WO2023169266A1 - 摄像头组件、车载系统以及车辆 - Google Patents

摄像头组件、车载系统以及车辆 Download PDF

Info

Publication number
WO2023169266A1
WO2023169266A1 PCT/CN2023/078914 CN2023078914W WO2023169266A1 WO 2023169266 A1 WO2023169266 A1 WO 2023169266A1 CN 2023078914 W CN2023078914 W CN 2023078914W WO 2023169266 A1 WO2023169266 A1 WO 2023169266A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
camera
coil
side wall
vehicle
Prior art date
Application number
PCT/CN2023/078914
Other languages
English (en)
French (fr)
Inventor
邱杰
吴雅萍
张恒强
Original Assignee
佛吉亚歌乐电子(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛吉亚歌乐电子(厦门)有限公司 filed Critical 佛吉亚歌乐电子(厦门)有限公司
Publication of WO2023169266A1 publication Critical patent/WO2023169266A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Definitions

  • the present disclosure relates to the technical field of camera devices, and in particular, to a camera assembly, a vehicle-mounted system and a vehicle.
  • Embodiments of the present disclosure provide a camera assembly, a vehicle-mounted system, and a vehicle for improving the problem of fogging, frosting, or icing of a camera lens.
  • some embodiments of the present disclosure provide a camera assembly including a camera, a first coil, a second coil and a heating element.
  • the first coil is disposed on the camera and configured to generate a magnetic field.
  • the second coil is disposed on the camera head and is configured to generate current under the action of the magnetic field generated by the first coil.
  • the heating element is coupled to the second coil and configured to generate heat under the action of current generated by the second coil to heat the camera.
  • the camera includes a lens mount and a lens assembly.
  • the lens mount includes a first mounting cavity surrounded by a first side wall.
  • the lens group is located in the first installation cavity.
  • the heating element is disposed between the lens group and the inner wall of the first mounting cavity; or, the heating element is disposed on the outer wall of the first mounting cavity.
  • the camera includes a lens mount, a lens assembly, and an image sensor.
  • the lens mount includes a first installation cavity surrounded by a first side wall and a second installation cavity surrounded by a second side wall.
  • the lens group is located in the first installation cavity.
  • the image sensor is located in the second mounting cavity and is configured to convert light from the lens assembly into electrical signals.
  • the heating element is disposed between the image sensor and the inner wall of the second side wall; alternatively, the heating element is disposed at a first position on the outer wall of the second side wall, so that the second side wall is located between the heating element and the image sensor.
  • the camera includes a lens mount, a lens assembly, an image sensor, and a transmission chip.
  • the lens mount includes a first installation cavity surrounded by a first side wall and a second installation cavity surrounded by a second side wall.
  • the lens group is located in the first installation cavity.
  • the image sensor is located in the second mounting cavity and is configured to convert light from the lens assembly into electrical signals.
  • the transmission chip is located in the second mounting cavity.
  • the transmission chip is coupled to the image sensor and configured to transmit electrical signals converted by the image sensor.
  • the heating element is disposed between the transmission chip and the inner wall of the second side wall; alternatively, the heating element is disposed at a second position on the outer wall of the second side wall, so that the second side wall is located between the heating element and the transmission chip.
  • the camera assembly further includes at least one sleeve.
  • the at least one sleeve is configured to wrap at least one of the first coil, the second coil, and the heating element around the camera head.
  • the sleeve includes a first sleeve and a second sleeve.
  • the first sleeve is configured to wrap at least one of the first coil, the second coil, and the heating element around the second sleeve.
  • the second sleeve wraps around the camera head and is configured to at least partially shield electromagnetic interference from components in the camera head.
  • the heating element is at least one of a resistance wire or a heating film.
  • the camera assembly further includes a temperature-controlled resistor.
  • the temperature-controlled resistor is connected in series with the heating element and is configured to control the amount of current flowing through the heating element.
  • the vehicle-mounted system includes an electronic control unit and a camera assembly.
  • the camera assembly includes a camera, a first coil, a second coil and a heating element.
  • the first coil is disposed on the camera and configured to generate a magnetic field.
  • the second coil is disposed on the camera head and is configured to generate current under the action of the magnetic field generated by the first coil.
  • the heating element is coupled to the second coil and configured to generate heat under the action of current generated by the second coil to heat the camera.
