測)を示し、符号435は現時点の危険度を示している。破線グラフ434で示される、予測される危険度は、これまでの危険度(実線グラフ433)を基に、診断装置200aあるいは端末装置Tが算出すればよい。予測される危険度は、例えば、回帰による機械学習等で算出される。さらに、履歴表示部430には深刻度を示す危険度の差分436aと、緊急度を示す傾き436bが示されている。危険度の差分436a及び傾き436bはいずれか一方が表示されてもよい。 Furthermore, in the history display section 430 of FIG. 8, a broken line graph 434 indicates the predicted degree of risk (prediction of normality), and reference numeral 435 indicates the current degree of risk. The predicted risk level shown by the broken line graph 434 may be calculated by the diagnostic device 200a or the terminal device T based on the previous risk level (solid line graph 433). The predicted risk level is calculated by, for example, machine learning using regression. Further, the history display section 430 shows a risk difference 436a indicating the degree of severity and a slope 436b indicating the degree of urgency. Either one of the risk level difference 436a and the slope 436b may be displayed.
 図8の緊急度表示部420に表示されている緊急度は、履歴表示部430に表示されている危険度の時間変化を基に診断装置200a等が診断する。具体的には、予測される危険度の時間変化において、所定期間内(例えば、1か月以内)に危険度が所定の値(例えば、図8の危険ライン432)に到達すると予測される場合、診断装置200aは「緊急」と判定する。換言すれば、診断装置200aは、危険度の傾き436bが所定の値以上であれば、「緊急」と判定する。 The degree of urgency displayed in the degree of urgency display section 420 in FIG. Specifically, when the predicted degree of risk changes over time, the degree of risk is predicted to reach a predetermined value (for example, danger line 432 in FIG. 8) within a predetermined period (for example, within one month). , the diagnostic device 200a determines that it is an "emergency". In other words, the diagnostic device 200a determines that the situation is "urgent" if the slope 436b of the degree of risk is greater than or equal to a predetermined value.
 異常原因候補表示部450には、異常原因の候補が複数表示されている。異常原因候補表示部450には、異常原因の候補が、可能性の高い順に表示されている。
 そして、異常原因表示部440には、異常原因候補表示部450に表示される異常原因の候補のうち、最も可能性の高い異常原因が表示されている。
The abnormality cause candidate display section 450 displays a plurality of abnormality cause candidates. In the abnormality cause candidate display section 450, candidates for abnormality causes are displayed in order of likelihood.
The abnormality cause display section 440 displays the most probable abnormality cause among the abnormality cause candidates displayed on the abnormality cause candidate display section 450.
 異常原因は、例えば、庫内温度や、外気温度(外気温センサ121を用いて取得される)の履歴を基に診断装置200aが特定する。例えば、冷蔵室の庫内温度が所定の温度より高ければ、診断装置200aは冷蔵室の断熱構造に異常があると診断する。あるいは、製氷装置(不図示)のための熱交換器(不図示)の温度変化を基に、当該熱交換器の異常が診断される。製氷装置(不図示)のための熱交換器(不図示)の温度は、図示しない当該熱交換器に付随している温度センサ(不図示)によって測定される。あるいは、外気温センサ121、庫内温度センサ122の温度情報の時間変化のパターンから機械学習によって、冷蔵庫100aの異常原因が分類されてもよい。 The cause of the abnormality is identified by the diagnostic device 200a, for example, based on the history of the internal temperature and the outside temperature (obtained using the outside temperature sensor 121). For example, if the internal temperature of the refrigerator compartment is higher than a predetermined temperature, the diagnostic device 200a diagnoses that there is an abnormality in the insulation structure of the refrigerator compartment. Alternatively, an abnormality in a heat exchanger (not shown) for an ice making device (not shown) is diagnosed based on a temperature change in the heat exchanger (not shown). The temperature of a heat exchanger (not shown) for the ice making device (not shown) is measured by a temperature sensor (not shown) attached to the heat exchanger (not shown). Alternatively, the cause of the abnormality in the refrigerator 100a may be classified by machine learning based on the pattern of temporal changes in temperature information from the outside temperature sensor 121 and the inside temperature sensor 122.
 このように原因が表示されることで、ユーザや、メンテナンスのサービスマンが異常の原因を特定しやすくなる。 By displaying the cause in this way, it becomes easier for users and maintenance service personnel to identify the cause of the abnormality.
 第2実施形態において、診断装置200aは、庫内温度センサ122を用いて、最大負荷(図6の最大出力341)以上での熱収支も診断可能である。つまり、診断装置200aは、図6に示す図において、最大出力341(図6参照)から下では熱収支的に冷却能力が足りている状態、最大出力341から上は熱収支的には冷却能力が足りていない状態と診断する。 In the second embodiment, the diagnostic device 200a can also diagnose the heat balance at a maximum load (maximum output 341 in FIG. 6) or higher using the internal temperature sensor 122. In other words, in the diagram shown in FIG. 6, the diagnostic device 200a is in a state where the cooling capacity is sufficient in terms of heat balance below the maximum output 341 (see FIG. 6), and in a state where the cooling capacity is sufficient in terms of heat balance above the maximum output 341. It is diagnosed that there is a lack of
 図8に示すように、図6の想定性能342を「0」(図8の直線破線351)とし、図6の故障ライン345を「1」(図8の基準ライン431)として正規化することにより、外気温度の条件に対する妥当性の判定が可能となる。例えば、夏場は外気温度が高くなるので、冷蔵庫本体100Baが正常であっても危険度が高くなるが、そのような条件でも、冷蔵庫本体100Baに異常が発生していると判定されることを防ぐことができる。このように外気温度(外部の因子)を加味して正常性診断を行うことにより、冷蔵庫本体100Baの周囲条件(外気温度)に対する正常性診断を行うことができる。 As shown in FIG. 8, the assumed performance 342 in FIG. 6 is set to "0" (straight broken line 351 in FIG. 8), and the failure line 345 in FIG. 6 is normalized to "1" (reference line 431 in FIG. 8). This makes it possible to determine the validity of the outside temperature condition. For example, in the summer, when the outside temperature is high, the risk is high even if the refrigerator body 100Ba is normal, but even under such conditions, it is possible to prevent the refrigerator body 100Ba from being determined to be abnormal. be able to. By performing the normality diagnosis in consideration of the outside air temperature (external factor) in this way, it is possible to perform the normality diagnosis for the ambient conditions (outside air temperature) of the refrigerator main body 100Ba.
 図8に示す診断結果表示画面400が端末装置Tの画面に表示されることにより、危険度の傾き436bの大きさや、危険度の差分436aが表示される。このようにすることで、ユーザは見た目で深刻度をすぐに認識することができる。異常に継続性があれば何かが徐々に壊れていることになるし、継続性がなければ扉103の開閉や隙間をチェックすればいい等のアドバイスを診断装置200aが行うことができる。 By displaying the diagnosis result display screen 400 shown in FIG. 8 on the screen of the terminal device T, the magnitude of the risk level slope 436b and the risk level difference 436a are displayed. By doing this, the user can immediately recognize the severity level visually. If there is continuity in the abnormality, it means that something is gradually breaking down, and if there is no continuity, the diagnostic device 200a can give advice such as checking the opening/closing of the door 103 and checking gaps.
 また、図8に示す診断結果表示画面400が緊急度表示部420や、危険度の予測(破線グラフ434)を表示することにより、ユーザが異常の深刻度や、緊急度を容易に認識することができる。 Furthermore, the diagnosis result display screen 400 shown in FIG. 8 displays an urgency display section 420 and a risk prediction (broken line graph 434), so that the user can easily recognize the severity and urgency of the abnormality. I can do it.
 第2実施形態では、診断装置200aを冷蔵庫100aとは別の装置としている。診断装置200aの機能を冷蔵庫100aに搭載すると、計算領域や記憶領域確保のコストが生じる。第2実施形態のように、診断装置200aを冷蔵庫100aと別の装置とすることで、これらのコストを圧縮できる。また、診断装置200aを冷蔵庫100aと別の装置とすることで、診断装置200aと冷蔵庫100aとのメンテナンスを切り分けることができる。そのため、サービスのメンテナンス性を向上させることができる。 In the second embodiment, the diagnostic device 200a is a separate device from the refrigerator 100a. If the function of the diagnostic device 200a is installed in the refrigerator 100a, the cost of securing a calculation area and a storage area will be incurred. By using the diagnostic device 200a as a separate device from the refrigerator 100a as in the second embodiment, these costs can be reduced. Further, by using the diagnostic device 200a as a separate device from the refrigerator 100a, the maintenance of the diagnostic device 200a and the refrigerator 100a can be separated. Therefore, the maintainability of the service can be improved.
 さらに、第2実施形態では、端末装置Tに診断結果を表示している。このようにすることで、ユーザや、メンテナンスのサービスマンが手軽に診断結果を確認することができる。 Furthermore, in the second embodiment, the diagnosis result is displayed on the terminal device T. By doing so, the user and the maintenance service person can easily check the diagnosis results.
 なお、図8に示す診断結果表示画面400において、冷蔵庫100aが後何日で危険ライン432に到達するかを示す表示が行われてもよい。 Note that the diagnosis result display screen 400 shown in FIG. 8 may display a display indicating how many days it will take for the refrigerator 100a to reach the danger line 432.
 [第3実施形態]
 次に、図9~図11を参照して、本発明の第3実施形態を説明する。
 図9は、第3実施形態における冷熱機器システムZbの構成を示す図である。
 図9において、図5と同様の構成については同一の符号を付して説明を省略する。また、適宜、図5を参照する。
 図9に示す冷熱機器システムZbは、複数の冷蔵庫100a1~100a4(100a)と、診断装置200aとを備えている。
 冷熱機器システムZbでは、複数の冷蔵庫100a1~100a4(100a)が診断装置200aと通信可能に接続されている。冷蔵庫100a1~100a4のそれぞれは、図5に示す冷蔵庫100aと同様の構成を有するため、図9における説明を省略する。なお、図9に示す例では、4台の冷蔵庫100a1~100a4が診断装置200aと通信可能に接続されることにより、診断装置200aの診断対象となっているが、診断対象は4台の冷蔵庫100aに限らない。また、冷熱機器システムZbに設置される冷蔵庫100aは1台でもよい。第3実施形態において、冷蔵庫100a1~100a4の構成については、図5に示す冷蔵庫100aを参照することとする。
[Third embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS. 9 to 11.
FIG. 9 is a diagram showing the configuration of the cooling and heating equipment system Zb in the third embodiment.
In FIG. 9, the same components as those in FIG. 5 are given the same reference numerals, and the description thereof will be omitted. Also, refer to FIG. 5 as appropriate.
The thermal equipment system Zb shown in FIG. 9 includes a plurality of refrigerators 100a1 to 100a4 (100a) and a diagnostic device 200a.
