WO2023169333A1 - 电池包、电动工具系统、同步整流控制电路和开关电源 - Google Patents
电池包、电动工具系统、同步整流控制电路和开关电源 Download PDFInfo
- Publication number
- WO2023169333A1 WO2023169333A1 PCT/CN2023/079599 CN2023079599W WO2023169333A1 WO 2023169333 A1 WO2023169333 A1 WO 2023169333A1 CN 2023079599 W CN2023079599 W CN 2023079599W WO 2023169333 A1 WO2023169333 A1 WO 2023169333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- voltage
- battery pack
- terminal
- positive terminal
- Prior art date
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 105
- 238000004804 winding Methods 0.000 claims description 70
- 238000004891 communication Methods 0.000 claims description 64
- 238000001514 detection method Methods 0.000 claims description 46
- 238000002955 isolation Methods 0.000 claims description 36
- 238000012360 testing method Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 16
- 230000008569 process Effects 0.000 abstract description 8
- 230000003071 parasitic effect Effects 0.000 description 83
- 238000010586 diagram Methods 0.000 description 44
- 230000002159 abnormal effect Effects 0.000 description 13
- 238000005070 sampling Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 230000005856 abnormality Effects 0.000 description 5
- 230000002457 bidirectional effect Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 101100489713 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND1 gene Proteins 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 101100489717 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND2 gene Proteins 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004137 mechanical activation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/269—Mechanical means for varying the arrangement of batteries or cells for different uses, e.g. for changing the number of batteries or for switching between series and parallel wiring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the field of power supply, and specifically relates to a battery pack, an electric tool system, a synchronous rectification control circuit and a switching power supply.
- the present invention provides a battery pack and an electric tool system to improve the problem of a relatively single implementation method when the existing battery pack performs multi-voltage output.
- the present invention provides a battery pack and an electric tool system including the battery pack.
- the battery pack includes: a casing, at least one cell string and a battery interface.
- a receiving cavity is formed in the housing; the battery string is received in the receiving cavity and includes a plurality of series connections battery core; the battery interface is used to connect to electric tools with different operating voltages; wherein, by connecting different numbers of battery cells in the battery core string, the battery pack can output at least two voltages.
- An embodiment of the present invention also provides a battery pack, which includes: a casing, a plurality of cell strings, a battery interface, and a switch unit.
- a receiving cavity is formed in the housing; the plurality of battery cells are arranged in series and parallel; the battery interface is used for mechanical connection and electrical connection with electric tools with different operating voltages; the battery interface includes a positive terminal and a negative terminal;
- the switch unit is respectively connected to the positive terminal and the plurality of battery core strings, and has a first state and a second state; wherein in the first state, the positive terminal is connected to each of the battery core strings.
- the first equal potential position on the core string is electrically connected, and the battery pack outputs a first voltage through the positive terminal and the negative terminal; in the second state, the positive terminal is connected to each of the battery strings.
- the battery pack outputs a second voltage through the positive terminal and the negative terminal.
- the present invention also provides a battery pack, which includes: a casing, at least one cell string and a battery interface.
- a receiving cavity is formed in the housing; the battery string is received in the receiving cavity, the battery string includes a first battery unit and a second battery unit, the first battery unit includes a series connection a first number of first battery cells; the second battery cell unit includes a second number of second battery cells connected in series; the battery interface is provided on the housing and is used to communicate with batteries having different operating voltages For electric tool connection, the battery interface includes a plurality of output terminals; wherein the first battery unit outputs a first voltage through the output terminals, and the second battery unit outputs a second voltage through the output terminals.
- the present invention also provides a battery pack, which includes: a casing, at least one cell string and a battery interface.
- a receiving cavity is formed in the housing; the battery string is received in the receiving cavity, and the battery string includes a first battery unit, a second battery unit and a third battery unit.
- the cell unit includes a first number of first cells connected in series; the second cell unit includes a second number of second cells connected in series; and the third cell unit includes a third number of cells connected in series.
- the third battery cell; the battery interface is used to connect to electric tools with different operating voltages, the battery interface includes a plurality of output terminals; wherein the first battery cell unit outputs a first voltage through the output terminals ,The second The battery unit outputs a second voltage through the output terminal; the third battery unit outputs a third voltage through the output terminal.
- the invention also provides a battery pack, which includes: a casing, a battery interface and at least one cell string.
- a receiving cavity is formed in the housing; the battery interface is used to connect to electric tools with different operating voltages; the battery interface includes a plurality of output terminals; the at least one battery string is arranged in the receiving cavity,
- the battery string includes a first battery group and a second battery group.
- the first battery group includes a first number of battery units.
- the second battery group includes a second number of battery units.
- the battery cells The unit is composed of multiple cells connected in parallel, and the number of cell units of the second battery pack is greater than the number of battery cells of the first battery pack; wherein the first battery pack outputs a first voltage through the output terminal, The second battery pack outputs a second voltage through the output terminal.
- the invention also provides a battery pack, which includes: a casing, at least one cell string, a battery interface and a switch unit.
- a receiving cavity is formed in the housing;
- the battery string includes a first battery unit and a second battery unit connected in series, and the first battery unit includes a first number of first battery cells connected in series;
- the second battery cell unit includes a second number of second battery cells connected in series;
- the battery interface is used for mechanical connection and electrical connection with power tools having different operating voltages;
- the power tool includes a first power tool and A second electric tool, the operating voltage of the first electric tool is a first voltage; the operating voltage of the second electric tool is a second voltage;
- the battery interface includes a positive terminal and a negative terminal;
- the switch unit is connected to The positive terminal is connected to the battery string and has a first state and a second state; wherein in the first state, the first battery unit outputs an output through the positive terminal and the negative terminal.
- the battery pack of the present invention outputs at least two voltages by connecting different numbers of cells in the cell string. In the process of outputting at least two voltages, there is no need to connect cells in series and parallel, which not only simplifies the connection circuit of the battery pack, but also provides a new idea for multi-voltage output of the battery pack.
- the invention also provides an electric tool system, which includes: a battery pack, a first An electric tool and a second electric tool, the battery pack has a first voltage output state and a second voltage output state, the battery pack includes a housing, a battery interface and at least one cell string, the cell string includes a third An electric core unit and a second electric core unit; the first electric core unit includes a first number of first electric cores connected in series; the second electric core unit includes a second number of second electric cores connected in series ; The first quantity is smaller than the second quantity; the working voltage of the first electric tool is a first voltage; the working voltage of the second electric tool is a second voltage; the first voltage is smaller than the first voltage; Two voltages; the first electric tool and the second electric tool are both provided with tool interfaces that are matched and connected to the battery interface; wherein, when the battery pack is in the first voltage output state, the The first number of cells in the battery string outputs a first voltage to the electric tool; when the battery pack is in the second voltage output state, the second
- the invention also provides an electric tool system, including: a battery pack, a first electric tool and a second electric tool.
- the battery pack includes a casing, a battery interface and at least one cell string.
- the cell string includes a plurality of cells connected in series; the first electric tool has a first working voltage and is configured with The first tool interface is matched and connected to the battery interface; the second electric tool has a second working voltage and is provided with a second tool interface matched and connected to the battery interface; wherein, when the first electric tool When connected to the battery pack, the first tool interface is connected to the battery pack interface, and the first number of cells in the cell string outputs a first voltage to the first electric tool; when the When two electric tools are connected to the battery pack, the second tool interface is connected to the battery pack interface, and the second number of cells in the cell string outputs a second voltage to the second electric tool.
- the invention also provides an electric tool system, including: a first electric tool, a second electric tool, a first battery pack and a second battery pack.
- the first power tool is capable of working under a first working voltage, the first power tool has a first tool interface; the second power tool is capable of working under a second working voltage, the second power tool has a second tool interface;
- the first battery pack has a first battery interface, the first battery pack includes a plurality of cells and is capable of outputting a first operating voltage; the second battery pack has a second battery interface, and the third battery pack has a first battery interface.
- the second battery pack includes: at least one cell string, the cell string includes a plurality of cells connected in series; when the first electric tool is connected to the first battery pack, the first The tool interface is connected to the first battery interface, and the first battery pack outputs a first operating voltage; when the first electric tool is connected to the second battery pack, the first tool interface is connected to the third battery pack.
- Two batteries are connected at the interface, and a first number of batteries connected in series in the battery string output a first operating voltage to the first electric tool; when the second electric tool is connected to the second battery pack, The second tool interface is connected to the second battery interface, and a second number of battery cells connected in series in the battery string outputs a second operating voltage to the second electric tool.
- the first battery pack can be coupled with the first power tool to output the first operating voltage
- the first power tool and the second power tool can also be interchangeably coupled to the second battery pack and connected in series with the second power tool.
- Different numbers of cells in the battery pack correspondingly output a first working voltage to the first electric tool and a second working voltage to the second electric tool.
- the invention also provides a synchronous rectification control circuit, which is applied to a single-ended flyback converter.
- the synchronous rectification control circuit includes: a driving winding, an isolation module and a driving module; the connection between the driving winding and the single-ended flyback converter The input side windings are coupled, the different ends of the drive winding are respectively connected to the output end of the isolation module and the first input end of the drive module, and the same end is connected to ground; the input end of the isolation module is connected to the pulse width adjustment signal connection, the output end is also connected to the second input end of the drive module; the output end of the drive module is connected to the control end of the synchronous rectifier tube of the single-ended flyback converter.
- the invention also provides a switching power supply, including: a single-ended flyback converter and a synchronous rectification control circuit; the synchronous rectification control circuit is used to provide a driving signal for the single-ended flyback converter; wherein, the synchronous rectification control circuit It includes: a drive winding, an isolation module and a drive module; the drive winding is coupled to the input side winding of the single-ended flyback converter, and the opposite ends of the drive winding are respectively connected to the output end of the isolation module and the The first input end of the drive module is connected, and the same-name end is connected to ground; the input end of the isolation module is connected to the pulse width adjustment signal, and the output end is also connected to the second input end of the drive module; the output end of the drive module It is connected to the control end of the synchronous rectifier tube of the single-ended flyback converter.
- the synchronous rectification control circuit and flyback switching power supply of the present invention are improved on the basis of the existing synchronous rectification topology circuit, and the single-ended flyback converter and the synchronous rectification control circuit are distinguished.
- the synchronous rectifier will not be damaged or short-circuited due to damage to the control circuit components; the primary side switch tube and the secondary side are simultaneously controlled by controlling the PWM driver chip signal of the primary side transformer half-bridge switch MOS.
- Synchronous rectifiers do not require synchronous rectification driver chips, have good consistency, are suitable for large voltage output scenarios, and also reduce product costs.
- Figure 1 is a schematic diagram of the power tool system of the present invention
- FIG. 2 is an overall schematic diagram of the battery pack of the present invention in one embodiment
- Figure 3 is a schematic diagram of the cell string connection of the battery pack in one embodiment of the present invention.
- Figure 4 is a schematic diagram of the cell string connection of the battery pack in one embodiment of the present invention.
- FIG. 5 is an overall schematic diagram of the battery pack of the present invention in one embodiment
- FIG. 6 is a circuit diagram of the battery pack of the present invention in one embodiment
- Figure 7 is a circuit diagram of a battery pack according to an embodiment of the present invention.
- Figure 8 is a circuit diagram when an embodiment of the battery pack of the present invention is connected to an electric tool
- Figure 9 is a discharge logic diagram when an embodiment of the battery pack of the present invention is connected to an electric tool
- Figure 10 is a circuit diagram when a battery pack is connected to a charger according to an embodiment of the present invention.
- Figure 11 is a charging logic diagram when a battery pack is connected to a charger according to an embodiment of the present invention.
- Figure 12 is a circuit diagram of an embodiment of the battery pack of the present invention.
- Figure 13 is a circuit diagram when an embodiment of the battery pack of the present invention is connected to an electric tool
- Figure 14 is a discharge logic diagram when an embodiment of the battery pack of the present invention is connected to an electric tool
- Figure 15 is a circuit diagram of an embodiment of the battery pack of the present invention when connected to a charger
- Figure 16 is a charging logic diagram when a battery pack is connected to a charger according to an embodiment of the present invention.
- FIG. 17 is a circuit diagram of an embodiment of the battery pack of the present invention.
- Figure 18 is a circuit diagram of a battery pack connected to an electric tool to output a first voltage according to an embodiment of the present invention
- Figure 19 is a circuit diagram of a battery pack connected to an electric tool to output a second voltage according to an embodiment of the present invention
- Figure 20 is a discharge logic diagram when an embodiment of the battery pack of the present invention is connected to an electric tool
- Figure 21 is a circuit diagram when an embodiment of the battery pack of the present invention is connected to a charger
- Figure 22 is a charging logic diagram when a battery pack is connected to a charger according to an embodiment of the present invention.
- Figure 23 is a circuit diagram of the battery pack of the present invention in one embodiment
- Figure 24 is a circuit diagram of the battery pack of the present invention connected to the low-voltage side of the power tool to output the first voltage in one embodiment
- Figure 25 is a circuit diagram of the battery pack of the present invention connected to the high-voltage side of an electric tool to output the first voltage in one embodiment
- Figure 26 is a circuit diagram of the battery pack of the present invention connected to an electric tool to output a second voltage in one embodiment
- Figure 27 is a discharge logic diagram of the battery pack in one embodiment of the present invention.
- Figure 28 is a circuit diagram of the battery pack connected to the charger in one embodiment of the present invention.
- Figure 29 is a charging logic diagram of the battery pack in one embodiment of the present invention.
- Figure 30 is a circuit diagram of the battery pack of the present invention in one embodiment
- Figure 31 is a circuit diagram of the battery pack of the present invention in one embodiment
- Figure 32 is a circuit diagram of the battery pack of the present invention in one embodiment
- Figure 33 is a schematic diagram of the power tool system of the present invention.
- Figure 34 is an overall schematic diagram of the first battery pack in an embodiment of the present invention.
- Figure 35 is an overall schematic diagram of the second battery pack in one embodiment of the present invention.
- Figure 36 is an overall schematic diagram of the third battery pack in one embodiment of the present invention.
- Figure 37 shows a wiring block diagram of a single-ended flyback converter in the prior art
- Figure 38 shows an internal wiring diagram of a single-ended flyback converter in the prior art
- Figure 39 shows a schematic wiring diagram of the synchronous rectification control circuit in the first embodiment of the present invention.
- Figure 40 shows a schematic structural diagram of a flyback switching power supply in the second embodiment of the present invention.
- dual-voltage is basically achieved by changing the series-parallel relationship between different battery strings to achieve dual-voltage output. That is to say, when different battery cells are connected in series and parallel, they output low voltage, and when they are connected in series, they output high voltage.
- the main difference between the current technologies is the method and structure of the series and parallel connection between different battery strings, but the circuit of this method is relatively complex. Therefore, the present invention provides a battery pack and an electric tool system including the battery pack to open up a new multi-voltage output mode of the battery pack.
- the present invention relates to a battery pack 100 and an electric tool system including the battery pack 100 .
- the battery pack 100 can output at least two voltages and can be used with at least two electric tools having different operating voltages. matching, and the multi-voltage output of the battery pack 100 does not require series-parallel conversion between multiple battery strings 130. Not only the circuit structure is relatively simple, but also it is easy to achieve larger capacity by connecting more battery strings 130 in parallel. expansion.
- the battery pack 100 and the electric tool system including the battery pack 100 will be described below through multiple embodiments.
- a battery pack 100 is provided.
- the battery pack 100 includes a housing 110 , at least one cell string 130 and a battery interface 120 .
- the structural form of the housing 110 in the present invention is not limited, as long as a receiving chamber is formed inside for installing the power supply core string 130.
- the housing 110 includes a first housing 111 and a second housing 112.
- the first housing 111 and the second housing 112 are connected and form a receiving cavity (not shown) in the housing 110; there are many ways to connect the first housing 111 and the second housing 112.
- a battery core bracket (not shown) is installed in the receiving cavity, and the battery core string 130 is received in the receiving cavity through the battery core bracket, so that the battery core string 130 Each battery cell in 130 is stably installed in the receiving cavity.
- the number of the battery strings 130 is one, two or more.
- the battery pack 100 only includes one battery string 130, and the battery string 130 includes a plurality of series-connected batteries; Each battery cell has the same model and output voltage.
- the battery pack 100 can correspondingly output at least two voltages by connecting different numbers of battery cells in the battery string 130 .
- the battery pack 100 can output the first voltage V1 through a first number of cells (for example, n cells Cell 1 to Cell n) , or through a second number of cells (for example, 2n cells Cell 1 to Cell 2n ).
- the battery interface 120 can be mechanically and electrically connected to the first electric tool 200 whose working voltage is the first voltage, and can also be mechanically and electrically connected to the second electric tool 300 whose working voltage is the second voltage.
- the battery interface 120 includes a guide rail 123, a latch 122, an output terminal 121 and a communication terminal (not shown) that can be matched with the first power tool 200 and the second power tool 300 respectively.
- the guide rail 123 guides the battery pack 100 to be mechanically connected to the power tool.
- Structural docking, lock 122 Used to lock the mechanically and electrically connected battery pack 100 on the first electric tool 200 or the second electric tool 300; the number of output terminals 121 can be set to one, two, three or more as needed. can be selected based on the number of output and input voltages. It should be noted that the arrangement form of the guide rail 123, the latch 122 and the output terminal 121 on the battery pack 100 can be any suitable existing structural form, and will not be described in detail.
- a battery pack 100 is also provided.
- the battery pack 100 outputs two different voltages through three terminals.
- the battery pack 100 includes a battery cell string 130.
- the battery cell string 130 includes a plurality of battery cells connected in series.
- the battery interface 120 includes an output terminal 121.
- the output terminal 121 includes a negative terminal 1211, a first Positive terminal 1212 and second positive terminal 1213; the negative terminal 1211 is electrically connected to the negative electrode of the battery core string 130 through the negative electrode loop 140, and the first positive terminal 1212 is electrically connected to the negative electrode of the cell string 130 through the first current loop 141.
- the first position 131 on the cell string 130 has a first number of cells connected in series (for example, n cells Cell 1 to Cell n) between the first position 131 and the electrical connection position of the negative electrode circuit 140 ), the second positive terminal 1213 is electrically connected to the second position 132 on the battery string 130 through the second current loop 142, and there is a third electrical connection position between the second position 132 and the negative electrode loop 140.
- Two numbers of cells connected in series for example, 2n cells Cell 1 to Cell 2n
- the first tool interface 210 is mechanically and electrically connected to the battery pack 100 interface.
- the battery interface 120 also includes at least two positive charging terminals CH1+ and CH2+ that can be electrically connected to a corresponding charger and receive at least two voltage inputs.
- the at least two positive charging terminals may be provided independently from the output terminal 121 , or may share a terminal with the output terminal 121 .
- the battery pack 100 can be connected to the charger 400 through the first positive terminal 1212 and the negative terminal 1211, and receive the electric energy input of the first voltage to connect the first position 131 and the negative electrode. the first number of Batteries are charged.
- the battery pack 100 may be connected to the charger 400 through the second positive terminal 1213 and the negative terminal 1211, and receive an electrical energy input of a second voltage to charge a second number of cells between the second position 132 and the negative electrode.
- the battery pack 100 also includes a control unit 1311, a voltage detection unit 1319, a temperature detection unit 1313, a balancing unit 1312, a first load detection unit 1316, a second load detection unit 1317, and a power display unit 1318. , communication unit 1320, I2C control unit 1315, low-voltage linear regulator 1314 (LDO, low dropout regulator).
- the control unit 1311 is powered by the entire battery string 130.
- the corresponding terminals of the control unit 1311 are electrically connected to the second current loop 142 and the negative electrode loop 140 of the battery string 130 respectively.
- a linear voltage regulator is installed on the battery string 130.
- the connection wire between the control unit 1311 and the second current loop 142 provides a stable voltage to the control unit 1311 .
- the voltage detection unit 1319 is electrically connected to each cell in the cell string 130 to detect the voltage of the cell, and transmits the detection result to the control unit 1311 through the I2C module.
- the voltage detection unit 1319 is an AFE (analog front end).
- the temperature detection unit 1313 detects the temperature of each battery cell and transmits the detection results to the control unit 1311.
- the battery interface 120 also includes a communication port 1215.
- the communication port 1215 is connected to the control unit 1311 through the communication unit 1320. , and used to communicate with the charger 400 and/or the power tool.
- the power display unit 1318 is electrically connected to the control unit 1311 and is used to display the power of the battery pack 100 .
- Corresponding terminals of the first load detection unit 1316 are electrically connected to the control unit 1311 and the first current loop 141 respectively; corresponding terminals of the second load detection unit 1317 are electrically connected to the control unit 1311 and the second current loop 142 respectively.
- the first load detection The unit 1316 and the second load detection unit 1317 are used to identify externally connected equipment to determine whether the connected equipment is a first voltage device or a second voltage device.
- a battery pack 100 is also provided.
- the battery pack 100 outputs two different voltages through two terminals in different states. Two different voltages share a positive terminal 1217 and a negative terminal 1211.
- the battery pack 100 includes a switch unit and one cell string 130.
- the cell string 130 includes a plurality of cells connected in series.
- the battery interface 120 includes an output terminal, and the output terminal includes a negative terminal 1211. ,just Terminal 1217; the negative terminal 1211 is electrically connected to the negative electrode of the cell string 130 through the negative electrode loop 140, and the positive terminal 1217 is connected to the first position through the first current loop 141 and the second current loop 142 respectively. 131 is electrically connected to the second position 132.
- the first position 131 and the negative electrode include a first number of cells connected in series (for example, n cells Cell 1 to Cell n ).
- the second position 132 and the negative electrode include It includes a second number of cells connected in series (for example, 2n cells Cell 1 to Cell 2n ); the second number is greater than the first number.
- the switch unit includes a first switch 1411 and a second switch 1421.
- the first switch 1411 is electrically connected and installed on the first current loop 141, and controls the on/off of the first current loop 141; the second switch
- the electrical connection 1421 is installed on the second current loop 142 and controls the on/off of the second current loop 142.
- the first switch 1411 and the second switch 1421 in this embodiment can be any suitable switch structure capable of switching on and off the first current loop 141 and the second current loop 142, such as a micro switch or a single MOS tube.
- the charging terminal and the output terminal 121 are shared.
- the battery pack 100 can not only output the first voltage and the second voltage through the positive terminal 1217 and the negative terminal 1211, but also can receive the electric energy input of the first voltage and the second voltage in reverse through these two terminals.
- the battery pack 100 also includes a switch unit, which includes a first switch 1411 and a second switch 1421. The first switch 1411 is electrically connected to the first current loop 141 and controls the second current loop 142.
- the second switch 1421 is electrically connected and installed on the second current loop 142, and controls the on/off of the second current loop 142 and the direction in which current is allowed to pass;
- the first switch 1411 includes The first parasitic NMOS transistor Q1 and the second parasitic NMOS transistor Q2 are connected in reverse series to form a bidirectional switch.
- the second switch 1421 includes a third parasitic NMOS transistor Q3 and a third parasitic NMOS transistor Q3.
- Four parasitic NMOS transistors Q4, the third parasitic NMOS transistor Q3 and the fourth parasitic NMOS transistor Q4 are connected in reverse series to form a bidirectional switch.
- the switch unit has a first state, a second state, a third state and a fourth state;
- the switch unit When the switch unit is in the first state, the first parasitic NMOS transistor Q1 and the second parasitic NMOS transistor Q2 are conductive in the direction from the first position 131 to the anode terminal 1217, and the anode terminal 1217 is electrically connected to the first position 131.
- the third parasitic NMOS transistor Q3 and the fourth parasitic NMOS transistor Q4 is turned off, the positive terminal 1217 and the negative terminal 1211 output a first voltage, and a first number of cells (for example, n cells Cell 1 to Cell n ) provide electric energy to the outside; when the switch unit is in the second state, the first parasitic NMOS transistor Q1 and the second parasitic NMOS transistor Q2 are disconnected, and the third parasitic NMOS transistor Q3 and the fourth parasitic NMOS transistor Q4 are conductive along the direction from the second position 132 to the positive terminal 1217 , the positive terminal 1217 is electrically connected to the second position 132; the positive terminal 1217 and the negative terminal 1211 output a second voltage, and a second number of cells (for example, 2n cells Cell 1 to Cell 2n ) provide external power.
- a first number of cells for example, n cells Cell 1 to Cell n
- the switch unit When the switch unit is in the third state, the first parasitic NMOS transistor Q1 and the second parasitic NMOS transistor Q2 are conducted in the direction from the positive terminal 1217 to the first position 131, and the third parasitic NMOS transistor Q3 Disconnected from the fourth parasitic NMOS transistor Q4, the positive terminal 1217 and the negative terminal 1211 receive the electric energy input of the first voltage, and the first number of cells (for example, n cells Cell 1 to Cell n ) are charged; When the switch unit is in the fourth state, the first parasitic NMOS transistor Q1 and the second parasitic NMOS transistor Q2 are disconnected, and the third parasitic NMOS transistor Q3 and the fourth parasitic NMOS transistor Q4 are connected from the positive terminal 1217 to The direction of the second position 132 is turned on, the positive terminal 1217 and the negative terminal 1211 receive the electric energy input of the second voltage, and a second number of cells (for example, 2n cells Cell 1 to Cell 2n ) are charged.
- a second number of cells for example
- the battery pack 100 further includes a first driving unit 1412 and a second driving unit 1422, gates of the first parasitic NMOS transistor Q1 and the second parasitic NMOS transistor Q2.
- the first drive unit 1412 is electrically connected to the control unit 1311; the gates of the third parasitic NMOS transistor Q3 and the fourth parasitic NMOS transistor Q4 are electrically connected to the second drive unit 1412.
- the unit 1422 is electrically connected, and the second driving unit 1422 is electrically connected to the control unit 1311; the control unit 1311 corresponds to the first switch 1411 and the second switch 1421 through the first driving unit 1412 and the second driving unit 1422 respectively. Density status. Please refer to Figure 8 and Figure 9.
- the peripheral detection circuit activates the control unit 1311 through the activation unit, and detects the battery voltage, current and temperature through the voltage detection unit 1319 and the temperature detection unit 1313.
- the control unit 1311 controls all Q1, Q2, Q3, and Q4 to disconnect, the discharge is terminated, and the battery pack 100 enters the sleep state after alarming. If the voltage, current, and temperature are normal, the control unit 1311 controls the first driving unit 1412 and the second drive unit 1422, so that Q1 and Q2 are turned on and Q3 and Q4 are turned off to power on the power tool. After the power tool is powered on, the voltage information of the power tool is sent to the battery pack 100 through COM communication.
- the control unit 1311 keeps Q1 and Q2 on, Q3 and Q4 are disconnected, and the battery pack supplies power to the first electric tool 200 with the first voltage V1; if the electric tool has a second If the working voltage is lower than the working voltage, the second voltage handshake information is sent.
- the control unit 1311 disconnects Q1 and Q2, conducts Q3 and Q4, and supplies power to the electric tool with the second voltage V2. If the first voltage or the second voltage is supplying power, If the undervoltage condition is met, the discharge is terminated and the battery pack 100 enters sleep.
- FIG. 11 is a charging logic diagram of the battery pack in one embodiment of the present invention.
- the charger 400 communication circuit activates the control unit 1311 through the COM port, and detects the battery voltage, current and temperature through the voltage detection unit 1319 and the temperature detection unit 1313. When any one of them is abnormal, The battery pack 100 issues an abnormal command, charging is terminated, and the battery pack 100 enters a dormant state after alarming. If the voltage, current and temperature are normal, the control unit 1311 detects and determines the inter-group voltage. When the inter-group voltage ⁇ V (i.e.
- the control unit 1311 turns on Q1 and Q2, turns off Q3 and Q4, and sends the first voltage handshake information to the charger 400.
- the charger 400 applies the first voltage V1 to the first position and the negative electrode of the battery pack 100.
- the first number of cells between them are charged (for example, n cells Cell 1 to Cell n ).
- ⁇ V is less than the set voltage threshold (for example, less than 100mV)
- the control units 1311 and Q2 are disconnected, and Q3 and Q4 is turned on and sends the second voltage handshake information to the charger 400.
