WO2023170873A1 - Elevator system - Google Patents

Elevator system Download PDF

Info

Publication number
WO2023170873A1
WO2023170873A1 PCT/JP2022/010630 JP2022010630W WO2023170873A1 WO 2023170873 A1 WO2023170873 A1 WO 2023170873A1 JP 2022010630 W JP2022010630 W JP 2022010630W WO 2023170873 A1 WO2023170873 A1 WO 2023170873A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
sheave
time
elevator system
rope
Prior art date
Application number
PCT/JP2022/010630
Other languages
French (fr)
Japanese (ja)
Inventor
篤志 柴田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/010630 priority Critical patent/WO2023170873A1/en
Publication of WO2023170873A1 publication Critical patent/WO2023170873A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present disclosure relates to an elevator system.
  • Patent Document 1 discloses an elevator system.
  • a pulse signal indicating the amount of rotation of the drive shaft of the hoist and a pulse signal indicating the amount of rotation of the governor sheave are output.
  • the computing device of the elevator system can detect rope slippage, which is a phenomenon in which the main rope slips on the surface of the sheave, based on the difference between the amount of rotation of the drive shaft and the amount of rotation of the governor sheave.
  • An object of the present disclosure is to provide an elevator system that can detect rope slippage without measuring the amount of rotation of a rotating shaft of a hoist.
  • the elevator system includes a car, a main rope for hanging the car, a sheave around which the main rope is wound, a brake for braking the sheave, and outputs a movement signal according to the amount of movement of the car.
  • An elevator system comprising: a governor encoder that detects the occurrence of rope slippage in which the main rope slides on the surface of the sheave; a rotation estimation unit that estimates a stop time at which the sheave stopped based on the rotation estimation unit, and a movement signal output from the governor encoder according to the stop time estimated by the rotation estimation unit and the movement amount of the car,
  • the apparatus further includes a slip detection section that detects occurrence of rope slip in which the main rope slides on the surface of the sheave.
  • the stop time at which the sheave stopped is estimated based on the operating state of the brake, and the occurrence of rope slippage is detected based on the stop time and the movement signal. Therefore, rope slippage can be detected without measuring the amount of rotation of the rotating shaft of the hoist.
  • FIG. 1 is a diagram showing an outline of a building provided with an elevator system in Embodiment 1.
  • FIG. 1 is a diagram schematically showing an electromagnetic brake device of an elevator system in Embodiment 1.
  • FIG. 3 is a diagram showing part of state information created by the detection device of the elevator system in Embodiment 1.
  • FIG. It is a figure which shows a part of state information and the result estimated by the rotation estimator in Embodiment 1 which the detection apparatus of the elevator system produces.
  • FIG. 3 is a diagram showing information detected by a slip detector of the elevator system in Embodiment 1.
  • FIG. 3 is a flowchart for explaining an overview of the operation of the detection device of the elevator system in Embodiment 1.
  • FIG. 1 is a diagram schematically showing an electromagnetic brake device of an elevator system in Embodiment 1.
  • FIG. 3 is a diagram showing part of state information created by the detection device of the elevator system in Embodiment 1.
  • FIG. It is a figure which shows a part of state information and
  • FIG. 1 is a hardware configuration diagram of a detection device of an elevator system in Embodiment 1.
  • FIG. FIG. 2 is a diagram showing an outline of a building provided with an elevator system according to a second embodiment.
  • FIG. 7 is a diagram showing an outline of an electromagnetic brake device of an elevator system in Embodiment 2.
  • FIG. 7 is a diagram showing information detected by a rotation estimator of the elevator system in Embodiment 2.
  • FIG. 1 is a diagram showing an outline of a building in which an elevator system according to the first embodiment is installed.
  • the elevator system 1 is installed in a building (not shown).
  • the hoistway 2 passes through each floor of the building.
  • a machine room (not shown) is provided directly above the hoistway 2.
  • the hoist 3 is provided in the machine room.
  • the shaft body 4 is provided on the hoisting machine 3.
  • the sheave 5 is connected to the shaft body 4 so as to be coaxial with the shaft body 4.
  • the main rope 6 is wound around the sheave 5.
  • the brake device 7 can brake the rotation of the sheave 5.
  • the brake device 7 is a drum type brake.
  • the brake device 7 includes a brake target 8, an electromagnetic brake device 9, and a brake controller 10.
  • the braked body 8 When the brake device 7 is a drum-type brake, the braked body 8 is a brake drum.
  • the braked body 8 is connected to the shaft body 4 so as to be coaxial with the shaft body 4 .
  • the braked body 8 can rotate in synchronization with the sheave 5.
  • the electromagnetic brake device 9 is provided adjacent to the braked body 8 .
  • the electromagnetic brake device 9 can brake the rotational motion of the braked body 8 .
  • Brake controller 10 is electrically connected to electromagnetic brake device 9 .
  • Brake controller 10 controls electromagnetic brake device 9 .
  • the car 11 is suspended on one end of the main rope 6 inside the hoistway 2.
  • the counterweight 12 is suspended on the other end side of the main rope 6 inside the hoistway 2 .
  • the governor 13 is provided from the hoistway 2 to the machine room.
  • the governor 13 includes a governor sheave 14, a governor rope 15, and a governor encoder 16.
  • the governor sheave 14 is rotatably provided in the machine room.
  • the governor rope 15 is formed into an endless shape.
  • the governor rope 15 is wound around the governor sheave 14 so that it can move in synchronization with the rotation of the governor sheave 14.
  • a portion of the governor rope 15 is attached to the car 11.
  • Governor encoder 16 is provided on governor sheave 14 .
  • the governor encoder 16 outputs a movement signal according to the amount of rotation of the governor sheave 14.
  • the elevator control device 17 is provided in the machine room.
  • the elevator control device 17 is electrically connected to the hoisting machine 3, the brake controller 10, and the governor encoder 16. Elevator control device 17 may control elevator system 1 as a whole.
  • the elevator system 1 further includes a detection device 20.
  • the detection device 20 is provided in the machine room.
  • the detection device 20 is electrically connected to the brake device 7, the governor encoder 16, and the elevator control device 17.
  • the detection device 20 detects the occurrence of rope slippage, which is a phenomenon in which the main rope 6 slips on the surface of the sheave 5.
  • the detection device 20 includes a brake state acquirer 21, a rotation estimator 22, and a slip detector 23.
  • the brake state acquisition device 21 is provided in the electromagnetic brake device 9 as a brake state acquisition section.
  • the brake state acquisition device 21 acquires state information indicating the operating state of the brake device 7 from the electromagnetic brake device 9 .
  • the rotation estimator 22 estimates the state of the sheave 5 based on the state information acquired by the brake state acquirer 21. Specifically, the rotation estimator 22 estimates whether or not the rotation of the sheave 5 has stopped.
  • the slip detector 23 can detect the occurrence of rope slip based on the result estimated by the rotation estimator 22 and the movement signal from the governor encoder 16. At this time, the slip detector 23 calculates the current speed of the car 11 based on the movement signal. When the slip detector 23 detects that rope slip has occurred, it transmits information indicating that rope slip has occurred to the brake controller 10 and the elevator control device 17.
  • the elevator control device 17 controls the hoisting machine 3 based on information such as the current flowing through the hoisting machine 3.
  • the hoist 3 rotates a shaft body 4.
  • the sheave 5 and the braked body 8 rotate in synchronization with the shaft body 4.
  • the main rope 6 moves following the rotational movement of the sheave 5 due to the frictional force generated between the sheave 5 and the main rope 6.
  • the car 11 and the counterweight 12 follow the movement of the main rope 6 and move up and down in opposite directions.
  • the governor rope 15 moves following the car 11.
  • the governor sheave 14 rotates following the movement of the governor rope 15.
  • Governor encoder 16 outputs a movement signal corresponding to the amount of movement of car 11 to elevator control device 17 .
  • the elevator control device 17 uses information such as signals from the governor encoder 16 to grasp the position of the car 11.
  • the elevator control device 17 sends a command to the brake controller 10 to brake the sheave 5.
  • the brake controller 10 receives the command, it transmits a command to the electromagnetic brake device 9 to brake the body 8 to be braked.
  • the electromagnetic brake device 9 applies braking force to the brake target 8 based on a command from the brake controller 10 .
  • the rotational speed of the braked body 8 is reduced by the applied braking force.
  • the rotational speed of the sheave 5 is reduced in synchronization with the braked body 8. That is, the electromagnetic brake device 9 indirectly applies a braking force to the sheave 5 via the braked body 8 and the shaft body 4, thereby braking the rotational movement of the sheave 5.
  • the speed of the main rope 6 and the speed of the car 11 are reduced following the deceleration of the rotational speed of the sheave 5. Thereafter, the braked body 8 and the sheave 5 stop.
  • the main rope 6 and the car 11 stop.
  • the hoisting machine 3 is provided with a hoisting machine encoder that outputs a signal according to the amount of rotation of the shaft body 4.
  • the elevator control device 17 detects the position of the car 11 based on information such as a signal from the hoist encoder and a movement signal from the governor encoder 16, and operates the car 11.
  • the elevator control device 17 brings the car 11 to an emergency stop.
  • the elevator control device 17 stops the car 11 in the same manner as in normal operation. At this time, rope slippage in which the main rope 6 slips on the surface of the sheave 5 may occur.
  • the detection device 20 detects that rope slippage has occurred.
  • the detection device 20 transmits a signal to the brake device 7 and the elevator control device 17 indicating that rope slippage has occurred.
  • the elevator control device 17 performs an operation to recover from a state in which rope slippage has occurred. Specifically, for example, the elevator control device 17 corrects the currently estimated position of the car 11 based on a position detection device (not shown).
  • FIG. 2 is a diagram showing an outline of the electromagnetic brake device of the elevator system in the first embodiment.
  • the electromagnetic brake device 9 includes a movable body 30, a brake coil 31, a pressing body 32, and a brake power source 33.
  • the movable body 30 includes a brake shoe and a magnet.
  • the movable body 30 is adjacent to the braked body 8, which is not shown in FIG.
  • the movable body 30 is provided so as to be movable between a contact position where the brake shoe contacts the brake target 8 and a non-contact position where the brake shoe does not contact the brake target 8.
  • the brake coil 31 is an electromagnetic coil. Although not shown, the brake coil 31 is provided so as to surround a magnet that is a part of the movable body 30 that is located in a non-contact position.
  • the pressing body 32 is a spring.
  • the pressing body 32 is provided between the movable body 30 and the brake coil 31 in a contracted state.
  • the pressing body 32 applies an urging force to the movable body 30 from the non-contact position to the contact position.
  • the brake power supply 33 forms a closed circuit with the brake coil 31.
  • the brake power supply 33 supplies power to the brake coil 31.
  • the voltage applied from the brake power source 33 to the brake coil 31 is also referred to as a brake voltage.
  • the current that actually flows through the brake coil 31 is also called a brake current.
  • the brake power supply 33 controls the brake voltage based on a command from the brake controller 10 (not shown in FIG. 2).
  • the command from the brake controller 10 includes a voltage command value that commands a brake voltage value.
  • the brake power supply 33 applies a brake voltage that is a voltage command value to the brake coil 31.
  • the brake controller 10 sends a command to the brake power source 33 to turn the brake voltage ON so that the sheave 5 is in an unbraked state.
  • the brake power supply 33 applies a brake voltage corresponding to the ON voltage to the brake coil 31.
  • the brake coil 31 generates magnetic force using a brake current.
  • the brake coil 31 attracts the magnet of the movable body 30 by the magnetic force.
  • the movable body 30 receives an attractive force from the contact position toward the non-contact position due to the magnetic force.
  • the movable body 30 is held in a non-contact position by the resultant force of the suction force and the urging force from the pressing body 32. This state is a suction state in which the braking force of the brake device 7 does not act on the braked body 8 .
  • the brake controller 10 sends a command to the brake power source 33 to turn the brake voltage to the OFF voltage.
  • the brake power supply 33 does not apply voltage to the brake coil 31 so as to correspond to the OFF voltage. That is, the brake power supply 33 sets the voltage value applied to the brake coil 31 to zero.
  • the brake coil 31 does not generate magnetic force that becomes an attractive force.
  • the movable body 30 is moved to the contact position by the urging force from the pressing body 32.
  • the brake shoe of the movable body 30 is pressed against the braked body 8 by the urging force from the pressing body 32 at the contact position.
  • a braking force which is a frictional force between the braked body 8 and the movable body 30, is generated in the braked body 8.
  • This state is a falling state in which the braking force of the brake device 7 acts on the braked body 8 . That is, the falling state is a state in which the sheave 5 is indirectly braked.
  • the braked body 8 When the braked body 8 is rotating, the braked body 8 is decelerated and stopped by the braking force. When the braked body 8 and sheave 5 are in a stopped state in which they are not moving, the braked body 8 and sheave 5 are maintained in their stopped state by the braking force.
  • the brake state acquisition device 21 is electrically connected to a closed circuit including a brake coil 31 and a brake power source 33. Further, the brake state acquisition device 21 is provided so as to be able to acquire a command input from the brake controller 10 to the brake power supply 33.
  • the brake state acquisition device 21 creates information in which a command from the brake controller 10 to the brake power source 33, a brake voltage value, a brake current value, and a time are associated with each other as state information of the brake device 7.
  • the brake state acquisition device 21 transmits the created state information to the rotation estimator 22.
  • FIG. 3 is a diagram showing part of the status information created by the detection device of the elevator system in the first embodiment.
  • FIG. 4 is a diagram showing part of the state information created by the detection device of the elevator system and the results estimated by the rotation estimator in the first embodiment.
  • FIG. 5 is a diagram showing information detected by the slip detector of the elevator system in the first embodiment. Note that in FIGS. 3 to 5, illustration of each device included in the elevator system 1 is omitted. In FIGS. 3 to 5, information regarding the operation when the brake device 7 brings the car 11 to an emergency stop is shown.
  • the upper graph in FIG. 3 is a graph representing the relationship between time t and brake voltage command value.