  • the electronic control unit is coupled to the camera assembly and configured to control the heating element to heat the camera.
  • the electronic control unit includes an image processor, a microcontrol unit and a power chip.
  • the image processor is coupled to the camera and configured to receive electrical signals from the camera to generate image data and obtain the definition of an image corresponding to the image data.
  • the micro control unit is coupled to the image processor and configured to issue a control instruction when the sharpness of the image is less than a sharpness threshold.
  • the power chip is coupled to the micro control unit and the first coil, and is configured to power the first coil according to the control instruction.
  • the camera includes a lens mount and a lens assembly.
  • the lens mount includes a first mounting cavity surrounded by a first side wall.
  • the lens group is located in the first installation cavity.
  • the heating element is disposed between the lens group and the inner wall of the first mounting cavity; or, the heating element is disposed on the outer wall of the first mounting cavity.
  • the camera includes a lens mount, a lens assembly, and an image sensor.
  • the lens mount includes a first installation cavity surrounded by a first side wall and a second installation cavity surrounded by a second side wall.
  • the lens group is located in the first installation cavity.
  • the image sensor is located in the second mounting cavity and is configured to convert light from the lens assembly into electrical signals.
  • the heating element is disposed between the image sensor and the second side wall. between the walls; alternatively, the heating element is disposed at a first position on the outer wall of the second side wall, so that the second side wall is located between the heating element and the image sensor.
  • the camera includes a lens mount, a lens assembly, an image sensor, and a transmission chip.
  • the lens mount includes a first installation cavity surrounded by a first side wall and a second installation cavity surrounded by a second side wall.
  • the lens group is located in the first installation cavity.
  • the image sensor is located in the second mounting cavity and is configured to convert light from the lens assembly into electrical signals.
  • the transmission chip is located in the second mounting cavity.
  • the transmission chip is coupled to the image sensor and configured to transmit electrical signals converted by the image sensor.
  • the heating element is disposed between the transmission chip and the inner wall of the second side wall; alternatively, the heating element is disposed at a second position on the outer wall of the second side wall, so that the second side wall is located between the heating element and the transmission chip.
  • the camera assembly further includes at least one sleeve.
  • the at least one sleeve is configured to wrap at least one of the first coil, the second coil, and the heating element around the camera head.
  • the sleeve includes a first sleeve and a second sleeve.
  • the first sleeve is configured to wrap at least one of the first coil, the second coil, and the heating element around the second sleeve.
  • the second sleeve wraps around the camera head and is configured to at least partially shield electromagnetic interference from components in the camera head.
  • the heating element is at least one of a resistance wire or a heating film.
  • the camera assembly further includes a temperature-controlled resistor.
  • the temperature-controlled resistor is connected in series with the heating element and is configured to control the amount of current flowing through the heating element.
  • some aspects of the present disclosure also provide a vehicle.
  • the vehicle includes a body and the vehicle-mounted system mentioned in the above technical solution, and the vehicle-mounted system is arranged on the body.
  • Figure 1 is a structural diagram of a vehicle according to some embodiments.
  • Figure 2 is a structural diagram of a vehicle-mounted system according to some embodiments.
  • Figure 3 is another structural diagram of a vehicle-mounted system according to some embodiments.
  • Figure 4 is a schematic diagram of the operation of a heating element according to some embodiments.
  • Figure 5 is another schematic diagram of the operation of a heating element according to some embodiments.
  • Figure 6a is a structural diagram of a camera assembly according to some embodiments.
  • Figure 6b is another structural diagram of a camera assembly according to some embodiments.
  • Figure 7a is yet another structural diagram of a camera assembly according to some embodiments.
  • Figure 7b is yet another structural diagram of a camera assembly according to some embodiments.
  • Figure 8a is yet another structural diagram of a camera assembly according to some embodiments.
  • Figure 8b is yet another structural diagram of a camera assembly according to some embodiments.
  • Figure 9 is yet another structural diagram of a camera assembly according to some embodiments.
  • Figure 10 is yet another structural diagram of a camera assembly according to some embodiments.
  • Figure 11 is yet another structural diagram of a camera assembly according to some embodiments.
  • Figure 12 is a schematic diagram of the operation of multiple heating elements according to some embodiments.
  • Figure 13 is a schematic diagram of the operation of a heating element and a temperature-controlled resistor according to some embodiments
  • Figure 14 is a diagram of a fixation method of a heating element according to some embodiments.