- the charger 400 charges the second number of cells between the second position and the negative electrode of the battery pack 100 with the second voltage V2 (for example, 2n cells Cell 1 to Cell 2n ).
- a battery pack 100 is also provided.
- the battery pack 100 outputs three different voltages through two terminals, and the charging terminal Shared with output terminal 121.
- the battery pack 100 can not only output the first voltage, the second voltage and the third voltage through the positive terminal 1217 and the negative terminal 1211, but also can receive the first voltage, the second voltage and the third voltage from the charger through the two terminals. Charge the corresponding battery cells on the battery string.
- the battery pack 100 includes a switch unit and one cell string 130.
- the battery interface 120 includes an output terminal 121.
- the output terminal 121 includes a negative terminal 1211 and a positive terminal 1217.
- the negative terminal 1211 is electrically connected to the The negative electrode of the battery string 130
- the positive terminal 1217 is electrically connected to the first position 131 of the battery string through the first current loop 141
- the positive terminal 1217 is connected to the battery core through the second current loop 142.
- the second position 132 of the string 130 is electrically connected
- the positive terminal 1217 is electrically connected to the third position 133 of the battery string 130 through the third current loop 143; the first position 131 and the battery string 130 are electrically connected.
- the negative electrode of 130 includes a first number of cells connected in series (for example, n cells Cell 1 to Cell n ), and the second position 132 and the negative electrode circuit includes a second number of cells connected in series.
- the switch unit includes a first switch 1411, a second switch 1421 and a third switch 1431.
- the first switch 1411 is provided on the first current loop 141 and controls the on/off of the first current loop 141;
- the switch 1421 is disposed on the second current loop 142 and controls the on-off of the second current loop 142;
- the third switch 1431 is disposed on the third current loop 143 and controls the on-off of the third current loop 143;
- the first switch 1411 includes a first parasitic NMOS transistor Q1 and a second parasitic NMOS transistor Q2.
- the first parasitic NMOS transistor Q1 and the second parasitic NMOS transistor Q2 are connected in reverse series to form a bidirectional switch.
- the second switch 1421 includes a third parasitic NMOS transistor Q2.
- the NMOS transistor Q3 and the fourth parasitic NMOS transistor Q4 are connected in reverse series to form a bidirectional switch.
- the third switch 1431 includes the fifth parasitic NMOS transistor Q5 and the sixth parasitic NMOS transistor Q5.
- the transistor Q6, the fifth parasitic NMOS transistor Q5 and the sixth parasitic NMOS transistor Q6 are connected in reverse series to form a bidirectional switch.
- the switch unit has a first state, a second state, a third state, a fourth state, a fifth state and a sixth state; when the switch unit is in the first state, the first parasitic NMOS transistor Q1 and the first parasitic NMOS transistor Q1
- the two parasitic NMOS transistors Q2 are turned on in the direction from the first position 131 to the positive terminal 1217, and the third parasitic NMOS transistor Q3, the fourth parasitic NMOS transistor Q4, the fifth parasitic NMOS transistor Q5, and the sixth parasitic NMOS transistor Q6 are turned off.
- Sub-unit 1211 outputs a first voltage; when the switch unit is in the second state, the first parasitic NMOS transistor Q1, the second parasitic NMOS transistor Q2, the fifth parasitic NMOS transistor Q5, and the sixth parasitic NMOS transistor Q6 are turned off, The third parasitic NMOS transistor Q3 and the fourth parasitic NMOS transistor Q4 are conductive along the direction from the second position 132 to the anode terminal 1217, and the anode terminal is electrically connected to the second position of the cell string.
- the positive terminal 1217 and the negative terminal 1211 output a second voltage; when the switching unit is in the third state, the first parasitic NMOS transistor Q1, the second parasitic NMOS transistor Q2, the third parasitic NMOS transistor Q3 and the fourth parasitic NMOS transistor Q1.
- the parasitic NMOS transistor Q4 is turned off, and the fifth parasitic NMOS transistor Q5 and the sixth parasitic NMOS transistor Q6 are conducted in the direction from the third position 133 to the positive terminal 1217, and the positive terminal is connected to the third terminal of the cell string.
- the positive terminal 1217 and the negative terminal 1211 output a third voltage; when the switch unit is in the fourth state, the first parasitic NMOS transistor Q1 and the second parasitic NMOS transistor Q2 are connected by the positive terminal
- the terminal 1217 is turned on in the direction of the first position 131, the third parasitic NMOS transistor Q3, the fourth parasitic NMOS transistor Q4, the fifth parasitic NMOS transistor Q5, and the sixth parasitic NMOS transistor Q6 are disconnected, and the positive terminal is connected to all the parasitic NMOS transistors Q3, Q4, Q5 and Q6.
- the first position of the battery string is electrically connected.
- the charger can charge a first number of cells between the first position of the battery pack 100 and the negative electrode (for example, n cells Cell 1 to Cell n ); when the switch unit is in the fifth state, the first parasitic NMOS transistor Q1, the second parasitic NMOS transistor Q2, the fifth parasitic NMOS transistor Q5, and the sixth parasitic NMOS transistor Q6 are turned off, and the third parasitic NMOS transistor Q6 is turned off.
- the three parasitic NMOS transistors Q3 and the fourth parasitic NMOS transistor Q4 are conductive in the direction from the positive terminal 1217 to the second position 132.
- the positive terminal is electrically connected to the second position of the battery string.
- the charger can be connected to the third position.
- the second voltage charges a second number of cells (for example, 2n cells Cell 1 to Cell 2n ) between the second position of the battery pack 100 and the negative electrode; when the switch unit is in the sixth state, the A parasitic NMOS transistor Q1, a second parasitic NMOS transistor Q2, a third parasitic NMOS transistor Q3 and a fourth parasitic NMOS transistor Q4 are disconnected, and the fifth parasitic NMOS transistor Q5 and the sixth parasitic NMOS transistor Q6 are connected from the positive terminal 1217 to The direction of the third position 133 is turned on, the positive terminal is electrically connected to the third position of the battery string, and the charger can provide a third voltage between the third position of the battery pack 100 and the negative electrode. Charging of cells (for example, 3n cells Cell 1 to Cell 3n ).
- the battery pack 100 further includes a first driving unit 1412, a second driving unit 1422 and a third driving unit 1432, a first parasitic NMOS transistor Q1 and a second parasitic NMOS transistor Q1.
- the gate of the NMOS transistor Q2 is electrically connected to the first driving unit 1412, and the first driving unit 1412 is electrically connected to the control unit 1311; the gates of the third parasitic NMOS transistor Q3 and the fourth parasitic NMOS transistor Q4 are electrically connected to The second driving unit 1422 is electrically connected to the control unit 1311; the gates of the fifth parasitic NMOS transistor Q5 and the sixth parasitic NMOS transistor Q6 are connected to the third driving unit 1431 Electrically connected, the third driving unit 1431 is electrically connected to the control unit 1311 .
- Figure 14 is a management-discharge logic diagram of the battery pack 100 in Figure 12.
- the peripheral detection circuit activates the control unit 1311 through the activation unit, and detects the battery voltage, current and temperature through the voltage detection unit 1319 and the temperature detection unit 1313.
- the control unit 1311 Control Q1, Q2, Q3, and Q4 to all be disconnected, discharge is terminated, and the battery pack 100 enters a dormant state after alarming.
- the control unit 1311 controls the first driving unit 1412 to conduct Through Q1 and Q2, after the power tool is powered on, the control unit communicates with the power tool, and the battery pack obtains the working voltage information of the power tool. If the working voltage of the power tool is the first voltage, Q1 is maintained , Q2 is turned on, Q3, Q4, Q5, and Q6 are turned off. If the working voltage of the electric tool is the second voltage, Q3 and Q4 are controlled to be turned on, Q1, Q2, Q5, and Q6 are turned off, and the second voltage V2 is supplied to the electric tool. Tool power. If the working voltage of the electric tool is the third voltage control Q5, Q6 is turned on, Q1, Q2 and Q3, Q4 are disconnected, and the third voltage V3 is used to power the electric tool.
- Figure 16 is a charging logic diagram of the battery pack 100 in Figure 12.
- the pull-up level of the communication port 1215 activates the control unit 1311 through the activation unit, and the control unit 1311 detects that in Cell 1 to Cell 3n
- the battery voltage and temperature are detected through the voltage detection unit 1319 and the temperature detection unit 1313.
- the battery pack 100 issues an abnormal command, terminates charging, and enters the sleep state after alarming. . If voltage and temperature The voltage is normal.
- ⁇ V1 the voltage difference between the first position 131 and the second position 132
- the control unit 1311 turns on Q1 and Q2, and Q3, Q4, Q5 and Q6 are disconnected, and the first voltage handshake information is sent to the charger 400 at the same time.
- the charger 400 charges the first number of cells in the battery pack 100 with the V1 voltage (for example, n cells Cell 1 to Cell n ); when When ⁇ V1 is less than the set voltage threshold (for example, less than 100mV), the control unit 1311 turns on Q5 and Q6, disconnects Q3 and Q4 from Q1 and Q2, and the battery pack 100 sends the third voltage handshake information to the charger 400, and the charger 400 charges the third number of cells in the battery pack 100 (for example, 3n cells Cell 1 to Cell 3n ) with the V3 voltage.
- the V1 voltage for example, n cells Cell 1 to Cell n
- the control unit 1311 turns on Q5 and Q6, disconnects Q3 and Q4 from Q1 and Q2, and the battery pack 100 sends the third voltage handshake information to the charger 400, and the charger 400 charges the third number of cells in the battery pack 100 (for example, 3n cells Cell 1 to Cell 3n ) with the V3 voltage.
- control unit 1311 When ⁇ V2 (the voltage difference between the second position and the third position) is greater than or equal to the set threshold (for example, greater than or equal to 100mV), the control unit 1311 turns on Q3 and Q4, and turns Q1 and Q2 off from Q5 and Q6.
- the set threshold for example, greater than or equal to 100mV
- the second voltage handshake information is sent to the charger 400, and the charger 400 charges the 2n cells in the battery pack 100 with the V2 voltage (for example, 2n cells Cell 1 to Cell 2n ); when ⁇ V2 is less than the set threshold (for example, less than 100mV), the control unit 1311 turns on Q5 and Q6, disconnects Q3 and Q4 from Q1 and Q2, the battery pack 100 sends the third voltage handshake information to the charger 400, and the charger 400 supplies V3 voltage to the battery pack 100 Charge.
- the V2 for example, 2n cells Cell 1 to Cell 2n
- the control unit 1311 turns on Q5 and Q6, disconnects Q3 and Q4 from Q1 and Q2
- the battery pack 100 sends the third voltage handshake information to the charger 400, and the charger 400 supplies V3 voltage to the battery pack 100 Charge.
- a battery pack is also provided.
- the battery pack 100 includes a plurality of cell strings 130, for example, m m battery strings 130, m is a natural number greater than or equal to 2, the m battery strings 130 are connected in parallel, and the positive terminal 1217 is connected to the first current loop 141, the second current loop 142 and the third current loop 143 respectively.
- the first position 131 , the second position 132 and the third position 133 on each battery string 130 are electrically connected, and the negative terminal 1211 is electrically connected to the negative electrode of each battery string 130 through the negative electrode circuit 140 , a first number of cells (for example, n cells Cell 1 to Cell n ) are connected in series between the first position 131 on each cell string 130 and the negative electrode.
- Each cell string There are a second number of cells (for example, 2n cells Cell 1 to Cell 2n ) connected in series between the second position 132 on 130 and the negative electrode.
- the third position on each cell string 130 There are a third number of cells (for example, 3n cells Cell 1 to Cell 3n ) connected in series between 133 and the negative electrode.
- the third number is greater than the second number, and the second number is greater than the first number. ;
- the positive terminal 1217 When the positive terminal 1217 is connected to the first position of multiple battery strings When the position 131 is electrically connected, the n cells from Cell 1 to Cell n in the multiple cell strings jointly provide the first voltage; when the positive terminal 1217 is electrically connected to the second position 132 of the multiple cell strings, the multiple cells The 2n cells of Cell 1 to Cell 2n in the core string jointly provide the second voltage; when the positive terminal 1217 is electrically connected to the third position 133 of multiple cell strings, the 3n cells of Cell 1 to Cell 3n in the multiple cell strings The cells together provide a third voltage.
- the cell string 130 includes a switch unit and a plurality of cells connected in series.
- the output terminal includes a first positive terminal 1212 , a second positive terminal 1213 , a negative terminal 1211 , and a charging positive terminal 1216 .
- the negative terminal 1211 is electrically connected to the negative electrode of the battery string 130 through the negative loop 140
- the first positive terminal 1212 is electrically connected to the first position 131 on the battery string 130 through the first current loop 141 , there is a first number of serially connected cells (for example, n cells Cell 1 to Cell n ) between the first position 131 and the electrical connection position of the negative electrode circuit 140
- the second positive terminal 1213 passes
- the second current loop 142 is electrically connected to the second position 132 on the cell string 130 , and there is a first number of serially connected cells between the second position 132 and the electrical connection position of the negative electrode circuit 140 ( For example, there are 2n cells (Cell 1 to Cell 2n ).
- the charging positive terminal 1216 is electrically connected to the first current circuit 141 through the first charging circuit 144, and the charging positive terminal 1216 is connected to the second current circuit through the second charging circuit 145.
- 142 is electrically connected;
- the switch unit includes a first charging switch 1441 and a second charging switch 1451.
- the first charging switch 1441 is installed on the first charging circuit 144 and is electrically connected to the first driving unit 1412.
- the two charging switches 1421 are installed on the second charging circuit 145 and are electrically connected to the second driving unit 1422; the control unit 1311 of the battery pack 100 is electrically connected to the first driving unit 1412 and the second control unit 1311 respectively.
- the switch unit has a first state, a second state and a third state; when the switch unit is in the first state, the control unit 1311 drives the first charging switch 1411 and the second driving unit 1422 through the first driving unit 1412 and the second driving unit 1422.
- the second charging switch 1451 is all turned off, and the battery pack 100 outputs a first voltage through the first positive terminal 1212 and the negative terminal 1211 or outputs a second voltage through the second positive terminal 1213 and the negative terminal 1211;
- the control unit 1311 drives the first charging switch 1411 to turn on Q1 through the first driving unit 1412, and drives the second charging switch 1411 through the second driving unit 1422.
- the two switches 1421 are turned off; the charging terminal and the negative terminal 1211 charge the first number of batteries connected in series; when the switch unit is in the third state, the control unit 1311 is driven by the first driving unit 1412
- the first charging switch 1441 is turned off, and the second driving unit 1422 drives the second charging switch 1451 to be turned on.
- the charging positive terminal 1216 and the negative terminal 1211 charge the second number of batteries connected in series.
- the battery pack 100 also includes a sampling resistor 1321.
- the sampling resistor 1321 is installed on the first current loop 141 between the first positive terminal 1212 and the cell string 130.
- the control unit 1311 detects The unit samples the current state between the first positive terminal 1212 and the cell string 130, and adjusts the output and shutdown of the first voltage and the second voltage according to the current state.
- the communication port 1215 pulls up to activate the battery pack 100.
- the control unit 1311 detects the current I on the sampling resistor 1321. At this time, the absolute value of the current I is greater than 0, the battery pack 100 is configured in the V1 voltage discharge mode, the communication unit 1320 sends handshake information in this discharge mode to establish a correct communication connection with the first electric tool, and the first electric tool starts to work normally.
- the control unit Monitor the voltage of Cell1 ⁇ Celln and the temperature of the battery pack 100.
- the communication unit When the detected voltage and temperature are abnormal, the communication unit sends an abnormal signal to the first electric tool, and the first electric tool stops working; when the second electric tool is connected, The communication port 1215 pulls up to activate the BMS of the battery pack 100.
- the control unit detects the current I on the sampling resistor. At this time, the absolute value of the current I is equal to 0.
- the battery pack 100 is configured in the V2 voltage discharge mode, and the communication unit sends the The handshake information establishes a correct communication connection with the second power tool, and the second power tool starts to work normally.
- the control unit monitors the voltage of Cell1 ⁇ Cell2n and the temperature of the battery pack 100. When the detected voltage and temperature are abnormal, , the communication unit sends an abnormal signal to the second electric tool, and the second electric tool stops working.
- the charger can charge the first number of cells in the battery string with the first voltage through the charging positive terminal CH+ and the negative terminal P-, or it can also charge the first number of cells in the battery string through the charging positive terminal CH+ and the negative terminal P-.
- P- uses the second voltage to charge the second number of cells in the cell string.
- the charger 400 activates the battery pack 100 through COM, and the battery pack 100 control unit 1311 detects the internal cell voltage and temperature of the battery.
- the battery pack 100 sends n series of handshake information through the COM terminal, and the control unit 1311 controls Q1 is turned on, Q2 is turned off, and the charger 400 charges the battery pack 100 with the first voltage; until the voltage difference ⁇ V between the second position 132 and the first position 131 is less than the set threshold (for example, less than 100mV), the battery pack 100COM sends 2n series of handshake information, and at the same time, the control unit 1311 controls Q2 to be turned on, Q1 to be turned off, and the charger 400 charges the battery pack 100 with the second voltage; when the battery pack 100 is in the second voltage charging stage.
- the set threshold for example, greater than or equal to 100mV
- the battery pack 100 may also include multiple battery strings 130 , for example, m battery strings 130 , where m is a natural number greater than or equal to 2.
- the m battery cells The strings 130 are connected in parallel, the first positive terminal 1212 is electrically connected to the first position 131 of each battery string 130 through the first current loop 141, and the second positive terminal 1213 is connected to the first position 131 through the second current loop 142.
- the second position 132 on each battery string 130 is electrically connected, and the negative terminal 1211 is electrically connected to the negative electrode of each battery string 130 through the negative electrode loop 140 .
- a first number (for example, n) of battery cells are connected in series between the first position 131 and the negative electrode, and a second battery core is connected in series between the second position 132 on each battery string 130 and the negative electrode.
- a number (for example, 2n) of battery cells the second number being greater than the first number, so that the second voltage is greater than the first voltage; the battery pack 100 can pass the first positive terminal 1212 and the negative electrode
- the terminal 1211 outputs a first voltage; the battery pack 100 may output a second voltage through the second positive terminal 1213 and the negative terminal 1211 .
- a dual-voltage battery pack is also provided, and the battery pack can alternately output the first voltage.
- the battery pack 100 includes a switch unit and one of the cell strings 130.
- the battery interface 120 includes a negative terminal 1211, a first positive terminal 1212, a second positive terminal 1213 and two communication ports 1215; the battery pack 100 not only
- the first voltage can be output through the first positive terminal 1212 and the negative terminal 1211, the first voltage can be output through the first positive terminal 1212 and the second positive terminal 1213, and the second voltage can also be output through the second positive terminal 1213 and the negative terminal 1211.
- the battery core string 130 includes a second number (for example, 2n) of battery cells connected in series.
- the negative terminal 1211 is electrically connected to the negative electrode of the battery core string 130 through the negative electrode circuit 140.
- the first positive terminal 1212 is electrically connected to the first position 131 on the cell string 130 through the first current loop 141, and there is a first number of electrical connections between the first position 131 and the negative electrode loop 140.
- the second positive terminal 1213 is electrically connected to the second position 132 on the cell string 130 through the second current loop 142.
- There is a first number of cells connected in series for example, 2n cells Cell 1 to Cell 2n ) between the two positions 132 and the electrical connection position of the negative electrode circuit 140.
- the switch unit includes a first switch and a second switch.
- the first switch is a micro switch SW1 and includes a first contact, a second contact and a third contact
- the second switch is a micro switch SW2 and also includes a first contact, a second contact point and the third contact realize circuit switching by changing the connection status between different contacts.
- the switch unit has a first state and a second state, and can perform linked switching through mechanical activation of a spring
- the battery pack 100 also includes a sampling resistor RS, which is installed between the first positive terminal 1212 and On the first current loop 141 between the battery strings 130, the control unit 1311 samples the current state between the first positive terminal 1212 and the battery string 130 through the current detection unit, and sets the current state to Feedback to the control unit.
- the machine When entering, pins 2 and 3 of the micro switches SW1 and SW2 are connected, the loop power supply is taken from P1+, the loop ground is connected from GND1 to P-, the machine activates the system power supply through the COM terminal enable signal, thereby providing control unit 1311 Electric energy, and select to detect the voltage of Cell1 ⁇ Celln through the I2C control unit 1315, monitor the temperature of Cell1 ⁇ Celln through the temperature detection unit 13132, and detect the current state in the first current loop 141 through the current detection unit, if the RS current I>0 , the battery pack 100 sends the first voltage handshake information to the first power tool 200 through COM, and the battery pack 100 enters the low-side first voltage monitoring mode; the first power tool 200 enters the low-side first voltage V1 working mode.
- the battery pack 100 actively sends a shutdown flag to the first electric tool 200, and the first electric tool 200 stops working.
- the motor controller on the first electric tool passes When the P1+, COM*, and P2+ ports are connected, the switch unit is switched from the first state to the second state by triggering SW1 and SW2. In this process, the spring mechanical enable triggers the micro switches SW1 and SW2 from pin 2.3. The conduction is switched to pins 2 and 1. At this time, the power control module takes power from P2+. The ground of the control unit 1311 is connected to P1+ through GND2. The machine is enabled through the COM port to activate the system power supply. The control unit 1311 is powered on and controlled through I2C.
- the unit 1315 selects to detect the voltage of Cell n+1 ⁇ Cell 2n , monitors the temperature of Cell n +1 ⁇ Cell 2n through the temperature detection unit 1313, and detects the current state in the first current loop 141 through the current detection unit. If the RS current I< 0, the battery pack 100 sends the first voltage handshake information to the power tool through COM, and the battery pack 100 enters the high-side first voltage monitoring mode; the first power tool 200 enters the high-side V1 voltage operating mode. When Cell n+1 ⁇ is detected, When the voltage and temperature of Cell 2n are abnormal, the battery pack 100 actively sends a shutdown flag to the first electric tool, and the first electric tool stops working.
- the power control module takes power through P1+.
- the COM port activates the battery pack.
- the control unit is connected to P- through GND1, and the machine passes through COM.
- the port is enabled to activate the system power supply, the control unit is powered on, and the battery pack enters the second voltage monitoring mode.
- the voltage of Cell 1 ⁇ Cell 2n is monitored through the I2C control unit, and Cell 1 ⁇ Cell 2n is monitored through the temperature detection unit 1 and temperature detection unit 2. temperature, and detects the current state in the first current loop 141 through the current detection unit.
- the battery pack 100 enters the second voltage operating mode, and the battery pack 100 sends the second voltage handshake information through the COM port.
- the battery pack 100 actively sends a shutdown flag to the second electric tool 300, and the second electric tool 300 stops working.
- the 28 to 29 are schematic diagrams of charging of the battery pack shown in FIG. 23 .
- the charger 400 activates the battery pack 100 through the COM port.
- the battery pack 100 control unit detects the voltage and temperature of the battery's internal cells, and determines the total voltage of the high-side n strings of cells (i.e., Cell n+1 ⁇ Cell 2n ) minus the low-side n strings. The difference in total voltage of the cells (i.e. Cell 1 ⁇ Cell n ) ⁇ V.
- the battery pack sends the first voltage handshake information through the COM port, and the charger 400 outputs the first voltage through the P1+ and P- ports.
- the battery pack 100 then sends the second voltage handshake information through COM, and the charger 400 outputs data through the P2+ and P- ports.
- the second voltage is output to charge the battery pack until the charging is completed; when the charger 400 is connected, if ⁇ V ⁇ 0, the battery pack 100 sends the second voltage handshake information through COM, and the charger 400 outputs through the P2+ and P- ports The second voltage charges the battery pack.
- At least two different voltages are output mainly by connecting different numbers of cells with the same voltage.
- the following embodiments will illustrate different cell units.
- the battery pack 100 includes: a housing 110 , at least one cell string 130 and a battery interface 120 .
- a receiving cavity is formed in the housing 110; the battery string 130 is received in the receiving cavity; the battery interface 120 is provided on the housing 110 and is used to connect to electric tools with different operating voltages.
- the battery core string 130 includes a first battery unit and a second battery unit, and the first battery unit includes a first number (for example, n) connected in series.
- the second battery cell unit includes a second number (for example, a) of battery cells connected in series;
- the battery interface 120 includes an output terminal 121, and the output terminal 121 includes a negative terminal 1211, a first Positive terminal 1212 and second positive terminal 1213;
- the first battery unit outputs a first voltage through the negative terminal 1211 and the first positive terminal 1212, and the second battery unit outputs a first voltage through the negative terminal 1211 and the second The positive terminal 1213 outputs the second voltage.
- the first battery unit and the second battery unit may be independent units that independently output voltages.
- the second battery unit includes the first battery unit, and the second battery unit One battery cell unit includes the 1st to nth battery cells, and the second battery cell unit may include the 1st to 2nth battery cells.
- the battery pack 100 includes: a housing 110 , at least one cell string 130 and a battery interface 120 .
- a receiving cavity is formed in the housing 110; the battery string 130 is received in the receiving cavity; the battery interface 120 is provided on the housing 110 and is used to connect to electric tools with different operating voltages.
- the battery string 130 in this embodiment includes a first battery unit, a second battery unit and a third battery unit, and the first battery unit includes series-connected battery cells.
- the second battery cell unit includes a second number (eg, a) of battery cells connected in series;
- the third battery cell unit includes a third number (eg, b) of battery cells connected in series, and the battery interface 120 includes Output terminal 121;
- the output terminal 121 includes a negative terminal 1211, a first positive terminal 1212, a second positive terminal 1213 and a third positive terminal 1214.
- the first battery cell unit outputs a first voltage through the negative terminal 1211 and the first positive terminal 1212
- the second battery unit outputs a second voltage through the negative terminal 1211 and the second positive terminal 1213;
- the third battery unit outputs a third voltage through the negative terminal 1211 and the third positive terminal 1214 .
- the second battery cell unit may include a first battery unit
- the third battery unit may include a first battery unit and/or a second battery unit.
- the first battery unit may include The 1st to nth battery cells
- the second battery cell unit may include the 1st to 2nth battery cells
- the third battery unit may include the 1st to 3nth battery cells.
- Figure 32 shows another example of a battery pack according to the present invention.
- the difference between this battery pack and the battery pack in Figure 17 is that the battery string 130 includes a first battery group and a second battery group.
- the first battery pack includes a first number (for example, n) of battery cells.
- the second battery pack includes a second number (for example, 2n) of battery cells.
- the battery cells are composed of two or more batteries.
- the second battery pack is composed of cells connected in parallel, and the number of battery cells of the second battery pack is greater than the number of battery cells of the first battery pack; the first battery pack outputs a first voltage through the output terminal 121, and the second battery pack The second voltage is output through the output terminal 121 .
- This arrangement method can expand the capacity of the battery pack 100 through multiple parallel cells in each battery pack.
- the present invention also provides another battery pack.
- This battery pack and the battery pack in Figure 17 includes multiple battery strings 130, and the multiple battery strings 130 are accommodated therein.
- the negative terminal 1211 is electrically connected to the negative electrodes of the plurality of battery strings 130
- the first positive terminal 1212 is connected to the first equal potential on each of the battery strings 130.
- the battery pack 100 outputs a first voltage through the first positive terminal 1212 and the negative terminal 1211; the second positive terminal 1213 is from the second equal potential on each of the battery strings 130. position is electrically connected, and the battery pack 100 outputs a second voltage through the second positive terminal 1213 and the negative terminal 1211 .
- a dual-voltage battery pack is also provided.
- the battery pack 100 includes a plurality of cell strings 130.
- the positive terminal 1217 is electrically connected to the first equal potential position on each cell string 130, and the battery pack 100 outputs a first voltage through the positive terminal 1217 and the negative terminal 1211; in the second state, The positive terminal 1217 is electrically connected to the second equal potential position on each cell string 130 , and the battery pack 100 outputs a second voltage through the positive terminal 1217 and the negative terminal 1211 .
- An embodiment of the present invention also provides a three-voltage battery pack.
- the battery pack includes a plurality of cell strings 130.
