WO2023169487A1 - 定位方法、系统及相关装置 - Google Patents

定位方法、系统及相关装置 Download PDF

Info

Publication number
WO2023169487A1
WO2023169487A1 PCT/CN2023/080373 CN2023080373W WO2023169487A1 WO 2023169487 A1 WO2023169487 A1 WO 2023169487A1 CN 2023080373 W CN2023080373 W CN 2023080373W WO 2023169487 A1 WO2023169487 A1 WO 2023169487A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
fingerprint
poi
fingerprints
place
Prior art date
Application number
PCT/CN2023/080373
Other languages
English (en)
French (fr)
Inventor
洪伟评
黄建仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023169487A1 publication Critical patent/WO2023169487A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings

Definitions

  • the present application relates to the field of communication technology, and in particular to positioning methods, systems and related devices.
  • Initial positioning is a positioning process that the electronic device first performs before formal positioning.
  • the electronic device can obtain the first positioning position through the first positioning. Afterwards, the electronic device can further perform fine positioning or track the user's movement trajectory based on the first positioning position. Since the first positioning and subsequent positioning processes are closely related in steps, the accuracy of the first positioning position directly affects the accuracy of subsequent positioning. Therefore, how to improve the accuracy of initial positioning has become an urgent problem in this field.
  • This application provides positioning methods, systems and related devices, which can improve positioning accuracy and enable the electronic device 100 to obtain a more accurate position of the electronic device 100 in indoor scenarios with fewer Wi-Fi APs.
  • embodiments of the present application provide a positioning method.
  • the method includes: based on collected sensor data, the electronic device determines a point of interest POI in the first place where the electronic device is located.
  • the POI is a specific location in the first place.
  • the electronic device generates a first Wi-Fi fingerprint based on the received Wi-Fi signal transmitted by one or more Wireless-Fidelity access points (Wi-Fi AP).
  • the first Wi-Fi fingerprint includes MAC address and signal strength of one or more Wi-Fi APs.
  • the electronic device matches the first Wi-Fi fingerprint with one or more second Wi-Fi fingerprints associated with the POI in the fingerprint database to obtain a combination of the first Wi-Fi fingerprint and the one or more second Wi-Fi fingerprints.
  • the fingerprint database is stored in the electronic device.
  • the fingerprint database includes multiple location information in the first place and Wi-Fi fingerprints corresponding to the multiple location information.
  • the multiple location information includes location information corresponding to the POI.
  • the multiple locations The Wi-Fi fingerprint corresponding to the information includes one or more second Wi-Fi fingerprints.
  • the electronic device determines the first location of the electronic device in the first place based on the similarity between the first Wi-Fi fingerprint and one or more second Wi-Fi fingerprints.
  • the position determined by the electronic device based on this method must be located at the POI in the first place.
  • the range of Wi-Fi fingerprints participating in matching in the fingerprint database is greatly reduced, thereby reducing the uncertainty of positioning results and improving positioning accuracy, allowing the electronic device 100 to obtain better results in indoor scenes with fewer Wi-Fi APs. Accurate electronic device 100 location.
  • the method further includes: the electronic device Based on the collected sensor data, the type of POI is determined.
  • the one or more second Wi-Fi fingerprints associated with the POI include one or more Wi-Fi fingerprints corresponding to locations of the same type as the POI.
  • the electronic device will implement the method provided in the first aspect. This can further narrow the scope of fingerprint matching, reduce the uncertainty of positioning results, and thereby improve positioning accuracy.
  • the type of POI includes one or more of stair entrances, escalator entrances, elevator entrances, and the boundary between inside and outside the building.
  • the sensor data is speed
  • the electronic device determines the type of POI based on the collected sensor data, specifically including: when the vertical component of the speed is greater than the first threshold and the horizontal component is the first value
  • the electronic device determines the type of POI as an elevator entrance based on acceleration.
  • the electronic device determines that the type of POI is an escalator entrance based on the speed.
  • the second threshold is less than the first threshold and the second value is greater than the first value.
  • the electronic device determines that the type of POI is a step entrance based on the speed, the third threshold is less than the second threshold, and the third value is greater than the first value.
  • the elevator moves in the vertical direction.
  • the speed component of the electronic device is larger in the vertical direction and smaller in the horizontal direction.
  • the escalator moves at a constant speed in a direction that forms a certain angle with the horizontal plane.
  • the speed of the electronic device has components in both the vertical and horizontal directions, and compared with the elevator, the speed of the electronic device The velocity component of is smaller in the vertical direction and larger in the horizontal direction.
  • the speed of the electronic device has components in both the vertical and horizontal directions, and compared with the elevator, the speed of the electronic device is in the vertical direction.
  • the directional component is smaller, and the speed of an electronic device has a larger component in the horizontal direction compared to an elevator.
  • the type of POI can be determined through the above characteristics.
  • the sensor data includes one or more of the following: atmospheric pressure, acceleration, angular velocity, gravity acceleration, and speed.
  • the sensor data is acceleration. Based on the collected sensor data, the electronic device determines a point of interest POI where the electronic device is in the first place.
  • the POI is a specific position in the first place, specifically including: when the vertical component of the acceleration is greater than the fourth threshold within the first time period. , when the horizontal component of the acceleration is greater than the fifth threshold in the second time period, and the first time period is a time period before the second time period, the electronic device determines that the electronic device is in a POI in the first place.
  • the electronic device when the vertical component of the acceleration is greater than the fourth threshold, the electronic device is in a state of moving across floors.
  • the horizontal component of the acceleration is greater than the fifth threshold, the electronic device is in a state of moving on the same floor. If the vertical component of the acceleration is greater than the fourth threshold in the first time period, the horizontal component of the acceleration is greater than the fifth threshold in the second time period, and the first time period is a time period before the second time period, then it can be determined Electronic equipment is moved on the same floor after being moved across floors. If the POI in the first place is the main entrance and exit in the first place, it can be determined that the electronic device is located in the POI in the first place.
  • the location information includes: floor, longitude, and latitude.
  • the electronic device determines the first location of the electronic device in the first place based on the similarity between the first Wi-Fi fingerprint and one or more second Wi-Fi fingerprints, Specifically: if there is only one second Wi-Fi fingerprint, the electronic device determines the location corresponding to the second Wi-Fi fingerprint as the first location of the electronic device in the first place; if there are multiple second Wi-Fi Fingerprint, the electronic device will pair the second Wi-Fi fingerprint with the greatest similarity to the first Wi-Fi fingerprint. The corresponding location is determined as the first location of the electronic device in the first place, or the electronic device determines based on the locations corresponding to multiple second Wi-Fi fingerprints whose similarity to the first Wi-Fi fingerprint is greater than the threshold. The first location of the electronic device in the first location.
  • the numerical value of the similarity can indicate the degree of similarity between the first Wi-Fi fingerprint and the second Wi-Fi fingerprint, thereby indicating the first location of the electronic device in the first place, and the second Wi-Fi fingerprint. The distance between the location corresponding to the Fi fingerprint.
  • the electronic device determines the first location of the electronic device in the first place based on the similarity between the first Wi-Fi fingerprint and one or more second Wi-Fi fingerprints.
  • the method further includes: displaying a route from the first location of the electronic device in the first location to the destination address input by the user, or based on the first location of the electronic device in the first location and the location of the electronic device.
  • the moving direction and moving distance determine the second position of the electronic device.
  • inventions of the present application provide an electronic device.
  • the electronic device includes: a memory and a processor.
  • the memory is used to store a computer program.
  • the processor is used to call the computer program so that the electronic device executes: based on the collected sensor data, determine The electronic device is at a point of interest POI in the first place, and the POI is a specific location in the first place.
  • a first Wi-Fi fingerprint is generated, where the first Wi-Fi fingerprint includes the MAC address and signal strength of one or more Wi-Fi APs.
  • the fingerprint database is stored in the electronic device.
  • the fingerprint database includes multiple location information in the first place and Wi-Fi fingerprints corresponding to the multiple location information.
  • the multiple location information includes location information corresponding to the POI, and the multiple location information corresponds to
  • the Wi-Fi fingerprint includes one or more second Wi-Fi fingerprints. Based on the similarity between the first Wi-Fi fingerprint and the one or more second Wi-Fi fingerprints, a first location of the electronic device in the first place is determined.
  • the processor is also configured to call a computer program to cause the electronic device to execute: based on the collected sensor data, determine the point of interest POI where the electronic device is in the first place, and the POI is the first place. After locating a specific location, the type of POI is determined based on the collected sensor data.
  • the one or more second Wi-Fi fingerprints associated with the POI include one or more Wi-Fi fingerprints corresponding to locations of the same type as the POI.
  • the type of POI includes one or more of stair entrances, escalator entrances, elevator entrances, and the boundary between inside and outside the building.
  • the sensor data is speed. Based on the collected sensor data, determining the type of POI specifically includes: when the vertical component of the speed is greater than the first threshold and the horizontal component is the first value, Based on the acceleration, the type of POI is determined to be the elevator entrance. When the vertical component of the speed is greater than the second threshold and the horizontal component is the second value, the type of POI is determined to be an escalator entrance based on the speed, the second threshold is less than the first threshold, and the second value is greater than the first value. When the vertical component of the speed is greater than the third threshold and the horizontal component is the third value, the type of POI is determined to be a step entrance based on the speed, the third threshold is less than the second threshold, and the third value is greater than the first value.
  • the sensor data includes one or more of the following: atmospheric pressure, acceleration, angular velocity, gravity acceleration, and speed.
  • the sensor data is acceleration. Based on the collected sensor data, determine the point of interest POI where the electronic device is in the first place.
  • the POI is a specific position in the first place, specifically including: when the vertical component of the acceleration is greater than the fourth threshold in the first time period, the acceleration When the horizontal component of is greater than the fifth threshold in the second time period, and the first time period is a time period before the second time period, it is determined that the electronic device is in the POI in the first place.
  • the location information includes: floor, longitude, and latitude.
  • the first location of the electronic device in the first place is determined based on the similarity between the first Wi-Fi fingerprint and one or more second Wi-Fi fingerprints, specifically including: : If there is only one second Wi-Fi fingerprint, the location corresponding to the second Wi-Fi fingerprint is determined as the first location of the electronic device in the first place.
  • the location corresponding to the second Wi-Fi fingerprint with the greatest similarity to the first Wi-Fi fingerprint is determined as the first location of the electronic device in the first place, Or, the electronic device determines the first location of the electronic device in the first place based on the locations corresponding to the plurality of second Wi-Fi fingerprints whose similarity to the first Wi-Fi fingerprint is greater than a threshold.
  • the processor is further configured to call a computer program to cause the electronic device to execute: based on the similarity between the first Wi-Fi fingerprint and the one or more second Wi-Fi fingerprints, determine whether the electronic device After the first location of the electronic device in the first location, display a route from the first location of the electronic device in the first location to the destination address input by the user, or based on the location of the electronic device in the first location The first position, as well as the moving direction and moving distance of the electronic device, determine the second position of the electronic device.
  • embodiments of the present application provide a computer program product containing instructions, which when the computer program product is run on a computer, causes the computer to execute the method of the first aspect or any implementation of the first aspect.
  • embodiments of the present application provide a computer-readable storage medium, which includes instructions.
  • the electronic device When the instructions are run on an electronic device, the electronic device causes the electronic device to execute the method of the first aspect or any one of the embodiments of the first aspect.
  • the electronic device provided in the second aspect, the computer program product provided in the third aspect, and the computer-readable storage medium provided in the fourth aspect are all used to execute the method provided by the embodiment of the present application. Therefore, the beneficial effects it can achieve can be referred to the beneficial effects in the corresponding methods, and will not be described again here.
  • Figure 1 is a schematic structural diagram of a positioning system 10 provided by an embodiment of the present application.
  • Figure 2A is a schematic structural diagram of the electronic device 100 provided by an embodiment of the present application.
  • Figure 2B is a software structure block diagram of the electronic device 100 provided by the embodiment of the present application.
  • Figure 3 is a schematic flow chart of a positioning method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a user interface provided by an embodiment of the present application.
  • Figure 5 is a schematic position diagram of the electronic device 100 provided by the embodiment of the present application.
  • Figure 6 is a schematic flow chart of another positioning method provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of accelerometer characteristics provided by an embodiment of the present application when a user uses an elevator to move across floors;
  • Figure 8 is a schematic diagram of the Wi-Fi fingerprint matching range provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of another user interface provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the positioning scenario under a single Wi-Fi AP provided by the embodiment of this application.
  • Figure 11 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only and are not to be understood as implying or implying relative importance or The latter implicitly indicates the quantity of the technical characteristics indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of this application, unless otherwise specified, “plurality” The meaning is two or more.
  • Embodiments of the present application provide positioning methods, systems and related devices.
  • the electronic device can continuously collect data through the sensor, and perform human activity recognition (HAR) based on the data collected by the sensor to determine whether the user appears at the main entrance of the building.
  • HAR human activity recognition
  • the electronic device can perform a Wireless-Fidelity (Wi-Fi) scan and receive the Wi-Fi signal sent by the Wi-Fi AP in the scanned space.
  • Wi-Fi Wireless-Fidelity
  • the electronic device can obtain the relevant information of the Wi-Fi signal and generate a Wi-Fi fingerprint based on the relevant information of the Wi-Fi signal.
  • the electronic device stores a fingerprint database, and the fingerprint database stores correspondences between multiple sets of Wi-Fi fingerprints and location information.
  • the electronic device can perform point of interest (POI) fingerprint matching based on the generated Wi-Fi fingerprint and fingerprint library.
  • POI is a specific location within the part of the building that the electronic device is interested in
  • the POI fingerprint matching is the Wi-Fi fingerprint that the electronic device will generate, corresponding to the specific location within the part of the building that the electronic device is interested in in the fingerprint database.
  • the process of comparing Wi-Fi fingerprints to obtain multiple similarity data may be the Wi-Fi fingerprint corresponding to the main entrance and exit locations of each building.
  • the electronic device can determine the location of the electronic device based on the similarity data and the first fingerprint database.
  • the electronic device can perform POI fingerprint matching based on the generated Wi-Fi fingerprint and the fingerprint database, and compare the generated Wi-Fi fingerprint with the Wi-Fi fingerprint corresponding to the main entrance and exit location of each building in the fingerprint database.
  • greatly narrowing the scope of fingerprint matching thereby improving the uniqueness of Wi-Fi fingerprints generated by electronic devices, reducing the risk of the existence of multiple Wi-Fi fingerprints with the same similarity, and each Wi-Fi fingerprint with the same similarity
  • the possibility that the corresponding location is far away improves the positioning accuracy, allowing electronic devices to obtain a more accurate location of electronic devices in indoor scenarios with fewer Wi-Fi APs.
  • the electronic device for any set of associated stored Wi-Fi fingerprints and location information in the fingerprint database, the electronic device also stores POI types corresponding to the two.
  • the POI type can be used to indicate whether the location indicated by the location information is located at the main entrance and exit of the building, and the type of each main entrance and exit of the building.
  • the types of main entrances and exits of buildings can include: stairs, escalators, and lifts.
  • the electronic device may determine the type of entrance where the electronic device is located based on the collected sensor data.
  • the electronic device can compare the generated Wi-Fi fingerprint with the Wi-Fi fingerprint corresponding to the main entrance and exit of the same type as the entrance where the electronic device is located in the fingerprint database. In this way, the scope of fingerprint matching can be further narrowed and the positioning accuracy can be improved.
  • Figure 1 shows a positioning system 10 provided by an embodiment of the present application.
  • the positioning system 10 may include: an electronic device 100, and one or more Wi-Fi APs.
  • the electronic device 100 may be a mobile phone, a tablet computer, a wearable device, a notebook computer, a netbook, a personal digital assistant (personal digital assistant, PDA) and other portable electronic devices.
  • portable electronic devices include, but are not limited to, portable electronic devices equipped with iOS, Android, Microsoft, or other operating systems.
  • Wi-Fi AP is a device that can convert wired network signals into Wi-Fi signals and transmit the Wi-Fi signals into space for electronic devices to access the network and access network resources.
  • Wi-Fi AP can be implemented as a wireless router.
  • the electronic device 100 and the Wi-Fi AP can communicate based on Wi-Fi communication technology.
  • the electronic device 100 and the Wi-Fi AP may have a Wi-Fi communication module.
  • Wi-Fi AP can continuously communicate to the air through Wi-Fi communication module
  • the electronic device 100 can perform Wi-Fi scanning through the Wi-Fi communication module to search for and receive Wi-Fi signals emitted in space by nearby Wi-Fi APs.
  • the electronic device 100 can simultaneously receive Wi-Fi signals sent by multiple Wi-Fi APs based on Wi-Fi communication technology and establish connections with multiple Wi-Fi APs.
  • Wi-Fi AP can keep the Wi-Fi communication function always on and continue to transmit Wi-Fi signals into the space.
  • Wi-Fi signals can carry the media access control (MAC) address of the Wi-Fi AP that transmits the Wi-Fi signal.
  • MAC media access control
  • the electronic device 100 can continuously collect sensor data.
  • the sensor data can be, for example, atmospheric pressure, acceleration, angular velocity, gravity acceleration, etc.
  • the electronic device 100 can perform HAR based on the collected sensor data to determine whether the user appears at the main entrance of the building.
  • the electronic device 100 can perform a Wi-Fi scan, search for and receive Wi-Fi signals sent by nearby Wi-Fi APs.
  • the electronic device 100 can obtain relevant information of the Wi-Fi signal and generate a Wi-Fi fingerprint based on the relevant information of the Wi-Fi signal.
  • the electronic device 100 may store a fingerprint database, and the fingerprint database stores correspondences between multiple sets of Wi-Fi fingerprints and location information.
  • the electronic device 100 for any set of associated stored Wi-Fi fingerprints and location information in the fingerprint database, the electronic device 100 also stores POI types corresponding to the two.
  • the POI type can be used to indicate whether the location indicated by the location information is located at the main entrance and exit of the building, and the type of each main entrance and exit of the building.
  • the electronic device 100 can perform POI fingerprint matching based on the generated Wi-Fi fingerprint and fingerprint database to determine the location of the electronic device 100, thereby realizing the positioning process in an indoor scene.
  • the subsequent method embodiments of this application will specifically introduce the process of the electronic device 100 performing the above steps.
  • FIG. 2A shows a schematic structural diagram of the electronic device 100.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (SIM) card interface 195, etc.
  • a processor 110 an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figures, or some components may be combined, some components may be separated, or some components may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) wait.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • NPU neural-network processing unit
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization. For example: Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module 150 can provide solutions for wireless communication including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be disposed in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs sound signals through audio devices (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194.
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110 and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as Wi-Fi network), Bluetooth (bluetooth, BT), global navigation satellite system (global navigation satellite system, GNSS) ), frequency modulation (FM), near field communication (NFC), infrared (IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • Bluetooth blue, BT