  • Figure 15 is a cross-sectional view along the A-A' direction of Figure 14;
  • Figure 16 is a diagram of another fixation method of a heating element according to some embodiments.
  • Figure 17 is a diagram of yet another mounting arrangement of a heating element in accordance with some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • coupled indicates, for example, that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and the areas of regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing.
  • an etched area shown as a rectangle will typically have curved features. Accordingly, the areas shown in the drawings are schematic in nature and their shapes are not intended to illustrate equipment. actual shapes of the regions and are not intended to limit the scope of the exemplary embodiments.
  • Cameras are used in many fields such as vehicles, outdoor surveillance, and action cameras.
  • the camera When the camera is working in a cold or humid environment, if the temperature of the environment changes (for example, the temperature of the environment drops suddenly), the water vapor in the environment may condense or condense on the surface of the lens group (lens) of the camera. Hua, thus forming fog or frost on the surface of the lens group.
  • fog or frost on the lens group will change the transmission path of the light, thereby interfering with imaging, affecting the clarity of the image captured by the camera, and thus reducing the quality of the camera. imaging effect.
  • some embodiments of the present disclosure provide a camera assembly.
  • the camera assembly can heat at least one part of the camera (for example, the lens group) when fog or frost on the lens group affects the imaging effect of the camera to remove the fog or frost, thereby ensuring the imaging of the camera Effect.
  • the camera assembly can be applied to outdoor monitoring systems, traffic supervision systems, property monitoring systems, action cameras or panoramic surveillance imaging systems (Around View Monitor). , AVM), etc.
  • AVM panoramic surveillance imaging systems
  • the following embodiments take a camera assembly applied to a vehicle as an example for illustrative description.
  • the vehicle 100 may be, for example, a car, a passenger car, a trailer, etc.
  • the vehicle 100 may include a body 20 and a vehicle-mounted system 10 as shown in FIG. 2 .
  • the vehicle-mounted system 10 can be installed on the vehicle body 20 .
  • the vehicle system 10 includes an electronic control unit (Electronic Control Unit, ECU) 1 and a camera assembly 2.
  • ECU Electronic Control Unit
  • the electronic control unit 1 may be disposed inside the body 20
  • the camera assembly 2 may be disposed outside the body 20 .
  • the electronic control unit 1 is coupled to the camera assembly 2 and is configured to control the heating camera in the camera assembly 2 .
  • the electronic control unit 1 can also perform other controls on the camera assembly 2 .
  • the electronic control unit 1 can turn on the camera assembly 2 to collect environmental images outside the vehicle body 20 , or the electronic control unit 1 can receive image data of the environmental images collected by the camera assembly 2 and control the display of the environmental images based on the above image data. , thereby increasing the driver's field of vision.
  • the vehicle 100 further includes the display device 3 as shown in FIG. 2 .
  • the display device 3 is coupled to the electronic control unit 1 and is configured to display the environment image collected by the camera assembly 2 under the control of the electronic control unit 1 .
  • the above-mentioned display device 3 may be disposed inside the vehicle body 20 .
  • This disclosure does not limit the type of the display device 3.
  • the display device 3 may be a plasma projection component, a digital projection component, or a liquid crystal display.
  • the camera assembly 2 is disposed on at least one of the left and right sides of the vehicle body 20 (for example, on at least one of the two rearview mirrors of the vehicle 100 ). In this way, the image of the side and rear of the vehicle body 20 can be acquired through the camera assembly 2 and presented to the driver through the display device 3 inside the vehicle 100 to prevent the driver from tilting his head to observe the side and rear of the vehicle body 20 during driving. situation, it helps to improve the driver's attention while driving and expand the driver's observation range.
  • the vehicle 100 includes two camera assemblies 2, and the two camera assemblies 2 are respectively disposed at two rear views of the vehicle 100. Take the mirror as an example for illustrative explanation.
  • the camera assembly 2 may be disposed at the rear end of the vehicle body 20 or the front end of the vehicle body 20 . In this way, the driver can be provided with images at these locations through the camera assembly 2, thereby reducing the driver's blind spots and improving driving safety.
  • the electronic control unit 1 includes an image processor 11, a microcontroller unit (MCU) 12 and a power chip 13;
  • the camera assembly 2 includes a camera 21 and a heating device capable of heating the camera 21 Component 22.