In the cooling equipment system Zb, a plurality of refrigerators 100a1 to 100a4 (100a) are communicably connected to the diagnostic device 200a. Each of the refrigerators 100a1 to 100a4 has the same configuration as the refrigerator 100a shown in FIG. 5, so the description in FIG. 9 will be omitted. In the example shown in FIG. 9, the four refrigerators 100a1 to 100a4 are communicably connected to the diagnostic device 200a and are therefore the diagnostic targets of the diagnostic device 200a. Not limited to. Moreover, the number of refrigerators 100a installed in the cooling and heating equipment system Zb may be one. In the third embodiment, regarding the configuration of the refrigerators 100a1 to 100a4, refer to the refrigerator 100a shown in FIG. 5.
 また、診断装置200aは、図5に示す診断装置200aと同様の構成を備えるため、図9における説明を省略する。図9に示す診断装置200aも図5に示す診断装置200aと同様、いわゆるクラウド環境を構築し、企業等に設置されるサーバとしてもよい。 Furthermore, since the diagnostic device 200a has the same configuration as the diagnostic device 200a shown in FIG. 5, the explanation in FIG. 9 will be omitted. Similar to the diagnostic device 200a shown in FIG. 5, the diagnostic device 200a shown in FIG. 9 may also construct a so-called cloud environment and be a server installed in a company or the like.
 診断装置200aは、複数の冷蔵庫100a1~100a4のそれぞれから圧縮機112(図5参照)の回転速度、外気温センサ121及び庫内温度センサ122(それぞれ図5参照)によって測定される温度の情報(温度情報)を稼働情報として、それぞれの冷蔵庫100a1~100a4に備えられている通信装置132(図5参照)を介して受信(取得)する。 The diagnostic device 200a obtains information (from each of the plurality of refrigerators 100a1 to 100a4) of the rotational speed of the compressor 112 (see FIG. 5), and the temperature measured by the outside temperature sensor 121 and the internal temperature sensor 122 (see FIG. 5, respectively). temperature information) is received (obtained) as operating information via the communication device 132 (see FIG. 5) provided in each of the refrigerators 100a1 to 100a4.
 また、診断装置200aは、第2実施形態と同様、異常情報を端末装置(出力装置)Tへ送信する。異常情報は、図7で説明したものと同様のものである。また、端末装置Tはカメラ(撮影装置)T1を備えており、診断装置200aは、端末装置TのカメラT1で撮像された冷蔵庫本体100Ba(図5参照)の設置状態に関する画像を受信する。なお、第3実施形態では、冷蔵庫本体100Baの利用状態を考慮した正常時や、利用状態に関する情報が出力されるが、以下では、利用状態として、その一形態である設置状態について記載する。 Furthermore, the diagnostic device 200a transmits abnormality information to the terminal device (output device) T, as in the second embodiment. The abnormality information is similar to that explained in FIG. Furthermore, the terminal device T includes a camera (photographing device) T1, and the diagnostic device 200a receives an image regarding the installed state of the refrigerator main body 100Ba (see FIG. 5), which is captured by the camera T1 of the terminal device T. In the third embodiment, information regarding the normal state and the usage state of the refrigerator main body 100Ba is output in consideration of the usage state of the refrigerator body 100Ba, but below, the installation state, which is one form thereof, will be described as the usage state.
 <フローチャート>
 図10は、第3実施形態で行われる利用状態判定処理の手順を示す図である。適宜、図9を参照する。適宜、図5及び図9を参照する。
 まず、ユーザ自身が所有する端末装置Tに備えられているカメラT1で、ユーザ自身が所有する冷蔵庫100a(冷蔵庫100a1~100a4のいずれか)における冷蔵庫本体100Ba(図5参照)の設置状態を撮影する(S201)。例えば、ユーザは、冷蔵庫本体100Baの側面と、壁との距離がわかるような画像を撮影する。
 そして、ユーザは撮影した設置状態の画像を診断装置200aに送信する(S202)。
 続いて、診断装置200aは送信された画像を基に、冷蔵庫本体100Baが適切に設置されているか否かを評価する(S203)。評価は、例えば、以下のように行われる。まず、冷蔵庫本体100Baの側面と、壁との距離に基づいた評価値が予め診断装置200aの記憶装置220に設定されている。そして、診断装置200aは、送信された画像から冷蔵庫本体100Baの側面と、壁との距離を推定する。続いて、診断装置200aは、推定された距離と、記憶装置220に記憶されている評価値とを基に、冷蔵庫本体100Baの設置状態(利用状態)に関する評価値を決定する。
 診断装置200aは、ステップS203の評価結果を端末装置Tに送信し、端末装置Tは送信された評価結果を出力する(S204)。図10に示す処理は、それぞれの冷蔵庫100aについて行われる。つまり、診断装置200aは、複数の前記冷熱機器のそれぞれから取得した稼働情報に基づいた投入エネルギ量に基づいて、複数の前記冷熱機器のそれぞれについて正常性を診断する。
<Flowchart>
FIG. 10 is a diagram showing the procedure of usage state determination processing performed in the third embodiment. Refer to FIG. 9 as appropriate. Refer to FIGS. 5 and 9 as appropriate.
First, the installed state of the refrigerator main body 100Ba (see FIG. 5) in the refrigerator 100a (any of the refrigerators 100a1 to 100a4) owned by the user is photographed using a camera T1 provided in a terminal device T owned by the user. (S201). For example, the user captures an image that shows the distance between the side surface of the refrigerator body 100Ba and the wall.
Then, the user transmits the photographed image of the installed state to the diagnostic device 200a (S202).
Subsequently, the diagnostic device 200a evaluates whether the refrigerator main body 100Ba is appropriately installed based on the transmitted image (S203). The evaluation is performed, for example, as follows. First, an evaluation value based on the distance between the side surface of the refrigerator main body 100Ba and the wall is set in advance in the storage device 220 of the diagnostic device 200a. The diagnostic device 200a then estimates the distance between the side surface of the refrigerator main body 100Ba and the wall from the transmitted image. Subsequently, the diagnostic device 200a determines an evaluation value regarding the installation state (usage state) of the refrigerator main body 100Ba based on the estimated distance and the evaluation value stored in the storage device 220.
The diagnostic device 200a transmits the evaluation result of step S203 to the terminal device T, and the terminal device T outputs the transmitted evaluation result (S204). The process shown in FIG. 10 is performed for each refrigerator 100a. That is, the diagnostic device 200a diagnoses the normality of each of the plurality of cooling and heating devices based on the amount of input energy based on the operation information acquired from each of the plurality of cooling and heating devices.
 <評価画面>
 図11は、図10のステップS204で端末装置Tに表示される診断結果表示画面700の例を示す図である。
 診断結果表示画面700は、履歴表示部710と、正常度比較部720と、運転状態表示部731、利用状態表示部732を有する。
 履歴表示部710は、図8に示す履歴表示部430の表示と同様であるが、図11に示す履歴表示部710の表示は、図8に示す履歴表示部430の表示と異なり、縦軸が正常度となっている。これは、図8の危険度の上下を逆にすることで実現される。従って、危険ライン713は図8の危険ライン432に相当し、基準ライン712は図8の基準ライン431に相当する。
<Evaluation screen>
FIG. 11 is a diagram showing an example of a diagnosis result display screen 700 displayed on the terminal device T in step S204 of FIG.
The diagnosis result display screen 700 includes a history display section 710, a normality comparison section 720, a driving state display section 731, and a usage state display section 732.
The history display section 710 is similar to the display of the history display section 430 shown in FIG. 8, but the display of the history display section 710 shown in FIG. 11 differs from the display of the history display section 430 shown in FIG. It is normal. This is achieved by reversing the risk levels in FIG. Therefore, danger line 713 corresponds to danger line 432 in FIG. 8, and reference line 712 corresponds to reference line 431 in FIG.
 また、図11に示す正常度の時間変化(実線711)は、冷蔵庫本体100Baの設置状態(利用状態)を加味したものになっている。ここで、設置状態は、図10のステップS203で評価された設置状態である。例えば、診断装置200aは、冷蔵庫本体100Baの側面と壁との距離に応じて、予め正常度から差し引く値を決めておく。この差し引く値は、図10のステップS203で算出された評価値を基に設定される。 Furthermore, the temporal change in normality (solid line 711) shown in FIG. 11 takes into account the installation state (usage state) of the refrigerator main body 100Ba. Here, the installation state is the installation state evaluated in step S203 of FIG. 10. For example, the diagnostic device 200a determines in advance a value to be subtracted from the normality level according to the distance between the side surface of the refrigerator body 100Ba and the wall. This value to be subtracted is set based on the evaluation value calculated in step S203 of FIG. 10.
 そして、診断装置200aが算出した正常度から、冷蔵庫本体100Baの側面と壁との距離に応じて決められている値を差し引いたもの(新たに算出された正常度)を正常度の時間変化(実線711)として表示する。この他にも、正常度を算出する前に投入エネルギ量から、冷蔵庫本体100Baの側面と壁との距離に応じて決められている値が差し引かれてもよい。あるいは、診断装置200aは、正常度を算出する前に想定性能342(図6参照)に対して、冷蔵庫本体100Baの側面と壁との距離に応じて決められている値を足したりしてもよい。 Then, from the normality calculated by the diagnostic device 200a, a value determined according to the distance between the side surface of the refrigerator body 100Ba and the wall is subtracted (newly calculated normality), and the change in normality over time ( It is displayed as a solid line 711). In addition to this, a value determined according to the distance between the side surface of the refrigerator main body 100Ba and the wall may be subtracted from the input energy amount before calculating the normality level. Alternatively, the diagnostic device 200a may add a value determined according to the distance between the side surface of the refrigerator body 100Ba and the wall to the assumed performance 342 (see FIG. 6) before calculating the normality level. good.
 このように、図11では正常度に冷蔵庫本体100Baの設置状態(利用状態)の影響を加味している。設置状態が不適切であるといわれても、一般的なユーザは対応できないことが多い。従って、図11に示すように、正常度に冷蔵庫本体100Baの設置状態を加味することでユーザは設置状態の影響が加味されている正常度を確認することができる。なお、診断結果表示画面700に設置状態の評価値そのものが出力され、ユーザ自身が設置状態の診断を行ってもよい。 In this way, in FIG. 11, the influence of the installation state (usage state) of the refrigerator main body 100Ba is taken into consideration in the normality level. Even if it is said that the installation condition is inappropriate, ordinary users are often unable to respond. Therefore, as shown in FIG. 11, by adding the installation state of the refrigerator main body 100Ba to the normality degree, the user can confirm the normality degree in which the influence of the installation state is taken into account. Note that the evaluation value of the installation state itself may be output on the diagnosis result display screen 700, and the user himself may diagnose the installation state.
 このように、冷蔵庫本体100Baの設置状態を画像で診断装置200aへアップロードし、正常度から設置状態の因子(評価値)を除いて正常性診断が行われる。また、第3実施形態において、設定状態に対する評価値が機械学習によって算出されてもよい。そして、予め設置状態に対する評価値や、機械学習のパラメータがデータベース(不図示)等に保持されていることにより、診断装置200aは、画像を受信すると設置状態の評価値を短時間で計算することができる。これにより、例えば、冷蔵庫100aの納品時において、メーカのサービスマンが冷蔵庫本体100Baの設置状態チェックに第3実施形態の手法を使用することができる。 In this way, the installed state of the refrigerator main body 100Ba is uploaded as an image to the diagnostic device 200a, and the normality diagnosis is performed by removing the installation state factor (evaluation value) from the normality level. Furthermore, in the third embodiment, the evaluation value for the setting state may be calculated by machine learning. Since evaluation values for the installation state and machine learning parameters are stored in advance in a database (not shown), the diagnostic device 200a can calculate the evaluation value for the installation state in a short time upon receiving an image. I can do it. Thereby, for example, when the refrigerator 100a is delivered, the manufacturer's service person can use the method of the third embodiment to check the installation state of the refrigerator main body 100Ba.