  • global navigation satellite system global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TD-SCDMA time division multiple access (time division multiple access) -division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC, FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 100 can communicate with the Wi-Fi AP through the Wi-Fi communication module in the wireless communication module 160.
  • the electronic device 100 can receive the Wi-Fi signal transmitted by the Wi-Fi AP in space through the wireless communication module 160.
  • the electronic device 100 can obtain relevant information of the Wi-Fi signal, and the relevant information of the Wi-Fi signal can be used by the electronic device 100 to generate a Wi-Fi fingerprint.
  • the electronic device 100 implements display functions through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is an image processing microprocessor and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the electronic device 100 may display prompt information on the display screen 194, and the prompt information may be used to indicate the location of the electronic device 100.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement the data storage function. Such as saving music, videos, etc. files in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes instructions stored in the internal memory 121 to execute various functional applications and data processing of the electronic device 100 .
  • the internal memory 121 may include a program storage area and a data storage area. Among them, the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area may store data created during use of the electronic device 100 (such as audio data, phone book, etc.).
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the electronic device 100 may store a fingerprint database, and the fingerprint database stores multiple sets of correspondences between Wi-Fi fingerprints and location information.
  • the electronic device 100 also stores POI types corresponding to the two.
  • the POI type can be used to indicate whether the location indicated by the location information is located at the main entrance and exit of the building, and the type of each main entrance and exit of the building.
  • the electronic device 100 can perform POI fingerprint matching based on the generated Wi-Fi fingerprint and the fingerprint database, thereby determining the location of the electronic device 100 .
  • the pressure sensor 180A is used to sense pressure signals and can convert the pressure signals into electrical signals.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A there are many types of pressure sensors 180A, such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc.
  • a capacitive pressure sensor may include at least two parallel plates of conductive material.
  • the electronic device 100 determines the intensity of the pressure based on the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also measure the signal based on the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch location but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold is applied to the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the motion posture of the electronic device 100 .
  • the angular velocity of electronic device 100 about three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization. For example, when the shutter is pressed, the gyro sensor 180B detects the angle at which the electronic device 100 shakes, calculates the distance that the lens module needs to compensate based on the angle, and allows the lens to offset the shake of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • Air pressure sensor 180C is used to measure air pressure. In some embodiments, the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • Magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 may utilize the magnetic sensor 180D to detect opening and closing of the flip holster.
  • the electronic device 100 may detect the opening and closing of the flip according to the magnetic sensor 180D. Then, based on the detected opening and closing status of the leather case or the opening and closing status of the flip cover, features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices and be used in horizontal and vertical screen switching, pedometer and other applications.
  • Distance sensor 180F for measuring distance.
  • Electronic device 100 can measure distance via infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may utilize the distance sensor 180F to measure distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light outwardly through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the electronic device 100 can use the proximity light sensor 180G to detect when the user holds the electronic device 100 close to the ear for talking, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in holster mode, and pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket to prevent accidental touching.
  • the electronic device 100 can continuously collect the above-mentioned sensor data, and perform HAR based on the sensor data to determine whether the user appears at the main entrance of the building. In some embodiments, the electronic device 100 performs HAR based on sensor data, which can not only determine whether the user appears at the main entrance of the building, but also determine the location of the entrance where the electronic device 100 is located while determining that the user appears at the main entrance of the building. type.
  • Subsequent method embodiments of this application will perform HAR on the electronic device 100 based on sensor data, determine whether the user appears at the main entrance of the building, and determine the entrance where the electronic device 100 is located while determining that the user appears at the main entrance of the building.
  • the types of processes are introduced in detail.
  • the software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture.
  • the embodiment of this application takes the Android system with a layered architecture as an example to illustrate the software structure of the electronic device 100 .
  • FIG. 2B is a software structure block diagram of the electronic device 100 according to the embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has clear roles and division of labor.
  • the layers communicate through software interfaces.
  • the Android system is divided into four layers, from top to bottom: application layer, application framework layer, Android runtime and system libraries, and kernel layer.
  • the application layer can include a series of application packages.
  • the application package can include camera, calendar, map, WLAN, music, short message, gallery, call, navigation, Bluetooth, video and other applications.
  • positioning applications may include the above-mentioned map and navigation applications.
  • the electronic device 100 may run a positioning application, and display the location of the electronic device 100 on the user interface during running of the positioning application.
  • the application framework layer provides an application programming interface (API) and programming framework for applications in the application layer.
  • API application programming interface
  • the application framework layer includes some predefined functions.
  • the application framework layer can include a window manager, content provider, view system, phone manager, resource manager, notification manager, etc.
  • a window manager is used to manage window programs.
  • the window manager can obtain the display size, determine whether there is a status bar, lock the screen, capture the screen, etc.
  • Content providers are used to store and retrieve data and make this data accessible to applications.
  • Said data can include videos, images, audio, calls made and received, browsing history and bookmarks, phone books, etc.
  • the view system includes visual controls, such as controls that display text, controls that display pictures, etc.
  • a view system can be used to build applications.
  • the display interface can be composed of one or more views.
  • a display interface including a text message notification icon may include a view for displaying text and a view for displaying pictures.
  • the phone manager is used to provide communication functions of the electronic device 100 .
  • call status management including connected, hung up, etc.
  • the resource manager provides various resources to applications, such as localized strings, icons, pictures, layout files, video files, etc.
  • the notification manager allows applications to display notification information in the status bar, which can be used to convey notification-type messages and can automatically disappear after a short stay without user interaction.
  • the notification manager is used to notify download completion, message reminders, etc.
  • the notification manager can also be notifications that appear in the status bar at the top of the system in the form of charts or scroll bar text, such as notifications for applications running in the background, or notifications that appear on the screen in the form of conversation windows. For example, text information is prompted in the status bar, a beep sounds, the electronic device vibrates, the indicator light flashes, etc.
  • Android Runtime includes core libraries and virtual machines. Android runtime is responsible for the scheduling and management of the Android system.
  • the core library contains two parts: one is the functional functions that need to be called by the Java language, and the other is the core library of Android.
  • the application layer and application framework layer run in virtual machines.
  • the virtual machine executes the java files of the application layer and application framework layer into binary files.
  • the virtual machine is used to perform object life cycle management, stack management, thread management, security and exception management, and garbage collection and other functions.
  • System libraries can include multiple functional modules. For example: surface manager (surface manager), media libraries (Media Libraries), 3D graphics processing libraries (for example: OpenGL ES), 2D graphics engines (for example: SGL), etc.
  • the surface manager is used to manage the display subsystem and provides the fusion of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as static image files, etc.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, composition, and layer processing.
  • 2D Graphics Engine is a drawing engine for 2D drawing.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display driver, camera driver, audio driver, and sensor driver.
  • the following exemplifies the workflow of the software and hardware of the electronic device 100 in conjunction with capturing the photographing scene.
  • the corresponding hardware interrupt is sent to the kernel layer.
  • the kernel layer processes touch operations into raw input events (including touch coordinates, timestamps of touch operations, and other information). Raw input events are stored at the kernel level.
  • the application framework layer obtains the original input event from the kernel layer and identifies the control corresponding to the input event. Taking the touch operation as a touch click operation and the control corresponding to the click operation as a camera application icon control as an example, the camera application calls the interface of the application framework layer to start the camera application, and then starts the camera driver by calling the kernel layer. Camera 193 captures still images or video.
  • This application provides positioning methods, systems and related devices. By implementing the positioning method provided by this application, the electronic device 100 can obtain a more accurate position of the electronic device 100 .
  • the implementation process of the positioning method is introduced in detail below.
  • FIG. 3 exemplarily shows a schematic flowchart of a positioning method provided by an embodiment of the present application.
  • the method may include steps S101 to S104. in:
  • the electronic device 100 receives a user's operation to start a positioning application.
  • the above-mentioned operation by the user to start the positioning application may be an input operation (for example, a touch operation) by the user on the positioning application icon on the interface of the electronic device 100 .
  • the electronic device 100 can also start the positioning application through other methods.
  • the positioning application is started through voice commands, preset gestures, electronic device 100 self-starting, etc.
  • the embodiment of the present application does not limit the specific manner in which the electronic device 100 starts the positioning application.
  • the electronic device 100 performs Wi-Fi scanning and receives the Wi-Fi signal sent by the Wi-Fi AP.
  • Wi-Fi AP is a device that can convert wired network signals into Wi-Fi signals and transmit the Wi-Fi signals into space for electronic devices to access the network and access network resources.
  • Wi-Fi AP can continuously transmit Wi-Fi signals into the space, and the Wi-Fi signals transmitted by Wi-Fi AP carry the MAC address of the Wi-Fi AP.
  • Wi-Fi scanning is the process in which the electronic device 100 searches for Wi-Fi signals emitted by Wi-Fi APs in space.
  • the electronic device 100 may receive the searched Wi-Fi signal.
  • the electronic device 100 can receive multiple Wi-Fi signals.
  • the electronic device 100 obtains relevant information of the Wi-Fi signal and generates a Wi-Fi fingerprint based on the relevant information of the Wi-Fi signal.
  • the related information of the Wi-Fi signal may include the signal strength of the Wi-Fi signal received by the electronic device 100 and the MAC address of the Wi-Fi AP that sends the Wi-Fi signal.
  • the electronic device 100 can receive multiple Wi-Fi signals and obtain relevant information of multiple Wi-Fi signals.
  • the electronic device 100 can aggregate the relevant information of the above multiple Wi-Fi signals to generate a Wi-Fi fingerprint.
  • Wi-Fi fingerprint can be expressed as the following Table 1:
  • Table 1 shows the Wi-Fi fingerprint generated by the electronic device 100 based on the signal strength of the Wi-Fi signals transmitted by n Wi-Fi APs that can be received and the MAC address.
  • the signal strength of the Wi-Fi signal transmitted by the Wi-Fi AP1 received by the electronic device 100 may be RSSI 1
  • the MAC address of the Wi-Fi AP1 may be MAC 1.
  • the signal strength of the Wi-Fi signal transmitted by the electronic device 100 received by the Wi-Fi AP2 may be RSSI 2
  • the MAC address of the Wi-Fi AP1 may be MAC 2.
  • the signal strength of the Wi-Fi signal transmitted by the Wi-Fi APn received by the electronic device 100 may be RSSI n
  • the MAC address of the Wi-Fi AP1 may be MAC n.
  • Wi-Fi fingerprints shown in Table 1 are only examples.
  • the Wi-Fi fingerprint generated by electronic device 100 may include more information.
  • the embodiment of the present application does not limit the specific form of the Wi-Fi fingerprint generated by the electronic device 100.
  • the electronic device 100 performs fingerprint matching based on the generated Wi-Fi fingerprint and the first fingerprint database to determine the location of the electronic device 100.
  • the electronic device 100 stores a first fingerprint database, which stores multiple sets of correspondences between Wi-Fi fingerprints and location information.
  • the location information in the first fingerprint database is used to indicate the sampling location in the building.
  • the location information in the first fingerprint database may include one or more of the following: floor, longitude, and latitude.
  • the first fingerprint database stored by the electronic device 100 can be expressed as the following Table 2:
  • Table 2 shows the first fingerprint database stored by the electronic device 100 .
  • the first fingerprint database stores different location information in the building (for example, floors (for example, floor F1, floor F2), longitude and latitude, etc. location information) and Wi-Fi fingerprints corresponding to the location information.
  • the electronic device 100 can store location information 1, that is, the floor is F1, the longitude is LON1, the latitude is LAT1, and the Wi-Fi fingerprint information corresponding to the location information 1.
  • the Wi-Fi fingerprint information contains the MAC addresses of n Wi-Fi APs, and when the electronic device 100 is at the floor F1, the longitude LON1, and the latitude LAT1, it can receive the Wi-Fi signals transmitted by the n Wi-Fi APs. -Fi signal strength.
  • the Wi-Fi fingerprint information includes the MAC address of Wi-Fi AP1: MAC1, and when the electronic device 100 is located at the floor F1, the longitude LON1, and the latitude LAT1, it can receive the Wi-Fi emitted by the Wi-Fi AP1.
  • the signal strength of the Fi signal is RSSI1,1.
  • the Wi-Fi fingerprint information includes the MAC address of the Wi-Fi APn: MAC N, and when the electronic device 100 is at the floor F1, the longitude LON1, and the latitude LAT1, it can receive the Wi-Fi transmitted by the Wi-Fi APn.
  • the signal strength of the signal is RSSI1,N.
  • the electronic device 100 can store location information K+1, that is, the floor is F2, the longitude is LON K+1, and the latitude is LAT K+1. and the Wi-Fi fingerprint information corresponding to the location information K+1.
  • the Wi-Fi fingerprint information contains the MAC addresses of n Wi-Fi APs, and when the electronic device 100 is located at the floor F2, the longitude LON K+1, and the latitude LAT K+1, it can receive n Wi-Fi APs. -The signal strength of the Wi-Fi signal transmitted by the Fi AP.
  • the Wi-Fi fingerprint information includes the MAC address of Wi-Fi AP1: MAC1, and when the electronic device 100 is located at the floor F2, the longitude LON K+1, and the latitude LAT K+1, it can receive Wi-Fi
  • the signal strength of the Wi-Fi signal transmitted by Fi AP1 is RSSIK+1,1.
  • the Wi-Fi fingerprint information includes the MAC address of the Wi-Fi APn: MAC N, and when the electronic device 100 is on the floor F2, the longitude LON K+1, and the latitude LAT K+1, it can receive Wi-Fi.
  • the signal strength of the Wi-Fi signal transmitted by APn is RSSIK+1,N.
  • the first fingerprint library shown in Table 2 is only an example.
  • the first fingerprint library stored by the electronic device 100 may include more information.
  • the embodiment of the present application does not limit the specific form of the stored first fingerprint database.
  • Fingerprint matching is a process in which the electronic device 100 determines the location of the electronic device 100 by comparing the generated Wi-Fi fingerprint with the Wi-Fi fingerprint stored in the fingerprint database.
  • the electronic device 100 can compare the generated Wi-Fi fingerprints one by one with the Wi-Fi fingerprints in the first fingerprint database to obtain multiple similarity data.
  • the electronic device 100 can implement the above comparison process based on a k-nearest neighbors algorithm (KNN).
  • KNN k-nearest neighbors algorithm
  • the similarity data obtained by the electronic device 100 can be expressed as the following Table 3:
  • Table 3 shows the similarity data obtained by performing fingerprint matching on the electronic device 100 .
  • the similarity data includes different location information in the building (for example, floors (for example, floor F1, floor F2), longitude and latitude, etc. location information), the Wi-Fi fingerprint corresponding to the location information, and the electronic device 100 through Compare the Wi-Fi fingerprint corresponding to the location information and the similarity obtained by the generated Wi-Fi fingerprint.
  • the electronic device 100 can store location information 1, that is, the floor is F1, the longitude is 121.56428723302284, the latitude is 25.033852017792135, the Wi-Fi fingerprint information corresponding to the location information 1, and the corresponding location information 1 by comparison.
  • the similarity obtained by the Wi-Fi fingerprint and the generated Wi-Fi fingerprint is 0.91.
  • the above Wi-Fi fingerprint information contains the MAC addresses of n Wi-Fi APs, and when the electronic device 100 is located at the floor F1, the longitude LON1, and the latitude LAT1, it can receive the Wi-Fi signals transmitted by the n Wi-Fi APs. -Fi signal strength.
  • the Wi-Fi fingerprint information includes the MAC address of Wi-Fi AP1: MAC1, and when the electronic device 100 is located at the floor F1, the longitude 121.56428723302284, and the latitude 25.033852017792135, it can receive the Wi-Fi emitted by the Wi-Fi AP1.
  • the signal strength of the Fi signal is -99.
  • the Wi-Fi fingerprint information includes the MAC address of the Wi-Fi APn: MAC N, and when the electronic device 100 is on the floor F1, the longitude is 121.56428723302284, and the latitude is 25.033852017792135, it can receive the Wi-Fi transmitted by the Wi-Fi APn.
  • the signal strength of the signal is -77.
  • the electronic device 100 can store location information 5, that is, the floor is F2, the longitude is 121.56409813730447, the latitude is 25.033985680738397, the Wi-Fi fingerprint information corresponding to the location information 5, and by comparing the Wi-Fi fingerprint corresponding to the location information 5, And, the similarity obtained by the generated Wi-Fi fingerprint is 0.11.
  • the above Wi-Fi fingerprint information contains the MAC addresses of n Wi-Fi APs, and when the electronic device 100 is at the floor F2, the longitude LON1, and the latitude LAT1, it can receive the Wi-Fi signals transmitted by the n Wi-Fi APs. -Fi signal strength.
  • the Wi-Fi fingerprint information includes the MAC address of Wi-Fi AP1: MAC1, and when the electronic device 100 is on the floor F2, the longitude is 121.56409813730447, and the latitude is 25.033985680738397, it can receive the Wi-Fi emitted by the Wi-Fi AP1.
  • the Fi signal has a signal strength of -50.
  • the Wi-Fi fingerprint information includes the MAC address of the Wi-Fi APn: MAC N, and when the electronic device 100 is on the floor F2, the longitude is 121.56409813730447, and the latitude is 25.033985680738397, it can receive the Wi-Fi transmitted by the Wi-Fi APn
  • the signal strength of the signal is -63.
  • the similarity data obtained by performing fingerprint matching on the electronic device 100 shown in Table 3 is only an example.
  • the embodiment of the present application does not limit the specific form of the similarity data obtained by performing fingerprint matching on the electronic device 100 .
  • the electronic device 100 can determine the location of the electronic device 100 based on the similarity data and the first fingerprint database.
  • the electronic device 100 may determine the location corresponding to the Wi-Fi fingerprint most similar to the generated Wi-Fi fingerprint in the fingerprint library as the first positioning location.
  • the electronic device 100 may determine the location information of the electronic device 100 based on the location information corresponding to the Wi-Fi fingerprint generated by the electronic device 100 with a similarity greater than a threshold in the first fingerprint database, thereby The location of the electronic device 100 is determined. For example, the electronic device 100 may determine the floor corresponding to the Wi-Fi fingerprint with the highest similarity as the floor where the electronic device 100 is located. The electronic device 100 may obtain the longitude data and latitude data corresponding to the Wi-Fi fingerprints generated by the electronic device 100 with a similarity greater than a threshold in the first fingerprint database, and determine the arithmetic mean of the longitude and latitude as the electronic device 100 The longitude and latitude of your location.
  • the electronic device 100 can determine F1 as the floor on which the electronic device 100 is located.
  • the above similarity threshold can be 0.7. Similarity values greater than 0.7 in Table 3 include 0.91, 0.88, and 0.77.
  • the electronic device 100 can determine the floor on which the electronic device 100 is located and the latitude and longitude of the location of the electronic device 100, thereby determining the location of the electronic device 100.
  • the electronic device 100 can determine the position of the electronic device 100 as the position where the electronic device 100 is located.
  • the electronic device 100 may determine the position of the electronic device 100 obtained by performing steps S101 to S104 as the first positioning position, thereby implementing the first positioning process.
  • the electronic device 100 may display a user interface on the screen to indicate the location of the electronic device 100 .
  • the electronic device 100 may display the user interface 210 shown in FIG. 4 on the screen.
  • the user interface 210 includes a floor identifier 211 and an orientation identifier 212 .
  • the floor identification 211 may be used to indicate the floor where the electronic device 100 is located in the building. For example, when it is determined that the floor where the electronic device 100 is located is the B2 floor, the floor identification 211 may be correspondingly implemented as text: "B2".
  • the orientation indicator 212 may be used to indicate the orientation of the electronic device 100 in the horizontal direction.
