WO2023169421A1 - 一种多链路数据处理方法、装置及设备 - Google Patents

一种多链路数据处理方法、装置及设备 Download PDF

Info

Publication number
WO2023169421A1
WO2023169421A1 PCT/CN2023/080098 CN2023080098W WO2023169421A1 WO 2023169421 A1 WO2023169421 A1 WO 2023169421A1 CN 2023080098 W CN2023080098 W CN 2023080098W WO 2023169421 A1 WO2023169421 A1 WO 2023169421A1
Authority
WO
WIPO (PCT)
Prior art keywords
access point
link
multicast
frame
bitmap
Prior art date
Application number
PCT/CN2023/080098
Other languages
English (en)
French (fr)
Inventor
郭宇宸
李云波
李伊青
淦明
黄国刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023169421A1 publication Critical patent/WO2023169421A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present application relates to the field of communication technology, and in particular, to a multi-link data processing method, device and equipment.
  • the multi-link device can be an access point (AP) multi-link device (referred to as AP MLD) or a station (station, STA) multi-link device (referred to as STA or non-AP MLD).
  • AP MLD access point
  • STA station
  • non-AP MLD station multi-link device
  • the non-access point multi-link device can communicate with the access point multi-link device after establishing a multi-link (referred to as multi-link establishment or multi-link association).
  • non-AP MLD can perform sleep operation.
  • the non-AP MLD in sleep mode will periodically wake up the STA to receive the Beacon frame sent by the AP and transmit the service indication message (delivery traffic indication message, DTIM) Beacon. frame.
  • DTIM delivery traffic indication message
  • the first STA in the non-AP MLD works on the first link, and the first STA receives a DTIMBeacon frame, which indicates that the second AP on the second link is to send a multicast frame.
  • the first STA cannot distinguish whether the multicast frame to be sent by the second AP is a multicast data frame or a multicast management frame, or whether it includes a multicast data frame and a multicast management frame, once the first STA discovers the multicast frame on the second link.
  • the second AP wants to send a multicast frame, it needs to wake up the second STA working on the second link in the non-AP MLD where the first STA is located to receive the multicast frame.
  • the second AP only wants to send multicast data frames, since the multicast data frames will be sent on all links, the first STA can receive the multicast data frames sent by the second AP on the first link. , there is no need to wake up the second STA to receive multicast data frames. Then the awakening of the second STA may cause a waste of energy.
  • This application provides a multi-link data processing method, device and equipment.
  • This method can indicate the type of multicast service, so that non-AP MLD can more accurately determine whether to wake up the corresponding STA to receive multicast frames, thereby achieving the purpose of energy saving.
  • this application provides a multi-link data processing method.
  • the method is executed by the first multi-link device, or may also be executed by the first access point.
  • the first multi-link device is an access point multi-link device, and the first multi-link device includes a first access point.
  • the first access point generates a wireless frame and sends the wireless frame.
  • the wireless frame includes first indication information.
  • the first indication information is used to indicate whether one or more second access points have multicast management frames to be sent.
  • the one or more second access points are all connected to the first access point.
  • the access point is co-located with the entry point.
  • the first indication information carried by the first access point in the wireless frame can indicate whether the second access point has a multicast management frame to be sent, so that the non-access points corresponding to the first access point can
  • the link device can accurately determine whether to wake up the station corresponding to the second access point to receive the multicast management frame. Therefore, in this method, when the second access point has only multicast data frames to send, it can avoid waking up the station corresponding to the second access point, thereby achieving the purpose of energy saving.
  • the first indication information includes a first bitmap.
  • One or more bits in the first bitmap are respectively used to indicate whether there is a multicast management frame to be sent by one or more second access points. That is to say, the first indication information may be indicated using a bitmap, and the specific indication method may be that each bit indicates whether the corresponding second access point has a multicast management frame to be sent. For example, when the value of a bit is 1, this bit indicates that the corresponding second access point has a multicast management frame to be sent; when the value of the bit is 0, this bit indicates that the corresponding second access point does not exist. Multicast management frame is pending.
  • the first indication information includes a first bitmap
  • one or more bits in the first bitmap correspond to the second access point
  • the bits at corresponding positions in the second bitmap correspond to the second access point.
  • the two access points are the same.
  • the second bitmap is carried in the service indication bitmap element (TIM element).
  • One or more bits in the second bitmap are used to indicate whether one or more second access points have multicast frames to be sent.
  • the first bit in the first bitmap corresponds to the first AP
  • the first bit in the second bitmap also corresponds to the first AP. It can be seen that when the first bitmap is used to indicate whether there is a multicast management frame to be sent by one or more second access points, a similar indication method can be used as the existing indication information (the second bitmap).
  • the second access point corresponding to the nth bit in the first bitmap is the same as the nth bit with a value of 1 in the second bitmap.
  • the bits corresponding to the second access point are the same.
  • the first bit in the first bitmap corresponds to the first AP
  • the first bit with a value of 1 in the second bitmap (assumed to be the first bit in the second bitmap) corresponds to the One AP.
  • the first bit bitmap can use fewer bits for indication, which is beneficial to reducing overhead.
  • the first indication information is carried in a service indication bitmap element (TIM element).
  • TIM element the wireless frame sent by the first access point includes a service indication bitmap element
  • the service indication bitmap element includes a first bitmap. It can be seen that the first indication information can reuse existing service indication bitmap elements.
  • the first indication information is carried in a multi-link traffic element (multi-link traffic element) or a multi-link traffic indication element (multi-link traffic indication element).
  • the wireless frame sent by the first access point includes a multi-link service element, and the multi-link service element includes a first bitmap. It can be seen that the first indication information can reuse existing multi-link service elements or multi-link service indication elements.
  • the first indication information is carried in a reduced neighbor report element (RNR element).
  • RNR element reduced neighbor report element
  • the wireless frame sent by the first access point contains a simplified neighbor report element, and the RNR element is used to carry information about the neighbor AP of the first access point.
  • the neighbor APs of the first access point include the second access point, then the first indication information can reuse the existing fields carrying neighbor AP information (for example, the target beacon transmission time information in the simplified neighbor report element set field).
  • the first indication information can reuse existing elements, and the changes to the protocol standards are relatively small.
  • the first indication information is carried in the first information element.
  • the first information element is a newly defined information element. For example, select an element ID from the element IDs not defined in the protocol standard as the element ID of the first information element, and define the length, element ID extension and multicast management of the element. Frame information (used to carry the first bitmap) and other fields, thus defining the first information element. It can be seen that this embodiment does not reuse existing elements, but newly defines an information element based on the protocol standard for carrying the first indication information.
  • the one or more second access points include at least one of the following access points:
  • the first access point (that is, the first indication information is used to indicate whether there is a multicast management frame to be sent by the first access point);
  • MBSSID multiple basic service set identifier
  • the access point in the second multi-link device is a multi-link device to which other access points in the first multi-basic service set identifier set where the first access point is located belong, and the second multi-link device is Multilink devices are access point multilink devices;
  • Co-located with the first access point and does not belong to the first multi-link device does not belong to the first set of multiple basic service set identifiers where the first access point is located, and does not belong to the access point of the second multi-link device. entry point.
  • the second access point is co-located with the first access point, which may include Many of the above situations.
  • the wireless frame is a transmission service indication information (DTIM beacon) frame or a service indication bitmap (TIM) frame. That is to say, the first indication information can be carried in a DTIM beacon frame or a TIM frame.
  • DTIM beacon transmission service indication information
  • TIM service indication bitmap
  • this application also provides a multi-link data processing method.
  • the multi-link data processing method in this aspect corresponds to the multi-link data processing method described in the first aspect, and the multi-link data processing method in this aspect is explained from the perspective of a non-access point multi-link device.
  • the non-access point multi-link device includes a first site and a second site.
  • a wireless frame is received through the first station, and the wireless frame includes first indication information.
  • the first indication information is used to indicate whether there is a multicast management frame to be sent by one or more second access points.
  • the second station operates on the same link as one of the one or more second access points to which a multicast management frame is to be sent.
  • the wireless frame received by the first station corresponding to the first access point includes the first indication information, so that the non-access point multi-link device where the first station is located can accurately determine whether to wake up the second access point corresponding station to receive multicast management frames. Therefore, in this method, when the second access point has a multicast management frame to be sent, only the station corresponding to the second access point is awakened to receive the multicast management frame, avoiding waking up other stations, thereby achieving the purpose of energy saving.
  • the first indication information includes the first bit Figure
  • this application also provides a multi-link data processing method.
  • the method is executed by the first multi-link device, or may also be executed by the first access point.
  • the first multi-link device is an access point multi-link device, and the first multi-link device includes a first access point.
  • the first access point sends a Multicast management frame. That is, when the multicast frame sent by the first access point includes a multicast management frame and a multicast data frame, the first access point first sends the multicast management frame and then sends the multicast data frame.
  • the rule for sending multicast management frames and multicast data frames is defined as sending the multicast management frame first, Then send the multicast data frame. Then, when the multicast frame sent by the first access point includes a multicast management frame and a multicast data frame, the awakened station must first receive the multicast management frame and then the multicast data frame. When the station receives the multicast data frame, it means that the multicast management frame has been sent or the multicast management frame has not been sent, and the station can stop receiving or enter the sleep state.
  • this method will still wake up each station, when the multicast management frame of the first access point has been sent or the first access point did not send the multicast management frame and only sent the multicast data frame, after being awakened,
  • the station can quickly stop receiving or enter a dormant state, thus saving energy to a certain extent.
  • the first access point directly sends the multicast data frame.
  • this application also provides a multi-link data processing method.
  • the multi-link data processing method in this aspect is the same as the Corresponding to the multi-link data processing methods described in the three aspects, the multi-link data processing method in this aspect is explained from the perspective of non-access point multi-link devices.
  • the non-access point multi-link device includes the first station. In this method, when the first station receives the multicast data frame, the first station stops receiving or switches to a dormant state.
  • the station has learned the multicast frame sending rules of the access point in advance, that is, it sends multicast management frames first and then sends multicast data frames. Then when the first station wakes up to receive multicast frames, if it receives the multicast management frame first and then the multicast data frame, or directly receives the multicast data frame, the first station can stop receiving multicast frames; or If the first station does not need to receive multicast data frames on other links, the first station can directly enter the sleep state. Therefore, although this method will still wake up each station, the awakened station can quickly stop receiving or enter a sleep state, thus achieving energy saving to a certain extent.
  • this application also provides a multi-link data processing method.
  • the method uses a first multi-link device as an execution subject, the first multi-link device is an access point multi-link device, and the first multi-link device includes a first access point and a second access point.
  • the first multicast frame is sent through the first access point.
  • the second access point does not send the second multicast frame.
  • the first multicast frame is sent through the first access point, and the second multicast frame is sent through the second access point, and the sending time period of the second multicast frame is different from the sending time period of the first multicast frame. overlapping.
  • the first access point works on the first link
  • the second access point works on the second link.
  • the first link and the second link belong to the enhanced single radio multilink set (EMLSR link set) of a non-access point multilink device (EMLSRnon-AP MLD) operating in enhanced single radio multilink mode.
  • the first multilink device is associated with a non-access point multilink device (EMLSRnon-AP MLD) operating in enhanced single radio multilink mode.
  • the non-access point multi-link device corresponding to the first multi-link device (
  • the non-access point multi-link device operates in enhanced multi-link single radio (EMLSR) mode) and can receive multicast frames on multiple links.
  • EMLSR enhanced multi-link single radio
  • the first multicast frame may be sent through the first access point on the first link, and the sending of the first multicast frame is completed before the first time point.
  • the first time point is the time point when the second access point starts or plans to start sending the second multicast frame. That is to say, in this embodiment, the time point when the second access point starts or plans to start sending the second multicast frame is used as the end time point when the first access point sends the first multicast frame, so that the second multicast frame
  • the sending time period does not overlap with the sending time period of the first multicast frame, which helps the non-AP MLD working in EMLSR mode to receive multicast frames on different links normally.
  • the first time point may also be a time point before the second access point starts or plans to start sending the second multicast frame plus a period of link conversion time.
  • the link transition time is the time required for the non-AP MLD to transition from the receiving state to the listening operation state when operating in EMLSR mode. It should be noted that when there are multiple non-AP MLDs working in EMLSR mode, the link conversion time is the maximum value of the time required for conversion of all non-AP MLDs working in EMLSR mode.
  • the first multi-link device may determine the end time point of the first multicast frame. If there is a second multicast frame to be sent before the end time point of the first multicast frame, third indication information is sent through the first access point, and the third indication information is used to indicate that the second access point does not have a multicast frame. To be sent.
  • the non-AP MLD working in EMLSR mode will only receive the first multicast frame on the working link of the first access point and will not switch to the second access point. point on the working link, which facilitates the non-AP MLD working in EMLSR mode to receive multicast frames on different links.
  • the first time point may also be the end time point of the first multicast frame plus a period of link conversion time. That is to say Yes, the sending time period of the first multicast frame includes the transmission time of the multicast buffer unit of the first multicast frame plus the link conversion time.
  • the link conversion time refer to the corresponding description above and will not be repeated here.
  • this application also provides a multi-link data processing method.
  • the first multi-link device is the execution subject, and the first access point may also be the execution subject.
  • the first multi-link device is an access point multi-link device, and the first multi-link device includes a first access point.
  • the first access point when the non-access point multi-link device where the site corresponding to the first access point is located cannot receive multicast frames on multiple links at the same time (for example, non-access point multi-link
  • the path device is non-AP MLD
  • the first access point sends multicast frames using the specified format and/or specified parameters. That is to say, when there is a non-AP MLD working in EMLSR mode, the multicast frame sent by the AP in the AP MLD on the link in the eMLSR link set should adopt the specified format and/or specified parameters.
  • the multicast frame using the specified format and/or specified parameters can be regarded as a simple multicast frame (for example, a single spatial stream), then the non-AP MLD working in EMLSR mode can receive on multiple links.
  • non-AP MLD working in EMLSR mode can normally receive multicast frames on different links.
  • the specified format and/or specified parameters include: non-high throughput physical layer convergence procedure sublayer protocol data unit format (non-HT PPDU format), non-high throughput repeated physical layer convergence procedure sublayer layer protocol data unit format (non-HT duplicate PPDU format), and/or single spatial stream (single spatial stream).
  • the communication device may be an access point multi-link device, may be a device in the access point multi-link device, or may be capable of communicating with the access point multi-link device.
  • Road equipment matches the device used.
  • the communication device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions performed by the access point or the access point multi-link device described in the first to sixth aspects,
  • the module can be a hardware circuit, a software, or a hardware circuit combined with software.
  • the device may include a processing module and a communication module.
  • the communication device can also achieve the effects that can be achieved in the first to sixth aspects.
  • inventions of the present application provide a communication device.
  • the communication device may be a non-access point multi-link device, may be a device in a non-access point multi-link device, or may be capable of communicating with a non-access point multi-link device.
  • the link device matches the device used.
  • the communication device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions performed by the stations or non-access point multi-link devices described in the first to sixth aspects, the Modules can be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module.
  • the communication device can also achieve the effects that can be achieved in the first to sixth aspects.
  • embodiments of the present application provide a multi-link device, including: a processor, the processor is coupled to a memory, and the memory is used to store instructions.
  • the device implements the first aspect described above. aspects to the sixth aspect, or any possible method in the design of the first aspect to the sixth aspect.
  • embodiments of the present application further provide a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are run on a computer, they cause the computer to execute the first to sixth aspects. , or any possible method in the design of the first to sixth aspects.
  • inventions of the present application provide a chip system.
  • the chip system includes a processor and may also include a memory, for implementing the above first to sixth aspects, or any one of the first to sixth aspects. function in one possible design approach.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • embodiments of the present application further provide a computer program product, including instructions, which when the instructions are run on a computer, cause the computer to execute the first to sixth aspects, or the first to sixth aspects. method in any possible design.
  • Figure 1A is a schematic diagram of a communication system provided by this application.
  • Figure 1B is a schematic diagram of a specific implementation of the communication system provided by this application.
  • Figure 2 is a schematic diagram of a device provided by this application that supports both ML and MBSSID;
  • Figure 3 is a schematic flow chart of the first multi-link data processing method provided by this application.
  • Figure 4A is a schematic diagram of a corresponding relationship between the first bitmap and the second bitmap provided by this application;
  • Figure 4B is a schematic diagram of another correspondence between the first bitmap and the second bitmap provided by this application.
  • Figure 5A is a schematic diagram of the frame structure of a TIM element provided by this application.
  • Figure 5B is a schematic diagram of the frame structure of a multi-link traffic (indication) element provided by this application;
  • Figure 5C is a schematic diagram of the frame structure of a first information element provided by this application.
  • FIG. 6A is a schematic diagram of the frame format of an RNR element provided by this application.
  • Figure 6B is a schematic diagram of the frame structure of the RNR element when the first indication information is carried in the MLD Parameters field provided by this application;
  • Figure 7 is a schematic flow chart of the second multi-link data processing method provided by this application.
  • Figure 8 is a schematic diagram of a communication scenario provided by this application including non-AP MLD operating in EMLSR mode;
  • Figure 9A is a schematic diagram of a multicast frame sending method provided by this application.
  • Figure 9B is a schematic diagram of another multicast frame sending method provided by this application.
  • FIG. 10 is a schematic diagram of the device provided by this application.
  • FIGS 11-13 are schematic diagrams of multi-link devices provided by this application.
  • the communication system 100 shown in Figure 1A includes at least two multi-link devices (multi-link devices, MLD); one of them is an access point (access point, AP) multi-link device 101 (referred to as AP MLD), The other is a non-access point (non-access point, non-AP) multi-link device 102 (abbreviated as non-APMLD, also known as a station multi-link device (station multi-link device, STA MLD)) as an example.
  • MLD multi-link devices
  • the access point multi-link device 101 includes one or more APs (for example, including AP1 to AP n).
  • Non-access point multi-link device 102 includes one or more non-AP STAs (eg, including STAl through STA n).
  • the non-access point multi-link device 102 may communicate with the access point multi-link device 101 after establishing a multi-link (referred to as multi-link establishment or multi-link association for short).
  • a STA in the non-access point multi-link device 102 may send an association request frame to an AP in the access point multi-link device 101.
  • the association request frame carries a multi-link element (MLE, or multi-link information unit) to carry information of the non-access point multi-link device 102 and/or other information in the non-access point multi-link device 102 STA information.
  • MLE multi-link element
  • the association response frame returned to the corresponding (associated) STA may also carry MLE to carry information about the access point multi-link device 101 and/or information about other APs in the access point multi-link device 101 .
  • STA1 can establish a link with AP1 (it can also be called STA1 and AP1 are associated, and link 1 can be used to communicate), and AP2 can establish a link with STA2 (it can also be called STA2 and AP1).
  • AP2 association, link 2 communication can be used), and so on.
  • the communication system may be a wireless local area network (WLAN) or a cellular network, or other wireless communication systems that support multiple links for parallel communication.
  • WLAN wireless local area network
  • the embodiments of this application are mainly explained by taking a network deploying IEEE 802.11 as an example, and various aspects involved in this application can be extended to other networks using various standards or protocols, such as BLUETOOTH (Bluetooth), high-performance wireless LAN (high performance radio LAN, HIPERLAN) (a wireless standard similar to the IEEE 802.11 standard, mainly used in Europe) and wide area networks (WAN), personal area networks (PAN) or other networks now known or later developed . Therefore, the various aspects provided herein may be applicable to any suitable wireless network, regardless of the coverage and wireless access protocols used.
  • BLUETOOTH Bluetooth
  • high-performance wireless LAN high performance radio LAN, HIPERLAN
  • WAN wide area networks
  • PAN personal area networks
  • Multi-link equipment refers to equipment that can operate in multiple frequency bands or multiple channels.
  • multi-link devices can communicate on the 2.4 megahertz (GHz), 5GHz and 6GHz frequency bands at the same time, or on different channels in the same frequency band at the same time, increasing the communication rate between devices.
  • Multi-link devices can communicate wirelessly using the 802.11 family of protocols, for example, following an extremely high throughput (EHT) site, or following an 802.11be-based or compatible site that supports 802.11be to communicate with other devices.
  • EHT extremely high throughput
  • other devices may be multi-link devices or not multi-link devices.
  • Multi-link devices usually include multiple STAs or multiple APs, and each STA or AP operates on a specific frequency band or channel.
  • Multi-link devices can be access point devices (AP MLD) or site devices (non-AP MLD or non-AP STA MLD). If it is an access point device (such as the access point multi-link device 101 shown in Figure 1A), the device contains one or more APs; if it is a site device (such as the non-access point multi-link device 101 shown in Figure 1A path device 102), the device contains one or more non-AP STAs.
  • the site device can communicate with the access point device after establishing multiple links (referred to as multi-link establishment or multi-link association).
  • multi-link devices are devices with wireless communication functions.
  • the device can be a complete device, or it can be a chip or a processing system installed in the complete device.
  • the device installed with these chips or processing systems can implement the method of the present application under the control of these chips or processing systems. and function.
  • the multi-link device may be a multi-link device with a single antenna (or single radio frequency module), or it may be a multi-link device with multiple antennas (or multiple radio frequency modules).