 また、正常度比較部720には、正常度ヒストグラムが表示されている。図11に示すように、正常度ヒストグラムの横軸は履歴表示部710に示されている正常度であり、縦軸は台数となっている。なお、正常度ヒストグラムは、現在の正常度を基に生成される。 Additionally, a normality histogram is displayed in the normality comparison section 720. As shown in FIG. 11, the horizontal axis of the normality histogram is the normality shown in the history display section 710, and the vertical axis is the number of devices. Note that the normality histogram is generated based on the current normality.
 そして、正常度ヒストグラムは、対応する正常度の範囲に属する冷蔵庫100aの台数を示している。
 また、図11に示す正常度比較部720では、端末装置Tを所有している人物によって所有される冷蔵庫100aが属する正常度ヒストグラムが斜線で示されている。このようにすることで、ユーザは、自身と他の人との正常度を比較することができる。つまり、複数の冷蔵庫100aそれぞれの正常性が比較可能に出力される。なお、前記したように正常度には設置状態(利用状態)が加味されている。例えば、冷蔵庫本体100Baの側面と壁との距離は、省エネ(省エネルギ)度にもかかわってくる。そのため、正常度は、省エネ度を反映しているともいえる。そのため、正常度比較部720において正常度の代わりに省エネ度が表示されてもよい。
The normality histogram indicates the number of refrigerators 100a that belong to the corresponding normality range.
Further, in the normality comparison unit 720 shown in FIG. 11, the normality histogram to which the refrigerator 100a owned by the person who owns the terminal device T belongs is indicated by diagonal lines. By doing so, the user can compare the normality level between himself and other people. In other words, the normality of each of the plurality of refrigerators 100a is outputted so as to be comparable. Note that, as described above, the installation state (usage state) is taken into consideration in the normality level. For example, the distance between the side surface of the refrigerator main body 100Ba and the wall is also related to the degree of energy saving. Therefore, it can be said that the normality reflects the energy saving degree. Therefore, the energy saving level may be displayed in the normality comparison section 720 instead of the normality level.
 また、第3実施形態では、利用状態を評価する評価値の例として冷蔵庫本体100Baの側面と壁との距離(設置状態)に基づく評価値の例を示しているが、利用状態の別の例として、設定温度や、庫内空間102(図5参照)の詰め込み具合等の評価値が計算されてもよい。このような場合、図10の処理において、ユーザは設定温度や、庫内空間102の詰め込み具合がわかるような画像を撮影し、診断装置200aへ送信する。設定温度は、画像の他に直接冷蔵庫100aから診断装置200aに送信されてもよい。そして、ステップS203において、診断装置200aは、設定温度や、庫内空間102の詰め込み具合に応じて予め設定している評価値を決定する(評価する)。 Further, in the third embodiment, as an example of the evaluation value for evaluating the usage state, an example of the evaluation value based on the distance between the side surface of the refrigerator body 100Ba and the wall (installation state) is shown, but another example of the usage state is shown. As a result, evaluation values such as the set temperature and the degree of filling of the internal space 102 (see FIG. 5) may be calculated. In such a case, in the process shown in FIG. 10, the user takes an image that shows the set temperature and the degree of filling of the internal space 102, and sends it to the diagnostic device 200a. In addition to the image, the set temperature may be directly transmitted from the refrigerator 100a to the diagnostic device 200a. Then, in step S203, the diagnostic device 200a determines (evaluates) a preset evaluation value according to the set temperature and the degree of filling of the internal space 102.
 また、運転状態表示部731には履歴表示部710に基づく運転状態の正常度が表示される。利用状態表示部732には正常度比較部720に示されているユーザの利用状態が表示される。図11に示す例において、利用状態表示部732には、利用状態の一形態である冷蔵庫本体100Baの設置状態が示されている。 Furthermore, the normality of the driving state based on the history display part 710 is displayed on the driving state display section 731. The usage status display section 732 displays the usage status of the user shown in the normality comparison section 720. In the example shown in FIG. 11, the usage state display section 732 shows the installed state of the refrigerator main body 100Ba, which is one form of the usage state.
 なお、第3実施形態における端末装置Tを使用する人物はユーザとしているが、メンテナンス等を行うサービスマンが使用してもよい。 Although the person using the terminal device T in the third embodiment is a user, it may also be used by a service person who performs maintenance or the like.
 第3実施形態によれば、図11の履歴表示部710によって、ユーザの使用状況(利用状態)が全体のどの位置にあるのかがわかり、ユーザが、自身が所有する冷蔵庫100aの状態(省エネ度等)を再考するための一助となり得る。 According to the third embodiment, the history display section 710 in FIG. 11 allows the user to know where the user's usage status (usage status) is in the overall position, and the user can check the status (energy saving level) of the refrigerator 100a that the user owns. etc.) may help to reconsider.
 このように、第3実施形態によれば、正常度に設置状態(利用状態)の影響を反映させることができる。 In this manner, according to the third embodiment, the influence of the installation state (usage state) can be reflected in the normality level.
 [第4実施形態]
 次に、図12~図13を参照して本発明の第4実施形態について説明する。
 第4実施形態では診断対象がヒートポンプ給湯機(ヒートポンプ式蓄熱装置)500である場合について説明する。
 図12は、第4実施形態における冷熱機器システムZcの構成を示す図である。
 冷熱機器システムZcは、ヒートポンプ給湯機500の正常性診断を行う。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 12 and 13.
In the fourth embodiment, a case where the diagnosis target is a heat pump water heater (heat pump type heat storage device) 500 will be described.
FIG. 12 is a diagram showing the configuration of the cooling and heating equipment system Zc in the fourth embodiment.
The cooling and heating equipment system Zc performs a normality diagnosis of the heat pump water heater 500.
 冷熱機器システムZcは、ヒートポンプ給湯機500と、診断装置200aとを備える。 The cooling and heating equipment system Zc includes a heat pump water heater 500 and a diagnostic device 200a.
 (ヒートポンプ給湯機500)
ヒートポンプ給湯機500は、ヒートポンプユニット510と、貯湯ユニット520と、制御装置131と、通信装置132と備える。
 ヒートポンプユニット510は、沸き上げ運転時に冷水を加熱して温水に沸き上げるヒートポンプサイクルHを搭載している。貯湯ユニット520は、沸き上げ運転時に稼動する水側サイクル(加熱流路)W及び給湯時に稼動する給湯用流路群Fを搭載している。制御装置131及び通信装置132については後記する。
(Heat pump water heater 500)
Heat pump water heater 500 includes a heat pump unit 510, a hot water storage unit 520, a control device 131, and a communication device 132.
The heat pump unit 510 is equipped with a heat pump cycle H that heats cold water and boils it into hot water during a boiling operation. The hot water storage unit 520 is equipped with a water side cycle (heating flow path) W that operates during boiling operation and a hot water supply flow path group F that operates during hot water supply. The control device 131 and the communication device 132 will be described later.
 ヒートポンプサイクルHは、圧縮機(駆動源)511、水/冷媒熱交換器(放熱装置、温調装置)512、膨張弁(膨張装置)513、蒸発器(吸熱装置)514のそれぞれが環状に接続されている流路である。そして、蒸発器514には送風ファン515が備えられている。ヒートポンプサイクルHの各構成については後記する。 In the heat pump cycle H, a compressor (drive source) 511, a water/refrigerant heat exchanger (heat radiation device, temperature control device) 512, an expansion valve (expansion device) 513, and an evaporator (heat absorption device) 514 are connected in a ring. This is the flow path where The evaporator 514 is equipped with a blower fan 515. Each configuration of the heat pump cycle H will be described later.
 (水側サイクルW)
 水側サイクルWは、貯湯容器(温調空間、蓄熱空間)521、沸き上げ用循環ポンプ522、水/冷媒熱交換器512が環状に接続された構成である。また、給湯用流路群Fは、水道管524、貯湯容器521、給水口(給水装置)523を直列に接続した流路と、水道管524と給水口523の入口とを直結した配管525で構成される。
(Water side cycle W)
The water side cycle W has a configuration in which a hot water storage container (temperature control space, heat storage space) 521, a boiling circulation pump 522, and a water/refrigerant heat exchanger 512 are connected in a ring. The hot water supply channel group F includes a channel in which a water pipe 524, a hot water storage container 521, and a water supply port (water supply device) 523 are connected in series, and a pipe 525 that directly connects the water pipe 524 and the inlet of the water supply port 523. configured.
 (ヒートポンプサイクルH)
 ヒートポンプサイクルHには、伝熱媒体としてCO2冷媒であるR744が封入されているが、冷媒はR744に限らず、R32やR410A等、目的に応じて様々なものが選択可能である。
(Heat pump cycle H)
The heat pump cycle H is sealed with R744, which is a CO2 refrigerant, as a heat transfer medium, but the refrigerant is not limited to R744, and various refrigerants such as R32 and R410A can be selected depending on the purpose.
 さらに、ヒートポンプ給湯機500には外気温度を測定する外気温センサ531が備えられている。
 さらに、ヒートポンプ給湯機500は、制御装置131及び通信装置132を備えている。制御装置131は、通信装置132を介して圧縮機511の回転速度や、外気温センサ531が測定した温度の情報(温度情報)等を診断装置200aへ送信する。
Furthermore, the heat pump water heater 500 is equipped with an outside temperature sensor 531 that measures outside air temperature.
Furthermore, the heat pump water heater 500 includes a control device 131 and a communication device 132. The control device 131 transmits information such as the rotation speed of the compressor 511 and the temperature measured by the outside air temperature sensor 531 (temperature information) to the diagnostic device 200a via the communication device 132.
 (水道水(冷水)供給時)
 給水口523から水道水(冷水)を供給する場合、減圧弁526が閉弁し、配管525に備えられているバルブ527が開弁する。これにより、水は水道管524から配管525を介して給水口523へ直接供給される。
(When supplying tap water (cold water))
When tap water (cold water) is supplied from the water supply port 523, the pressure reducing valve 526 is closed and the valve 527 provided in the pipe 525 is opened. Thereby, water is directly supplied from the water pipe 524 to the water supply port 523 via the pipe 525.
 (温水供給時)
 次に、温水を供給する際のヒートポンプ給湯機500の動作について図12を用いて簡単に説明する。
 冷媒は圧縮機511で圧縮されて高温、高圧状態になった後、水/冷媒熱交換器512にて、貯湯容器521から沸き上げ用循環ポンプ522によって送られてきた冷水を加熱し、その代わりに自身の熱を放熱して熱交換作用を行う。
(When supplying hot water)
Next, the operation of the heat pump water heater 500 when supplying hot water will be briefly described using FIG. 12.