  • the position range indicated by the orientation mark 212 in Figure 4 is relatively large. The reason is that when using the positioning method provided in steps S101 to S104, if the number of Wi-Fi APs near the electronic device 100 is small, the electronic device 100 will perform a Wi-Fi scan. The number of Wi-Fi signals that can be received is small, and the Wi-Fi fingerprint generated by the electronic device 100 contains a small amount of relevant information about the Wi-Fi signals. At this time, when the electronic device 100 performs fingerprint matching based on the generated Wi-Fi fingerprint, there may be multiple Wi-Fi fingerprints that are highly similar to the generated Wi-Fi fingerprint in the fingerprint database as shown in Figure 5, and each Wi-Fi fingerprint -The problem that the location corresponding to the Fi fingerprint is far away.
  • the electronic device 100 will obtain the locations of multiple electronic devices 100, and it is difficult to Determine which position is where the electronic device 100 is actually located. At this time, determining the position of the electronic device 100 as the first positioning position will also affect the subsequent positioning process.
  • FIG. 6 exemplarily shows a schematic flowchart of a positioning method provided by an embodiment of the present application.
  • the method may include steps S201 to S205. in:
  • the electronic device 100 obtains sensor data.
  • sensors in the electronic device 100 such as a barometer, an accelerometer, a gyroscope, a gravity sensor, and a speed sensor.
  • Electronic devices can collect sensor data through one or more sensors.
  • the sensor data may include one or more of the atmospheric pressure collected by the barometer, the acceleration collected by the accelerometer, the angular velocity collected by the gyroscope, the gravitational acceleration collected by the gravity sensor, and the speed collected by the speed sensor.
  • the electronic device 100 determines that the user appears at the main entrance and exit of the building based on the sensor data.
  • the main entrances and exits of a building may include entrances and exits in the building for users to move across floors (such as stairway entrances, escalator entrances, and elevator entrances).
  • the electronic device 100 can determine whether the user has moved across floors based on the sensor data, and then moved on the same floor after moving across floors. If the electronic device 100 determines that the user moved across floors and then moved on the same floor after moving across floors, the electronic device 100 may determine that the user appears at the main entrance of the building.
  • the sensor data collected by the electronic device 100 is acceleration. If the vertical component of the acceleration collected by the electronic device 100 in the first time period is greater than the first threshold, and the horizontal component of the acceleration collected by the electronic device 100 in the second time period is greater than the second threshold, and the first time period is a time period before the second time period, the electronic device 100 can determine that the user moved across floors, and then moved on the same floor after moving across floors, and further determines that the user appears at the main entrance of the building.
  • the sensor data collected by the electronic device 100 is acceleration.
  • Electronic equipment 100 can The acceleration is converted into the time-frequency domain to obtain acceleration data in the frequency domain. If the acceleration data in the frequency domain in the third time period is within the preset frequency range, the electronic device 100 can determine that the user moved across floors, and then moved on the same floor after moving across floors, and then determine that the user moved across floors. Appear at the main entrance to a building.
  • the sensor data collected by the electronic device 100 is acceleration.
  • the electronic device 100 can determine the type of entrance where the user is located while determining that the user appears at the main entrance of the building based on the sensor data. Specifically, if the change trend of acceleration meets any of the situations shown in FIG. 7 , the electronic device 100 can determine that the type of entrance where the user is located is an elevator entrance. Specifically, if the acceleration is less than the lower threshold in the fourth time period and greater than the upper threshold in the fifth time period, and the fourth time period is a time period before the fifth time period, the electronic device 100 can determine the entrance and exit where the user is.
  • the type is an elevator entrance, and the elevator is moving upward.
  • the electronic device 100 may determine that the type of entrance where the user is located is The elevator entrance, and the elevator is moving downwards. If the electronic device 100 determines twice that the elevator is moving upward according to the above method during the eighth time period, the electronic device 100 can determine that the type of entrance where the user is located is an elevator entrance, and that the elevator is in the eighth time period. A start-up and docking process is implemented within the segment.
  • the electronic device 100 can perform HAR based on sensor data to determine whether the user has moved across floors, and then moved on the same floor after moving across floors. Specifically, the electronic device 100 can process the sensor data to obtain the height change characteristics and horizontal movement characteristics of the user's activities. The electronic device 100 can determine whether the user has moved across floors based on the height change characteristics, and whether the user has moved on the same floor based on the horizontal movement characteristics. Specifically, for the height change characteristics, the electronic device 100 can process the atmospheric pressure. Get the height change value. If the height change value is greater than the third threshold, the electronic device 100 may determine that the user has moved across floors. For the horizontal movement feature, the electronic device 100 can process the acceleration to obtain the horizontal component and the vertical component of the acceleration.
  • the electronic device 100 can determine that the user has moved on the same floor. Therefore, if the electronic device 100 determines that the user moved across floors and then moved on the same floor after moving across floors, the electronic device 100 can determine that the user appears at the main entrance of the building.
  • the electronic device 100 can also input sensor data into a pre-trained machine learning model. In response to the output of the machine learning model, the electronic device 100 can determine whether the user has moved across floors, and perform the cross-floor movement. After moving across floors, the user moved on the same floor to determine whether the user appeared at the main entrance of the building.
  • the main entrance to a building may also include an entrance that serves as a boundary between the inside of the building and the outside of the building.
  • the electronic device 100 can determine whether the user moves from outside the building to inside the building based on the sensor data. If the user moves from outside the building to inside the building, the electronic device 100 can determine that the user appears at the main entrance of the building. For example, the electronic device 100 can obtain the ambient light intensity continuously collected by the ambient light sensor. The electronic device 100 can process the ambient light intensity and calculate a sliding window average value of the light intensity value based on the ambient light intensity. In a possible implementation, the electronic device 100 can compare the sliding window average value of the light intensity value with the preset light intensity threshold. If the sliding window average value of the light intensity value is less than the light intensity threshold, the electronic device 100 can Determine the user's movement from outside the building to the building, and then determine the user's appearance at the main entrance and exit of the building.
  • the electronic device 100 may also determine the type of entrance where the user is located based on the sensor data.
  • Types of entrances and exits can include stairways, escalators, lifts, etc.
  • the type of entrance or exit can also be Including the boundary between the inside and outside of the building.
  • the sensor data is speed.
  • the method for the electronic device 100 to determine the type of entrance and exit where the user is based on the sensor data is as follows: when the vertical component of the speed is greater than the first threshold and the horizontal component is the first value, the electronic device can determine that the type of the entrance and exit where the user is is lift. Ladder entrance. When the vertical component of the speed is greater than the second threshold, the horizontal component is the second value, the second threshold is less than the first threshold, and the second value is greater than the first value, the electronic device may determine that the type of entrance where the user is located is an escalator. mouth.
  • the electronic device may determine that the type of the entrance where the user is located is a ladder. mouth.
  • the electronic device 100 can input sensor data into a trained machine learning model, and in response to the output of the machine learning model, the electronic device 100 can determine the type of entrance where the user is located.
  • the electronic device 100 performs Wi-Fi scanning and receives Wi-Fi signals transmitted by the Wi-Fi AP.
  • Wi-Fi AP is a device that can convert wired network signals into Wi-Fi signals and transmit the Wi-Fi signals into space for electronic devices to access the network and access network resources.
  • Wi-Fi AP can continuously transmit Wi-Fi signals into the space, and the Wi-Fi signals transmitted by Wi-Fi AP carry the MAC address of the Wi-Fi AP.
  • Wi-Fi scanning is the process in which the electronic device 100 searches for Wi-Fi signals emitted by Wi-Fi APs in space.
  • the electronic device 100 may receive the searched Wi-Fi signal.
  • the electronic device 100 can receive multiple Wi-Fi signals. For example, if there are three Wi-Fi APs deployed in the indoor environment where the electronic device 100 is located, and the electronic device 100 is located within the signal coverage of the three Wi-Fi APs, then the electronic device can perform Wi-Fi scanning. Received Wi-Fi signals from 3 Wi-Fi APs.
  • the electronic device 100 obtains relevant information of the Wi-Fi signal and generates a Wi-Fi fingerprint based on the relevant information of the Wi-Fi signal.
  • the related information of the Wi-Fi signal may include the signal strength of the Wi-Fi signal received by the electronic device 100 and the MAC address of the Wi-Fi AP that sends the Wi-Fi signal.
  • the electronic device 100 can receive multiple Wi-Fi signals and obtain relevant information of multiple Wi-Fi signals.
  • the electronic device 100 can aggregate the relevant information of the above multiple Wi-Fi signals to generate a Wi-Fi fingerprint.
  • the electronic device 100 performs POI fingerprint matching based on the generated Wi-Fi fingerprint and the second fingerprint database to determine the location of the electronic device 100.
  • the electronic device 100 stores a second fingerprint database, and the second fingerprint database stores correspondences between multiple sets of Wi-Fi fingerprints and location information.
  • the location information in the second fingerprint database is used to indicate the sampling location in the building.
  • the location information in the second fingerprint database may include one or more of the following: floor, longitude, and latitude.
  • the second fingerprint database also stores POI types corresponding to the two.
  • the POI type can be used to indicate whether the location indicated by the location information is located at the main entrance and exit of the building, and the type of each main entrance and exit of the building.
  • a POI type value of 0 indicates that the sampling location is not located at the main entrance of the building.
  • POI type values greater than 0 indicate that the sampling location is located at the main entrance and exit of the building.
  • a POI type value of 1 indicates that the type of entrance and exit where the sampling location is located is a ladder.
  • a POI type value of 2 indicates that the type of entrance and exit where the sampling location is located is an escalator.
  • a POI type value of 3 indicates that the type of entrance and exit where the sampling location is located is an elevator.
  • Table 4 The second fingerprint database stored by the electronic device 100 can be expressed as the following Table 4:
  • Table 4 shows the second fingerprint database stored by the electronic device 100 .
  • the second fingerprint database stores different location information in the building (for example, floors (for example, floor F1, floor F2), longitude and latitude, etc. location information), the POI type at the location information, and the corresponding POI type at the location information. Wi-Fi fingerprint.
  • the electronic device 100 can store location information 1, that is, the floor is F1, the longitude is LON1, the latitude is LAT1, the POI type at the location information 1, and the Wi-Fi fingerprint information corresponding to the location information 1 .
  • the above POI types can be implemented in numerical, text, etc. forms.
  • the POI type at location information 1 can be implemented as a value "0", indicating that location information 1 is not located at the main entrance of the building.
  • the above Wi-Fi fingerprint information contains the MAC addresses of n Wi-Fi APs, and when the electronic device 100 is at the floor F1, the longitude LON1, and the latitude LAT1, it can receive the Wi-Fi signals transmitted by the n Wi-Fi APs. -Fi signal strength.
  • the Wi-Fi fingerprint information includes the MAC address of Wi-Fi AP1: MAC1, and when the electronic device 100 is located at the floor F1, the longitude LON1, and the latitude LAT1, it can receive the Wi-Fi emitted by the Wi-Fi AP1.
  • the signal strength of the Fi signal is RSSI1,1.
  • the Wi-Fi fingerprint information includes the MAC address of the Wi-Fi APn: MAC N, and when the electronic device 100 is at the floor F1, the longitude LON1, and the latitude LAT1, it can receive the Wi-Fi transmitted by the Wi-Fi APn.
  • the signal strength of the signal is RSSI1,N.
  • the electronic device 100 may store location information K+1, that is, the floor is F2, the longitude is LON K+1, the latitude is LAT K+1, the POI type at the location information K+1, and the corresponding location information K+1 Wi-Fi fingerprint information.
  • the above POI types can be implemented in numerical, text, etc. forms.
  • the POI type at position information K+1 can be implemented as the value "2", indicating that position information 1 is located at the main entrance of the building, and the type of the main entrance is an escalator.
  • the above Wi-Fi fingerprint information contains the MAC addresses of n Wi-Fi APs, and when the electronic device 100 is at the floor F2, the longitude LON K+1, and the latitude LAT K+1, it can receive n Wi-Fi APs.
  • the Wi-Fi fingerprint information includes the MAC address of Wi-Fi AP1: MAC1, and when the electronic device 100 is located at the floor F2, the longitude LON K+1, and the latitude LAT K+1, it can receive Wi-Fi
  • the signal strength of the Wi-Fi signal transmitted by Fi AP1 is RSSIK+1,1.
  • the Wi-Fi fingerprint information includes the MAC address of the Wi-Fi APn: MAC N, and the electronic device When the device 100 is at the floor F2, the longitude is LON K+1, and the latitude is LAT K+1, the signal strength that can receive the Wi-Fi signal transmitted by the Wi-Fi APn is RSSIK+1,N.
  • POI fingerprint matching is a process in which the electronic device 100 fingerprints matches the generated Wi-Fi fingerprint with the part of the Wi-Fi fingerprint that the electronic device 100 is interested in in the second fingerprint database.
  • the electronic device 100 may first determine the POI type corresponding to the location of the electronic device 100 based on the previously determined type of entrance where the user is located. Afterwards, the electronic device 100 can determine the location of the electronic device 100 based on the POI type corresponding to the location of the electronic device 100 and the second fingerprint database. Specifically, if there is only one Wi-Fi fingerprint under the POI type corresponding to the location of the electronic device 100 in the second fingerprint database, the electronic device 100 can determine the location information stored in association with the Wi-Fi fingerprint as the electronic device 100. Location information of the location of device 100.
  • the electronic device 100 can compare the generated Wi-Fi fingerprint with the multiple Wi-Fi fingerprints. , obtain multiple similarity data. Afterwards, the electronic device 100 can determine the location of the electronic device 100 based on the similarity data and the second fingerprint database. The electronic device 100 determines the location of the electronic device 100 based on the similarity data and the second fingerprint database. Reference can be made to the relevant description in the aforementioned step S104, which will not be described again here.
  • Figure 8 shows the location range corresponding to Wi-Fi fingerprints participating in POI fingerprint matching.
  • the locations corresponding to the Wi-Fi fingerprints participating in POI fingerprint matching in the second fingerprint database are limited to the main entrances and exits of each building.
  • the number of Wi-Fi fingerprints participating in fingerprint matching is greatly reduced. This reduces the problem that the Wi-Fi fingerprints in multiple second fingerprint databases have the same similarity as the generated Wi-Fi fingerprints, and the corresponding position distance of the Wi-Fi fingerprints in each second fingerprint database under the same similarity is relatively small. distant possibility.
  • the electronic device 100 may determine the position of the electronic device 100 obtained by performing steps S201 to S205 as the first positioning position, thereby implementing the first positioning process.
  • the electronic device 100 may display a user interface on the screen to indicate the location of the electronic device 100 .
  • the electronic device 100 may display the user interface 220 shown in FIG. 9 on the screen.
  • the user interface 220 includes a floor identification 221 , an orientation identification 222 , and an entrance and exit identification 223 .
  • the entrance and exit signs 223 can be used to indicate the location and type of the main entrances and exits in the building. For example, the position of the entrance and exit mark 223 on the user interface 220 in FIG.
  • the shape of the entrance and exit mark 223 may indicate that the type of entrance and exit is an elevator.
  • other contents on the user interface 220 may refer to the aforementioned description of the user interface 210 in FIG. 4 and will not be described again here.
  • the electronic device 100 stores a second fingerprint database, and the second fingerprint database associates and stores multiple sets of correspondences between Wi-Fi fingerprints and location information, as well as POI types corresponding to the two.
  • the electronic device 100 can perform a Wi-Fi scan when it is determined that the user appears at the main entrance and exit of the building, and generate a Wi-Fi fingerprint based on the relevant information of the Wi-Fi signal obtained by the Wi-Fi scan.
  • the electronic device 100 can determine the type of entrance and exit where the user is located based on the collected sensor data. Afterwards, the electronic device 100 can determine the POI type corresponding to the location of the electronic device 100 based on the type of the entrance where the user is located. The electronic device 100 can determine the location of the electronic device 100 based on the POI type corresponding to the location of the electronic device 100 and the second fingerprint database.
  • the location of the electronic device 100 must be near the main entrance of the building.
  • the electronic device 100 performs fingerprint matching, it only matches the generated Wi-Fi fingerprint with some Wi-Fi fingerprints in the fingerprint database, thereby reducing the number of Wi-Fi fingerprints with the same similarity and the same similarity.
  • the possibility that the locations corresponding to each Wi-Fi fingerprint are far away improves the uniqueness of the Wi-Fi fingerprint generated by the electronic device 100, allowing the electronic device 100 to obtain more accurate results in indoor scenes with fewer Wi-Fi APs.
  • the location of the electronic device 100 since the electronic device 100 only performs Wi-Fi scanning when it is determined that the user appears at the main entrance of the building, the location of the electronic device 100 must be near the main entrance of the building.
  • Figure 10 shows a schematic diagram of the positioning scenario under a single Wi-Fi AP.
  • the fingerprint matching range is not limited, then there will be multiple Wi-Fi fingerprints with the same height as the Wi-Fi fingerprint generated by the electronic device 100 in the fingerprint database.
  • Fi fingerprint, and the corresponding positions of these Wi-Fi fingerprints are located on the circles composed of black dotted lines as shown in Figure 10.
  • the electronic device 100 will obtain the locations of multiple electronic devices 100, and it is difficult to Determine which location is the user's true location.
  • the electronic device 100 implements the positioning method provided in steps S201 to S205, performs POI fingerprint matching, and compares the generated Wi-Fi fingerprint only with the Wi-Fi fingerprint corresponding to the main entrance and exit location of the building in the fingerprint database, then the fingerprint database There are multiple Wi-Fi fingerprints with the same height as the generated Wi-Fi fingerprint, and it is less likely that the locations corresponding to the Wi-Fi fingerprints with the same similarity are far apart.
  • the position of the electronic device 100 can be limited to the black dot box area as shown in FIG. 10 . Therefore, the electronic device 100 can obtain a more accurate position of the electronic device 100 .
  • Table 5 shows the comparative statistical results obtained from actual positioning measurements using different solutions in the underground garage of a shopping mall.
  • the comparative statistical results include the positioning method used for positioning, the location identifier of the electronic device 100, and the average positioning error of positioning using the positioning method at the location indicated by the location identifier.
  • the electronic device 100 uses the traditional solution for positioning, and the average positioning error obtained at position 1 is 5.8 meters.
  • the electronic device 100 uses a traditional solution for positioning, and the average positioning error obtained at position 2 is 24.5 meters.
  • the electronic device 100 is positioned using the positioning method provided in steps S201 to S205 in the solution of this application. When it is at position 1, the average positioning error is 2.4 meters.
  • the electronic device 100 uses the positioning method provided in steps S201 to S205 in the solution of this application to perform positioning, and the average positioning error at position 2 is 0 meters. It can be seen from this that using the positioning method provided in steps S201 to S205 in the solution of this application for positioning can significantly improve the positioning accuracy.
  • FIG. 11 is a schematic structural diagram of a device 1000 provided by an embodiment of the present application.
  • the device 1000 may include a transceiver unit 1001 and a processing unit 1002.
  • the transceiver unit 1001 can be used to receive Wi-Fi signals transmitted by the Wi-Fi AP.
  • the processing unit 1002 can be used to determine whether the user appears at the main entrance and exit of the building based on sensor data, perform Wi-Fi scanning, receive Wi-Fi signals transmitted by the Wi-Fi AP, and generate data based on the received Wi-Fi signals. Wi-Fi fingerprint, perform fingerprint matching, and obtain the location of the electronic device 100.
  • the transceiver unit 1001 may also be used to perform the functional steps related to sending and receiving performed by the electronic device 100 in the method embodiment shown in FIG. 3 and/or FIG. 6 .
  • the processing unit 1002 may also be used to perform positioning-related functional steps performed by the electronic device 100 in the method embodiment shown in FIG. 3 and/or FIG. 6 .
  • the device 1000 in this design can correspond to the method steps performed by the electronic device 100 in the previous embodiments. For the sake of brevity, they will not be described again here.
  • the device 1000 can be implemented as the electronic device 100 in the above embodiment.
  • the device 1000 may be a chip/chip system.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product When the computer program product is run on an electronic device, it causes the electronic device to execute the method in any of the foregoing embodiments.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer program code.
  • the electronic device executes the computer program code, the electronic device executes the method in any of the foregoing embodiments.