- the positive terminal 1217 is electrically connected to the first equal potential position on each cell string 130, and the battery pack 100 outputs a first voltage through the positive terminal 1217 and the negative terminal 1211;
- the positive terminal 1217 is electrically connected to the second equal potential position on each of the battery strings 130, and the battery pack 100 outputs a second voltage through the positive terminal 1217 and the negative terminal 1211.
- the positive terminal 1217 is electrically connected to the third equal potential position on each of the cell strings 130, and the battery pack 100 outputs through the positive terminal 1217 and the negative terminal 1211 third voltage.
- the potentials at the connections between the first current loop 141 and the plurality of battery strings 130 are equal, the potentials at the connections between the second current loop 142 and the plurality of battery strings 130 are equal, and the third current loop 143 and the plurality of battery cells are at the same potential.
- the potentials at the connections of the strings 130 are equal, corresponding to the number of battery cells outputting the first voltage and the output voltage, corresponding to the number of battery cells outputting the second voltage and the output voltage, and corresponding to the number of battery cells outputting the third voltage and the output voltage. No restrictions are required.
- the present invention also provides a three-voltage battery pack.
- the battery pack 100 outputs three different voltages through four terminals, namely a first voltage, a second voltage and a third voltage.
- the battery pack 100 includes a battery cell string 130.
- the battery cell string 130 includes a plurality of battery cells connected in series.
- the battery interface 120 includes a negative terminal 1211, a first positive terminal 1212, and a second positive terminal 1213. and a third positive terminal 1214; the negative terminal 1211 is electrically connected to the negative electrode of the battery core string 130 through the negative electrode loop 140, and the first positive terminal 1212 is electrically connected to the battery core string through the first current loop 141.
- the first position 131 on 130 has a first number of serially connected cells (for example, n cells Cell1 to Celln) between the first position 131 and the negative electrode of the cell string.
- the first number The battery core outputs the first voltage through the negative terminal 1211 and the first positive terminal 1212; the second positive terminal 1213 is electrically connected to the second position 132 on the battery core string 130 through the second current loop 142 , there is a second number of serially connected cells (for example, 2n cells Cell1 to Cell2n) between the second position 132 and the negative electrode of the cell string, and the second number of cells pass through the negative electrode.
- the terminal 1211 and the second positive terminal 1213 output a second voltage; the third positive terminal 1214 is electrically connected to the third position 133 on the cell string 130 through a third current loop, and the third position 133 is connected to There is a third number of cells connected in series between the negative electrodes of the cell string (for example, 3n cells Cell1 to Cell3n). The third number of cells pass through the negative terminal 1211 and the third positive electrode. Terminal 1214 outputs a third voltage.
- the examples of the first quantity n, the second quantity 2n, and the third quantity 3n do not limit the corresponding multiple relationship between the third quantity, the second quantity, and the first quantity.
- the first quantity is n
- the second quantity may correspond to n+t
- the third quantity may correspond to n+t+S, where the above n, t, and S can all be any natural numbers.
- the present invention also provides an electric tool system.
- the electric tool system includes: a battery pack 100, a first electric tool 200 and a second electric tool 300; the battery pack 100 can be any of the above embodiments.
- a battery pack 100 capable of outputting at least two voltages.
- the battery pack 100 has a first voltage output state and a second voltage output state.
- the battery pack 100 includes a casing 110, a battery interface 120 and at least one
- the battery string 130 includes a first battery unit and a third battery unit.
- the first cell unit includes a first number of first cells connected in series; the second cell unit includes a second number of second cells connected in series; the first number is less than the second quantity; the working voltage of the first power tool 200 is the first voltage; the working voltage of the second power tool 300 is the second voltage; the first voltage is less than the second voltage; the The first electric tool 200 and the second electric tool 300 are both provided with tool interfaces that are matched and connected to the battery interface 120; wherein, when the battery pack 100 is in the first voltage output state, the The first number of batteries in the battery string 130 outputs a first voltage to the electric tool; when the battery pack 100 is in the second voltage output state, the second number of batteries in the battery string 130 The core outputs a second voltage to the power tool.
- the battery pack 100 when the battery pack is matched with the first electric power tool, the battery pack outputs the first voltage to the first electric tool, and when the battery pack is matched with the second electric tool, the electric tool system , the battery pack 100 also includes a control unit 1311 and a communication port 1215.
- the communication port 1215 is electrically connected to the control unit 1311.
- the first electric tool 200 also includes a first power tool matched with the communication port 1215.
- Communication interface the second electric tool 300 also includes a second communication interface matched with the communication port 1215.
- the communication port 1215 and the The first communication interface is electrically connected, and the control unit 1311 controls the battery pack 100 to output a first voltage; when the battery pack 100 is connected to the second power tool 300, the communication port 1215 is connected to the second power tool 300.
- the communication interface is electrically connected, and the control unit 1311 controls the battery pack 100 to output the second voltage.
- the present invention also provides an electric tool system, which includes: a first electric tool 200 , a second electric tool 300 and the battery pack 100 described in any of the above embodiments.
- the battery pack 100 includes a housing 110, a battery interface 120 and at least one battery string 130.
- the battery string 130 includes a plurality of battery cells connected in series;
- the first electric tool 200 has a first working voltage and is provided with a first tool interface 210 that is matched and connected to the battery interface 120;
- the second electric tool 300 has a second working voltage and is provided with a first tool interface 210 that is matched with the battery interface 120.
- the battery interface 120 matches the connected second tool interface 310; wherein, when the first electric tool 200 is connected to the battery pack 100, the first tool interface 210 and the battery pack 100 Interface connection, the first number of cells in the cell string 130 outputs a first voltage to the first power tool 200; when the second power tool 300 is connected to the battery pack 100, the second The tool interface 310 is interface-connected with the battery pack 100 , and the second number of cells in the cell string 130 outputs a second voltage to the second electric tool 300 .
- the battery pack of the present invention outputs at least two voltages by connecting different numbers of cells in the cell string. In the process of outputting at least two voltages, there is no need to connect cells in series and parallel, which not only simplifies the connection circuit of the battery pack, but also provides a new idea for multi-voltage output of the battery pack.
- the present invention also provides an electric tool system that can improve the problem in the existing electric tool system that the electric tool cannot be compatible with both single-voltage battery packs and dual-voltage battery packs.
- the power tool system includes: a first power tool 200 , a second power tool 300 , a first battery pack 1300 and a second battery pack 1400 .
- the first electric tool 200 and the second electric tool 300 can be any suitable tool type that can be powered by a battery pack to achieve electric drive, such as a flower trimmer, a motorized chain saw, a blower, a cleaning machine, a lawn mower, and other similar equipment.
- the first electric tool 200 in the present invention has a first tool interface 210 and operates under a first operating voltage.
- the first electric tool 200 can be connected to the corresponding first battery pack 1300 through the first tool interface 210.
- the second electric tool 300 has a second tool interface 310 and operates at a second operating voltage; the first electric tool 200 passes through the first working voltage.
- the tool interface 210 can be connected to the first battery pack 1300 or the second battery pack 1400.
- the first battery pack 1300 can be coupled with the first power tool 200 to output the first operating voltage
- the first power tool 200 and the second power tool 300 can also be interchangeably coupled to the second battery pack 1400.
- the first battery pack 1300 in the present invention can be any battery pack structure that can be matched and connected to the first electric tool 200.
- the first battery pack 1300 includes a first battery housing 10320. , at least one first battery string and the first battery interface 1310.
- the structural form of the first battery case 10320 in the present invention is not limited, as long as a receiving chamber is formed inside to install the power supply core string.
- the first battery case 10320 includes a first battery upper case 10321 and a The first battery lower housing 10322, the first battery upper housing 10321 and the first battery lower housing 10322 are connected and form a first battery cell receiving cavity (not shown) in the first battery housing 10320; first battery There are many ways to connect the upper case 10321 and the first battery lower case 10322, such as bolt connection, etc., and a first cell bracket (not shown) is installed in the first cell receiving cavity.
- the first battery string can be stably installed in the first battery receiving cavity by passing through the battery bracket.
- the second battery pack 1400 in the present invention includes a second battery case 1420, a second battery interface 1410 and at least one second cell string.
- the second battery case 1420 includes a second battery upper case. 1421 and the second battery lower case 1422, the second battery upper case 1421 and the second battery lower case 1422 are connected and form a second battery cell receiving cavity (not shown) in the second battery case 1420, so
- the second battery core string includes a plurality of series-connected battery cores, and the plurality of series-connected battery cores are fixedly installed in the second battery core receiving cavity.
- the first tool interface 210 When the first electric tool 200 is connected to the second battery pack 1400, the first tool interface 210 is connected to the second battery interface 1410, and the series-connected third battery cell in the second battery string A number of batteries output a first working voltage to the first electric tool 200; when the second electric tool 300 is connected to the second battery pack 1400, the second tool interface 310 and the second The battery interface 1410 is connected, and the second number of battery cells connected in series in the battery string outputs a second operating voltage to the second electric tool 300 .
- the second battery string includes a first battery unit and a second battery unit; the first battery unit includes a series-connected third battery unit.
- a number for example, n cells Cell1 to Celln
- the second cell unit includes a second number (for example, 2n cells Cell1 to Cell2n) of second cells connected in series; the The first number is less than the second number; when the second battery pack 1400 is in the first working voltage output state, the first number of cells in the second cell string can supply power to the corresponding first electric cell string.
- the tool 200 outputs a first working voltage; when the second battery pack 1400 is in the second working voltage output state, the second number of cells in the cell string can output a third power to the corresponding second electric tool 300. 2.
- Working voltage In another embodiment, when the second battery pack 1400 is matched and connected with the first electric power tool, the second battery pack 1400 outputs the first working voltage to the first electric tool 200. When the second electric tool 300 is matched and connected, the second battery pack 1400 outputs a second operating voltage to the second electric tool 300 .
- the relationship between the second power tool 300 and the first battery pack 1300 is not limited.
- the second power tool 300 and the first battery pack 1300 can also be matched to work.
- the first battery pack 1300 may be an existing conventional single-voltage battery pack, and the specific structure will not be described in detail.
- the second electric tool 300 cannot be matched with the first battery pack 1300 , and the first battery pack 1300 can only output the first working voltage to the first electric tool 200 when it cooperates with the first electric tool 200 .
- the first battery interface 1310 includes a first battery positive terminal 13132 and a first battery negative terminal 13131
- the second battery interface 1410 includes a first positive terminal 1212, the second positive terminal 1213 and the negative terminal 1211
- the tool 200 includes a first positive tool terminal (not shown) and a first negative tool terminal (not shown)
- the second power tool 300 includes a second positive tool terminal (not shown) and a second negative tool terminal (not shown).
- the horizontal distance between the first battery positive terminal 13132 and the first battery negative terminal 13131 is L1
- the horizontal distance between the first positive terminal 1212 and the negative terminal 1211 is L2, so The L1 and the L2 are substantially equal
- the horizontal distance between the second positive terminal 1213 and the negative terminal 1211 is L3, where L3 is greater than L2.
- the first battery pack 1300 and the second battery pack 1400 can be interchangeably electrically connected to the first tool positive terminal and the first tool negative terminal on the first power tool 200.
- the positive terminal of the first tool is electrically connected to the positive terminal 13132 of the first battery
- the negative terminal of the first tool is electrically connected to the negative tool terminal 1211 of the first battery pack 1300
- the first battery pack 1300 provides the first power tool 200 with the A working voltage
- the second battery interface 1410 and the first tool interface 210 are matched and connected
- the first tool positive terminal is electrically connected to the first positive terminal 1212
- the first tool negative terminal is electrically connected to the first negative terminal 1211
- the second battery pack 1400 provides the first operating voltage to the first electric tool 200 .
- the specific value of the horizontal distance L1 between the first battery positive terminal 13132 and the first battery negative terminal 13131 in the present invention is not limited.
- the L1 is 20cm ⁇ 50cm, for example, it can be 20cm, 25cm, 30cm, 35cm, 40cm, 45cm, 50cm.
- the electric tool system further includes a third battery pack 1500 , and the third battery pack 1500 can provide the second operating voltage for the second electric tool 300 .
- the third battery pack 1500 includes a third battery pack shell 1520.
- the third battery pack shell 1520 includes a third battery pack upper shell 1521 and a third battery pack lower shell 1522.
- the third battery pack upper shell 1521 It is connected to the third battery pack lower shell 1522 and forms a third cell receiving cavity (not shown) in the third battery pack shell 1520; the third battery pack upper shell 1521 and the third battery pack lower shell
- the plurality of battery cells are installed in the third battery receiving cavity.
- the third battery pack 1500 also includes a third battery interface 1510.
- the three-battery interface 1510 includes a third battery positive terminal 15132 and a third battery negative terminal 15131.
- the third battery pack 1500 outputs a second operating voltage to the second electric tool 300 .
- the distance and arrangement form between the third battery positive terminal and the third battery negative terminal 15131 can be No restrictions.
- the horizontal distance L3 between the second positive terminal 1213 and the negative terminal 1211 is equal to the third horizontal distance L3.
- the horizontal distance L4 between the battery positive terminal 15132 and the third battery negative terminal 15131 is substantially equal to the horizontal distance between the second tool positive terminal and the second tool negative terminal, so that the third battery pack 1500 is
- the second battery pack 1400 may be interchangeably electrically connected to the second positive tool terminal and the second negative tool terminal on the second power tool 300 .
- the first battery interface 1310 is the same as the interface of an existing conventional single-voltage battery, and the third battery interface 1510 is different from the first battery interface 1310 .
- the first battery interface 1310 has two terminal slots, and the first battery positive terminal 13132 and the first battery negative terminal 13131 are respectively provided in the two terminal slots.
- the width L5 of each terminal slot can be any value between 1 mm and 3 mm, for example, it can be 1 mm, 1.5 mm, 2 mm, 2.5 mm, or 3 mm. Considering the relationship between the thickness of the corresponding electrical connector blade and the stability of electrical connection, preferably, a width of about 2.5 mm is used in an embodiment of the present invention.
- the second battery interface 1410 has three terminal slots, and the first positive terminal 1212, the second positive terminal 1213 and the negative terminal 1211 are respectively provided in the corresponding In the terminal slot, the width L6 of each terminal slot can be any value between 1 mm and 3 mm, for example, it can be 1 mm, 1.5 mm, 2 mm, 2.5 mm, or 3 mm. Considering the relationship between the thickness of the corresponding electrical connector blade and the stability of electrical connection, preferably, a width of about 2.5 mm is used in an embodiment of the present invention.
- the third battery interface 1510 has two terminal slots, and the third battery positive terminal 15132 and the third battery negative terminal 15131 are respectively provided on the corresponding In the terminal slot, the width L7 of each terminal slot can be any value between 1 mm and 3 mm, for example, it can be 1 mm, 1.5 mm, 2 mm, 2.5 mm, or 3 mm. Considering the relationship between the thickness of the corresponding electrical connector blade and the stability of electrical connection, preferably, a width of about 2.5 mm is used in an embodiment of the present invention.
- the first battery interface 1310 also includes a first guide rail 10311, a first lock 10312 and a communication port (not shown);
- the second battery interface 1410 also includes a second The guide rail 1411, the second lock 1412 and the communication port (not shown);
- the third battery interface 1510 also includes the third guide rail 1511, the third lock 1512 and the communication port (not shown);
- the second tool interface 310 is provided with There are one or more slide grooves (not shown) matching the second guide rail 1411 and the third guide rail 1511; the corresponding guide rails and the corresponding slide grooves cooperate with each other to guide the corresponding battery pack and the second power tool 300
- the second tool interface 310 is provided with one or more locking grooves (not shown) that match the first lock 10312, the second lock 1412 and the third lock 1512.
- the corresponding lock catch cooperates with the corresponding locking groove to lock the corresponding battery pack after mechanical connection and electrical connection on the second electric tool 300 .
- the arrangement of the guide rails, locks and output terminals on the battery pack can be any suitable existing structural form, and will not be described in detail.
- the second guide rail 1411 and the third guide rail 1511 are interchangeably connected to the same slide groove on the second tool interface 310, and the second lock 1412 and the third guide rail 1511 are interchangeably connected to the same slide groove on the second tool interface 310.
- the three locks 1512 can be interchangeably connected to the same locking groove on the second tool interface 310 .
- the first electric tool 200 is also provided with a chute that matches the first guide rail 10311 and a locking groove that matches the first lock 10312. The structure of the chute and the locking groove can be added to the existing structure. Specifically, No more details.
- the first battery pack 1300, the second battery pack 1400, and the third battery pack 1500 also include corresponding control units and communication ports.
- the communication ports are electrically connected to the control unit. connection, the first electric tool further includes a first communication terminal (not shown) matching the communication port, and the second electric tool 300 further includes a second communication terminal (not shown) matching the communication port.
- the negative terminal 1211 of the second battery pack 1400 is electrically connected to the negative electrode of the second cell string (cell string 130 ).
- a positive terminal 1212 is electrically connected to the first position 131 of the second cell string 430.
- Cells Cell1 to Celln) the second positive terminal 1213 is electrically connected to the second position 132 on the second cell string 430, and there is a second number of terminals between the second position 132 and the negative electrode.
- Cells connected in series for example, 2n cells Cell1 to Cell2n
- the first tool interface 210 is interfaced with the second battery pack 1400
- the first number The battery core outputs the first working voltage through the negative terminal 1211 and the first positive terminal 1212
- the second electric tool 300 is connected to the second battery pack 1400
- the second tool interface 310 and the second battery interface 1410 mechanically Connected and electrically connected
- the second number of cells output a second operating voltage through the negative terminal 1211 and the second positive terminal 1213 .
- the second battery interface 1410 also includes at least two positive charging terminals CH1+ and CH2+.
- CH1+ and P-, CH2+ and P- can be connected to the corresponding charger respectively.
- the electrical connection receives at least two voltage inputs.
- the charging terminals (CH1+, CH2+ and P-) can be set independently from the output terminal, or they can share a terminal with the output terminal.
- the second battery pack 1400 can be connected to the charger through the first positive terminal 1212 and the negative terminal 1211 and receive the power input of the first working voltage to set the first position 131 The first number of cells between the negative electrode is charged. It can also be connected to the charger through the second positive terminal 1213 and the negative terminal 1211, and receive the power input of the second working voltage to charge the second number of cells between the second position 132 and the negative electrode.
- the second battery pack 1400 also includes a control unit 1311, a voltage detection unit 1319, a temperature detection unit 1313, a balancing unit 1312, a first load detection unit 1316, a second negative Load detection unit 1317, power display unit 1318, communication unit 1320, I2C control unit 1315, low-voltage linear regulator 1314 (LDO, low dropout regulator).
- the control unit 1311 is powered by the entire second battery string 430.
- the corresponding terminals of the control unit 1311 are electrically connected to the positive and negative electrodes of the second battery string 430.
- the linear voltage regulator 1314 is electrically connected to the control unit. 1311 and the positive electrode of the second cell string 430, and provides a stable voltage to the control unit 1311.
- the voltage detection unit 1319 is electrically connected to each cell in the second cell string 430 to detect the voltage of the cell, and transmits the detection result to the control unit 1311 through the I2C module.
- the voltage detection unit 1319 is an AFE (analog front end).
- the temperature detection unit 1313 detects the temperature of each battery cell and transmits the detection results to the control unit 1311.
- the second battery interface 1410 also includes a communication port 1215.
- the communication port 1215 communicates with the control unit through the communication unit 1320. 1311 connection and used to communicate with the charger and/or power tool.
- the power display unit 1318 is electrically connected to the control unit 1311 and is used to display the power of the second battery pack 1400 .
- the first load detection unit 1316 is electrically connected to the control unit 1311 and the positive electrode of the second battery string 430 respectively; the second load detection unit 1317 is electrically connected to the control unit 1311 and the second battery string 430 respectively.
- the unit 1316 and the second load detection unit 1317 are used to identify externally connected equipment to determine whether the connected equipment is a first operating voltage device or a second operating voltage device.
- the second cell string 430 includes a switch unit and a plurality of cells connected in series.
- the output terminal includes a first positive terminal 1212 , a second positive terminal 1213 , a negative terminal 1211 , and a charging positive terminal 1216 .
- the negative terminal 1211 is electrically connected to the negative electrode of the second battery string 430
- the first positive terminal 1212 is electrically connected to the first position 131 of the second battery string 430
- the first position 131 is electrically connected to the negative electrode of the second battery string 430 .
- the switch unit includes a first charging switch 1441 and a second charging switch 4451, and the first charging switch 1441 is installed on the first charging
- the second charging switch 4451 is installed on the second charging circuit 145 and is electrically connected to the second driving unit; the control unit 1311 of the battery pack is respectively connected to the second driving unit.
- a driving unit is electrically connected to the second control unit 1311.
- the switch unit has a first state, a second state and a third state; when the switch unit is in the first state, the control unit 1311 drives the first charging switch 1441 and the second charging switch 1441 through the first driving unit and the second driving unit.
- the battery pack can output the first working voltage through the first positive terminal 1212 and the negative terminal 1211 or output the second working voltage through the second positive terminal 1213 and the negative terminal 1211;
- the control unit 1311 drives the first charging switch 1441 to turn on Q1 through the first driving unit, and drives the second switch to turn off through the second driving unit; the charging terminal is connected to the negative electrode.
- the terminal 1211 charges the first number of batteries connected in series; when the switch unit is in the third state, the control unit 1311 drives the first charging switch 1441 to open through the first driving unit, and drives the first charging switch 1441 through the second driving unit.
- the second charging switch 1451 is turned on, and the charging positive terminal 1216 and the negative terminal 1211 charge the second number of battery cells connected in series.
- the battery pack also includes a sampling resistor 1321.
- the sampling resistor 1321 is installed on the first current loop 141 between the first positive terminal 1212 and the second cell string 130.
- the control unit 1311 passes the current
- the detection unit samples the current state between the first positive terminal 1212 and the second cell string 130 and adjusts the output and shutdown of the first working voltage and the second working voltage according to the current state.
- the communication port 1215 is pulled up to activate the battery pack, and the control unit 1311 detects the current I on the sampling resistor 1321. At this time, the absolute value of the current I is greater than 0.
- the battery pack is configured in the V1 voltage discharge mode.
- the communication unit 1320 sends handshake information in this discharge mode to establish a correct communication connection with the first electric tool 200.
- the first electric tool 200 starts to work normally.
- the control unit 1311 monitors the voltage of Cell1 ⁇ Celln and the battery pack temperature.
- the communication unit 1320 sends an abnormal signal to the first electric tool 200, and the first electric tool 200 stops working; after connecting to the second electric tool
- the communication port 1215 pulls up to activate the BMS of the battery pack.
- the control unit 1311 detects the current I on the sampling resistor 1321. At this time, the absolute value of the current I is equal to 0.
- the battery pack is configured in the V2 voltage discharge mode.
- the communication unit 1320 sends the The handshake information establishes a correct communication connection with the second electric tool 300, and the second electric tool 300 starts to work normally.
- the control unit 1311 monitors the voltage of Cell1 ⁇ Cell2n and the battery pack temperature. When the detected voltage and temperature When there is an abnormality, the communication unit 1320 sends an abnormality signal to the second electric tool 300, and the second electric tool 300 stops working.
- the charger can charge the first number of cells in the battery string with the first working voltage through the positive charging terminal CH+ and the negative terminal P-, or it can also charge the first number of cells in the battery string through the charging positive terminal CH+ and the negative terminal P-.
- Port P- charges the second number of cells in the cell string with the second operating voltage.
- the charger activates the battery pack through COM, and the battery pack control unit 1311 detects the internal cell voltage and temperature of the battery.
- the control unit 1311 controls Q1 to be turned on, Q2 to be turned off, and the charger charges the battery pack with the first working voltage; until the second position 132 and the first position 131
- the battery pack COM sends 2n series of handshake information.
- the control unit 1311 controls Q2 to be turned on, Q1 to be turned off, and the charger charges the battery pack with the second working voltage.
- the battery pack is in the second working voltage charging stage.
- the battery pack may also include multiple battery strings, for example, m battery strings, where m is a natural number greater than or equal to 2, and the m battery strings are connected in parallel.
- the first positive terminal 1212 is electrically connected to the first position 131 on each battery string
- the second positive terminal 1213 is electrically connected to the second position 132 on each battery string
- the negative terminal 1211 is electrically connected to the negative electrode of each battery string, and a first number (for example, n) of battery cells are connected in series between the first position 131 on each battery string and the negative electrode.
- a second number for example, 2n
- the battery pack can output the first working voltage through the first positive terminal 1212 and the negative terminal 1211; the battery pack can output the first working voltage through the second positive terminal 1213 and the negative terminal 1211.
- the negative terminal 1211 outputs the second operating voltage.
- Figure 32 shows another embodiment of the second battery pack 1400 of the present invention.
- the second cell string 130 includes a first battery group and a second battery group
- the first battery group includes a first number (for example, n) of battery cells
- the second battery group includes a second number (for example, 2n) of battery cells
- the battery cell unit is composed of two or more battery cells connected in parallel, and the number of battery cells of the second battery pack is greater than the number of battery cells of the first battery pack;
- the first battery pack passes through the output terminal A first working voltage is output, and the second battery pack outputs a second working voltage through the output terminal.
- This arrangement method can expand the capacity of the second battery pack 1400 through multiple parallel cells in each battery pack.
- the second battery pack 1400 is different from the battery pack in Figure 17 in that this embodiment includes a plurality of second battery strings 130.
- the second battery string 130 is received in the second battery receiving cavity and is arranged in parallel; the negative terminal 1211 is electrically connected to the negative electrodes of the second battery strings 130 , and the first positive terminal 1212 is electrically connected to the negative electrodes of the second battery strings 130 .
- the first equal potential position on each second cell string 130 is electrically connected, and the second battery pack 1400 outputs a first operating voltage through the first positive terminal 1212 and the negative terminal 1211;
- Two positive terminals 1213 are electrically connected from the second equal potential position on each second cell string 130 , and the second battery pack 1400 outputs a second operation through the second positive terminal 1213 and the negative terminal 1211 Voltage.
- the first operating voltage will be output accordingly.
- the number and output voltage of the battery cells, and the number and output voltage of the battery cells corresponding to the second working voltage are not limited.
- the examples of the first quantity n and the second quantity 2n do not limit the corresponding multiple relationship between the second quantity and the first quantity.
- the second quantity can correspond to n+t, where the above n and t can be any natural numbers.
- the first battery pack can be coupled with the first electric tool to output the first The working voltage
- the first electric tool and the second electric tool can also be interchangeably coupled to the second battery pack, and output the first working voltage to the first electric tool correspondingly by connecting different numbers of cells in the second battery pack in series, Output the second operating voltage to the second electric tool.
- Synchronous rectification is a new technology that uses special power MOSFETs with extremely low on-state resistance to replace rectifier diodes to reduce rectification losses. It can greatly improve the efficiency of DC/DC converters and there is no Schottky barrier voltage. The resulting dead zone voltage can meet the product's requirements for parameters such as efficiency, temperature rise, and noise, and significantly reduces rectification losses, which is in line with the concept of energy conservation and environmental protection.
- the single-ended flyback converter is the most widely used DC-DC conversion circuit topology. Because of its simple structure, reliable operation, and easy design and production, it is widely used in low-power applications.
- the input side and output side of the existing single-ended flyback converter are connected to the power supply and load respectively. It mainly includes the switching tube Q1, the power transformer T1 and the synchronous rectifier Q2.
- the switch of the switching tube Q1 Most of the signals and drive signals of synchronous rectifier Q2 use an independent and dedicated synchronous rectifier chip. By closing and turning on the switch Q1, a high-frequency square wave signal is generated at both ends of the power transformer T1. The square wave generated by the power transformer T1 The signal is transmitted to the secondary coil through magnetic field induction, and a stable DC output is obtained at the output end through the synchronous rectifier Q2.
- QRC quasi-resonant converter
- Synchronous rectifier circuit control technology is generally used in situations that require high power conversion efficiency.
- the characteristics of this product are generally low output voltage and large output current. Due to the power consumption of the synchronous rectifier chip itself, chip-controlled synchronization is adopted.
- the rectifier circuit has one more energy efficiency loss point.
- the currently commonly used synchronous rectifier chips on the market have a low working voltage range and are not suitable for situations with high output voltages.