  • the multi-link device includes: The number of antennas is not limited.
  • non-AP MLD has wireless transceiver function and can support 802.11 series protocols to communicate with AP MLD or other non-AP MLD or single-link devices.
  • the non-AP MLD can be any user communication device that allows the user to communicate with the AP and thereby communicate with the WLAN, such as, but not limited to, tablets, desktops, laptops, notebooks, ultra-mobile personal computers, etc.
  • Personal computer (UMPC) handheld computer, netbook, personal digital assistant (PDA), mobile phone and other user equipment that can be connected to the Internet, or IoT nodes in the Internet of Things, or vehicle-mounted communication devices in the Internet of Vehicles, etc.
  • non-AP MLD can also be the chips and processing systems in these terminals.
  • AP MLD is a device that provides services for non-AP MLD and can support 802.11 series protocols.
  • AP MLD can be communication entities such as communication servers, routers, switches, and bridges, or AP MLD can include various forms of macro base stations, micro base stations, relay stations, etc.
  • AP MLD can also be these various forms of equipment.
  • the chip and processing system in the system are used to implement the methods and functions of the embodiments of the present application.
  • FIG. 1B shows a specific implementation of the communication system provided by this application.
  • AP MLD includes base station 1 and base station 2
  • non-AP MLD includes terminal 1 and terminal 2.
  • base station 1 is associated with terminal 1 and communicates through link 1
  • base station 2 is associated with terminal 2 and communicates through link 2.
  • multi-link devices can support high-speed and low-latency transmission.
  • multi-link devices can also be used in more scenarios, such as sensor nodes in smart cities (for example, Smart water meters, smart electricity meters, smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, displays, TVs, speakers, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart offices (such as printers, projectors, etc.), Internet of Vehicles devices in the Internet of Vehicles, and some infrastructure in daily life scenes (such as vending machines, supermarkets, etc.) Self-service navigation desk, self-service cashier equipment, self-service ordering machine, etc.).
  • the 802.11 protocol may be a protocol that supports 802.11be or is compatible with 802.11be.
  • Multiple basic service set identifier multiple basic service setidentifier, multipleBSSID
  • the existing 802.11 standard supports the multiple BSSID feature, whose basic function is to form multiple virtual APs in one device to serve different types of STAs. Multiple virtual APs can be managed together to save management overhead.
  • the multiple BSSID set is a set of cooperative APs. Among them, all APs in the set of cooperative APs use the same operation set, channel number, and antenna interface. In a multiple BSSID set, there is only one AP that transmits the BSSID, and the other APs in the set are non-transmitted BSSID APs.
  • the information of multiple BSSID sets (that is, multiple BSSID elements) is carried in the beacon frame (Beacon) or probe response frame (Probe response) or neighbor report sent by the transmitted BSSID AP.
  • the BSSID information of the non-transmitted BSSID AP is derived by receiving the above-mentioned beacon frame or detection response frame, or the multiple BSSID element in the neighbor report.
  • one physical AP can virtualize multiple logical APs, and each virtualized AP manages a BSS.
  • Different virtualized APs generally have different SSIDs and permissions, such as security mechanisms or transmission opportunities.
  • the virtual AP can be called transmittedAP
  • the BSSID of other virtual APs is configured as non-transmitted BSSID
  • the virtual AP can be called non- transmittedAP.
  • multiple APs in multiple BSSID can also be understood as one AP device virtualizing multiple cooperating AP devices. Only the AP with the BSSID of transmitted BSSID can send beacon frames and probe response frames.
  • the BSSID is transmittedBSSID.
  • the AP needs help responding to probe response frames.
  • the beacon frame sent by the AP with BSSID of transmitted BSSID includes multiple BSSID elements.
  • APs with other nontransmitted BSSID cannot send beacon frames.
  • the association identifier (AID) assigned by multiple virtual APs to the sites they manage shares the same space, which means that the AIDs assigned to sites in multiple virtual BSS cannot overlap.
  • multipleBSSID elements are shown in Table 1.
  • the multipleBSSID element includes multiple fields, such as element ID, element length, maximum BSSID indication, sub-element and other fields.
  • the value (n) of the maximum BSSID indication field is used to calculate the maximum number of BSSIDs contained in the multiple BSSID set, which is 2 n (2 to the nth power).
  • Optional sub-elements include information for each non-transmitted BSSID. catch The receiving end can calculate the value of each BSSID in the multi-BSSID set based on the reference BSSID, the maximum BSSID indication and the sequence number of the BSSID.
  • Each BSSID includes 48 bits, among which the value of the high (48-n) bits of each BSSID in the multi-BSSID set is The same as the value of the high (48-n) bits of the reference BSSID.
  • the value of the low n bits of each BSSID in the multi-BSSID set is the sum of the low n bits of the reference BSSID and the serial number x value of the BSSID, and then 2 ⁇ n takes the modulo.
  • the reference BSSID (that is, the transmitted BSSID) is carried in the BSSID field in the MAC header of the frame containing the multiple BSSID element (such as a beacon frame).
  • the multiple BSSID element such as a beacon frame.
  • MLD1 includes AP1, AP2 and AP3.
  • AP1 works on link 1
  • AP2 works on link2, and
  • AP3 works on link3.
  • MLD2 includes AP4 and AP5.
  • AP4 works on link 1 and AP5 works on link 2.
  • MLD3 includes AP6 and AP7.
  • AP6 works on link2 and AP7 works on link3.
  • MBSSID set 1 includes AP1 and AP4, both working on link 1.
  • MBSSID set 2 includes AP2, AP5 and AP6, all working on link2.
  • MBSSID set 3 includes AP3, AP6 and AP8, all working on link3.
  • AP1, AP2, and AP3 in MLD1 are associated with different STAs (for example, STA1 working on link 1, STA2 working on link2, and STA3 working on link3).
  • AP1 and AP4 in MBSSID set 1 can be associated with the same STA (for example, STA1 working on link 1).
  • multicast service (group addressed traffic) can be divided into multicast data frame (group addressed data frame, or group addressed data MPDU (MAC (media access control) protocol data unit)) and multicast management frame (group addressed management frame, or group addressed management MPDU, or group addressed MMPDU (multipleMPDU)).
  • group addressed data frame or group addressed data MPDU (MAC (media access control) protocol data unit)
  • multicast management frame group addressed management frame, or group addressed management MPDU, or group addressed MMPDU (multipleMPDU)
  • STA or non-AP MLD can perform sleep operation.
  • the STA or non-AP MLD in sleep mode will periodically wake up the STA to receive Beacon frames sent by the corresponding AP and delivery traffic indication message (delivery traffic indication message).
  • DTIM delivery traffic indication message
  • DTIM delivery traffic indication message
  • a traffic indication map element TIM element
  • the TIM element carries STA reception indication information.
  • the STA reception indication information is used to indicate whether the STA or non-AP MLD has Downlink data is waiting to be received.
  • the TIM element in the DTIM Beacon frame can also carry AP sending indication information.
  • the AP sending indication information is used to indicate whether the second AP co-located with the first AP has a multicast frame to be sent.
  • the second AP co-located with the first AP may include: the first AP (for example, AP1 in Figure 2), and/or other APs in the MBSSID set where the first AP is located (for example, AP4 in Figure 2 ), and/or other APs in the AP MLD where the first AP is located (for example, AP2 and AP3 in Figure 2), and/or other APs in the MBSSID set where the first AP is located Other APs in the MLD where the AP is located (for example, AP5 in Figure 2), and/or are co-located with the first AP, and do not belong to the AP MLD where the first AP is located, nor do they belong to the MBSSID set where the first AP is located, Other APs that do not belong to the MLD of other APs in the MBSS
  • the indication information sent by the AP can indicate whether each AP in Figure 2 There are multicast frames waiting to be sent.
  • the AP will send multicast frames after sending DTIM Beacon frames.
  • the STA receives the DTIM Beacon frame, it determines whether each AP has a multicast frame to send based on the information carried in the TIM element. If so, it wakes up on the corresponding link and receives the corresponding multicast frame.
  • the multicast frames to be sent by AP2 are only multicast data frames, since the multicast data frames will be sent on all links, STA1 only needs to receive the multicast data frames on link 1; if there are also multicast data frames, broadcast management frame, STA1 needs to wake up STA2 working on link 2 in the non-AP MLD to receive the corresponding multicast management frame.
  • STA1 cannot distinguish whether the multicast frame to be sent by AP2 is a multicast data frame or a multicast management frame, or whether it includes a multicast data frame and a multicast management frame based on the 1-bit indication information of AP2.
  • STA1 finds that AP2 on link 2 has a multicast frame to send, it wakes up STA2 on link 2 to receive the multicast frame. However, if AP2 only has multicast data frames to send, it does not need to wake up STA2 to receive multicast data frames. Waking up STA2 may cause a waste of energy.
  • this application provides a first multi-link data processing method.
  • the first access point may generate a wireless frame and send the wireless frame.
  • the wireless frame includes first indication information, and the first indication information is used to indicate whether there is a multicast management frame to be sent by one or more second access points. Therefore, the first access point instructs the second access point through the first indication information whether there is a multicast management frame to be sent, so that the non-access point multi-link device corresponding to the first access point can accurately determine whether to wake up the third access point.
  • the station corresponding to the second access point receives the multicast management frame. When the second access point has only multicast data frames to send, it can avoid waking up the station corresponding to the second access point, thereby achieving the purpose of energy saving.
  • This application also provides a second multi-link data processing method.
  • the wireless frame received by the first station corresponding to the first access point the wireless frame includes first indication information, and the first indication information indicates whether there is a multicast management frame to be sent by one or more second access points.
  • the non-access point multi-link device where the first station is located can accurately determine whether to wake up the station corresponding to the second access point to receive the multicast management frame. Therefore, in this method, when the second access point has a multicast management frame to be sent, only the station corresponding to the second access point is awakened to receive the multicast management frame, avoiding waking up other stations, thereby achieving the purpose of energy saving.
  • the first and second multi-link data processing methods correspond to each other and are respectively explained from the perspectives of access point multi-link devices and non-access point multi-link devices. The specific implementation methods are also similar. of.
  • This application also provides a third multi-link data processing method.
  • the first access point when the multicast frame sent by the first access point includes a multicast management frame and a multicast data frame, the first access point sends the multicast management frame before sending the multicast data frame. Then, when the multicast frames sent by the first access point include multicast management frames and multicast data frames, each station will be awakened, but the awakened station must first receive the multicast management frame and then the multicast Data Frame. When the station receives the multicast data frame, it means that the multicast management frame has been sent, and the station can stop receiving or enter the sleep state. Therefore, although this method will still wake up each station, after the first access point completes sending the multicast management frame, the awakened station can quickly stop receiving or enter a sleep state, thus achieving energy saving to a certain extent.
  • This application also provides a fourth multi-link data processing method.
  • the station has learned the access point’s Multicast frame sending rules, that is, multicast management frames are sent first, and then multicast data frames are sent.
  • Multicast frame sending rules that is, multicast management frames are sent first, and then multicast data frames are sent.
  • the first station can stop receiving the multicast frame; or If the first station does not need to receive multicast data frames on other links, the first station can directly enter the sleep state. Therefore, although this method will still wake up each station, the awakened station can quickly stop receiving or enter a sleep state, thus achieving energy saving to a certain extent.
  • the third and fourth multi-link data processing methods correspond to each other and are respectively explained from the perspectives of access point multi-link devices and non-access point multi-link devices. The specific implementation methods are also similar. of.
  • first to fourth multi-link data processing methods may be applied to, but are not limited to, the communication systems or devices shown in FIG. 1A, FIG. 1B or FIG. 2.
  • the first multi-link data processing method (carrying the first instruction information)
  • FIG. 3 is a schematic flowchart of the first multi-link data processing method provided by an embodiment of the present application.
  • the method may be executed by the first multi-link device or the first access point.
  • the following description takes the first access point as the execution subject as an example, and includes the following steps:
  • the first access point generates a wireless frame, where the wireless frame includes first indication information.
  • the first access point sends a wireless frame.
  • the first multi-link device is the access point multi-link device AP MLD.
  • the first multi-link device may include one or more APs.
  • the first multi-link device may be the AP MLD shown in Figure 1A or Figure 1B, or any MLD shown in Figure 2.
  • the first access point is an AP in the first multi-link device, and the first access point can generate and send wireless frames.
  • the first access point may be any AP in the MLD shown in FIG. 1A or FIG. 1B, or an AP in any MLD shown in FIG. 2.
  • Wireless frames may include but are not limited to DTIM beacon frames, TIM frames, etc.
  • the frame structure of the wireless frame may be, for example, the MAC frame structure described in the 802.11 protocol suite, as shown in Table 2.
  • the wireless frame includes a MAC header, a frame body, and a frame check sequence (FCS).
  • the frame body includes one or more elements. It can be understood that the wireless frame has an indefinite length, and one or more elements included in the frame body are arranged in sequence, and each element can be used to carry the first indication information.
  • the wireless frame carries first indication information, and the first indication information is used to indicate whether there is a multicast management frame to be sent by one or more second access points.
  • the second access point is an access point co-located with the first access point.
  • the second access point in this application may include but is not limited to:
  • the first access point (that is, the first indication information is used to indicate whether there is a multicast management frame to be sent by the first access point); in this case, the first access point and the second access point are the same.
  • the first access point is AP1 in Figure 2
  • the second access point includes AP1 in Figure 2.
  • the first multi-link device is MLD1 in Figure 2
  • the first access point is AP1 in Figure 2
  • the second access point may include Figure 2 AP2 or AP3 in .
  • the second access point may include AP4 in Figure 2.
  • the access point in the second multi-link device is in the first MBSSID set where the first access point is located A multi-link device to which other access points belong, and the second multi-link device is an access point multi-link device; for example, the first access point is AP1 in Figure 2, and the first MBSSID set is AP1 in Figure 2 MBSSID set 1, then the second multi-link device is MLD2 in Figure 2, and the second access point includes AP4 or AP5 in MLD2.
  • the first access point is AP1 in Figure 2
  • the first multi-link device is MLD1 in Figure 2
  • the first MBSSID set is MBSSID set 1 in Figure 2
  • the second multi-link device is MLD2 in Figure 2
  • the second access point may include AP6, AP7, or AP8.
  • the first access point may also be AP2 shown in Figure 2.
  • the second access point may include other corresponding APs in Figure 2.
  • the first instruction information is described in detail below.
  • the first indication information may include a first bitmap, and one or more bits in the first bitmap are respectively used to indicate whether one or more second access points exist. Multicast management frame is pending. That is to say, the first indication information may be indicated using a bitmap.
  • the indication method may be that each bit indicates whether the corresponding second access point has a multicast management frame to be sent.
  • the first bit of the bitmap is 1000100100.
  • the first bitmap includes 10 bits, each bit corresponding to a second access point, that is, the 10 bits of the first bitmap respectively correspond to 10 second access points.
  • the bit indicates that the corresponding second access point has a multicast management frame to be sent; when the value of the bit is 0, the bit indicates that the corresponding second access point does not have a group.
  • the broadcast management frame is waiting to be sent.
  • the first bitmap indicates that the first, fifth and eighth second access points have multicast management frames to be sent, and the other second access points do not have multicast management frames to be sent.
  • this embodiment may also assume that when the value of the bit is 1, the bit indicates that the corresponding second access point does not have a multicast management frame to be sent; when the value of the bit is 0, the bit indicates that the corresponding second access point does not have a multicast management frame to be sent.
  • the second access point has a multicast management frame to be sent, and the specific implementation method is not limited in this embodiment.
  • the wireless frame also includes second indication information, and the second indication information is used to indicate whether one or more second access points have multicast frames to be sent.
  • the second indication information may be the AP sending indication information as described in the fifth part.
  • the second indication information may be carried in a Beacon frame or a DTIM Beacon frame (that is, carried in a wireless frame), and further, may be carried in a Beacon frame or a TIM element of a DTIM Beacon frame.
  • the second indication information includes a second bitmap, and one or more bits in the second bitmap are respectively used to indicate whether the one or more second access points have multicast frames to be sent. It can be understood that the first bitmap and the second bitmap can satisfy certain corresponding relationships, which may include but are not limited to the following two corresponding relationships:
  • Correspondence 1 The second access point corresponding to one or more bits in the first bitmap is the same as the second access point corresponding to the bit at the corresponding position in the second bitmap.
  • FIG. 4A is a schematic diagram of a correspondence relationship between the first bitmap and the second bitmap provided by this application.
  • the first bitmap is 1000100100 (including 10 bits), and each bit indicates whether a second access point has a multicast management frame to be sent. If the bit value is 1, it indicates that the second access point corresponding to the bit has a multicast management frame to be sent. For example, if the value of the first, fifth and eighth bits in the first bitmap is 1, it means that the corresponding first, fifth and eighth second access points have multicast Management frames are to be sent, and there are no multicast management frames to be sent by other second access points.
  • the lengths of the second bitmap and the first bitmap are equal, and the second access point corresponding to each bit in the first bitmap is the same bit in the second bitmap.
  • the corresponding second access point is the same.
  • the second bitmap shown in FIG. 4A is 1100101101
  • the second access point corresponding to the first bit is the same as the second access point corresponding to the first bit in the first bitmap.
  • the bit value is 1, it means that the second access point corresponding to the bit has a multicast frame to be sent.
  • the value of the first, second, fifth, seventh, eighth and tenth bits in the second bitmap is 1, it means that the corresponding first, second The fifth, seventh, eighth and tenth second access points have multicast frames to be sent. Furthermore, according to the corresponding relationship between the first bitmap and the second bitmap in Figure 4A, it can also be deduced that the second, seventh and tenth second access points have multicast data frames to be sent. There are multicast management frames to be sent.
  • Correspondence 2 The second access point corresponding to the n-th bit in the first bitmap is the same as the second access point corresponding to the n-th bit with a value of 1 in the second bitmap.
  • FIG. 4B is a schematic diagram of another correspondence relationship between the first bitmap and the second bitmap provided by this application.
  • the lengths of the first bitmap and the second bitmap may be different.
  • the second bitmap is 1100101101.
  • the bits with a value of 1 are the first, second, fifth, seventh, eighth and tenth bits (a total of 6 bits), which means that the corresponding bits
  • the first, second, fifth, seventh, eighth and tenth second access points have multicast frames to be sent.
  • the number of bits of the first bitmap may be at least 6 bits.
  • the first bitmap is 101010
  • the first bit of the first bitmap corresponds to the first second access point
  • the second bit corresponds to the second second access point
  • the third bit corresponds to the fifth second access point
  • the fourth bit corresponds to the seventh second access point
  • the fifth bit corresponds to the eighth second access point
  • the sixth bit corresponds to the tenth second access point.
  • the value of each bit in the first bitmap indicates that the corresponding first, fifth and eighth second access points have multicast management frames to be sent.
  • the second, seventh and tenth second access points have multicast data frames to be sent. There are multicast management frames to be sent.
  • the lengths of the first bitmap and the second bitmap may also be the same.
  • the first bitmap is 1010100000.
  • the first bitmap and the second bitmap have the same length. and the second bitmap satisfy correspondence relationship 2.
  • the first indication information may be carried by different elements. Specifically, the first indication information may be carried through but not limited to the following elements:
  • Carrying method 1 The first instruction information is carried in the TIM element.
  • FIG. 5A is a schematic diagram of the frame structure of a TIM element provided by this application.
  • the first indication information includes a first bitmap
  • the first bitmap is located in the partial virtual bitmap (Partial Virtual Bitmap) field in the TIM element.
  • the first bitmap in the Partial Virtual Bitmap field may be called the Multicast Management Frame Indication Bitmap (Group Addressed BU Indication Bitmap).
  • the BitmapControl field in the TIM element includes information related to the first bitmap, including, for example, a traffic indicator (TrafficIndicator) and/or a bitmap offset (Bitmap Offset).
  • the TIM element may not contain the second indication information (that is, the second bitmap may not be included).
  • the TIM element includes the first access point and the indication information of whether the access point in the MBSSID set where the first access point is located has a multicast frame to be sent, and also includes one or more second access points. Whether there is indication information (that is, the first indication information) of a multicast management frame to be sent at the entry point.
  • the second indication information and/or the first indication information are located in the Partial Virtual Bitmap field in the TIM element.
  • the Partial Virtual Bitmap field contains not only multicast service indication information, but also unicast service indication information.
  • Each type of indication information corresponds to an AID range.
  • the multicast service indication information corresponds to the first AID range
  • the unicast service indication information corresponds to the second AID range.
  • the first AID range of each link is different.
  • each non-AP MLD associated with the AP MLD has only one AID, all links of the non-AP MLD STAs on the road all use this AID as their own identification (this AID is determined based on the second AID range), so among the TIM elements carried in Beacons sent by AP MLD on different links, the same non-AP MLD AID is the same.
  • the value of the AID corresponding to the non-AP MLD under the Partial Virtual Bitmap should be set to 1.