After the refrigerant is compressed by the compressor 511 to a high temperature and high pressure state, the water/refrigerant heat exchanger 512 heats the cold water sent from the hot water storage container 521 by the boiling circulation pump 522, and instead It performs a heat exchange action by dissipating its own heat.
 そして、冷媒は膨張弁513を通過することで低温、低圧状態になった後、蒸発器514で送風ファン515によって送られた外部の外気から熱を受け取った後、再び圧縮機511へと流入する。なお、水/冷媒熱交換器512では、水と冷媒は互いに対向する方向に流通し、冷媒によって加熱されて温度が高くなった温水は貯湯容器521に戻される。 Then, the refrigerant becomes a low-temperature, low-pressure state by passing through the expansion valve 513, receives heat from the outside air sent by the blower fan 515 in the evaporator 514, and then flows into the compressor 511 again. . In the water/refrigerant heat exchanger 512, the water and the refrigerant flow in opposite directions, and hot water heated by the refrigerant and heated to a higher temperature is returned to the hot water storage container 521.
 給湯時には、貯湯容器521の上部から給水口523へと温水が流れ、同時に水道管524から配管525を介して給水口523へと水道水が供給される。温水と水道水は給水口523の入口部にて混合した後、給水口523から流出するようになっている。なお、給湯時では、バルブ527の開度が調整される。貯湯容器521から温水が流れ出ると同時に、減圧弁526を介して水道管524から水道水が補充される。 When hot water is supplied, hot water flows from the upper part of the hot water storage container 521 to the water supply port 523, and at the same time, tap water is supplied from the water pipe 524 to the water supply port 523 via the pipe 525. The hot water and tap water are mixed at the inlet of the water supply port 523 and then flowed out from the water supply port 523. Note that during hot water supply, the opening degree of the valve 527 is adjusted. At the same time as hot water flows out from the hot water storage container 521, tap water is replenished from the water pipe 524 via the pressure reducing valve 526.
 次に、蒸発器514の動作について説明する。ヒートポンプサイクルHを駆動した際、送風ファン515が回転することで、蒸発器514から送風ファン515へ向かう外気の流れが発生する。同時に、図12に示しているように、蒸発器514へ流入した冷媒は分配部(不図示)で複数の流路に分岐した後、それぞれの流路を通過して外気から吸熱した後、蒸発器514から排出される。 Next, the operation of the evaporator 514 will be explained. When the heat pump cycle H is driven, the blower fan 515 rotates, thereby generating a flow of outside air from the evaporator 514 toward the blower fan 515. At the same time, as shown in FIG. 12, the refrigerant flowing into the evaporator 514 branches into a plurality of channels at a distribution section (not shown), passes through each channel, absorbs heat from the outside air, and then evaporates. The liquid is discharged from the container 514.
 冷媒は蒸発器514の端部から流入し、蒸発器514を略水平方向に通過して反対側の端部へと到達した後、隣の段へと折り返して戻ってくるように流通しながら外気から熱を得る。 The refrigerant flows from the end of the evaporator 514, passes through the evaporator 514 in a substantially horizontal direction, reaches the opposite end, and then turns around and returns to the next stage, where it flows into the outside air. get heat from
 (制御装置131)
 制御装置131は、圧縮機511の回転速度や、外気温センサ531によって測定された外気温度の情報を取得し、通信装置132を介して取得した各情報を診断装置200aへ送信する。
(Control device 131)
The control device 131 acquires information on the rotational speed of the compressor 511 and the outside air temperature measured by the outside air temperature sensor 531, and transmits the acquired information to the diagnostic device 200a via the communication device 132.
 (診断装置200a及び端末装置T)
 診断装置200aは、ヒートポンプ給湯機500から制御装置131、通信装置132,241を介して取得する情報に基づいて投入エネルギ量を推定し、推定した投入エネルギ量を基に正常性診断を行う。診断装置200aの構成は、図5に示す診断装置200aと同様であるため、図11での説明を省略する。なお、診断装置200aは、ヒートポンプ給湯機500における圧縮機511の回転速度を時間積分することによって、ヒートポンプ給湯機500の投入エネルギ量を推定する。加えて、診断装置200aは外気温センサ531からヒートポンプ給湯機500の外気温度を取得する。なお、診断装置200aは、いわゆるクラウド環境を構築し、企業等に設置されるサーバとしてもよい。
 また、端末装置Tは図5等に示すものと同様であるので、図11での説明を省略する。
(Diagnostic device 200a and terminal device T)
The diagnostic device 200a estimates the input energy amount based on information acquired from the heat pump water heater 500 via the control device 131 and the communication devices 132, 241, and performs a normality diagnosis based on the estimated input energy amount. The configuration of the diagnostic device 200a is the same as that of the diagnostic device 200a shown in FIG. 5, so the description in FIG. 11 will be omitted. Note that the diagnostic device 200a estimates the input energy amount of the heat pump water heater 500 by integrating the rotational speed of the compressor 511 in the heat pump water heater 500 over time. In addition, the diagnostic device 200a acquires the outside air temperature of the heat pump water heater 500 from the outside air temperature sensor 531. Note that the diagnostic device 200a may be a server installed in a company or the like by constructing a so-called cloud environment.
Further, since the terminal device T is similar to that shown in FIG. 5, etc., the explanation in FIG. 11 will be omitted.
 <投入エネルギ量の時間変化>
 図13は、冷熱機器システムZcにおける投入エネルギ量の時間変化を示す図である。図13において、図6と同様の構成については同一の符号を付して説明を省略する。
 なお、ヒートポンプ給湯機500は夏に投入エネルギ量が小さくなり、冬に投入エネルギ量が大きくなるため、図6と夏・冬が入れ替わっている。つまり、夏(時点349a)で想定性能342が低くなり、冬(時点349b)で想定性能342が高くなっている。
 図13に示す投入エネルギ量の時間変化において、投入エネルギ量がヒートポンプ給湯機500の投入エネルギ量となっていること、庫内温度センサ122(図5参照)による温度の時間変化が示されていないこと以外は、図6に示す投入エネルギ量の時間変化と同様である。ちなみに、想定性能342は、図12に示す外気温センサ531によって測定される外気温度に基づいて推定される。
 また、診断装置200aによるヒートポンプ給湯機500の正常性診断の処理手順も図6に示す投入エネルギ量の時間変化と同様である。
<Time change in input energy amount>
FIG. 13 is a diagram showing temporal changes in the amount of input energy in the cooling and heating equipment system Zc. In FIG. 13, the same components as those in FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted.
Note that the input energy amount of the heat pump water heater 500 is small in the summer, and the input energy amount is large in the winter, so summer and winter are interchanged with those in FIG. 6. In other words, the expected performance 342 is low in summer (time 349a) and high in winter (time 349b).
In the time change of the input energy amount shown in FIG. 13, the input energy amount is the input energy amount of the heat pump water heater 500, and the time change of the temperature by the chamber temperature sensor 122 (see FIG. 5) is not shown. Other than that, it is the same as the time change of input energy amount shown in FIG. Incidentally, the assumed performance 342 is estimated based on the outside air temperature measured by the outside air temperature sensor 531 shown in FIG. 12.
Further, the processing procedure for diagnosing the normality of the heat pump water heater 500 by the diagnostic device 200a is also similar to the temporal change in input energy amount shown in FIG.
 このように、第4実施形態における冷熱機器システムZcにおいても投入エネルギ量と、外気温度によって推定される想定性能342との対比によって正常性を判定する。 In this way, the normality of the cooling and heating equipment system Zc in the fourth embodiment is also determined by comparing the input energy amount with the assumed performance 342 estimated based on the outside air temperature.
 また、診断装置200aは、所定期間(例えば、1日)毎にヒートポンプ給湯機500の正常性診断を行い、その診断結果を端末装置Tへ送信する。この際、図8に示す診断結果表示画面400と同様の画面を端末装置Tの画面に表示し、投入エネルギ量の時間変化(履歴)や、緊急度、投入エネルギ量の予測値等が表示されてもよい。また、図8に示す診断結果表示画面400と同様に異常原因に関する情報が表示されてもよい。 Furthermore, the diagnostic device 200a performs a normality diagnosis of the heat pump water heater 500 every predetermined period (for example, one day), and transmits the diagnosis result to the terminal device T. At this time, a screen similar to the diagnosis result display screen 400 shown in FIG. 8 is displayed on the screen of the terminal device T, and the time change (history) of the input energy amount, the degree of urgency, the predicted value of the input energy amount, etc. are displayed. It's okay. Further, information regarding the cause of the abnormality may be displayed similarly to the diagnosis result display screen 400 shown in FIG.
 なお、第4実施形態では、ヒートポンプ給湯機500の正常性診断が記載されているが、ガス式給湯機の正常性診断が行われてもよい。ガス式給湯機の正常性診断では、投入ガス量が投入エネルギ量として使用される。また、ヒートポンプ式とガス式のハイブリッド型給湯機に第4実施形態に記載されている技術が適用されてもよい。このようなハイブリッド型給湯機では、圧縮機511の回転速度の時間積分値と、投入ガス量とが加算されたものが投入エネルギ量として使用される。なお、圧縮機511の回転速度の時間積分値と、投入ガス量とが加算される際、例えば、圧縮機511の回転速度の時間積分値と、投入ガス量とをジュール等に変換するとよい。 Note that although the fourth embodiment describes the normality diagnosis of the heat pump water heater 500, the normality diagnosis of the gas type water heater may also be performed. In the normality diagnosis of a gas water heater, the input gas amount is used as the input energy amount. Furthermore, the technology described in the fourth embodiment may be applied to a heat pump-type and gas-type hybrid water heater. In such a hybrid water heater, the sum of the time integral value of the rotational speed of the compressor 511 and the input gas amount is used as the input energy amount. Note that when the time integral value of the rotational speed of the compressor 511 and the input gas amount are added, it is preferable to convert the time integral value of the rotational speed of the compressor 511 and the input gas amount into joules or the like, for example.
 なお、冷熱機器システムZcでは、貯湯容器521の温水が使用されていない間に正常性診断が行われる。例えば、深夜等に行われるとよい。あるいは、正常性診断中に貯湯容器521の温水が使用された場合、診断装置200aは正常性診断を中止するとよい。診断装置200aは、正常性診断が行われていない間に投入エネルギ量や、温度情報を収集し、記憶装置220に記憶しておくとよい。 Note that in the cooling and heating equipment system Zc, the normality diagnosis is performed while the hot water in the hot water storage container 521 is not being used. For example, it is preferable to do it late at night. Alternatively, if the hot water in the hot water storage container 521 is used during the normality diagnosis, the diagnostic device 200a may cancel the normality diagnosis. It is preferable that the diagnostic device 200a collects input energy amount and temperature information and stores them in the storage device 220 while the normality diagnosis is not being performed.