- the peripheral circuits of the chips require additional additional circuits to ensure that the chips can work normally, which increases the cost.
- the QRC control mode also has the problem of energy efficiency loss, and the synchronous rectification control accuracy of the QRC mode is not high.
- the QRC circuit of the product does not work properly in the light load mode, which can easily cause the synchronous rectifier to operate in a mild short-circuit state.
- the present invention also provides a synchronous rectification control circuit 6200.
- the synchronous rectification control circuit 6200 The circuit 6200 is applied to the single-ended flyback converter 6100 and is used to provide a driving signal for the single-ended flyback converter 6100 .
- the synchronous rectification control circuit and flyback switching power supply are improved on the basis of the existing synchronous rectification topology circuit, and separate the single-ended flyback converter and the synchronous rectification control circuit.
- the synchronous rectifier tube When the device works abnormally or is damaged, Under this condition, the synchronous rectifier tube will not be damaged or short-circuited due to damage to the control circuit components; by controlling the PWM driver chip signal of the primary-side transformer half-bridge switch MOS, the primary-side switch tube and the secondary-side synchronous rectifier tube are simultaneously controlled, without
- the synchronous rectification driver chip has good consistency and is suitable for high-voltage output scenarios. It also reduces product costs and can be used to solve the problem of high power consumption in the existing technology and is not suitable for situations with high output voltages.
- the core components of the single-ended flyback converter 6100 in this embodiment include the switching tube Q1, the power transformer T1 and the synchronous rectifier Q2.
- the different terminal of the primary side of the power transformer T1 is connected to the power supply, and the same terminal is connected to the power supply.
- the drain of switch Q1 is connected, the gate of switch Q1 is connected to the pulse width adjustment signal (PWM), and the source of switch Q1 is grounded; the same-name terminal of the secondary side of power transformer T1 is connected to the positive electrode of the load, and the different-name terminal is connected to the positive electrode of the load.
- PWM pulse width adjustment signal
- the drain of the synchronous rectifier Q2 is connected, the source of the synchronous rectifier Q2 is connected to the negative electrode of the load, the gate of the synchronous rectifier Q2 is connected to the synchronous rectification control circuit 6200, and a DC voltage is output according to the driving signal output by the synchronous rectification control circuit 6200. to load.
- the synchronous rectification control circuit 6200 mainly includes: a drive winding 6210, an isolation module 6220 and a drive module 6230;
- the drive winding 6210 is coupled to the input side winding of the single-ended flyback converter 6100, and is in the same phase as the input side winding of the primary side.
- the synchronous drive level of the drive winding 6210 and the primary coil can be achieved .
- the opposite end of the drive winding 6210 is connected to the output end of the isolation module 6220 and the first input end of the drive module 6230 respectively, and the same end of the drive winding 6210 is connected to ground.
- the driving winding 6210 induces changes in the magnetic field on the primary side of the power transformer T1 and generates corresponding AC voltage signals.
- the synchronous rectification control circuit 6200 also includes a third resistor R3, which is connected in parallel at both ends of the drive winding 6210. By adjusting the resistance of the third resistor R3, the magnitude of the AC voltage signal can be appropriately adjusted.
- the input terminal of the isolation module 6220 is connected to the PWM signal, and the output terminal is connected to the output terminal of the driving winding 6210 and the second input terminal of the driving module 6230 respectively.
- Isolation module 6220 is used to implement the main circuit Isolation from the control circuit avoids the impact of interference signals on the control circuit.
- the isolation module 6220 includes an optocoupler PC1 and a first resistor R1; both ends of the input side of the optocoupler PC1 are connected in parallel with the first resistor R1, and the anode of the input side of the optocoupler PC1 is connected to the PWM signal, and the input side of the optocoupler PC1 is connected to the PWM signal.
- the negative electrode is grounded; the collector of the output test of the optocoupler PC1 is connected to the opposite end of the drive winding 6210, and the emitter is connected to the second input end of the drive module 6230.
- the isolation module 6220 also includes a second resistor R2 and a diode D1; one end of the second resistor R2 is connected to the PWM signal, and the other end is connected to the positive electrode of the input side of the optocoupler PC1; by adjusting the first resistor R1 and the second resistor R2 The resistance value can appropriately adjust the strength of the PWM signal.
- the anode of diode D1 is connected to the opposite end of the drive winding 6210, and the cathode is connected to the collector of the output test of optocoupler PC1.
- the opposite terminal of the driving winding 6210 is at a high level and the optocoupler PC1 is turned on, the high level can be output to the driving module 6230 through the output terminals of the diode D1 and the optocoupler PC1.
- the optocoupler PC1 in this embodiment should select a high-speed isolation photocoupler that can operate in high-speed switching mode.
- the PWM drive signal of the primary side can be transmitted to the synchronization of the secondary side.
- Rectifier Q2 achieves highly synchronous driving consistency between the switching signal and the driving signal.
- the output terminal of the driving module 6230 is connected to the control terminal of the synchronous rectifier Q2 of the single-ended flyback converter 6100, and is used to output a driving signal to the gate of the synchronous rectifier Q2.
- the driving module 6230 includes a third MOS transistor Q3, a fourth MOS transistor Q4 and a fourth resistor R4; the gate of the third MOS transistor Q3 serves as the first input terminal of the driving module and is connected to the opposite terminal of the driving winding 6210. ;
- the drain of the third MOS transistor Q3 serves as the second input terminal of the driving module 6230, and has the same name as the output terminal of the isolation module 6220, the gate of the fourth MOS transistor Q4, and the output side winding of the single-ended flyback converter 6100 respectively.
- the drive module 6230 also includes a fifth resistor R5; one end of the fifth resistor R5 serves as the first input end of the drive module 6230 and is connected to the opposite end of the drive winding 6210; the other end of the fifth resistor R5 is connected to the third MOS The gate of tube Q3 is connected.
- the driving module 6230 also includes a sixth resistor R6; one end of the sixth resistor R6 serves as the second input end of the driving module 6230 and is isolated from the The output end of the module 6220 is connected; the other end of the sixth resistor R6 is respectively connected to the drain of the third MOS transistor Q3, the gate of the fourth MOS transistor Q4, and the same end of the output side winding of the single-ended flyback converter 6100.
- the driving module 6230 also includes a seventh resistor R7 and an eighth resistor R8; one end of the seventh resistor R7 is connected to the other end of the sixth resistor R6, the drain of the third MOS transistor Q3, and the gate of the fourth MOS transistor Q4 respectively.
- one end of the eighth resistor R8 is respectively connected to the source of the fourth MOS tube Q4, the control end of the synchronous rectifier Q2, and the fourth resistor R4 One end is connected, and the other end is connected to the same end of the output side winding of the single-ended flyback converter 6100.
- the third MOS transistor Q3 is an N-channel MOS transistor
- the fourth MOS transistor Q4 is a P-channel MOS transistor.
- the driving signal and switching signal of the single-ended flyback converter 6100 come from the PWM signal of the primary side, so that the flyback switching power supply can be used in scenarios with high output voltage, solving the problem of high output voltage.
- synchronous rectification control circuit 6200 of this embodiment can be extended to the output synchronous rectification drive control of LLC switching power supply and dual-tube forward switching power supply.
- the gate of the MOS transistor Q3 flows into the drain of the third MOS transistor Q3 and the gate of the fourth MOS transistor Q4 through the sixth resistor R6, so that the third MOS transistor Q3 is turned on, thereby connecting the gate of the fourth MOS transistor Q4.
- the level is pulled low, and the fourth MOS transistor Q4 is turned on.
- the gate voltage V3 of the synchronous rectifier Q2 is pulled low, and the synchronous rectifier Q2 remains closed.
- the power transformer T1 is in the energy storage state, and the circuit is completed. half of a working cycle.
- the switch tube Q1 When the PWM signal at the gate of the switch tube Q1 is low level, the switch tube Q1 is turned off, the optocoupler PC1 is turned off, the gate voltage V1 of the third MOS tube Q3 is low level, and the third MOS tube Q3 works in the cut-off state.
- the switch tube Q1 When the PWM signal at the gate of the switch tube Q1 is low level, the switch tube Q1 is turned off, the optocoupler PC1 is turned off, the gate voltage V1 of the third MOS tube Q3 is low level, and the third MOS tube Q3 works in the cut-off state. state, according to the working principle of the flyback transformer, when the primary coil of power transformer T1 has current passing through it, the secondary coil works in the charging state, and the names of the primary coil and the secondary coil are inconsistent. Therefore, when the power transformer T1 When there is no current flowing through the primary coils 2 to 1, the electromotive force of the secondary coils 3 to 4 is reversed.
- the same terminal of the secondary coil is high level, and the high level is connected to the synchronous rectifier through the eighth resistor R8.
- the optocoupler PC1 is turned off, so the third MOS tube Q3 is turned off, and the gate voltage V2 of the fourth MOS tube Q4 cannot be connected to a low level.
- the secondary-side The high-level signal at the same end of the coil is connected to the gate of the fourth MOS tube Q4 through the seventh resistor R7.
- the fourth MOS tube Q4 is a P-channel MOS tube, it works in the off state, and the gate of the synchronous rectifier Q2 The gate voltage V3 remains at a high level, and the synchronous rectifier Q2 remains on, working in the rectification state, providing power for the back-end load. Until the gate voltage V3 changes to a low level, the entire circuit completes a complete rectification work.
- this embodiment is improved on the basis of the existing synchronous rectification topology circuit, and separates the single-ended flyback converter 6100 and the synchronous rectification control circuit 6200.
- the synchronous rectifier tube It will not be damaged or short-circuited due to damage to the control circuit components; by controlling the PWM driver chip signal of the primary side transformer half-bridge switch MOS, the primary side switch tube and the secondary side synchronous rectifier tube are simultaneously controlled, without the need for a synchronous rectification driver chip.
- It has good consistency, is suitable for large voltage output scenarios, and also reduces product costs.
- the invention has simple circuit, good circuit consistency, high circuit efficiency, reliable operation, and good economic and social benefits.
- the second embodiment of the present invention relates to a flyback switching power supply, including: a single-ended flyback converter 6100 and a synchronous rectification control circuit 6200.
- the single-ended flyback converter 6100 its input side and output The tester connects the power supply and the load respectively, rectifies the AC signal of the power supply according to the driving signal of the synchronous rectification control circuit 6200, and provides a stable DC output for the back-end load.
- the single-ended flyback converter 6100 includes: switching tube Q1, power transformer T1 and synchronous rectifier Q2; power transformer T1 includes a primary coil and a secondary coil, and the phases of the primary coil and the secondary coil are opposite. .
- the gate of the switch Q1 is connected to the pulse width adjustment signal (PWM), and the source of the switch Q1 is connected to the ground.
- PWM pulse width adjustment signal
- the same terminal of the secondary side of the power transformer T1 is connected to the positive terminal of the load, and the different terminal is connected to the drain of the synchronous rectifier Q2.
- the source of synchronous rectifier Q2 is connected to the negative pole of the load, synchronous rectification
- the gate of tube Q2 is connected to the synchronous rectification control circuit 6200, and a DC voltage is output to the load according to the driving signal output by the synchronous rectification control circuit 6200.
- the synchronous rectification control circuit 6200 includes: a driving winding 6210, an isolation module 6220 and a driving module 6230;
- the drive winding 6210 is coupled to the input side winding of the single-ended flyback converter 6100, and is in the same phase as the input side winding of the primary side.
- the synchronous drive level of the drive winding 6210 and the primary coil can be achieved .
- the opposite end of the drive winding 6210 is connected to the output end of the isolation module 6220 and the first input end of the drive module 6230 respectively, and the same end of the drive winding 6210 is connected to ground.
- the driving winding 6210 induces changes in the magnetic field on the primary side of the power transformer T1 and generates corresponding AC voltage signals.
- the synchronous rectification control circuit 6200 also includes a third resistor R3, which is connected in parallel at both ends of the drive winding. By adjusting the resistance of the third resistor R3, the magnitude of the AC voltage signal can be appropriately adjusted.
- the input terminal of the isolation module 6220 is connected to the PWM signal, and the output terminal is connected to the output terminal of the driving winding 6210 and the second input terminal of the driving module 6230 respectively.