  • the image processor 11 is coupled to the camera 21 and is configured to receive electrical signals from the camera 21 to generate image data and obtain the clarity of the image corresponding to the image data.
  • the micro control unit 12 is coupled to the image processor 11 and is configured to issue a control instruction when the sharpness of the image is less than a sharpness threshold.
  • the power chip 13 is coupled to the micro control unit 12 and the heating component 22, and is configured to provide power to the heating component 22 according to the control instruction.
  • the image processor 11 can send the sharpness of the image captured by the camera 21 to the micro control unit 12, and the micro control unit 12 can compare the sharpness of the image with a sharpness threshold. In some examples, if the sharpness is less than the sharpness threshold, it indicates that fog or frost may exist on the surface of the lens group of the camera 21 , thereby affecting the imaging effect of the camera 21 .
  • the micro control unit 12 can issue a control instruction to the power chip 13 to instruct the power supply through the control instruction.
  • the source chip 13 supplies power to the heating component 22, thereby heating the camera 21.
  • the temperature of the lens group surface of the camera 21 can be increased, thereby evaporating the fog on the surface of the lens group or melting the frost on the surface of the lens group, thereby improving the clarity of the image captured by the camera 21 and improving the imaging effect of the camera 21 .
  • the definition is greater than or equal to the definition threshold, it means that the imaging effect of the camera 21 is better.
  • the micro control unit 12 may not issue control instructions to the power chip 13 . In this way, the heating assembly 22 does not consume electricity in the vehicle 100, thereby reducing energy consumption.
  • the heating time of the heating component 22 can be set by the user or the manufacturer, and this disclosure does not limit this.
  • the heating time can be: 100 milliseconds, 200 milliseconds or 300 milliseconds, etc.
  • this disclosure does not limit the type of camera 21 .
  • the power chip 13 may not be coupled with the micro control unit 12 .
  • the power chip 13 can continuously provide power to the heating component 22 so that the heating component 22 continues to heat the camera 21 . In this way, the control process of the heating component 22 can be simplified.
  • the structure of the heating assembly 22 will be exemplarily described below mainly with reference to the accompanying drawings.
  • the heating assembly 22 includes a first coil 221 , a second coil 222 and a heating element 223 .
  • the first coil 221 is disposed on the camera 21 and is configured to generate a magnetic field.
  • the first coil 221 is coupled to the power chip 13 , and the power chip 13 can power the first coil 221 .
  • the second coil 222 is disposed on the camera 21 and is configured to generate current under the action of the magnetic field generated by the first coil 221 .
  • the heating element 223 is coupled to the second coil 222 and is configured to generate heat under the action of the current generated by the second coil 222 to heat the camera 21 .
  • the working principles of the first coil 221 and the second coil 222 are as shown in FIG. 5 .
  • the power chip 13 may provide changing current, such as alternating current, to the first coil 221 .
  • the first coil 221 can generate a changing magnetic field.
  • the magnetic flux passing through the second coil 222 will change, thereby generating a current in the second coil 222 .
  • the current in the second coil 222 can flow through the heating element 223 coupled to the second coil 222, so that the heating element 223 generates heat under the action of the current, thereby heating the camera 21.
  • the camera assembly 2 provided by the embodiment of the present disclosure can convert the electrical energy provided by the power chip 13 into magnetic energy through the first coil 221, and then convert the magnetic energy of the first coil 221 into electrical energy through the second coil 222 and provide it to heating element 223, so that the heating element 223 heats the camera 21. Since the energy transfer between the first coil 221 and the second coil 222 does not require circuit connection, when the position of the first coil 221 remains unchanged, the second coil 222 and the heating element 223 Without changing the circuit connection mode of each component in the camera assembly 2, it can be flexibly set at different positions of the camera 21 to meet different heating requirements. Therefore, each component of the camera assembly 2 provided by some embodiments of the present disclosure has high flexibility in setting.
  • the camera 21 includes a lens holder 211 and a lens group 212 .
  • the lens holder 211 includes a first mounting cavity Q1 surrounded by a first side wall 2111 .
  • the lens group 212 is located in the first installation cavity Q1, and the lens group 212 may include multiple lenses.
  • the heating element 223 is disposed close to the lens group 212 to heat the lens group 212 directly or at close range, thereby improving the efficiency of removing fog or frost on the surface of the lens group 212 .