 第4実施形態では、ヒートポンプ給湯機500に冷熱機器システムZcを適用している。第4実施形態によれば、ヒートポンプ給湯機500の正常性診断を投入エネルギ量によって簡易に行うことができる。なお、日々の沸き上げに使った投入エネルギ量が算出できるため、ヒートポンプ給湯機500の利用頻度等と対応させて、利用が少ないのに沸き上げ熱量が多ければ、熱漏洩等が生じていると診断することができる。 In the fourth embodiment, a cooling and heating equipment system Zc is applied to a heat pump water heater 500. According to the fourth embodiment, the normality diagnosis of the heat pump water heater 500 can be easily performed based on the input energy amount. In addition, since the amount of energy input used for daily boiling can be calculated, it can be correlated with the frequency of use of the heat pump water heater 500, and if the amount of heat for boiling is large even though the heat pump water heater 500 is used less, it can be determined that heat leakage, etc. has occurred. can be diagnosed.
 [第5実施形態]
 次に、図14~図16を参照して本発明の第5実施形態について説明する。
 <冷熱機器システムZdの構成>
 図14は、第5実施形態における冷熱機器システムZdの構成を示す図である。
 冷熱機器システムZdでは、洗濯乾燥機600の異常診断が行われる。
 冷熱機器システムZdは、洗濯乾燥機600と、診断装置200aとを備える。
[Fifth embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIGS. 14 to 16.
<Configuration of cooling equipment system Zd>
FIG. 14 is a diagram showing the configuration of the cooling and heating equipment system Zd in the fifth embodiment.
In the cooling and heating equipment system Zd, abnormality diagnosis of the washer/dryer 600 is performed.
The cooling and heating equipment system Zd includes a washer/dryer 600 and a diagnostic device 200a.
 (洗濯乾燥機600)
 第5実施形態に例示する洗濯乾燥機600は電気式洗濯乾燥機である。また、洗濯乾燥機600は、洗濯乾燥機本体(乾燥装置)600Bと、制御装置131と、通信装置132とを備える。
 洗濯乾燥機本体600Bは、洗濯槽(衣類保持部)601、モータ603、荷重センサ(センサ)604を備える。さらに、洗濯乾燥機本体600Bは、ヒータ(駆動源)605、ブロア(送風装置)606、外気温センサ607を備える。また、ヒータ605の内部にはニクロム線等で構成され、通電されると熱を発生する電熱器(温調装置)605aが備えられている。
 ユーザは、扉602を開けて洗濯槽601に洗濯する衣類を投入し、扉602を閉める。これによって、洗濯槽601に衣類が保持される。この際、荷重センサ604によって、洗濯槽601に投入された衣類の質量(検知された内部の因子の検知値)が測定される。その後、モータ603が洗濯槽601を回転させることによって、洗濯工程、脱水工程、乾燥工程が行われる。衣類から出た水は排水口621を介して排水される。
(Washing dryer 600)
The washer/dryer 600 illustrated in the fifth embodiment is an electric washer/dryer. Further, the washer/dryer 600 includes a washer/dryer main body (drying device) 600B, a control device 131, and a communication device 132.
The washer/dryer main body 600B includes a washing tub (clothes holding section) 601, a motor 603, and a load sensor (sensor) 604. Further, the washer/dryer main body 600B includes a heater (drive source) 605, a blower (air blower) 606, and an outside temperature sensor 607. Further, inside the heater 605, there is provided an electric heater (temperature control device) 605a that is made of nichrome wire or the like and generates heat when energized.
The user opens the door 602, puts the clothes to be washed into the washing tub 601, and closes the door 602. As a result, clothes are held in the washing tub 601. At this time, the mass of the clothes placed in the washing tub 601 (the detected value of the detected internal factor) is measured by the load sensor 604. Thereafter, the motor 603 rotates the washing tub 601 to perform a washing process, a dehydration process, and a drying process. The water coming out of the clothes is drained through the drain port 621.
 洗濯工程、脱水工程が終わると乾燥工程が行われる。乾燥工程が開始される際には、当然ながら洗濯槽601には濡れた衣類が投入されている。
 ブロア606は、第1ダクト608を介して洗濯乾燥機本体600Bの外部から空気を取り入れ、第2ダクト609を介して、取り入れた空気を洗濯槽601の内部に送風する。第2ダクト609にはヒータ605が備えられており、乾燥工程において、ブロア606によって送風された空気は、ヒータ605によって温められた後、洗濯槽601の内部へ送風される。具体的には、ヒータ605に備えられている電熱器605aが熱を発生し、その熱がブロア606によって送付された空気を温めた後、洗濯槽601の内部へ送風される。
After the washing process and dehydration process are completed, a drying process is performed. When the drying process is started, wet clothes are naturally placed in the washing tub 601.
The blower 606 takes in air from outside the washer/dryer main body 600B through a first duct 608 and blows the taken air into the washing tub 601 through a second duct 609. The second duct 609 is equipped with a heater 605, and in the drying process, the air blown by the blower 606 is warmed by the heater 605 and then blown into the washing tub 601. Specifically, an electric heater 605a provided in the heater 605 generates heat, and after the heat warms the air sent by the blower 606, it is blown into the inside of the washing tub 601.
 また、外気温センサ607は、洗濯乾燥機本体600Bの外気温度を測定する。 Additionally, the outside air temperature sensor 607 measures the outside air temperature of the washer/dryer main body 600B.
 (制御装置131)
 さらに、制御装置131は、通信装置132を介してヒータ605への投入電力や、外気温センサ607が測定した温度の情報(温度情報)等を診断装置200aへ送信する。
(Control device 131)
Further, the control device 131 transmits information such as the power input to the heater 605 and the temperature measured by the outside air temperature sensor 607 (temperature information) to the diagnostic device 200a via the communication device 132.
 (診断装置200a及び端末装置T)
 診断装置200aは、洗濯乾燥機600から制御装置131、通信装置132,241を介して取得する情報に基づいて投入エネルギ量を推定し、推定した投入エネルギ量を基に正常性判定を行う。診断装置200aの構成は、図5に示す診断装置200aと同様であるが、診断装置200aは、洗濯乾燥機本体600Bにおけるヒータ605への投入電力の時間積分を算出することによって、洗濯乾燥機本体600Bの投入エネルギ量を推定する。具体的には、ヒータ605への(投入電圧×投入電流)の時間積分によって、洗濯乾燥機600の投入エネルギ量が推定される。また、診断装置200aは、洗濯乾燥機本体600Bの荷重センサ604から洗濯槽601に投入された衣類の質量を取得し、取得した衣類の質量から想定性能811(図15参照)を算出する。そして、診断装置200aは、想定性能811と投入エネルギ量との差分に基づいて洗濯乾燥機本体600Bの異常を診断する。洗濯乾燥機本体600Bの想定性能811については後記する。また、診断装置200aは、外気温センサ607が測定した外気温度を取得する。さらに、診断装置200aは、荷重センサ604から衣類の質量も取得する。なお、診断装置200aは、いわゆるクラウド環境を構築し、企業等に設置されるサーバとしてもよい。
 また、端末装置Tは図5等に示すものと同様であるので、図11での説明を省略する。
(Diagnostic device 200a and terminal device T)
The diagnostic device 200a estimates the input energy amount based on information acquired from the washer/dryer 600 via the control device 131 and the communication devices 132, 241, and performs a normality determination based on the estimated input energy amount. The configuration of the diagnostic device 200a is similar to the diagnostic device 200a shown in FIG. Estimate the input energy amount of 600B. Specifically, the amount of energy input to the washer/dryer 600 is estimated by the time integral of (supply voltage x input current) to the heater 605 . The diagnostic device 200a also acquires the mass of the clothes put into the washing tub 601 from the load sensor 604 of the washer/dryer main body 600B, and calculates the expected performance 811 (see FIG. 15) from the acquired mass of the clothes. Then, the diagnostic device 200a diagnoses an abnormality in the washer/dryer main body 600B based on the difference between the assumed performance 811 and the input energy amount. The assumed performance 811 of the washer/dryer main body 600B will be described later. The diagnostic device 200a also acquires the outside air temperature measured by the outside air temperature sensor 607. Furthermore, the diagnostic device 200a also acquires the mass of the clothing from the load sensor 604. Note that the diagnostic device 200a may be a server installed in a company or the like by constructing a so-called cloud environment.
Further, since the terminal device T is similar to that shown in FIG. 5, etc., the explanation in FIG. 11 will be omitted.
 <投入エネルギ量と衣類質量との関係>
 図15は、洗濯乾燥機本体600Bの投入エネルギ量と、洗濯乾燥機本体600Bの洗濯槽601に投入された衣類の質量(衣類質量)との関係を示す図である。
 また、洗濯乾燥機本体600Bの想定性能811は、洗濯槽601に投入された衣類を乾燥させるためにヒータ605に投入される投入エネルギ量の最低値である。従って、衣類の質量が大きいほど、投入エネルギ量が大きくなる。このように、衣類の質量はヒータ605への投入エネルギ量を算出する際に用いられるものである。
 また、プロット812は、ヒータ605に投入される投入エネルギ量である。
<Relationship between input energy amount and clothing mass>
FIG. 15 is a diagram showing the relationship between the amount of energy input into the washer/dryer main body 600B and the mass of clothes (clothing mass) put into the washing tub 601 of the washer/dryer main body 600B.
Further, the assumed performance 811 of the washer/dryer main body 600B is the minimum value of the input energy amount input to the heater 605 to dry the clothes placed in the washing tub 601. Therefore, the greater the mass of clothing, the greater the amount of energy input. In this way, the mass of the clothing is used when calculating the amount of energy input to the heater 605.
Further, a plot 812 is the amount of input energy input to the heater 605.
 診断装置200aは、想定性能811と、実測される投入エネルギ量との差分を基に洗濯乾燥機本体600Bの異常を判定する。想定性能811と投入エネルギ量との差分は以下のように定義される。まず、直線813のように投入エネルギ量を示すプロット812からx軸(衣類質量の軸)へ垂線がおろされる。そして、想定性能811と交わる点と投入エネルギ量を示すプロット812との間の直線813の長さで想定性能811と、プロット812で示される投入エネルギ量との差分が定義される。以降、想定性能811と、実測される投入エネルギ量との差分を乖離度と称する。なお、図15には、多数のプロット812が示されているが、プロット812のそれぞれは、洗濯乾燥を行うたびに推定される投入エネルギ量を示している。正常性診断を行う際、診断装置200aは、今回行っている洗濯乾燥に対応する投入エネルギ量に対する乖離度を算出すればよい。 The diagnostic device 200a determines an abnormality in the washer/dryer main body 600B based on the difference between the assumed performance 811 and the actually measured input energy amount. The difference between the assumed performance 811 and the input energy amount is defined as follows. First, a perpendicular line, such as a straight line 813, is drawn from the plot 812 indicating the amount of input energy to the x-axis (axis of clothing mass). Then, the difference between the expected performance 811 and the amount of input energy shown by the plot 812 is defined by the length of the straight line 813 between the point where it intersects with the expected performance 811 and the plot 812 indicating the amount of input energy. Hereinafter, the difference between the assumed performance 811 and the actually measured amount of input energy will be referred to as the degree of deviation. Note that FIG. 15 shows a large number of plots 812, and each of the plots 812 indicates the estimated input energy amount each time washing and drying is performed. When performing a normality diagnosis, the diagnostic device 200a only needs to calculate the degree of deviation with respect to the input energy amount corresponding to the current washing and drying.