- the isolation module 6220 is used to isolate the main circuit and the control circuit to avoid the impact of interference signals on the control circuit.
- the isolation module 6220 includes an optocoupler PC1 and a first resistor R1; both ends of the input side of the optocoupler PC1 are connected in parallel with the first resistor R1, and the anode of the input side of the optocoupler PC1 is connected to the PWM signal, and the input side of the optocoupler PC1 is connected to the PWM signal.
- the negative electrode is grounded; the collector of the output test of the optocoupler PC1 is connected to the opposite end of the drive winding 6210, and the emitter is connected to the second input end of the drive module 6230.
- the isolation module 6220 also includes a second resistor R2 and a diode D1; one end of the second resistor R2 is connected to the PWM signal, and the other end is connected to the positive electrode of the input side of the optocoupler PC1; by adjusting the first resistor R1 and the second resistor R2 The resistance value can appropriately adjust the strength of the PWM signal.
- the anode of diode D1 is connected to the opposite end of the drive winding 6210, and the cathode is connected to the collector of the output test of optocoupler PC1.
- the opposite terminal of the driving winding 6210 is at a high level and the optocoupler PC1 is turned on, the high level can be output to the driving module 6230 through the output terminals of the diode D1 and the optocoupler PC1.
- the optocoupler PC1 in this embodiment should select a high-speed isolation photocoupler that can operate in high-speed switching mode.
- the PWM drive signal of the primary side can be transmitted to the synchronization of the secondary side.
- Rectifier Q2 achieves highly synchronous driving consistency between the switching signal and the driving signal.
- the output terminal of the driving module 6230 is connected to the control terminal of the synchronous rectifier Q2 of the single-ended flyback converter 6100, and is used to output a driving signal to the gate of the synchronous rectifier Q2.
- the driving module 6230 includes a third MOS transistor Q3, a fourth MOS transistor Q4 and a fourth resistor R4; the gate of the third MOS transistor Q3 serves as the first input terminal of the driving module and is connected to the opposite terminal of the driving winding 6210. ;
- the drain of the third MOS transistor Q3 serves as the second input terminal of the driving module 6230, and has the same name as the output terminal of the isolation module 6220, the gate of the fourth MOS transistor Q4, and the output side winding of the single-ended flyback converter 6100 respectively.
- the drive module 6230 also includes a fifth resistor R5; one end of the fifth resistor R5 serves as the first input end of the drive module 6230 and is connected to the opposite end of the drive winding 6210; the other end of the fifth resistor R5 is connected to the third MOS The gate of tube Q3 is connected.
- the driving module 6230 also includes a sixth resistor R6; one end of the sixth resistor R6 serves as the second input end of the driving module 6230 and is connected to the output end of the isolation module 6220; the other end of the sixth resistor R6 is respectively connected to the third MOS The drain of the transistor Q3, the gate of the fourth MOS transistor Q4, and the same terminal of the output side winding of the single-ended flyback converter 6100 are connected. Further, the driving module 6230 also includes a seventh resistor R7 and an eighth resistor R8; one end of the seventh resistor R7 is connected to the other end of the sixth resistor R6, the drain of the third MOS transistor Q3, and the gate of the fourth MOS transistor Q4 respectively.
- one end of the eighth resistor R8 is respectively connected to the source of the fourth MOS tube Q4, the control end of the synchronous rectifier Q2, and the fourth resistor R4 One end is connected, and the other end is connected to the same end of the output side winding of the single-ended flyback converter 6100.
- the third MOS transistor Q3 is an N-channel MOS transistor
- the fourth MOS transistor Q4 is a P-channel MOS transistor.
- the driving signal and switching signal of the single-ended flyback converter 6100 come from the PWM signal of the primary side, so that the flyback switching power supply can be used in scenarios with higher output, solving the problem of no synchronization when the output voltage is high.
- the embarrassing situation of optional rectifier chips
- flyback switching power supply in this embodiment can be of various types, such as LLC switching power supply, Double-tube forward switching power supply.
- the gate of the MOS transistor Q3 flows into the drain of the third MOS transistor Q3 and the gate of the fourth MOS transistor Q4 through the sixth resistor R6, so that the third MOS transistor Q3 is turned on, thereby connecting the gate of the fourth MOS transistor Q4.
- the level is pulled low, and the fourth MOS transistor Q4 is turned on.
- the gate voltage V3 of the synchronous rectifier Q2 is pulled low, and the synchronous rectifier Q2 remains closed.
- the power transformer T1 is in the energy storage state, and the circuit is completed. half of a working cycle.
- the same terminal of the secondary coil is high level, and the high level is connected to the synchronous rectifier Q2 through the eighth resistor R8.
- the optocoupler PC1 is cut off, so the third MOS transistor Q3 is cut off, and the gate voltage V2 of the fourth MOS transistor Q4 cannot be connected to a low level.
- the same terminal of the secondary coil The high-level signal is connected to the gate of the fourth MOS transistor Q4 through the seventh resistor R7.
- the fourth MOS transistor Q4 is a P-channel MOS transistor, it works in the off state, and the gate voltage V3 of the synchronous rectifier Q2 Maintaining a high level, the synchronous rectifier Q2 remains on, working in the rectification state, providing power for the back-end load, until the gate voltage V3 changes to a low level, the entire circuit completes a complete rectification work.
- the synchronous rectification control circuit and flyback switching power supply of the present invention are improved on the basis of the existing synchronous rectification topology circuit, and the single-ended flyback converter 6100 and the synchronous rectification control circuit 6200 are combined
- the control circuit device is damaged due to damage or short circuit phenomenon; by controlling the PWM driver chip signal of the primary side transformer half-bridge switch MOS, the primary side switch tube and the secondary side synchronous rectifier tube are simultaneously controlled, without the need for a synchronous rectification driver chip, and the consistency is better Good, suitable for large voltage output scenarios, and also reduces product cost.
- the invention has simple circuit, good circuit consistency, high circuit efficiency, reliable operation, and good economic and social benefits. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
本发明涉及电源领域,具体涉及一种电池包、电动工具系统、同步整流控制电路和开关电源。所述电池包包括:壳体、至少一个电芯串和电池界面。所述壳体内形成一收容腔;所述电芯串收容在所述收容腔中,并包括多个串联连接的电芯;所述电池界面用于与具有不同工作电压的电动工具连接;其中,通过连接电芯串中不同数量的电芯,所述电池包可以输出至少两种电压。本发明电池包通过连接电芯串中不同数量的电芯,来输出至少两种电压。在输出至少两种电压的过程中无需进行电芯串并联,不仅能够简化电池包的连接电路,而且提供了一种电池包多压输出的新思路。
Description
本发明涉及电源领域,具体涉及一种电池包、电动工具系统、同步整流控制电路和开关电源。
近年来,随着电池材料技术的发展,锂电池的应用范围大幅度提升,从一些小功率的电子类电气装置延伸到一些大功率的动力类电气装置;而市场上普通的电池包多只能输出一种电压,这种电池包只能为一种电器装置供电,具有不同工作电压的多种电气装置需要匹配不同的电池包,因此增加了用户的使用成本并给用户带来了不便。另外,现有电池包的充电器多采用单端反激变换器,然而单端反激变换器存在输出电压低、输出电流大、能效损耗较多的问题,不仅不太适合输出电压较高的场合,而且芯片外围电路需要增加额外的附加电路来保证芯片能够正常工作,增加了成本。同时现有单端反激变换器多采用QRC的控制模式,QRC的控制模式能效损耗较大,同步整流控制精度不高,容易导致同步整流管工作在轻度短路的状态。
有鉴于此,需要设计一种电池包、电动工具系统、同步整流控制电路和开关电源。
发明内容
鉴于以上现有技术的缺点,本发明提供电池包和电动工具系统,以改善现有电池包进行多压输出时,实现方式比较单一的问题。
为实现上述目的及其它相关目的,本发明提供一种电池包和包含该电池包的电动工具系统,所述电池包包括:壳体、至少一个电芯串和电池界面。所述壳体内形成一收容腔;所述电芯串收容在所述收容腔中,并包括多个串联连接
的电芯;所述电池界面用于与具有不同工作电压的电动工具连接;其中,通过连接电芯串中不同数量的电芯,所述电池包可以输出至少两种电压。
本发明一实施例中还提供一种电池包,所述电池包包括:壳体、多个电芯串、电池界面和开关单元。所述壳体内形成一收容腔;所述多个电芯串并联设置;所述电池界面用于与具有不同工作电压的电动工具机械连接和电连接;所述电池界面包括正极端子和负极端子;所述开关单元分别与所述正极端子和所述多个电芯串相连接,并具有第一状态和第二状态;其中,在所述第一状态下所述正极端子与每一所述电芯串上的第一等电势位置电连接,所述电池包通过所述正极端子和所述负极端子输出第一电压;在所述第二状态下所述正极端子与每一所述电芯串上的第二等电势位置电连接,所述电池包通过所述正极端子和所述负极端子输出第二电压。
本发明还提供一种电池包,所述电池包包括:壳体、至少一个电芯串和电池界面。所述壳体内形成一收容腔;所述电芯串收容在所述收容腔中,所述电芯串包括第一电芯单元和第二电芯单元,所述第一电芯单元包括串联连接的第一数量的第一电芯;所述第二电芯单元包括串联连接的第二数量的第二电芯;所述电池界面设置于所述壳体上,并用于与具有不同工作电压的电动工具连接,所述电池界面包括多个输出端子;其中,所述第一电芯单元通过所述输出端子输出第一电压,所述第二电芯单元通过所述输出端子输出第二电压。
本发明还提供一种电池包,所述电池包包括:壳体、至少一个电芯串和电池界面。所述壳体内形成一收容腔;所述电芯串收容在所述收容腔中,所述电芯串包括第一电芯单元、第二电芯单元和第三电芯单元,所述第一电芯单元包括串联连接的第一数量的第一电芯;所述第二电芯单元包括串联连接的第二数量的第二电芯;所述第三电芯单元包括串联连接的第三数量的第三电芯;所述电池界面用于与具有不同工作电压的电动工具连接,所述电池界面包括多个输出端子;其中,所述第一电芯单元通过所述输出端子输出第一电压,所述第二
电芯单元通过所述输出端子输出第二电压;所述第三电芯单元通过所述输出端子输出第三电压。
本发明还提供一种电池包,该电池包包括:壳体、电池界面和至少一个电芯串。所述壳体内形成一收容腔;所述电池界面用于与具有不同工作电压的电动工具连接;所述电池界面包括多个输出端子;所述至少一个电芯串设置在所述收容腔中,所述电芯串包括第一电池组和第二电池组,所述第一电池组包括第一数量的电芯单元,所述第二电池组包括第二数量的电芯单元,所述电芯单元由多个电芯并联组成,所述第二电池组的电芯单元数量大于所述第一电池组的电池单元数量;其中,所述第一电池组通过所述输出端子输出第一电压,所述第二电池组通过所述输出端子输出第二电压。
本发明还提供一种电池包,该电池包包括:壳体、至少一个电芯串、电池界面和开关单元。所述壳体内形成一收容腔;所述电芯串包括串联连接的第一电芯单元和第二电芯单元,所述第一电芯单元包括串联连接的第一数量的第一电芯;所述第二电芯单元包括串联连接的第二数量的第二电芯;所述电池界面用于与具有不同工作电压的电动工具机械连接和电连接;所述电动工具包括第一电动工具和第二电动工具,所述第一电动工具的工作电压为第一电压;所述第二电动工具的工作电压为第二电压;所述电池界面包括正极端子和负极端子;所述开关单元分别与所述正极端子和所述电芯串相连接,并具有第一状态和第二状态;其中,在所述第一状态下所述第一电芯单元通过所述正极端子与所述负极端子输出第一电压;在所述第二状态下所述第二电芯单元通过所述正极端子与所述负极端子输出第二电压。
本发明电池包通过连接电芯串中不同数量的电芯,来输出至少两种电压。在输出至少两种电压的过程中无需进行电芯串并联,不仅能够简化电池包的连接电路,而且提供了一种电池包多压输出的新思路。
本发明还提供一种电动工具系统,所述电动工具系统包括:电池包、第一
电动工具和第二电动工具,所述电池包具有第一电压输出状态和第二电压输出状态,所述电池包包括有壳体、电池界面和至少一个电芯串,所述电芯串包括第一电芯单元和第二电芯单元;所述第一电芯单元包括串联连接的第一数量的第一电芯;所述第二电芯单元包括串联连接的第二数量的第二电芯;所述第一数量小于所述第二数量;所述第一电动工具的工作电压为第一电压;所述第二电动工具的工作电压为第二电压;所述第一电压小于所述第二电压;所述第一电动工具和所述第二电动工具上均设置有与所述电池界面相匹配连接的工具界面;其中,当所述电池包处于所述第一电压输出状态时,所述电芯串中第一数量的电芯向所述电动工具输出第一电压;当所述电池包处于所述第二电压输出状态时,所述电芯串中第二数量的电芯向所述电动工具输出第二电压。
本发明还提供一种电动工具系统,包括:电池包、第一电动工具和第二电动工具。所述电池包包括有壳体、电池界面和至少一个电芯串,所述电芯串包括有串联连接的多个电芯;所述第一电动工具具有第一工作电压,并设置有与所述电池界面相匹配连接的第一工具界面;所述第二电动工具具有第二工作电压,并设置有与所述电池界面相匹配连接的第二工具界面;其中,当所述第一电动工具与所述电池包连接时,所述第一工具界面与所述电池包界面连接,所述电芯串中第一数量的电芯向所述第一电动工具输出第一电压;当所述第二电动工具与所述电池包连接时,所述第二工具界面与所述电池包界面连接,所述电芯串中第二数量的电芯向所述第二电动工具输出第二电压。
本发明还提供一种电动工具系统,包括:第一电动工具、第二电动工具、第一电池包和第二电池包。第一电动工具能够在第一工作电压下工作,所述第一电动工具具有第一工具界面;第二电动工具能够在第二工作电压下工作,所述第二电动工具具有第二工具界面;第一电池包所述第一电池包具有第一电池界面,所述第一电池包包括多个电芯并能够输出第一工作电压;所述第二电池包具有第二电池界面,所述第二电池包包括:至少一个电芯串,所述电芯串包括多个串联连接的电芯;当所述第一电动工具与第一电池包连接时,所述第一
工具界面与所述第一电池界面连接,所述第一电池包输出第一工作电压;当所述第一电动工具与所述第二电池包连接时,所述第一工具界面与所述第二电池界面连接,所述电芯串中串联连接的第一数量的电芯向所述第一电动工具输出第一工作电压;当所述第二电动工具与所述第二电池包连接时,所述第二工具界面与所述第二电池界面连接,所述电芯串中串联连接的第二数量的电芯向所述第二电动工具输出第二工作电压。
本发明电动工具系统,不仅第一电池包可以与第一电动工具耦合输出第一工作电压,而且第一电动工具和第二电动工具也可以互换耦合至第二电池包,并通过串联第二电池包中不同数量的电芯,对应向第一电动工具输出第一工作电压,向第二电动工具输出第二工作电压。
本发明还提供一种同步整流控制电路,应用于单端反激变换器,该同步整流控制电路包括:驱动绕组、隔离模块及驱动模块;所述驱动绕组与所述单端反激变换器的输入侧绕组相耦合,所述驱动绕组的异名端分别与所述隔离模块的输出端和所述驱动模块的第一输入端连接,同名端接地;所述隔离模块的输入端与脉宽调整信号连接,输出端还与所述驱动模块的第二输入端连接;所述驱动模块的输出端与所述单端反激变换器的同步整流管的控制端连接。
本发明还提供一种开关电源,包括:单端反激变换器和同步整流控制电路;同步整流控制电路用于为所述单端反激变换器提供驱动信号;其中,所述同步整流控制电路包括:驱动绕组、隔离模块及驱动模块;所述驱动绕组与所述单端反激变换器的输入侧绕组相耦合,所述驱动绕组的异名端分别与所述隔离模块的输出端和所述驱动模块的第一输入端连接,同名端接地;所述隔离模块的输入端与脉宽调整信号连接,输出端还与所述驱动模块的第二输入端连接;所述驱动模块的输出端与所述单端反激变换器的同步整流管的控制端连接。
本发明同步整流控制电路和反激式开关电源,在现有的同步整流拓扑电路的基础上进行了改进,将单端反激变换器和同步整流控制电路区分开,当器件
工作异常或者损坏的情况下,同步整流管不会因为控制电路器件的损坏而损坏或者出现短路现象;通过控制原边变压器半桥开关MOS的PWM驱动芯片信号来同时控制原边开关管和副边同步整流管,不需要同步整流驱动芯片,一致性较好、适用于大电压的输出场景,也降低了产品成本。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明电动工具系统的示意图;
图2为本发明电池包于一实施例中的整体示意图;
图3为本发明电池包于一实施例中的电芯串连接示意图;
图4为本发明电池包于一实施例中的电芯串连接示意图;
图5为本发明电池包于一实施例中的整体示意图;
图6为本发明电池包于一实施例中的电路图;
图7为本发明电池包于一实施例的电路图;
图8为本发明电池包一实施例与电动工具连接时的电路图;
图9为本发明电池包一实施例与电动工具连接时的放电逻辑图;
图10为本发明电池包一实施例与充电器连接时的电路图;
图11为本发明电池包一实施例与充电器连接时的充电逻辑图;
图12为本发明电池包一实施例的电路图;
图13为本发明电池包一实施例与电动工具连接时的电路图;
图14为本发明电池包一实施例与电动工具连接时的放电逻辑图;
图15为本发明电池包一实施例与充电器连接时的电路图;
图16为本发明电池包一实施例与充电器连接时的充电逻辑图;
图17为本发明电池包一实施例的电路图;
图18为本发明电池包一实施例与电动工具连接输出第一电压的电路图;
图19为本发明电池包一实施例与电动工具连接输出第二电压的电路图;
图20为本发明电池包一实施例与电动工具连接时的放电逻辑图;
图21为本发明电池包一实施例与充电器连接时的电路图;
图22为本发明电池包一实施例与充电器连接时的充电逻辑图;
图23为本发明电池包于一实施例中的电路图;
图24为本发明电池包于一实施例中与电动工具连接低压侧输出第一电压的电路图;
图25为本发明电池包于一实施例中与电动工具连接高压侧输出第一电压的电路图;
图26为本发明电池包于一实施例中与电动工具连接输出第二电压的电路图;
图27为本发明电池包于一实施例中的放电逻辑图;
图28为本发明电池包于一实施例中与充电器连接的电路图;
图29为本发明电池包于一实施例中的充电逻辑图;
图30为本发明电池包于一实施例中的电路图;
图31为本发明电池包于一实施例中的电路图;
图32为本发明电池包于一实施例中的电路图;
图33为本发明电动工具系统的示意图;
图34为本发明中第一电池包于一实施例中的整体示意图;
图35为本发明中第二电池包于一实施例中的整体示意图;
图36为本发明中第三电池包于一实施例中的整体示意图;
图37显示为现有技术中的单端反激变换器的接线框图;
图38显示为现有技术中的单端反激变换器的内部接线示意图;
图39显示为本发明第一实施方式中的同步整流控制电路的接线示意图;
图40显示为本发明第二实施方式中的反激式开关电源的结构示意图。
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其它优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
须知,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
考虑到背景技术中现有电池包存在的问题,以及现有双压电池包中,实现双压的基本上都是通过改变不同电芯串之间的串并联关系来实现的双压的输出,也就是将不同电芯串并联时输出低压,串联时输出高压,目前各家技术的主要不同即在于实现不同电芯串之间串并联的方式以及结构,但该方式电路较为复
杂,因此本发明提供一种电池包和包含该电池包的电动工具系统,以开辟新的电池包多压输出模式。
请参阅图1至图31,本发明涉及一种电池包100和包含该电池包100的电动工具系统,该电池包100可以输出至少两种电压,可以与至少两种具有不同工作电压的电动工具匹配,并且该电池包100的多压输出无需进行多个电芯串130之间串并联的转换,不仅电路结构比较简单,而且也容易通过并联更多的电芯串130来实现更大容量的扩充。以下将通过多个实施例来对该电池包100和包含该电池包100的电动工具系统进行说明。
请参阅图1至图4,在本发明一实施例中提供了一种电池包100,该电池包100包括壳体110、至少一个电芯串130和电池界面120。本发明中壳体110的结构形式不受限定,只要内部形成一收容腔室供电芯串130安装即可,在本实施例中壳体110包括第一壳体111和第二壳体112,所述第一壳体111和第二壳体112相连接并在所述壳体110内形成一收容腔(未示出);第一壳体111和第二壳体112之间的连接方式有多种,例如螺栓连接等,所述收容腔内安装有电芯支架(未示出),所述电芯串130通过所述电芯支架收容在所述收容腔中,以使所述电芯串130内的每一电芯稳定安装在所述收容腔内。所述电芯串130的数量一个、两个或更多个,本实施例中,所述电池包100只包括一个电芯串130,所述电芯串130包括多个串联连接的电芯;各个所述电芯的型号及输出电压相同,所述电池包100通过连接电芯串130中不同数量的电芯,可以对应输出至少两种电压。电池包100可以通过第一数量的电芯(例如n个电芯Cell1至Celln)输出第一电压V1,也可以通过第二数量的电芯(例如2n个电芯Cell1至Cell2n)输出第二电压V2,电池界面120可以与工作电压为第一电压的第一电动工具200机械连接和电连接,也可以与工作电压为第二电压的第二电动工具300机械连接和电连接。电池界面120包括可以分别与第一电动工具200和第二电动工具300相配的导轨123、锁扣122、输出端子121以及通信端子(未图示),导轨123引导电池包100与电动工具机械连接结构的对接,锁扣122
用于将机械连接和电连接后的电池包100锁定在所述第一电动工具200或第二电动工具300上;输出端子121数量可根据需要设定为一个、两个、三个或更多个,可以具体根据输出和输入的电压数量进行选择。需要说明的是,导轨123、锁扣122和输出端子121在电池包100上的设置形式可以为现有一切合适的结构形式,具体不再详述。
请参阅图5至图6,在本发明电池包一实施例中,还提供一种电池包100,所述电池包100通过三个端子分别对应输出两种不同的电压。所述电池包100包括一个电芯串130,所述电芯串130包括依次串联连接的多个电芯,所述电池界面120包括输出端子121,所述输出端子121包括负极端子1211、第一正极端子1212和第二正极端子1213;所述负极端子1211通过负极回路140电连接在所述电芯串130的负极上,所述第一正极端子1212通过第一电流回路141电连接在所述电芯串130上的第一位置131,所述第一位置131与所述负极回路140电连接位置之间具有第一数量的依次串联连接的电芯(例如n个电芯Cell1至Celln),所述第二正极端子1213通过第二电流回路142电连接在所述电芯串130上的第二位置132,所述第二位置132与所述负极回路140电连接位置之间具有第二数量的依次串联连接的电芯(例如2n个电芯Cell1至Cell2n),当第一电动工具200与电池包100连接时,第一工具界面210与电池包100界面机械连接和电连接,所述第一数量的电芯通过所述负极端子1211和所述第一正极端子1212输出第一电压;当第二电动工具300与电池包100连接时,第二工具界面310与电池包100界面机械连接和电连接,所述第二数量的电芯通过所述负极端子1211和所述第二正极端子1213输出第二电压。所述电池界面120还包括能与对应充电器电连接,接收至少两种电压输入的至少两个正极充电端子CH1+和CH2+。所述至少两个正极充电端子可以与输出端子121独立设置,也可以与输出端子121共用一个端子。在本发明电池包100一实施例中,所述电池包100可以通过第一正极端子1212和负极端子1211与充电器400连接,并接收第一电压的电能输入,以为第一位置131与负极之间的第一数量的
电芯充电。所述电池包100可以通过第二正极端子1213和负极端子1211与充电器400连接,并接收第二电压的电能输入,以为第二位置132与负极之间的第二数量的电芯充电。
请参阅图5至图6,该电池包100还包括控制单元1311、电压检测单元1319、温度检测单元1313、均衡单元1312、第一负载检测单元1316、第二负载检测单元1317、电量显示单元1318、通讯单元1320、I2C控制单元1315、低压线性稳压器1314(LDO即low dropout regulator)。所述控制单元1311由整个电芯串130供电,所述控制单元1311的对应端子分别和所述电芯串130的第二电流回路142和负极回路140电连接,线性稳压器安装在所述控制单元1311与所述第二电流回路142的连接导线上,并为所述控制单元1311提供稳定的电压。所述电压检测单元1319与所述电芯串130中的每一电芯电连接以对所述电芯的电压进行检测,并将检测的结果通过I2C模块传送给控制单元1311。在一种实施方式中,所述电压检测单元1319为AFE(analog front end)。温度检测单元1313对每一电芯的温度进行检测,并将检测的结果传送给控制单元1311,所述电池界面120还包括通讯端口1215,所述通讯端口1215通过通讯单元1320与控制单元1311连接,并用于与所述充电器400和/或电动工具进行通讯。电量显示单元1318与控制单元1311电连接,用于显示电池包100的电量。第一负载检测单元1316的对应端子分别与控制单元1311和第一电流回路141电连接;第二负载检测单元1317的对应端子分别与控制单元1311和第二电流回路142电连接,第一负载检测单元1316和第二负载检测单元1317用于对外部接入的设备进行识别,以对应确定接入设备是第一电压设备还是第二电压设备。