  • the time t is expressed as the elapsed time from the base point time, which is the leftmost time in the upper graph of FIG.
  • the unit of time t is second [s]. Note that the time t may be an absolute time.
  • the unit of the brake voltage command value is volt [V].
  • the lower graph in FIG. 3 is a graph representing the relationship between time t and brake current value.
  • the unit of the brake current value is ampere [A].
  • the brake voltage command value is Von.
  • the brake current value is Aon.
  • the movable body 30 is held in a non-contact position.
  • the brake controller 10 sends a command to the brake power supply 33 to switch the brake voltage command value to 0, which is the OFF voltage. That is, at time t0 , which is the command time, the brake voltage command value becomes 0. At time t0 , the brake voltage value becomes 0. That is, the brake voltage is cut off. Therefore, after time t0 , the brake current value starts to gradually decrease from Aon.
  • the attractive force applied to the movable body 30 decreases as the brake current value decreases.
  • the suction force is lower than the urging force of the pressing body 32
  • the movable body 30 moves from the non-contact position to the contact position.
  • the magnetic field inside the brake coil 31 changes.
  • An induced current flows through the brake coil 31 due to the generation of a back electromotive force according to the change in the magnetic field. Therefore, at time t 0.5 after time t 0 , the brake current increases due to the induced current.
  • time t0.5 the movable body 30 reaches the contact position at time t1 .
  • the movable body 30 stops at the position where it is pressed against the braked body 8. That is, time t1 is the time when the brake device 7 starts braking the sheave 5.
  • time t1 is the time when the brake device 7 starts braking the sheave 5.
  • the magnetic field inside the brake coil 31 does not change. Therefore, at time 1 , the increase in the brake current due to the induced current stops. After time t1 , the brake current decreases again.
  • the rotation estimator 22 estimates the time t 1 at which the brake device 7 starts braking the sheave 5 based on the time course of the brake current value included in the state information. Specifically, the rotation estimator 22 sets the time t 1 to be the time after time t 0.5 when the brake current value increases after time t 0 and when the brake current value starts decreasing. presume. Further, the rotation estimator 22 calculates a time T 1 from time t 0 to time t 1 .
  • the upper graph in FIG. 4 is a graph representing the relationship between time t and brake voltage command value, similar to the upper graph in FIG. 3.
  • the middle graph in FIG. 4 is a graph showing the relationship between time t and brake current value, similar to the lower graph in FIG.
  • the lower graph in FIG. 4 is a graph showing the relationship between time t and the sheave rotation estimate indicating the rotation state of the sheave 5 estimated by the rotation estimator 22.
  • the rotation estimator 22 estimates the rotational state of the sheave 5 using two values: a "rotating" state and a "stopped” state. If the "rotation" state is estimated, the sheave rotation estimate is 1. If the state is estimated to be “stopped”, the estimated sheave rotation value is 0. For example, at time t1 , the sheave rotation estimate is 1.
  • the rotation estimator 22 stores the braking time T2 in advance.
  • the rotation estimator 22 estimates time t 2 when the braking time T 2 has elapsed from time t 1 as the stop time when the sheave 5 stops .
  • the rotation estimator 22 transmits information including the stop time t2 and the estimated sheave rotation value 0 to the slip detector 23 as the estimation result of the state of the sheave 5.
  • the braking time T2 is the time expected to be required from when the brake device 7 starts braking the sheave 5 until the sheave 5 stops.
  • the braking time T2 changes depending on conditions such as the condition of the material of the part where the movable body 30 contacts the braked body 8, the condition of the urging force of the pressing body 32 to press the movable body 30 against the braked body 8, etc. .
  • the braking time T2 is measured during a test of the elevator system 1 before shipping, and is stored in the detection device 20.
  • the upper graph in FIG. 5 is a graph representing the relationship between time t and the estimated sheave rotation value, similar to the lower graph in FIG. 4.
  • the lower graph in FIG. 5 shows the car speed of the car 11 calculated by the slip detector 23.
  • the unit of car speed is [m/min].
  • the slip detector 23 receives estimation result information from the rotation estimator 22, it detects whether rope slip has occurred.
  • the slip detector 23 detects that rope slip has occurred when the car 11 is moving at the stop time t2 included in the information of the estimation result, that is, when the car speed is not 0.
  • the slip detector 23 may detect the occurrence of rope slip when it receives a movement signal from the governor encoder 16 after the stop time t2 without calculating the car speed.
  • FIG. 6 is a flowchart for explaining an overview of the operation of the detection device of the elevator system in the first embodiment.
  • the detection device 20 performs an operation to monitor rope slippage at an arbitrary timing.
  • step S01 the detection device 20 determines whether the brake device 7 has started braking the sheave 5. Specifically, the detection device 20 determines that the brake device 7 has started braking the sheave 5 when detecting a time corresponding to time t1 .
  • step S01 If it is determined in step S01 that the brake device 7 has not started braking the sheave 5, the operation of step S01 is repeated.
  • step S01 If it is determined in step S01 that the brake device 7 has started braking the sheave 5, the operation in step S02 is performed.
  • step S02 the detection device 20 waits for a braking time T2 from time t1 .
  • step S03 the detection device 20 estimates that the sheave 5 has stopped.
  • the detection device 20 creates information indicating the stop result including the stop time t2 .
  • step S04 the detection device 20 determines whether the car 11 is moving at the stop time t2 .
  • step S04 If it is determined in step S04 that the car 11 is not moving at the stop time t2 , the detection device 20 determines that rope slippage has not occurred, and ends the operation of the flowchart.
  • step S05 If it is determined in step S05 that the car 11 has moved at stop time t2 , the operation in step S05 is performed.
  • the detection device 20 detects that rope slippage has occurred.
  • the detection device 20 transmits information indicating that rope slippage has occurred to the elevator control device 17 and the like.
  • the detection device 20 ends the operation of the flowchart.
  • the elevator system 1 includes the detection device 20.
  • the detection device 20 includes a rotation estimator 22 that is a rotation estimation section and a slip detector 23 that is a slip detection section.
  • the detection device 20 estimates the stop time based on the operating state of the brake device 7.
  • the detection device 20 detects the occurrence of rope slippage based on the estimated stop time and the movement signal from the governor encoder 16. Therefore, rope slippage can be detected without measuring the amount of rotation of the shaft body 4.
  • the device that measures the amount of rotation of the shaft body 4 fails, it is possible to detect rope slippage when an emergency stop is performed due to the failure. That is, it is not necessary to take safety measures such as adding a device such as duplicating the device for measuring the amount of rotation of the shaft body 4.
  • the installation cost of these devices and the installation space for these devices can be reduced.
  • rope slippage can be detected in an elevator system in which a device for measuring the amount of rotation of the shaft body 4 is not provided. Therefore, in such an elevator system, it is possible to perform control to recover from a rope slipping state.
  • the detection device 20 shown in the first embodiment is more effective especially in a low speed range than a method in which the rotational speed of the shaft body 4 calculated based on the current value flowing through the hoisting machine is used to detect rope slippage. High accuracy in detecting rope slippage.
  • the detection device 20 of the elevator system 1 estimates the time when the prescribed braking time T 2 has elapsed from the time t 1 as the stop time t 2 .
  • the detection device 20 detects that rope slippage has occurred when it is detected that the car 11 is moving at the estimated time based on the movement signal. Therefore, the detection device 20 can estimate the stop time t2 based on the information representing the operating state of the brake device 7.
  • the detection device 20 of the elevator system 1 further includes a brake state acquisition device 21 that is a brake state acquisition unit.
  • the detection device 20 creates state information as information representing the operating state of the brake device 7.
  • the detection device 20 estimates time t1 based on the state information. Therefore, the detection device 20 can estimate time t 1 and time t 2 more accurately.
  • the detection device 20 of the elevator system 1 detects the time after the command time t 0 when the brake device 7 starts decreasing the brake current value after the brake current value increases at time t 0.5 . It is estimated that it is time t1 when braking of the sheave 5 is started. Therefore, the detection device 20 can be applied to the existing electromagnetic brake device 9.
  • the brake device 7 may be a brake device that uses a disc brake system instead of a drum type brake device.
  • the braked body 8 may be a brake disc.
  • the movable body 30 may be a brake shoe.
  • the elevator system 1 may be an elevator system that is not provided with a machine room.
  • FIG. 7 is a hardware configuration diagram of the detection device of the elevator system in the first embodiment.
  • Each function of the detection device 20 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuitry includes at least one dedicated hardware 200.
  • each function of the detection device 20 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the detection device 20 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP.
  • the at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, etc., a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc.
  • the processing circuitry comprises at least one dedicated hardware 200
  • the processing circuitry may be implemented, for example, in a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. Ru.
  • each function of the detection device 20 is realized by a processing circuit.
  • each function of the detection device 20 is collectively realized by a processing circuit.
  • each function of the detection device 20 some parts may be realized by dedicated hardware 200, and other parts may be realized by software or firmware.
  • functions provided by the rotation estimator 22 are realized by a processing circuit as dedicated hardware 200, and functions other than those provided by the rotation estimator 22 are realized by at least one processor 100a and stored in at least one memory 100b. It may also be realized by reading and executing a program. The same applies to the functions provided by the brake state acquisition device 21 and the slippage detector 23.
  • the processing circuit realizes each function of the detection device 20 using the hardware 200, software, firmware, or a combination thereof.
  • FIG. 8 is a diagram showing an outline of a building in which an elevator system according to the second embodiment is installed.
  • FIG. 9 is a diagram schematically showing an electromagnetic brake device of an elevator system according to the second embodiment. Note that parts that are the same as or equivalent to those in Embodiment 1 are given the same reference numerals. Description of this part will be omitted.
  • the brake device 7 is provided with a brake switch 34.
  • the brake switch 34 outputs a signal corresponding to the operating state of the brake device 7.
  • the elevator control device 17 grasps the operating state of the brake device 7 based on a signal from the brake switch 34.
  • the detection device 20 does not need to include the brake state acquisition device 21.
  • Detection device 20 receives a signal from brake switch 34.
  • the detection device 20 determines the operating state of the brake device 7 based on the signal from the brake switch 34 and detects rope slippage.
  • the brake switch 34 is provided adjacent to the movable body 30.
  • the brake switch 34 is a switch that detects whether the brake device 7 is in a suction state or a falling state.
  • the brake switch 34 is provided at a position where the switch portion of the brake switch 34 contacts the movable body 30 when the movable body 30 is not in contact with the braked body 8 .
  • the switch portion of the brake switch 34 does not come into contact with the movable body 30.
  • the signal of the brake switch 34 is turned OFF. That is, the signal state of the brake switch 34 becomes a signal state in which the brake device 7 is in a falling state, which indicates that the movable body 30 is sufficiently far away from the brake coil 31.
  • the position of the brake switch 34 is adjusted to a position where the brake switch 34 separates from the movable body 30 when the movable body 30 contacts the braked body 8, which is not shown in FIG. Therefore, the time when the signal of the brake switch 34 turns OFF can be regarded as the time when the movable body 30 is pressed against the brake target body 8, and the time when the brake device 7 starts braking the sheave 5. .
  • the signal of the brake switch 34 when the movable body 30 is in contact with the switch portion of the brake switch 34, the signal of the brake switch 34 is turned ON. That is, the signal state of the brake switch 34 becomes a signal state in which the brake device 7 is in the attracted state, which indicates that the movable body 30 is attracted to the brake coil 31.
  • FIG. 10 is a diagram showing information detected by the rotation estimator of the elevator system in the second embodiment. Note that in FIG. 10, illustration of each device included in the elevator system 1 is omitted.
  • the upper graph in FIG. 10 is a graph representing the relationship between time t and brake voltage command value.
  • the lower graph in FIG. 10 is a graph representing the relationship between time t and the signal output by the brake switch 34.
  • the brake voltage command value changes from Von to 0.
  • the movable body 30 starts moving from the non-contact position to the contact position.
  • the signal output by the brake switch 34 is 1 indicating the suction state until the falling time T1 has elapsed.
  • the rotation estimator 22 detects time t 1 when the brake device 7 starts braking the sheave 5 based on the signal from the brake switch 34 . That is, the rotation estimator 22 sets the time when the signal from the brake switch 34 changes from 1 to 0 as time t1 .
  • the rotation estimator 22 estimates time t 2 based on time t 1 and time T 2 as in the first embodiment.
  • the detection device 20 estimates time t 1 based on the signal from the brake switch 34 . Therefore, the detection device 20 can detect the occurrence of rope slippage without having the brake state acquisition device 21.
  • the detection device 20 can acquire a signal indicating that the brake device 7 has started braking the sheave 5 like the brake switch 34, the elevator system in which the brake device 7 is a brake device other than an electromagnetic brake type is detected. can be applied to.
  • the detection device according to the present disclosure can be used in an elevator system.
  • Elevator system 1 Elevator system, 2 Hoistway, 3 Hoisting machine, 4 Shaft, 5 Sheave, 6 Main rope, 7 Brake device, 8 Braked body, 9 Electromagnetic brake device, 10 Brake controller, 11 Car, 12 Counterweight , 13 Governor, 14 Governor sheave, 15 governor rope, 16 governor encoder, 17 Elevator control device, 20 Detection device, 21 Brake status acquisition device, 22 Rotation estimator, 23 Slip detector, 30 Movable body , 31 Brake coil, 32 Pressing body , 33 Brake power supply, 34 Brake switch, 100a Processor, 100b Memory, 200 Hardware