 なお、想定性能811に図14に示す外気温センサ607によって測定された外気温度を加味することも可能である。つまり、夏等、外気温度が高い場合、想定性能811は小さくなり、冬等、外気温度が低い場合、想定性能811は大きくなる。想定性能811が大きくなるとは、図15に示す想定性能811の傾きが大きくなることであり、想定性能811が小さくなるとは、図15に示す想定性能811の傾きが小さくなることである。 Note that it is also possible to add the outside air temperature measured by the outside air temperature sensor 607 shown in FIG. 14 to the assumed performance 811. That is, when the outside air temperature is high, such as in the summer, the assumed performance 811 becomes small, and when the outside air temperature is low, such as in the winter, the assumed performance 811 becomes large. An increase in the assumed performance 811 means that the slope of the expected performance 811 shown in FIG. 15 becomes large, and a decrease in the expected performance 811 means that the slope of the expected performance 811 shown in FIG. 15 becomes small.
 <乖離度の時間変化>
 図16は、乖離度の時間変化を示す図である。
 図16において、横軸は乾燥回数を示し、縦軸は乖離度を示す。乖離度は、図15に示す乖離度(図15の直線813の長さ)である。
 図16に示すように、乖離度(プロット821)が閾値822に達すると診断装置200aは異常と診断する。すなわち、乖離度の大きさ823が所定の大きさ(閾値822の大きさ)に達すると診断装置200aは異常と診断する。さらに、図6と同様、乖離度の傾き824の大きさによって診断装置200aは緊急度を診断する。なお、符号831に示す乖離度は、現在の乖離度を示している。このように第5実施形態では、内部の因子である衣類の質量を基に洗濯乾燥機本体600Bの正常性診断が行われる。
<Time change in degree of deviation>
FIG. 16 is a diagram showing changes in the degree of deviation over time.
In FIG. 16, the horizontal axis shows the number of times of drying, and the vertical axis shows the degree of deviation. The degree of deviation is the degree of deviation shown in FIG. 15 (the length of straight line 813 in FIG. 15).
As shown in FIG. 16, when the degree of deviation (plot 821) reaches a threshold value 822, the diagnostic device 200a diagnoses an abnormality. That is, when the magnitude of the degree of deviation 823 reaches a predetermined magnitude (the magnitude of the threshold value 822), the diagnostic device 200a diagnoses an abnormality. Furthermore, similarly to FIG. 6, the diagnostic device 200a diagnoses the degree of urgency based on the magnitude of the slope 824 of the degree of deviation. Note that the degree of deviation indicated by reference numeral 831 indicates the current degree of deviation. In this way, in the fifth embodiment, the normality diagnosis of the washer/dryer main body 600B is performed based on the mass of the clothing, which is an internal factor.
 第5実施形態では、洗濯乾燥機600として電気式洗濯乾燥機の例が示されているが、ヒートポンプ式洗濯乾燥機が適用されてもよい。ヒートポンプ式洗濯乾燥機は第4実施形態と同様の手法で正常性診断されればよい。また、ガス式洗濯乾燥機が適用されてもよい。ガス式洗濯乾燥機が適用された場合、投入ガス量が投入エネルギ量として使用される。 In the fifth embodiment, an electric washer/dryer is shown as the washer/dryer 600, but a heat pump washer/dryer may also be applied. The normality of the heat pump washer/dryer may be diagnosed using the same method as in the fourth embodiment. Further, a gas washer/dryer may be applied. When a gas washer/dryer is applied, the input gas amount is used as the input energy amount.
 また、図8に示す診断結果表示画面400と同様の画面を端末装置Tの表示画面に表示し、投入エネルギ量の時間変化(履歴)や、緊急度、投入エネルギ量の予測等が表示されてもよい。また、図8に示す診断結果表示画面400と同様に異常原因に関する情報が表示されてもよい。 In addition, a screen similar to the diagnosis result display screen 400 shown in FIG. 8 is displayed on the display screen of the terminal device T, and the time change (history) of the input energy amount, the degree of urgency, the prediction of the input energy amount, etc. are displayed. Good too. Further, information regarding the cause of the abnormality may be displayed similarly to the diagnosis result display screen 400 shown in FIG.
 なお、第5実施形態では、荷重センサ604によって、洗濯槽601に投入された衣類の質量が測定されているが、荷重センサ604を省略し、洗濯槽601を駆動するモータ603の負荷電流値に応じて、洗濯槽601の内部に投入された衣類の量が測定されてもよい。また、第5実施形態における投入エネルギ量としてヒータ605への投入エネルギ量に加えてブロア606への投入エネルギ量が正常性診断の際の投入エネルギ量として使用されてもよい。ブロア606への投入エネルギ量はブロア606に投入される電力の時間積分で示される。 In the fifth embodiment, the mass of the clothes put into the washing tub 601 is measured by the load sensor 604, but the load sensor 604 is omitted and the load current value of the motor 603 that drives the washing tub 601 is used. Accordingly, the amount of clothes thrown into the washing tub 601 may be measured. Furthermore, in addition to the amount of energy input to the heater 605 as the input energy amount in the fifth embodiment, the amount of energy input to the blower 606 may be used as the input energy amount at the time of normality diagnosis. The amount of energy input to the blower 606 is represented by the time integral of the power input to the blower 606.
 なお、洗濯乾燥機600は、洗濯機能を有さない乾燥機としてもよい。 Note that the washer/dryer 600 may be a dryer that does not have a washing function.
 また、冷熱機器システムZdでは、洗濯乾燥機本体600Bの乾燥機能が使用されていない間に正常線診断が行われるとよい。例えば、深夜等に行われるとよい。あるいは、正常性診断中に洗濯乾燥機本体600Bの乾燥機能が使用された場合、診断装置200aは正常性診断を中止するとよい。この際、投入エネルギ量に関する情報が記憶装置220に蓄積され、1回の乾燥毎の正常性診断結果が表示されるようにしてもよい。 Furthermore, in the cooling and heating equipment system Zd, the normal line diagnosis is preferably performed while the drying function of the washer/dryer main body 600B is not being used. For example, it is preferable to do it late at night. Alternatively, if the drying function of the washer/dryer main body 600B is used during the normality diagnosis, the diagnostic device 200a may cancel the normality diagnosis. At this time, information regarding the input energy amount may be accumulated in the storage device 220, and the normality diagnosis result for each drying session may be displayed.
 第5実施形態に示すように、洗濯槽601の内部に投入された衣類の質量を正常性診断に用いることにより、洗濯槽601の内部に投入された衣類の質量等といった所定の条件に対する正常性診断を行うことができる。 As shown in the fifth embodiment, by using the mass of the clothes placed inside the washing tub 601 for normality diagnosis, the normality with respect to predetermined conditions such as the mass of the clothes placed inside the washing tub 601 can be determined. Diagnosis can be made.
 第5実施形態では、洗濯乾燥機600に冷熱機器システムZdを適用している。そして、第5実施形態によれば、洗濯乾燥機600の正常性診断を投入エネルギ量によって簡易に行うことができる。なお、衣類の乾燥に使った投入エネルギ量(電力)が過剰に大きければ、第1ダクト608及び第2ダクト609における風路の漏れや熱漏洩を診断することができる。 In the fifth embodiment, a heating and cooling equipment system Zd is applied to a washer/dryer 600. According to the fifth embodiment, the normality diagnosis of the washer/dryer 600 can be easily performed based on the input energy amount. Note that if the amount of input energy (power) used to dry the clothes is excessively large, it is possible to diagnose leakage in the air passages or heat leakage in the first duct 608 and the second duct 609.
 なお、本実施形態には記載されていないが、空気調和機についても圧縮機の回転速度の時間積分を投入エネルギ量とすることで、本実施形態と同様の正常性診断を行うことができる。 Although not described in this embodiment, the same normality diagnosis as in this embodiment can be performed for an air conditioner by using the time integral of the rotational speed of the compressor as the input energy amount.
 本実施形態では、冷蔵庫本体100B、ヒートポンプ給湯機500、洗濯乾燥機600の診断について記載されているが、空気調和機の診断に本実施形態の冷熱機器システムZが適用されてもよい。空気調和機の診断が行われる場合、圧縮機112の回転速度の時間積分が投入エネルギ量として使用される。 In this embodiment, the diagnosis of the refrigerator main body 100B, the heat pump water heater 500, and the washer/dryer 600 is described, but the cooling and heating equipment system Z of this embodiment may be applied to the diagnosis of an air conditioner. When diagnosing the air conditioner, the time integral of the rotational speed of the compressor 112 is used as the input energy amount.
 なお、第3実施形態では複数の冷蔵庫100a(100a1~100a4)について正常性診断が行われる例が示されているが、これに限らない。複数のヒートポンプ給湯機500や、複数の洗濯乾燥機600や、複数の空気調和機が正常性診断の対象となってもよい。 Although the third embodiment shows an example in which the normality diagnosis is performed on a plurality of refrigerators 100a (100a1 to 100a4), the present invention is not limited to this. A plurality of heat pump water heaters 500, a plurality of washer/dryers 600, and a plurality of air conditioners may be subjected to the normality diagnosis.
 また、第3実施形態では冷蔵庫100aの利用状態(設置状態)について評価値が算出されることで、利用状態の評価が行われているが、これに限らない。 Further, in the third embodiment, the usage status is evaluated by calculating an evaluation value for the usage status (installation status) of the refrigerator 100a, but the present invention is not limited to this.
 本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
 また、前記した各構成、機能、演算装置210、記憶装置220等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、前記した各構成、機能等は、CPU等のプロセッサ(演算装置210)がそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HD(Hard Disk)に格納すること以外に、メモリや、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。 Additionally, a part or all of the above-described configurations, functions, arithmetic device 210, storage device 220, etc. may be realized in hardware by designing, for example, an integrated circuit. Moreover, each of the above-mentioned configurations, functions, etc. may be realized by software by a processor such as a CPU (arithmetic unit 210) interpreting and executing a program for realizing each function. In addition to storing information such as programs, tables, and files that realize each function on an HD (Hard Disk), it can also be stored in memory, a recording device such as an SSD (Solid State Drive), or an IC (Integrated Circuit) card. , an SD (Secure Digital) card, a DVD (Digital Versatile Disc), and other recording media.
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。 Furthermore, in each embodiment, control lines and information lines are shown that are considered necessary for explanation, and not all control lines and information lines are necessarily shown in the product. In reality, almost all configurations can be considered interconnected.