请参阅图7至图11,在本发明电池包一实施例中,还提供一种电池包100,所述电池包100通过两个端子在不同的状态下分别对应输出两种不同的电压,两种不同的电压共用一个正极端子1217和负极端子1211。所述电池包100包括开关单元和一个所述电芯串130,所述电芯串130包括依次串联连接的多个电芯,所述电池界面120包括输出端子,所述输出端子包括负极端子1211、正
极端子1217;所述负极端子1211通过负极回路140电连接在所述电芯串130的负极上,所述正极端子1217分别通过第一电流回路141和第二电流回路142与所述第一位置131和第二位置132电连接,所述第一位置131与负极之间包括第一数量串联的电芯(例如n个电芯Cell1至Celln),所述第二位置132与负极之间包括第二数量串联的电芯(例如2n个电芯Cell1至Cell2n);所述第二数量大于所述第一数量。所述开关单元包括第一开关1411和第二开关1421,所述第一开关1411电连接安装在所述第一电流回路141上,并控制第一电流回路141的通断;所述第二开关1421电连接安装在第二电流回路142上,并控制第二电流回路142的通断。本实施例中的第一开关1411、第二开关1421可以为能够实现第一电流回路141、第二电流回路142通断的一切合适开关结构,例如微动开关或单个MOS管等开关形式。
请参阅图7至图11,在本发明电池包100一实施例中,充电端子与输出端子121共用。在本实施例中,所述电池包100通过正极端子1217和负极端子1211不仅可以输出第一电压、第二电压,而且可以通过该两个端子反向接收第一电压和第二电压的电能输入。电池包100还包括开关单元,所述开关单元包括第一开关1411和第二开关1421,所述第一开关1411电连接安装在所述第一电流回路141上,并控制第二电流回路142的通断及允许电流通过的方向;所述第二开关1421电连接安装在第二电流回路142上,并控制第二电流回路142的通断及允许电流通过的方向;所述第一开关1411包括第一寄生NMOS管Q1和第二寄生NMOS管Q2,第一寄生NMOS管Q1和第二寄生NMOS管Q2反向串联形成一双向开关,所述第二开关1421包括第三寄生NMOS管Q3和第四寄生NMOS管Q4,第三寄生NMOS管Q3和第四寄生NMOS管Q4反向串联形成一双向开关,所述开关单元具有第一状态、第二状态、第三状态和第四状态;在所述开关单元处于第一状态时,所述第一寄生NMOS管Q1和第二寄生NMOS管Q2沿由第一位置131至正极端子1217的方向导通,正极端子1217与第一位置131电性连接;所述第三寄生NMOS管Q3和第四寄生NMOS管
Q4断开,所述正极端子1217与所述负极端子1211输出第一电压,第一数量的电芯(例如n个电芯Cell1至Celln)对外提供电能;在所述开关单元处于第二状态时,所述第一寄生NMOS管Q1和第二寄生NMOS管Q2断开,所述第三寄生NMOS管Q3和第四寄生NMOS管Q4沿由第二位置132至正极端子1217的方向导通,正极端子1217与第二位置132电性连接;所述正极端子1217与所述负极端子1211输出第二电压,第二数量的电芯(例如2n个电芯Cell1至Cell2n)对外提供电能;在所述开关单元处于第三状态时,所述第一寄生NMOS管Q1和第二寄生NMOS管Q2沿由正极端子1217至第一位置131的方向导通,所述第三寄生NMOS管Q3和第四寄生NMOS管Q4断开,所述正极端子1217与所述负极端子1211接收第一电压的电能输入,第一数量的电芯(例如n个电芯Cell1至Celln)被充电;在所述开关单元处于第四状态时,所述第一寄生NMOS管Q1和第二寄生NMOS管Q2断开,所述第三寄生NMOS管Q3和第四寄生NMOS管Q4沿由正极端子1217至第二位置132的方向导通,所述正极端子1217与所述负极端子1211接收第二电压的电能输入,第二数量的电芯(例如2n个电芯Cell1至Cell2n)被充电。为了便于自动化控制,与图6中电池包100相比,所述电池包100还进一步包括第一驱动单元1412和第二驱动单元1422,第一寄生NMOS管Q1和第二寄生NMOS管Q2的栅极与所述第一驱动单元1412电连接,所述第一驱动单元1412与所述控制单元1311电连接;第三寄生NMOS管Q3和第四寄生NMOS管Q4的栅极与所述第二驱动单元1422电连接,所述第二驱动单元1422与所述控制单元1311电连接;所述控制单元1311通过第一驱动单元1412和第二驱动单元1422分别对应第一开关1411和第二开关1421的电通状态。请参阅图8和图9,当电动工具接入时,外设检测电路通过激活单元激活控制单元1311,并通过电压检测单元1319和温度检测单元1313对电池电压、电流和温度进行检测,当任何一个出现异常时,控制单元1311控制Q1、Q2、Q3、Q4全部断开,放电终止,电池包100报警后进入休眠状态,若电压、电流和温度正常,则控制单元1311控制第一驱动单元1412
和第二驱动单元1422,从而使Q1、Q2导通,Q3、Q4断开,以给电动工具上电,电动工具通电后通过COM通讯发送电动工具的电压信息给电池包100,如果电工工具具有第一工作电压,则发送第一电压握手信息,控制单元1311维持Q1、Q2导通,Q3、Q4断开,电池包以第一电压V1给第一电动工具200供电;如电动工具具有第二工作电压,则发送第二电压握手信息,控制单元1311使Q1、Q2断开,Q3、Q4导通,以第二电压V2电压给电动工具供电,若在第一电压或第二电压供电的过程中符合欠压条件,则放电终止,电池包100进入休眠。
请参阅图7、图10和图11,图11为本发明电池包于一实施例中的充电逻辑图。当外部充电器400接入时,充电器400通讯电路通过COM端口激活控制单元1311,并通过电压检测单元1319和温度检测单元1313对电池电压、电流和温度进行检测,当任何一个出现异常时,电池包100发出异常指令,充电终止,电池包100报警后进入休眠状态。若电压、电流和温度正常,控制单元1311检测并判断组间电压,当组间电压△V(即第二位置132与第一位置131之间的电压差)大于设定电压阈值(例如大于等于100mV)时,控制单元1311使Q1、Q2导通,Q3、Q4断开,并发送第一电压握手信息给充电器400,充电器400以第一电压V1给电池包100的第一位置与负极之间的第一数量的电芯充电(例如n个电芯Cell1至Celln),当△V小于设定电压阈值时(例如小于100mV)时,控制单元1311、Q2断开,Q3、Q4导通,并发送第二电压握手信息给充电器400,充电器400以第二电压V2给电池包100第二位置与负极之间的第二数量的电芯充电(例如2n个电芯Cell1至Cell2n)。
请参阅图2、图12至图16,在本发明电池包一实施例中,还提供一种电池包100,所述电池包100通过两个端子分别对应输出三种不同的电压,并且充电端子与输出端子121共用。该电池包100通过正极端子1217和负极端子1211不仅可以输出第一电压、第二电压和第三电压,而且可以通过该两个端子接收充电器分别以第一电压、第二电压和第三电压对电芯串上的对应电芯进行充电。
所述电池包100包括开关单元和一个所述电芯串130,所述电池界面120包括输出端子121,所述输出端子121包括负极端子1211和正极端子1217,所述负极端子1211电连接至所述电芯串130的负极,所述正极端子1217通过第一电流回路141与所述电芯串的第一位置131电性连接,所述正极端子1217通过第二电流回路142与所述电芯串130的第二位置132电性连接,所述正极端子1217通过第三电流回路143与所述电芯串130的第三位置133电性连接;所述第一位置131与所述电芯串130的负极之间包括串联连接的第一数量的电芯(例如n个电芯Cell1至Celln),所述第二位置132与所述负极回路之间包括串联连接的第二数量的电芯(例如2n个电芯Cell1至Cell2n),第三位置133与所述负极回路之间包括串联连接的第三数量的电芯(例如3n个电芯Cell1至Cell3n),其中所述第二数量大于所述第一数量,所述第三数量大于所述第二数量。所述开关单元包括第一开关1411、第二开关1421和第三开关1431,所述第一开关1411设置在第一电流回路141上,并控制第一电流回路141的通断;所述第二开关1421设置在第二电流回路142上,并控制第二电流回路142的通断;所述第三开关1431设置在第三电流回路143上,并控制第三电流回路143的通断;所述第一开关1411包括第一寄生NMOS管Q1和第二寄生NMOS管Q2,第一寄生NMOS管Q1和第二寄生NMOS管Q2反向串联形成一双向开关,所述第二开关1421包括第三寄生NMOS管Q3和第四寄生NMOS管Q4,第三寄生NMOS管Q3和第四寄生NMOS管Q4反向串联形成一双向开关,所述第三开关1431包括第五寄生NMOS管Q5和第六寄生NMOS管Q6,第五寄生NMOS管Q5和第六寄生NMOS管Q6反向串联形成一双向开关。所述开关单元具有第一状态、第二状态、第三状态、第四状态、第五状态和第六状态;在所述开关单元处于第一状态时,所述第一寄生NMOS管Q1和第二寄生NMOS管Q2沿由第一位置131至正极端子1217的方向导通,所述第三寄生NMOS管Q3、第四寄生NMOS管Q4、第五寄生NMOS管Q5、第六寄生NMOS管Q6断开,所述正极端子与所述电芯串的第一位置电性连接,所述正极端子1217与所述负极端
子1211输出第一电压;在所述开关单元处于第二状态时,所述第一寄生NMOS管Q1、第二寄生NMOS管Q2、第五寄生NMOS管Q5、第六寄生NMOS管Q6断开,所述第三寄生NMOS管Q3和第四寄生NMOS管Q4沿由第二位置132至正极端子1217的方向导通,所述正极端子与所述电芯串的第二位置电性连接,所述正极端子1217与所述负极端子1211输出第二电压;在所述开关单元处于第三状态时,所述第一寄生NMOS管Q1、第二寄生NMOS管Q2、第三寄生NMOS管Q3和第四寄生NMOS管Q4断开,所述第五寄生NMOS管Q5、第六寄生NMOS管Q6沿由第三位置133至正极端子1217的方向导通,所述正极端子与所述电芯串的第三位置电性连接,所述正极端子1217与所述负极端子1211输出第三电压;在所述开关单元处于第四状态时,所述第一寄生NMOS管Q1和第二寄生NMOS管Q2沿由正极端子1217至第一位置131的方向导通,所述第三寄生NMOS管Q3、第四寄生NMOS管Q4、第五寄生NMOS管Q5、第六寄生NMOS管Q6断开,所述正极端子与所述电芯串的第一位置电性连接,此时充电器可以以第一电压给电池包100的第一位置与负极之间的第一数量的电芯充电(例如n个电芯Cell1至Celln);在所述开关单元处于第五状态时,所述第一寄生NMOS管Q1、第二寄生NMOS管Q2、第五寄生NMOS管Q5、第六寄生NMOS管Q6断开,所述第三寄生NMOS管Q3和第四寄生NMOS管Q4沿由正极端子1217至第二位置132的方向导通,所述正极端子与所述电芯串的第二位置电性连接,充电器可以以第二电压给电池包100的第二位置与负极之间的第二数量的电芯充电(例如2n个电芯Cell1至Cell2n)充电;在所述开关单元处于第六状态时,所述第一寄生NMOS管Q1、第二寄生NMOS管Q2、第三寄生NMOS管Q3和第四寄生NMOS管Q4断开,所述第五寄生NMOS管Q5、第六寄生NMOS管Q6沿由正极端子1217到第三位置133的方向导通,所述正极端子与所述电芯串的第三位置电性连接,充电器可以以第三电压给电池包100的第三位置与负极之间的第三数量的电芯充电(例如3n个电芯Cell1至Cell3n)充电。
请参阅图12至图16,在为了便于自动化控制,所述电池包100还进一步包括第一驱动单元1412、第二驱动单元1422和第三驱动单元1432,第一寄生NMOS管Q1和第二寄生NMOS管Q2的栅极与所述第一驱动单元1412电连接,所述第一驱动单元1412与所述控制单元1311电连接;第三寄生NMOS管Q3和第四寄生NMOS管Q4的栅极与所述第二驱动单元1422电连接,所述第二驱动单元1422与所述控制单元1311电连接;第五寄生NMOS管Q5和第六寄生NMOS管Q6的栅极与所述第三驱动单元1431电连接,所述第三驱动单元1431与所述控制单元1311电连接。
请参阅图13和图14,图14为图12中电池包100的管理—放电逻辑图。当电动工具接入时,外设检测电路通过激活单元激活控制单元1311,并通过电压检测单元1319和温度检测单元1313对电池电压、电流和温度进行检测,当任何一个出现异常时,控制单元1311控制Q1、Q2、Q3、Q4全部断开,放电终止,电池包100报警后进入休眠状态,若电压、电流和温度正常,在本发明一实施方式中,控制单元1311控制第一驱动单元1412导通Q1、Q2,给电动工具上电后,所述控制单元与电动工具进行通信,所述电池包获得所述电动工具的工作电压信息,如果电动工具的工作电压为第一电压,则维持Q1、Q2导通,Q3、Q4、Q5、Q6断开,如果电动工具的工作电压为第二电压则控制Q3、Q4导通,Q1、Q2、Q5、Q6断开,以第二电压V2给电动工具供电。如果电动工具的工作电压为第三电压控制Q5,Q6导通,Q1、Q2和Q3、Q4断开,以第三电压V3给电动工具供电。
请参阅图12、图15和图16,图16为图12中电池包100的充电逻辑图。当充电器的正极端子和负极端子与电池包100的正极端子1217和负极端子1211接入时,通讯端口1215上拉电平通过激活单元激活控制单元1311,控制单元1311检测Cell1~Cell3n中电芯电压及温度,并通过电压检测单元1319和温度检测单元1313对电池电压和温度进行检测,当任何一个出现异常时,电池包100发出异常指令,充电终止,电池包100报警后进入休眠状态。若电压和温
度正常,当△V1(第一位置131与第二位置132之间的压差)大于等于设定电压阈值时(例如大于等于100mV),控制单元1311使Q1、Q2导通,Q3、Q4、Q5和Q6断开,同时发第一电压握手信息给充电器400,充电器400以V1电压给电池包100内第一数量的电芯充电(例如n个电芯Cell1至Celln);当△V1小于设定电压阈值(例如小于100mV)时,控制单元1311使Q5、Q6导通,Q3、Q4和Q1、Q2断开,电池包100发第三电压握手信息给充电器400,充电器400以V3电压给电池包100内第三数量的电芯充电(例如3n个电芯Cell1至Cell3n)。当△V2(第二位置和第三位置之间的电压差)大于等于设定阈值(例如大于等于100mV)时,控制单元1311使Q3、Q4导通,Q1、Q2和Q5、Q6断开,同时发第二电压握手信息给充电器400,充电器400以V2电压给电池包100内2n个电芯充电(例如2n个电芯Cell1至Cell2n);当△V2小于设定阈值(例如小于100mV)时,控制单元1311使Q5、Q6导通,Q3、Q4和Q1、Q2断开,电池包100发第三电压握手信息给充电器400,充电器400以V3电压给电池包100内充电。
请参阅图31,于本发明电池包一示例中,还提供一种电池包,该电池包与图12中电池包100的不同在于,电池包100包括有多个电芯串130,例如包括m个电芯串130,m为大于等于2的自然数,所述m个电芯串130相并联,所述正极端子1217分别通过第一电流回路141、第二电流回路142和第三电流回路143与每一所述电芯串130上的第一位置131、第二位置132、和第三位置133电连接,所述负极端子1211通过负极回路140与每一所述电芯串130的负极电连接,每一所述电芯串130上的所述第一位置131与负极之间均串联有第一数量(例如n个电芯Cell1至Celln)的电芯,每一所述电芯串130上的所述第二位置132与负极之间均串联有第二数量(例如2n个电芯Cell1至Cell2n)的电芯,每一所述电芯串130上的所述第三位置133与负极之间均串联有第三数量(例如3n个电芯Cell1至Cell3n)的电芯,所述第三数量大于所述第二数量,所述第二数量大于所述第一数量;当正极端子1217与多个电芯串的第一位
置131电连接时,多个电芯串内Cell1至Celln的n个电芯共同提供第一电压;当正极端子1217与多个电芯串的第二位置132电连接时,多个电芯串内Cell1至Cell2n的2n电芯共同提供第二电压;当正极端子1217与多个电芯串的第三位置133电连接时,多个电芯串内Cell1至Cell3n的3n电芯共同提供第三电压。
请参阅图17至图22,图17至图22示出了所述电池包100的另一实施方式。所述电芯串130包括开关单元和依次串联连接的多个电芯,所述输出端子包括第一正极端子1212、第二正极端子1213、负极端子1211、充电正极端子1216。所述负极端子1211通过负极回路140电连接在所述电芯串130的负极上,所述第一正极端子1212通过第一电流回路141电连接在所述电芯串130上的第一位置131,所述第一位置131与所述负极回路140电连接位置之间具有第一数量的依次串联连接的电芯(例如n个电芯Cell1至Celln),所述第二正极端子1213通过第二电流回路142电连接在所述电芯串130上的第二位置132,所述第二位置132与所述负极回路140电连接位置之间具有第一数量的依次串联连接的电芯(例如2n个电芯Cell1至Cell2n),所述充电正极端子1216通过第一充电回路144与第一电流回路141电连接,所述充电正极端子1216通过第二充电回路145与第二电流回路142电连接;所述开关单元包括第一充电开关1441和第二充电开关1451,所述第一充电开关1441安装在第一充电回路144上,并与第一驱动单元1412电连接,所述第二充电开关1421安装在第二充电回路145上并与第二驱动单元1422电连接;所述电池包100的控制单元1311分别与所述第一驱动单元1412和第二控制单元1311电连接。所述开关单元具有第一状态、第二状态和第三状态;在所述开关单元处于第一状态时,控制单元1311通过第一驱动单元1412和第二驱动单元1422驱动第一充电开关1411和第二充电开关1451全部断开,所述电池包100通过第一正极端子1212与所述负极端子1211输出第一电压或通过第二正极端子1213与所述负极端子1211输出第二电压;在所述开关单元处于第二状态时,控制单元1311通过第一驱动单元1412驱动第一充电开关1411导通Q1,且通过第二驱动单元1422驱动第
二开关1421断开;所述充电端子与所述负极端子1211为所述串联连接第一数量的电芯充电;在所述开关单元处于第三状态时,控制单元1311通过第一驱动单元1412驱动第一充电开关1441断开,且通过第二驱动单元1422驱动第二充电开关1451导通,所述充电正极端子1216与所述负极端子1211为所述串联连接第二数量的电芯充电。所述电池包100还包括取样电阻1321,所述取样电阻1321安装在所述第一正极端子1212与所述电芯串130之间的第一电流回路141上,所述控制单元1311通过电流检测单元采样所述第一正极端子1212与所述电芯串130之间的电流状态,并根据电流状态调整第一电压和第二电压的输出与关闭。
请参阅图1、图17至图20,在接入第一电动工具200时,通讯端口1215上拉激活电池包100,控制单元1311检测取样电阻1321上的电流I,此时电流I的绝对值大于0,电池包100配置为V1电压放电模式,通讯单元1320发送该放电模式下的握手信息与第一电动工具建立正确的通讯连接,第一电动工具开始正常工作,在工作过程中,控制单元监控Cell1~Celln的电压以及电池包100温度,当检测到的电压和温度有异常时,通讯单元发送异常信号给第一电动工具,第一电动工具停止工作;在接入第二电动工具时,通讯端口1215上拉激活电池包100的BMS,控制单元检测取样电阻上的电流I,此时电流I的绝对值等于0,电池包100配置为V2电压放电模式,通讯单元发送该放电模式下的握手信息与第二电动工具建立正确的通讯连接,第二电动工具开始正常工作,在工作过程中,控制单元监控Cell1~Cell2n的电压以及电池包100温度,当检测到的电压和温度有异常时,通讯单元发送异常信号给第二电动工具,第二电动工具停止工作。
请参阅图21至图22,充电器既可以通过充电正极端口CH+和负极端口P-,以第一电压为电芯串里第一数量的电芯充电,也可以通过充电正极端口CH+和负极端口P-,以第二电压为电芯串里第二数量的电芯充电。充电器400通过COM激活电池包100,电池包100控制单元1311检测电池内部电芯电压和温
度,当第二位置132与第一位置131处的电压差△V大于等于设定阈值时(例如大于等于100mV)时,电池包100通过COM端子发送n串握手信息,同时控制单元1311控制Q1导通,Q2断开,充电器400以第一电压给电池包100充电;直至当第二位置132与第一位置131处的电压差△V小于设定阈值(例如小于100mV)时,电池包100COM发送2n串握手信息,同时控制单元1311控制Q2导通,Q1断开,充电器400以第二电压给电池包100充电;当电池包100处于第二电压充电阶段。请参阅图30,在另一实施方式中,所述电池包100也可以包括多个电芯串130,例如包括m个电芯串130,m为大于等于2的自然数,所述m个电芯串130相并联,所述第一正极端子1212通过第一电流回路141与每一所述电芯串130上的第一位置131电连接、所述第二正极端子1213通过第二电流回路142与每一所述电芯串130上的第二位置132电连接,所述负极端子1211通过负极回路140与每一所述电芯串130的负极电连接,每一所述电芯串130上的所述第一位置131与负极之间均串联有第一数量(例如n个)的电芯,每一所述电芯串130上的所述第二位置132与负极之间均串联有第二数量(例如2n个)的电芯,所述第二数量大于所述第一数量,以使第二电压大于第一电压;所述电池包100可以通过所述第一正极端子1212和所述负极端子1211输出第一电压;所述电池包100可以通过所述第二正极端子1213和所述负极端子1211输出第二电压。
请参阅图23至图29,在另一实施方式中,还提供一种双压电池包,该电池包可以交替输出第一电压。所述电池包100包括开关单元和一个所述电芯串130,所述电池界面120包括负极端子1211、第一正极端子1212、第二正极端子1213和两个通讯端口1215;该电池包100不仅可以通过第一正极端子1212与负极端子1211输出第一电压,也可以通过第一正极端子1212与第二正极端子1213输出第一电压,还可以通过第二正极端子1213与负极端子1211输出第二电压。所述电芯串130包括依次串联连接的第二数量(例如2n个)的电芯,所述负极端子1211通过负极回路140电连接在所述电芯串130的负极上,所述
第一正极端子1212通过第一电流回路141电连接在所述电芯串130上的第一位置131,所述第一位置131与所述负极回路140电连接位置之间具有第一数量的依次串联连接的电芯(例如n个电芯Cell1至Celln),所述第二正极端子1213通过第二电流回路142电连接在所述电芯串130上的第二位置132,所述第二位置132与所述负极回路140电连接位置之间具有第一数量的依次串联连接的电芯(例如2n个电芯Cell1至Cell2n),所述开关单元包括第一开关和第二开关,所述第一开关为微动开关SW1,并包括第一触点、第二触点和第三触点;所述第二开关为微动开关SW2,也包括第一触点、第二触点和第三触点,通过改变不同触点间的连通状态来实现电路的切换。所述开关单元具有第一状态和第二状态,并可以通过弹簧机械使能进行联动切换;所述电池包100还包括取样电阻RS,所述取样电阻RS安装在所述第一正极端子1212与所述电芯串130之间的第一电流回路141上,所述控制单元1311通过电流检测单元采样所述第一正极端子1212与所述电芯串130之间的电流状态,并将电流状态反馈给控制单元。
请参阅图23至图27,当开关单元处于第一状态时,SW1和SW2的2,3脚常通,当工作电压为第一电压的第一电动工具200通过P1+,COM,P-端口接入时,微动开关SW1和SW2的2,3脚接通,回路电源从P1+取电,回路地由GND1连接到P-,机器通过COM端子使能信号激活系统电源,从而为控制单元1311提供电能,并通过I2C控制单元1315选择检测Cell1~Celln的电压,通过温度检测单元13132监测Cell1~Celln的温度,并通过电流检测单元检测第一电流回路141中的电流状态,如果RS电流I>0,电池包100通过COM发送第一电压握手信息给第一电动工具200,电池包100进入低侧第一电压监测模式;第一电动工具200进入低侧第一电压V1工作模式,当检测到Cell1~Celln电压和温度出现异常时,电池包100主动发停机标志位给第一电动工具200,第一电动工具200停止工作。
请参阅图25,当工作电压为第一电压的第一电动工具上的马达控制器通过
P1+,COM*,P2+端口接入时,通过触发SW1和SW2,从而使开关单元由第一状态切换成第二状态,在该过程中通过弹簧机械使能触发微动开关SW1和SW2从2.3脚导通切换到2,1脚导通,此时电源控制模块从P2+取电,控制单元1311地通过GND2连接到P1+,机器通过COM端口使能激活系统电源,控制单元1311上电,通过I2C控制单元1315选择检测Celln+1~Cell2n的电压,通过温度检测单元1313监测Celln+1~Cell2n的温度,并通过电流检测单元检测第一电流回路141中的电流状态,如果RS电流I<0,电池包100通过COM发送第一电压握手信息给电动工具,电池包100进入高侧第一电压监测模式;第一电动工具200进入高侧V1电压工作模式,当检测到Celln+1~Cell2n电压和温度出现异常时,电池包100主动发停机标志位给第一电动工具,第一电动工具停止工作。
请参阅图26,当第二电动工具通过P2+/P-端口接入时,电源控制模块通过P1+取电,工具上电后COM端口激活电池包,控制单元通过GND1连接到P-,机器通过COM端口使能激活系统电源,控制单元上电,电池包进入第二电压监测模式,通过I2C控制单元监测Cell1~Cell2n的电压,通过温度检测单元1和温度检测单元2监测Cell1~Cell2n的温度,并通过电流检测单元检测第一电流回路141中的电流状态,若RS上电流I=0mA时,电池包100进入第二电压工作模式,电池包100通过COM端口发第二电压握手信息给第二电动工具300,当检测到电压和温度出现异常时,电池包100主动发停机标志位给第二电动工具300,第二电动工具300停止工作。
图28至图29为图23中所示的电池包的充电示意图。充电器400通过COM端口激活电池包100,电池包100控制单元检测电池内部电芯电压和温度,判断高侧n串电芯(即Celln+1~Cell2n)总压减去低侧n串电芯(即Cell1~Celln)总压的差值△V,当△V>0时,电池包通过COM端口发送第一电压握手信息,充电器400通过P1+和P-端口输出第一电压给电池包充电,直至△V≤0,电池包100再通过COM发送第二电压握手信息,充电器400通过P2+和P-端口输
出第二电压给电池包充电,直至充电结束;若当充电器400接入时,如果△V≤0,电池包100通过COM发送第二电压握手信息,充电器400通过P2+和P-端口输出第二电压给电池包充电。
以上实施例中主要是通过接入不同数量的相同电压的电芯来输出至少两种不同的电压。接下来的实施例将从不同的电芯单元方面来举例说明。
请参阅图1至图4,在本发明电池包100一实施例中,所述电池包100包括:壳体110、至少一个电芯串130和电池界面120。所述壳体110内形成一收容腔;所述电芯串130收容在所述收容腔中,所述电池界面120设置于所述壳体110上,并用于与具有不同工作电压的电动工具连接,与上述实施例不同的是,本实施例中所述电芯串130包括第一电芯单元和第二电芯单元,所述第一电芯单元包括串联连接的第一数量(例如n个)的电芯;所述第二电芯单元包括串联连接的第二数量(例如a个)的电芯;所述电池界面120包括输出端子121,所述输出端子121包括负极端子1211、第一正极端子1212、第二正极端子1213;所述第一电芯单元通过所述负极端子1211和第一正极端子1212输出第一电压,所述第二电芯单元通过所述负极端子1211、第二正极端子1213输出第二电压。要说明的是,本实施例中,第一电芯单元和第二电芯单元可以是独立的单元,分别独立输出电压,但本实施例中第二电芯单元包括第一电芯单元,第一电芯单元包括第1至第n个电芯,第二电芯单元可以包括第1至第2n个电芯。
请参阅图1至图4,在本发明电池包另外一实施例中,所述电池包100包括:壳体110、至少一个电芯串130和电池界面120。所述壳体110内形成一收容腔;所述电芯串130收容在所述收容腔中,所述电池界面120设置于所述壳体110上,并用于与具有不同工作电压的电动工具连接,与上一实施例不同的是,本实施例中所述电芯串130包括第一电芯单元、第二电芯单元和第三电芯单元,所述第一电芯单元包括串联连接的第一数量(例如n个)的电芯;所述
第二电芯单元包括串联连接的第二数量(例如a个)的电芯;所述第三电芯单元包括串联连接的第三数量(例如b个)的电芯,所述电池界面120包括输出端子121;输出端子121包括负极端子1211、第一正极端子1212、第二正极端子1213和第三正极端子1214。所述第一电芯单元通过所述负极端子1211和第一正极端子1212输出第一电压,所述第二电芯单元通过所述负极端子1211、第二正极端子1213输出第二电压;所述第三电芯单元通过所述负极端子1211、第三正极端子1214输出第三电压。需要说明的是本实施例中,第二电芯单元可以包括第一电芯单元,第三电芯单元可以包括第一电芯单元和/或第二电芯单元,例如第一电芯单元包括第1至第n个电芯,第二电芯单元可以包括第1至第2n个电芯,第三电芯单元可以包括第1至第3n个电芯。
请参阅图32,图32为在本发明电池包另外一示例中,该电池包与图17中电池包的不同在于,所述电芯串130包括第一电池组和第二电池组,所述第一电池组包括第一数量(例如n个)的电芯单元,所述第二电池组包括第二数量(例如2n个)的电芯单元,所述电芯单元由两个或多个电芯并联组成,所述第二电池组的电芯单元数量大于所述第一电池组的电池单元数量;所述第一电池组通过所述输出端子121输出第一电压,所述第二电池组通过所述输出端子121输出第二电压。这种设置方法可以通过每一电池组中多个并联的电芯来对扩充电池包100的容量。
请参阅图30,本发明还提供另外一电池包,该电池包与图17中电池包的不同在于,本实施例中包括多个电芯串130,所述多个电芯串130收容在所述收容腔中,且并联设置;所述负极端子1211与所述多个电芯串130的负极电连接,所述第一正极端子1212与每一所述电芯串130上的第一等电势位置电连接,所述电池包100通过所述第一正极端子1212和所述负极端子1211输出第一电压;所述第二正极端子1213从每一所述电芯串130上的第二等电势位置电连接,所述电池包100通过所述第二正极端子1213和所述负极端子1211输出第二电压。本实施中只要第一电流回路141与多个电芯串130连接处的电势
相等,第二电流回路142与多个电芯串130连接处的电势相等,对应输出第一电压的电芯的数量和输出电压,以及对应输出第二电压的电芯的数量和输出电压均可以不做限定。
在本发明另外一实施例中还提供一种双压电池包,该电池包与图7中电池包的不同在于,所述电池包100包括多个电芯串130,在第一状态时所述正极端子1217与每一所述电芯串130上的第一等电势位置电连接,所述电池包100通过所述正极端子1217和所述负极端子1211输出第一电压;在第二状态时所述正极端子1217与每一所述电芯串130上的第二等电势位置电连接,所述电池包100通过所述正极端子1217和所述负极端子1211输出第二电压。本实施中只要第一电流回路141与多个电芯串130连接处的电势相等,第二电流回路142与多个电芯串130连接处的电势相等,对应输出第一电压的电芯的数量和输出电压,以及对应输出第二电压的电芯的数量和输出电压均可以不做限定。
请参阅图31,本发明一实施例中还提供一种三压电池包,该电池包与图12中电池包的不同在于,所述电池包包括多个电芯串130,在所述第一状态下所述正极端子1217与每一所述电芯串130上的第一等电势位置电连接,所述电池包100通过所述正极端子1217和所述负极端子1211输出第一电压;在所述第二状态下所述正极端子1217与每一所述电芯串130上的第二等电势位置电连接,所述电池包100通过所述正极端子1217和所述负极端子1211输出第二电压;在所述第三状态下所述正极端子1217与每一所述电芯串130上的第三等电势位置电连接,所述电池包100通过所述正极端子1217和所述负极端子1211输出第三电压。本实施中只要第一电流回路141与多个电芯串130连接处的电势相等,第二电流回路142与多个电芯串130连接处的电势相等,第三电流回路143与多个电芯串130连接处的电势相等,对应输出第一电压的电芯的数量和输出电压、对应输出第二电压的电芯的数量和输出电压,以及对应输出第三电压的电芯的数量和输出电压均可以不做限定。
请参阅图3,本发明还提供一种三压电池包,所述电池包100通过四个端子分别对应输出三种不同的电压,分别为第一电压、第二电压和第三电压。所述电池包100包括一个电芯串130,所述电芯串130包括依次串联连接的多个的电芯,所述电池界面120包括负极端子1211、第一正极端子1212、第二正极端子1213和第三正极端子1214;所述负极端子1211通过负极回路140电连接在所述电芯串130的负极上,所述第一正极端子1212通过第一电流回路141电连接在所述电芯串130上的第一位置131,所述第一位置131与所述电芯串负极之间具有第一数量的依次串联连接的电芯(例如n个电芯Cell1至Celln),所述第一数量的电芯通过所述负极端子1211和所述第一正极端子1212输出第一电压;所述第二正极端子1213通过第二电流回路142电连接在所述电芯串130上的第二位置132,所述第二位置132与所述电芯串负极之间具有第二数量的依次串联连接的电芯(例如2n个电芯Cell1至Cell2n),所述第二数量的电芯通过所述负极端子1211和所述第二正极端子1213输出第二电压;所述第三正极端子1214通过第三电流回路电连接在所述电芯串130上的第三位置133,所述第三位置133与所述电芯串负极之间具有第三数量的依次串联连接的电芯(例如3n个电芯Cell1至Cell3n),所述第三数量的电芯通过所述负极端子1211和所述第三正极端子1214输出第三电压。