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

The present invention provides an elevator system that can detect rope slippage without measuring the amount of rotation of a rotary shaft of a hoisting machine. The elevator system comprises a car, a main rope which suspends the car, a sheave around which the main rope is wound, a brake that brakes the sheave, a governor encoder that outputs a movement signal according to the movement amount of the car, and a detection device that detects an occurrence of rope slippage of the main rope slipping on the surface of the sheave, wherein the detection device comprises: a rotation estimation unit that estimates, on the basis of the operating state of the brake, a stop time at which the sheave stops; and a slippage detection unit that detects the occurrence of rope slippage, in which the main rope slips on the surface of the sheave, on the basis of the stop time estimated by the rotation estimation unit and the movement signal outputted from the governor encoder according to the amount of car movement.

Description

エレベーターシステムelevator system
 本開示は、エレベーターシステムに関する。 The present disclosure relates to an elevator system.
 特許文献1は、エレベーターシステムを開示する。当該エレベーターシステムにおいて、巻上機の駆動軸の回転量を示すパルス信号とガバナシーブの回転量を示すパルス信号とが出力される。当該エレベーターシステムの演算装置は、駆動軸の回転量とガバナシーブの回転量との差分に基づいて、主ロープがシーブの表面を滑る現象であるロープ滑りを検出し得る。 Patent Document 1 discloses an elevator system. In the elevator system, a pulse signal indicating the amount of rotation of the drive shaft of the hoist and a pulse signal indicating the amount of rotation of the governor sheave are output. The computing device of the elevator system can detect rope slippage, which is a phenomenon in which the main rope slips on the surface of the sheave, based on the difference between the amount of rotation of the drive shaft and the amount of rotation of the governor sheave.
日本特開2013-023367号公報Japanese Patent Application Publication No. 2013-023367
 しかしながら、特許文献1に記載のエレベーターシステムにおいて、巻上機の回転軸の回転量が測定される必要がある。しかしながら、例えば、当該回転軸の回転量を測定する装置が故障した場合、ロープ滑りを検出することができない。 However, in the elevator system described in Patent Document 1, it is necessary to measure the amount of rotation of the rotating shaft of the hoist. However, for example, if a device that measures the amount of rotation of the rotating shaft breaks down, rope slippage cannot be detected.
 本開示は、上述の課題を解決するためになされた。本開示の目的は、巻上機の回転軸の回転量を測定することなくロープ滑りを検出することができるエレベーターシステムを提供することである。 The present disclosure has been made to solve the above problems. An object of the present disclosure is to provide an elevator system that can detect rope slippage without measuring the amount of rotation of a rotating shaft of a hoist.
 本開示に係るエレベーターシステムは、かごと、前記かごを吊るす主ロープと、前記主ロープが巻き掛けられたシーブと、前記シーブを制動するブレーキと、前記かごの移動量に応じて移動信号を出力するガバナエンコーダと、前記主ロープが前記シーブの表面を滑るロープ滑りが発生していることを検出する検出装置と、を備えたエレベーターシステムであって、前記検出装置は、前記ブレーキの作動状態に基づいて前記シーブが停止した停止時刻を推定する回転推定部と、前記回転推定部が推定した前記停止時刻と前記ガバナエンコーダから前記かごの移動量に応じて出力される移動信号とに基づいて、前記主ロープが前記シーブの表面を滑るロープ滑りが発生していることを検出する滑り検出部と、を備えた。 The elevator system according to the present disclosure includes a car, a main rope for hanging the car, a sheave around which the main rope is wound, a brake for braking the sheave, and outputs a movement signal according to the amount of movement of the car. An elevator system comprising: a governor encoder that detects the occurrence of rope slippage in which the main rope slides on the surface of the sheave; a rotation estimation unit that estimates a stop time at which the sheave stopped based on the rotation estimation unit, and a movement signal output from the governor encoder according to the stop time estimated by the rotation estimation unit and the movement amount of the car, The apparatus further includes a slip detection section that detects occurrence of rope slip in which the main rope slides on the surface of the sheave.
 本開示によれば、ブレーキの作動状態に基づいてシーブが停止した停止時刻が推定され、停止時刻と移動信号とに基づいてロープ滑りの発生が検出される。このため、巻上機の回転軸の回転量を測定することなくロープ滑りを検出することができる。 According to the present disclosure, the stop time at which the sheave stopped is estimated based on the operating state of the brake, and the occurrence of rope slippage is detected based on the stop time and the movement signal. Therefore, rope slippage can be detected without measuring the amount of rotation of the rotating shaft of the hoist.
実施の形態1におけるエレベーターシステムが設けられた建築物の概要を示す図である。1 is a diagram showing an outline of a building provided with an elevator system in Embodiment 1. FIG. 実施の形態1におけるエレベーターシステムの電磁ブレーキ器の概要を示す図である。1 is a diagram schematically showing an electromagnetic brake device of an elevator system in Embodiment 1. FIG. 実施の形態1におけるエレベーターシステムの検出装置が作成する状態情報の一部を示す図である。FIG. 3 is a diagram showing part of state information created by the detection device of the elevator system in Embodiment 1. FIG. 実施の形態1におけるエレベーターシステムの検出装置が作成する状態情報の一部と回転推定器が推定した結果とを示す図である。It is a figure which shows a part of state information and the result estimated by the rotation estimator in Embodiment 1 which the detection apparatus of the elevator system produces. 実施の形態1におけるエレベーターシステムの滑り検出器が検出する情報を示す図である。FIG. 3 is a diagram showing information detected by a slip detector of the elevator system in Embodiment 1. FIG. 実施の形態1におけるエレベーターシステムの検出装置の動作の概要を説明するためのフローチャートである。3 is a flowchart for explaining an overview of the operation of the detection device of the elevator system in Embodiment 1. FIG. 実施の形態1におけるエレベーターシステムの検出装置のハードウェア構成図である。1 is a hardware configuration diagram of a detection device of an elevator system in Embodiment 1. FIG. 実施の形態2におけるエレベーターシステムが設けられた建築物の概要を示す図である。FIG. 2 is a diagram showing an outline of a building provided with an elevator system according to a second embodiment. 実施の形態2におけるエレベーターシステムの電磁ブレーキ器の概要を示す図である。FIG. 7 is a diagram showing an outline of an electromagnetic brake device of an elevator system in Embodiment 2. FIG. 実施の形態2におけるエレベーターシステムの回転推定器が検出する情報を示す図である。FIG. 7 is a diagram showing information detected by a rotation estimator of the elevator system in Embodiment 2. FIG.
 本開示を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。 Embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings. In each figure, the same or corresponding parts are given the same reference numerals. Duplicate explanations of the relevant parts will be simplified or omitted as appropriate.
実施の形態1.
 図1は実施の形態1におけるエレベーターシステムが設けられた建築物の概要を示す図である。
Embodiment 1.
FIG. 1 is a diagram showing an outline of a building in which an elevator system according to the first embodiment is installed.
 図1に示されるように、エレベーターシステム1は、図示されない建築物に設けられる。昇降路2は、建築物の各階を貫く。図示されない機械室は、昇降路2の直上に設けられる。巻上機3は、機械室に設けられる。軸体4は、巻上機3に設けられる。シーブ5は、軸体4と同軸となるよう、軸体4に連結される。主ロープ6は、シーブ5に巻き掛けられる。 As shown in FIG. 1, the elevator system 1 is installed in a building (not shown). The hoistway 2 passes through each floor of the building. A machine room (not shown) is provided directly above the hoistway 2. The hoist 3 is provided in the machine room. The shaft body 4 is provided on the hoisting machine 3. The sheave 5 is connected to the shaft body 4 so as to be coaxial with the shaft body 4. The main rope 6 is wound around the sheave 5.
 ブレーキ装置7は、シーブ5の回転を制動し得る。例えば、ブレーキ装置7は、ドラム式のブレーキである。ブレーキ装置7は、被制動体8と電磁ブレーキ器9とブレーキ制御器10とを備える。 The brake device 7 can brake the rotation of the sheave 5. For example, the brake device 7 is a drum type brake. The brake device 7 includes a brake target 8, an electromagnetic brake device 9, and a brake controller 10.
 ブレーキ装置7がドラム式のブレーキである場合、被制動体8は、ブレーキドラムである。被制動体8は、軸体4と同軸となるよう、軸体4に連結される。被制動体8は、シーブ5と同期して回転し得る。電磁ブレーキ器9は、被制動体8に隣接するよう設けられる。電磁ブレーキ器9は、被制動体8の回転運動を制動し得る。ブレーキ制御器10は、電磁ブレーキ器9と電気的に接続される。ブレーキ制御器10は、電磁ブレーキ器9を制御する。 When the brake device 7 is a drum-type brake, the braked body 8 is a brake drum. The braked body 8 is connected to the shaft body 4 so as to be coaxial with the shaft body 4 . The braked body 8 can rotate in synchronization with the sheave 5. The electromagnetic brake device 9 is provided adjacent to the braked body 8 . The electromagnetic brake device 9 can brake the rotational motion of the braked body 8 . Brake controller 10 is electrically connected to electromagnetic brake device 9 . Brake controller 10 controls electromagnetic brake device 9 .
 かご11は、昇降路2の内部において、主ロープ6の一端の側に吊るされる。釣合おもり12は、昇降路2の内部において、主ロープ6の他端の側に吊るされる。 The car 11 is suspended on one end of the main rope 6 inside the hoistway 2. The counterweight 12 is suspended on the other end side of the main rope 6 inside the hoistway 2 .
 ガバナ13は、昇降路2から機械室にわたって設けられる。ガバナ13は、ガバナシーブ14とガバナロープ15とガバナエンコーダ16とを備える。 The governor 13 is provided from the hoistway 2 to the machine room. The governor 13 includes a governor sheave 14, a governor rope 15, and a governor encoder 16.
 ガバナシーブ14は、機械室において回転可能に設けられる。ガバナロープ15は、無端状に形成される。ガバナロープ15は、ガバナシーブ14の回転と同期して移動し得るよう、ガバナシーブ14に巻き掛けられる。ガバナロープ15の一部は、かご11に取り付けられる。ガバナエンコーダ16は、ガバナシーブ14に設けられる。ガバナエンコーダ16は、ガバナシーブ14の回転量に応じた移動信号を出力する。 The governor sheave 14 is rotatably provided in the machine room. The governor rope 15 is formed into an endless shape. The governor rope 15 is wound around the governor sheave 14 so that it can move in synchronization with the rotation of the governor sheave 14. A portion of the governor rope 15 is attached to the car 11. Governor encoder 16 is provided on governor sheave 14 . The governor encoder 16 outputs a movement signal according to the amount of rotation of the governor sheave 14.
 エレベーター制御装置17は、機械室に設けられる。エレベーター制御装置17は、巻上機3とブレーキ制御器10とガバナエンコーダ16とに電気的に接続される。エレベーター制御装置17は、エレベーターシステム1を全体的に制御し得る。 The elevator control device 17 is provided in the machine room. The elevator control device 17 is electrically connected to the hoisting machine 3, the brake controller 10, and the governor encoder 16. Elevator control device 17 may control elevator system 1 as a whole.
 エレベーターシステム1は、検出装置20を更に備える。検出装置20は、機械室に設けられる。検出装置20は、ブレーキ装置7とガバナエンコーダ16とエレベーター制御装置17とに電気的に接続される。検出装置20は、主ロープ6がシーブ5の表面を滑る現象であるロープ滑りが発生したことを検出する。検出装置20は、ブレーキ状態取得器21と回転推定器22と滑り検出器23とを備える。 The elevator system 1 further includes a detection device 20. The detection device 20 is provided in the machine room. The detection device 20 is electrically connected to the brake device 7, the governor encoder 16, and the elevator control device 17. The detection device 20 detects the occurrence of rope slippage, which is a phenomenon in which the main rope 6 slips on the surface of the sheave 5. The detection device 20 includes a brake state acquirer 21, a rotation estimator 22, and a slip detector 23.
 ブレーキ状態取得器21は、ブレーキ状態取得部として、電磁ブレーキ器9に設けられる。ブレーキ状態取得器21は、ブレーキ装置7の作動状態を示す状態情報を電磁ブレーキ器9から取得する。 The brake state acquisition device 21 is provided in the electromagnetic brake device 9 as a brake state acquisition section. The brake state acquisition device 21 acquires state information indicating the operating state of the brake device 7 from the electromagnetic brake device 9 .
 回転推定器22は、回転推定部として、ブレーキ状態取得器21が取得した状態情報に基づいて、シーブ5の状態を推定する。具体的には、回転推定器22は、シーブ5の回転が停止しているか否かを推定する。 The rotation estimator 22, as a rotation estimator, estimates the state of the sheave 5 based on the state information acquired by the brake state acquirer 21. Specifically, the rotation estimator 22 estimates whether or not the rotation of the sheave 5 has stopped.
 滑り検出器23は、滑り検出部として、回転推定器22が推定した結果とガバナエンコーダ16からの移動信号とに基づいて、ロープ滑りが発生したことを検出し得る。この際、滑り検出器23は、移動信号に基づいてかご11の現在の速度を演算する。滑り検出器23は、ロープ滑りが発生したことを検出した場合、ロープ滑りが発生した旨を示す情報をブレーキ制御器10とエレベーター制御装置17とに送信する。 As a slip detection section, the slip detector 23 can detect the occurrence of rope slip based on the result estimated by the rotation estimator 22 and the movement signal from the governor encoder 16. At this time, the slip detector 23 calculates the current speed of the car 11 based on the movement signal. When the slip detector 23 detects that rope slip has occurred, it transmits information indicating that rope slip has occurred to the brake controller 10 and the elevator control device 17.