Abstract

本申请提供定位方法、系统及相关装置。电子设备可以通过传感器采集传感器数据。电子设备存储有指纹库,指纹库关联存储有多组Wi-Fi指纹和位置信息的对应关系。当电子设备依据传感器数据确定用户出现在建筑物的主要出入口时,电子设备可以接收Wi-Fi AP发射的Wi-Fi信号,并依据Wi-Fi信号的相关信息生成Wi-Fi指纹。电子设备可以将生成的Wi-Fi指纹,与,指纹库中所有与建筑物的主要出入口关联存储的Wi-Fi指纹进行比对,得到相似度数据。电子设备可以依据相似度数据,确定电子设备的位置。上述方法可以缩小指纹匹配范围,提高定位精度,使电子设备在Wi-Fi AP较少的室内场景下也能进行较为准确的定位。

Description

定位方法、系统及相关装置
本申请要求于2022年03月11日提交中国专利局、申请号为202210241823.8、申请名称为“定位方法、系统及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及定位方法、系统及相关装置。
背景技术
近年来,随着科学技术的迅猛发展,人们对于定位的需求日益增加。在各种复杂的室内场景,例如商场,医院,地下车库等场所中,常常需要确定电子设备及其持有者的准确位置。因此,针对室内场景的各类定位技术应运而生。
目前,电子设备在进行室内定位的过程中需要进行首定位。首定位是在进行正式定位之前电子设备首先进行的一个定位过程。电子设备可以通过首定位获得首定位位置。之后,电子设备可以依据首定位位置,进一步地进行精细定位或追踪用户移动轨迹。由于首定位与后续的定位过程在步骤上紧密相关,首定位位置的精确度直接影响到后续定位的精确度。因此,如何提升首定位精度成为本领域亟需解决的问题。
发明内容
本申请提供了定位方法、系统及相关装置,可以提高定位精度,使电子设备100在Wi-Fi AP较少的室内场景下也能得到较为准确的电子设备100的位置。
第一方面,本申请实施例提供了一种定位方法,该方法包括:电子设备基于采集的传感器数据,确定电子设备处于第一场所中的兴趣点POI,POI为第一场所中的特定的位置。电子设备基于接收到的一个或多个无线保真接入点(Wireless-Fidelity access points,Wi-Fi AP)发射的Wi-Fi信号,生成第一Wi-Fi指纹,第一Wi-Fi指纹包括一个或多个Wi-Fi AP的MAC地址、信号强度。电子设备将第一Wi-Fi指纹与指纹库中与POI相关联的一个或多个第二Wi-Fi指纹进行匹配,得到第一Wi-Fi指纹与一个或多个第二Wi-Fi指纹的相似度,指纹库存储于电子设备中,指纹库包括第一场所中多个位置信息以及多个位置信息对应的Wi-Fi指纹,其中多个位置信息中包括POI对应的位置信息,多个位置信息对应的Wi-Fi指纹包括一个或多个第二Wi-Fi指纹。电子设备基于第一Wi-Fi指纹与一个或多个第二Wi-Fi指纹的相似度,确定电子设备在第一场所中所处的第一位置。
实施第一方面提供的方法,由于只有在确定电子设备处于第一场所中的POI时,电子设备才执行后续步骤,因此,电子设备基于该方法确定的位置必然位于第一场所中的POI。指纹库中参与匹配的Wi-Fi指纹范围被极大地缩小,从而降低了定位结果的不确定性,提高定位的精度,使电子设备100在Wi-Fi AP较少的室内场景下也能得到较为准确的电子设备100的位置。
结合第一方面,在一些实施方式中,电子设备基于采集的传感器数据,确定电子设备处于第一场所中的兴趣点POI,POI为第一场所中的特定的位置之后,方法还包括:电子设备 基于采集的传感器数据,确定POI的类型。
结合第一方面,与POI相关联的一个或多个第二Wi-Fi指纹包括与POI的类型相同的位置对应的一个或多个Wi-Fi指纹。
可以理解的,若与POI相关联的一个或多个第二Wi-Fi指纹包括与POI的类型相同的位置对应的一个或多个Wi-Fi指纹,则电子设备在实施第一方面提供的方法时可以进一步缩小指纹匹配的范围,降低定位结果的不确定性,从而提高定位精度。
结合第一方面,POI的类型包括步梯口、手扶梯口、升降梯口、建筑物内外分界口中的一项或多项。
结合第一方面,在一些实施方式中,传感器数据为速度,电子设备基于采集的传感器数据,确定POI的类型,具体包括:在速度的垂直分量大于第一阈值、水平分量为第一值的情况下,电子设备基于加速度,确定POI的类型为升降梯口。在速度的垂直分量大于第二阈值,水平分量为第二值的情况下,电子设备基于速度,确定POI的类型为手扶梯口,第二阈值小于第一阈值,第二值大于第一值。在速度的垂直分量大于第三阈值,水平分量为第三值的情况下,电子设备基于速度,确定POI的类型为步梯口,第三阈值小于第二阈值,第三值大于第一值。
可以理解的,当电子设备位于升降梯内时,升降梯进行的是垂直方向上的移动,此时,电子设备的速度在垂直方向上的分量较大,且在水平方向上的分量较小。当电子设备位于手扶梯内时,手扶梯向着与水平面成一定夹角的方向匀速移动,此时,电子设备的速度在垂直方向和水平方向上均有分量,且与升降梯相比,电子设备的速度在垂直方向上的分量较小,在水平方向上的分量较大。当电子设备位于步梯时,基于人体上下台阶时的移动特征易知,此时,电子设备的速度在垂直方向和水平方向上均有分量,且与升降梯相比,电子设备的速度在垂直方向上的分量较小,与升降梯相比,电子设备的速度在水平方向上的分量较大。通过上述特征可以确定POI的类型。
结合第一方面,传感器数据包括以下的一项或多项:大气压强、加速度、角速度、重力加速度、速度。
结合第一方面,在一些实施方式中,传感器数据为加速度。电子设备基于采集的传感器数据,确定电子设备处于第一场所中的兴趣点POI,POI为第一场所中的特定的位置,具体包括:在加速度的垂直分量在第一时间段内大于第四阈值,加速度的水平分量在第二时间段内大于第五阈值,且第一时间段是第二时间段之前的一个时间段时,电子设备确定电子设备处于第一场所中的POI。
可以理解的,在加速度的垂直分量大于第四阈值时,电子设备处于跨楼层移动的状态。在加速度的水平分量大于第五阈值时,电子设备处于同楼层移动的状态。若加速度的垂直分量在第一时间段内大于第四阈值,加速度的水平分量在第二时间段内大于第五阈值,且第一时间段是第二时间段之前的一个时间段,则可以确定电子设备进行了跨楼层移动之后的同楼层移动。若第一场所中的POI为第一场所中的主要出入口,则可以确定电子设备处于第一场所中的POI。
结合第一方面,位置信息包括:楼层、经度、纬度。
结合第一方面,在一些实施方式中,电子设备基于第一Wi-Fi指纹与一个或多个第二Wi-Fi指纹的相似度,确定电子设备在第一场所中所处的第一位置,具体包括:若只有一个第二Wi-Fi指纹,电子设备将第二Wi-Fi指纹对应的位置确定为电子设备在第一场所中所处的第一位置;若存在多个第二Wi-Fi指纹,电子设备将与第一Wi-Fi指纹的相似度最大的第二Wi-Fi指纹对 应的位置确定为电子设备在第一场所中所处的第一位置,或,电子设备依据与第一Wi-Fi指纹的相似度大于阈值的多个第二Wi-Fi指纹对应的位置,确定电子设备在第一场所中所处的第一位置。
可以理解的,相似度的数值大小可以指示第一Wi-Fi指纹与第二Wi-Fi指纹的相似程度,从而指示电子设备在第一场所中所处的第一位置,与,第二Wi-Fi指纹对应的位置的距离大小。
结合第一方面,在一些实施方式中,电子设备基于第一Wi-Fi指纹与一个或多个第二Wi-Fi指纹的相似度,确定电子设备在第一场所中所处的第一位置之后,方法还包括:显示从电子设备在第一场所中所处的第一位置到用户输入的目的地址的路线,或者,基于电子设备在第一场所中所处的第一位置,以及电子设备的移动方向和移动距离,确定电子设备所处的第二位置。
第二方面,本申请实施例提供了一种电子设备,电子设备包括:存储器、处理器,存储器用于存储计算机程序,处理器用于调用计算机程序,使得电子设备执行:基于采集的传感器数据,确定电子设备处于第一场所中的兴趣点POI,POI为第一场所中的特定的位置。基于接收到的一个或多个Wi-Fi AP发射的Wi-Fi信号,生成第一Wi-Fi指纹,第一Wi-Fi指纹包括一个或多个Wi-Fi AP的MAC地址、信号强度。将第一Wi-Fi指纹与指纹库中与POI相关联的一个或多个第二Wi-Fi指纹进行匹配,得到第一Wi-Fi指纹与一个或多个第二Wi-Fi指纹的相似度,指纹库存储于电子设备中,指纹库包括第一场所中多个位置信息以及多个位置信息对应的Wi-Fi指纹,其中多个位置信息中包括POI对应的位置信息,多个位置信息对应的Wi-Fi指纹包括一个或多个第二Wi-Fi指纹。基于第一Wi-Fi指纹与一个或多个第二Wi-Fi指纹的相似度,确定电子设备在第一场所中所处的第一位置。
结合第二方面,在一些实施方式中,处理器还用于调用计算机程序以使得电子设备执行:在基于采集的传感器数据,确定电子设备处于第一场所中的兴趣点POI,POI为第一场所中的特定的位置之后,基于采集的传感器数据,确定POI的类型。
结合第二方面,与POI相关联的一个或多个第二Wi-Fi指纹包括与POI的类型相同的位置对应的一个或多个Wi-Fi指纹。
结合第二方面,POI的类型包括步梯口、手扶梯口、升降梯口、建筑物内外分界口中的一项或多项。
结合第二方面,在一些实施方式中,传感器数据为速度,基于采集的传感器数据,确定POI的类型,具体包括:在速度的垂直分量大于第一阈值、水平分量为第一值的情况下,基于加速度,确定POI的类型为升降梯口。在速度的垂直分量大于第二阈值,水平分量为第二值的情况下,基于速度,确定POI的类型为手扶梯口,第二阈值小于第一阈值,第二值大于第一值。在速度的垂直分量大于第三阈值,水平分量为第三值的情况下,基于速度,确定POI的类型为步梯口,第三阈值小于第二阈值,第三值大于第一值。
结合第二方面,传感器数据包括以下的一项或多项:大气压强、加速度、角速度、重力加速度、速度。
结合第二方面,在一些实施方式中,传感器数据为加速度。基于采集的传感器数据,确定电子设备处于第一场所中的兴趣点POI,POI为第一场所中的特定的位置,具体包括:在加速度的垂直分量在第一时间段内大于第四阈值,加速度的水平分量在第二时间段内大于第五阈值,且第一时间段是第二时间段之前的一个时间段时,确定电子设备处于第一场所中的POI。
结合第二方面,位置信息包括:楼层、经度、纬度。
结合第二方面,在一些实施方式中,基于第一Wi-Fi指纹与一个或多个第二Wi-Fi指纹的相似度,确定电子设备在第一场所中所处的第一位置,具体包括:若只有一个第二Wi-Fi指纹,则将第二Wi-Fi指纹对应的位置确定为电子设备在第一场所中所处的第一位置。若存在多个第二Wi-Fi指纹,则将与第一Wi-Fi指纹的相似度最大的第二Wi-Fi指纹对应的位置确定为电子设备在第一场所中所处的第一位置,或,电子设备依据与第一Wi-Fi指纹的相似度大于阈值的多个第二Wi-Fi指纹对应的位置,确定电子设备在第一场所中所处的第一位置。
结合第二方面,在一些实施方式中,处理器还用于调用计算机程序以使得电子设备执行:在基于第一Wi-Fi指纹与一个或多个第二Wi-Fi指纹的相似度,确定电子设备在第一场所中所处的第一位置之后,显示从电子设备在第一场所中所处的第一位置到用户输入的目的地址的路线,或者,基于电子设备在第一场所中所处的第一位置,以及电子设备的移动方向和移动距离,确定电子设备所处的第二位置。
第三方面,本申请实施例提供了一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行第一方面或第一方面任意一种实施方式的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当指令在电子设备上运行时,使得电子设备执行如第一方面或第一方面任意一种实施方式的方法。
可以理解地,上述第二方面提供的电子设备、第三方面提供的计算机程序产品、第四方面提供的计算机可读存储介质均用于执行本申请实施例所提供的方法。因此,其所能达到的有益效果可参考对应方法中的有益效果,此处不再赘述。
附图说明
图1是本申请实施例提供的定位系统10的结构示意图;
图2A是本申请实施例提供的电子设备100的结构示意图;
图2B是本申请实施例提供的电子设备100的软件结构框图;
图3是本申请实施例提供的一种定位方法的流程示意图;
图4是本申请实施例提供的一种用户界面示意图;
图5是本申请实施例提供的电子设备100的位置示意图;
图6是本申请实施例提供的另一种定位方法的流程示意图;
图7是本申请实施例提供的用户采用升降梯进行跨楼层移动时加速度计特征示意图;
图8是本申请实施例提供的Wi-Fi指纹匹配范围的示意图;
图9是本申请实施例提供的另一种用户界面示意图;
图10是本申请实施例提供的单个Wi-Fi AP下的定位场景示意图;
图11是本申请实施例提供的一种装置的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或 者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例提供定位方法、系统及相关装置。在该方法中,电子设备可以通过传感器持续采集数据,并依据传感器采集的数据进行人体活动识别(human activity recognizition,HAR),判断用户是否出现在建筑物的主要出入口。当确定用户出现在建筑物的主要出入口时,电子设备可以进行无线保真(Wireless-Fidelity,Wi-Fi)扫描,并接收扫描到的空间中Wi-Fi AP发送的Wi-Fi信号。电子设备可以获取Wi-Fi信号的相关信息,并依据Wi-Fi信号的相关信息生成Wi-Fi指纹。电子设备存储有指纹库,指纹库内关联存储有多组Wi-Fi指纹和位置信息的对应关系。电子设备可以依据生成的Wi-Fi指纹和指纹库进行兴趣点(position of interest,POI)指纹匹配。具体的,POI是电子设备感兴趣的部分建筑物内的特定位置,POI指纹匹配是电子设备将生成的Wi-Fi指纹,与,指纹库中电子设备感兴趣的部分建筑物内的特定位置对应的Wi-Fi指纹进行比对,得到多个相似度数据的过程。电子设备感兴趣的部分Wi-Fi指纹可以是各建筑物的主要出入口位置对应的Wi-Fi指纹。电子设备可以根据相似度数据与第一指纹库,确定电子设备的位置。
实施该方法,由于电子设备可以依据生成的Wi-Fi指纹和指纹库进行POI指纹匹配,将生成的Wi-Fi指纹与指纹库中各建筑物的主要出入口位置对应的Wi-Fi指纹进行比对,极大地缩小了指纹匹配的范围,从而提高了电子设备生成的Wi-Fi指纹的唯一性,减小了存在多个相似度相同的Wi-Fi指纹,且相似度相同的各Wi-Fi指纹对应的位置距离较远的可能性,提高了定位的精度,使电子设备在Wi-Fi AP较少的室内场景下也能得到较为准确的电子设备的位置。
在一些实施例中,对于指纹库中任一组关联存储的Wi-Fi指纹和位置信息,电子设备还存储有与二者对应的POI类型。POI类型可用于表示位置信息指示的位置是否位于建筑物的主要出入口,以及建筑物的各主要出入口的类型。建筑物的各主要出入口的类型可以包括:步梯、手扶梯、升降梯。在确定用户出现在建筑物的主要出入口时,电子设备可以基于采集到的传感器数据,确定电子设备所处出入口的类型。之后,在进行POI指纹匹配时,电子设备可以将生成的Wi-Fi指纹,与指纹库中与电子设备所处出入口的类型相同的主要出入口对应的Wi-Fi指纹进行比对。这样,可以进一步缩小指纹匹配的范围,提高定位精度。
下面对上述定位方法、系统及相关装置的实现进行具体介绍。
首先介绍本申请实施例提供的定位系统10的结构示意图。
参考图1,图1示出了本申请实施例提供的定位系统10。如图1所示,定位系统10可包括:电子设备100,和,一个或多个Wi-Fi AP。
电子设备100可以为手机、平板电脑、可穿戴设备、笔记本电脑、上网本、个人数字助理(personal digital assistant,PDA)等便携式电子设备。便携式电子设备的示例性实施例包括但不限于搭载iOS、android、microsoft或者其他操作系统的便携式电子设备。