  • the second AID range overlaps with the first AID range of a link, in the TIM element sent on the link, 0 or 1 of an AID will be corresponding to whether a certain non-AP MLD has a single broadcast service or whether an attached AP has multicast service. In this case, AID ambiguity will occur. Therefore, this application defines that the second AID range should not overlap with the first AID range of all links. In other words, the minimum value of the second AID range should be greater than the maximum value of the first AID range of all links.
  • AP should meet the following rules when allocating AID to STA or non-AP MLD:
  • the AID value assigned to non-AP MLD needs to be greater than or equal to the sum of the following values (the sum of the following values indicates that the following values correspond to the established The maximum value of the first AID range of the link), where the AP on the established link corresponding to the following values belongs to an MBSSID set:
  • the first access point is AP1 shown in Figure 2
  • AP1 is a transmitting AP
  • the second access point includes the following two categories:
  • the access point in the second multi-link device is a multi-link device to which other access points in the first MBSSID set where the first access point is located belong.
  • 2 1 is determined based on the MaxBSSID indicator on link 1 (including AP1 and AP4) being 1, and 2 is determined based on the number of other affiliated APs attached to AP1 under the same AP MLD (the number is 2, including AP 2 and AP 3 ), 1 is determined based on the number of other attached APs that AP4 is attached to under the same AP MLD (the number is 1, including AP 5).
  • Carrying method 2 The first instruction information is carried in multi-link trafficelement.
  • Figure 5B is a schematic diagram of the frame structure of a multi-link traffic element provided by this application.
  • the first indication information includes a first bitmap, and the first bitmap is located in the multicast management frame information (Group addressed MMPDU info) field in the multi-link traffic element.
  • the first bitmap in the Group addressed MMPDU info field may be called the multicast management frame bitmap (Group Addressed MMPDU Bitmap).
  • the position of the Group addressed MMPDU info field in the multi-link traffic element is not limited by this application. For example, it can be after the Multi-Link Traffic Control (Multi-Link Traffic Control) field as shown in Figure 5B; or, It can also be placed before the Multi-Link Traffic Control field.
  • Multi-Link Traffic Control Multi-Link Traffic Control
  • the Group addressed MMPDU info field also includes information related to the first bitmap, such as bitmap length (Bitmap Length) and padding (Padding).
  • bitmap length Bitmap Length
  • Padding padding
  • the length of Padding is 0 to 7 bits, making Group addressed MMPDU
  • the length of the info field is an integer multiple of 8 bits.
  • the multi-link traffic element in this application can also be called multi-link traffic indication element.
  • Carrying method 3 The first indication information is carried in the first information element.
  • the first information element is an information element newly defined in this application. For example, from an element not defined in the protocol standard Select an element ID from the element ID as the element ID of the first information element, and define fields such as the element's length, element ID extension, and multicast management frame information (Group Addressed MMPDUinfo). The first information element is thus defined.
  • FIG. 5C is a schematic diagram of a frame structure of a first information element provided by this application.
  • the first indication information includes a first bitmap
  • the first bitmap is located in the Group addressed MMPDU info field in the first information element.
  • the first bitmap in the Group addressed MMPDU info field may be called Group Addressed MMPDU Bitmap.
  • the Group addressed MMPDU info field also includes information related to the first bitmap, such as Bitmap Length and padding.
  • the length of Padding is 0 to 7 bits, making the length of the Group addressed MMPDU info field 8 bits. Integer multiple.
  • Carrying method 4 The first indication information is carried in a reduced neighbor report element (RNR element).
  • RNR element reduced neighbor report element
  • the RNR element is used to carry the information of the neighbor AP of the first access point.
  • the neighbor APs of the first access point include the second access point.
  • Information about each neighbor AP is contained in a target beacon transmission time (TBTT) information set field.
  • the first indication information can be carried in the TBTT Information Set field corresponding to each second access point in the RNR element to indicate whether the corresponding second access point has a group
  • the broadcast management frame is waiting to be sent.
  • the first indication information may be carried in the MLD Parameters field or in the BSS Parameters field.
  • Figure 6A is a schematic diagram of the frame structure of an RNR element provided by this application.
  • the first indication information is located in the MLD Parameters field in the TBTT information set field in the RNR element.
  • the first indication information is the Group Addressed MMPDU present field in Figure 6A.
  • the first indication information when the first indication information is carried in the RNR element, the first indication information may be a field with a length of 1 bit.
  • the value of this 1-bit field when the value of this 1-bit field is the first value, it indicates that the corresponding second access point has a multicast management frame to be sent.
  • the value of this 1-bit field is the second value, it indicates that the corresponding second access point does not have a multicast management frame to be sent.
  • the first value may be 1 and the second value may be 0.
  • the first value may be 0 and the second value may be 1.
  • the first indication information when the first indication information is carried in the RNR element, the first indication information may be a field with a length of 2 bits.
  • this 2-bit field when the value of this 2-bit field is the first value, it indicates that the corresponding second access point has a multicast management frame to be sent.
  • the value of this 2-bit field is the second value, it indicates that the corresponding second access point does not have a multicast management frame to be sent.
  • the value of this 2-bit field is the third value, it indicates that it is unknown or does not provide indication information as to whether there is a multicast management frame to be sent.
  • the TBTT Information Set field corresponding to each second access point in the RNR element carries the first indication information
  • this embodiment also defines which fields can be used to determine the corresponding second access point.
  • the MLD Parameters field includes MLD ID, Link ID, BSS parametersChange Count, All UpdateIncluded and other fields.
  • the corresponding second access point can be determined by one or more fields among the BSSID, Short SSID, MLD ID, and Link ID.
  • the naming of the first indication information or the first bitmap in the above carrying methods 1-4 is only an example, and this embodiment does not limit the first indication information or the first bitmap in the element/ The name in the field.
  • the second multi-link data processing method (carrying the first instruction information)
  • FIG. 7 is a schematic flow chart of the second multi-link data processing method provided by this application.
  • the method uses a non-access point multi-link device as the execution subject.
  • the non-access point multi-link device includes a first site and a second site.
  • the method includes the following steps:
  • S201 Receive a wireless frame through the first station, where the wireless frame includes first indication information.
  • S202 When one or more second access points have multicast management frames to be sent, receive the multicast management frames through the second station.
  • the non-access point multi-link device may be, for example, the non-AP MLD shown in Figure 1A or Figure 1B.
  • the first site and the second site are STAs in non-access point multi-link devices.
  • the first site is associated with the first access point and establishes the first link (that is, the first site and the first access point both work on the first link).
  • the first station can receive the wireless frame on the first link, thereby obtaining the first indication information.
  • the first station can determine whether it needs to wake up the second station to receive the multicast management frame according to the first indication information.
  • the entry points work on the same link.
  • the second station works on the same link as a second access point that has a multicast management frame to be sent, that is, the second station is associated with the second access point and can receive the second access point's Multicast management frame.
  • S201 and S202 An example of S201 and S202 will be described below with reference to the communication system shown in Figure 1A.
  • the first access point is access point 1 in Figure 1A
  • one or more second access points that have multicast management frames to be sent are the access points in Figure 1A.
  • the first site is site 1 in Figure 1A
  • the second site is site 2 in Figure 1A, that is, site 2 and access point 2 work on the same link (link 2).
  • Access point 1 sends a wireless frame.
  • the wireless frame includes first indication information.
  • the first indication information indicates that access point 2 has a multicast management frame to be sent.
  • station 1 receives the wireless frame, obtains the first indication information, and determines that access point 2 has a multicast management frame to be sent.
  • wake up station 2 without waking up other stations in the access point multi-link device, and receive the multicast management frame from access point 2 through station 2, thereby achieve the purpose of energy saving.
  • the third multi-link data processing method (does not carry the first instruction information)
  • the third multi-link data processing method provided by this application uses the first access point as the execution subject.
  • the method includes:
  • the first access point sends the multicast management frame before sending the multicast data frame.
  • the method specifies the order in which multicast management frames and multicast data frames are sent when there are multicast management frames and multicast data frames to be sent. For example, when the first access point has a multicast management frame and a multicast data frame to be sent, the first access point first sends the multicast management frame and then sends the multicast data frame. When the first access point only has multicast data frames to be sent (that is, when there are no multicast management frames to be sent), the first access point can directly send the multicast data frames.
  • the order in which multicast management frames and multicast data frames are sent can be predefined, and it is assumed that after the first access point establishes a multi-link association with the first station, the first station can Knowing the order in which multicast management frames and multicast data frames are sent is helpful for the first station to determine whether to continue receiving multicast frames.
  • the first station does not know in advance the order of sending multicast management frames and multicast data frames, when the first access point sends the multicast frame, it may carry additional Information, the additional information includes the order of sending multicast management frames and multicast data frames, which is helpful for the first station to determine whether to continue to receive multicast frames.
  • the second access point co-located with the first access point can generate the second indication information of the multicast frame according to the method in the protocol standard, and send the second indication information.
  • the second indication information is used to indicate that the first access point has a multicast frame to be sent.
  • the station corresponding to the second access point receives the second indication information, it learns that the first access point has a multicast frame to be sent, thereby waking up each station to receive the multicast frame.
  • each station that is awakened first receives the multicast management frame and then the multicast data frame. If a multicast data frame is received, it means that the multicast management frame has been sent and the station can stop receiving or enter sleep state. state.
  • the fourth multi-link data processing method provided by this application takes the first site as the execution subject.
  • the method includes:
  • the first station When the first station receives the multicast data frame, the first station stops receiving or switches to a dormant state.
  • the first station when the first station is awakened to receive a multicast frame, if it receives a multicast data frame (including the situation where the multicast management frame is received first and then the multicast data frame is received, and/or the multicast data frame is received directly data frame), the first station stops receiving multicast frames. Alternatively, if the first station does not need to receive multicast data frames on other links, the first station can directly enter the sleep state. It should be noted that this method assumes that the first station has learned in advance the order in which the corresponding first access point sends the multicast management frame and the multicast data frame, that is, the multicast management frame is sent first and then the multicast data frame is sent.
  • the first station wakes up to receive multicast frames, if it receives the multicast management frame first and then the multicast data frame, or directly receives the multicast data frame, the first station can stop receiving or switch to the sleep state. . Therefore, although this method will still wake up each station, the awakened station can quickly stop receiving or enter a sleep state, thus achieving energy saving to a certain extent.
  • EMLSR Enhanced multi-link single radio
  • non-AP MLD non-access point multi-link device
  • non-AP MLD uses one antenna on each link to receive.
  • the AP MLD successfully sends the initial control frame to the non-AP MLD on any link (such as link i)
  • the non-AP MLD immediately switches all antennas to link i to communicate with the AP MLD.
  • Frame interaction After the frame interaction is completed, the antennas are switched back to each link so that each link can continue to perform listening operations.
  • the description in the first part such as the description of multi-link devices, etc.
  • a non-AP MLD only has a single radio transceiver capability.
  • the non-AP MLD works in EMLSR mode (that is, the non-AP MLD is a non-AP MLD that supports EMLSR).
  • a non-AP MLD that supports EMLSR can enter listening operation on multiple links (Link 1 and Link 2 in Figure 8) at the same time.
  • the non-AP MLD uses one radio (here, one antenna is used as an example) to receive on each link.
  • the non-AP MLD can switch all antennas on each link to link 1 for frame interaction with the AP MLD, such as As shown in Figure 8. After the frame interaction ends, the non-AP MLD switches the antenna back to each link and returns to listening operation.
  • this application provides a fifth multi-link data processing method.
  • the first multicast frame is sent through the first access point.
  • the second access point does not send the second multicast frame. That is, by limiting the first access point in the first multi-link device to send the first multicast frame, the second access point cannot send the multicast frame, so that the non-AP MLD working in the EMLSR mode can Receive multicast frames on multiple links.
  • This application also provides a sixth multi-link data processing method.
  • the first access point uses the specified format and/or specified parameters to send Multicast frame. That is, by limiting the format and/or parameters of the multicast frame sent by the first access point, the A non-AP MLD in EMLSR mode can receive multicast frames on multiple links.
  • the fifth multi-link data processing method provided by this application uses the first access point as the execution subject.
  • the method includes:
  • the first multicast frame is sent through the first access point; when the first access point sends the first multicast frame, the second access point does not send the second multicast frame.
  • AP MLD shall not transmit multicast management frames on the second link within the transmission time of the multicast cache unit of the first link plus the EMLSR switching delay.
  • the path and the second link belong to the EMLSR link set.
  • the EMLSR handover delay is the maximum value of the handover delay of all EMLSR operating STAs (for example, it can be translated as:
  • the AP MLD shall not transmit group addressed MMPDU on one link within the transmission time of group addressed BU plus switch delay (max delay of all EMLSR operating STAs) of another link of the EMLSR link set).
  • AP MLD is the device to which the first access point belongs, and the first access point and the second access point work on different links.
  • the second access point attached to the AP MLD shall not wait for the transmission time of the first access point to send the multicast buffer unit on the first link plus the EMLSR switching delay time.
  • Multicast management frames are transmitted internally on the second link, and the first link and the second link belong to the EMLSR link set.
  • the EMLSR handover delay is the maximum value of the handover delay of all EMLSR operating STAs (for example, it can be translated as: An AP affiliated with the AP MLD shall not transmit group addressed MMPDU on one link within the transmission time of group addressed BU plus switch delay (max delay of all eMLSR operating STAs) of another link of the EMLSR link set).
  • the first access point and the second access point work on different links.
  • the method uses the access point multi-link device (including the first access point and the second access point) as the execution subject, and includes the following steps:
  • the second multicast frame is sent through the second access point, and the sending time period of the second multicast frame does not overlap with the sending time period of the first multicast frame.
  • the first access point and the second access point are affiliated with the same AP MLD.
  • the first access point works on the first link
  • the second access point works on the second link.
  • the first link and the second link belong to the EMLSR link set (EMLSR link set) of the non-AP MLD (can be referred to as EMLSRnon-AP MLD for short) operating in the EMLSR mode.
  • the first multilink device is associated with the non-AP MLD operating in EMLSR mode.
  • the first access point and the second access point are AP1 and AP2 of the AP MLD in Figure 8
  • the first link and the second link are link 1 and link 2 in Figure 8.
  • the first multicast frame may include but is not limited to beacon frames (Beacon frames or DTIM Beacon frames), multicast data frames, multicast management frames, etc.
  • the second multicast frame may include, but is not limited to, a beacon frame, a multicast data frame, a multicast management frame, etc.
  • the first link is the primary link
  • the second multicast frame only includes the multicast management frame after the DTIM Beacon frame.
  • the main link is the link where the non-AP MLD working in EMLSR mode receives all multicast frames.
  • the main link can be determined by the AP and sent to the non-AP STA.
  • the indication information of the main link can be carried in the Beacon frame or in the EML Operating Mode Notification frame. When carried in a Beacon frame, for example, it can be carried in the EML Capabilities field in the multi-link element in the Beacon frame.
  • this method can adopt but is not limited to the following two implementations:
  • Embodiment 1 End multicast frame transmission on a link in advance.
  • FIG. 9A is a schematic diagram of the multicast frame transmission method described in Embodiment 1.
  • the first access point is the execution master body, including the following steps:
  • the first access point sends the first multicast frame on the first link
  • the first access point determines a first time point and ends sending the first multicast frame before the first time point.
  • the first access point sends a DTIM Beacon frame and a multicast buffer unit (group addressed BU) on the first link. Furthermore, the first access point ends sending the multicast management frame before the first time point.
  • group addressed BU multicast buffer unit
  • the first time point is the time point when the second access point starts or plans to start sending the second multicast frame, as shown in Figure 9A. That is, the time point when the second access point starts or plans to start sending the second multicast frame is used as the end time point when the first access point sends the first multicast frame, so that the sending time period of the second multicast frame There is no overlap with the sending time period of the first multicast frame, which helps the non-AP MLD working in EMLSR mode to receive multicast frames on different links normally.
  • the first time point may also be a time point before the second access point starts or plans to start sending the second multicast frame plus a period of link conversion time.
  • the link transition time is the time required for the non-AP MLD to transition from the receiving state to the listening state when working in EMLSR mode. It should be noted that when there are multiple non-AP MLDs working in EMLSR mode, the link conversion time is the maximum value of the time required for conversion of all non-AP MLDs working in EMLSR mode.
  • Embodiment 2 Indicate that there is no multicast frame to be sent on the other link.
  • FIG. 9B is a schematic diagram of the multicast frame sending method described in Embodiment 2.
  • the first access point is the execution subject, including the following steps:
  • the first access point determines the end time point of the first multicast frame
  • the first access point sends third indication information, and the third indication information is used to indicate to the second access point that there is no multicast frame to be sent. send.
  • the first access point sends DTIM Beacon frames and multicast buffer units on the first link.
  • the second access point sends a DTIM Beacon frame before the first access point ends sending, as shown in Figure 9B.
  • the first access point sends third indication information to indicate that the second access point does not have a multicast frame to be sent.
  • the non-AP MLD working in EMLSR mode will only receive the first multicast frame on the working link of the first access point and will not switch to the second access point. point on the working link, which facilitates the non-AP MLD working in EMLSR mode to receive multicast frames on different links.
  • the first access point carries the third indication information through a DTIM Beacon frame.
  • the first access point has sent the third indication information.
  • the sixth multi-link data processing method provided by this application uses the first access point as the execution subject.
  • the method includes:
  • the first access point sends the multicast frame using the specified format and/or specified parameters.
  • the multicast frame sent by the AP in the AP MLD on the link in the eMLSR link set should adopt the specified format and/or specified parameters.
  • the specified format and/or specified parameters include but are not limited to: non-high throughput physical layer convergence program sublayer protocol data unit format (non-HT PPDU format), non-high throughput repeated physical layer convergence Program sublayer protocol data unit format (non-HT duplicate PPDU format), and/or single spatial stream (single spatial stream).
  • the multicast frame using the specified format and/or specified parameters can be regarded as a simple multicast frame (for example, a single spatial stream).
  • the non-AP MLD working in EMLSR mode can receive specified format and/or multicast frames with specified parameters, thereby enabling non-AP MLDs operating in EMLSR mode to normally receive groups on different links. broadcast frame.
  • the Partial Virtual Bitmap field in the TIM element contains not only multicast service indication information, but also unicast service indication information.
  • Each type of indication information corresponds to an AID range.
  • the multicast service indication information corresponds to the first AID range
  • the unicast service indication information corresponds to the second AID range.
  • the first AID range of each link is different.
  • each non-AP MLD associated with the AP MLD has only one AID
  • STAs on all links of the non-AP MLD use this AID as their own identification (this AID is determined based on the second AID range) , so in the TIM elements carried in Beacon frames sent by AP MLD on different links, the AID of the same non-AP MLD is the same.
  • the value of the AID corresponding to the non-AP MLD under the Partial Virtual Bitmap should be set to 1.
  • 0 or 1 of an AID will be corresponding to whether a non-AP MLD has a single broadcast service or whether an attached AP has multicast service. In this case, AID ambiguity will occur. Then, non-AP MLD cannot distinguish whether the current service is the unicast service of non-AP MLD or the multicast service of an affiliated AP, which leads to service transmission problems.
  • this application provides a seventh multi-link data processing method.
  • This method defines that the second AID range should not overlap with the first AID range of all links. In other words, the minimum value of the second AID range should be greater than the maximum value of the first AID range of all links.
  • the AP should meet the following rules when allocating AID to a STA or non-AP MLD: the AID value assigned to a non-AP MLD needs to be greater than or equal to the sum of the following values (the sum of the following values represents the corresponding established link The maximum value of the first AID range of the link), where the APs on the established links corresponding to the following values belong to an MBSSID set:
  • the first access point is AP1 shown in Figure 2
  • AP1 is a transmitting AP
  • the second access point includes the following two categories:
  • the access point in the second multi-link device is a multi-link device to which other access points in the first MBSSID set where the first access point is located belong.
  • 2 1 is determined based on the MaxBSSID indicator on link 1 (including AP1 and AP4) being 1, and 2 is determined based on the number of other affiliated APs attached to AP1 under the same AP MLD (the number is 2, including AP 2 and AP 3 ), 1 is determined based on the number of other attached APs that AP4 is attached to under the same AP MLD (the number is 1, including AP 5).
  • the device or equipment provided by this application may include a hardware structure and/or a software module to realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the division of modules in this application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • each functional module in various embodiments of the present application can be integrated into a processor, or can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • Figure 10 is a device 1000 provided by this application.
  • the device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the method embodiments corresponding to Figures 2 to 9B.
  • the module may be a hardware circuit, software, or a hardware circuit. Combined with software implementation.
  • the device includes a communication unit 1001 and a processing unit 1002. It is used to implement the method performed by the first multi-link device or the first access point in the previous embodiment.
  • the first multi-link device is an access point multi-link device
  • the first multi-link device includes a first access point.
  • the processing unit 1002 is used to generate a wireless frame.
  • the wireless frame includes first indication information.
  • the first indication information is used to indicate whether there is a multicast management frame to be sent by one or more second access points.
  • One or more second access points The access points are access points that are all co-located with the first access point.
  • the communication unit 1001 is used to send the wireless frame.