需要说明的时,上述各实施例中,关于第一数量n、第二数量2n和第三数量3n的举例说明,并不限定第三数量、第二数量、第一数量之间对应的倍数关系,例如在另外一些实施例中,当第一数量为n时,第二数量可以对应为n+t,第三数量可以为n+t+S其中上述n、t、S均可以为任意自然数。
请参阅图1,本发明还提供一种电动工具系统,所述电动工具系统包括:电池包100、第一电动工具200和第二电动工具300;所述电池包100可以为上述任一实施例中能够输出至少两种电压的电池包100,本实施例中,电池包100具有第一电压输出状态和第二电压输出状态,所述电池包100包括有壳体110、电池界面120和至少一个电芯串130,所述电芯串130包括第一电芯单元和第
二电芯单元;所述第一电芯单元包括串联连接的第一数量的第一电芯;所述第二电芯单元包括串联连接的第二数量的第二电芯;所述第一数量小于所述第二数量;所述第一电动工具200的工作电压为第一电压;所述第二电动工具300的工作电压为第二电压;所述第一电压小于所述第二电压;所述第一电动工具200和所述第二电动工具300上均设置有与所述电池界面120相匹配连接的工具界面;其中,当所述电池包100处于所述第一电压输出状态时,所述电芯串130中第一数量的电芯向所述电动工具输出第一电压;当所述电池包100处于所述第二电压输出状态时,所述电芯串130中第二数量的电芯向所述电动工具输出第二电压。在另一种实施方式中,当电池包与第一电动工工具匹配时,所述电池包向第一电动工具输出第一电压,当电池包与第二电动工具匹配时,所述电动工具系统中,所述电池包100还包括控制单元1311和通讯端口1215,所述通讯端口1215与所述控制单元1311电连接,所述第一电动工具200还包括与所述通讯端口1215相配的第一通讯接口,所述第二电动工具300还包括与所述通讯端口1215相配的第二通讯接口,当所述电池包100与所述第一电动工具200连接时,所述通讯端口1215与所述第一通讯接口电连接,所述控制单元1311控制所述电池包100输出第一电压;当所述电池包100与所述第二电动工具300连接时,所述通讯端口1215与所述第二通讯接口电连接,所述控制单元1311控制所述电池包100输出第二电压。
请参阅图1,本发明还提供一种电动工具系统,该电动工具系统包括:第一电动工具200、第二电动工具300和上述任一实施例中所述的电池包100。在本发明电动工具系统一实施例中,所述电池包100包括有壳体110、电池界面120和至少一个电芯串130,所述电芯串130包括有串联连接的多个电芯;所述第一电动工具200具有第一工作电压,并设置有与所述电池界面120相匹配连接的第一工具界面210;所述第二电动工具300具有第二工作电压,并设置有与所述电池界面120相匹配连接的第二工具界面310;其中,当所述第一电动工具200与所述电池包100连接时,所述第一工具界面210与所述电池包100
界面连接,所述电芯串130中第一数量的电芯向所述第一电动工具200输出第一电压;当所述第二电动工具300与所述电池包100连接时,所述第二工具界面310与所述电池包100界面连接,所述电芯串130中第二数量的电芯向所述第二电动工具300输出第二电压。
本发明电池包通过连接电芯串中不同数量的电芯,来输出至少两种电压。在输出至少两种电压的过程中无需进行电芯串并联,不仅能够简化电池包的连接电路,而且提供了一种电池包多压输出的新思路。
考虑到现有电动工具系统多通过不同的电池包为电动工具系统内不同工作电压的一个或多个电动工具提供电能支持;并且,即便也有双压电池包可以与不同电动工具进行匹配输出不同的工作电压,但双压电池包并不能与现有单压电池包互换连接于现有的电动工具,以至于现有与单压电池包匹配的电动工具无法适用现有的双压电池包。因此需要设计一种电动工具系统,以使该电动工具系统中,不仅第一电池包可以与第一电动工具耦合输出第一工作电压,而且第一电动工具和第二电动工具也可以互换耦合至第二电池包,并通过串联第二电池包中不同数量的电芯,对应向第一电动工具输出第一工作电压,向第二电动工具输出第二工作电压。
请参阅图33,本发明还提供一种电动工具系统,该电动工具系统可以改善现有电动工具系统中电动工具无法与单压电池包和双压电池包同时兼容的问题。该电动工具系统包括:第一电动工具200、第二电动工具300、第一电池包1300和第二电池包1400。第一电动工具200、第二电动工具300可以为能够通过电池包供电实现电力驱动的一切合适工具类型,例如花草修剪机、机动链锯、吹吸机、清洗机、割草机等类似的设备,本发明中所述第一电动工具200具有第一工具界面210,并在第一工作电压下工作,第一电动工具200通过第一工具界面210可以与对应的第一电池包1300实现连接。所述第二电动工具300具有第二工具界面310,并在第二工作电压下工作;第一电动工具200通过第一工
具界面210可以与第一电池包1300或第二电池包1400实现连接。
本发明电动工具系统,不仅第一电池包1300可以与第一电动工具200耦合输出第一工作电压,而且第一电动工具200和第二电动工具300也可以互换耦合至第二电池包1400,并通过串联第二电池包1400中不同数量的电芯,对应向第一电动工具200输出第一工作电压,向第二电动工具300输出第二工作电压。
请参阅图34,本发明中的所述第一电池包1300可以为一切可以与第一电动工具200相匹配连接的电池包结构,本实施例中第一电池包1300包括第一电池壳体10320、至少一个第一电芯串和第一电池界面1310。本发明中第一电池壳体10320的结构形式不受限定,只要内部形成一收容腔室供电芯串安装即可,在本实施例中第一电池壳体10320包括第一电池上壳体10321和第一电池下壳体10322,第一电池上壳体10321和第一电池下壳体10322相连接并在第一电池壳体10320内形成第一电芯收容腔(未示出);第一电池上壳体10321和第一电池下壳体10322之间的连接方式有多种,例如螺栓连接等,所述第一电芯收容腔内安装有第一电芯支架(未示出),所述第一电芯串通过过所述电芯支架可以稳定安装在所述第一电芯收容腔内。其中,当所述第一电动工具200与第一电池包1300连接时,所述第一工具界面210与所述第一电池界面1310连接,所述第一电池包1300向所述第一电动工具200输出第一工作电压。
请参阅图35,本发明中所述第二电池包1400包括第二电池壳体1420、第二电池界面1410和至少一个第二电芯串,第二电池壳体1420包括第二电池上壳体1421和第二电池下壳体1422,第二电池上壳体1421和第二电池下壳体1422相连接并在第二电池壳体1420内形成第二电芯收容腔(未示出),所述第二电芯串包括多个串联连接的电芯,多个串联连接的电芯固定安装在第二电芯收容腔内。当所述第一电动工具200与所述第二电池包1400连接时,所述第一工具界面210与所述第二电池界面1410连接,所述第二电芯串中串联连接的第
一数量的电芯向所述第一电动工具200输出第一工作电压;当所述第二电动工具300与所述第二电池包1400连接时,所述第二工具界面310与所述第二电池界面1410连接,所述电芯串中串联连接的第二数量的电芯向所述第二电动工具300输出第二工作电压。
请参阅图33、图35和图6,在本发明一实施例中所述第二电芯串包括第一电芯单元和第二电芯单元;所述第一电芯单元包括串联连接的第一数量(例如n个电芯Cell1至Celln)的第一电芯;所述第二电芯单元包括串联连接的第二数量(例如2n个电芯Cell1至Cell2n)的第二电芯;所述第一数量小于所述第二数量;当所述第二电池包1400处于所述第一工作电压输出状态时,所述第二电芯串中第一数量的电芯可以向对应的第一电动工具200输出第一工作电压;当所述第二电池包1400处于所述第二工作电压输出状态时,所述电芯串中第二数量的电芯可以向对应的第二电动工具300输出第二工作电压。在另一种实施方式中,当第二电池包1400与第一电动工工具匹配连接时,所述第二电池包1400向第一电动工具200输出第一工作电压,当第二电池包1400与第二电动工具300匹配连接时,所述第二电池包1400向所述第二电动工具300输出第二工作电压。
请参阅图33,本发明中,第二电动工具300与第一电池包1300之间的关系,可以不做限定,例如也可以第二电动工具300与第一电池包1300对应匹配进行工作,但在本发明一实施例中,所述第一电池包1300可以为现有常规单压电池包,具体结构不再详述。第二电动工具300不能与所述第一电池包1300进行匹配,第一电池包1300仅能在与第一电动工具200配合时向第一电动工具200输出第一工作电压。
请参阅图34和图35,在本发明一实施例中,所述第一电池界面1310包括第一电池正极端子13132和第一电池负极端子13131,所述第二电池界面1410包括第一正极端子1212,第二正极端子1213和负极端子1211,所述第一电动
工具200包括第一工具正极端子(未示出)和第一工具负极端子(未示出),所述第二电动工具300包括第二工具正极端子(未示出)和第二工具负极端子(未示出),所述第一电池正极端子13132和第一电池负极端子13131之间的水平距离为L1,所述第一正极端子1212和所述负极端子1211之间的水平距离为L2,所述L1与所述L2大体相等,所述第二正极端子1213和所述负极端子1211之间的水平距离为L3,其中L3大于L2。这样第一电池包1300和第二电池包1400可以互换与第一电动工具200上的第一工具正极端子和第一工具负极端子电连接,当将第一电池界面1310与第一工具界面210匹配连接时,第一工具正极端子与第一电池正极端子13132电连接,第一工具负极端子与第一电池包1300工具负极端子1211电连接,第一电池包1300向第一电动工具200提供第一工作电压,当将第二电池界面1410与第一工具界面210匹配连接时,第一工具正极端子与第一正极端子1212电连接,第一工具负极端子与第一负极端子1211电连接,第二电池包1400向第一电动工具200提供第一工作电压。
请参阅图34,本发明中所述第一电池正极端子13132和第一电池负极端子13131之间的水平距离为L1的具体数值可以不做限定,在本发明一实施例中,所述L1为20cm~50cm,譬如,可以为20cm、25cm、30cm、35cm、40cm、45cm、50cm。
请参阅图36,在本发明一实施例中,所述电动工具系统还包括第三电池包1500,可以通过第三电池包1500为第二电动工具300提供第二工作电压。所述第三电池包1500包括第三电池包壳体1520,第三电池包壳体1520包括第三电池包上壳体1521和第三电池包下壳体1522,第三电池包上壳体1521和第三电池包下壳体1522相连接并在第三电池包壳体1520内形成第三电芯收容腔(未示出);第三电池包上壳体1521和第三电池包下壳体1522之间的连接方式有多种,例如螺栓连接等,所述多个电芯安装在所述第三电池收容腔内,所述第三电池包1500还包括第三电池界面1510,所述第三电池界面1510包括第三电池正极端子15132和第三电池负极端子15131,当所述第三电池包1500与所述第
二电动工具300连接时,所述第三电池包1500向所述第二电动工具300输出第二工作电压。
请参阅图35和图36,本发明中只要能够实现第三电池包1500与第二电动工具300的可靠电连接,第三电池正极端子和第三电池负极端子15131之间的距离及设置形式可以不做限定。考虑到第二电动工具300与第二电池包1400的对应匹配关系,在本发明一实施例中,所述第二正极端子1213和所述负极端子1211之间的水平距离L3与所述第三电池正极端子15132和第三电池负极端子15131之间的水平距离L4与所述第二工具正极端子和所述第二工具负极端子之间的水平距离三者大体相等,这样第三电池包1500与第二电池包1400可以互换电连接于第二电动工具300上的第二工具正极端子和第二工具负极端子。
在本发明一实施例中,所述第一电池界面1310与现有常规单压电池的界面相同,所述第三电池界面1510与所述第一电池界面1310不同。所述第一电池界面1310上具有两个端子槽,所述第一电池正极端子13132和所述第一电池负极端子13131分别设置在两个所述端子槽内,在本发明一实施例中,每一所述端子槽的宽度L5可以为1mm~3mm之间的任意数值,例如可以为1mm、1.5mm、2mm、2.5mm、3mm。考虑到对应电接插片的厚度与电接稳定性之间的关系,较佳地,本发明一实施例中采用2.5mm左右的宽度。
在本发明一实施例中,所述第二电池界面1410上具有三个端子槽,所述第一正极端子1212、所述第二正极端子1213和所述负极端子1211分别设置在对应的所述端子槽内,每一所述端子槽的宽度L6可以为1mm~3mm之间的任意数值,例如可以为1mm、1.5mm、2mm、2.5mm、3mm。考虑到对应电接插片的厚度与电接稳定性之间的关系,较佳地,本发明一实施例中采用2.5mm左右的宽度。
在本发明一实施例中,所述第三电池界面1510上具有两个端子槽,所述第三电池正极端子15132和所述第三电池负极端子15131分别设置在对应的所述
端子槽内,每一所述端子槽的宽度L7可以为1mm~3mm之间的任意数值,例如可以为1mm、1.5mm、2mm、2.5mm、3mm。考虑到对应电接插片的厚度与电接稳定性之间的关系,较佳地,本发明一实施例中采用2.5mm左右的宽度。
请参阅图34至图35,本发明一实施例中,第一电池界面1310还包括第一导轨10311、第一锁扣10312和通信端口(未图示);第二电池界面1410还包括第二导轨1411、第二锁扣1412和通信端口(未图示);第三电池界面1510还包括第三导轨1511、第三锁扣1512和通信端口(未图示);第二工具界面310上设置有与所述第二导轨1411和所述第三导轨1511相配的一个或多个滑槽(未示出);对应导轨和对应的滑槽相互配合用于引导对应电池包与第二电动工具300机械连接结构的对接,第二工具界面310上设置有与所述第一锁扣10312、所述第二锁扣1412和所述第三锁扣1512相配的一个或多个锁合凹槽(未示出);对应锁扣与对应锁合凹槽配合用于将机械连接和电连接后的对应电池包锁定在第二电动工具300上。需要说明的是本申请中导轨、锁扣和输出端子在电池包上的设置形式可以为现有一切合适的结构形式,具体不再详述。在本发明一实施例中,所述第二导轨1411和所述第三导轨1511可互换连接于所述第二工具界面310上的同一滑槽,所述第二锁扣1412和所述第三锁扣1512可互换连接于所述第二工具界面310上的同一锁合凹槽。需要说明的是第一电动工具200上也设置有与第一导轨10311相配的滑槽和第一锁扣10312相配的锁合凹槽,滑槽和锁合凹槽结构可参加现有结构,具体不再详述。
在本发明电动工具系统一实施例中,所述第一电池包1300、第二电池包1400、第三电池包1500还包括对应的控制单元和通讯端口,所述通讯端口与所述控制单元电连接,所述第一电动工具还包括与所述通讯端口相配的第一通讯端子(未示出),所述第二电动工具300还包括与所述通讯端口相配的第二通讯端子(未示出),当所述第二电池包1400与所述第一电动工具200连接时,所述通讯端口与所述第一通讯端子电连接,所述控制单元控制所述第二电池包1400输出第一工作电压;当所述第二电池包1400与所述第二电动工具300连
接时,所述通讯端口与所述第二通讯端子电连接,所述控制单元控制所述第二电池包1400输出第二工作电压。
请参阅图6,在本发明电动工具系统一实施例中,所述第二电池包1400所述负极端子1211与所述第二电芯串(电芯串130)的负极电连接,所述第一正极端子1212通过与所述第二电芯串430的第一位置131电连接,所述第一位置131与所述负极之间具有第一数量的依次串联连接的电芯(例如n个电芯Cell1至Celln),所述第二正极端子1213通过与所述第二电芯串430上的第二位置132电连接,所述第二位置132与所述负极之间具有第二数量的依次串联连接的电芯(例如2n个电芯Cell1至Cell2n),当第一电动工具200与第二电池包1400连接时,第一工具界面210与第二电池包1400界面连接,所述第一数量的电芯通过所述负极端子1211和所述第一正极端子1212输出第一工作电压;当第二电动工具300与第二电池包1400连接时,第二工具界面310与第二电池界面1410机械连接和电连接,所述第二数量的电芯通过所述负极端子1211和所述第二正极端子1213输出第二工作电压。
请参阅图6和图35,在本发明一实施例中,所述第二电池界面1410还包括至少两个正极充电端子CH1+和CH2+,CH1+和P-、CH2+和P-分别能与对应充电器电连接接收至少两种电压输入。所述充电端子(CH1+、CH2+和P-)可以与输出端子独立设置,也可以与输出端子共用一个端子。在本发明电池包一实施例中,所述第二电池包1400中,可以通过第一正极端子1212和负极端子1211与充电器连接,并接收第一工作电压的电能输入,以为第一位置131与负极之间的第一数量的电芯充电。还可以通过第二正极端子1213和负极端子1211与充电器连接,并接收第二工作电压的电能输入,以为第二位置132与负极之间的第二数量的电芯充电。
请参阅图6,所述第二电池包1400还包括控制单元1311、电压检测单元1319、温度检测单元1313、均衡单元1312、第一负载检测单元1316、第二负
载检测单元1317、电量显示单元1318、通讯单元1320、I2C控制单元1315、低压线性稳压器1314(LDO即low dropout regulator)。所述控制单元1311由整个第二电芯串430供电,所述控制单元1311的对应端子分别与第二电芯串430的正极和负极电连接,线性稳压器1314电连接在所述控制单元1311和所述第二电芯串430的正极之间,并为所述控制单元1311提供稳定的电压。所述电压检测单元1319与所述第二电芯串430中的每一电芯电连接以对所述电芯的电压进行检测,并将检测的结果通过I2C模块传送给控制单元1311。在一种实施方式中,所述电压检测单元1319为AFE(analog front end)。温度检测单元1313对每一电芯的温度进行检测,并将检测的结果传送给控制单元1311,所述第二电池界面1410还包括通讯端口1215,所述通讯端口1215通过通讯单元1320与控制单元1311连接,并用于与所述充电器和/或电动工具进行通讯。电量显示单元1318与控制单元1311电连接,用于显示第二电池包1400的电量。第一负载检测单元1316分别与控制单元1311和所述第二电芯串430的正极电连接;第二负载检测单元1317分别与控制单元1311和第二电芯串430电连接,第一负载检测单元1316和第二负载检测单元1317用于对外部接入的设备进行识别,以对应确定接入设备是第一工作电压设备还是第二工作电压设备。
请参阅图17至图22,图17至图22示出了所述第二电池包1400的另一实施方式。所述第二电芯串430包括开关单元和依次串联连接的多个电芯,所述输出端子包括第一正极端子1212、第二正极端子1213、负极端子1211、充电正极端子1216。所述负极端子1211与所述第二电芯串430的负极电连接,所述第一正极端子1212与所述第二电芯串430的第一位置131电连接,所述第一位置131与所述负极之间具有第一数量的依次串联连接的电芯(例如n个电芯Cell1至Celln),所述第二正极端子1213与所述第二电芯串430上的第二位置132电连接,所述第二位置132与所述负极之间具有第二数量的依次串联连接的电芯(例如2n个电芯Cell1至Cell2n),所述充电正极端子1216通过第一充电回路144与第二电芯串430的第一位置131电连接,所述充电正极端子1216
通过第二充电回路145与第二电芯串430的第二位置132电连接;所述开关单元包括第一充电开关1441和第二充电开关4451,所述第一充电开关1441安装在第一充电回路144上,并与第一驱动单元电连接,所述第二充电开关4451安装在第二充电回路145上并与第二驱动单元电连接;所述电池包的控制单元1311分别与所述第一驱动单元和第二控制单元1311电连接。所述开关单元具有第一状态、第二状态和第三状态;在所述开关单元处于第一状态时,控制单元1311通过第一驱动单元和第二驱动单元驱动第一充电开关1441和第二充电开关1451全部断开,这时所述电池包可以通过第一正极端子1212与所述负极端子1211输出第一工作电压或通过第二正极端子1213与所述负极端子1211输出第二工作电压;在所述开关单元处于第二状态时,控制单元1311通过第一驱动单元驱动第一充电开关1441导通Q1,且通过第二驱动单元驱动第二开关断开;所述充电端子与所述负极端子1211为所述串联连接第一数量的电芯充电;在所述开关单元处于第三状态时,控制单元1311通过第一驱动单元驱动第一充电开关1441断开,且通过第二驱动单元驱动第二充电开关1451导通,所述充电正极端子1216与所述负极端子1211为所述串联连接第二数量的电芯充电。所述电池包还包括取样电阻1321,所述取样电阻1321安装在所述第一正极端子1212与所述第二电芯串130之间的第一电流回路141上,所述控制单元1311通过电流检测单元采样所述第一正极端子1212与所述第二电芯串130之间的电流状态,并根据电流状态调整第一工作电压和第二工作电压的输出与关闭。
请参阅图33、图17至图20,在接入第一电动工具200时,通讯端口1215上拉激活电池包,控制单元1311检测取样电阻1321上的电流I,此时电流I的绝对值大于0,电池包配置为V1电压放电模式,通讯单元1320发送该放电模式下的握手信息与第一电动工具200建立正确的通讯连接,第一电动工具200开始正常工作,在工作过程中,控制单元1311监控Cell1~Celln的电压以及电池包温度,当检测到的电压和温度有异常时,通讯单元1320发送异常信号给第一电动工具200,第一电动工具200停止工作;在接入第二电动工具300时,
通讯端口1215上拉激活电池包的BMS,控制单元1311检测取样电阻1321上的电流I,此时电流I的绝对值等于0,电池包配置为V2电压放电模式,通讯单元1320发送该放电模式下的握手信息与第二电动工具300建立正确的通讯连接,第二电动工具300开始正常工作,在工作过程中,控制单元1311监控Cell1~Cell2n的电压以及电池包温度,当检测到的电压和温度有异常时,通讯单元1320发送异常信号给第二电动工具300,第二电动工具300停止工作。
请参阅图21至图22,充电器既可以通过充电正极端口CH+和负极端口P-,以第一工作电压为电芯串里第一数量的电芯充电,也可以通过充电正极端口CH+和负极端口P-,以第二工作电压为电芯串里第二数量的电芯充电。充电器通过COM激活电池包,电池包控制单元1311检测电池内部电芯电压和温度,当第二位置132与第一位置131处的电压差△V大于等于设定阈值时(例如大于等于100mV)时,电池包通过COM端子发送n串握手信息,同时控制单元1311控制Q1导通,Q2断开,充电器以第一工作电压给电池包充电;直至当第二位置132与第一位置131处的电压差△V小于设定阈值(例如小于100mV)时,电池包COM发送2n串握手信息,同时控制单元1311控制Q2导通,Q1断开,充电器以第二工作电压给电池包充电,此时电池包处于第二工作电压充电阶段。请参阅图12,在另一实施方式中,所述电池包也可以包括多个电芯串,例如包括m个电芯串,m为大于等于2的自然数,所述m个电芯串相并联,所述第一正极端子1212与每一所述电芯串上的第一位置131电连接、所述第二正极端子1213与每一所述电芯串上的第二位置132电连接,所述负极端子1211与每一所述电芯串的负极电连接,每一所述电芯串上的所述第一位置131与负极之间均串联有第一数量(例如n个)的电芯,每一所述电芯串上的所述第二位置132与负极之间均串联有第二数量(例如2n个)的电芯,所述第二数量大于所述第一数量,以使第二工作电压大于第一工作电压;所述电池包可以通过所述第一正极端子1212和所述负极端子1211输出第一工作电压;所述电池包可以通过所述第二正极端子1213和所述负极端子1211输出第二工作电压。
请参阅图32,图32为在本发明第二电池包1400另外一实施例中,该第二电池包1400与图6中第二电池包1400的不同在于,所述第二电芯串130包括第一电池组和第二电池组,所述第一电池组包括第一数量(例如n个)的电芯单元,所述第二电池组包括第二数量(例如2n个)的电芯单元,所述电芯单元由两个或多个电芯并联组成,所述第二电池组的电芯单元数量大于所述第一电池组的电池单元数量;所述第一电池组通过所述输出端子输出第一工作电压,所述第二电池组通过所述输出端子输出第二工作电压。这种设置方法可以通过每一电池组中多个并联的电芯来对扩充第二电池包1400的容量。
请参阅图30,本发明第二电池包另外一实施例中,第二电池包1400与图17中电池包的不同在于,本实施例中包括多个第二电芯串130,所述多个第二电芯串130收容在所述第二电池收容腔中,且并联设置;所述负极端子1211与所述多个第二电芯串130的负极电连接,所述第一正极端子1212与每一所述第二电芯串130上的第一等电势位置电连接,所述第二电池包1400通过所述第一正极端子1212和所述负极端子1211输出第一工作电压;所述第二正极端子1213从每一所述第二电芯串130上的第二等电势位置电连接,所述第二电池包1400通过所述第二正极端子1213和所述负极端子1211输出第二工作电压。本实施中只要第一电流回路141与多个第二电芯串130连接处的电势相等,第二电流回路142与多个第二电芯串130连接处的电势相等,对应输出第一工作电压的电芯的数量和输出电压,以及对应输出第二工作电压的电芯的数量和输出电压均可以不做限定。
需要说明的时,上述各实施例中,关于第一数量n、第二数量2n的举例说明,并不限定第二数量、第一数量之间对应的倍数关系,例如在另外一些实施例中,当第一数量为n时,第二数量可以对应为n+t,其中上述n、t均可以为任意自然数。
本发明电动工具系统,不仅第一电池包可以与第一电动工具耦合输出第一
工作电压,而且第一电动工具和第二电动工具也可以互换耦合至第二电池包,并通过串联第二电池包中不同数量的电芯,对应向第一电动工具输出第一工作电压,向第二电动工具输出第二工作电压。
同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术,它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压,可满足产品对效率、温升、噪声等参数的要求,非常显著地降低整流损耗,符合节能环保的理念。单端反激变换器是应用最为广泛的DC-DC变换电路拓扑,因其结构简单、工作可靠、易于设计生产,在小功率场合应用较多。
请参阅图1及图2,现有的单端反激变换器的输入侧和输出测分别连接电源和负载,其主要包括开关管Q1、功率变压器T1和同步整流管Q2,开关管Q1的开关信号和同步整流管Q2的驱动信号大多数采用了独立专用的同步整流芯片,通过闭合与导通开关管Q1,在功率变压器T1两端产生高频方波信号,功率变压器T1将产生的方波信号以磁场感应的方式传递到次级线圈,通过同步整流管Q2在输出端得到稳定的直流输出。甚至还有一些工程师会用准谐振变换器(QRC)方式控制同步整流管的开关,采用上述方案,存在以下问题:
1、同步整流电路控制技术一般使用在对电源转换效率要求较高的场合,这种产品的特点一般是输出电压低,输出电流大,由于同步整流芯片自身的耗电,导致采用芯片控制的同步整流电路多了一个能效损耗点。
2、目前市场上常用的同步整流芯片可工作的电压范围较低,不太适合输出电压较高的场合,并且芯片外围电路需要增加额外的附加电路来保证芯片能够正常工作,增加了成本。
3、QRC的控制模式同样存在能效损耗的问题,并且QRC模式同步整流控制精度不高,产品在轻载模式下QRC电路工作不正常,容易导致同步整流管工作在轻度短路的状态。
请参阅图39,本发明还提供一种同步整流控制电路6200,该同步整流控制
电路6200应用于单端反激变换器6100,用于为单端反激变换器6100提供驱动信号。该同步整流控制电路及反激式开关电源,在现有的同步整流拓扑电路的基础上进行了改进,将单端反激变换器和同步整流控制电路区分开,当器件工作异常或者损坏的情况下,同步整流管不会因为控制电路器件的损坏而损坏或者出现短路现象;通过控制原边变压器半桥开关MOS的PWM驱动芯片信号来同时控制原边开关管和副边同步整流管,不需要同步整流驱动芯片,一致性较好、适用于大电压的输出场景,也降低了产品成本,可以用于解决现有技术中耗电量高、不适合输出电压较高的场合的问题。
请参阅图38,本实施例中的单端反激变换器6100的核心原件包括开关管Q1、功率变压器T1和同步整流管Q2,功率变压器T1原边的异名端与电源连接、同名端与开关管Q1的漏极连接,开关管Q1的栅极与脉宽调整信号(PWM)连接,开关管Q1的源极接地;功率变压器T1副边的同名端与负载的正极连接,异名端与同步整流管Q2的漏极连接,同步整流管Q2的源极与负载的负极连接,同步整流管Q2的栅极与同步整流控制电路6200连接,根据同步整流控制电路6200输出的驱动信号输出直流电压到负载。
具体的说,同步整流控制电路6200主要包括:驱动绕组6210、隔离模块6220及驱动模块6230;
驱动绕组6210,与单端反激变换器6100的输入侧绕组相耦合,且其与原边的输入侧绕组同相位,采用这种方案,可实现驱动绕组6210与原边线圈的同步驱动电平。驱动绕组6210的异名端分别与隔离模块6220的输出端和驱动模块6230的第一输入端连接,驱动绕组6210的同名端接地。驱动绕组6210感应功率变压器T1原边的磁场变化,产生相应的交流电压信号。进一步的,同步整流控制电路6200还包括第三电阻R3,第三电阻R3并联在驱动绕组6210的两端,通过调整第三电阻R3的阻值,可适当调整交流电压信号的大小。
隔离模块6220,其输入端与PWM信号连接,输出端分别与驱动绕组6210的输出端及驱动模块6230的第二输入端连接。隔离模块6220用于实现主电路
与控制电路的隔离,避免了干扰信号对控制电路的影响。进一步的,隔离模块6220包括光耦PC1和第一电阻R1;光耦PC1输入测的两端与第一电阻R1并联,且光耦PC1输入侧的正极与PWM信号连接,光耦PC1输入测的负极接地;光耦PC1输出测的集电极与驱动绕组6210的异名端连接,发射极与驱动模块6230的第二输入端连接。进一步的,隔离模块6220还包括第二电阻R2和二极管D1;第二电阻R2的一端与PWM信号连接,另一端与光耦PC1输入侧的正极连接;通过调整第一电阻R1、第二电阻R2的阻值,可适当调整PWM信号的强弱。二极管D1的正极与驱动绕组6210的异名端连接,负极与光耦PC1输出测的集电极连接。当驱动绕组6210的异名端为高电平,且光耦PC1导通时,该高电平即可通过二极管D1和光耦PC1的输出端输出到驱动模块6230。
需要说明的是,本实施例中的光耦PC1应选择可以工作在高速开关模式下的高速隔离光电耦合器,通过高速隔离光电耦合器,可将原边的PWM驱动信号传送到副边的同步整流管Q2,实现了开关信号和驱动信号高度同步驱动的一致性。
驱动模块6230,其输出端与单端反激变换器6100的同步整流管Q2的控制端连接,用于输出驱动信号到同步整流管Q2的栅极。进一步的,驱动模块6230包括第三MOS管Q3、第四MOS管Q4及第四电阻R4;第三MOS管Q3的栅极作为驱动模块的第一输入端,与驱动绕组6210的异名端连接;第三MOS管Q3的漏极作为驱动模块6230的第二输入端,分别与隔离模块6220的输出端、第四MOS管Q4的栅极、单端反激变换器6100的输出侧绕组的同名端连接;第四MOS管Q4的源极与单端反激变换器6100的输出侧绕组的同名端、以及单端反激变换器6100的同步整流管Q2的控制端连接,同步整流管Q2的控制端通过第四电阻R4接地;第三MOS管Q3的源极和第四MOS管Q4的漏极分别接地。进一步的,驱动模块6230还包括第五电阻R5;第五电阻R5的一端作为驱动模块6230的第一输入端,与驱动绕组6210的异名端连接;第五电阻R5的另一端与第三MOS管Q3的栅极连接。进一步的,驱动模块6230还包括第六电阻R6;第六电阻R6的一端作为驱动模块6230的第二输入端,与隔离
模块6220的输出端连接;第六电阻R6的另一端分别与第三MOS管Q3的漏极、第四MOS管Q4的栅极、单端反激变换器6100的输出侧绕组的同名端连接。进一步的,驱动模块6230还包括第七电阻R7及第八电阻R8;第七电阻R7的一端分别与第六电阻R6的另一端、第三MOS管Q3的漏极及第四MOS管Q4的栅极连接,另一端与单端反激变换器6100的输出侧绕组的同名端连接;第八电阻R8的一端分别与第四MOS管Q4源极、同步整流管Q2的控制端、第四电阻R4的一端连接,另一端与单端反激变换器6100的输出侧绕组的同名端连接。
需要说明的是,本实施例中,第三MOS管Q3为N沟道MOS管,第四MOS管Q4为P沟道MOS管。
采用上述结构,单端反激变换器6100的驱动信号和开关信号均来自于原边的PWM信号,使得反激式开关电源可应用于输出电压较高的场景,解决了输出电压较高时无同步整流芯片可选的尴尬局面。
应理解,本实施方式的同步整流控制电路6200可扩展至LLC开关电源、双管正激开关电源的输出同步整流驱动控制。
以下对同步整流控制电路6200的工作原理进行说明:
当开关管Q1栅极的PWM信号为高电平时,开关管Q1导通,功率变压器T1原边线圈2到1将会有电流通过,同时,PWM信号的高电平经过电阻R2到光耦PC1的输入端的正极,光耦PC1导通,由于驱动绕组6210的相位与功率变压器T1原边相同,驱动绕组6210异名端的电压V1为高电平,该高电平经第五电阻R5流入第三MOS管Q3的栅极、经第六电阻R6流入第三MOS管Q3的漏极和第四MOS管Q4的栅极,使第三MOS管Q3导通,从而将第四MOS管Q4的栅极电平拉低,第四MOS管Q4导通,此时同步整流管Q2的栅极电压V3被拉低,同步整流管Q2保持关闭状态,此时功率变压器T1处于储能状态,此时电路完成了一个工作周期的一半。
当开关管Q1栅极的PWM信号为低电平时,开关管Q1截止,光耦PC1截止,第三MOS管Q3的栅极电压V1为低电平,第三MOS管Q3工作在截止
状态,根据反激式变压器的工作原理可知,当功率变压器T1原边线圈有电流通过时,副边线圈工作在充能状态,且原边线圈与副边线圈的同名不一致,因此当功率变压器T1原边线圈2到1没有电流通过时,副边线圈3到4的电动势发生反转,此时副边线圈的同名端为高电平,该高电平经第八电阻R8接通到同步整流管Q2的栅极,由于原边PWM信号的消失,光耦PC1截止,因此第三MOS管Q3截止,无法将第四MOS管Q4的栅极电压V2连接到低电平,此时,副边线圈同名端的高电平信号通过第七电阻R7接通到第四MOS管Q4的栅极,由于第四MOS管Q4为P沟道MOS管,因此工作在断开状态,同步整流管Q2的栅极电压V3保持高电平,同步整流管Q2保持导通,工作在整流状态,为后端的负载提供电能,直至栅极电压V3转变为低电平时,整个电路完成了一次完整的整流工作。
可见,本实施方式在现有的同步整流拓扑电路的基础上进行了改进,将单端反激变换器6100和同步整流控制电路6200区分开,当器件工作异常或者损坏的情况下,同步整流管不会因为控制电路器件的损坏而损坏或者出现短路现象;通过控制原边变压器半桥开关MOS的PWM驱动芯片信号来同时控制原边开关管和副边同步整流管,不需要同步整流驱动芯片,一致性较好、适用于大电压的输出场景,也降低了产品成本。本发明电路简单、电路的一致性好、电路效率高、工作可靠,有较好的经济效益及社会效益。