Wi-Fi AP是可以将有线传输的网络信号转换成Wi-Fi信号,并将该Wi-Fi信号发射于空间当中,供电子设备接入网络并访问网络资源的设备。Wi-Fi AP可以实现为无线路由器。
在本申请实施例中,电子设备100与Wi-Fi AP可以基于Wi-Fi通信技术进行通信。电子设备100与Wi-Fi AP可以具有Wi-Fi通信模块。Wi-Fi AP可以通过Wi-Fi通信模块持续向空 间中发射Wi-Fi信号,电子设备100可以通过Wi-Fi通信模块进行Wi-Fi扫描,搜索并接收附近的Wi-Fi AP发射于空间中的Wi-Fi信号。在本申请实施例中,电子设备100可以基于Wi-Fi通信技术同时接收多个Wi-Fi AP发送的Wi-Fi信号、与多个Wi-Fi AP建立连接。
Wi-Fi AP可以保持Wi-Fi通信功能常开,并持续向空间发射Wi-Fi信号。Wi-Fi信号可以携带有发射该Wi-Fi信号的Wi-Fi AP的媒体存取控制(media access control address,MAC)地址。
电子设备100可以持续采集传感器数据,传感器数据例如可以为大气压强、加速度、角速度、重力加速度等。电子设备100可以基于采集到的传感器数据进行HAR,判断用户是否出现在建筑物的主要出入口。当确定用户出现在建筑物的主要出入口时,电子设备100可以进行Wi-Fi扫描,搜索并接收附近的Wi-Fi AP发送的Wi-Fi信号。电子设备100可以获取Wi-Fi信号的相关信息,并依据Wi-Fi信号的相关信息生成Wi-Fi指纹。电子设备100可以存储有指纹库,指纹库内关联存储有多组Wi-Fi指纹和位置信息的对应关系。在一些实施例中,对于指纹库中任一组关联存储的Wi-Fi指纹和位置信息,电子设备100还存储有与二者对应的POI类型。POI类型可用于表示位置信息指示的位置是否位于建筑物的主要出入口,以及建筑物的各主要出入口的类型。电子设备100可以依据生成的Wi-Fi指纹与指纹库,进行POI指纹匹配,确定电子设备100所处的位置,从而实现室内场景下的定位过程。本申请后续的方法实施例将对电子设备100执行上述步骤的过程进行具体介绍。
下面介绍本申请实施例涉及的电子设备。
图2A示出了电子设备100的结构示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如Wi-Fi网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通 用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
在本申请实施例中,电子设备100可以通过无线通信模块160当中的Wi-Fi通信模块实现与Wi-Fi AP之间的通信。电子设备100可以通过无线通信模块160接收Wi-Fi AP发射于空间中的Wi-Fi信号。电子设备100可以获取Wi-Fi信号的相关信息,Wi-Fi信号的相关信息可用于电子设备100生成Wi-Fi指纹。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
在本申请实施例中,电子设备100在确定电子设备100的位置之后,可以在显示屏194上显示提示信息,提示信息可用于指示电子设备100的位置。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
本申请实施例中,电子设备100可以存储有指纹库,指纹库内关联存储有多组Wi-Fi指纹和位置信息的对应关系。在一些实施例中,对于指纹库中任一组关联存储的Wi-Fi指纹和位置信息,电子设备100还存储有与二者对应的POI类型。POI类型可用于表示位置信息指示的位置是否位于建筑物的主要出入口,以及建筑物的各主要出入口的类型。电子设备100可以依据生成的Wi-Fi指纹和指纹库进行POI指纹匹配,从而确定电子设备100所处的位置。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计 算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
本申请实施例中,电子设备100可以持续采集上述传感器数据,并依据传感器数据进行HAR,判断用户是否出现在建筑物的主要出入口。在一些实施例中,电子设备100依据传感器数据进行HAR,不仅可以判断用户是否出现在建筑物的主要出入口,还可以在确定用户出现在建筑物的主要出入口的同时确定电子设备100所处出入口的类型。
本申请后续的方法实施例将对电子设备100依据传感器数据进行HAR,判断用户是否出现在建筑物的主要出入口,以及在确定用户出现在建筑物的主要出入口的同时确定电子设备100所处的出入口的类型的过程进行具体介绍。
电子设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android系统为例,示例性说明电子设备100的软件结构。
图2B是本申请实施例的电子设备100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图2B所示,应用程序包可以包括相机,日历,地图,WLAN,音乐,短信息,图库,通话,导航,蓝牙,视频等应用程序。
在本申请实施例中,定位应用可以包括上述地图和导航应用程序。电子设备100可以运行定位应用,并在运行定位应用的过程中在用户界面上显示电子设备100的位置。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图2B所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
下面结合捕获拍照场景,示例性说明电子设备100软件以及硬件的工作流程。
当触摸传感器180K接收到触摸操作,相应的硬件中断被发给内核层。内核层将触摸操作加工成原始输入事件(包括触摸坐标,触摸操作的时间戳等信息)。原始输入事件被存储在内核层。应用程序框架层从内核层获取原始输入事件,识别该输入事件所对应的控件。以该触摸操作是触摸单击操作,该单击操作所对应的控件为相机应用图标的控件为例,相机应用调用应用框架层的接口,启动相机应用,进而通过调用内核层启动摄像头驱动,通过摄像头193捕获静态图像或视频。
本申请提供定位方法、系统及相关装置。实施本申请提供的定位方法,电子设备100可以获取较为精确的电子设备100的位置。下面对定位方法的实施流程进行具体介绍。
图3示例性示出了本申请实施例提供的一种定位方法的流程示意图。
如图3所示,该方法可包括步骤S101~S104。其中:
S101、电子设备100接收到用户启动定位应用的操作。
上述用户启动定位应用的操作可以是用户作用于电子设备100界面上的定位应用图标的输入操作(例如触摸操作)。
在一些实施例中,电子设备100还可以通过其他方式启动定位应用。例如:通过语音指令、预设手势、电子设备100自启动等方式启动定位应用。本申请实施例对电子设备100启动定位应用的具体方式不作限定。
S102、电子设备100进行Wi-Fi扫描,接收Wi-Fi AP发送的Wi-Fi信号。
Wi-Fi AP是可以将有线传输的网络信号转换成Wi-Fi信号,并将该Wi-Fi信号发射于空间当中,供电子设备接入网络并访问网络资源的设备。Wi-Fi AP可以持续地向空间中发射Wi-Fi信号,Wi-Fi AP发射的Wi-Fi信号携带有该Wi-Fi AP的MAC地址。
Wi-Fi扫描是电子设备100搜索Wi-Fi AP发射于空间中的Wi-Fi信号的过程。电子设备100可以接收搜索到的Wi-Fi信号。在本申请实施例中,电子设备100可以接收到多个Wi-Fi信号。
S103、电子设备100获取Wi-Fi信号的相关信息,并依据Wi-Fi信号的相关信息生成Wi-Fi指纹。
Wi-Fi信号的相关信息可以包括电子设备100接收到的Wi-Fi信号的信号强度,和发送该Wi-Fi信号的Wi-Fi AP的MAC地址。
电子设备100可以接收到多个Wi-Fi信号,并获取多条Wi-Fi信号的相关信息。电子设备100可以汇总上述多条Wi-Fi信号的相关信息,生成Wi-Fi指纹。Wi-Fi指纹可以表示为如下表1:
表1
表1为电子设备100根据可以接收到的n个Wi-Fi AP发射的Wi-Fi信号的信号强度以及MAC地址生成的Wi-Fi指纹。如表1所示,电子设备100接收到Wi-Fi AP1发射的Wi-Fi信号的信号强度可以是RSSI 1,Wi-Fi AP1的MAC地址可以是MAC 1。电子设备100接收到Wi-Fi AP2发射的Wi-Fi信号的信号强度可以是RSSI 2,Wi-Fi AP1的MAC地址可以是MAC 2。电子设备100接收到Wi-Fi APn发射的Wi-Fi信号的信号强度可以是RSSI n,Wi-Fi AP1的MAC地址可以是MAC n。
可以理解的是,表1示出的Wi-Fi指纹仅为示例。电子设备100生成的Wi-Fi指纹可以包括更多的信息。本申请实施例对电子设备100生成的Wi-Fi指纹的具体形式不作限定。
S104、电子设备100依据生成的Wi-Fi指纹和第一指纹库进行指纹匹配,确定电子设备100的位置。
电子设备100存储有第一指纹库,第一指纹库当中关联存储有多组Wi-Fi指纹和位置信息的对应关系。第一指纹库中的位置信息用于指示建筑物当中的采样位置,第一指纹库中的位置信息可以包括以下的一项或多项:楼层、经度、纬度。示例性的,电子设备100存储的第一指纹库可以表示为如下表2:
表2
表2为电子设备100存储的第一指纹库。第一指纹库中保存有建筑物内的不同位置信息(例如,楼层(例如,楼层F1、楼层F2),经纬度等等位置信息)以及该位置信息处对应的Wi-Fi指纹。
如表2所示,电子设备100可以存储有位置信息1,即楼层为F1,经度为LON1,纬度为LAT1,以及该位置信息1对应的Wi-Fi指纹信息。该Wi-Fi指纹信息中包含n个Wi-Fi AP的MAC地址,以及电子设备100处于楼层为F1,经度为LON1,纬度为LAT1的位置时,能够接收到n个Wi-Fi AP发射的Wi-Fi信号的信号强度。例如,该Wi-Fi指纹信息包含Wi-Fi AP1的MAC地址:MAC1,以及电子设备100处于楼层为F1,经度为LON1,纬度为LAT1的位置时,能够接收到Wi-Fi AP1发射的Wi-Fi信号的信号强度为RSSI1,1。该Wi-Fi指纹信息包含Wi-Fi APn的MAC地址:MAC N,以及电子设备100处于楼层为F1,经度为LON1,纬度为LAT1的位置时,能够接收到Wi-Fi APn发射的Wi-Fi信号的信号强度为RSSI1,N。
电子设备100可以存储有位置信息K+1,即楼层为F2,经度为LON K+1,纬度为LAT K+1, 以及该位置信息K+1对应的Wi-Fi指纹信息。该Wi-Fi指纹信息中包含n个Wi-Fi AP的MAC地址,以及电子设备100处于楼层为F2,经度为LON K+1,纬度为LAT K+1的位置时,能够接收到n个Wi-Fi AP发射的Wi-Fi信号的信号强度。例如,该Wi-Fi指纹信息包含Wi-Fi AP1的MAC地址:MAC1,以及电子设备100处于楼层为F2,经度为LON K+1,纬度为LAT K+1的位置时,能够接收到Wi-Fi AP1发射的Wi-Fi信号的信号强度为RSSIK+1,1。该Wi-Fi指纹信息包含Wi-Fi APn的MAC地址:MAC N,以及电子设备100处于楼层为F2,经度为LON K+1,纬度为LAT K+1的位置时,能够接收到Wi-Fi APn发射的Wi-Fi信号的信号强度为RSSIK+1,N。
可以理解的是,表2示出的第一指纹库仅为示例。电子设备100存储的第一指纹库可以包括更多的信息。本申请实施例对存储的第一指纹库的具体形式不作限定。
指纹匹配是电子设备100通过比对生成的Wi-Fi指纹与指纹库当中存储的Wi-Fi指纹,确定电子设备100所处的位置的过程。电子设备100可以将生成的Wi-Fi指纹与第一指纹库中的Wi-Fi指纹进行逐一比对,得到多个相似度数据。在一些实施例中,电子设备100可以基于k最近邻(k-nearest neighbors algorithm,KNN)算法实现上述比对过程。
电子设备100得到的相似度数据可以表示为如下表3:
表3
表3为电子设备100进行指纹匹配获得的相似度数据。相似度数据中包括有建筑物内的不同位置信息(例如,楼层(例如,楼层F1、楼层F2),经纬度等等位置信息)、该位置信息处对应的Wi-Fi指纹,以及电子设备100通过比对该位置信息处对应的Wi-Fi指纹,和,生成的Wi-Fi指纹得到的相似度。
如表3所示,电子设备100可以存储有位置信息1,即楼层为F1,经度为121.56428723302284,纬度为25.033852017792135,该位置信息1对应的Wi-Fi指纹信息,以及通过比对该位置信息1对应的Wi-Fi指纹,和,生成的Wi-Fi指纹得到的相似度,即0.91。 上述Wi-Fi指纹信息中包含n个Wi-Fi AP的MAC地址,以及电子设备100处于楼层为F1,经度为LON1,纬度为LAT1的位置时,能够接收到n个Wi-Fi AP发射的Wi-Fi信号的信号强度。例如,该Wi-Fi指纹信息包含Wi-Fi AP1的MAC地址:MAC1,以及电子设备100处于楼层为F1,经度为121.56428723302284,纬度为25.033852017792135的位置时,能够接收到Wi-Fi AP1发射的Wi-Fi信号的信号强度为-99。该Wi-Fi指纹信息包含Wi-Fi APn的MAC地址:MAC N,以及电子设备100处于楼层为F1,经度为121.56428723302284,纬度为25.033852017792135的位置时,能够接收到Wi-Fi APn发射的Wi-Fi信号的信号强度为-77。
电子设备100可以存储有位置信息5,即楼层为F2,经度为121.56409813730447,纬度为25.033985680738397,该位置信息5对应的Wi-Fi指纹信息,以及通过比对该位置信息5对应的Wi-Fi指纹,和,生成的Wi-Fi指纹得到的相似度,即0.11。上述Wi-Fi指纹信息中包含n个Wi-Fi AP的MAC地址,以及电子设备100处于楼层为F2,经度为LON1,纬度为LAT1的位置时,能够接收到n个Wi-Fi AP发射的Wi-Fi信号的信号强度。例如,该Wi-Fi指纹信息包含Wi-Fi AP1的MAC地址:MAC1,以及电子设备100处于楼层为F2,经度为121.56409813730447,纬度为25.033985680738397的位置时,能够接收到Wi-Fi AP1发射的Wi-Fi信号的信号强度为-50。该Wi-Fi指纹信息包含Wi-Fi APn的MAC地址:MAC N,以及电子设备100处于楼层为F2,经度为121.56409813730447,纬度为25.033985680738397的位置时,能够接收到Wi-Fi APn发射的Wi-Fi信号的信号强度为-63。
可以理解的是,表3示出的电子设备100进行指纹匹配获得的相似度数据仅为示例。本申请实施例对电子设备100进行指纹匹配获得的相似度数据的具体形式不作限定。
电子设备100可以依据相似度数据与第一指纹库,确定电子设备100所处的位置。
在一些实施例中,电子设备100可以将指纹库中与生成的Wi-Fi指纹最相似的Wi-Fi指纹对应的位置确定为首定位位置。
在另一些实施例中,电子设备100可以依据第一指纹库中与电子设备100生成的Wi-Fi指纹相似度大于阈值的Wi-Fi指纹对应的位置信息,确定电子设备100的位置信息,从而确定电子设备100所处的位置。示例性的,电子设备100可以将相似度最高的Wi-Fi指纹对应的楼层确定为电子设备100所处的楼层。电子设备100可以获取第一指纹库中与电子设备100生成的Wi-Fi指纹相似度大于阈值的Wi-Fi指纹对应的经度数据和纬度数据,将经度和纬度的算数平均值确定为电子设备100所处位置的经度和纬度。