 100a 冷蔵庫
 100B 冷蔵庫本体(冷熱機器、冷却装置)
 100Ba 冷蔵庫本体(冷熱機器、冷却装置)
 100a1 冷蔵庫
 100a2 冷蔵庫
 100a3 冷蔵庫
 100a4 冷蔵庫
 101 表示装置(出力装置)
 102 庫内空間(温調空間、保冷空間)
 103 扉
 104 送風ファン
 111 吸熱装置(温調装置、冷凍サイクル)
 112 圧縮機(駆動源、冷凍サイクル)
 113 放熱装置(冷凍サイクル)
 114 膨張装置(冷凍サイクル)
 121 外気温センサ(センサ)
 122 庫内温度センサ(温度センサ)
 131 制御装置
 132 通信装置(送信装置)
 200 診断装置(冷熱機器診断システム)
 200a 診断装置(冷熱機器診断システム)
 210 演算装置
 220 記憶装置
 230 制御装置
 241 通信装置(受信装置)
 301 符号
 302 符号
 303 診断期間
 311 傾き(変化量情報)
 312 差分(変化量情報)
 313 符号
 314 正常ライン
 315 最大出力
 316 差分(変化量情報)
 330 診断結果表示画面
 341 最大出力
 342 想定性能
 343 差分
 343a 差分
 344 傾き
 345 故障ライン
 346 丸型プロット(投入エネルギ量)
 347 星型プロット
 349a 時点
 349b 時点
 400 診断結果表示画面
 410 運転状態表示部
 420 緊急度表示部
 430 履歴表示部
 431 基準ライン
 432 危険ライン
 433 実線グラフ
 434 破線グラフ
 435 符号
 436a 差分
 436b 傾き
 440 異常原因表示部
 450 異常原因候補表示部
 500 ヒートポンプ給湯機(ヒートポンプ式蓄熱装置)
 510 ヒートポンプユニット
 511 圧縮機(駆動源)
 512 水/冷媒熱交換器(放熱装置、温調装置)
 513 膨張弁(膨張装置)
 514 蒸発器(吸熱装置)
 515 送風ファン
 520 貯湯ユニット
 521 貯湯容器
 522 沸き上げ用循環ポンプ
 523 給水口(給水装置)
 524 水道管
 525 配管
 526 減圧弁
 527 バルブ
 531 外気温センサ(センサ)
 600 洗濯乾燥機
 600B 洗濯乾燥機本体(乾燥装置)
 601 洗濯槽(衣類保持部)
 602 扉
 603 モータ
 604 荷重センサ(センサ)
 605 ヒータ(駆動源)
 605a 電熱器(温調装置)
 606 ブロア(送風装置)
 607 外気温センサ
 608 第1ダクト
 609 第2ダクト
 621 排水口
 700 診断結果表示画面
 710 履歴表示部
 711 実線
 712 基準ライン
 713 危険ライン
 720 正常度比較部
 731 運転状態表示部
 732 利用状態表示部
 811 想定性能
 812 プロット
 813 直線
 821 プロット
 822 閾値
 823 乖離度の大きさ
 824 乖離度の傾き
 831 符号
 F  給湯用流路群
 H  ヒートポンプサイクル
 T   端末装置(出力装置)
 T1  カメラ
 W  水側サイクル(加熱流路)
 Z   冷熱機器システム
 Za  冷熱機器システム
 Zb  冷熱機器システム
 Zc  冷熱機器システム
 Zd  冷熱機器システム
100a Refrigerator 100B Refrigerator body (thermal equipment, cooling device)
100Ba Refrigerator body (cooling equipment, cooling device)
100a1 Refrigerator 100a2 Refrigerator 100a3 Refrigerator 100a4 Refrigerator 101 Display device (output device)
102 Internal space (temperature-controlled space, cold storage space)
103 Door 104 Blower fan 111 Heat absorption device (temperature control device, refrigeration cycle)
112 Compressor (drive source, refrigeration cycle)
113 Heat dissipation device (refrigeration cycle)
114 Expansion device (refrigeration cycle)
121 Outside temperature sensor (sensor)
122 Internal temperature sensor (temperature sensor)
131 Control device 132 Communication device (transmission device)
200 Diagnostic equipment (thermal equipment diagnostic system)
200a Diagnostic device (thermal equipment diagnostic system)
210 Arithmetic device 220 Storage device 230 Control device 241 Communication device (receiving device)
301 Code 302 Code 303 Diagnosis period 311 Slope (change amount information)
312 Difference (change amount information)
313 Sign 314 Normal line 315 Maximum output 316 Difference (change amount information)
330 Diagnosis result display screen 341 Maximum output 342 Assumed performance 343 Difference 343a Difference 344 Slope 345 Failure line 346 Round plot (input energy amount)
347 Star plot 349a Time point 349b Time point 400 Diagnosis result display screen 410 Operating status display section 420 Urgency display section 430 History display section 431 Reference line 432 Danger line 433 Solid line graph 434 Broken line graph 435 Sign 436a Difference 436b Slope 440 Abnormal cause display section 450 Abnormal cause candidate display section 500 Heat pump water heater (heat pump type heat storage device)
510 Heat pump unit 511 Compressor (drive source)
512 Water/refrigerant heat exchanger (heat radiation device, temperature control device)
513 Expansion valve (expansion device)
514 Evaporator (endothermic device)
515 Ventilation fan 520 Hot water storage unit 521 Hot water storage container 522 Boiling circulation pump 523 Water supply port (water supply device)
524 Water pipe 525 Piping 526 Pressure reducing valve 527 Valve 531 Outside temperature sensor (sensor)
600 Washing/drying machine 600B Washing/drying machine main body (drying device)
601 Washing tub (clothing holding section)
602 Door 603 Motor 604 Load sensor (sensor)
605 Heater (drive source)
605a Electric heater (temperature control device)
606 Blower (air blower)
607 Outside temperature sensor 608 First duct 609 Second duct 621 Drain port 700 Diagnosis result display screen 710 History display section 711 Solid line 712 Reference line 713 Danger line 720 Normality comparison section 731 Operating state display section 732 Usage state display section 811 Assumed performance 812 Plot 813 Straight line 821 Plot 822 Threshold value 823 Size of deviation degree 824 Inclination of deviation degree 831 Code F Channel group for hot water supply H Heat pump cycle T Terminal device (output device)
T1 Camera W Water side cycle (heating channel)
Z Refrigeration equipment system Za Refrigeration equipment system Zb Refrigeration equipment system Zc Refrigeration equipment system Zd Refrigeration equipment system

Claims (18)

  1.  投入エネルギ量に応じて駆動する駆動源と、前記駆動源により温調空間の温度を制御する温調装置と、を備える冷熱機器から取得される稼働情報を基に、前記駆動源に投入される前記投入エネルギ量を算出し、前記投入エネルギ量の時間経過に対する変化量の情報である変化量情報を算出し、前記変化量情報を基に前記冷熱機器の正常性を診断する演算装置を有する
     ことを特徴とする冷熱機器診断システム。
    The drive source is inputted into the drive source based on operation information obtained from a cooling and heating device that includes a drive source that is driven according to the amount of input energy, and a temperature control device that controls the temperature of the temperature-controlled space by the drive source. comprising a calculation device that calculates the input energy amount, calculates change amount information that is information on the amount of change in the input energy amount over time, and diagnoses the normality of the cooling and heating equipment based on the change amount information. A thermal equipment diagnostic system featuring:
  2.  請求項1に記載の冷熱機器診断システムであって、
     前記変化量情報は、前記投入エネルギ量の時間経過に対する傾き、及び、所定の基準と前記投入エネルギ量との差分のうち、少なくとも一方である
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    The cooling and heating equipment diagnostic system, wherein the change amount information is at least one of a slope of the input energy amount over time and a difference between a predetermined reference and the input energy amount.
  3.  請求項2に記載の冷熱機器診断システムであって、
     前記投入エネルギ量の時間経過に対する傾き及び前記差分のうち、少なくとも一方に関する情報を出力装置に出力する
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 2,
    A cooling and heating equipment diagnostic system, characterized in that information regarding at least one of the slope of the input energy amount over time and the difference is output to an output device.
  4.  請求項1に記載の冷熱機器診断システムであって、
     所定の範囲で前記投入エネルギ量を正規化し、前記正規化された投入エネルギ量に関する情報を基に、前記冷熱機器の前記正常性を診断する
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    A refrigeration equipment diagnostic system, characterized in that the input energy amount is normalized within a predetermined range, and the normality of the refrigeration equipment is diagnosed based on information regarding the normalized input energy amount.
  5.  請求項1に記載の冷熱機器診断システムであって、
     前記変化量情報に加え、前記温調空間内に設けられている温度センサにより取得した温度の時間経過に対する変化量を基に、前記冷熱機器の前記正常性を診断する
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    In addition to the amount of change information, the normality of the heating and cooling equipment is diagnosed based on the amount of change in temperature over time acquired by a temperature sensor provided in the temperature-controlled space. Diagnostic system.
  6.  請求項1に記載の冷熱機器診断システムであって、
     前記冷熱機器の外部の因子又は内部の因子のいずれか一方を検知するセンサの検知値を前記稼働情報に加えて、外部の因子又は内部の因子を基に前記冷熱機器の前記正常性を診断する
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    A detection value of a sensor that detects either an external factor or an internal factor of the cooling and heating equipment is added to the operation information, and the normality of the cooling and heating equipment is diagnosed based on the external factor or the internal factor. A cooling and heating equipment diagnostic system characterized by:
  7.  請求項1に記載の冷熱機器診断システムであって、
     前記正常性の診断は、前記温調空間が閉じられた状態において行われる
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    A cooling and heating equipment diagnostic system, wherein the normality diagnosis is performed in a state in which the temperature-controlled space is closed.
  8.  請求項1に記載の冷熱機器診断システムであって、
     前記冷熱機器診断システムは、前記冷熱機器とは異なる場所に設置されており、
     前記冷熱機器診断システムは、前記冷熱機器と通信を行うための通信装置
     を有することを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    The cooling equipment diagnostic system is installed in a different location from the heating equipment,
    The cooling and heating equipment diagnostic system is characterized in that the cooling and heating equipment diagnosis system includes a communication device for communicating with the cooling and heating equipment.
  9.  請求項8に記載の冷熱機器診断システムであって、
     前記冷熱機器の前記正常性に関する情報を前記冷熱機器及び前記冷熱機器診断システムとは別の装置である端末装置へ送信する送信装置
     を有することを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 8,
    A cooling and heating equipment diagnostic system comprising: a transmitting device that transmits information regarding the normality of the cooling and heating equipment to a terminal device that is a device different from the cooling and heating equipment and the cooling and heating equipment diagnostic system.
  10.  請求項9に記載の冷熱機器診断システムであって、
     前記投入エネルギ量を基に算出される正常度の履歴、前記正常度の予測、及び、前記正常度の時間変化における、前記正常度の傾きの大きさに基づく、前記正常度に関する緊急度のうち、少なくともいずれかを出力装置から出力する
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 9,
    Among the urgency regarding the normality based on the history of the normality calculated based on the input energy amount, the prediction of the normality, and the magnitude of the slope of the normality in the time change of the normality. A thermal equipment diagnostic system, characterized in that at least one of the following is outputted from an output device.
  11.  請求項1に記載の冷熱機器診断システムであって、
     前記冷熱機器とは別の装置である端末装置に備えられている撮影装置によって撮影された前記冷熱機器の利用状態の画像を基に、前記冷熱機器の利用状態に関する評価値を算出し、
     前記投入エネルギ量を基に算出される正常度に前記評価値を加味することで、新たに前記正常度を算出し、
     出力装置に、新たに算出された前記正常度に関する情報を出力する
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    Calculating an evaluation value regarding the usage status of the cooling and heating equipment based on an image of the usage status of the cooling and heating equipment taken by a photographing device provided in a terminal device that is a device different from the cooling and heating equipment,
    Newly calculating the normality by adding the evaluation value to the normality calculated based on the input energy amount,
    A cooling and heating equipment diagnostic system, characterized in that information regarding the newly calculated normality level is output to an output device.