 エレベーターシステム1が通常運行する場合、エレベーター制御装置17は、巻上機3に流れる電流等の情報に基づいて、巻上機3を制御する。巻上機3は、軸体4を回転させる。シーブ5と被制動体8とは、軸体4と同期して回転する。主ロープ6は、シーブ5と主ロープ6との間に発生する摩擦力によって、シーブ5の回転移動に追従して移動する。かご11と釣合おもり12とは、主ロープ6の移動に追従して互いに反対方向に昇降する。ガバナロープ15は、かご11に追従して移動する。ガバナシーブ14は、ガバナロープ15の移動に追従して回転する。ガバナエンコーダ16は、かご11の移動量に対応する移動信号をエレベーター制御装置17に出力する。エレベーター制御装置17は、ガバナエンコーダ16からの信号等の情報を用いて、かご11の位置を把握する。 When the elevator system 1 normally operates, the elevator control device 17 controls the hoisting machine 3 based on information such as the current flowing through the hoisting machine 3. The hoist 3 rotates a shaft body 4. The sheave 5 and the braked body 8 rotate in synchronization with the shaft body 4. The main rope 6 moves following the rotational movement of the sheave 5 due to the frictional force generated between the sheave 5 and the main rope 6. The car 11 and the counterweight 12 follow the movement of the main rope 6 and move up and down in opposite directions. The governor rope 15 moves following the car 11. The governor sheave 14 rotates following the movement of the governor rope 15. Governor encoder 16 outputs a movement signal corresponding to the amount of movement of car 11 to elevator control device 17 . The elevator control device 17 uses information such as signals from the governor encoder 16 to grasp the position of the car 11.
 エレベーター制御装置17は、かご11を停止させる場合、ブレーキ制御器10にシーブ5を制動させる指令を送信する。ブレーキ制御器10は、当該指令を受信した場合、電磁ブレーキ器9に対して、被制動体8を制動させる指令を送信する。電磁ブレーキ器9は、ブレーキ制御器10からの指令に基づいて、被制動体8に制動力を与える。被制動体8の回転速度は、与えられた制動力によって減速する。シーブ5の回転速度は、被制動体8と同期して減速する。即ち、電磁ブレーキ器9は、被制動体8と軸体4とを介して、間接的にシーブ5に制動力を与え、シーブ5の回転運動を制動する。主ロープ6の速度とかご11の速度とは、シーブ5の回転速度の減速に追従して減速する。その後、被制動体8およびシーブ5は、停止する。主ロープ6とかご11とは、停止する。 When stopping the car 11, the elevator control device 17 sends a command to the brake controller 10 to brake the sheave 5. When the brake controller 10 receives the command, it transmits a command to the electromagnetic brake device 9 to brake the body 8 to be braked. The electromagnetic brake device 9 applies braking force to the brake target 8 based on a command from the brake controller 10 . The rotational speed of the braked body 8 is reduced by the applied braking force. The rotational speed of the sheave 5 is reduced in synchronization with the braked body 8. That is, the electromagnetic brake device 9 indirectly applies a braking force to the sheave 5 via the braked body 8 and the shaft body 4, thereby braking the rotational movement of the sheave 5. The speed of the main rope 6 and the speed of the car 11 are reduced following the deceleration of the rotational speed of the sheave 5. Thereafter, the braked body 8 and the sheave 5 stop. The main rope 6 and the car 11 stop.
 図示されないが、巻上機3には、軸体4の回転量に応じて信号を出力する巻上機エンコーダが設けられる。エレベーター制御装置17は、巻上機エンコーダからの信号、ガバナエンコーダ16からの移動信号、等の情報に基づいてかご11の位置を検出し、かご11を運行する。巻上機エンコーダに異常が発生し、信号が出力されなくなった場合、エレベーター制御装置17は、かご11を非常停止させる。この場合、例えば、エレベーター制御装置17は、通常運行と同様の方法でかご11を停止させる。この際、シーブ5の表面に対して主ロープ6が滑るロープ滑りが発生し得る。 Although not shown, the hoisting machine 3 is provided with a hoisting machine encoder that outputs a signal according to the amount of rotation of the shaft body 4. The elevator control device 17 detects the position of the car 11 based on information such as a signal from the hoist encoder and a movement signal from the governor encoder 16, and operates the car 11. When an abnormality occurs in the hoist encoder and the signal is no longer output, the elevator control device 17 brings the car 11 to an emergency stop. In this case, for example, the elevator control device 17 stops the car 11 in the same manner as in normal operation. At this time, rope slippage in which the main rope 6 slips on the surface of the sheave 5 may occur.
 例えば、ロープ滑りが発生した場合、シーブ5が停止した後も、主ロープ6とかご11と釣合おもり12とが移動し得る。この場合、検出装置20は、ロープ滑りが発生したことを検出する。検出装置20は、ブレーキ装置7とエレベーター制御装置17とにロープ滑りが発生した旨を示す信号を送信する。エレベーター制御装置17は、ロープ滑りが発生した状態から復帰する動作を行う。具体的には、例えば、エレベーター制御装置17は、現在推定しているかご11の位置を図示されない位置検出装置に基づいて補正する。 For example, if rope slippage occurs, the main rope 6, car 11, and counterweight 12 may move even after the sheave 5 has stopped. In this case, the detection device 20 detects that rope slippage has occurred. The detection device 20 transmits a signal to the brake device 7 and the elevator control device 17 indicating that rope slippage has occurred. The elevator control device 17 performs an operation to recover from a state in which rope slippage has occurred. Specifically, for example, the elevator control device 17 corrects the currently estimated position of the car 11 based on a position detection device (not shown).
 次に、図2を用いて、電磁ブレーキ器9を説明する。
 図2は実施の形態1におけるエレベーターシステムの電磁ブレーキ器の概要を示す図である。
Next, the electromagnetic brake device 9 will be explained using FIG. 2.
FIG. 2 is a diagram showing an outline of the electromagnetic brake device of the elevator system in the first embodiment.
 図2に示されるように、電磁ブレーキ器9は、可動体30とブレーキコイル31と押付体32とブレーキ電源33とを備える。 As shown in FIG. 2, the electromagnetic brake device 9 includes a movable body 30, a brake coil 31, a pressing body 32, and a brake power source 33.
 例えば、可動体30は、ブレーキシューと磁石とを有する。可動体30は、図2には図示されない被制動体8に隣接する。可動体30は、ブレーキシューが被制動体8に接触する接触位置とブレーキシューが被制動体8に接触しない非接触位置との間を移動可能に設けられる。 For example, the movable body 30 includes a brake shoe and a magnet. The movable body 30 is adjacent to the braked body 8, which is not shown in FIG. The movable body 30 is provided so as to be movable between a contact position where the brake shoe contacts the brake target 8 and a non-contact position where the brake shoe does not contact the brake target 8.
 ブレーキコイル31は、電磁石のコイルである。図示されないが、ブレーキコイル31は、非接触位置に存在する可動体30の一部である磁石を囲うように設けられる。 The brake coil 31 is an electromagnetic coil. Although not shown, the brake coil 31 is provided so as to surround a magnet that is a part of the movable body 30 that is located in a non-contact position.
 押付体32は、ばねである。例えば、押付体32は、可動体30とブレーキコイル31との間に縮まった状態で設けられる。押付体32は、可動体30に対して非接触位置から接触位置へ向かう付勢力を与える。 The pressing body 32 is a spring. For example, the pressing body 32 is provided between the movable body 30 and the brake coil 31 in a contracted state. The pressing body 32 applies an urging force to the movable body 30 from the non-contact position to the contact position.
 ブレーキ電源33は、ブレーキコイル31と閉回路を構成する。ブレーキ電源33は、ブレーキコイル31に電力を供給する。ブレーキ電源33からブレーキコイル31に印加される電圧をブレーキ電圧とも呼称する。ブレーキコイル31に実際に流れる電流をブレーキ電流とも呼称する。ブレーキ電源33は、図2には図示されないブレーキ制御器10からの指令に基づいて、ブレーキ電圧を制御する。具体的には、ブレーキ制御器10からの指令には、ブレーキ電圧値を指令する電圧指令値が含まれる。ブレーキ電源33は、電圧指令値となるブレーキ電圧をブレーキコイル31に印加する。 The brake power supply 33 forms a closed circuit with the brake coil 31. The brake power supply 33 supplies power to the brake coil 31. The voltage applied from the brake power source 33 to the brake coil 31 is also referred to as a brake voltage. The current that actually flows through the brake coil 31 is also called a brake current. The brake power supply 33 controls the brake voltage based on a command from the brake controller 10 (not shown in FIG. 2). Specifically, the command from the brake controller 10 includes a voltage command value that commands a brake voltage value. The brake power supply 33 applies a brake voltage that is a voltage command value to the brake coil 31.
 シーブ5が制動されていない状態となるよう、ブレーキ制御器10は、ブレーキ電圧をON電圧にする指令をブレーキ電源33に送信する。ブレーキ電源33は、ON電圧に対応するブレーキ電圧をブレーキコイル31に印加する。ブレーキコイル31は、ブレーキ電流によって磁力を発生させる。ブレーキコイル31は、当該磁力によって可動体30の磁石を吸引する。可動体30は、当該磁力によって接触位置から非接触位置へ向かう吸引力を受ける。可動体30は、吸引力と押付体32からの付勢力との合力によって非接触位置に保持される。この状態は、ブレーキ装置7において制動力が被制動体8に働かない吸引状態である。 The brake controller 10 sends a command to the brake power source 33 to turn the brake voltage ON so that the sheave 5 is in an unbraked state. The brake power supply 33 applies a brake voltage corresponding to the ON voltage to the brake coil 31. The brake coil 31 generates magnetic force using a brake current. The brake coil 31 attracts the magnet of the movable body 30 by the magnetic force. The movable body 30 receives an attractive force from the contact position toward the non-contact position due to the magnetic force. The movable body 30 is held in a non-contact position by the resultant force of the suction force and the urging force from the pressing body 32. This state is a suction state in which the braking force of the brake device 7 does not act on the braked body 8 .
 シーブ5が制動された状態にする場合、ブレーキ制御器10は、ブレーキ電圧をOFF電圧にする指令をブレーキ電源33に送信する。ブレーキ電源33は、OFF電圧に対応するよう、ブレーキコイル31に電圧を印加しない。即ち、ブレーキ電源33は、ブレーキコイル31に印加する電圧値を0にする。 When the sheave 5 is brought into a braked state, the brake controller 10 sends a command to the brake power source 33 to turn the brake voltage to the OFF voltage. The brake power supply 33 does not apply voltage to the brake coil 31 so as to correspond to the OFF voltage. That is, the brake power supply 33 sets the voltage value applied to the brake coil 31 to zero.
 この場合、ブレーキコイル31は、吸引力となる磁力を発生させない。可動体30は、非接触位置に存在する場合、押付体32からの付勢力によって接触位置へ移動する。可動体30のブレーキシューは、接触位置において、押付体32からの付勢力によって被制動体8に押し付けられる。この際、被制動体8には、被制動体8と可動体30との摩擦力である制動力が発生する。この状態は、ブレーキ装置7において制動力が被制動体8に働く落下状態である。即ち、落下状態は、シーブ5が間接的に制動された状態である。被制動体8が回転運動をしている場合、被制動体8は、当該制動力によって減速し、停止する。被制動体8とシーブ5とが動いていない制止状態である場合、被制動体8とシーブ5とは、当該制動力によってその制止状態が保持される。 In this case, the brake coil 31 does not generate magnetic force that becomes an attractive force. When the movable body 30 is in the non-contact position, it is moved to the contact position by the urging force from the pressing body 32. The brake shoe of the movable body 30 is pressed against the braked body 8 by the urging force from the pressing body 32 at the contact position. At this time, a braking force, which is a frictional force between the braked body 8 and the movable body 30, is generated in the braked body 8. This state is a falling state in which the braking force of the brake device 7 acts on the braked body 8 . That is, the falling state is a state in which the sheave 5 is indirectly braked. When the braked body 8 is rotating, the braked body 8 is decelerated and stopped by the braking force. When the braked body 8 and sheave 5 are in a stopped state in which they are not moving, the braked body 8 and sheave 5 are maintained in their stopped state by the braking force.
 ブレーキ状態取得器21は、ブレーキコイル31とブレーキ電源33とを含む閉回路に電気的に接続される。また、ブレーキ状態取得器21は、ブレーキ制御器10からブレーキ電源33に入力される指令を取得し得るよう設けられる。ブレーキ状態取得器21は、ブレーキ装置7の状態情報として、ブレーキ制御器10からブレーキ電源33への指令とブレーキ電圧値とブレーキ電流値と時刻とが対応付けられた情報を作成する。ブレーキ状態取得器21は、作成した状態情報を回転推定器22に送信する。 The brake state acquisition device 21 is electrically connected to a closed circuit including a brake coil 31 and a brake power source 33. Further, the brake state acquisition device 21 is provided so as to be able to acquire a command input from the brake controller 10 to the brake power supply 33. The brake state acquisition device 21 creates information in which a command from the brake controller 10 to the brake power source 33, a brake voltage value, a brake current value, and a time are associated with each other as state information of the brake device 7. The brake state acquisition device 21 transmits the created state information to the rotation estimator 22.
 次に、図3から図5を用いて、検出装置20の動作を説明する。
 図3は実施の形態1におけるエレベーターシステムの検出装置が作成する状態情報の一部を示す図である。図4は実施の形態1におけるエレベーターシステムの検出装置が作成する状態情報の一部と回転推定器が推定した結果とを示す図である。図5は実施の形態1におけるエレベーターシステムの滑り検出器が検出する情報を示す図である。なお、図3から図5において、エレベーターシステム1に含まれる各機器の図示は省略される。図3から図5では、ブレーキ装置7がかご11を非常停止させる際の動作における情報が示される。
Next, the operation of the detection device 20 will be explained using FIGS. 3 to 5.
FIG. 3 is a diagram showing part of the status information created by the detection device of the elevator system in the first embodiment. FIG. 4 is a diagram showing part of the state information created by the detection device of the elevator system and the results estimated by the rotation estimator in the first embodiment. FIG. 5 is a diagram showing information detected by the slip detector of the elevator system in the first embodiment. Note that in FIGS. 3 to 5, illustration of each device included in the elevator system 1 is omitted. In FIGS. 3 to 5, information regarding the operation when the brake device 7 brings the car 11 to an emergency stop is shown.
 図3の上段のグラフは、時刻tとブレーキ電圧指令値との関係を表すグラフである。図3から図5における説明において、時刻tは、図3の上段のグラフの最も左側の時刻である基点の時刻からの経過時間で表される。時刻tの単位は、秒[s]である。なお、時刻tは、絶対的な時刻であってもよい。ブレーキ電圧指令値の単位は、ボルト[V]である。 The upper graph in FIG. 3 is a graph representing the relationship between time t and brake voltage command value. In the explanations in FIGS. 3 to 5, the time t is expressed as the elapsed time from the base point time, which is the leftmost time in the upper graph of FIG. The unit of time t is second [s]. Note that the time t may be an absolute time. The unit of the brake voltage command value is volt [V].
 図3の下段のグラフは、時刻tとブレーキ電流値との関係を表すグラフである。ブレーキ電流値の単位は、アンペア[A]である。 The lower graph in FIG. 3 is a graph representing the relationship between time t and brake current value. The unit of the brake current value is ampere [A].
 基点の時刻において、ブレーキ電圧指令値は、Vonである。この時、ブレーキ電流値は、Aonである。可動体30は、非接触位置に保持される。 At the base point time, the brake voltage command value is Von. At this time, the brake current value is Aon. The movable body 30 is held in a non-contact position.