参考表3,示例性的,由于最大相似度为0.91,且该相似度数值对应的Wi-Fi指纹关联存储的楼层为F1。因此,电子设备100可以将F1确定为电子设备100所处的楼层。此外,上述相似度阈值可以为0.7,表3中大于0.7的相似度数值包括0.91、0.88、0.77。电子设备100可以计算相似度为0.91、0.88、0.77对应的Wi-Fi指纹关联存储的经度和纬度的算数平均值,得到电子设备100所处位置的经度为:
121.56428723302284+121.56429930296231+121.56432210173683)/3=121.56430287924066。
电子设备100所处位置的纬度为:
25.033852017792135+25.033849587555416+25.033852017792135)/3=25.33851207713228。
由此,电子设备100可以确定电子设备100所处的楼层,和电子设备100所处位置的经纬度,从而确定电子设备100的位置。
由于用户携带电子设备100活动时通常处于同一位置,故在一些实施例中,电子设备100可以将上述电子设备100的位置确定为电子设备100所处的位置。
在一些实施例中,电子设备100可以将通过执行步骤S101~S104获得的电子设备100的位置确定为首定位位置,从而实现首定位过程。
电子设备100可以在屏幕上显示用户界面,以指示电子设备100的位置。具体的,在使用步骤S101~S104提供的定位方法确定了电子设备100的位置之后,电子设备100可以在屏幕上显示图4所示的用户界面210。如图4所示,用户界面210包括楼层标识211和方位标识212。其中,楼层标识211可用于指示电子设备100在建筑物内所处的楼层。示例性的,当确定电子设备100所处的楼层为B2层时,楼层标识211可以对应实现为文本:“B2”。方位标识212可用于指示电子设备100在水平方向上所处的方位。
图4当中的方位标识212指示的位置范围较大,原因是使用步骤S101~S104提供的定位方法时,若电子设备100附近的Wi-Fi AP数量较少,则电子设备100进行Wi-Fi扫描时可以接收到的Wi-Fi信号的数量较少,电子设备100生成的Wi-Fi指纹所包含的Wi-Fi信号的相关信息数量较少。此时,电子设备100在依据生成的Wi-Fi指纹进行指纹匹配时,可能出现如图5所示指纹库中存在多个与生成的Wi-Fi指纹高度相似的Wi-Fi指纹,且各Wi-Fi指纹对应的位置距离较远的问题。此时,若将指纹库中与生成的Wi-Fi指纹相似度最大的Wi-Fi指纹对应的位置确定为电子设备100的位置,那么电子设备100将得到多个电子设备100的位置,且难以确定究竟哪个位置才是电子设备100真正所处的位置。此时,若将电子设备100的位置确定为首定位位置也会影响后续的定位过程。
为了解决上述在Wi-Fi AP较少时电子设备100定位不准的问题,下面介绍本申请实施例提供的另一种定位方法。
图6示例性示出了本申请实施例提供的一种定位方法的流程示意图。
如图6所示,该方法可包括步骤S201~S205。其中:
S201、电子设备100获取传感器数据。
电子设备100中可以存在多种传感器,例如,气压计、加速计、陀螺仪、重力传感器、测速传感器。电子设备可以通过一种或多种传感器采集传感器数据。传感器数据可以包括气压计采集的大气压强、加速计采集的加速度、陀螺仪采集的角速度、重力传感器采集的重力加速度,以及测速传感器采集的速度等等数据中的一项或多项。
S202、电子设备100依据传感器数据,确定用户出现在建筑物的主要出入口。
建筑物的主要出入口可以包括建筑物内供用户进行跨楼层移动的出入口(如步梯口、手扶梯口、升降梯口)。电子设备100可以依据传感器数据,判断用户是否进行了跨楼层移动,并在进行了跨楼层移动之后进行了同楼层移动。若电子设备100确定用户进行了跨楼层移动,并在进行了跨楼层移动之后进行了同楼层移动,则电子设备100可以确定用户出现在建筑物的主要出入口。
具体地,在一种可能的实现方式中,电子设备100采集的传感器数据为加速度。若第一时间段内电子设备100采集的加速度在垂直方向上的分量大于第一阈值,第二时间段内电子设备100采集的加速度在水平方向上的分量大于第二阈值,且第一时间段是第二时间段之前的一个时间段,则电子设备100可以确定用户进行了跨楼层移动,并在进行了跨楼层移动之后进行了同楼层移动,进而确定用户出现在建筑物的主要出入口。
在一种可能的实现方式中,电子设备100采集的传感器数据为加速度。电子设备100可 以对加速度进行时频域转换,得到加速度在频域上的数据。若第三时间段内加速度在频域上的数据位于预设频率范围以内,则电子设备100可以确定用户进行了跨楼层移动,并在进行了跨楼层移动之后进行了同楼层移动,进而确定用户出现在建筑物的主要出入口。
在一种可能的实现方式中,电子设备100采集的传感器数据为加速度。电子设备100可以在依据传感器数据,确定用户出现在建筑物的主要出入口的同时,确定用户所在的出入口的类型。具体的,若加速度的变化趋势符合如图7所示的任一种情形,电子设备100可以确定用户所在的出入口的类型为升降梯口。具体的,若加速度在第四时间段内小于下限阈值,在第五时间段内大于上限阈值,且第四时间段是第五时间段之前的一个时间段,电子设备100可以确定用户所在的出入口的类型为升降梯口,且该升降梯正处于往上移动的状态。若加速度在第六时间段内大于下限阈值,在第七时间段内小于上限阈值,且第六时间段是第七时间段之前的一个时间段,电子设备100可以确定用户所在的出入口的类型为升降梯口,且该升降梯正处于往下移动的状态。若在第八时间段内电子设备100依据上述方法两次确定升降梯正处于往上移动的状态,电子设备100可以确定用户所在的出入口的类型为升降梯口,且该升降梯在第八时间段内实现了一次启动和停靠过程。
在一种可能的实现方式中,电子设备100可以依据传感器数据进行HAR,以判断用户是否进行了跨楼层移动,并在进行了跨楼层移动之后进行了同楼层移动。具体的,电子设备100可以对传感器数据进行处理,获得用户活动的高度变化特征和水平移动特征。电子设备100可以依据高度变化特征判断用户是否进行了跨楼层移动,依据水平移动特征判断用户是否进行了同楼层移动,具体的,对于高度变化特征而言,电子设备100可以对大气压强进行处理,获得高度变化值。若高度变化值大于第三阈值,则电子设备100可以确定用户进行了跨楼层移动。对于水平移动特征而言,电子设备100可以对加速度进行处理,获得加速度的水平分量和垂直分量。若加速度的水平分量和垂直分量是否呈现周期性变化趋势,则电子设备100可以确定用户进行了同楼层移动。由此,若电子设备100确定用户进行了跨楼层移动,并在进行了跨楼层移动之后进行了同楼层移动,那么电子设备100可以确定用户出现在建筑物的主要出入口。
在一种可能的实现方式中,电子设备100还可以将传感器数据输入预先训练好的机器学习模型,响应于机器学习模型的输出,电子设备100可以判断用户是否进行了跨楼层移动,并在进行了跨楼层移动之后进行了同楼层移动,从而判断用户是否出现在建筑物的主要出入口。
在一些实施例中,建筑物的主要出入口还可以包括作为建筑物内与建筑物外的分界的出入口。电子设备100可以依据传感器数据,判断用户是否由建筑物外移动到建筑物内。若用户由建筑物外移动到建筑物内,则电子设备100可以确定用户出现在建筑物的主要出入口。示例性的,电子设备100可以获取环境光传感器持续采集的环境光强度。电子设备100可以对环境光强度进行处理,依据环境光强度计算光强度数值的滑窗平均值。在一种可能的实现方式中,电子设备100可以将光强度数值的滑窗平均值与预设光强度阈值进行比对,若光强度数值的滑窗平均值小于光强度阈值,电子设备100可以确定用户由建筑物外移动到建筑物内,进而确定用户出现在建筑物的主要出入口。
在一些实施例中,在电子设备100依据传感器数据,确定用户出现在建筑物的主要出入口的同时或之后,电子设备100还可以依据传感器数据确定用户所在的出入口的类型。出入口的类型可以包括步梯口、手扶梯口、升降梯口等。在一些实施例中,出入口的类型还可以 包括建筑物内外分界口。
在一种可能的实现方式中,传感器数据为速度。电子设备100依据传感器数据,确定用户所在的出入口的类型的方法如下:在速度的垂直分量大于第一阈值、水平分量为第一值的情况下,电子设备可以确定用户所在的出入口的类型为升降梯口。在速度的垂直分量大于第二阈值,水平分量为第二值,且第二阈值小于第一阈值,第二值大于第一值的情况下,电子设备可以确定用户所在的出入口的类型为手扶梯口。在速度的垂直分量大于第三阈值,水平分量为第三值,且第三阈值小于第二阈值,第三值大于第一值的情况下,电子设备可以确定用户所在的出入口的类型为步梯口。
在另一种可能的实现方式中,电子设备100可以将传感器数据输入训练好的机器学习模型,响应于机器学习模型的输出,电子设备100可以确定用户所在的出入口的类型。
S203、电子设备100进行Wi-Fi扫描,接收Wi-Fi AP发射的Wi-Fi信号。
Wi-Fi AP是可以将有线传输的网络信号转换成Wi-Fi信号,并将该Wi-Fi信号发射于空间当中,供电子设备接入网络并访问网络资源的设备。Wi-Fi AP可以持续地向空间中发射Wi-Fi信号,Wi-Fi AP发射的Wi-Fi信号携带有该Wi-Fi AP的MAC地址。
Wi-Fi扫描是电子设备100搜索Wi-Fi AP发射于空间中的Wi-Fi信号的过程。电子设备100可以接收搜索到的Wi-Fi信号。在本申请实施例中,电子设备100可以接收到多个Wi-Fi信号。示例性的,若电子设备100所处的室内环境中部署有3个Wi-Fi AP,且电子设备100位于3个Wi-Fi AP的信号覆盖范围内,那么电子设备进行Wi-Fi扫描时可以接收到3个Wi-Fi AP发射的Wi-Fi信号。
S204、电子设备100获取Wi-Fi信号的相关信息,并依据Wi-Fi信号的相关信息生成Wi-Fi指纹。
Wi-Fi信号的相关信息可以包括电子设备100接收到的Wi-Fi信号的信号强度,和发送该Wi-Fi信号的Wi-Fi AP的MAC地址。
电子设备100可以接收到多个Wi-Fi信号,并获取多条Wi-Fi信号的相关信息。电子设备100可以汇总上述多条Wi-Fi信号的相关信息,生成Wi-Fi指纹。Wi-Fi指纹的具体呈现方式可以参考上述步骤S103当中的表1。
S205、电子设备100依据生成的Wi-Fi指纹和第二指纹库进行POI指纹匹配,确定电子设备100的位置。
电子设备100存储有第二指纹库,第二指纹库当中关联存储有多组Wi-Fi指纹和位置信息的对应关系。第二指纹库中的位置信息用于指示建筑物当中的采样位置,第二指纹库中的位置信息可以包括以下的一项或多项:楼层、经度、纬度。除此之外,在一些实施例中,对于第二指纹库当中任一组关联存储的Wi-Fi指纹和位置信息,第二指纹库还存储有与二者对应的POI类型。POI类型可用于表示位置信息指示的位置是否位于建筑物的主要出入口,以及建筑物的各主要出入口的类型。
示例性的,POI类型数值为0表明采样位置未位于建筑物的主要出入口。POI类型数值大于0表明采样位置位于建筑物的主要出入口。其中,对于POI类型数值大于0的情形而言,POI类型数值为1表明采样位置所在出入口的类型为步梯。POI类型数值为2表明采样位置所在出入口的类型为手扶梯。POI类型数值为3表明采样位置所在出入口的类型为升降梯。 电子设备100存储的第二指纹库可以表示为如下表4:
表4
表4为电子设备100存储的第二指纹库。第二指纹库中保存有建筑物内的不同位置信息(例如,楼层(例如,楼层F1、楼层F2),经纬度等等位置信息),该位置信息处的POI类型,以及该位置信息处对应的Wi-Fi指纹。
如表4所示,电子设备100可以存储有位置信息1,即楼层为F1,经度为LON1,纬度为LAT1,该位置信息1处的POI类型,以及该位置信息1对应的Wi-Fi指纹信息。上述POI类型可以实现为数值、文本等形式。例如位置信息1处的POI类型可以实现为数值“0”,指示位置信息1处未位于建筑物的主要出入口。上述Wi-Fi指纹信息中包含n个Wi-Fi AP的MAC地址,以及电子设备100处于楼层为F1,经度为LON1,纬度为LAT1的位置时,能够接收到n个Wi-Fi AP发射的Wi-Fi信号的信号强度。例如,该Wi-Fi指纹信息包含Wi-Fi AP1的MAC地址:MAC1,以及电子设备100处于楼层为F1,经度为LON1,纬度为LAT1的位置时,能够接收到Wi-Fi AP1发射的Wi-Fi信号的信号强度为RSSI1,1。该Wi-Fi指纹信息包含Wi-Fi APn的MAC地址:MAC N,以及电子设备100处于楼层为F1,经度为LON1,纬度为LAT1的位置时,能够接收到Wi-Fi APn发射的Wi-Fi信号的信号强度为RSSI1,N。
电子设备100可以存储有位置信息K+1,即楼层为F2,经度为LON K+1,纬度为LAT K+1,该位置信息K+1处的POI类型,以及该位置信息K+1对应的Wi-Fi指纹信息。上述POI类型可以实现为数值、文本等形式。例如位置信息K+1处的POI类型可以实现为数值“2”,指示位置信息1处位于建筑物的主要出入口,且该主要出入口的类型为手扶梯。上述Wi-Fi指纹信息中包含n个Wi-Fi AP的MAC地址,以及电子设备100处于楼层为F2,经度为LON K+1,纬度为LAT K+1的位置时,能够接收到n个Wi-Fi AP发射的Wi-Fi信号的信号强度。例如,该Wi-Fi指纹信息包含Wi-Fi AP1的MAC地址:MAC1,以及电子设备100处于楼层为F2,经度为LON K+1,纬度为LAT K+1的位置时,能够接收到Wi-Fi AP1发射的Wi-Fi信号的信号强度为RSSIK+1,1。该Wi-Fi指纹信息包含Wi-Fi APn的MAC地址:MAC N,以及电子设 备100处于楼层为F2,经度为LON K+1,纬度为LAT K+1的位置时,能够接收到Wi-Fi APn发射的Wi-Fi信号的信号强度为RSSIK+1,N。
可以理解的是,表4示出的第二指纹库仅为示例。本申请实施例对存储的第二指纹库的具体形式不作限定。
POI指纹匹配是电子设备100将生成的Wi-Fi指纹与第二指纹库中电子设备100感兴趣的部分Wi-Fi指纹进行指纹匹配的过程。
具体的,电子设备100首先可以依据先前确定的用户所在的出入口的类型,确定电子设备100所处的位置对应的POI类型。之后,电子设备100可以依据电子设备100所处的位置对应的POI类型和第二指纹库,确定电子设备100所处的位置。具体的,若第二指纹库中电子设备100所处的位置对应的POI类型下的Wi-Fi指纹仅有一个,则电子设备100可以将与该Wi-Fi指纹关联存储的位置信息确定为电子设备100所处位置的位置信息。若第二指纹库中电子设备100所处的位置对应的POI类型下的Wi-Fi指纹有多个,则电子设备100可以将生成的Wi-Fi指纹与上述多个Wi-Fi指纹进行比对,得到多个相似度数据。之后,电子设备100可以依据相似度数据与第二指纹库,确定电子设备100所处的位置。电子设备100依据相似度数据与第二指纹库,确定电子设备100所处的位置的过程可以参考前述步骤S104当中的相关描述,此处不再赘述。
图8展示了参与POI指纹匹配的Wi-Fi指纹对应的位置范围。由图8可知,第二指纹库中参与POI指纹匹配的Wi-Fi指纹对应的位置被限制在各个建筑物的主要出入口。由此,参与指纹匹配的Wi-Fi指纹数量大为减小。从而降低了存在多个第二指纹库中的Wi-Fi指纹与生成的Wi-Fi指纹相似度相同,且,相同相似度下的各第二指纹库中的Wi-Fi指纹对应的位置距离较远的可能性。