  • the first indication information can indicate whether there is a multicast management frame to be sent by the second access point, so that the non-access point multi-link device corresponding to the first access point can accurately determine whether to wake up the second access point corresponding station to receive multicast management frames. Therefore, when the second access point has only multicast data frames to send, it can avoid waking up the station corresponding to the second access point, thereby achieving the purpose of energy saving.
  • the device includes a communication unit 1001 and a processing unit 1002.
  • the communication unit 1001 is used to implement the method performed by the non-access point multi-link device in the previous embodiment.
  • the non-access point multi-link device includes a first site and a second site.
  • the communication unit 1001 is used to receive a wireless frame, where the wireless frame includes first indication information.
  • the first indication information is used to indicate whether there is a multicast management frame to be sent by one or more second access points.
  • the second station operates on the same link as one of the one or more second access points to which a multicast management frame is to be sent.
  • the first indication information enables the non-access point multi-link device where the first station is located to accurately determine whether to wake up the station corresponding to the second access point to receive the multicast management frame. Therefore, when there is a multicast management frame to be sent by the second access point, only the station corresponding to the second access point is awakened to receive the multicast management frame, thereby avoiding waking up other stations, thereby achieving the purpose of energy saving.
  • the device includes a communication unit 1001 and a processing unit 1002.
  • the communication unit 1001 is used to implement the method performed by the first access point in the previous embodiment.
  • the communication unit 1001 is configured to send the multicast management frame before sending the multicast data frame when the multicast frame sent by the first access point includes a multicast management frame and a multicast data frame.
  • the steps performed by the communication unit 1001 define the rule for sending multicast management frames and multicast data frames as sending multicast management frames first and then sending multicast data frames. The awakened station must first receive multicast management frames and then receive multicast data frames.
  • the station when the multicast management frame of the first access point has been sent or the first access point has not sent the multicast management frame, the station after being awakened can quickly stop receiving or enter a sleep state, thus achieving energy saving to a certain extent.
  • the device includes a communication unit 1001 and a processing unit 1002.
  • the communication unit 1001 is used to implement the method performed by the non-access point multi-link device in the previous embodiment.
  • the non-access point multi-link device includes the first station.
  • the communication unit 1001 is configured to stop receiving or switch to a dormant state when the first station receives the multicast data frame.
  • the steps performed by the communication unit 1001 assume that the station has learned the multicast frame sending rules of the access point in advance, that is, first sends the multicast management frame and then sends the multicast data frame.
  • the first station wakes up to receive multicast frames, if it receives the multicast management frame first and then the multicast data frame, or directly receives the multicast data frame, the first station can stop receiving multicast frames; or If the first station does not need to receive multicast data frames on other links, the first station can directly enter the sleep state. Therefore, although this method will still wake up each station, the awakened station can quickly stop receiving or enter a sleep state, thus achieving energy saving to a certain extent.
  • the device includes a communication unit 1001 and a processing unit 1002.
  • the communication unit 1001 is used to implement the method performed by the first access point in the previous embodiment. Among them, the communication unit 1001 is used to send the first multicast frame. Moreover, when the first access point sends the first multicast frame, the second access point does not send the second multicast frame.
  • the specific execution flow of the communication unit 1001 refer to the detailed description of the fifth multi-link data processing method in the previous embodiment, and will not be described again here.
  • the corresponding non-access point multi-link working in the EMLSR mode of the first multi-link device is A device can receive multicast frames on multiple links.
  • the device includes a communication unit 1001 and a processing unit 1002.
  • the communication unit 1001 is used to implement the method performed by the first access point in the previous embodiment.
  • the communication unit 1001 is used to send multicast using a specified format and/or specified parameters when the non-access point multi-link device where the site corresponding to the first access point is located cannot receive multicast frames on multiple links at the same time. frame.
  • the specific execution process of the communication unit 1001 refer to the detailed description of the sixth multi-link data processing method in the previous embodiment, and will not be described again here.
  • Multicast frames using specified formats and/or specified parameters can be regarded as simple multicast frames (for example, a single spatial stream), then working in EMLSR mode non-AP MLD can receive on multiple links using specified formats and / Or multicast frames with specified parameters, thus enabling non-AP MLD working in EMLSR mode to normally receive multicast frames on different links.
  • the device includes a communication unit 1001 and a processing unit 1002.
  • the processing unit 1002 implements the method performed by the access point multi-link device in the previous embodiment. Wherein, the processing unit 1002 is used to determine that the second AID range should not overlap with the first AID range of all links.
  • the specific execution flow of the processing unit 1002 refer to the detailed description of the seventh multi-link data processing method in the foregoing embodiments, which will not be described again here.
  • the second AID range does not overlap with the first AID range for all links, thus avoiding AID ambiguity.
  • a multi-link device including multiple functional units shown in Figure 10 will be described below.
  • the multi-link devices described in this application include access point multi-link devices (AP MLD) and non-access point multi-link devices (non-AP MLD).
  • AP MLD includes one or more APs
  • non-AP MLD includes one or more STAs.
  • the processing unit and communication unit shown in Figure 10 are functional units in the AP in the AP MLD.
  • Figure 11 shows the first multi-link device 1100 provided by this application, which is used to implement the multi-link data processing method in the above method embodiment.
  • the multi-link device 1100 may also be a chip system.
  • the multi-link device 1100 includes one or more APs 1101 (two APs are taken as an example in Figure 11), and each AP includes a communication interface 1101a and a processor 1101b.
  • the communication interface 1101a may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing transceiver functions.
  • the communication interface 1101a is used to communicate with other devices through a transmission medium, so that the device 1100 can communicate with other devices.
  • the processor 1101b and the communication interface 1101a are used to implement the methods in the embodiments corresponding to Figures 2 to 9B. Law. It can be understood that the first multi-link device shown in Figure 11 can also be a non-AP MLD, and the processing unit and communication unit shown in Figure 10 are functional units in the STA in the non-AP MLD. The specific implementation method is similar to the description of AP MLD and will not be described again here.
  • the processing unit shown in Figure 10 is a functional unit in the AP MLD.
  • the processing unit is shared by multiple APs.
  • the communication unit is the functional unit in the AP in the AP MLD.
  • Figure 12 shows the second multi-link device 1200 provided by this application, which is used to implement the multi-link data processing method in the above method embodiment.
  • the multi-link device 1200 may also be a chip system.
  • the multi-link device 1200 includes one or more APs 1201 (two APs are taken as an example in Figure 12), and each AP includes a communication interface 1201a.
  • Multi-link device 1200 includes a processor 1202 that is shared by one or more APs 1201.
  • the processor 1202 and the communication interface 1201a are used to implement the methods in the embodiments corresponding to Figures 2 to 9B. It can be understood that the second multi-link device shown in Figure 12 can also be a non-AP MLD, then the processing unit shown in Figure 10 is the functional unit in the non-AP MLD, and the communication unit is the non-AP MLD Functional unit in STA. The specific implementation method is similar to the description of AP MLD and will not be described again here.
  • the processing unit shown in Figure 10 is a functional unit in the AP in the AP MLD.
  • the communication unit is a functional unit in the AP MLD.
  • multiple APs share the communication unit.
  • Figure 13 shows the third multi-link device 1300 provided by this application, which is used to implement the multi-link data processing method in the above method embodiment.
  • the multi-link device 1300 may also be a chip system.
  • the multi-link device 1300 includes one or more APs 1301 (two APs are taken as an example in Figure 13), and each AP includes a processor 1301a.
  • Multi-link device 1300 includes a communication interface 1302 that is shared by one or more APs 1301.
  • the processor 1301a and the communication interface 1302 are used to implement the methods in the embodiments corresponding to Figures 2 to 9B. It can be understood that the third multi-link device shown in Figure 13 can also be a non-AP MLD, then the communication unit shown in Figure 10 is a functional unit in the non-AP MLD, and the processing unit is a non-AP MLD. Functional unit in STA. The specific implementation method is similar to the description of AP MLD and will not be described again here.
  • the communication interface and the processor use To implement the first multi-link data processing method in the aforementioned embodiment.
  • the processor is used to generate a wireless frame
  • the wireless frame includes first indication information
  • the first indication information is used to indicate whether there is a multicast management frame to be sent by one or more second access points
  • the one or more second access points The points are access points that are all co-located with the first access point.
  • the communication interface is used to send the wireless frame.
  • the steps performed by the communication interface and the processor carry the first indication information in the wireless frame, which can indicate whether there is a multicast management frame to be sent to the second access point, so that the non-multicast management frame corresponding to the first access point
  • the access point multi-link device can accurately determine whether to wake up the station corresponding to the second access point to receive the multicast management frame. Therefore, when the second access point has only multicast data frames to send, it can avoid waking up the station corresponding to the second access point, thereby achieving the purpose of energy saving.
  • a communication interface (such as the communication interface 1101a in Figure 11, or the communication interface 1201a in Figure 12, or the communication interface 1302 in Figure 13) is used to implement the second multi-link data processing in the aforementioned embodiment. method.
  • the communication interface is used to receive a wireless frame, and the wireless frame includes first indication information.
  • the first indication information is used to indicate whether there is a multicast management frame to be sent by one or more second access points.
  • receive the multicast management frames through the second station.
  • the second station operates on the same link as one of the one or more second access points to which a multicast management frame is to be sent.
  • the wireless frame received by the steps performed by the communication interface includes the first indication information, so that the non-access point multi-link device where the first station is located can accurately determine whether to wake up the station corresponding to the second access point.
  • Receive multicast management frames Therefore, when the second access point has multicast
  • the management frame is to be sent, only the station corresponding to the second access point is awakened to receive the multicast management frame to avoid waking up other stations, thereby achieving the purpose of energy saving.
  • a communication interface (such as the communication interface 1101a in Figure 11, or the communication interface 1201a in Figure 12, or the communication interface 1302 in Figure 13) is used to implement the third multi-link data processing in the aforementioned embodiments. method.
  • the communication interface is used to send the multicast management frame before sending the multicast data frame when the multicast frame sent by the first access point includes a multicast management frame and a multicast data frame.
  • the steps performed by the communication interface define the rule for sending multicast management frames and multicast data frames as sending multicast management frames first and then sending multicast data frames.
  • the awakened station must first receive multicast management frames and then receive multicast data frames. Therefore, when the multicast management frame of the first access point has been sent or the first access point does not send the multicast management frame but only sends the multicast data frame, the station after being awakened can quickly stop receiving or enter the sleep state. , which can also achieve energy saving to a certain extent.
  • a communication interface (such as the communication interface 1101a in Figure 11, or the communication interface 1201a in Figure 12, or the communication interface 1302 in Figure 13) is used to implement the fourth multi-link data processing in the aforementioned embodiments. method.
  • the communication interface is used to stop receiving or switch to a dormant state when the first station receives the multicast data frame.
  • the steps performed by the communication interface assume that the station has learned the multicast frame sending rules of the access point in advance, that is, it sends multicast management frames first and then sends multicast data frames.
  • the first station wakes up to receive multicast frames, if it receives the multicast management frame first and then the multicast data frame, or directly receives the multicast data frame, the first station can stop receiving multicast frames; or If the first station does not need to receive multicast data frames on other links, the first station can directly enter the sleep state. Therefore, although this method will still wake up each station, the awakened station can quickly stop receiving or enter a sleep state, thus achieving energy saving to a certain extent.
  • a communication interface (such as the communication interface 1101a in Figure 11, or the communication interface 1201a in Figure 12, or the communication interface 1302 in Figure 13) is used to implement the fifth multi-link data processing in the aforementioned embodiments. method.
  • the communication interface is used to send the first multicast frame.
  • the second access point does not send the second multicast frame.
  • the steps performed by the communication interface define the rules for the first access point and the second access point in the first multi-link device to send multicast frames, so that the corresponding work of the first multi-link device is Non-access point multilink devices in EMLSR mode can receive multicast frames on multiple links.
  • a communication interface (such as the communication interface 1101a in Figure 11, or the communication interface 1201a in Figure 12, or the communication interface 1302 in Figure 13) is used to implement the sixth multi-link data processing in the aforementioned embodiment. method.
  • the communication interface is used to send multicast frames using specified formats and/or specified parameters when the non-access point multi-link device where the site corresponding to the first access point is located cannot receive multicast frames on multiple links at the same time.
  • the communication interface refer to the detailed description of the sixth multi-link data processing method in the previous embodiment, which will not be described again here.
  • the steps performed by the communication interface adopt the specified format and/or the multicast frame with specified parameters can be regarded as a simple multicast frame (for example, a single spatial stream), then the non-AP MLD working in EMLSR mode can Receive multicast frames using specified formats and/or specified parameters on multiple links, thereby enabling non-AP MLD operating in EMLSR mode to normally receive multicast frames on different links.
  • a processor (such as the processor 1101b in Figure 11, or the processor 1202 in Figure 12, or the processor 1301a in Figure 13) is used to implement the seventh multi-link data processing in the aforementioned embodiment. method.
  • the processor is used to determine that the second AID range should not overlap with the first AID range of all links.
  • the processor performs steps such that the second AID range does not overlap with the first AID range for all links, thereby avoiding AID ambiguity.
  • the multi-link device may also include at least one memory (for example, memory 1102 in Figure 11, or memory 1203 in Figure 12, or memory 1303 in Figure 13) for storing program instructions and/or data.
  • the memory is coupled to the processor. Coupling in this application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor may operate in conjunction with the memory.
  • the processor may execute program instructions stored in memory.
  • the at least one memory and processor are integrated together.
  • connection medium between the above communication interface, processor and memory.
  • the memory, processor and communication interface are connected through a bus.
  • the bus is represented by a thick line in Figures 11 to 13.
  • the connection methods between other components are only schematically illustrated and are not limiting.
  • the bus can be divided into address bus, data bus, control bus, etc.
  • only one thick line is used in Figures 11 to 13, but this does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component that can implement or execute the present application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the method disclosed in this application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory), such as a random access memory.
  • Get memory random-access memory, RAM.
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • This application provides a computer-readable storage medium.
  • the computer-readable storage medium stores programs or instructions.
  • the program or instruction is run on the computer, the computer is caused to execute the multi-link data processing method in the embodiment corresponding to FIG. 2 to FIG. 9B.
  • the computer program product includes instructions.
  • the instructions When the instructions are run on the computer, the computer is caused to execute the multi-link data processing method in the embodiment corresponding to Figure 2 to Figure 9B.
  • the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and an interface.
  • the interface and the at least one processor are interconnected through lines.
  • the at least one processor is used to run computer programs or instructions to execute the steps shown in Figure 2 to Figure 9B corresponds to the multi-link data processing method in the embodiment.
  • the interface in the chip can be an input/output interface, a pin or a circuit, etc.
  • the above-mentioned chip system can be a system on chip (SOC), or a baseband chip, etc., where the baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, an interface module, etc.
  • SOC system on chip
  • baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, an interface module, etc.
  • the chip or chip system described above in this application further includes at least one memory, and instructions are stored in the at least one memory.
  • the memory can be a storage unit inside the chip, such as a register, a cache, etc., or it can be a storage unit of the chip (such as a read-only memory, a random access memory, etc.).
  • the technical solutions provided in this application can be implemented in whole or in part through software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in this application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network network, network equipment, terminal equipment or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, digital video disc (DVD)), or semiconductor media, etc.