 時刻tにおいて、ブレーキ装置7がかご11を非常停止させる場合、ブレーキ制御器10は、ブレーキ電圧指令値をOFF電圧である0に切り替える指令をブレーキ電源33に送信する。即ち、指令時刻である時刻tにおいて、ブレーキ電圧指令値は、0となる。時刻tにおいて、ブレーキ電圧値は、0となる。即ち、ブレーキ電圧が遮断される。このため、時刻t以降、ブレーキ電流値は、Aonから徐々に減少を始める。 At time t0 , when the brake device 7 brings the car 11 to an emergency stop, the brake controller 10 sends a command to the brake power supply 33 to switch the brake voltage command value to 0, which is the OFF voltage. That is, at time t0 , which is the command time, the brake voltage command value becomes 0. At time t0 , the brake voltage value becomes 0. That is, the brake voltage is cut off. Therefore, after time t0 , the brake current value starts to gradually decrease from Aon.
 時刻tの後、ブレーキ電流値の減少に伴って、可動体30に与えられる吸引力が減少する。吸引力が押付体32の付勢力を下回った場合、可動体30は、非接触位置から接触位置へ向かって移動する。この際、可動体30の磁石が移動することで、ブレーキコイル31の内部の磁界が変化する。ブレーキコイル31には、当該磁界の変化に応じた逆起電力が発生することで、誘導電流が流れる。そのため、時刻tの後の時刻t0.5において、ブレーキ電流は、誘導電流によって増加する。 After time t0 , the attractive force applied to the movable body 30 decreases as the brake current value decreases. When the suction force is lower than the urging force of the pressing body 32, the movable body 30 moves from the non-contact position to the contact position. At this time, as the magnet of the movable body 30 moves, the magnetic field inside the brake coil 31 changes. An induced current flows through the brake coil 31 due to the generation of a back electromotive force according to the change in the magnetic field. Therefore, at time t 0.5 after time t 0 , the brake current increases due to the induced current.
 時刻t0.5の後、時刻tにおいて、可動体30は、接触位置に到達する。可動体30は、被制動体8に押し付けられた位置で停止する。即ち、時刻tは、ブレーキ装置7がシーブ5の制動を開始した時刻である。この際、可動体30が停止するため、ブレーキコイル31の内部の磁界が変化しなくなる。そのため、時刻において、誘導電流によるブレーキ電流の増加が止まる。時刻t以降では、ブレーキ電流が再び減少する。 After time t0.5 , the movable body 30 reaches the contact position at time t1 . The movable body 30 stops at the position where it is pressed against the braked body 8. That is, time t1 is the time when the brake device 7 starts braking the sheave 5. At this time, since the movable body 30 stops, the magnetic field inside the brake coil 31 does not change. Therefore, at time 1 , the increase in the brake current due to the induced current stops. After time t1 , the brake current decreases again.
 回転推定器22は、状態情報に含まれるブレーキ電流値の時間推移に基づいて、ブレーキ装置7がシーブ5の制動を開始した時刻tを推定する。具体的には、回転推定器22は、時刻tの後にブレーキ電流値が増加した時刻t0.5の後の時刻であって、ブレーキ電流値が減少を開始した時刻を、時刻tとして推定する。また、回転推定器22は、時刻tから時刻tまでの時間Tを演算する。 The rotation estimator 22 estimates the time t 1 at which the brake device 7 starts braking the sheave 5 based on the time course of the brake current value included in the state information. Specifically, the rotation estimator 22 sets the time t 1 to be the time after time t 0.5 when the brake current value increases after time t 0 and when the brake current value starts decreasing. presume. Further, the rotation estimator 22 calculates a time T 1 from time t 0 to time t 1 .
 図4の上段のグラフは、図3の上段のグラフと同様の、時刻tとブレーキ電圧指令値との関係を表すグラフである。図4の中段のグラフは、図3の下段のグラフと同様の、時刻tとブレーキ電流値との関係を表すグラフである。 The upper graph in FIG. 4 is a graph representing the relationship between time t and brake voltage command value, similar to the upper graph in FIG. 3. The middle graph in FIG. 4 is a graph showing the relationship between time t and brake current value, similar to the lower graph in FIG.
 図4の下段のグラフは、時刻tと回転推定器22が推定したシーブ5の回転状態を示すシーブ回転推定値との関係を表すグラフである。例えば、回転推定器22は、シーブ5の回転状態を、「回転」状態および「停止」状態の2値で推定する。「回転」状態と推定された場合、シーブ回転推定値は、1である。「停止」状態と推定された場合、シーブ回転推定値は、0である。例えば、時刻tにおいて、シーブ回転推定値は、1である。 The lower graph in FIG. 4 is a graph showing the relationship between time t and the sheave rotation estimate indicating the rotation state of the sheave 5 estimated by the rotation estimator 22. For example, the rotation estimator 22 estimates the rotational state of the sheave 5 using two values: a "rotating" state and a "stopped" state. If the "rotation" state is estimated, the sheave rotation estimate is 1. If the state is estimated to be "stopped", the estimated sheave rotation value is 0. For example, at time t1 , the sheave rotation estimate is 1.
 回転推定器22は、制動時間Tを予め記憶する。回転推定器22は、時刻tから制動時間Tが経過した時刻tをシーブ5が停止した停止時刻として推定する。この場合、回転推定器22は、シーブ5の状態の推定結果として、停止時刻tとシーブ回転推定値0とが含まれる情報を滑り検出器23に対して送信する。 The rotation estimator 22 stores the braking time T2 in advance. The rotation estimator 22 estimates time t 2 when the braking time T 2 has elapsed from time t 1 as the stop time when the sheave 5 stops . In this case, the rotation estimator 22 transmits information including the stop time t2 and the estimated sheave rotation value 0 to the slip detector 23 as the estimation result of the state of the sheave 5.
 制動時間Tは、ブレーキ装置7がシーブ5の制動を開始してからシーブ5が停止するまでに必要と想定される時間である。例えば、制動時間Tは、可動体30が被制動体8に接触する部分の材質の条件、押付体32が可動体30を被制動体8に押し付ける付勢力の条件、等の条件によって変化する。例えば、制動時間Tは、エレベーターシステム1の出荷前の試験等で計測され、検出装置20に記憶される。 The braking time T2 is the time expected to be required from when the brake device 7 starts braking the sheave 5 until the sheave 5 stops. For example, the braking time T2 changes depending on conditions such as the condition of the material of the part where the movable body 30 contacts the braked body 8, the condition of the urging force of the pressing body 32 to press the movable body 30 against the braked body 8, etc. . For example, the braking time T2 is measured during a test of the elevator system 1 before shipping, and is stored in the detection device 20.
 図5の上段のグラフは、図4の下段のグラフと同様の、時刻tとシーブ回転推定値との関係を表すグラフである。図5の下段のグラフは、滑り検出器23が演算したかご11のかご速度である。例えば、かご速度の単位は、[m/min]である。 The upper graph in FIG. 5 is a graph representing the relationship between time t and the estimated sheave rotation value, similar to the lower graph in FIG. 4. The lower graph in FIG. 5 shows the car speed of the car 11 calculated by the slip detector 23. For example, the unit of car speed is [m/min].
 時刻tからブレーキ装置7がシーブ5の制動を開始するため、かご速度は、時刻tから減少する。滑り検出器23は、回転推定器22から推定結果の情報を受信した場合、ロープ滑りが発生したか否かを検出する。滑り検出器23は、推定結果の情報に含まれる停止時刻tにおいてかご11が移動している、即ちかご速度が0でない場合に、ロープ滑りが発生したことを検出する。 Since the brake device 7 starts braking the sheave 5 from time t1 , the car speed decreases from time t1 . When the slip detector 23 receives estimation result information from the rotation estimator 22, it detects whether rope slip has occurred. The slip detector 23 detects that rope slip has occurred when the car 11 is moving at the stop time t2 included in the information of the estimation result, that is, when the car speed is not 0.
 なお、滑り検出器23は、かご速度を演算することなく、停止時刻tよりも後にガバナエンコーダ16から移動信号を受信した場合に、ロープ滑りが発生したことを検出してもよい。 Note that the slip detector 23 may detect the occurrence of rope slip when it receives a movement signal from the governor encoder 16 after the stop time t2 without calculating the car speed.
 次に、図6を用いて、検出装置20が行う動作を説明する。
 図6は実施の形態1におけるエレベーターシステムの検出装置の動作の概要を説明するためのフローチャートである。
Next, the operation performed by the detection device 20 will be explained using FIG. 6.
FIG. 6 is a flowchart for explaining an overview of the operation of the detection device of the elevator system in the first embodiment.
 検出装置20は、任意のタイミングでロープ滑りを監視する動作を行う。 The detection device 20 performs an operation to monitor rope slippage at an arbitrary timing.
 ステップS01において、検出装置20は、ブレーキ装置7がシーブ5の制動を開始したか否かを判定する。具体的には、検出装置20は、時刻tに相当する時刻を検出した場合に、ブレーキ装置7がシーブ5の制動を開始したと判定する。 In step S01, the detection device 20 determines whether the brake device 7 has started braking the sheave 5. Specifically, the detection device 20 determines that the brake device 7 has started braking the sheave 5 when detecting a time corresponding to time t1 .
 ステップS01において、ブレーキ装置7がシーブ5の制動を開始していないと判定された場合、ステップS01の動作が繰り返される。 If it is determined in step S01 that the brake device 7 has not started braking the sheave 5, the operation of step S01 is repeated.
 ステップS01において、ブレーキ装置7がシーブ5の制動を開始したと判定された場合、ステップS02の動作が行われる。ステップS02において、検出装置20は、時刻tから制動時間Tだけ待機する。 If it is determined in step S01 that the brake device 7 has started braking the sheave 5, the operation in step S02 is performed. In step S02, the detection device 20 waits for a braking time T2 from time t1 .
 その後、ステップS03の動作が行われる。ステップS03において、検出装置20は、シーブ5が停止したと推定する。検出装置20は、停止時刻tを含む停止結果を示す情報を作成する。 After that, the operation of step S03 is performed. In step S03, the detection device 20 estimates that the sheave 5 has stopped. The detection device 20 creates information indicating the stop result including the stop time t2 .
 その後、ステップS04の動作が行われる。ステップS04において、検出装置20は、停止時刻tにかご11が移動しているか否かを判定する。 After that, the operation of step S04 is performed. In step S04, the detection device 20 determines whether the car 11 is moving at the stop time t2 .
 ステップS04で、停止時刻tにかご11が移動していないと判定した場合、検出装置20は、ロープ滑りが発生しなかったと判定し、フローチャートの動作を終了する。 If it is determined in step S04 that the car 11 is not moving at the stop time t2 , the detection device 20 determines that rope slippage has not occurred, and ends the operation of the flowchart.
 ステップS05で、停止時刻tにかご11が移動したと判定された場合、ステップS05の動作が行われる。ステップS05において、検出装置20は、ロープ滑りが発生したことを検出する。検出装置20は、エレベーター制御装置17などにロープ滑りが発生した旨を示す情報を送信する。 If it is determined in step S05 that the car 11 has moved at stop time t2 , the operation in step S05 is performed. In step S05, the detection device 20 detects that rope slippage has occurred. The detection device 20 transmits information indicating that rope slippage has occurred to the elevator control device 17 and the like.
 その後、検出装置20は、フローチャートの動作を終了する。 After that, the detection device 20 ends the operation of the flowchart.
 以上で説明した実施の形態1によれば、エレベーターシステム1は、検出装置20を備える。検出装置20は、回転推定部である回転推定器22と滑り検出部である滑り検出器23とを備える。検出装置20は、ブレーキ装置7の作動状態に基づいて停止時刻を推定する。検出装置20は、推定した停止時刻とガバナエンコーダ16からの移動信号とに基づいてロープ滑りが発生していることを検出する。このため、軸体4の回転量を測定することなくロープ滑りを検出することができる。その結果、軸体4の回転量を測定する機器が故障した場合でも、当該故障による非常停止が行われた際のロープ滑りを検出することができる。即ち、軸体4の回転量を測定する機器を2重化する等の、機器を追加するような安全対策が講じられなくてもよい。これらの機器の設置費用およびこれらの機器の設置スペースを削減することができる。 According to the first embodiment described above, the elevator system 1 includes the detection device 20. The detection device 20 includes a rotation estimator 22 that is a rotation estimation section and a slip detector 23 that is a slip detection section. The detection device 20 estimates the stop time based on the operating state of the brake device 7. The detection device 20 detects the occurrence of rope slippage based on the estimated stop time and the movement signal from the governor encoder 16. Therefore, rope slippage can be detected without measuring the amount of rotation of the shaft body 4. As a result, even if the device that measures the amount of rotation of the shaft body 4 fails, it is possible to detect rope slippage when an emergency stop is performed due to the failure. That is, it is not necessary to take safety measures such as adding a device such as duplicating the device for measuring the amount of rotation of the shaft body 4. The installation cost of these devices and the installation space for these devices can be reduced.
 さらに、軸体4の回転量を測定する機器が設けられないエレベーターシステムにおいて、ロープ滑りを検出することができる。このため、このようなエレベーターシステムにおいてロープ滑りの状態から復帰する制御が行われることが可能となる。また、実施の形態1に示される検出装置20は、例えば巻上機に流れる電流値に基づいて算出される軸体4の回転速度をロープ滑りの検出に用いる方法に比べて、特に低速域におけるロープ滑りの検出精度が高い。 Furthermore, rope slippage can be detected in an elevator system in which a device for measuring the amount of rotation of the shaft body 4 is not provided. Therefore, in such an elevator system, it is possible to perform control to recover from a rope slipping state. Further, the detection device 20 shown in the first embodiment is more effective especially in a low speed range than a method in which the rotational speed of the shaft body 4 calculated based on the current value flowing through the hoisting machine is used to detect rope slippage. High accuracy in detecting rope slippage.
 また、エレベーターシステム1の検出装置20は、時刻tから規定の制動時間Tが経過した時刻を停止時刻tとして推定する。検出装置20は、移動信号に基づいて、推定時刻においてかご11が移動していることを検出した場合に、ロープ滑りが発生していることを検出する。このため、検出装置20は、ブレーキ装置7の作動状態を表す情報に基づいて、停止時刻tを推定することができる。 Furthermore, the detection device 20 of the elevator system 1 estimates the time when the prescribed braking time T 2 has elapsed from the time t 1 as the stop time t 2 . The detection device 20 detects that rope slippage has occurred when it is detected that the car 11 is moving at the estimated time based on the movement signal. Therefore, the detection device 20 can estimate the stop time t2 based on the information representing the operating state of the brake device 7.