在一些实施例中,电子设备100可以将通过执行步骤S201~S205获得的电子设备100的位置确定为首定位位置,从而实现首定位过程。
电子设备100可以在屏幕上显示用户界面,以指示电子设备100的位置。具体的,在使用步骤S201~S205提供的定位方法确定了电子设备100的位置之后,电子设备100可以在屏幕上显示图9所示的用户界面220。如图9所示,用户界面220包括楼层标识221、方位标识222,以及出入口标识223。其中,出入口标识223可用于指示建筑物内主要出入口的位置和类型。示例性的,图9中的出入口标识223在用户界面220上所处的位置可以指示出入口的位置,出入口标识223的形状可以指示对于出入口类型为升降梯。除此之外,用户界面220上的其他内容可以参考前述对于图4中用户界面210的描述,此处不再赘述。
与图4中的方位标识212相比,图9中的方位标识222指示的位置范围更小,原因是使用步骤S201~S205提供的定位方法可以提高定位的精确度。在步骤S201~S205提供的定位方法中,电子设备100存储有第二指纹库,第二指纹库关联存储有多组Wi-Fi指纹和位置信息的对应关系,以及与二者对应的POI类型。电子设备100可以在确定用户出现在建筑物的主要出入口时进行Wi-Fi扫描,并依据Wi-Fi扫描获得的Wi-Fi信号的相关信息生成Wi-Fi指纹。电子设备100可以基于采集到的传感器数据,确定用户所在出入口的类型。之后,电子设备100可以依据用户所在出入口的类型确定电子设备100所处的位置对应的POI类型。电子设备100可以依据电子设备100所处的位置对应的POI类型,和,第二指纹库,确定电子设备100所处的位置。
实施该方法,由于电子设备100在确定用户出现在建筑物的主要出入口时才进行Wi-Fi扫描,因此,电子设备100所处的位置必然在建筑物的主要出入口附近。电子设备100进行指纹匹配时只将生成的Wi-Fi指纹与指纹库中的部分Wi-Fi指纹进行指纹匹配,从而减小了存在多个相似度相同的Wi-Fi指纹,且相似度相同的各Wi-Fi指纹对应的位置距离较远的可能性,提高了电子设备100生成的Wi-Fi指纹的唯一性,使电子设备100在Wi-Fi AP较少的室内场景下也能得到较为准确的电子设备100的位置。
示例性的,图10展示了单个Wi-Fi AP下的定位场景示意图。当用户实际位置位于如图10所示的黑色实心圆点处时,若不限缩指纹匹配范围,那么,指纹库中将存在多个与电子设备100生成的Wi-Fi指纹高度相同的Wi-Fi指纹,且这些Wi-Fi指纹对应的位置分别位于如图10所示的由黑色虚线构成的圆上。此时,若将指纹库中与生成的Wi-Fi指纹相似度最大的Wi-Fi指纹对应的位置确定为电子设备100的位置,那么电子设备100将得到多个电子设备100的位置,且难以确定究竟哪个位置才是用户真实位置。若电子设备100实施步骤S201~S205提供的定位方法,进行POI指纹匹配,将生成的Wi-Fi指纹只与指纹库中建筑物的主要出入口位置对应的Wi-Fi指纹进行比对,那么指纹库中存在多个与生成的Wi-Fi指纹高度相同的Wi-Fi指纹,且,相似度相同的各Wi-Fi指纹对应的位置距离较远的可能性较小。电子设备100的位置可以被限缩在如图10所示的黑色点框区域内。由此,电子设备100可以获取较为精确的电子设备100的位置。
使用传统方法和步骤S201~S205提供的定位方法,在商场地下车库进行定位实测,获得的对比统计结果如下表5所示:
表5
表5为在商场地下车库使用不同方案进行定位实测获得的对比统计结果。该对比统计结果包括有定位所使用的定位方法、电子设备100所处位置标识,以及使用该定位方法在该位置标识指示的位置处进行定位的平均定位误差。
如表5所示,电子设备100使用传统方案进行定位,在位置1处时获得的平均定位误差为5.8米。电子设备100使用传统方案进行定位,在位置2处时获得的平均定位误差为24.5米。电子设备100使用本申请方案中步骤S201~S205提供的定位方法进行定位,在位置1处时平均定位误差为2.4米。电子设备100使用本申请方案中步骤S201~S205提供的定位方法进行定位,在位置2处时平均定位误差为0米。由此可知,使用本申请方案中步骤S201~S205提供的定位方法进行定位,可以显著提高定位精度。
在采用集成的单元的情况下,参见图11,图11是本申请实施例提供的装置1000的结构示意图。如图11所示,该装置1000可以包括收发单元1001和处理单元1002。
一种设计中,收发单元1001,可用于接收Wi-Fi AP发射的Wi-Fi信号。
处理单元1002,可用于依据传感器数据,判断用户是否出现在建筑物的主要出入口,以及进行Wi-Fi扫描,接收Wi-Fi AP发射的Wi-Fi信号,并依据接收到的Wi-Fi信号生成Wi-Fi指纹、进行指纹匹配,得到电子设备100的位置。
可选的,收发单元1001,还可用于执行前述图3和/或图6所示方法实施例中电子设备100执行的有关发送和接收的功能步骤。
可选的,处理单元1002,还可用于执行前述图3和/或图6所示方法实施例中电子设备100执行的有关定位的功能步骤。
应理解,该种设计中的装置1000可对应执行前述实施例中电子设备100执行的方法步骤,为了简洁,在此不再赘述。
该装置1000可以实现为上述实施例中的电子设备100。可选的,装置1000可以为一种芯片/芯片系统。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在电子设备上运行时,使得电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当电子设备执行该计算机程序代码时,使得电子设备执行前述任一实施例中的方法。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种定位方法,其特征在于,所述方法包括:
    电子设备基于采集的传感器数据,确定所述电子设备处于第一场所中的兴趣点POI,所述POI为所述第一场所中的特定的位置;
    所述电子设备基于接收到的一个或多个无线保真接入点Wi-Fi AP发射的Wi-Fi信号,生成第一Wi-Fi指纹,所述第一Wi-Fi指纹包括所述一个或多个Wi-Fi AP的MAC地址、信号强度;
    所述电子设备将所述第一Wi-Fi指纹与指纹库中与所述POI相关联的一个或多个第二Wi-Fi指纹进行匹配,得到所述第一Wi-Fi指纹与所述一个或多个第二Wi-Fi指纹的相似度,所述指纹库存储于所述电子设备中,所述指纹库包括所述第一场所中多个位置信息以及多个位置信息对应的Wi-Fi指纹,其中多个位置信息中包括所述POI对应的位置信息,所述多个位置信息对应的Wi-Fi指纹包括所述一个或多个第二Wi-Fi指纹;
    所述电子设备基于所述第一Wi-Fi指纹与所述一个或多个第二Wi-Fi指纹的相似度,确定所述电子设备在所述第一场所中所处的第一位置。
  2. 根据权利要求1所述的方法,其特征在于,电子设备基于采集的传感器数据,确定所述电子设备处于第一场所中的兴趣点POI,所述POI为所述第一场所中的特定的位置之后,所述方法还包括:
    所述电子设备基于采集的传感器数据,确定所述POI的类型。
  3. 根据权利要求2所述的方法,其特征在于,所述与所述POI相关联的一个或多个第二Wi-Fi指纹包括与所述POI的类型相同的位置对应的一个或多个Wi-Fi指纹。
  4. 根据权利要求2所述的方法,其特征在于,所述POI的类型包括步梯口、手扶梯口、升降梯口、建筑物内外分界口中的一项或多项。
  5. 根据权利要求2所述的方法,其特征在于,所述传感器数据为速度,所述电子设备基于采集的传感器数据,确定所述POI的类型,具体包括:
    在所述速度的垂直分量大于第一阈值、水平分量为第一值的情况下,所述电子设备基于所述速度,确定所述POI的类型为升降梯口;
    在所述速度的垂直分量大于第二阈值,水平分量为第二值的情况下,所述电子设备基于所述速度,确定所述POI的类型为手扶梯口,所述第二阈值小于所述第一阈值,所述第二值大于第一值;
    在所述速度的垂直分量大于第三阈值,水平分量为第三值的情况下,所述电子设备基于所述速度,确定所述POI的类型为步梯口,所述第三阈值小于所述第二阈值,所述第三值大于所述第一值。
  6. 根据权利要求1所述的方法,其特征在于,所述传感器数据包括以下的一项或多项:大气压强、加速度、角速度、重力加速度、速度。
  7. 根据权利要求1所述的方法,其特征在于,所述传感器数据为加速度;所述电子设备基于采集的传感器数据,确定所述电子设备处于第一场所中的兴趣点POI,所述POI为所述第一场所中的特定的位置,具体包括:
    在所述加速度的垂直分量在第一时间段内大于第四阈值,所述加速度的水平分量在第二时间段内大于第五阈值,且所述第一时间段是所述第二时间段之前的一个时间段时,所述电子设备确定所述电子设备处于第一场所中的POI。
  8. 根据权利要求1所述的方法,其特征在于,所述位置信息包括:楼层、经度、纬度。
  9. 根据权利要求1所述的方法,其特征在于,所述电子设备基于所述第一Wi-Fi指纹与所述一个或多个第二Wi-Fi指纹的相似度,确定所述电子设备在所述第一场所中所处的第一位置,具体包括:
    若只有一个第二Wi-Fi指纹,所述电子设备将所述第二Wi-Fi指纹对应的位置确定为所述电子设备在所述第一场所中所处的第一位置;
    若存在多个第二Wi-Fi指纹,所述电子设备将与所述第一Wi-Fi指纹的相似度最大的第二Wi-Fi指纹对应的位置确定为所述电子设备在所述第一场所中所处的第一位置,或,所述电子设备依据与所述第一Wi-Fi指纹的相似度大于阈值的多个所述第二Wi-Fi指纹对应的位置,确定所述电子设备在所述第一场所中所处的第一位置。
  10. 根据权利要求1所述的方法,其特征在于,所述电子设备基于所述第一Wi-Fi指纹与所述一个或多个第二Wi-Fi指纹的相似度,确定所述电子设备在所述第一场所中所处的第一位置之后,所述方法还包括:
    所述电子设备显示从所述电子设备在所述第一场所中所处的第一位置到用户输入的目的地址的路线;
    或者,所述电子设备基于所述电子设备在所述第一场所中所处的第一位置,以及电子设备的移动方向和移动距离,确定所述电子设备所处的第二位置。
  11. 一种电子设备,其特征在于,所述电子设备包括存储器、处理器,所述存储器用于存储计算机程序,所述处理器用于调用计算机程序,使得所述电子设备执行:
    基于采集的传感器数据,确定所述电子设备处于第一场所中的兴趣点POI,所述POI为所述第一场所中的特定的位置;
    基于接收到的一个或多个Wi-Fi AP发射的Wi-Fi信号,生成第一Wi-Fi指纹,所述第一Wi-Fi指纹包括所述一个或多个Wi-Fi AP的MAC地址、信号强度;
    将所述第一Wi-Fi指纹与指纹库中与所述POI相关联的一个或多个第二Wi-Fi指纹进行匹配,得到所述第一Wi-Fi指纹与所述一个或多个第二Wi-Fi指纹的相似度,所述指纹库存储于所述电子设备中,所述指纹库包括所述第一场所中多个位置信息以及多个位置信息对应的Wi-Fi指纹,其中多个位置信息中包括所述POI对应的位置信息,所述多个位置信息对应的Wi-Fi指纹包括所述一个或多个第二Wi-Fi指纹;
    基于所述第一Wi-Fi指纹与所述一个或多个第二Wi-Fi指纹的相似度,确定所述电子设备在所述第一场所中所处的第一位置。
  12. 根据权利要求11所述的电子设备,其特征在于,所述处理器还用于调用所述计算机程序以使得所述电子设备执行:
    在基于采集的传感器数据,确定所述电子设备处于第一场所中的兴趣点POI,所述POI为所述第一场所中的特定的位置之后,基于采集的传感器数据,确定所述POI的类型。
  13. 根据权利要求12所述的电子设备,其特征在于,所述与所述POI相关联的一个或多个第二Wi-Fi指纹包括与所述POI的类型相同的位置对应的一个或多个Wi-Fi指纹。
  14. 根据权利要求12所述的电子设备,其特征在于,所述POI的类型包括步梯口、手扶梯口、升降梯口、建筑物内外分界口中的一项或多项。
  15. 根据权利要求12所述的电子设备,其特征在于,所述传感器数据为速度,所述基于采集的传感器数据,确定所述POI的类型,具体包括:
    在所述速度的垂直分量大于第一阈值、水平分量为第一值的情况下,基于所述速度,确定所述POI的类型为升降梯口;
    在所述速度的垂直分量大于第二阈值,水平分量为第二值的情况下,基于所述速度,确定所述POI的类型为手扶梯口,所述第二阈值小于所述第一阈值,所述第二值大于第一值;
    在所述速度的垂直分量大于第三阈值,水平分量为第三值的情况下,基于所述速度,确定所述POI的类型为步梯口,所述第三阈值小于所述第二阈值,所述第三值大于所述第一值。
  16. 根据权利要求11所述的电子设备,其特征在于,所述传感器数据包括以下的一项或多项:大气压强、加速度、角速度、重力加速度、速度。
  17. 根据权利要求11所述的电子设备,其特征在于,所述传感器数据为加速度;所述基于采集的传感器数据,确定所述电子设备处于第一场所中的兴趣点POI,所述POI为所述第一场所中的特定的位置,具体包括:
    在所述加速度的垂直分量在第一时间段内大于第四阈值,所述加速度的水平分量在第二时间段内大于第五阈值,且所述第一时间段是所述第二时间段之前的一个时间段时,确定所述电子设备处于第一场所中的POI。
  18. 根据权利要求11所述的电子设备,其特征在于,所述位置信息包括:楼层、经度、纬度。
  19. 根据权利要求11所述的电子设备,其特征在于,所述基于所述第一Wi-Fi指纹与所述一个或多个第二Wi-Fi指纹的相似度,确定所述电子设备在所述第一场所中所处的第一位置,具体包括:
    若只有一个第二Wi-Fi指纹,则将所述第二Wi-Fi指纹对应的位置确定为所述电子设备在所述第一场所中所处的第一位置;
    若存在多个第二Wi-Fi指纹,则将与所述第一Wi-Fi指纹的相似度最大的第二Wi-Fi指纹对应的位置确定为所述电子设备在所述第一场所中所处的第一位置,或,所述电子设备依据与所述第一Wi-Fi指纹的相似度大于阈值的多个所述第二Wi-Fi指纹对应的位置,确定所述 电子设备在所述第一场所中所处的第一位置。
  20. 根据权利要求11所述的电子设备,其特征在于,所述处理器还用于调用所述计算机程序以使得所述电子设备执行:
    在基于所述第一Wi-Fi指纹与所述一个或多个第二Wi-Fi指纹的相似度,确定所述电子设备在所述第一场所中所处的第一位置之后,显示从所述电子设备在所述第一场所中所处的第一位置到用户输入的目的地址的路线;
    或者,基于所述电子设备在所述第一场所中所处的第一位置,以及电子设备的移动方向和移动距离,确定所述电子设备所处的第二位置。
  21. 一种包含指令的计算机程序产品,其特征在于,计算机程序产品在电子设备上运行时,使得所述电子设备执行权利要求1-10中任一项所述的方法。
  22. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在电子设备上运行,使得所述电子设备执行权利要求1-10中任一项所述的方法。
PCT/CN2023/080373 2022-03-11 2023-03-09 定位方法、系统及相关装置 WO2023169487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210241823.8A CN116782122A (zh) 2022-03-11 2022-03-11 定位方法、系统及相关装置
CN202210241823.8 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023169487A1 true WO2023169487A1 (zh) 2023-09-14