  • the embodiments may refer to each other, for example, the methods and/or terms between the method embodiments may refer to each other, for example, the functions and/or terms between the device embodiments may refer to each other. References may be made to each other, for example functions and/or terms between apparatus embodiments and method embodiments may be referenced to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种多链路数据处理方法。该方法中,第一接入点可以生成无线帧,并发送无线帧。该无线帧包括第一指示信息,第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送。因此,第一接入点通过第一指示信息指示第二接入点是否存在组播管理帧待发送,从而使得第一接入点对应的非接入点多链路设备能够准确判断是否唤醒第二接入点对应的站点去接收组播管理帧。当第二接入点待发送的只有组播数据帧时,可以避免唤醒第二接入点对应的站点,从而达到节能的目的。

Description

一种多链路数据处理方法、装置及设备
本申请要求于2022年3月11日提交中国国家知识产权局、申请号为202210242871.9、申请名称为“一种多链路数据处理方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种多链路数据处理方法、装置及设备。
背景技术
随着无线技术的发展,越来越多的无线设备支持多链路通信,有利于提高设备之间的通信速率。支持多链路通信的设备通常称为多链路设备(multi-link device,MLD)。多链路设备可以是接入点(access point,AP)多链路设备(简称为AP MLD),也可以是站点(station,STA)多链路设备(简称为STA或non-AP MLD)。非接入点多链路设备可以与接入点多链路设备建立多链路(简称为多链路建立或多链路关联)之后进行通信。
根据802.11标准的规定,non-AP MLD可以进行休眠操作,处于休眠模式中的non-AP MLD会周期性唤醒STA去接收AP发送的Beacon帧以及传输业务指示信息(delivery traffic indication message,DTIM)Beacon帧。假设non-AP MLD中的第一STA工作在第一链路上,第一STA接收到DTIMBeacon帧,该DTIMBeacon帧指示第二链路上的第二AP待发送组播帧。由于第一STA无法区分第二AP待发送的组播帧是组播数据帧或者组播管理帧,还是包括组播数据帧和组播管理帧,第一STA一旦发现第二链路上的第二AP待发送组播帧,则需要唤醒第一STA所在的non-AP MLD中工作在第二链路上的第二STA去接收组播帧。但是,若第二AP待发送的只有组播数据帧,由于组播数据帧会在所有的链路上发送,第一STA在第一链路上即可接收第二AP发送的组播数据帧,并不需要唤醒第二STA去接收组播数据帧。则第二STA被唤醒可能造成能量的浪费。
发明内容
本申请提供一种多链路数据处理方法、装置及设备。该方法可以指示组播业务的类型,使得non-AP MLD能更准确地判断是否唤醒对应的STA去接收组播帧,从而达到节能的目的。
第一方面,本申请提供一种多链路数据处理方法。该方法由第一多链路设备所执行,也可以由第一接入点所执行。其中,第一多链路设备为接入点多链路设备,第一多链路设备包括第一接入点。以第一接入点为执行主体为例,第一接入点生成无线帧,并发送该无线帧。其中,无线帧包括第一指示信息,第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送,一个或多个第二接入点是均与第一接入点共址的接入点。
该方法中,第一接入点在无线帧中携带的第一指示信息,可以指示第二接入点是否存在组播管理帧待发送,从而使得第一接入点对应的非接入点多链路设备能够准确判断是否唤醒第二接入点对应的站点去接收组播管理帧。因此,该方法中当第二接入点待发送的只有组播数据帧时,可以避免唤醒第二接入点对应的站点,从而达到节能的目的。
在一种可能的实施方式中,第一指示信息包括第一比特位图(bitmap)。第一比特位图中的一个或多个比特分别用于指示一个或多个第二接入点是否存在组播管理帧待发送。也就是说,第一指示信息可以采用比特位图进行指示,具体指示方式可以是每个比特指示对应的第二接入点是否存在组播管理帧待发送。例如,当比特的取值为1时,该比特指示对应的第二接入点存在组播管理帧待发送;当比特的取值为0时,该比特指示对应的第二接入点不存在组播管理帧待发送。
在第一指示信息包括第一比特位图的实施方式中,第一比特位图中的一个或多个比特对应的第二接入点,与第二比特位图中对应位置的比特对应的第二接入点相同。第二比特位图携带于业务指示位图元素(TIM element)中,第二比特位图中的一个或多个比特分别用于指示一个或多个第二接入点是否存在组播帧待发送。例如,第一比特位图中的第一个比特对应第一AP,第二比特位图中的第一个比特也对应第一AP。可见,采用第一比特位图指示一个或多个第二接入点是否存在组播管理帧待发送时,可以与现有的指示信息(第二比特位图)采用类似的指示方式。
在第一指示信息包括第一比特位图的实施方式中,第一比特位图中的第n个比特对应的第二接入点,与第二比特位图中第n个取值为1的比特对应的第二接入点相同。例如,第一比特位图中的第一个比特对应第一AP,第二比特位图中第一个取值为1的比特(假设为第二比特位图中的第一个比特)对应第一AP。在这种情况下,第一比特位图可以采用更少的比特进行指示,有利于降低开销。
在一种可能的实施方式中,第一指示信息携带于业务指示位图元素(TIM element)中。例如,第一接入点发送的无线帧中包含业务指示位图元素,业务指示位图元素中包括第一比特位图。可见,第一指示信息可以复用现有的业务指示位图元素。
在一种可能的实施方式中,第一指示信息携带于多链路业务元素(multi-link traffic element)或多链路业务指示元素(multi-link traffic indication element)中。例如,第一接入点发送的无线帧中包含多链路业务元素,多链路业务元素中包括第一比特位图。可见,第一指示信息可以复用现有的多链路业务元素或多链路业务指示元素。
在一种可能的实施方式中,第一指示信息携带于简化邻居报告元素(RNR element)中。例如,第一接入点发送的无线帧中包含简化邻居报告元素,RNR element用于携带第一接入点的邻居AP的信息。本申请中假设第一接入点的邻居AP包括第二接入点,则第一指示信息可以复用现有的携带邻居AP信息的字段(例如简化邻居报告元素中的目标信标传输时间信息集字段)。
可见,在上述三种实施方式中,第一指示信息可以复用现有的元素,对协议标准的改动较小。
在一种可能的实施方式中,第一指示信息携带于第一信息元素中。第一信息元素为新定义的信息元素。例如,从协议标准中未定义的元素标识(element ID)中选择一个元素标识作为第一信息元素的元素标识,并定义元素的长度(length)、元素标识扩展(element ID extension)和组播管理帧信息(用于携带第一比特位图)等字段,从而定义了第一信息元素。可见,该实施方式没有复用现有的元素,而是基于协议标准新定义了一种信息元素,用于携带第一指示信息。
在一种可能的实施方式中,一个或多个第二接入点包括以下至少一种接入点:
第一接入点(即第一指示信息用于指示第一接入点是否存在组播管理帧待发送);
第一多链路设备中的其他接入点;
第一接入点所在的第一多基本服务集标识符(MBSSID)集合中的其他接入点;
第二多链路设备中的接入点,第二多链路设备是第一接入点所在的第一多基本服务集标识符集合中的其他接入点所属的多链路设备,第二多链路设备为接入点多链路设备;
与第一接入点共址,且不属于第一多链路设备,也不属于第一接入点所在的第一多基本服务集标识符集合,也不属于第二多链路设备的接入点。
可见,对于同时支持多链路(multiple link,ML)和多基本服务集标识符(multiple basic service setidentifier,MBSSID)的设备而言,第二接入点与第一接入点共址,可以包括以上多种情况。
在一种可能的实施方式中,无线帧为传输业务指示信息(DTIM beacon)帧或业务指示位图(TIM)帧。也就是说,第一指示信息可以携带在DTIM beacon帧或TIM帧中。
第二方面,本申请还提供一种多链路数据处理方法。该方面的多链路数据处理方法与第一方面所述的多链路数据处理方法相对应,该方面的多链路数据处理方法是从非接入点多链路设备的角度进行阐述的。其中,非接入点多链路设备包括第一站点和第二站点。该方法中,通过第一站点接收无线帧,无线帧包括第一指示信息。第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送。在一个或多个第二接入点存在组播管理帧待发送的情况下,通过第二站点接收组播管理帧。第二站点与一个或多个第二接入点中存在组播管理帧待发送的一个第二接入点工作在相同链路上。
该方法中,第一接入点对应的第一站点接收的无线帧中包括第一指示信息,使得第一站点所在的非接入点多链路设备能够准确判断是否唤醒第二接入点对应的站点去接收组播管理帧。因此,该方法中当第二接入点存在组播管理帧待发送时,仅唤醒该第二接入点对应的站点接收组播管理帧,避免唤醒其他站点,从而达到节能的目的。
可以理解的是,第二方面中其他可能的实施方式均可以参考第一方面中其他可能的实施方式中的具体描述(例如第二方面可能的实施方式中,第一指示信息包括第一比特位图),此处不再赘述。
第三方面,本申请还提供一种多链路数据处理方法。该方法由第一多链路设备所执行,也可以由第一接入点所执行。其中,第一多链路设备为接入点多链路设备,第一多链路设备包括第一接入点。以第一接入点为执行主体为例,在第一接入点发送的组播帧包括组播管理帧和组播数据帧的情况下,第一接入点在发送组播数据帧之前发送组播管理帧。也即是,在第一接入点发送的组播帧包括组播管理帧和组播数据帧的情况下,第一接入点先发送组播管理帧,再发送组播数据帧。
该方法中,当第一接入点发送组播帧(包括组播管理帧和组播数据帧)时,限定了发送组播管理帧和组播数据帧的规则为先发送组播管理帧,后发送组播数据帧。那么在第一接入点发送的组播帧包括组播管理帧和组播数据帧的情况下,使得被唤醒的站点一定是先接收组播管理帧,后接收组播数据帧。当站点收到组播数据帧时,表示组播管理帧已发送完成或者并未发送组播管理帧,则站点可以停止接收或进入休眠状态。因此,该方法虽然还是会唤醒各个站点,但是当第一接入点的组播管理帧已发送完成或者第一接入点并未发送组播管理帧仅发送组播数据帧时,被唤醒后的站点可以迅速停止接收或者进入休眠状态,从而也能在一定程度上实现节能。
在一种可能的实施方式中,若第一接入点发送的组播帧不包括组播管理帧,则第一接入点直接发送组播数据帧。
第四方面,本申请还提供一种多链路数据处理方法。该方面的多链路数据处理方法与第 三方面所述的多链路数据处理方法相对应,该方面的多链路数据处理方法是从非接入点多链路设备的角度进行阐述的。其中,非接入点多链路设备包括第一站点。该方法中,在第一站点收到组播数据帧的情况下,第一站点停止接收或切换至休眠状态。
该方法中,假设站点已预先获知接入点的组播帧发送规则,即先发送组播管理帧,后发送组播数据帧。那么当第一站点被唤醒接收组播帧时,若先收到组播管理帧之后再收到组播数据帧,或者直接收到组播数据帧,第一站点可以停止接收组播帧;或者若第一站点不需要在其他链路上接收组播数据帧,第一站点可以直接进入休眠状态。因此,该方法虽然还是会唤醒各个站点,但是被唤醒后的站点可以迅速停止接收或者进入休眠状态,从而也能在一定程度上实现节能。
第五方面,本申请还提供一种多链路数据处理方法。该方法由第一多链路设备为执行主体,第一多链路设备为接入点多链路设备,第一多链路设备包括第一接入点和第二接入点。该方法中,通过第一接入点发送第一组播帧。并且,在第一接入点发送第一组播帧的情况下,第二接入点不发送第二组播帧。或者说,通过第一接入点发送第一组播帧,通过第二接入点发送第二组播帧,且第二组播帧的发送时间段与第一组播帧的发送时间段不重叠。
可选的,第一接入点工作在第一链路上,第二接入点工作在第二链路上。第一链路和第二链路属于工作在增强单无线电多链路模式下的非接入点多链路设备(EMLSRnon-AP MLD)的增强单无线电多链路集合(EMLSR link set)。第一多链路设备与工作在增强单无线电多链路模式下的非接入点多链路设备(EMLSRnon-AP MLD)关联。
该方法中,通过限定第一多链路设备中的第一接入点和第二接入点发送组播帧的规则,使得第一多链路设备对应的非接入点多链路设备(该非接入点多链路设备工作在增强单无线电多链路(enhanced multi-link single radio,EMLSR)模式下)可以在多条链路上接收组播帧。
在通过第一接入点发送第一组播帧的实施方式中,可以是通过第一接入点在第一链路上发送第一组播帧,且在第一时间点之前结束发送第一组播帧。其中,第一时间点为第二接入点开始或计划开始发送第二组播帧的时间点。也即是,该实施方式中将第二接入点开始或计划开始发送第二组播帧的时间点作为第一接入点发送第一组播帧的结束时间点,使得第二组播帧的发送时间段与第一组播帧的发送时间段不重叠,从而有利于工作在EMLSR模式下non-AP MLD的可以正常接收不同链路上的组播帧。
可选的,第一时间点还可以是第二接入点开始或计划开始发送第二组播帧的时间点往前加一段链路转换时间。其中,链路转换时间为工作在EMLSR模式下non-AP MLD从接收(receiving)状态转换为监听(listening operation)状态所需的时间。需要注意的是,当存在多个工作在EMLSR模式下non-AP MLD时,链路转换时间为所有工作在EMLSR模式下non-AP MLD进行转换所需时间的最大值。
在通过第一接入点发送第一组播帧的实施方式中,可以是第一多链路设备确定第一组播帧的结束时间点。若在第一组播帧的结束时间点之前存在第二组播帧待发送,通过第一接入点发送第三指示信息,第三指示信息用于指示第二接入点不存在组播帧待发送。也就是说,该实施方式中通过指示第一组播帧的结束时间点之前第二接入点不存在组播帧待发送(即使第二接入点存在组播帧待发送也指示不存在),使得第一组播帧的发送时间段内,工作在EMLSR模式下non-AP MLD只会在第一接入点的工作链路上接收第一组播帧,不会切换到第二接入点的工作链路上,从而有利于工作在EMLSR模式下non-AP MLD的可以接收不同链路上的组播帧。
可选的,第一时间点还可以是第一组播帧的结束时间点往前加一段链路转换时间。也即 是,第一组播帧的发送时间段包括第一组播帧的组播缓存单元的传输时间加上链路转换时间。对链路转换时间的描述参考前文对应的描述,此处不再赘述。
第六方面,本申请还提供一种多链路数据处理方法。该方法由第一多链路设备为执行主体,也可以由第一接入点为执行主体。其中,第一多链路设备为接入点多链路设备,第一多链路设备包括第一接入点。以第一接入点为执行主体为例,当第一接入点对应的站点所在的非接入点多链路设备不能同时在多链路上接收组播帧(例如非接入点多链路设备为工作在EMLSR模式下non-AP MLD)时,第一接入点采用指定格式和/或指定参数发送组播帧。也就是说,当存在工作于EMLSR模式下的non-AP MLD时,AP MLD中的AP在eMLSR link set中的链路上发送的组播帧应当采用指定格式和/或指定参数。
该方法中,采用指定格式和/或指定参数的组播帧可以视为简单的组播帧(例如为单空间流),那么工作在EMLSR模式下non-AP MLD能够在多条链路上接收采用指定格式和/或指定参数的组播帧,从而实现了工作在EMLSR模式下non-AP MLD的可以正常接收不同链路上的组播帧。
在一种可能的实施方式中,指定格式和/或指定参数包括:非高吞吐量物理层收敛程序子层协议数据单元格式(non-HT PPDU format)、非高吞吐量重复物理层收敛程序子层协议数据单元格式(non-HT duplicate PPDU format)、和/或单空间流(single spatial stream)。
第七方面,本申请实施例提供一种通信装置,该通信装置可以是接入点多链路设备,也可以是接入点多链路设备中的装置,或者是能够和接入点多链路设备匹配使用的装置。一种设计中,该通信装置可以包括执行如第一方面至第六方面中描述的接入点或接入点多链路设备所执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
其中,对接入点或接入点多链路设备执行的方法/操作/步骤/动作的具体描述可以参考上述第一方面到第六方面中对应的描述,此处不再赘述。可以理解的是,该通信装置也可以实现如第一方面到第六方面中可以实现的效果。
第八方面,本申请实施例提供一种通信装置,该通信装置可以是非接入点多链路设备,也可以是非接入点多链路设备中的装置,或者是能够和非接入点多链路设备匹配使用的装置。一种设计中,该通信装置可以包括执行如第一方面至第六方面中描述的站点或非接入点多链路设备所执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
其中,对站点或非接入点多链路设备执行的方法的具体描述可以参考上述第一方面到第六方面中对应的描述,此处不再赘述。可以理解的是,该通信装置也可以实现如第一方面到第六方面中可以实现的效果。
第九方面,本申请实施例提供一种多链路设备,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该装置实现上述第一方面至第六方面,或第一方面至第六方面任一种可能的设计中的方法。
第十方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得计算机执行第一方面至第六方面,或第一方面至第六方面任一种可能的设计中的方法。
第十一方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面至第六方面,或第一方面至第六方面任一种可能的设计中的方法中的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请实施例中还提供一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行第一方面至第六方面,或第一方面至第六方面任一种可能的设计中的方法。
附图说明
图1A为本申请提供的一种通信系统的示意图;
图1B为本申请提供的通信系统的具体实现方式的示意图;
图2为本申请提供的一种同时支持ML以及MBSSID的设备的示意图;
图3为本申请提供的第一种多链路数据处理方法的流程示意图;
图4A为本申请提供的第一比特位图和第二比特位图的一种对应关系的示意图;
图4B为本申请提供的第一比特位图和第二比特位图的另一种对应关系的示意图;
图5A为本申请提供的一种TIM element的帧结构的示意图;
图5B本申请提供的一种multi-link traffic(indication)element的帧结构的示意图;
图5C为本申请提供的一种第一信息元素的帧结构的示意图;
图6A为本申请提供的一种一种RNR element的帧格式的示意图;
图6B为本申请提供的当第一指示信息携带在MLD Parameters字段中时,RNR element的帧结构的示意图;
图7为本申请提供的第二种多链路数据处理方法的流程示意图;
图8为本申请提供的一种包括工作在EMLSR模式下的non-AP MLD的通信场景的示意图;
图9A为本申请提供的一种组播帧的发送方式的示意图;
图9B为本申请提供的另一种组播帧的发送方式的示意图;
图10为本申请提供的装置的示意图;
图11-图13为本申请提供的多链路设备的示意图。
具体实施方式
下面将结合本申请中的附图,对本申请中的技术方案进行描述。
本申请基于图1A所示的通信系统提供了一种多链路数据处理方法。该方法可以指示组播业务的类型,使得多链路站点设备能更准确地判断是否唤醒对应的站点去接收组播管理帧,从而达到节能的目的。图1A所示的通信系统100至少包括两个多链路设备(multi-link device,MLD);其中以一个是接入点(access point,AP)多链路设备101(简称为AP MLD),另一个是非接入点(non-access point,non-AP)多链路设备102(简称为non-APMLD,又称为站点多链路设备(station multi-link device,STA MLD))为例。
其中,接入点多链路设备101包括一个或多个AP(例如包括AP1至AP n)。非接入点多链路设备102包括一个或多个non-AP STA(例如包括STA1至STA n)。非接入点多链路设备102可以与接入点多链路设备101建立多链路(简称为多链路建立或多链路关联)之后进行通信。在多链路建立(或多链路关联)过程中,非接入点多链路设备102中的一个STA可以向接入点多链路设备101中的一个AP发送关联请求帧,关联请求帧中携带多链路元素(multi-link element,MLE,或称为多链路信息单元)来承载非接入点多链路设备102的信息和/或非接入点多链路设备102中其他STA的信息。同样地,接入点多链路设备101中的AP 向对应的(关联的)STA回复的关联响应帧中也可以携带MLE,来承载接入点多链路设备101的信息和/或接入点多链路设备101中其他AP的信息。例如,STA1可以建立与AP1之间的链路(也可以称为STA1与AP1关联,可采用链路(link)1通信),AP2可以建立与STA2之间的链路(也可以称为STA2与AP2关联,可采用link 2通信),以此类推。建立如图1A所示的link1至link n之后,非接入点多链路设备102可以与接入点多链路设备101通过link1至link n进行通信。
一、本申请的相关概念
1、通信系统
本申请中,通信系统可以为无线局域网(wireless local area network,WLAN)或蜂窝网,或其他支持多条链路并行进行通信的无线通信系统。本申请实施例主要以部署IEEE 802.11的网络为例进行说明,而本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,BLUETOOTH(蓝牙),高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.1 1标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)、个人区域网(personal area network,PAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
2、多链路设备
多链路设备是指能够工作在多频段或多信道的设备。例如,多链路设备可以同时在2.4兆赫兹(GHz),5GHz以及6GHz频段上进行通信,或者同时在同一频段的不同信道上通信,提高设备之间的通信速率。多链路设备可以遵循802.11系列协议实现无线通信,例如,遵循极高吞吐率(extremely high throughput,EHT)站点,或遵循基于802.11be或兼容支持802.11be的站点,实现与其他设备的通信。其中,其他设备可以是多链路设备,也可以不是多链路设备。
多链路设备通常包含多个STA或者多个AP,每个STA或者每个AP工作在一个特定的频段上,或信道上。多链路设备可以是接入点设备(AP MLD),也可以是站点设备(non-AP MLD或称为non-AP STA MLD)。如果是接入点设备(例如图1A所示的接入点多链路设备101),则设备中包含一个或多个AP;如果是站点设备(例如图1A所示的非接入点多链路设备102),则设备中包含一个或多个non-AP STA。站点设备可以与接入点设备之间建立多链路(简称为多链路建立或多链路关联)之后进行通信。
本申请中,多链路设备(如图1A中的AP MLD、non-AP MLD)为具有无线通信功能的装置。该装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在这些芯片或处理系统的控制下,实现本申请的方法和功能。例如,多链路设备可以是单个天线(或单射频模块)的多链路设备,也可以是多天线(或多射频模块)的多链路设备,本申请实施例对于多链路设备包括的天线的数目并不进行限定。
本申请中,non-AP MLD具有无线收发功能,可以支持802.11系列协议,与AP MLD或其他non-AP MLD或单链路设备进行通信。例如,non-AP MLD可以是允许用户与AP通信进而与WLAN通信的任何用户通信设备,如包括但不限于,平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置等。可选的,non-AP MLD还可以为上述这些终端中的芯片和处理系统。