 また、エレベーターシステム1の検出装置20は、ブレーキ状態取得部であるブレーキ状態取得器21を更に備える。検出装置20は、ブレーキ装置7の作動状態を表す情報として、状態情報を作成する。検出装置20は、状態情報に基づいて、時刻tを推定する。このため、検出装置20は、より正確に時刻tおよび時刻tを推定することができる。 Furthermore, the detection device 20 of the elevator system 1 further includes a brake state acquisition device 21 that is a brake state acquisition unit. The detection device 20 creates state information as information representing the operating state of the brake device 7. The detection device 20 estimates time t1 based on the state information. Therefore, the detection device 20 can estimate time t 1 and time t 2 more accurately.
 また、エレベーターシステム1の検出装置20は、指令時刻tの後の時刻であって、時刻t0.5にブレーキ電流値が増加した後にブレーキ電流値が減少を開始した時刻をブレーキ装置7がシーブ5の制動を開始した時刻tであると推定する。このため、検出装置20は、既存の電磁ブレーキ器9に対して適用されることができる。 Further, the detection device 20 of the elevator system 1 detects the time after the command time t 0 when the brake device 7 starts decreasing the brake current value after the brake current value increases at time t 0.5 . It is estimated that it is time t1 when braking of the sheave 5 is started. Therefore, the detection device 20 can be applied to the existing electromagnetic brake device 9.
 なお、ブレーキ装置7は、ドラム式のブレーキ装置でなく、ディスクブレーキの方式が採用されたブレーキ装置であってもよい。この場合、被制動体8は、ブレーキディスクであってもよい。可動体30は、ブレーキシューであってもよい。 Note that the brake device 7 may be a brake device that uses a disc brake system instead of a drum type brake device. In this case, the braked body 8 may be a brake disc. The movable body 30 may be a brake shoe.
 なお、エレベーターシステム1は、機械室が設けられないエレベーターシステムであってもよい。 Note that the elevator system 1 may be an elevator system that is not provided with a machine room.
 次に、図7を用いて、検出装置20を構成するハードウェアの例を説明する。
 図7は実施の形態1におけるエレベーターシステムの検出装置のハードウェア構成図である。
Next, an example of hardware constituting the detection device 20 will be described using FIG. 7.
FIG. 7 is a hardware configuration diagram of the detection device of the elevator system in the first embodiment.
 検出装置20の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア200を備える。 Each function of the detection device 20 can be realized by a processing circuit. For example, the processing circuit includes at least one processor 100a and at least one memory 100b. For example, the processing circuitry includes at least one dedicated hardware 200.
 処理回路が少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える場合、検出装置20の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ100bに格納される。少なくとも1つのプロセッサ100aは、少なくとも1つのメモリ100bに記憶されたプログラムを読み出して実行することにより、検出装置20の各機能を実現する。少なくとも1つのプロセッサ100aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ100bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。 When the processing circuit includes at least one processor 100a and at least one memory 100b, each function of the detection device 20 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the detection device 20 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP. For example, the at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, etc., a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc.
 処理回路が少なくとも1つの専用のハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、検出装置20の各機能は、それぞれ処理回路で実現される。例えば、検出装置20の各機能は、まとめて処理回路で実現される。 If the processing circuitry comprises at least one dedicated hardware 200, the processing circuitry may be implemented, for example, in a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. Ru. For example, each function of the detection device 20 is realized by a processing circuit. For example, each function of the detection device 20 is collectively realized by a processing circuit.
 検出装置20の各機能について、一部を専用のハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、回転推定器22が備える機能については専用のハードウェア200としての処理回路で実現し、回転推定器22が備える機能以外の機能については少なくとも1つのプロセッサ100aが少なくとも1つのメモリ100bに格納されたプログラムを読み出して実行することにより実現してもよい。ブレーキ状態取得器21および滑り検出器23が備える機能についても、同様である。 Regarding each function of the detection device 20, some parts may be realized by dedicated hardware 200, and other parts may be realized by software or firmware. For example, functions provided by the rotation estimator 22 are realized by a processing circuit as dedicated hardware 200, and functions other than those provided by the rotation estimator 22 are realized by at least one processor 100a and stored in at least one memory 100b. It may also be realized by reading and executing a program. The same applies to the functions provided by the brake state acquisition device 21 and the slippage detector 23.
 このように、処理回路は、ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで検出装置20の各機能を実現する。 In this way, the processing circuit realizes each function of the detection device 20 using the hardware 200, software, firmware, or a combination thereof.
実施の形態2.
 図8は実施の形態2におけるエレベーターシステムが設けられた建築物の概要を示す図である。図9は実施の形態2におけるエレベーターシステムの電磁ブレーキ器の概要を示す図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 2.
FIG. 8 is a diagram showing an outline of a building in which an elevator system according to the second embodiment is installed. FIG. 9 is a diagram schematically showing an electromagnetic brake device of an elevator system according to the second embodiment. Note that parts that are the same as or equivalent to those in Embodiment 1 are given the same reference numerals. Description of this part will be omitted.
 図8に示されるように、実施の形態2において、ブレーキ装置7には、ブレーキスイッチ34が設けられる。ブレーキスイッチ34は、ブレーキ装置7の作動状態に対応する信号を出力する。例えば、エレベーター制御装置17は、ブレーキスイッチ34からの信号に基づいて、ブレーキ装置7の作動状態を把握する。 As shown in FIG. 8, in the second embodiment, the brake device 7 is provided with a brake switch 34. The brake switch 34 outputs a signal corresponding to the operating state of the brake device 7. For example, the elevator control device 17 grasps the operating state of the brake device 7 based on a signal from the brake switch 34.
 実施の形態2において、検出装置20は、ブレーキ状態取得器21を備えなくてもよい。検出装置20は、ブレーキスイッチ34からの信号を受け付ける。検出装置20は、ブレーキスイッチ34からの信号に基づいて、ブレーキ装置7の作動状態を把握し、ロープ滑りを検出する。 In the second embodiment, the detection device 20 does not need to include the brake state acquisition device 21. Detection device 20 receives a signal from brake switch 34. The detection device 20 determines the operating state of the brake device 7 based on the signal from the brake switch 34 and detects rope slippage.
 図9に示されるように、ブレーキスイッチ34は、可動体30に隣接して設けられる。ブレーキスイッチ34は、ブレーキ装置7が吸引状態および落下状態のいずれの状態であるかを検知するスイッチである。 As shown in FIG. 9, the brake switch 34 is provided adjacent to the movable body 30. The brake switch 34 is a switch that detects whether the brake device 7 is in a suction state or a falling state.
 ブレーキスイッチ34は、可動体30が被制動体8に接触していない場合に、ブレーキスイッチ34のスイッチ部が可動体30と接触する位置に設けられる。 The brake switch 34 is provided at a position where the switch portion of the brake switch 34 contacts the movable body 30 when the movable body 30 is not in contact with the braked body 8 .
 可動体30が接触位置に存在する場合、ブレーキスイッチ34のスイッチ部は、可動体30に接触しない。この状態において、ブレーキスイッチ34の信号は、OFFとなる。即ち、ブレーキスイッチ34の信号状態は、可動体30がブレーキコイル31から十分に離れていることを示す状態として、ブレーキ装置7が落下状態にある信号状態になる。なお、ブレーキスイッチ34の位置は、可動体30が図9には図示されない被制動体8に接触した時点で可動体30から離れる位置に調整される。このため、ブレーキスイッチ34の信号がOFFになった時刻を、可動体30が被制動体8に押し付けられた時刻であるブレーキ装置7がシーブ5の制動を開始した時刻とみなすことが可能である。 When the movable body 30 is in the contact position, the switch portion of the brake switch 34 does not come into contact with the movable body 30. In this state, the signal of the brake switch 34 is turned OFF. That is, the signal state of the brake switch 34 becomes a signal state in which the brake device 7 is in a falling state, which indicates that the movable body 30 is sufficiently far away from the brake coil 31. Note that the position of the brake switch 34 is adjusted to a position where the brake switch 34 separates from the movable body 30 when the movable body 30 contacts the braked body 8, which is not shown in FIG. Therefore, the time when the signal of the brake switch 34 turns OFF can be regarded as the time when the movable body 30 is pressed against the brake target body 8, and the time when the brake device 7 starts braking the sheave 5. .
 図示されないが、可動体30がブレーキスイッチ34のスイッチ部と接触している状態において、ブレーキスイッチ34の信号は、ONとなる。即ち、ブレーキスイッチ34の信号状態は、可動体30がブレーキコイル31に吸引されていることを示す状態として、ブレーキ装置7が吸引状態にある信号状態になる。 Although not shown, when the movable body 30 is in contact with the switch portion of the brake switch 34, the signal of the brake switch 34 is turned ON. That is, the signal state of the brake switch 34 becomes a signal state in which the brake device 7 is in the attracted state, which indicates that the movable body 30 is attracted to the brake coil 31.
 次に、図10を用いて実施の形態2における検出装置20の動作を説明する。
 図10は実施の形態2におけるエレベーターシステムの回転推定器が検出する情報を示す図である。なお、図10において、エレベーターシステム1に含まれる各機器の図示は省略される。
Next, the operation of the detection device 20 in the second embodiment will be explained using FIG. 10.
FIG. 10 is a diagram showing information detected by the rotation estimator of the elevator system in the second embodiment. Note that in FIG. 10, illustration of each device included in the elevator system 1 is omitted.
 図10の上段のグラフは、時刻tとブレーキ電圧指令値との関係を表すグラフである。 The upper graph in FIG. 10 is a graph representing the relationship between time t and brake voltage command value.
 図10の下段のグラフは、時刻tとブレーキスイッチ34が出力する信号との関係を表すグラフである。ブレーキ装置7が「吸引」状態にある場合、当該信号は、ONを示す値1である。ブレーキ装置7が「落下」状態にある場合、当該信号は、OFFを示す値0である。 The lower graph in FIG. 10 is a graph representing the relationship between time t and the signal output by the brake switch 34. When the brake device 7 is in the "suction" state, the signal has a value of 1 indicating ON. When the brake device 7 is in the "fall" state, the signal has a value of 0 indicating OFF.
 指令時刻tにおいて、ブレーキ電圧指令値がVonから0に変化する。可動体30は、非接触位置から接触位置へ移動を開始する。しかしながら、可動体30が被制動体8に接触していないため、落下時間Tが経過するまでは、ブレーキスイッチ34が出力する信号は、吸引状態を示す1である。 At command time t0 , the brake voltage command value changes from Von to 0. The movable body 30 starts moving from the non-contact position to the contact position. However, since the movable body 30 is not in contact with the braked body 8, the signal output by the brake switch 34 is 1 indicating the suction state until the falling time T1 has elapsed.
 その後、可動体30が被制動体8に接触する。この時点で、ブレーキスイッチ34が出力する信号は、1から0になる。 Thereafter, the movable body 30 comes into contact with the braked body 8. At this point, the signal output by the brake switch 34 goes from 1 to 0.
 実施の形態2において、回転推定器22は、ブレーキスイッチ34からの信号に基づいて、ブレーキ装置7がシーブ5の制動を開始した時刻tを検出する。即ち、回転推定器22は、ブレーキスイッチ34からの信号が1から0に変化した時刻を時刻tとする。 In the second embodiment, the rotation estimator 22 detects time t 1 when the brake device 7 starts braking the sheave 5 based on the signal from the brake switch 34 . That is, the rotation estimator 22 sets the time when the signal from the brake switch 34 changes from 1 to 0 as time t1 .
 その後、回転推定器22は、実施の形態1と同様に、時刻tと時間Tとに基づいて時刻tを推定する。 Thereafter, the rotation estimator 22 estimates time t 2 based on time t 1 and time T 2 as in the first embodiment.
 以上で説明した実施の形態2によれば、検出装置20は、ブレーキスイッチ34からの信号に基づいて、時刻tを推定する。このため、検出装置20は、ブレーキ状態取得器21を備えることなくロープ滑りの発生を検出することができる。 According to the second embodiment described above, the detection device 20 estimates time t 1 based on the signal from the brake switch 34 . Therefore, the detection device 20 can detect the occurrence of rope slippage without having the brake state acquisition device 21.
 なお、検出装置20は、ブレーキスイッチ34のようにブレーキ装置7がシーブ5の制動を開始したことを示す信号を取得できるのであれば、ブレーキ装置7が電磁ブレーキの方式でないブレーキ装置であるエレベーターシステムに適用されることができる。 Note that, if the detection device 20 can acquire a signal indicating that the brake device 7 has started braking the sheave 5 like the brake switch 34, the elevator system in which the brake device 7 is a brake device other than an electromagnetic brake type is detected. can be applied to.
 以上のように、本開示に係る検出装置は、エレベーターシステムに利用できる。 As described above, the detection device according to the present disclosure can be used in an elevator system.
 1 エレベーターシステム、 2 昇降路、 3 巻上機、 4 軸体、 5 シーブ、 6 主ロープ、 7 ブレーキ装置、 8 被制動体、 9 電磁ブレーキ器、 10 ブレーキ制御器、 11 かご、 12 釣合おもり、 13 ガバナ、 14 ガバナシーブ、 15 ガバナロープ、 16 ガバナエンコーダ、 17 エレベーター制御装置、 20 検出装置、 21 ブレーキ状態取得器、 22 回転推定器、 23 滑り検出器、 30 可動体、 31 ブレーキコイル、 32 押付体、 33 ブレーキ電源、 34 ブレーキスイッチ、 100a プロセッサ、 100b メモリ、 200 ハードウェア 1 Elevator system, 2 Hoistway, 3 Hoisting machine, 4 Shaft, 5 Sheave, 6 Main rope, 7 Brake device, 8 Braked body, 9 Electromagnetic brake device, 10 Brake controller, 11 Car, 12 Counterweight , 13 Governor, 14 Governor sheave, 15 Governor rope, 16 Governor encoder, 17 Elevator control device, 20 Detection device, 21 Brake status acquisition device, 22 Rotation estimator, 23 Slip detector, 30 Movable body , 31 Brake coil, 32 Pressing body , 33 Brake power supply, 34 Brake switch, 100a Processor, 100b Memory, 200 Hardware