Family

ID=87936131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080373 WO2023169487A1 (zh) 2022-03-11 2023-03-09 定位方法、系统及相关装置

Country Status (2)

Country Link
CN (1) CN116782122A (zh)
WO (1) WO2023169487A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009654A (ko) * 2010-07-20 2012-02-02 한국과학기술원 Wi?Fi 신호지문 데이터베이스 확보 방법 및 이를 위한 시스템
CN103913720A (zh) * 2014-04-08 2014-07-09 上海交通大学 一种面向非特定Wi-Fi设备的室内定位方法
CN105635956A (zh) * 2014-11-04 2016-06-01 香港理工大学深圳研究院 一种基于室内虚拟地标的定位方法及装置
CN110505572A (zh) * 2019-06-27 2019-11-26 华为技术有限公司 一种室内定位方法及电子设备
CN112987064A (zh) * 2021-02-09 2021-06-18 北京百度网讯科技有限公司 建筑物定位方法、装置、设备、存储介质和终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009654A (ko) * 2010-07-20 2012-02-02 한국과학기술원 Wi?Fi 신호지문 데이터베이스 확보 방법 및 이를 위한 시스템
CN103913720A (zh) * 2014-04-08 2014-07-09 上海交通大学 一种面向非特定Wi-Fi设备的室内定位方法
CN105635956A (zh) * 2014-11-04 2016-06-01 香港理工大学深圳研究院 一种基于室内虚拟地标的定位方法及装置
CN110505572A (zh) * 2019-06-27 2019-11-26 华为技术有限公司 一种室内定位方法及电子设备
CN112987064A (zh) * 2021-02-09 2021-06-18 北京百度网讯科技有限公司 建筑物定位方法、装置、设备、存储介质和终端设备

Also Published As

Publication number Publication date
CN116782122A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2020244497A1 (zh) 一种柔性屏幕的显示方法及电子设备
US11871328B2 (en) Method for identifying specific position on specific route and electronic device
US9661221B2 (en) Always-on camera sampling strategies
WO2021052016A1 (zh) 一种人体姿态检测方法及电子设备
CN115866121A (zh) 应用界面交互方法、电子设备和计算机可读存储介质
CN110059686B (zh) 字符识别方法、装置、设备及可读存储介质
WO2022028362A1 (zh) 一种设备定位方法及其相关设备
WO2020259554A1 (zh) 可进行学习的关键词搜索方法和电子设备
CN116070035B (zh) 数据处理方法和电子设备
CN111522438A (zh) 内容传输方法、设备及介质
CN111835904A (zh) 一种基于情景感知和用户画像开启应用的方法及电子设备
EP2972657B1 (en) Application-controlled granularity for power-efficient classification
US20230379408A1 (en) Positioning Method and Electronic Device
KR101995799B1 (ko) 상황 인지 서비스를 제공하기 위한 장소 인식 장치 및 방법
CN114090140A (zh) 基于指向操作的设备之间的交互方法及电子设备
WO2023169487A1 (zh) 定位方法、系统及相关装置
WO2022062902A1 (zh) 一种文件传输方法和电子设备
WO2021147483A1 (zh) 数据分享的方法和装置
WO2023179751A9 (zh) 一种物体寻找方法、系统以及电子设备
CN116048236B (zh) 通信方法及相关装置
WO2024093857A1 (zh) 一种定位方法及相关装置
WO2021190350A1 (zh) 一种图像显示方法和电子设备
WO2023098365A1 (zh) 车辆进入室内环境的检测方法、电子设备和存储介质
CN117666824A (zh) 一种控制光标移动的方法和装置
CN116567805A (zh) 状态识别的方法、装置、设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766064

Country of ref document: EP

Kind code of ref document: A1