本申请中,AP MLD是为non-AP MLD提供服务的装置,可以支持802.11系列协议。例如,AP MLD可以为通信服务器、路由器、交换机、网桥等通信实体,或,AP MLD可以包括各种形式的宏基站,微基站,中继站等,当然AP MLD还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。
例如,图1B为本申请提供的通信系统的一种具体实现方式。假设AP MLD包括基站1和基站2,non-AP MLD包括终端1和终端2。其中,基站1与终端1关联,通过link 1进行通信;基站2与终端2关联,通过link 2进行通信。
并且,多链路设备可以支持高速率低时延的传输,随着无线局域网应用场景的不断演进,多链路设备还可以应用于更多场景中,比如为智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中智能设备(比如,打印机,投影仪等),车联网中的车联网设备,日常生活场景中的一些基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等)。本申请实施例中对于AP MLD和non-AP MLD的具体形式不做特殊限制,在此仅是示例性说明。其中,802.11协议可以为支持802.11be或兼容802.11be的协议。
3、多基本服务集标识符(multiple basic service setidentifier,multipleBSSID)
现有的802.11标准支持multiple BSSID特性,其基本功能是在一个设备中,形成多个虚拟AP来服务不同类型的STA。多个虚拟AP可以进行共同管理,来节省管理开销。
具体来说,multiple BSSID集合是一些合作AP的集合。其中,合作AP的集合中的所有AP使用同一个操作集,信道号,以及天线接口。在multiple BSSID集合中,只有一个传输(transmitted)BSSID的AP,集合中其他的AP都为非传输(non-transmitted)BSSID的AP。multiple BSSID集合的信息(也就是multiple BSSID元素)携带于transmitted BSSID AP发送的信标帧(Beacon)或者探测响应帧(Probe response)或者邻居汇报中。non-transmitted BSSID的AP的BSSID的信息是通过接收上述信标帧或者探测响应帧,或者邻居汇报中的multiple BSSID元素等推导出来的。
在multiple BSSID技术中,一个物理AP可以虚拟多个逻辑AP,每个虚拟后的AP管理一个BSS,不同的虚拟后的AP一般具有不同的SSID,以及权限,比如安全机制或者传输机会等。在虚拟后的多个AP中,存在一个虚拟AP的BSSID被配置为transmitted BSSID,该虚拟AP可以称为transmittedAP,其他虚拟AP的BSSID被配置为non-transmitted BSSID,该虚拟AP可以称为non-transmittedAP。通常来说,multiple BSSID的中多个AP还可以理解为一个AP设备虚拟出多个合作的AP设备。只有BSSID为transmitted BSSID的AP可以发送信标帧和探测响应帧,如果STA发送的探测请求帧是给multiple BSSID集合(set)中的一个BSSID为non-transmitted BSSID的AP,此时BSSID为transmittedBSSID的AP需要帮忙响应探测响应帧。BSSID为transmitted BSSID的AP发送的beacon帧包括multiple BSSID元素,其他nontransmitted BSSID的AP不能发送beacon帧。多个虚拟AP给其管理的站点分配的关联标识(association identifier,AID)是共享一个空间的,也就是说多个虚拟的BSS中的站点被分配的AID是不能重合的。
可选的,multipleBSSID元素如表1所示。其中,multipleBSSID元素包括多个字段,例如包括元素ID(element ID)、元素长度(elementlength)、最大BSSID指示、子元素等字段。其中最大BSSID指示字段的值(n)用于计算上述multiple BSSID集合中包含的BSSID的最大个数为2n(2的n次方)。可选的子元素包括各个non-transmitted BSSID的信息。接 收端根据参考BSSID、最大BSSID指示以及BSSID的序号可以计算出多BSSID集合中每个BSSID的值,各个BSSID包括48位,其中多BSSID集合中每个BSSID的高(48-n)位的值与参考BSSID的高(48-n)位的值相同,多BSSID集合中每个BSSID的低n位的值为参考BSSID的低n位的值与BSSID的序号x值的和,然后再以2^n取模。其中参考BSSID(也就是transmitted BSSID)携带于包含该multiple BSSID元素的帧(比如信标帧)中的MAC头中的BSSID字段中,具体计算方法可参考802.11-2016标准协议。
表1:multipleBSSID元素
4、multiple BSSID(MBSSID)与multi-link(ML)相结合
对于同时支持ML以及MBSSID的设备而言,每条链路上都可能存在MBSSID,来自于不同MBSSID中的AP可能会形成一个MLD,但transmitted BSSID不一定位于同一个MLD中。例如,同时支持ML以及MBSSID的设备如图2所示。其中,对于MLD来说,MLD1包括AP1、AP2和AP3,AP1工作在link 1上,AP2工作在link2上,AP3工作在link3上。MLD2包括AP4和AP5,AP4工作在link 1上,AP5工作在link 2上。MLD3包括AP6和AP7,AP6工作在link2上,AP7工作在link3上。对于MBSSID集合来说,MBSSID集合1包括AP1和AP4,均工作在link 1上。MBSSID集合2包括AP2、AP5和AP6,均工作在link2上。MBSSID集合3包括AP3、AP6和AP8,均工作在link3上。可以理解的是,上述AP分别可以关联相同的STA或者不同的STA。例如,MLD1中的AP1、AP2和AP3分别关联不同的STA(例如工作在link 1上的STA1、工作在link2上的STA2和工作在link3上的STA3)。又例如,MBSSID集合1中的AP1和AP4可以关联相同的STA(例如工作在link 1上的STA1)。
5、组播业务发送方式、组播业务信息指示
在802.11网络中,组播业务(group addressed traffic)可以分为组播数据帧(group addressed data frame,或group addressed data MPDU(MAC(media access control)protocoldata unit))和组播管理帧(group addressed management frame,或group addressed management MPDU,或group addressed MMPDU(multipleMPDU))。按照当前的802.11标准的规定,当AP MLD有组播数据帧待发送时,应在所有的链路上发送组播数据帧。当AP MLD有组播管理帧待发送时,由于组播管理帧是由AP MLD中的指定AP产生的,只在指定AP所工作的链路上发送上组播管理帧。
根据802.11标准的规定,STA或non-AP MLD可以进行休眠操作,处于休眠模式中的STA或non-AP MLD会周期性唤醒STA接收对应AP发送的Beacon帧以及传输业务指示信息(delivery traffic indication message,DTIM)Beacon帧。在Beacon帧以及DTIM Beacon帧中,会携带业务指示位图元素(traffic indication map element,TIM element),TIM element携带STA接收指示信息,该STA接收指示信息用于指示STA或non-AP MLD是否有下行数据待接收。可选的,在DTIM Beacon帧中的TIM element中,还可以携带AP发送指示信息,该AP发送指示信息用于指示与第一AP共址(collocated)的第二AP是否有组播帧待发送。其中,与第一AP共址的第二AP可以包括:第一AP(例如为图2中的AP1),和/或第一AP所在的MBSSID集合中的其他AP(例如为图2中的AP4),和/或第一AP所在的AP MLD中的其他AP(例如为图2中的AP2和AP3),和/或第一AP所在的MBSSID集合中的其他 AP所在的MLD中的其他AP(例如为图2中的AP5),和/或与第一AP共址、且不属于第一AP所在的AP MLD、也不属于第一AP所在的MBSSID集合、也不属于第一AP所在的MBSSID集合中的其他AP所在的MLD的其他AP(例如为图2中的AP6-AP8)也就是说,该AP发送指示信息可以指示图2中的每一个AP是否有组播帧待发送。AP会在发送DTIM Beacon帧之后,发送组播帧。当STA接收DTIM Beacon帧之后,根据其中的TIM element携带的信息判断每一个AP是否有组播帧待发送。若有,则在相应的链路上醒来,接收对应的组播帧。
二、本申请解决的第一类技术问题
下面以图2为例对本申请解决的第一类问题进行说明。对于图2中的AP1,在AP1发送的DTIM Beacon帧中的TIM element中,针对图2中的每一个AP,只有1bit指示信息,用于指示对应的AP是否有组播帧待发送。AP1可以广播DTIM Beacon帧,对应的,STA1可以接收DTIM Beacon帧。假设STA1工作在link 1上,STA1根据DTIM Beacon帧,可以获得link 2上的AP2的1bit指示信息。其中,若AP2待发送的组播帧只有组播数据帧,由于组播数据帧会在所有的链路上发送,则STA1仅需在link 1上接收组播数据帧即可;若还有组播管理帧,则STA1需唤醒所在的non-AP MLD中工作在link 2上的STA2去接收对应的组播管理帧。由于STA1无法根据AP2的1bit指示信息来区分AP2待发送的组播帧是组播数据帧或者是组播管理帧,还是既包括组播数据帧又包括组播管理帧。一旦STA1发现link 2上的AP2有组播帧待发送,则唤醒link 2上的STA2去接收组播帧。但是,若AP2待发送的只有组播数据帧,则并不需要唤醒STA2去接收组播数据帧,STA2被唤醒可能造成能量的浪费。
三、解决第一类技术问题所采用的多链路数据处理方法
为了解决第一类技术问题,本申请提供了第一种多链路数据处理方法。该方法中,第一接入点可以生成无线帧,并发送无线帧。该无线帧包括第一指示信息,第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送。因此,第一接入点通过第一指示信息指示第二接入点是否存在组播管理帧待发送,从而使得第一接入点对应的非接入点多链路设备能够准确判断是否唤醒第二接入点对应的站点去接收组播管理帧。当第二接入点待发送的只有组播数据帧时,可以避免唤醒第二接入点对应的站点,从而达到节能的目的。
本申请还提供了第二种多链路数据处理方法。该方法中,第一接入点对应的第一站点接收的无线帧,无线帧包括的第一指示信息,第一指示信息指示一个或多个第二接入点是否存在组播管理帧待发送,从而使得第一站点所在的非接入点多链路设备能够准确判断是否唤醒第二接入点对应的站点去接收组播管理帧。因此,该方法中当第二接入点存在组播管理帧待发送时,仅唤醒该第二接入点对应的站点接收组播管理帧,避免唤醒其他站点,从而达到节能的目的。可以理解的是,第一种和第二种多链路数据处理方法相对应,分别从接入点多链路设备和非接入点多链路设备的角度进行阐述,具体的实施方式也是类似的。
本申请还提供了第三种多链路数据处理方法。该方法中,在第一接入点发送的组播帧包括组播管理帧和组播数据帧的情况下,第一接入点在发送组播数据帧之前发送组播管理帧。那么在第一接入点发送的组播帧包括组播管理帧和组播数据帧的情况下,各个站点都会被唤醒,但是被唤醒的站点一定是先接收组播管理帧,后接收组播数据帧。当站点收到组播数据帧时,表示组播管理帧已发送完成,则站点可以停止接收或进入休眠状态。因此,该方法虽然还是会唤醒各个站点,但是当第一接入点发送完成组播管理帧后,被唤醒后的站点可以迅速停止接收或者进入休眠状态,从而也能在一定程度上实现节能。
本申请还提供了第四种多链路数据处理方法。该方法中,假设站点已预先获知接入点的 组播帧发送规则,即先发送组播管理帧,后发送组播数据帧。当第一站点被唤醒接收组播帧时,若先收到组播管理帧之后再收到组播数据帧,或者直接收到组播数据帧时,第一站点可以停止接收组播帧;或者若第一站点不需要在其他链路上接收组播数据帧,第一站点可以直接进入休眠状态。因此,该方法虽然还是会唤醒各个站点,但是被唤醒后的站点可以迅速停止接收或者进入休眠状态,从而也能在一定程度上实现节能。可以理解的是,第三种和第四种多链路数据处理方法相对应,分别从接入点多链路设备和非接入点多链路设备的角度进行阐述,具体的实施方式也是类似的。
其中,上述第一种至第四种多链路数据处理方法可应用于但不限于上述图1A、图1B或图2所示的通信系统或设备中。
1、第一种多链路数据处理方法(携带第一指示信息)
图3为本申请实施例提供的第一种多链路数据处理方法的流程示意图。该方法可以由第一多链路设备或者第一接入点所执行,下面以第一接入点为执行主体为例进行描述,包括以下步骤:
S101,第一接入点生成无线帧,无线帧包括第一指示信息。
S102,第一接入点发送无线帧。
第一多链路设备为接入点多链路设备AP MLD。第一多链路设备可以包括一个或多个AP。例如,第一多链路设备可以是图1A或图1B所示的AP MLD,或者是图2所示的任意一个MLD。
第一接入点为第一多链路设备中的AP,第一接入点可以生成并发送无线帧。例如,第一接入点可以是图1A或图1B所示的AP MLD中的任意一个AP,或者是图2所示的任意一个MLD中的AP。
无线帧可以包括但不限于DTIM beacon帧、TIM帧等。其中,无线帧的帧结构例如可以是802.11协议族中描述的MAC帧结构,如表2所示。其中,该无线帧包括MAC头(MAC header)、帧体部分(frame body)和帧校验序列(frame check sequences,FCS)。其中,帧体部分(frame body)包括一个或多个元素(element)。可以理解的是,该无线帧不定长,frame body包括的一个或多个element依次排列,每一个element可以用于携带第一指示信息。
表2:无线帧
其中,无线帧携带第一指示信息,第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送。第二接入点为与第一接入点共址的接入点。本申请中的第二接入点可以包括但不限于:
第一接入点(即第一指示信息用于指示第一接入点是否存在组播管理帧待发送);在这种情况下,第一接入点和第二接入点相同。例如,第一接入点为图2中的AP1,第二接入点包括图2中的AP1。
第一多链路设备中的其他接入点;例如,第一多链路设备为图2中的MLD1,第一接入点为图2中的AP1,则第二接入点可以包括图2中的AP2或AP3。
第一接入点所在的第一多基本服务集标识符(MBSSID)集合中的其他接入点;例如,第一接入点为图2中的AP1,第一MBSSID集合为图2中的MBSSID集合1,则第二接入点可以包括图2中的AP4。
第二多链路设备中的接入点,第二多链路设备是第一接入点所在的第一MBSSID集合中 的其他接入点所属的多链路设备,第二多链路设备为接入点多链路设备;例如,第一接入点为图2中的AP1,第一MBSSID集合为图2中的MBSSID集合1,则第二多链路设备为图2中的MLD2,第二接入点包括MLD2中的AP4或AP5。
与第一接入点共址,且不属于第一多链路设备,也不属于第一接入点所在的第一多基本服务集标识符集合,也不属于第二多链路设备的接入点。例如,假设图2中的所有AP共址,第一接入点为图2中的AP1,第一多链路设备为图2中的MLD1,第一MBSSID集合为图2中的MBSSID集合1,第二多链路设备为图2中的MLD2,则第二接入点可以包括AP6或者AP7或者AP8。可以理解的是,上述对第一接入点和第二接入点的举例仅为一种示例,本申请并不限定。例如,第一接入点还可以是图2所示的AP2,则根据对第二接入点的描述,第二接入点可以包括图2中对应的其他AP。
下面对第一指示信息进行详细的描述。
一种可能的实施方式中,第一指示信息可以包括第一比特位图(bitmap),第一比特位图中的一个或多个比特分别用于指示一个或多个第二接入点是否存在组播管理帧待发送。也就是说,第一指示信息可以采用bitmap进行指示,例如指示方式可以是每个比特指示对应的第二接入点是否存在组播管理帧待发送。
例如,假设第一比特位图为1000100100。该第一比特位图包括10个比特,每一个比特对应一个第二接入点,即第一比特位图的10个比特分别对应10个第二接入点。假设当比特的取值为1时,该比特指示对应的第二接入点存在组播管理帧待发送;当比特的取值为0时,该比特指示对应的第二接入点不存在组播管理帧待发送。则该第一比特位图表示第一个,第五个和第八个第二接入点存在组播管理帧待发送,其他的第二接入点不存在组播管理帧待发送。又例如,本实施例也可以假设当比特的取值为1时,该比特指示对应的第二接入点不存在组播管理帧待发送;当比特的取值为0时,该比特指示对应的第二接入点存在组播管理帧待发送,具体实现方式本实施例不作限定。
可选的,无线帧还包括第二指示信息,第二指示信息用于指示一个或多个第二接入点是否存在组播帧待发送。例如,第二指示信息可以是如前述第五部分中描述的AP发送指示信息。其中,第二指示信息可以携带于Beacon帧或DTIM Beacon帧(即携带于无线帧)中,进一步,可以携带于Beacon帧或DTIM Beacon帧的TIM element中。进一步,第二指示信息包括第二比特位图,第二比特位图中的一个或多个比特分别用于指示一个或多个第二接入点是否存在组播帧待发送。可以理解的是,第一比特位图和第二比特位图可以满足一定的对应关系,可以包括但不限于以下两种对应关系:
对应关系1:第一比特位图中的一个或多个比特对应的第二接入点,与第二比特位图中对应位置的比特对应的第二接入点相同。
例如,图4A为本申请提供的第一比特位图和第二比特位图的一种对应关系的示意图。其中,第一比特位图为1000100100(包括10个比特),每一个比特指示一个第二接入点是否存在组播管理帧待发送。若比特取值为1,则表示该比特对应的第二接入点存在组播管理帧待发送。例如,第一比特位图中的第一个、第五个和第八个比特的取值为1,则表示对应的第一个,第五个和第八个第二接入点存在组播管理帧待发送,其他的第二接入点不存在组播管理帧待发送。采用对应关系1,则第二比特位图和第一比特位图的长度相等,且第一比特位图中的每个比特对应的第二接入点与第二比特位图中位置相同的比特所对应的第二接入点相同。例如,图4A所示的第二比特位图为1100101101,第一个比特对应的第二接入点与第一比特位图中的第一个比特对应的第二接入点相同。类似于第一比特位图的定义,对于第二 比特位图,若比特取值为1,则表示该比特对应的第二接入点存在组播帧待发送。例如,第二比特位图中的第一个、第二个、第五个、第七个、第八个和第十个比特的取值为1,则表示对应的第一个、第二个、第五个、第七个、第八个和第十个第二接入点存在组播帧待发送。进一步,根据图4A中第一比特位图和第二比特位图的对应关系,还可以推导,第二个、第七个和第十个第二接入点存在组播数据帧待发送,不存在组播管理帧待发送。
对应关系2:第一比特位图中的第n个比特对应的第二接入点,与第二比特位图中第n个取值为1的比特对应的第二接入点相同。
例如,图4B为本申请提供的第一比特位图和第二比特位图的另一种对应关系的示意图。在对应关系2中,第一比特位图和第二比特位图的长度可以不相同。例如,第二比特位图为1100101101。根据第二比特位图,取值为1的比特为第一个、第二个、第五个、第七个、第八个和第十个比特(共6个比特),则表示对应的第一个、第二个、第五个、第七个、第八个和第十个第二接入点存在组播帧待发送。根据对应关系2,第一比特位图的比特数量最少可以是6个比特。假设第一比特位图为101010,第一比特位图的第一个比特对应第一个第二接入点,第二个比特对应第二个第二接入点,第三个比特对应第五个第二接入点,第四个比特对应第七个第二接入点,第五个比特对应第八个第二接入点,第六个比特对应第十个第二接入点。并且,第一比特位图中各个比特的取值,表示对应的第一个、第五个和第八个第二接入点存在组播管理帧待发送。进一步,根据图4B中第一比特位图和第二比特位图的对应关系,还可以推导,第二个、第七个和第十个第二接入点存在组播数据帧待发送,不存在组播管理帧待发送。可选的,在对应关系2中,第一比特位图和第二比特位图的长度也可以相同。例如,在图4B所示的第一比特位图的后四位补零得到第一比特位图为1010100000,此时第一比特位图和第二比特位图的长度相同,第一比特位图和第二比特位图满足对应关系2。
另一种可能的实施方式中,第一指示信息可以由不同的元素(element)来携带。具体来说,可以包括但不限于通过以下几种元素来携带第一指示信息:
携带方式1:第一指示信息携带于TIM element中。
例如,图5A为本申请提供的一种TIM element的帧结构的示意图。其中,第一指示信息包括第一比特位图,第一比特位图位于TIM element中的部分虚拟比特位图(Partial Virtual Bitmap)字段中。例如,第一比特位图在Partial Virtual Bitmap字段中可以称为组播管理帧指示比特位图(Group Addressed BU Indication Bitmap)。可选的,TIM element中的BitmapControl字段包括第一比特位图的相关信息,例如包括业务指示(TrafficIndicator)和/或比特位图偏置(Bitmap Offset)。
可选的,当第一指示信息携带于TIM element中时,TIM element中可以不包含第二指示信息(即不包含第二比特位图)。在这种情况下,TIM element包括了第一接入点和第一接入点所在的MBSSID集合中的接入点是否存在组播帧待发送的指示信息,还包括一个或多个第二接入点是否存在组播管理帧待发送的指示信息(即第一指示信息)。
可选的,当TIM element包含第二指示信息和/或第一指示信息时,第二指示信息和/或第一指示信息位于TIM element中的Partial Virtual Bitmap字段中。Partial Virtual Bitmap字段不仅包含了组播业务指示信息,还包含了单播业务指示信息,每一类指示信息对应一个AID范围。例如,组播业务指示信息对应第一AID范围,单播业务指示信息对应第二AID范围。
由于每条链路的MBSSID集合数量可能不同,且每条链路的MBSSID集合中属于APMLD的BSSID所在的AP MLD下的附属AP数量可能不同,因此,每条链路的第一AID范围不同。
另外,由于每个关联到AP MLD上的non-AP MLD只有一个AID,non-AP MLD所有链 路上的STA都使用这个AID来作为自己的标识(这个AID是根据第二AID范围确定的),因此AP MLD在不同链路上发送的Beacon中携带的TIM元素中,同一个non-AP MLD的AID相同。当该AP MLD存在对于该non-AP MLD的下行业务时,该non-AP MLD对应的AID在Partial Virtual Bitmap下的值应被置为1。如果第二AID范围与某条链路的第一AID范围重叠,在该条链路上发送的TIM元素中,某个AID的0或1将会被对应为某个non-AP MLD是否具有单播业务或是某个附属AP是否具有组播业务,这种情况下将会出现AID歧义。因此,本申请限定第二AID范围应与所有链路的第一AID范围不重叠。或者说,第二AID范围的最小值应大于所有链路的第一AID范围的最大值。
具体来说,AP在向STA或non-AP MLD分配AID时应满足以下规则:分配给non-AP MLD的AID值需要大于或等于以下值的和(以下值的和表示以下值对应的已建立的链路的第一AID范围)的最大值,其中,以下值所对应的已建立的链路上的AP属于一个MBSSID集合:
(1)2n,其中n是MaxBSSID indicator
(2)对于每个附属于AP MLD的BSSID,其附属于同一AP MLD下的其他附属AP的数量。
下面结合图2所示的多个AP,对第一AID范围进行举例描述。例如,假设第一接入点为图2所示的AP1,AP1为transmitting AP。另外,假设第二接入点包括以下两类:
第一多链路设备中的其他接入点;
第二多链路设备中的接入点,第二多链路设备是第一接入点所在的第一MBSSID集合中的其他接入点所属的多链路设备。
若link 1上的MaxBSSID indicator为1,则link 1的第一AID范围为21+2+1=5。其中,21是根据link 1(包括AP1、AP4)上的MaxBSSID indicator为1确定的,2是根据AP1附属于同一AP MLD下的其他附属AP的数量(数量为2,包括AP 2、AP 3)确定的,1是根据AP4附属于同一AP MLD下的其他附属AP的数量(数量为1,包括AP 5)确定的。
采用与link1类似的计算方式,若link 2上的MaxBSSID indicator为2,则link 2的第一AID范围为22+2+1+1=8。若link 3上的MaxBSSID indicator为2,则link 3的第一AID范围为22+2+1=7。
因此,AP在向STA或non-AP MLD分配AID时,最小的AID值为max{5,8,7}=8。