Claims (5)

  1.  かごと、
     前記かごを吊るす主ロープと、
     前記主ロープが巻き掛けられたシーブと、
     前記シーブを制動するブレーキと、
     前記かごの移動量に応じて移動信号を出力するガバナエンコーダと、
     前記主ロープが前記シーブの表面を滑るロープ滑りが発生していることを検出する検出装置と、
    を備えたエレベーターシステムであって、
    前記検出装置は、
     前記ブレーキの作動状態に基づいて前記シーブが停止した停止時刻を推定する回転推定部と、
     前記回転推定部が推定した前記停止時刻と前記ガバナエンコーダから前記かごの移動量に応じて出力される移動信号とに基づいて、前記主ロープが前記シーブの表面を滑るロープ滑りが発生していることを検出する滑り検出部と、
    を備えたエレベーターシステム。
    basket,
    a main rope for hanging the basket;
    a sheave around which the main rope is wound;
    a brake that brakes the sheave;
    a governor encoder that outputs a movement signal according to the amount of movement of the car;
    a detection device that detects that rope slippage occurs in which the main rope slides on the surface of the sheave;
    An elevator system comprising:
    The detection device includes:
    a rotation estimation unit that estimates a stop time at which the sheave stops based on the operating state of the brake;
    Rope slippage in which the main rope slides on the surface of the sheave is occurring based on the stop time estimated by the rotation estimator and a movement signal output from the governor encoder according to the amount of movement of the car. a slip detection section that detects that
    Elevator system with.
  2.  前記回転推定部は、前記ブレーキが前記シーブの制動を開始した時刻から規定の制動時間が経過した時刻を前記シーブが停止した前記停止時刻として推定し、
     前記滑り検出部は、前記ガバナエンコーダからの前記移動信号に基づいて、前記停止時刻に前記かごが移動していることを検出した場合に、前記ロープ滑りが発生していることを検出する請求項1に記載のエレベーターシステム。
    The rotation estimation unit estimates a time when a prescribed braking time has elapsed from a time when the brake started braking the sheave as the stop time when the sheave stopped;
    The slip detection unit detects that the rope slip has occurred when it is detected that the car is moving at the stop time based on the movement signal from the governor encoder. 1. The elevator system according to 1.
  3.  前記ブレーキの作動状態を示す情報として、前記ブレーキのブレーキコイルに流れる電流値と前記電流値に対応付けられた時刻とが含まれる状態情報を作成するブレーキ状態取得部、
    を更に備え、
     前記回転推定部は、前記ブレーキ状態取得部が取得した前記状態情報に基づいて、前記ブレーキが前記シーブの制動を開始した時刻を推定する請求項2に記載のエレベーターシステム。
    a brake state acquisition unit that creates state information including a current value flowing through a brake coil of the brake and a time associated with the current value as information indicating the operating state of the brake;
    further comprising;
    The elevator system according to claim 2, wherein the rotation estimation section estimates a time when the brake starts braking the sheave based on the state information acquired by the brake state acquisition section.
  4.  前記ブレーキ状態取得部は、前記ブレーキコイルに印加される電圧を遮断させる指令が前記ブレーキに送信された指令時刻を更に含む前記状態情報を作成し、
     前記回転推定部は、前記指令時刻の後の時刻であって、前記状態情報に含まれる電流値が増加した後に減少を開始した時刻を前記ブレーキが前記シーブの制動を開始した時刻であると推定する請求項3に記載のエレベーターシステム。
    The brake state acquisition unit creates the state information further including a command time when a command to cut off the voltage applied to the brake coil was sent to the brake;
    The rotation estimation unit estimates a time after the command time when the current value included in the status information starts decreasing after increasing as the time when the brake starts braking the sheave. The elevator system according to claim 3.
  5.  前記回転推定部は、前記ブレーキに設けられたブレーキスイッチの作動状態を示す信号に基づいて、前記ブレーキが前記シーブの制動を開始した時刻を推定する請求項2に記載のエレベーターシステム。 The elevator system according to claim 2, wherein the rotation estimation unit estimates the time when the brake starts braking the sheave based on a signal indicating the operating state of a brake switch provided on the brake.
PCT/JP2022/010630 2022-03-10 2022-03-10 Elevator system WO2023170873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010630 WO2023170873A1 (en) 2022-03-10 2022-03-10 Elevator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010630 WO2023170873A1 (en) 2022-03-10 2022-03-10 Elevator system