  12.  請求項1に記載の冷熱機器診断システムであって、
     前記冷熱機器に設けられているセンサを用いて前記冷熱機器の異常原因を推定し、前記異常原因と、前記正常性とを併せて出力装置から出力する
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    A cooling and heating equipment diagnostic system characterized by estimating the cause of an abnormality in the cooling and heating equipment using a sensor provided in the cooling and heating equipment, and outputting the abnormality cause and the normality together from an output device.
  13.  請求項1に記載の冷熱機器診断システムであって、
     前記正常性の診断は、前記冷熱機器が定期的に繰り返す運転の1サイクルごとに更新される
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    A cooling equipment diagnostic system, wherein the normality diagnosis is updated every cycle of the regularly repeated operation of the cooling equipment.
  14.  請求項13に記載の冷熱機器診断システムであって、
     前記運転の1サイクルは、除霜サイクルである
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 13,
    One cycle of the operation is a defrosting cycle. A cooling and heating equipment diagnostic system.
  15.  請求項1に記載の冷熱機器診断システムであって、
     複数の前記冷熱機器のそれぞれから前記稼働情報を取得し、
     前記演算装置が、複数の前記冷熱機器のそれぞれから取得した稼働情報に基づいた前記投入エネルギ量に基づいて、複数の前記冷熱機器のそれぞれについて前記正常性を診断し、
     出力装置に複数の前記冷熱機器それぞれの前記正常性を比較可能に出力する
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    Obtaining the operation information from each of the plurality of cooling and heating devices,
    The arithmetic unit diagnoses the normality of each of the plurality of cooling and heating devices based on the input energy amount based on operation information acquired from each of the plurality of cooling and heating devices,
    A cooling and heating equipment diagnostic system, characterized in that the normality of each of the plurality of cooling and heating equipments is outputted to an output device so as to be comparable.
  16.  請求項1に記載の冷熱機器診断システムであって、
     前記冷熱機器は、
     前記駆動源としての圧縮機と、
     前記温調装置としての吸熱装置と、
     膨張装置と、
     放熱装置と
     前記圧縮機、前記放熱装置、前記膨張装置及び前記吸熱装置のそれぞれが環状に接続されている流路に伝熱媒体が封入されている冷凍サイクルと、
     壁面で構成される、前記温調空間としての保冷空間と、
     保冷空間に備えられ、開閉可能な扉と、
     で構成される冷却装置であり、
     前記投入エネルギ量は、前記圧縮機の回転速度の時間積分である
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    The cooling and heating equipment is
    a compressor as the driving source;
    an endothermic device as the temperature control device;
    an expansion device;
    a refrigeration cycle in which a heat transfer medium is enclosed in a flow path in which the compressor, the heat radiator, the expansion device, and the heat absorber are each connected in an annular manner;
    a cold storage space as the temperature-controlled space, which is composed of a wall surface;
    A door that can be opened and closed is provided in the cold storage space,
    It is a cooling device consisting of
    The cooling and heating equipment diagnostic system, wherein the input energy amount is a time integral of the rotational speed of the compressor.
  17.  請求項1に記載の冷熱機器診断システムであって、
     前記冷熱機器は、
     前記駆動源としての圧縮機と、
     前記温調装置としての放熱装置と、
     膨張装置と、
     吸熱装置と、
     給水装置と、
     前記圧縮機、前記放熱装置、前記膨張装置及び前記吸熱装置のそれぞれが環状に接続されている流路に伝熱媒体が封入されているヒートポンプサイクルと、
     前記温調空間としての蓄熱空間と、
     前記蓄熱空間、前記放熱装置及び前記給水装置を接続する加熱流路で構成されるヒートポンプ式蓄熱装置であり、
     前記投入エネルギ量は、前記圧縮機の回転速度の時間積分である
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    The cooling and heating equipment is
    a compressor as the driving source;
    a heat dissipation device as the temperature control device;
    an expansion device;
    an endothermic device;
    a water supply device;
    A heat pump cycle in which a heat transfer medium is enclosed in a flow path in which each of the compressor, the heat radiating device, the expansion device, and the heat absorbing device is connected in an annular manner;
    a heat storage space as the temperature-controlled space;
    A heat pump type heat storage device comprising a heating flow path connecting the heat storage space, the heat radiating device, and the water supply device,
    The cooling and heating equipment diagnostic system, wherein the input energy amount is a time integral of the rotational speed of the compressor.
  18.  請求項1に記載の冷熱機器診断システムであって、
     前記冷熱機器は、
     前記温調空間としての衣類を保持する衣類保持部と、
     前記駆動源としてのヒータと、
     前記温調装置としての前記ヒータの電熱器と、
     前記ヒータで温められた前記衣類保持部へ送る送風装置と、
     を備える乾燥装置であり、
     前記投入エネルギ量は、前記ヒータに投入される電力の時間積分である
     ことを特徴とする冷熱機器診断システム。
    The cooling and heating equipment diagnostic system according to claim 1,
    The cooling and heating equipment is
    a clothing holding section that holds clothing as the temperature-controlled space;
    a heater as the driving source;
    an electric heater of the heater as the temperature control device;
    a blower device that sends air to the clothing holding section warmed by the heater;
    A drying device comprising:
    The cooling and heating equipment diagnostic system, wherein the input energy amount is a time integral of electric power input to the heater.
PCT/JP2022/035199 2022-03-10 2022-09-21 Cooling/heating equipment diagnostic system WO2023171005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280049967.1A CN117693656A (en) 2022-03-10 2022-09-21 Cold and hot equipment diagnosis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-037580 2022-03-10
JP2022037580A JP2023132329A (en) 2022-03-10 2022-03-10 Cold apparatus diagnostic system

Publications (1)

Publication Number Publication Date
WO2023171005A1 true WO2023171005A1 (en) 2023-09-14

Family

ID=87936475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035199 WO2023171005A1 (en) 2022-03-10 2022-09-21 Cooling/heating equipment diagnostic system

Country Status (3)

Country Link
JP (1) JP2023132329A (en)
CN (1) CN117693656A (en)
WO (1) WO2023171005A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004209141A (en) * 2003-01-08 2004-07-29 Toshiba Corp Washing machine with drying function
JP2006112784A (en) * 2004-07-16 2006-04-27 Daikin Ind Ltd Air-conditioning apparatus
JP2009020721A (en) * 2007-07-12 2009-01-29 Daikin Ind Ltd Air conditioner deterioration decision unit, air conditioning system, and method and program for deciding deterioration
JP2012117752A (en) * 2010-12-01 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Cooling performance deterioration diagnosis system of refrigerator, and cooling performance deterioration diagnostic method of refrigerator
JP2012256298A (en) * 2011-06-10 2012-12-27 Fuji Electric Retail Systems Co Ltd Vending machine
JP2018036740A (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Information terminal apparatus, operation information provide system and operation information provide program
JP2018041326A (en) * 2016-09-08 2018-03-15 株式会社東芝 Abnormality detector, abnormality detection method, and program
KR101995311B1 (en) * 2018-05-29 2019-09-24 경상대학교산학협력단 Diagnosis method for air conditioning system and device thereof
JP2019179300A (en) * 2018-03-30 2019-10-17 日立グローバルライフソリューションズ株式会社 Server, program, and apparatus system
WO2020067295A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Abnormality determination device, freezing device including this abnormality determination device, and abnormality determination method for compressor
JP2021162241A (en) * 2020-03-31 2021-10-11 フクシマガリレイ株式会社 Cooling storage

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004209141A (en) * 2003-01-08 2004-07-29 Toshiba Corp Washing machine with drying function
JP2006112784A (en) * 2004-07-16 2006-04-27 Daikin Ind Ltd Air-conditioning apparatus
JP2009020721A (en) * 2007-07-12 2009-01-29 Daikin Ind Ltd Air conditioner deterioration decision unit, air conditioning system, and method and program for deciding deterioration
JP2012117752A (en) * 2010-12-01 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Cooling performance deterioration diagnosis system of refrigerator, and cooling performance deterioration diagnostic method of refrigerator
JP2012256298A (en) * 2011-06-10 2012-12-27 Fuji Electric Retail Systems Co Ltd Vending machine
JP2018036740A (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Information terminal apparatus, operation information provide system and operation information provide program
JP2018041326A (en) * 2016-09-08 2018-03-15 株式会社東芝 Abnormality detector, abnormality detection method, and program
JP2019179300A (en) * 2018-03-30 2019-10-17 日立グローバルライフソリューションズ株式会社 Server, program, and apparatus system
KR101995311B1 (en) * 2018-05-29 2019-09-24 경상대학교산학협력단 Diagnosis method for air conditioning system and device thereof
WO2020067295A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Abnormality determination device, freezing device including this abnormality determination device, and abnormality determination method for compressor
JP2021162241A (en) * 2020-03-31 2021-10-11 フクシマガリレイ株式会社 Cooling storage

Also Published As

Publication number Publication date
CN117693656A (en) 2024-03-12
JP2023132329A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
JP4749369B2 (en) Refrigeration cycle apparatus failure diagnosis apparatus and refrigeration cycle apparatus equipped with the same
TWI302978B (en) System and method for detecting decreased performance in a refrigeration system
US11009245B2 (en) Method and system for proactively and remotely diagnosing an HVAC system
US7558700B2 (en) Equipment diagnosis device, refrigerating cycle apparatus, fluid circuit diagnosis method, equipment monitoring system, and refrigerating cycle monitoring system
KR102364621B1 (en) Air-conditioner System and Method thereof
JP5249821B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
JP2010175247A (en) Refrigeration system and analyzer of the same
CN107110539A (en) The abnormality determination method of the control device of air-conditioning system, air-conditioning system and air-conditioning system
WO2010007448A1 (en) Automatic refrigerant leak detection system of indirect means for use on cooling and refrigeration units installed on vehicles and other transportation means.
US20120031985A1 (en) Fault tolerant appliance
JP2013155970A (en) Monitoring system for refrigerator
JP4290705B2 (en) Diagnostic method and diagnostic system for air conditioner
JP2005291702A (en) Refrigerating cycle monitoring system
RU2409794C1 (en) Refrigerator
JP2009041886A (en) Performance evaluation device of air-conditioning heat source facility
WO2023171005A1 (en) Cooling/heating equipment diagnostic system
JP4039462B1 (en) Refrigeration equipment
JP4415185B2 (en) Refrigerator diagnosis method and refrigerator to which the diagnosis method is applied
CN116209964B (en) Information processing device, information processing method, and program product
JP2018071955A (en) Air-conditioner
WO2018179333A1 (en) Machine using refrigerant compression heat pump, diagnostic device for refrigerant compression heat pump, and diagnotic method for refrigerant compression heat pump
Woradechjumroen et al. Fault detection and diagnosis process for oversizing design on multiple packaged air-conditioning units
JP2017141991A (en) Monitoring device for cooling equipment
CN112503846A (en) Method for detecting state of refrigerator air door motor, refrigerator and storage medium
KR102583019B1 (en) Artificial Intelligence Refrigerator with failure prediction function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401000786

Country of ref document: TH