携带方式2:第一指示信息携带于multi-link trafficelement中。
例如,图5B为本申请提供的一种multi-link trafficelement的帧结构的示意图。其中,第一指示信息包括第一比特位图,第一比特位图位于multi-link traffic element中的组播管理帧信息(Group addressed MMPDU info)字段中。例如,第一比特位图在Group addressed MMPDU info字段中可以称为组播管理帧比特位图(Group Addressed MMPDU Bitmap)。需要注意的是,Group addressed MMPDU info字段在multi-link traffic element中的位置本申请不限定,例如,可以如图5B所示在多链路业务控制(Multi-Link Traffic Control)字段之后;或者,也可以在Multi-Link Traffic Control字段之前。可选的,Group addressed MMPDU info字段还包括第一比特位图的相关信息,例如包括比特位图长度(Bitmap Length)和填充(Padding),Padding的长度为0到7个比特,使得Group addressed MMPDU info字段的长度为8比特的整数倍。需要注意的是,本申请中的multi-link traffic element也可以称为multi-link traffic indication element。
携带方式3:第一指示信息携带于第一信息元素中。
其中,第一信息元素为本申请新定义的信息元素。例如,从协议标准中未定义的元素标 识(element ID)中选择一个元素标识作为第一信息元素的元素标识,并定义元素的长度(length)、元素标识扩展(element ID extension)和组播管理帧信息(Group Addressed MMPDUinfo)等字段,从而定义了第一信息元素。
例如,图5C为本申请提供的一种第一信息元素的帧结构的示意图。其中,第一指示信息包括第一比特位图,第一比特位图位于第一信息元素中的Group addressed MMPDU info字段中。例如,第一比特位图在Group addressed MMPDU info字段中可以称为Group Addressed MMPDU Bitmap。可选的,Group addressed MMPDU info字段还包括第一比特位图的相关信息,例如包括Bitmap Length和填充Padding,Padding的长度为0到7个比特,使得Group addressed MMPDU info字段的长度为8比特的整数倍。
携带方式4:第一指示信息携带于简化邻居报告元素(reduced neighbor reportelement,RNR element)中。
其中,RNR element用于携带第一接入点的邻居AP的信息。本申请中假设第一接入点的邻居AP包括第二接入点。每个邻居AP的信息包含在一个目标信标传输时间信息集(target beacon transmission time(TBTT)information set)字段中。为了在RNR element中携带第一指示信息,可以在RNR element中对应于每个第二接入点的TBTT Information Set字段中携带第一指示信息,用于指示对应的第二接入点是否有组播管理帧待发送。其中,第一指示信息可以携带在MLD Parameters字段中,或者携带在BSS Parameters字段中。
以第一指示信息携带在MLD Parameters字段中为例,图6A为本申请提供的一种RNR element的帧结构的示意图。其中,第一指示信息位于RNR element中的TBTT information set字段中的MLD Parameters字段中。具体来说,第一指示信息为图6A中的Group Addressed MMPDU present字段。
示例性地,当第一指示信息携带于RNR element中时,第一指示信息可以是长度为1比特的字段。例如,当这1比特的字段的取值为第一值时,表示对应的第二接入点存在组播管理帧待发送。当这1比特的字段的取值为第二值时,表示对应的第二接入点不存在组播管理帧待发送。例如第一值可以是1,第二值可以是0。或者,第一值可以是0,第二值可以是1。
或者,当第一指示信息携带于RNR element中时,第一指示信息可以是长度为2比特的字段。例如,当这2比特的字段的取值为第一值时,表示对应的第二接入点存在组播管理帧待发送。当这2比特的字段的取值为第二值时,表示对应的第二接入点不存在组播管理帧待发送。当这2比特的字段的取值为第三值时,表示未知或者不提供是否有组播管理帧待发送的指示信息。
可选的,由于在RNR element中对应于每个第二接入点的TBTT Information Set字段中携带第一指示信息,本实施例还定义了通过哪些字段可以确定对应的第二接入点。以第一指示信息携带在MLD Parameters字段中为例,图6B为本申请提供的另一种RNR element的帧结构的示意图。其中,MLD Parameters字段包括MLD ID、Link ID、BSS parametersChange Count、All UpdateIncluded等字段。对应的第二接入点可以通过其中的BSSID、Short SSID、MLD ID、Link ID中的一个或多个字段确定。
可以理解的是,上述携带方式1-4中的第一指示信息或第一比特位图的命名仅为一种示例,本实施例并不限定第一指示信息或第一比特位图在元素/字段中的名称。
2、第二种多链路数据处理方法(携带第一指示信息)
图7为本申请提供的第二种多链路数据处理方法的流程示意图。该方法以非接入点多链路设备为执行主体,非接入点多链路设备包括第一站点和第二站点,方法包括以下步骤:
S201,通过第一站点接收无线帧,无线帧包括第一指示信息。
S202,在一个或多个第二接入点存在组播管理帧待发送的情况下,通过第二站点接收组播管理帧。
非接入点多链路设备例如可以是图1A或图1B所示的non-AP MLD。
第一站点和第二站点为非接入点多链路设备中的STA。第一站点与第一接入点关联,建立第一链路(即第一站点和第一接入点都工作在第一链路上)。当第一接入点在第一链路上发送无线帧时,第一站点可以在第一链路上接收无线帧,从而获取第一指示信息。对第一指示信息的具体描述可以参考图4A至图6B中对应的描述,此处不再赘述。第一站点可以根据第一指示信息,判断是否需要唤醒第二站点去接收组播管理帧,第二站点与一个或多个第二接入点中存在组播管理帧待发送的一个第二接入点工作在相同链路上。一个或多个第二接入点的具体描述可以参考图3实施例中对应的描述,此处不再赘述。第二站点与存在组播管理帧待发送的一个第二接入点工作在相同链路上,也即是,第二站点与该第二接入点关联,可以接收该第二接入点的组播管理帧。
下面结合图1A所示的通信系统对S201和S202进行举例说明。例如,假设第一接入点为图1A中接入点1,假设一个或多个第二接入点中存在组播管理帧待发送的一个第二接入点为图1A中的接入点2。则第一站点为图1A中站点1,第二站点为图1A中的站点2,即站点2与接入点2工作在相同链路(链路2)上。接入点1发送无线帧,无线帧包括第一指示信息,第一指示信息指示接入点2存在组播管理帧待发送。对应的,站点1接收无线帧,获取第一指示信息,确定接入点2存在组播管理帧待发送。在接入点2存在组播管理帧待发送的情况下,唤醒站点2且不唤醒接入点多链路设备中的其他站点,通过站点2接收来自接入点2的组播管理帧,从而达到节能的目的。
3、第三种多链路数据处理方法(不携带第一指示信息)
本申请提供的第三种多链路数据处理方法以第一接入点为执行主体,方法包括:
在第一接入点发送的组播帧包括组播管理帧和组播数据帧的情况下,第一接入点在发送组播数据帧之前发送组播管理帧。
也即是,该方法规定了当存在组播管理帧和组播数据帧待发送时,发送组播管理帧和组播数据帧的顺序。例如,当第一接入点存在组播管理帧和组播数据帧待发送时,第一接入点先发送组播管理帧,再发送组播数据帧。当第一接入点只存在组播数据帧待发送(即不存在组播管理帧待发送时),第一接入点可以直接发送组播数据帧。一种可能的实施方式中,发送组播管理帧和组播数据帧的顺序可以是预先定义的,并且假设,当第一接入点与第一站点建立多链路关联后,第一站点可以获知发送组播管理帧和组播数据帧的顺序,有利于第一站点判断是否继续接收组播帧。另一种可能的实施方式中,若第一站点没有预先获知发送组播管理帧和组播数据帧的顺序,当第一接入点发送组播帧时,可以在组播帧中携带额外的信息,额外的信息包括发送组播管理帧和组播数据帧的顺序,从而有利于第一站点判断是否继续接收组播帧。
可选的,该方法中与第一接入点共址的第二接入点可以按照协议标准中的方式生成组播帧的第二指示信息,并发送第二指示信息。例如,第二指示信息用于指示第一接入点存在组播帧待发送。当第二接入点对应的站点接收到第二指示信息时,获知第一接入点存在组播帧待发送,从而唤醒各个站点接收组播帧。但是基于当存在组播管理帧和组播数据帧待发送时,发送组播管理帧和组播数据帧的顺序,被唤醒的各个站点先接收组播管理帧,后接收组播数据帧。若收到组播数据帧,则表示组播管理帧已发送完成,站点可以停止接收或进入休眠状 态。
4、第四种多链路数据处理方法(不携带第一指示信息)
本申请提供的第四种多链路数据处理方法以第一站点为执行主体,方法包括:
在第一站点收到组播数据帧的情况下,第一站点停止接收或切换至休眠状态。
也即是,当第一站点被唤醒接收组播帧时,若接收到组播数据帧(包括先收到组播管理帧后收到组播数据帧的情况,和/或直接收到组播数据帧的情况),则第一站点停止接收组播帧。或者,若第一站点不需要在其他链路上接收组播数据帧,第一站点可以直接进入休眠状态。需要注意的是,该方法假设第一站点已预先获知对应的第一接入点发送组播管理帧和组播数据帧的顺序,即先发送组播管理帧,后发送组播数据帧。那么当第一站点被唤醒接收组播帧时,若先收到组播管理帧之后再收到组播数据帧,或者直接收到组播数据帧,第一站点可以停止接收或切换至休眠状态。因此,该方法虽然还是会唤醒各个站点,但是被唤醒后的站点可以迅速停止接收或者进入休眠状态,从而也能在一定程度上实现节能。
四、本申请解决的第二类技术问题
在介绍本申请解决的第二类技术问题之前,首先介绍第二类技术问题涉及的相关概念。增强单无线电多链路(enhanced multi-link single radio,EMLSR)是指,一个非无线接入点多链路设备(non-access point multi-link device,non-AP MLD)只具备单无线电收发能力,但它可以同时在多个链路上进入侦听操作(listening operation)。在侦听操作中,non-AP MLD在每一条链路上都用一根天线来接收。当AP MLD在任何一条链路(例如链路i)上给non-AP MLD成功发送初始控制帧(initial control frame)后,non-AP MLD立即将所有天线切换到链路i上与AP MLD进行帧交互,帧交互结束后将天线切换回各个链路,以使各个链路继续执行侦听操作。涉及的其他相关概念可以参考前文第一部分中的描述(例如对多链路设备等的描述),此处不再赘述。
例如,在图8所示的通信场景中,一个non-AP MLD只具备单无线电收发能力。但是为了使non-AP MLD可以实现多链路的优势,假设该non-AP MLD工作在EMLSR模式下(也即是该non-AP MLD为支持EMLSR的non-AP MLD)。支持EMLSR的non-AP MLD可以同时在多个链路(如图8中的链路1和链路2)上进入侦听操作。在侦听操作过程中,该non-AP MLD在每一条链路上都用一根无线电(此处以一根天线为示例)来接收。当AP MLD在链路1上向该non-AP MLD成功发送初始控制帧后,该non-AP MLD可以将各条链路上的所有天线切换到链路1上与AP MLD进行帧交互,如图8所示。在帧交互结束后,该non-AP MLD将天线切换回各个链路并返回侦听操作。
但是由于能力的限制,工作在EMLSR模式下的non-AP MLD无法同时在多条链路上接收组播帧。
五、解决第二类技术问题所采用的多链路数据处理方法
为了解决第二类技术问题,本申请提供了第五种多链路数据处理方法。该方法中,通过第一接入点发送第一组播帧。并且,在第一接入点发送第一组播帧的情况下,第二接入点不发送第二组播帧。也即是,通过限定第一多链路设备中的第一接入点发送第一组播帧时,第二接入点不能发送组播帧,使得工作在EMLSR模式下的non-AP MLD可以在多条链路上接收组播帧。
本申请还提供了第六种多链路数据处理方法。该方法中,当第一接入点对应的站点所在的非接入点多链路设备不能同时在多链路上接收组播帧时,第一接入点采用指定格式和/或指定参数发送组播帧。也即是,通过限定第一接入点发送组播帧的格式和/或参数,使得工作在 EMLSR模式下的non-AP MLD可以在多条链路上接收组播帧。
1、第五种多链路数据处理方法
本申请提供的第五种多链路数据处理方法以第一接入点为执行主体,方法包括:
通过第一接入点发送第一组播帧;在第一接入点发送第一组播帧的情况下,第二接入点不发送第二组播帧。
可选的,上述方法也可以描述为:AP MLD不得在第一链路的组播缓存单元的传输时间加上EMLSR切换时延的时间内在第二链路上传输组播管理帧,第一链路和第二链路属于EMLSR链路集合。当存在多个EMLSR操作STA时,EMLSR的切换时延为所有EMLSR操作STA的切换时延的最大值(例如可以译为:The AP MLD shall not transmit group addressed MMPDU on one link within the transmission time of group addressed BU plus switch delay(max delay of all EMLSR operating STAs)of another link of the EMLSR link set)。其中,AP MLD为第一接入点所属的设备,第一接入点和第二接入点工作在不同的链路上。
可选的,上述方法也可以描述为:附属于AP MLD的第二接入点不得在第一接入点在第一链路上发送组播缓存单元的传输时间加上EMLSR切换时延的时间内在第二链路上传输组播管理帧,第一链路和第二链路属于EMLSR链路集合。当存在多个EMLSR操作STA时,EMLSR的切换时延为所有EMLSR操作STA的切换时延的最大值(例如可以译为:An AP affiliated with the AP MLD shall not transmit group addressed MMPDU on one link within the transmission time of group addressed BU plus switch delay(max delay of all eMLSR operating STAs)of another link of the EMLSR link set)。其中,第一接入点和第二接入点工作在不同的链路上。
或者说,该方法以接入点多链路设备(包括第一接入点和第二接入点)为执行主体,包括以下步骤:
通过第一接入点发送第一组播帧;
通过第二接入点发送第二组播帧,且第二组播帧的发送时间段与第一组播帧的发送时间段不重叠。
其中,第一接入点和第二接入点隶属于(affiliated with)同一个AP MLD。第一接入点工作在第一链路上,第二接入点工作在第二链路上。第一链路和第二链路属于工作在EMLSR模式下的non-AP MLD(可以简称为EMLSRnon-AP MLD)的EMLSR链路集合(EMLSR link set)。第一多链路设备与工作在EMLSR模式下的non-AP MLD关联。例如,第一接入点和第二接入点为图8中的AP MLD的AP1和AP2,第一链路和第二链路为图8中的链路1和链路2。
第一组播帧可以包括但不限于信标帧(Beacon帧或DTIM Beacon帧)、组播数据帧、组播管理帧等。第二组播帧可以包括但不限于信标帧、组播数据帧、组播管理帧等。可选的,当第一链路为主链路时,第二组播帧只包括DTIM Beacon帧之后的组播管理帧。主链路为工作在EMLSR模式下的non-AP MLD接收所有组播帧的链路。主链路可以是由AP确定,并发送给non-AP STA的。主链路的指示信息可以携带在Beacon帧中,或者携带在EML Operating Mode Notification frame中。当携带在Beacon帧中时,例如可携带在Beacon帧中的multi-link element中的EML Capabilities字段中。
具体来说,该方法可以采用但不限于以下两种实施方式:
实施方式1:提前结束一条链路上的组播帧发送。
例如,图9A为实施方式1中描述的组播帧的发送方式的示意图。第一接入点为执行主 体,包括以下步骤:
第一接入点在第一链路上发送第一组播帧;
第一接入点确定第一时间点,在第一时间点之前结束发送第一组播帧。
例如,第一接入点在第一链路上发送DTIM Beacon帧和组播缓存单元(group addressed BU)。并且,第一接入点在第一时间点之前结束发送组播管理帧。
该实施方式中,第一时间点为第二接入点开始或计划开始发送第二组播帧的时间点,如图9A所示。也即是,将第二接入点开始或计划开始发送第二组播帧的时间点作为第一接入点发送第一组播帧的结束时间点,使得第二组播帧的发送时间段与第一组播帧的发送时间段不重叠,从而有利于工作在EMLSR模式下non-AP MLD的可以正常接收不同链路上的组播帧。
可选的,第一时间点还可以是第二接入点开始或计划开始发送第二组播帧的时间点往前加一段链路转换时间。其中,链路转换时间为工作在EMLSR模式下non-AP MLD从接收状态转换为监听状态所需的时间。需要注意的是,当存在多个工作在EMLSR模式下non-AP MLD时,链路转换时间为所有工作在EMLSR模式下non-AP MLD进行转换所需时间的最大值。
实施方式2:指示另一条链路不存在组播帧待发送。
例如,图9B为实施方式2中描述的组播帧的发送方式的示意图。第一接入点为执行主体,包括以下步骤:
第一接入点确定第一组播帧的结束时间点;
若在第一组播帧的结束时间点之前存在第二组播帧待发送,第一接入点发送第三指示信息,第三指示信息用于指示第二接入点不存在组播帧待发送。
例如,第一接入点在第一链路上发送DTIM Beacon帧和组播缓存单元。假设在第一接入点结束发送之前,第二接入点发送了DTIM Beacon帧,如图9B所示。则第一接入点发送第三指示信息,指示第二接入点不存在组播帧待发送。那么在第一组播帧的发送时间段内,工作在EMLSR模式下non-AP MLD只会在第一接入点的工作链路上接收第一组播帧,不会切换到第二接入点的工作链路上,从而有利于工作在EMLSR模式下non-AP MLD的可以接收不同链路上的组播帧。
可选的,第一接入点通过DTIM Beacon帧携带第三指示信息。可选的,在第一接入点发送第一组播帧之前,第一接入点已发送第三指示信息。
2、第六种多链路数据处理方法
本申请提供的第六种多链路数据处理方法以第一接入点为执行主体,方法包括:
当第一接入点对应的站点所在的非接入点多链路设备不能同时在多链路上接收组播帧时,第一接入点采用指定格式和/或指定参数发送组播帧。
也即是,当存在工作于EMLSR模式下的non-AP MLD时,AP MLD中的AP在eMLSR link set中的链路上发送的组播帧应当采用指定格式和/或指定参数。
一种可能的实施方式中,指定格式和/或指定参数包括但不限于:非高吞吐量物理层收敛程序子层协议数据单元格式(non-HT PPDU format)、非高吞吐量重复物理层收敛程序子层协议数据单元格式(non-HT duplicate PPDU format)、和/或单空间流(single spatial stream)。
其中,采用指定格式和/或指定参数的组播帧可以视为简单的组播帧(例如为单空间流),那么工作在EMLSR模式下non-AP MLD能够在多条链路上接收采用指定格式和/或指定参数的组播帧,从而实现了工作在EMLSR模式下non-AP MLD的可以正常接收不同链路上的组 播帧。
六、本申请解决的第三类技术问题
在介绍本申请解决的第三类技术问题之前,首先介绍第三类技术问题涉及的相关概念。TIM element中的Partial Virtual Bitmap字段不仅包含了组播业务指示信息,还包含了单播业务指示信息,每一类指示信息对应一个AID范围。例如,组播业务指示信息对应第一AID范围,单播业务指示信息对应第二AID范围。
由于每条链路的MBSSID集合数量可能不同,且每条链路的MBSSID集合中属于AP MLD的BSSID所在的AP MLD下的附属AP数量可能不同,因此,每条链路的第一AID范围不同。
涉及的其他相关概念可以参考前文第一部分中的描述(例如对AP MLD、non-AP MLD等的描述),此处不再赘述。
另外,由于每个关联到AP MLD上的non-AP MLD只有一个AID,non-AP MLD所有链路上的STA都使用这个AID来作为自己的标识(这个AID是根据第二AID范围确定的),因此AP MLD在不同链路上发送的Beacon帧中携带的TIM元素中,同一个non-AP MLD的AID相同。当该AP MLD存在对于该non-AP MLD的下行业务时,该non-AP MLD对应的AID在Partial Virtual Bitmap下的值应被置为1。如果第二AID范围与某条链路的第一AID范围重叠,在该条链路上发送的TIM元素中,某个AID的0或1将会被对应为某个non-AP MLD是否具有单播业务或是某个附属AP是否具有组播业务,这种情况下将会出现AID歧义。那么,non-AP MLD也就无法区分当前业务是non-AP MLD的单播业务还是某个附属AP的组播业务,从而导致业务传输的问题。
七、解决第三类技术问题所采用的多链路数据处理方法
为了解决第三类技术问题,本申请提供了第七种多链路数据处理方法。该方法中限定第二AID范围应与所有链路的第一AID范围不重叠。或者说,第二AID范围的最小值应大于所有链路的第一AID范围的最大值。
具体来说,AP在向STA或non-AP MLD分配AID时应满足以下规则:分配给non-AP MLD的AID值需要大于或等于以下值的和(以下值的和表示对应的已建立的链路的第一AID范围)的最大值,其中,以下值所对应的已建立的链路上的AP属于一个MBSSID集合:
(1)2n,其中n是MaxBSSID indicator
(2)对于每个附属于AP MLD的BSSID,其附属于同一AP MLD下的其他附属AP的数量。
下面结合图2所示的多个AP,对第一AID范围进行举例描述。例如,假设第一接入点为图2所示的AP1,AP1为transmitting AP。另外,假设第二接入点包括以下两类:
第一多链路设备中的其他接入点;
第二多链路设备中的接入点,第二多链路设备是第一接入点所在的第一MBSSID集合中的其他接入点所属的多链路设备。
若link 1上的MaxBSSID indicator为1,则link 1的第一AID范围为21+2+1=5。其中,21是根据link 1(包括AP1、AP4)上的MaxBSSID indicator为1确定的,2是根据AP1附属于同一AP MLD下的其他附属AP的数量(数量为2,包括AP 2、AP 3)确定的,1是根据AP4附属于同一AP MLD下的其他附属AP的数量(数量为1,包括AP 5)确定的。
采用与link1类似的计算方式,若link 2上的MaxBSSID indicator为2,则link 2的第一AID范围为22+2+1+1=8。若link 3上的MaxBSSID indicator为2,则link 3的第一AID范 围为22+2+1=7。
因此,AP在向STA或non-AP MLD分配AID时,最小的AID值为max{5,8,7}=8。
为了实现本申请提供的方法中的各功能,本申请提供的装置或设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图10为本申请提供的一种装置1000。该装置可以包括执行图2至图9B对应的方法实施例中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。
一种实施方式中,该装置包括通信单元1001和处理单元1002。用于实现前述实施例中第一多链路设备或第一接入点所执行的方法。其中,第一多链路设备为接入点多链路设备,第一多链路设备包括第一接入点。其中,处理单元1002用于生成无线帧,无线帧包括第一指示信息,第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送,一个或多个第二接入点是均与第一接入点共址的接入点。通信单元1001用于发送该无线帧。该示例中通信单元1001和处理单元1002的具体执行流程参考前述实施例中对第一种多链路数据处理方法的详细描述,此处不再赘述。该第一指示信息,可以指示第二接入点是否存在组播管理帧待发送,从而使得第一接入点对应的非接入点多链路设备能够准确判断是否唤醒第二接入点对应的站点去接收组播管理帧。因此,当第二接入点待发送的只有组播数据帧时,可以避免唤醒第二接入点对应的站点,从而达到节能的目的。