Publications (1)

Publication Number Publication Date
WO2023170873A1 true WO2023170873A1 (en) 2023-09-14

Family

ID=87936326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010630 WO2023170873A1 (en) 2022-03-10 2022-03-10 Elevator system

Country Status (1)

Country Link
WO (1) WO2023170873A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155853A1 (en) * 2007-06-21 2008-12-24 Mitsubishi Electric Corporation Safety device for elevator and rope slip detection method
WO2009078100A1 (en) * 2007-12-19 2009-06-25 Mitsubishi Electric Corporation Elevator device
JP2011032075A (en) * 2009-08-05 2011-02-17 Mitsubishi Electric Corp Elevator device
WO2018016061A1 (en) * 2016-07-22 2018-01-25 株式会社日立製作所 Elevator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155853A1 (en) * 2007-06-21 2008-12-24 Mitsubishi Electric Corporation Safety device for elevator and rope slip detection method
WO2009078100A1 (en) * 2007-12-19 2009-06-25 Mitsubishi Electric Corporation Elevator device
JP2011032075A (en) * 2009-08-05 2011-02-17 Mitsubishi Electric Corp Elevator device
WO2018016061A1 (en) * 2016-07-22 2018-01-25 株式会社日立製作所 Elevator

Similar Documents

Publication Publication Date Title
US7686139B2 (en) Elevator device
KR100931430B1 (en) Elevator device
US20100154527A1 (en) Elevator Brake Condition Testing
JP5369616B2 (en) Elevator
JP5151153B2 (en) Elevator brake test apparatus and test method thereof
JP2002068626A (en) Diagnosing method of elevator
JPWO2008155853A1 (en) Elevator safety device and rope slip detection method
JP6271956B2 (en) elevator
CN108698790B (en) Elevator and rescue operation control method
JP5117845B2 (en) Elevator equipment
US20170355560A1 (en) System and method for monitoring elevator brake capability
CN107697752B (en) Elevator device
JP2005263371A (en) Control device of elevator
WO2023170873A1 (en) Elevator system
EP3875418B1 (en) Control system for elevator
JP2010159155A (en) Elevator braking system
JP2020193050A (en) Elevator governor
JP5676310B2 (en) Elevator control device
JP6655489B2 (en) Elevator
JP4701946B2 (en) Elevator brake equipment
WO2021014559A1 (en) Elevator apparatus
EP3954641A1 (en) A method for testing machinery brakes in an elevator
JP2006008333A (en) Elevator device
WO2021090474A1 (en) Elevator device
CN112678637A (en) Method for monitoring the brake drag of an elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930854

Country of ref document: EP

Kind code of ref document: A1