  • the heating element 223 is disposed between the lens group 212 and the inner wall of the first side wall 2111.
  • the inner wall of the first side wall 2111 refers to the side surface of the first side wall 2111 close to the lens group 212 .
  • the lens holder 211 can insulate the heating element 223 to slow down the loss of heat generated by the heating element 223.
  • the external aesthetics of the camera 21 can also be ensured.
  • the heating element 223 is disposed on the outer wall of the first side wall 2111.
  • the outer wall of the first side wall 2111 refers to the side surface of the first side wall 2111 away from the lens group 212 .
  • the heat generated by the heating element 223 can be transferred to the lens group 212 through the first side wall 2111, thereby avoiding problems such as deformation and displacement that may be caused by a sharp increase in temperature of the lens group 212.
  • the camera 21 further includes an image sensor 213.
  • the lens mount 211 also includes a second mounting cavity Q2 surrounded by a second side wall 2112 .
  • the image sensor 213 is located in the second mounting cavity Q2 and is configured to convert light from the lens group 212 into electrical signals, that is, perform photoelectric conversion.
  • the image output effect of the image sensor 213 is poor.
  • the heating element 223 is disposed close to the image sensor 213 to heat the image sensor 213 directly or at close range, thereby ensuring the image output effect of the image sensor 213 .
  • the heating element 223 is disposed close to the image sensor 213, the heat generated by the heating element 223 can be conducted to the lens group 212, thereby achieving the purpose of removing fog or frost outside the lens group 212.
  • the heating element 223 is disposed between the image sensor 213 and the inner wall of the second side wall 2112.
  • the inner wall of the second side wall 2112 refers to the side surface of the second side wall 2112 close to the image sensor 213 .
  • the heating element 223 is disposed at a first position on the outer wall of the second side wall 2112 so that the second side wall 2112 is located between the heating element 223 and the image sensor 213 .
  • the outer wall of the second side wall 2112 refers to the side surface of the second side wall 2112 away from the image sensor 213 .
  • the camera 21 further includes a transmission chip 214.
  • the transmission chip 214 is located in the second mounting cavity Q2.
  • the transmission chip 214 is coupled to the image sensor 213 and is configured to transmit electrical signals converted by the image sensor 213 .
  • the heating element 223 is disposed close to the transmission chip 214 to heat the transmission chip 214 directly or at close range, thereby ensuring the normal operation of the transmission chip 214 .
  • the heating element 223 is disposed between the transmission chip 214 and the inner wall of the second side wall 2112.
  • the inner wall of the second side wall 2112 is a side surface of the second side wall 2112 close to the transmission chip 214 (that is, close to the image sensor 213).
  • the heating element 223 is disposed at a second position on the outer wall of the second side wall 2112 so that the second side wall 2112 is located between the heating element 223 and the transmission chip 214 .
  • the outer wall of the second side wall 2112 is a side surface of the second side wall 2112 away from the transmission chip 214 (that is, away from the image sensor 213).
  • the image sensor 213 and the transmission chip 214 may be disposed on one substrate (for example, a copper-clad laminate) 215 as shown in FIG. 9 , or they may be disposed on two substrates 215 (for example, as shown in FIG. 10 ). shown on the first substrate 2151 and the second substrate 2152).
  • the image sensor 213 can be coupled with the first substrate 2151
  • the transmission chip 214 can be coupled with the second substrate 2152, and there is a gap between the first substrate 2151 and the second substrate 2152. d.
  • the heating element 223 may be disposed between the gap d and the inner wall of the second side wall 2112; alternatively, the heating element 223 may also be disposed at a third position on the outer wall of the second side wall 2112, so that the third The two side walls 2112 are located between the heating element 223 and the gap d. In this way, one heating element 223 can heat the image sensor 213 and the transmission chip 214 at the same time.
  • the camera 21 further includes a connector 216 .
  • One end of the connector 216 is configured to be coupled with the transmission chip 214
  • the other end of the connector 216 is configured to be coupled with the electronic control unit 1 .
  • Connector 216 is configured to transmit the electrical signal of transmission chip 214 to the electrical Sub control unit 1.
  • the connector 216 may have problems such as poor contact, resulting in the electrical signals from the transmission chip 214 not being properly transmitted to the electronic control unit 1 .