一种实施方式中,该装置包括通信单元1001和处理单元1002,通信单元1001用于实现前述实施例中非接入点多链路设备所执行的方法。其中,非接入点多链路设备包括第一站点和第二站点。其中,通信单元1001用于接收无线帧,无线帧包括第一指示信息。第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送。在一个或多个第二接入点存在组播管理帧待发送的情况下,通过第二站点接收组播管理帧。第二站点与一个或多个第二接入点中存在组播管理帧待发送的一个第二接入点工作在相同链路上。其中,通信单元1001的具体执行流程参考前述实施例中对第二种多链路数据处理方法的详细描述,此处不再赘述。该第一指示信息,使得第一站点所在的非接入点多链路设备能够准确判断是否唤醒第二接入点对应的站点去接收组播管理帧。因此,当第二接入点存在组播管理帧待发送时,仅唤醒该第二接入点对应的站点接收组播管理帧,避免唤醒其他站点,从而达到节能的目的。
一种实施方式中,该装置包括通信单元1001和处理单元1002,通信单元1001用于实现前述实施例中第一接入点所执行的方法。其中,通信单元1001用于在第一接入点发送的组播帧包括组播管理帧和组播数据帧的情况下,在发送组播数据帧之前发送组播管理帧。其中,通信单元1001的具体执行流程参考前述实施例中对第三种多链路数据处理方法的详细描述,此处不再赘述。通信单元1001所执行的步骤限定了发送组播管理帧和组播数据帧的规则为先发送组播管理帧,后发送组播数据帧。使得被唤醒的站点一定是先接收组播管理帧,后接收组播数据帧。因此,当第一接入点的组播管理帧已发送完成或者第一接入点并未发送组播管 理帧仅发送组播数据帧时,被唤醒后的站点可以迅速停止接收或者进入休眠状态,从而也能在一定程度上实现节能。
一种实施方式中,该装置包括通信单元1001和处理单元1002,通信单元1001用于实现前述实施例中非接入点多链路设备所执行的方法。其中,非接入点多链路设备包括第一站点。其中,通信单元1001用于在第一站点收到组播数据帧的情况下,停止接收或切换至休眠状态。其中,通信单元1001的具体执行流程参考前述实施例中对第四种多链路数据处理方法的详细描述,此处不再赘述。通信单元1001所执行的步骤假设站点已预先获知接入点的组播帧发送规则,即先发送组播管理帧,后发送组播数据帧。那么当第一站点被唤醒接收组播帧时,若先收到组播管理帧之后再收到组播数据帧,或者直接收到组播数据帧,第一站点可以停止接收组播帧;或者若第一站点不需要在其他链路上接收组播数据帧,第一站点可以直接进入休眠状态。因此,该方法虽然还是会唤醒各个站点,但是被唤醒后的站点可以迅速停止接收或者进入休眠状态,从而也能在一定程度上实现节能。
一种实施方式中,该装置包括通信单元1001和处理单元1002,通信单元1001用于实现前述实施例中第一接入点所执行的方法。其中,通信单元1001用于发送第一组播帧。并且,在第一接入点发送第一组播帧的情况下,第二接入点不发送第二组播帧。其中,通信单元1001的具体执行流程参考前述实施例中对第五种多链路数据处理方法的详细描述,此处不再赘述。通过限定第一多链路设备中的第一接入点和第二接入点发送组播帧的规则,使得第一多链路设备对应的工作在EMLSR模式下的非接入点多链路设备可以在多条链路上接收组播帧。
一种实施方式中,该装置包括通信单元1001和处理单元1002,通信单元1001用于实现前述实施例中第一接入点所执行的方法。其中,通信单元1001用于当第一接入点对应的站点所在的非接入点多链路设备不能同时在多链路上接收组播帧时,采用指定格式和/或指定参数发送组播帧。其中,通信单元1001的具体执行流程参考前述实施例中对第六种多链路数据处理方法的详细描述,此处不再赘述。采用指定格式和/或指定参数的组播帧可以视为简单的组播帧(例如为单空间流),那么工作在EMLSR模式下non-AP MLD能够在多条链路上接收采用指定格式和/或指定参数的组播帧,从而实现了工作在EMLSR模式下non-AP MLD的可以正常接收不同链路上的组播帧。
一种实施方式中,该装置包括通信单元1001和处理单元1002,处理单元1002实现前述实施例中接入点多链路设备所执行的方法。其中,处理单元1002用于确定第二AID范围应与所有链路的第一AID范围不重叠。其中,处理单元1002的具体执行流程参考前述实施例中对第七种多链路数据处理方法的详细描述,此处不再赘述。在第二AID范围与所有链路的第一AID范围不重叠,从而避免AID歧义。
下面对包括图10所示的多个功能单元的多链路设备进行描述。本申请所述的多链路设备包括接入点多链路设备(AP MLD)、非接入点多链路设备(non-AP MLD)。其中,AP MLD包括一个或多个AP,non-AP MLD包括一个或多个STA。
一种可能的实施方式中,图10所示的处理单元和通信单元为AP MLD中的AP中的功能单元。例如,图11为本申请提供的第一种多链路设备1100,用于实现上述方法实施例中的多链路数据处理方法。该多链路设备1100也可以是芯片系统。多链路设备1100包括一个或多个AP 1101(图11中以包括两个AP为例),每一个AP包括通信接口1101a和处理器1101b。其中,通信接口1101a例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。其中,通信接口1101a用于通过传输介质和其它设备进行通信,从而用于设备1100可以和其它设备进行通信。处理器1101b和通信接口1101a用于实现图2至图9B对应的实施例中的方 法。可以理解的是,图11所示的第一种多链路设备也可以是non-AP MLD,则图10所示的处理单元和通信单元为non-AP MLD中的STA中的功能单元。具体实现方式与AP MLD的描述类似,此处不再赘述。
另一种可能的实施方式中,图10所示的处理单元为AP MLD中的功能单元,当存在多个AP时,多个AP共用该处理单元。通信单元为AP MLD中的AP中的功能单元。例如,图12为本申请提供的第二种多链路设备1200,用于实现上述方法实施例中的多链路数据处理方法。该多链路设备1200也可以是芯片系统。多链路设备1200包括一个或多个AP 1201(图12中以包括两个AP为例),每一个AP包括通信接口1201a。多链路设备1200包括处理器1202,一个或多个AP 1201共用处理器1202。处理器1202和通信接口1201a用于实现图2至图9B对应的实施例中的方法。可以理解的是,图12所示的第二种多链路设备也可以是non-AP MLD,则图10所示的处理单元为non-AP MLD中功能单元,通信单元为non-AP MLD中的STA中的功能单元。具体实现方式与AP MLD的描述类似,此处不再赘述。
另一种可能的实施方式中,图10所示的处理单元为AP MLD中的AP中的功能单元。通信单元为AP MLD中的功能单元,当存在多个AP时,多个AP共用该通信单元。例如,图13为本申请提供的第三种多链路设备1300,用于实现上述方法实施例中的多链路数据处理方法。该多链路设备1300也可以是芯片系统。多链路设备1300包括一个或多个AP 1301(图13中以包括两个AP为例),每一个AP包括处理器1301a。多链路设备1300包括通信接口1302,一个或多个AP 1301共用通信接口1302。处理器1301a和通信接口1302用于实现图2至图9B对应的实施例中的方法。可以理解的是,图13所示的第三种多链路设备也可以是non-AP MLD,则图10所示的通信单元为non-AP MLD中功能单元,处理单元为non-AP MLD中的STA中的功能单元。具体实现方式与AP MLD的描述类似,此处不再赘述。
示例性地,通信接口和处理器(例如图11中的处理器1101b和通信接口1101a,或者图12中的处理器1202和通信接口1201a,或者图13中的处理器1301a和通信接口1302)用于实现前述实施例中的第一种多链路数据处理方法。其中,处理器用于生成无线帧,无线帧包括第一指示信息,第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送,一个或多个第二接入点是均与第一接入点共址的接入点。通信接口用于发送该无线帧。该示例中通信接口和处理器的具体执行流程参考前述实施例中对第一种多链路数据处理方法的详细描述,此处不再赘述。在该示例中,通信接口和处理器所执行的步骤在无线帧中携带第一指示信息,可以指示第二接入点是否存在组播管理帧待发送,从而使得第一接入点对应的非接入点多链路设备能够准确判断是否唤醒第二接入点对应的站点去接收组播管理帧。因此,当第二接入点待发送的只有组播数据帧时,可以避免唤醒第二接入点对应的站点,从而达到节能的目的。
示例性地,通信接口(例如图11中的通信接口1101a,或者图12中的通信接口1201a,或者图13中的通信接口1302)用于实现前述实施例中的第二种多链路数据处理方法。其中,通信接口用于接收无线帧,无线帧包括第一指示信息。第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送。在一个或多个第二接入点存在组播管理帧待发送的情况下,通过第二站点接收组播管理帧。第二站点与一个或多个第二接入点中存在组播管理帧待发送的一个第二接入点工作在相同链路上。其中,通信接口的具体执行流程参考前述实施例中对第二种多链路数据处理方法的详细描述,此处不再赘述。在该示例中,通信接口所执行的步骤接收的无线帧中包括第一指示信息,使得第一站点所在的非接入点多链路设备能够准确判断是否唤醒第二接入点对应的站点去接收组播管理帧。因此,当第二接入点存在组播 管理帧待发送时,仅唤醒该第二接入点对应的站点接收组播管理帧,避免唤醒其他站点,从而达到节能的目的。
示例性地,通信接口(例如图11中的通信接口1101a,或者图12中的通信接口1201a,或者图13中的通信接口1302)用于实现前述实施例中的第三种多链路数据处理方法。其中,通信接口用于在第一接入点发送的组播帧包括组播管理帧和组播数据帧的情况下,在发送组播数据帧之前发送组播管理帧。其中,通信接口的具体执行流程参考前述实施例中对第三种多链路数据处理方法的详细描述,此处不再赘述。在该示例中,通信接口所执行的步骤限定了发送组播管理帧和组播数据帧的规则为先发送组播管理帧,后发送组播数据帧。使得被唤醒的站点一定是先接收组播管理帧,后接收组播数据帧。因此,当第一接入点的组播管理帧已发送完成或者第一接入点并未发送组播管理帧仅发送组播数据帧时,被唤醒后的站点可以迅速停止接收或者进入休眠状态,从而也能在一定程度上实现节能。
示例性地,通信接口(例如图11中的通信接口1101a,或者图12中的通信接口1201a,或者图13中的通信接口1302)用于实现前述实施例中的第四种多链路数据处理方法。其中,通信接口用于在第一站点收到组播数据帧的情况下,停止接收或切换至休眠状态。其中,通信接口的具体执行流程参考前述实施例中对第四种多链路数据处理方法的详细描述,此处不再赘述。在该示例中,通信接口所执行的步骤假设站点已预先获知接入点的组播帧发送规则,即先发送组播管理帧,后发送组播数据帧。那么当第一站点被唤醒接收组播帧时,若先收到组播管理帧之后再收到组播数据帧,或者直接收到组播数据帧,第一站点可以停止接收组播帧;或者若第一站点不需要在其他链路上接收组播数据帧,第一站点可以直接进入休眠状态。因此,该方法虽然还是会唤醒各个站点,但是被唤醒后的站点可以迅速停止接收或者进入休眠状态,从而也能在一定程度上实现节能。
示例性地,通信接口(例如图11中的通信接口1101a,或者图12中的通信接口1201a,或者图13中的通信接口1302)用于实现前述实施例中的第五种多链路数据处理方法。其中,通信接口用于发送第一组播帧。并且,在第一接入点发送第一组播帧的情况下,第二接入点不发送第二组播帧。其中,通信接口的具体执行流程参考前述实施例中对第五种多链路数据处理方法的详细描述,此处不再赘述。在该示例中,通信接口所执行的步骤通过限定第一多链路设备中的第一接入点和第二接入点发送组播帧的规则,使得第一多链路设备对应的工作在EMLSR模式下的非接入点多链路设备可以在多条链路上接收组播帧。
示例性地,通信接口(例如图11中的通信接口1101a,或者图12中的通信接口1201a,或者图13中的通信接口1302)用于实现前述实施例中的第六种多链路数据处理方法。其中,通信接口用于当第一接入点对应的站点所在的非接入点多链路设备不能同时在多链路上接收组播帧时,采用指定格式和/或指定参数发送组播帧。其中,通信接口的具体执行流程参考前述实施例中对第六种多链路数据处理方法的详细描述,此处不再赘述。在该示例中,通信接口所执行的步骤采用指定格式和/或指定参数的组播帧可以视为简单的组播帧(例如为单空间流),那么工作在EMLSR模式下non-AP MLD能够在多条链路上接收采用指定格式和/或指定参数的组播帧,从而实现了工作在EMLSR模式下non-AP MLD的可以正常接收不同链路上的组播帧。
示例性地,处理器(例如图11中的处理器1101b,或者图12中的处理器1202,或者图13中的处理器1301a)用于实现前述实施例中的第七种多链路数据处理方法。其中,处理器用于确定第二AID范围应与所有链路的第一AID范围不重叠。其中,处理器的具体执行流程参考前述实施例中对第七种多链路数据处理方法的详细描述,此处不再赘述。在该示例中, 处理器所执行的步骤使得第二AID范围与所有链路的第一AID范围不重叠,从而避免AID歧义。
可选的,多链路设备还可以包括至少一个存储器(例如图11中的存储器1102,或者图12中的存储器1203,或者图13中的存储器1303),用于存储程序指令和/或数据。一种实施方式中,存储器和处理器耦合。本申请中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器可能和存储器协同操作。处理器可能执行存储器中存储的程序指令。所述至少一个存储器和处理器集成在一起。
本申请中不限定上述通信接口、处理器以及存储器之间的具体连接介质。例如,存储器、处理器以及通信接口之间通过总线连接,总线在图11至图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11至图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请提供一种计算机可读存储介质。该计算机可读存储介质存储有程序或指令。当所述程序或指令在计算机上运行时,使得计算机执行如图2至图9B对应的实施例中的多链路数据处理方法。
本申请中提供一种计算机程序产品。该计算机程序产品包括指令。当所述指令在计算机上运行时,使得计算机执行如图2至图9B对应的实施例中的多链路数据处理方法。
本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行如图2至图9B对应的实施例中的多链路数据处理方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种实现方式中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网 络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种多链路数据处理方法,其特征在于,所述方法包括:
    第一接入点生成无线帧;
    所述无线帧包括第一指示信息,所述第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送;
    所述一个或多个第二接入点是均与所述第一接入点共址的接入点;
    所述第一接入点发送所述无线帧。
  2. 一种多链路数据处理方法,其特征在于,应用于非接入点多链路设备,所述非接入点多链路设备包括第一站点和第二站点,所述方法包括:
    通过所述第一站点接收无线帧;
    所述无线帧包括第一指示信息,所述第一指示信息用于指示一个或多个第二接入点是否存在组播管理帧待发送;
    在所述一个或多个第二接入点存在组播管理帧待发送的情况下,通过所述第二站点接收所述组播管理帧,所述第二站点与所述一个或多个第二接入点中存在组播管理帧待发送的一个第二接入点工作在相同链路上。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息包括第一比特位图(bitmap),所述第一比特位图中的一个或多个比特分别用于指示所述一个或多个第二接入点是否存在组播管理帧待发送。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一比特位图中的一个或多个比特对应的第二接入点,与第二比特位图中对应位置的比特对应的第二接入点相同;
    所述第二比特位图携带于业务指示位图元素(TIM element)中,所述第二比特位图中的一个或多个比特分别用于指示所述一个或多个第二接入点是否存在组播帧待发送。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一比特位图中的第n个比特对应的第二接入点,与第二比特位图中第n个取值为1的比特对应的第二接入点相同;
    所述第二比特位图携带于业务指示位图元素(TIM element)中,所述第二比特位图中的一个或多个比特分别用于指示所述一个或多个第二接入点是否存在组播帧待发送。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一指示信息携带于业务指示位图元素(TIM element)中;或者,
    所述第一指示信息携带于多链路业务元素或多链路业务指示元素中;或者,
    所述第一指示信息携带于简化邻居报告元素(RNR element)中。
  7. 根据权利要求1所述的方法,其特征在于,所述第一接入点属于第一多链路设备,所述第一多链路设备与非接入点多链路设备关联。
  8. 根据权利要求7所述的方法,其特征在于,所述一个或多个第二接入点包括以下至少一种接入点:
    所述第一接入点;
    所述第一多链路设备中的其他接入点;
    所述第一接入点所在的第一多基本服务集标识符集合中的其他接入点;
    第二多链路设备中的接入点,所述第二多链路设备是所述第一接入点所在的第一多基本服务集标识符集合中的其他接入点所属的多链路设备;
    与所述第一接入点共址,且不属于所述第一多链路设备,也不属于所述第一接入点所在 的第一多基本服务集标识符集合,也不属于所述第二多链路设备的接入点。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述无线帧为传输业务指示信息(DTIM beacon)帧或业务指示位图(TIM)帧。
  10. 一种通信装置,其特征在于,包括用于执行如权利要求1至9中任一项所述的方法所采用的单元或模块。
  11. 一种多链路设备,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1至9中任一项所述的方法。
  12. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至9中任一项所述的方法。
PCT/CN2023/080098 2022-03-11 2023-03-07 一种多链路数据处理方法、装置及设备 WO2023169421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210242871.9A CN116782152A (zh) 2022-03-11 2022-03-11 一种多链路数据处理方法、装置及设备
CN202210242871.9 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023169421A1 true WO2023169421A1 (zh) 2023-09-14

Family

ID=87936014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080098 WO2023169421A1 (zh) 2022-03-11 2023-03-07 一种多链路数据处理方法、装置及设备

Country Status (2)

Country Link
CN (1) CN116782152A (zh)
WO (1) WO2023169421A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210368419A1 (en) * 2020-05-19 2021-11-25 Nxp Usa, Inc. Wireless device in a multi-link device (mld) arranged to reduce duplication of multi-link operation (mlo) information and basic service set (bss) information and methods
CN113766432A (zh) * 2020-06-04 2021-12-07 华为技术有限公司 适用于多链路的组播业务传输方法及装置
WO2022025520A1 (ko) * 2020-07-28 2022-02-03 엘지전자 주식회사 절전 모드에서 중요 정보의 획득
CN114071506A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 适用于多链路的单播业务指示方法及相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210368419A1 (en) * 2020-05-19 2021-11-25 Nxp Usa, Inc. Wireless device in a multi-link device (mld) arranged to reduce duplication of multi-link operation (mlo) information and basic service set (bss) information and methods
CN113766432A (zh) * 2020-06-04 2021-12-07 华为技术有限公司 适用于多链路的组播业务传输方法及装置
WO2022025520A1 (ko) * 2020-07-28 2022-02-03 엘지전자 주식회사 절전 모드에서 중요 정보의 획득
CN114071506A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 适用于多链路的单播业务指示方法及相关装置

Also Published As

Publication number Publication date
CN116782152A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
US9635614B2 (en) Power management method for station in wireless LAN system and station that supports same
WO2021244652A1 (zh) 适用于多链路的组播业务传输方法及装置
US20210212150A1 (en) Method and apparatus for multi-link operations
WO2022033592A1 (zh) 适用于多链路的关键bss参数管理方法及相关装置
WO2021190605A1 (zh) 无线局域网中应用于多链路设备的通信方法及装置
WO2022052708A1 (zh) 无线通信系统中的多链路建立方法及通信装置
US11882514B2 (en) Communications method and communications apparatus
CN116017566B (zh) 适用于多链路的单播业务指示方法及相关装置
WO2022002221A1 (zh) 多链路建立方法及通信装置
WO2022022390A1 (zh) 适用于多链路的组播业务传输方法及装置
CN113726473A (zh) 无线局域网中的信令信息的交互方法及通信装置
JP7490091B2 (ja) マルチリンクデバイスプロービング方法および通信装置
WO2021197174A1 (zh) 接入点ap多链路设备发现方法及相关装置
JP2023532740A (ja) Mldを探索するための要求および応答方法、局、ならびにアクセスポイント
WO2022002192A1 (zh) 多链路设备的aid分配方法及相关装置
WO2023169421A1 (zh) 一种多链路数据处理方法、装置及设备
WO2022152184A1 (zh) 多链路的重配置方法及装置
WO2023193666A1 (zh) 多链路通信方法及装置
WO2024087627A1 (zh) 一种协作传输方法及相关装置
WO2024131809A1 (zh) 一种通信的方法和通信装置
WO2024120531A1 (zh) 多链路通信方法及装置
WO2022262675A1 (zh) 基于多链路通信的探测请求方法及装置
TW202341796A (zh) 多鏈路通信方法及裝置
TW202341805A (zh) 非同時收發能力的指示方法、裝置及系統
JP2024095647A (ja) 通信方法および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765999

Country of ref document: EP

Kind code of ref document: A1