请参阅图40,本发明的第二实施方式涉及一种反激式开关电源,包括:单端反激变换器6100及同步整流控制电路6200,单端反激变换器6100,其输入侧和输出测分别连接电源和负载,根据同步整流控制电路6200的驱动信号,将电源的交流信号进行整流,并为后端负载提供稳定的直流输出。
请参阅图39,单端反激变换器6100包括:开关管Q1、功率变压器T1和同步整流管Q2;功率变压器T1包括原边线圈和副边线圈,且原边线圈和副边线圈的相位相反。开关管Q1的栅极与脉宽调整信号(PWM)连接,开关管Q1的源极接地;功率变压器T1副边的同名端与负载的正极连接,异名端与同步整流管Q2的漏极连接,同步整流管Q2的源极与负载的负极连接,同步整流
管Q2的栅极与同步整流控制电路6200连接,根据同步整流控制电路6200输出的驱动信号输出直流电压到负载。
同步整流控制电路6200包括:驱动绕组6210、隔离模块6220及驱动模块6230;
驱动绕组6210,与单端反激变换器6100的输入侧绕组相耦合,且其与原边的输入侧绕组同相位,采用这种方案,可实现驱动绕组6210与原边线圈的同步驱动电平。驱动绕组6210的异名端分别与隔离模块6220的输出端和驱动模块6230的第一输入端连接,驱动绕组6210的同名端接地。驱动绕组6210感应功率变压器T1原边的磁场变化,产生相应的交流电压信号。进一步的,同步整流控制电路6200还包括第三电阻R3,第三电阻R3并联在驱动绕组的两端,通过调整第三电阻R3的阻值,可适当调整交流电压信号的大小。
隔离模块6220,其输入端与PWM信号连接,输出端分别与驱动绕组6210的输出端及驱动模块6230的第二输入端连接。隔离模块6220用于实现主电路与控制电路的隔离,避免了干扰信号对控制电路的影响。进一步的,隔离模块6220包括光耦PC1和第一电阻R1;光耦PC1输入测的两端与第一电阻R1并联,且光耦PC1输入侧的正极与PWM信号连接,光耦PC1输入测的负极接地;光耦PC1输出测的集电极与驱动绕组6210的异名端连接,发射极与驱动模块6230的第二输入端连接。进一步的,隔离模块6220还包括第二电阻R2和二极管D1;第二电阻R2的一端与PWM信号连接,另一端与光耦PC1输入侧的正极连接;通过调整第一电阻R1、第二电阻R2的阻值,可适当调整PWM信号的强弱。二极管D1的正极与驱动绕组6210的异名端连接,负极与光耦PC1输出测的集电极连接。当驱动绕组6210的异名端为高电平,且光耦PC1导通时,该高电平即可通过二极管D1和光耦PC1的输出端输出到驱动模块6230。
需要说明的是,本实施例中的光耦PC1应选择可以工作在高速开关模式下的高速隔离光电耦合器,通过高速隔离光电耦合器,可将原边的PWM驱动信号传送到副边的同步整流管Q2,实现了开关信号和驱动信号高度同步驱动的一致性。
驱动模块6230,其输出端与单端反激变换器6100的同步整流管Q2的控制端连接,用于输出驱动信号到同步整流管Q2的栅极。进一步的,驱动模块6230包括第三MOS管Q3、第四MOS管Q4及第四电阻R4;第三MOS管Q3的栅极作为驱动模块的第一输入端,与驱动绕组6210的异名端连接;第三MOS管Q3的漏极作为驱动模块6230的第二输入端,分别与隔离模块6220的输出端、第四MOS管Q4的栅极、单端反激变换器6100的输出侧绕组的同名端连接;第四MOS管Q4的源极与单端反激变换器6100的输出侧绕组的同名端、以及单端反激变换器6100的同步整流管Q2的控制端连接,同步整流管Q2的控制端通过第四电阻R4接地;第三MOS管Q3的源极和第四MOS管Q4的漏极分别接地。进一步的,驱动模块6230还包括第五电阻R5;第五电阻R5的一端作为驱动模块6230的第一输入端,与驱动绕组6210的异名端连接;第五电阻R5的另一端与第三MOS管Q3的栅极连接。进一步的,驱动模块6230还包括第六电阻R6;第六电阻R6的一端作为驱动模块6230的第二输入端,与隔离模块6220的输出端连接;第六电阻R6的另一端分别与第三MOS管Q3的漏极、第四MOS管Q4的栅极、单端反激变换器6100的输出侧绕组的同名端连接。进一步的,驱动模块6230还包括第七电阻R7及第八电阻R8;第七电阻R7的一端分别与第六电阻R6的另一端、第三MOS管Q3的漏极及第四MOS管Q4的栅极连接,另一端与单端反激变换器6100的输出侧绕组的同名端连接;第八电阻R8的一端分别与第四MOS管Q4源极、同步整流管Q2的控制端、第四电阻R4的一端连接,另一端与单端反激变换器6100的输出侧绕组的同名端连接。
需要说明的是,本实施例中,第三MOS管Q3为N沟道MOS管,第四MOS管Q4为P沟道MOS管。
采用上述结构,单端反激变换器6100的驱动信号和开关信号均来自于原边的PWM信号,使得反激式开关电源可应用于输出较高的场景,解决了输出电压较高时无同步整流芯片可选的尴尬局面。
应理解,本实施方式的反激式开关电源可为多种类型,例如LLC开关电源、
双管正激开关电源。
以下对反激式开关电源的工作原理进行说明:
当开关管Q1栅极的PWM信号为高电平时,开关管Q1导通,功率变压器T1原边线圈2到1将会有电流通过,同时,PWM信号的高电平经过电阻R2到光耦PC1的输入端的正极,光耦PC1导通,由于驱动绕组6210的相位与功率变压器T1原边相同,驱动绕组6210异名端的电压V1为高电平,该高电平经第五电阻R5流入第三MOS管Q3的栅极、经第六电阻R6流入第三MOS管Q3的漏极和第四MOS管Q4的栅极,使第三MOS管Q3导通,从而将第四MOS管Q4的栅极电平拉低,第四MOS管Q4导通,此时同步整流管Q2的栅极电压V3被拉低,同步整流管Q2保持关闭状态,此时功率变压器T1处于储能状态,此时电路完成了一个工作周期的一半。
当开关管Q1栅极的PWM信号为低电平时,开关管Q1截止,光耦PC1截止,第三MOS管Q3的栅极电压V1为低电平,第三MOS管Q3工作在截止状态,根据反激式变压器的工作原理可知,当功率变压器T1原边线圈有电流通过时,副边线圈工作在充能状态,且原边线圈与副边线圈的同名不一致,因此当功率变压器T1原边线圈2到1没有电流通过时,副边线圈3到4的电动势发生反转,此时副边线圈的同名端为高电平,该高电平经第八电阻R8接通到同步整流管Q2的栅极,由于原边PWM信号的消失,光耦PC1截止,因此第三MOS管Q3截止,无法将第四MOS管Q4的栅极电压V2连接到低电平,此时,副边线圈同名端的高电平信号通过第七电阻R7接通到第四MOS管Q4的栅极,由于第四MOS管Q4为P沟道MOS管,因此工作在断开状态,同步整流管Q2的栅极电压V3保持高电平,同步整流管Q2保持导通,工作在整流状态,为后端的负载提供电能,直至栅极电压V3转变为低电平时,整个电路完成了一次完整的整流工作。
综上所述,本发明的一种同步整流控制电路及反激式开关电源,在现有的同步整流拓扑电路的基础上进行了改进,将单端反激变换器6100和同步整流控制电路6200区分开,当器件工作异常或者损坏的情况下,同步整流管不会因为
控制电路器件的损坏而损坏或者出现短路现象;通过控制原边变压器半桥开关MOS的PWM驱动芯片信号来同时控制原边开关管和副边同步整流管,不需要同步整流驱动芯片,一致性较好、适用于大电压的输出场景,也降低了产品成本。本发明电路简单、电路的一致性好、电路效率高、工作可靠,有较好的经济效益及社会效益。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
Claims (37)
- 一种电池包,其特征在于,包括:壳体,所述壳体内形成一收容腔;至少一个电芯串,所述电芯串收容在所述收容腔中,并包括多个串联连接的电芯;电池界面,所述电池界面用于与具有不同工作电压的电动工具连接;其中,通过连接电芯串中不同数量的电芯,所述电池包可以输出至少两种电压。
- 根据权利要求1所述的电池包,其特征在于,所述电池包包括一个所述电芯串,所述电池界面包括负极端子、第一正极端子和第二正极端子;第一数量的电芯通过所述负极端子和所述第一正极端子输出第一电压;第二数量的电芯通过所述负极端子和所述第二正极端子输出第二电压;所述第二数量大于所述第一数量。
- 根据权利要求1所述的电池包,其特征在于,所述电池包包括开关单元和一个所述电芯串,所述电池界面包括负极端子和正极端子;所述负极端子电连接至所述电芯串的负极,所述正极端子分别电连接至所述电芯串的第一位置和第二位置;所述开关单元具有第一状态和第二状态,当所述开关单元处于第一状态时,第一数量的电芯通过所述负极端子和所述正极端子输出第一电压;当所述开关单元处于第二状态时,第二数量的电芯通过所述负极端子和所述第二正极端子输出第二电压;其中所述第二数量大于所述第一数量。
- 根据权利要求1所述的电池包,其特征在于,所述电池包包括一个所述电芯串,所述电池界面包括负极端子、第一正极端子、第二正极端子和第三正极端子;第一数量的电芯通过所述负极端子和所述第一正极端子输出第一电压;第二数量的电芯通过所述负极端子和所述第二正极端子输出第二电压;第三数量的电芯通过所述负极端子和所述第三正极端子输出第三电压;所述第二数量大于所述第一数量;所述第三数量大于所述第二数量。
- 根据权利要求1所述的电池包,其特征在于,所述电池包包括开关单元和一个所述电芯串,所述电池界面包括负极端子和正极端子;所述负极端子电连 接至所述电芯串的负极,所述正极端子分别电连接至所述电芯串的第一位置、第二位置和第三位置;所述开关单元具有第一状态、第二状态和第三状态,当所述开关单元处于第一状态时,所述第一位置与所述负极之间第一数量的电芯输出第一电压;当所述开关单元处于第二状态时,所述第二位置与所述负极之间第二数量的电芯输出第二电压;当所述开关单元处于第三状态时,所述第三位置与所述负极之间第三数量的电芯输出第三电压;其中所述第二数量大于所述第一数量,所述第三数量大于所述第二数量。
- 根据权利要求1所述的电池包,其特征在于,所述电池包包括多个电芯串,所述多个电芯串相并联,所述电池界面包括第一正极端子、第二正极端子和负极端子;所述第一正极端子与每一所述电芯串上的第一位置电连接、所述第二正极端子与每一所述电芯串上的第二位置电连接,所述负极端子与每一所述电芯串的负极电连接,每一所述电芯串上的所述第一位置与负极之间均串联有第一数量的电芯,每一所述电芯串上的所述第二位置与负极之间均串联有第二数量的电芯,所述第二数量大于所述第一数量;所述电池包通过所述第一正极端子和所述负极端子输出第一电压;所述电池包通过所述第二正极端子和所述负极端子输出第二电压。
- 根据权利要求1所述的电池包,其特征在于,所述电池包包括开关单元和多个电芯串,所述多个电芯串相并联,所述电池界面包括正极端子和负极端子;所述正极端子分别与每一所述电芯串上的第一位置、第二位置、第三位置电连接、所述负极端子与每一所述电芯串的负极电连接,每一所述电芯串上的所述第一位置与负极之间均串联有第一数量的电芯,每一所述电芯串上的所述第二位置与负极之间均串联有第二数量的电芯,每一所述电芯串上的所述第三位置与负极之间均串联有第三数量的电芯,所述第二数量大于所述第一数量;所述第三数量大于所述第二数量;所述开关单元具有第一状态、第二状态和第三状态;在所述开关单元分别处于所述第一状态、所述第二状态和所述第三状态时,所述正极端子和所述负极端子分别对应输出第一电压、第二电压和第三电压。
- 根据权利要求1所述的电池包,其特征在于,所述电池包还包括开关单元,所述电池界面包括正极端子和负极端子;所述开关单元具有第一状态、第二状态、第三状态和第四状态;在所述开关单元处于第一状态时,所述正极端子与所述负极端子输出第一电压;在所述开关单元处于第二状态时,所述正极端子与所述负极端子输出第二电压;在所述开关单元处于第三状态时,所述正极端子与所述负极端子接收第一电压的电能输入;在所述开关单元处于第四状态时,所述正极端子与所述负极端子接收第一电压的电能输入。
- 根据权利要求1所述的电池包,其特征在于,所述电池包还包括开关单元,所述电池界面包括第一正极端子、第二正极端子、负极端子和充电正极端子;所述开关单元具有第一状态、第二状态和第三状态;在所述开关单元处于第一状态时,所述电池包通过第一正极端子与所述负极端子输出第一电压或通过第二正极端子与所述负极端子输出第二电压;在所述开关单元处于第二状态时,所述充电正极端子与所述负极端子接受第一电压的电能输入;在所述开关单元处于第三状态时,所述充电正极端子与所述负极端子接受第一电压的电能输入。
- 根据权利要求1所述的电池包,其特征在于,其特征在于,所述电池包包括:并联设置的多个所述电芯串;其中,所述电池界面包括第一正极端子、第二正极端子和负极端子;所述负极端子与所述多个电芯串的负极电连接,所述第一正极端子与每一所述电芯串上的第一等电势位置电连接,所述电池包通过所述第一正极端子和所述负极端子输出第一电压;所述第二正极端子与每一所述电芯串上的第二等电势位置电连接,所述电池包通过所述第二正极端子和所述负极端子输出第二电压。
- 根据权利要求10所述的电池包,其特征在于,每一所述电芯串内的电芯相同,每一所述电芯串内第一数量的电芯通过所述负极端子和所述第一正极端子输出第一电压;每一所述电芯串内第二数量的电芯通过所述负极端子和所述第二正极端子输出第二电压;所述第二数量大于所述第一数量。
- 根据权利要求10所述的电池包,其特征在于,所述电池界面还包括第三 正极端子;所述第三正极端子与每一所述电芯串上的第三等电势位置电连接,所述电池包通过所述第三正极端子和所述负极端子输出第三电压。
- 根据权利要求10所述的电池包,其特征在于,所述电池包还包括开关单元,所述电池界面包括充电正极端子;所述开关单元具有第一状态、第二状态和第三状态;在所述开关单元处于第一状态时,所述电池包通过第一正极端子与所述负极端子输出第一电压或通过第二正极端子与所述负极端子输出第二电压;在所述开关单元处于第二状态时,所述充电正极端子与所述负极端子接受第一电压的电能输入;在所述开关单元处于第三状态时,所述充电正极端子与所述负极端子接受第一电压的电能输入。
- 根据权利要求13所述的电池包,其特征在于,所述电池包还包括控制单元;所述控制单元由所述电芯串的部分或全部电芯供电;所述开关单元包括第一开关和第二开关,所述控制单元控制所述第一开关、所述第二开关通断,所述第一开关控制所述充电正极端子与所述第一正极端子之间的电路通断,所述第二开关控制所述充电正极端子与所述第二正极端子之间的电路通断。
- 根据权利要求1所述的电池包,其特征在于,所述电池包还包括电压检测单元和至少两个充电端子,每一所述电芯的正极和负极均与所述电压检测单元的对应端子电连接;所述电池界面还包括通讯端口,所述通讯端口用于与充电器和/或电动工具进行通讯;至少两个充电端子可与对应充电器电连接,接收至少两种电压输入。
- 一种电池包,其特征在于,包括:壳体,所述壳体内形成一收容腔;多个电芯串,所述多个电芯串并联设置;电池界面,所述电池界面用于与具有不同工作电压的电动工具机械连接和电连接;所述电池界面包括正极端子和负极端子;开关单元,所述开关单元分别与所述正极端子和所述多个电芯串相连接,并具有第一状态和第二状态;其中,在所述第一状态下所述正极端子与每一所述电芯串上的第一等电 势位置电连接,所述电池包通过所述正极端子和所述负极端子输出第一电压;在所述第二状态下所述正极端子与每一所述电芯串上的第二等电势位置电连接,所述电池包通过所述正极端子和所述负极端子输出第二电压。
- 根据权利要求16所述的电池包,其特征在于,每一所述电芯串内的电芯相同,每一电芯串内第一数量的电芯在第一状态时通过所述正极端子和负极端子输出第一电压,每一电芯串内第二数量的电芯在第二状态时通过所述正极端子和负极端子输出第二电压;所述第二数量大于所述第一数量;所述电池包通过所述正极端子和所述负极端子为所述电池包充电。
- 根据权利要求16所述的电池包,其特征在于,所述电池包还包括控制单元;所述控制单元由所述多个电芯串的部分或全部电芯供电;所述开关单元包括第一开关和第二开关,所述控制单元控制所述第一开关、所述第二开关通断,以在所述第一状态和所述第二状态之间转换;所述第一开关安装在第一等电势位置与所述正极端子之间的电路上,并控制所述第一等电势位置与所述正极端子之间的通断及允许电流通过的方向;所述第二开关安装在所述第二等电势位置与所述正极端子之间的电路上,并控制所述第二等电势位置与所述正极端子之间的通断及允许电流通过的方向。
- 根据权利要求16所述的电池包,其特征在于,所述开关单元还具有第三状态,在所述第三状态下所述正极端子与每一所述电芯串上的第三等电势位置电连接,所述电池包通过所述正极端子和所述负极端子输出第三电压;每一所述电芯串内的电芯相同,每一所述电芯串内第一数量的电芯在第一状态时通过所述正极端子和负极端子输出第一电压;每一所述电芯串内第二数量的电芯在第二状态时通过所述正极端子和负极端子输出第二电压;每一所述电芯串内第三数量的电芯在第三状态时通过所述正极端子和负极端子输出第三电压;所述第二数量大于所述第一数量,所述第三数量大于所述第二数量。
- 根据权利要求16所述的电池包,其特征在于,所述电池包还包括控制单元;所述控制单元由所述多个电芯串的部分或全部电芯供电;所述开关单元 包括第一开关、第二开关和第三开关,所述控制单元控制所述第一开关、所述第二开关、所述第三开关通断,以在所述第一状态、所述第二状态和所述第三状态之间转换;所述第一开关安装在第一等电势位置与所述正极端子之间的电路上,并控制所述第一等电势位置与所述正极端子之间的通断及允许电流通过的方向;所述第二开关安装在第二等电势位置与所述正极端子之间的电路上,并控制所述第二等电势位置与所述正极端子之间的通断及允许电流通过的方向;所述第三开关安装在第三等电势位置与所述正极端子之间的电路上,并控制所述第三等电势位置与所述正极端子之间的通断及允许电流通过的方向。
- 一种电池包,其特征在于,包括:壳体,所述壳体内形成一收容腔;至少一个电芯串,所述电芯串收容在所述收容腔中,所述电芯串包括至少两个电芯单元,每个所述电芯单元包括多个串联连接的电芯;电池界面,所述电池界面设置于所述壳体上,并用于与具有不同工作电压的电动工具连接,所述电池界面包括多个输出端子;其中,当不同工作电压的电动工具与所述电池界面连接时,不同的所述电芯单元通过所述输出端子输出不同的电压,以驱动不同工作电压的电动工具。
- 一种电池包,其特征在于,包括:壳体,所述壳体内形成一收容腔;电池界面,所述电池界面用于与具有不同工作电压的电动工具连接;所述电池界面包括多个输出端子;至少一个电芯串,所述至少一个电芯串设置在所述收容腔中,所述电芯串包括第一电池组和第二电池组,所述第一电池组包括第一数量的电芯单元,所述第二电池组包括第二数量的电芯单元,所述电芯单元由多个电芯并联组成,所述第二电池组的电芯单元数量大于所述第一电池组的电池单元数量;其中,所述第一电池组通过所述输出端子输出第一电压,所述第二电池组通过所述输出端子输出第二电压。
- 一种电池包,其特征在于,包括:壳体,所述壳体内形成一收容腔;至少一个电芯串,所述电芯串包括串联连接的第一电芯单元和第二电芯单元,所述第一电芯单元包括串联连接的第一数量的第一电芯;所述第二电芯单元包括串联连接的第二数量的第二电芯;电池界面,所述电池界面用于与具有不同工作电压的电动工具机械连接和电连接;所述电动工具包括第一电动工具和第二电动工具,所述第一电动工具的工作电压为第一电压;所述第二电动工具的工作电压为第二电压;所述电池界面包括正极端子和负极端子;开关单元,所述开关单元分别与所述正极端子和所述电芯串相连接,并具有第一状态和第二状态;其中,在所述第一状态下所述第一电芯单元通过所述正极端子与所述负极端子输出第一电压;在所述第二状态下所述第二电芯单元通过所述正极端子与所述负极端子输出第二电压。
- 一种电动工具系统,其特征在于,包括:电池包,所述电池包具有第一电压输出状态和第二电压输出状态,所述电池包包括有壳体、电池界面和至少一个电芯串,所述电芯串包括第一电芯单元和第二电芯单元;所述第一电芯单元包括串联连接的第一数量的第一电芯;所述第二电芯单元包括串联连接的第二数量的第二电芯;所述第一数量小于所述第二数量;第一电动工具和第二电动工具,所述第一电动工具的工作电压为第一电压;所述第二电动工具的工作电压为第二电压;所述第一电压小于所述第二电压;所述第一电动工具和所述第二电动工具上均设置有与所述电池界面相匹配连接的工具界面;其中,当所述电池包处于所述第一电压输出状态时,所述电芯串中第 一数量的电芯向所述电动工具输出第一电压;当所述电池包处于所述第二电压输出状态时,所述电芯串中第二数量的电芯向所述电动工具输出第二电压。
- 根据权利要求24所述的电动工具系统,其特征在于,所述电池包还包括控制单元和通讯端口,所述通讯端口与所述控制单元电连接,所述第一电动工具还包括与所述通讯端口相配的第一通讯接口,所述第二电动工具还包括与所述通讯端口相配的第二通讯接口,当所述电池包与所述第一电动工具连接时,所述通讯端口与所述第一通讯接口电连接,所述控制单元控制所述电池包输出第一电压;当所述电池包与所述第二电动工具连接时,所述通讯端口与所述第二通讯接口电连接,所述控制单元控制所述电池包输出第二电压。
- 一种电动工具系统,其特征在于,包括:电池包,所述电池包包括有壳体、电池界面和至少一个电芯串,所述电芯串包括有串联连接的多个电芯;第一电动工具,所述第一电动工具具有第一工作电压,并设置有与所述电池界面相匹配连接的第一工具界面;第二电动工具,所述第二电动工具具有第二工作电压,并设置有与所述电池界面相匹配连接的第二工具界面;其中,当所述第一电动工具与所述电池包连接时,所述第一工具界面与所述电池包界面连接,所述电芯串中第一数量的电芯向所述第一电动工具输出第一电压;当所述第二电动工具与所述电池包连接时,所述第二工具界面与所述电池包界面连接,所述电芯串中第二数量的电芯向所述第二电动工具输出第二电压。
- 一种电动工具系统,其特征在于,包括:第一电动工具,能够在第一工作电压下工作,所述第一电动工具具有第一工具界面;第二电动工具,能够在第二工作电压下工作,所述第二电动工具具有第二工具界面;第一电池包,所述第一电池包具有第一电池界面,所述第一电池包包括多个电芯并能够输出第一工作电压;第二电池包,所述第二电池包具有第二电池界面,所述第二电池包包括:至少一个电芯串,所述电芯串包括多个串联连接的电芯;当所述第一电动工具与第一电池包连接时,所述第一工具界面与所述第一电池界面连接,所述第一电池包输出第一工作电压;当所述第一电动工具与所述第二电池包连接时,所述第一工具界面与所述第二电池界面连接,所述电芯串中串联连接的第一数量的电芯向所述第一电动工具输出第一工作电压;当所述第二电动工具与所述第二电池包连接时,所述第二工具界面与所述第二电池界面连接,所述电芯串中串联连接的第二数量的电芯向所述第二电动工具输出第二工作电压。
- 根据权利要求27所述的电动工具系统,其特征在于,所述第二电动工具不能与所述第一电池包进行匹配;所述第一电池界面和/或所述第二电池界面上具有端子槽,所述端子槽的宽度为1mm~3mm。
- 根据权利要求27所述的电动工具系统,其特征在于,所述第一电池界面包括第一电池正极端子和第一电池负极端子,所述第二电池界面包括第一正极端子,第二正极端子和负极端子,所述第一电动工具包括第一工具正极端子和第一工具负极端子,所述第二电动工具包括第二工具正极端子和第二工具负极端子,所述第一电池正极端子和第一电池负极端子之间的水平距离为L1,所述第一正极端子和所述负极端子之间的水平距离为L2,所述L1与所述L2大体相等;所述第二正极端子和所述负极端子之间的水平距离为L3,其中L3大于L2。
- 根据权利要求27所述的电动工具系统,其特征在于,所述电动工具系统还包括由多个电芯组成的第三电池包,所述第三电池包包括第三电池界面,所述第三电池界面包括第三电池正极端子和第三电池负极端子,当所述第三电池包与所述第二电动工具连接时,所述第三电池包向所述第二电动工具输 出第二工作电压;所述第三电池正极端子和第三电池负极端子之间的水平距离为L4,所述第二工具正极端子和所述第二工具负极端子之间的水平距离为L5,所述L4与所述L5大体相等;所述第三电池界面与所述第一电池界面不同。
- 根据权利要求27所述的电动工具系统,其特征在于,所述第一电池界面包括第一导轨和第一锁扣,所述第二电池界面包括第二导轨和第二锁扣;所述第一导轨和所述第二导轨可互换连接于所述第二工具界面上的同一滑槽,所述第一锁扣和所述第二锁扣可互换连接于所述第二工具界面上的同一锁合凹槽。
- 一种同步整流控制电路,应用于单端反激变换器,其特征在于,包括:驱动绕组、隔离模块及驱动模块;所述驱动绕组与所述单端反激变换器的输入侧绕组相耦合,所述驱动绕组的异名端分别与所述隔离模块的输出端和所述驱动模块的第一输入端连接,同名端接地;所述隔离模块的输入端与脉宽调整信号连接,输出端还与所述驱动模块的第二输入端连接;所述驱动模块的输出端与所述单端反激变换器的同步整流管的控制端连接。
- 根据权利要求32所述的同步整流控制电路,其特征在于:所述隔离模块包括光耦和第一电阻;所述光耦输入测的两端与第一电阻并联,且输入侧的正极与脉宽调整信号连接,负极接地;所述光耦输出测的集电极与所述驱动绕组的异名端连接,发射极与所述驱动模块的第二输入端连接。
- 根据权利要求33所述的同步整流控制电路,其特征在于,所述隔离模块还包括第二电阻、二极管和第三电阻;第二电阻的一端与脉宽调整信号连接,另一端与光耦输入侧的正极连接;二极管的正极与所述驱动绕组的异名端连 接,负极与所述光耦输出测的集电极连接;所述驱动绕组的两端与第三电阻的两端相并联。
- 根据权利要求32所述的同步整流控制电路,其特征在于,所述驱动模块包括第三MOS管、第四MOS管及第四电阻;第三MOS管的栅极作为所述驱动模块的第一输入端,与所述驱动绕组的异名端连接;第三MOS管的漏极作为所述驱动模块的第二输入端,分别与所述隔离模块的输出端、第四MOS管的栅极、所述单端反激变换器的输出侧绕组的同名端连接;第四MOS管的源极与所述单端反激变换器的输出侧绕组的同名端、以及所述单端反激变换器的同步整流管的控制端连接,所述同步整流管的控制端通过第四电阻接地;第三MOS管的源极和第四MOS管的漏极分别接地。
- 根据权利要求35所述的同步整流控制电路,其特征在于:第三MOS管为N沟道MOS管,第四MOS管为P沟道MOS管;所述驱动模块还包括第五电阻、第六电阻、第七电阻和第八电阻;第五电阻的一端作为所述驱动模块的第一输入端,与所述驱动绕组的异名端连接;第五电阻的另一端与第三MOS管的栅极连接;第六电阻的一端作为所述驱动模块的第二输入端,与所述隔离模块的输出端连接;第六电阻的另一端分别与第三MOS管的漏极、第四MOS管的栅极、以及所述单端反激变换器的输出侧绕组的同名端连接;第七电阻的一端分别与第六电阻的另一端、第三MOS管的漏极及第四MOS管的栅极连接,另一端与所述单端反激变换器的输出侧绕组的同名端连接;第八电阻的一端分别与第四MOS管源极、所述同步整流管的控制端、以及第四电阻的一端连接,另一端与所述单端反激变换器的输出侧绕组的同名端连接。
- 一种开关电源,其特征在于,包括:单端反激变换器;同步整流控制电路,用于为所述单端反激变换器提供驱动信号;其中,所述同步整流控制电路包括:驱动绕组、隔离模块及驱动模块;所述驱动绕组与所述单端反激变换器的输入侧绕组相耦合,所述驱动绕组的异名端分别与所述隔离模块的输出端和所述驱动模块的第一输入端连接,同名端接地;所述隔离模块的输入端与脉宽调整信号连接,输出端还与所述驱动模块的第二输入端连接;所述驱动模块的输出端与所述单端反激变换器的同步整流管的控制端连接。
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210221596.2A CN116780675A (zh) | 2022-03-09 | 2022-03-09 | 一种电动工具系统 |
CN202210221652.2A CN116780089A (zh) | 2022-03-09 | 2022-03-09 | 一种电池包 |
CN202210221596.2 | 2022-03-09 | ||
CN202210221662.6 | 2022-03-09 | ||
CN202210221652.2 | 2022-03-09 | ||
CN202210221595.8 | 2022-03-09 | ||
CN202210221595.8A CN116780092A (zh) | 2022-03-09 | 2022-03-09 | 一种电池包 |
CN202210221662.6A CN116780117A (zh) | 2022-03-09 | 2022-03-09 | 一种电池包和包含该电池包的电动工具系统 |
CN202210720461.0A CN117318491A (zh) | 2022-06-23 | 2022-06-23 | 一种同步整流控制电路及反激式开关电源 |
CN202210720461.0 | 2022-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023169333A1 true WO2023169333A1 (zh) | 2023-09-14 |
Family
ID=87937238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/079599 WO2023169333A1 (zh) | 2022-03-09 | 2023-03-03 | 电池包、电动工具系统、同步整流控制电路和开关电源 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023169333A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108365664A (zh) * | 2018-04-07 | 2018-08-03 | 江苏东成机电工具有限公司 | 一种电池包电压转换电路及适配器 |
CN109301145A (zh) * | 2018-11-27 | 2019-02-01 | 常州格力博有限公司 | 电池包及电动工具系统 |
CN110829555A (zh) * | 2019-12-12 | 2020-02-21 | 常州格力博有限公司 | 一种适配器以及电动工具系统 |
CN112109047A (zh) * | 2020-09-17 | 2020-12-22 | 江苏东成工具科技有限公司 | 一种电池包及电动工具 |
CN113764811A (zh) * | 2021-08-25 | 2021-12-07 | 东莞新能安科技有限公司 | 电池包、用电设备及电池包控制方法 |
-
2023
- 2023-03-03 WO PCT/CN2023/079599 patent/WO2023169333A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108365664A (zh) * | 2018-04-07 | 2018-08-03 | 江苏东成机电工具有限公司 | 一种电池包电压转换电路及适配器 |
CN109301145A (zh) * | 2018-11-27 | 2019-02-01 | 常州格力博有限公司 | 电池包及电动工具系统 |
CN110829555A (zh) * | 2019-12-12 | 2020-02-21 | 常州格力博有限公司 | 一种适配器以及电动工具系统 |
CN112109047A (zh) * | 2020-09-17 | 2020-12-22 | 江苏东成工具科技有限公司 | 一种电池包及电动工具 |
CN113764811A (zh) * | 2021-08-25 | 2021-12-07 | 东莞新能安科技有限公司 | 电池包、用电设备及电池包控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9478995B2 (en) | Battery system | |
US20230070930A1 (en) | Charging Circuit of On-Board Charger, On-Board Charger, and Charging Control Method | |
EP3944452B1 (en) | Active equalization circuit, battery management system, power source system, and electronic device | |
CN103812348B (zh) | 电力转换系统 | |
US9019726B2 (en) | Power converters with quasi-zero power consumption | |
WO2011144007A1 (zh) | 锂离子动力电池无损充电机 | |
CN104953692B (zh) | 供电系统 | |
US10615612B2 (en) | Battery apparatus and cell balancing circuits | |
CN103997214A (zh) | 电力变换系统和电力变换方法 | |
CN111049222A (zh) | 电源装置 | |
CN211266526U (zh) | 电源装置 | |
WO2023169333A1 (zh) | 电池包、电动工具系统、同步整流控制电路和开关电源 | |
CN204290428U (zh) | 一种集成电机驱动和电池充电功能模块 | |
CN203691365U (zh) | 功率半导体开关驱动电路的自供电电路 | |
US11888417B2 (en) | Energy conversion apparatus, motor, power system, and vehicle | |
CN103618530B (zh) | 功率半导体开关驱动电路的自供电电路及方法 | |
CN113078812B (zh) | 一种电流互感器采样取电自切换电路 | |
CN212784852U (zh) | 一种用于基站备用电源的电池管理系统 | |
CN1622424A (zh) | 充电器 | |
CN201230216Y (zh) | 高频充电器 | |
CN216794695U (zh) | 一种充电电路、充电器和充电系统 | |
CN116760166B (zh) | 一体式升降压灯具专用应急电源 | |
WO2021128713A1 (zh) | 电源装置 | |
CN118157286B (zh) | 一种电池均衡系统及电子设备 | |
CN221652303U (zh) | 断路器控制装置及断路器系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23765911 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023765911 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023765911 Country of ref document: EP Effective date: 20241009 |