  • the heating element 223 is disposed at the connector 216 (eg, at least partially wraps the connector 216). In this way, the connector 216 can be heated when the ambient temperature is low, thereby ensuring the transmission stability of the system.
  • the camera 21 may also include other components (for example, infrared filters, dust-proof gaskets, shielding shells, etc., which are not listed in the embodiments of this disclosure).
  • a heating element 223 may be positioned close to the component.
  • camera assembly 2 may include multiple heating elements 223 .
  • the plurality of heating elements 223 may be disposed at the same position of the camera 21 to centrally heat the component at that location, thereby speeding up the heating of the component.
  • the plurality of heating elements 223 can be distributed at at least two different positions of the camera 21 to heat multiple components in the camera 21 to ensure the normal operation of the camera 21 in a low-temperature environment.
  • one heating element 223 can be disposed on the outer wall of the first side wall 2111 as described above, and the other heating element 223 can be disposed on the third side wall 2111 as described above. on the outer walls of the two side walls 2112.
  • the plurality of heating elements 223 may be coupled to a plurality of second coils 222 respectively.
  • the camera assembly 2 further includes a plurality of second coils 222.
  • the magnetic field generated by a first coil 221 can cause currents to be generated in the plurality of second coils 222, so that the plurality of second coils 222 are respectively.
  • the plurality of heating elements 223 provide power, thereby improving the energy conversion efficiency of the camera assembly 2 and improving the heating effect of the camera 21 .
  • the plurality of heating elements 223 are commonly coupled to a second coil 222 . As shown in FIG. 12 , multiple heating elements 223 ( FIG. 12 takes two heating elements 223 as an example) are all connected in series with the second coil 222 .
  • the heating component 22 can be preset inside the camera 21 when the camera 21 is assembled, thereby being connected to the camera 21 as an integrated structure.
  • Each component inside the heating assembly 22 can be uniformly arranged inside (or outside) the camera 21 , or can be separately arranged inside and outside the camera 21 , which is not limited in this disclosure.
  • the structure of the heating element 223 is illustrated below.
  • a metal body is usually used as the heating element.
  • the heating effect of a metal body is proportional to the size and thickness of the metal body.
  • a metal body of larger size and thickness is required.
  • the heating effect of the heating element in the related art is relatively small. Difference.
  • the camera 21 is required to be waterproof and dustproof.
  • the heating element 223 may be at least one of a resistance wire or a heating film. It should be noted that this disclosure does not limit the type of resistance wire or heating film.
  • heating element 223 is a resistive wire.
  • the heating effect of the resistance wire can be adjusted by changing the resistance wire parameters (for example, resistance value). There is no need to increase the volume of the resistance wire to improve the heating effect.
  • the resistance wire is easy to be wound at various positions of the camera 21, has a simple installation method, and takes up little space.
  • heating element 223 is a heating film.
  • the heating film can be, for example, a transparent flexible film.
  • the transparent flexible film has a certain light transmittance to ensure that external light can pass through the transparent flexible film and be imaged inside the camera 21 .
  • the transparent flexible film may completely cover the outer surface of the lens group 212 (that is, the side surface of the lens group 212 that generates fog or frost) or partially cover the outer surface edge of the lens group 212 .
  • the heating film may also cover the interior or surface of other components provided in the camera 21 , which is not limited in this disclosure.
  • the following embodiments take the heating element 223 as a resistance wire as an example for illustrative description.
  • the heating component usually only includes a resistance wire, which is directly electrically connected to the power chip.
  • the heating effect of the resistance wire needs to be adjusted by controlling the size of the current output by the power chip 13, and the control method is single.
  • the first axis L 1 of the first coil 221 is parallel to the second axis L 2 of the second coil 222 (the first axis L in Figure 12 is L 1 coincides with the second axis line L 2 (for example), at this time, the coupling distance D between the second coil 222 and the first coil 221 and the second coil 222 under the action of the magnetic field generated by the first coil 221 Proportional to the magnitude of the current produced.
  • the current generated by the first coil 221 can be controlled to increase (or decrease), thereby controlling the heating effect of the resistance wire to increase (or decrease).
  • the magnitude of the current generated by the second coil 222 can also be controlled by changing the ratio of turns between the first coil 221 and the second coil 222, thereby adjusting the heating effect of the resistance wire.
  • the heating component 22 provided by the embodiment of the present disclosure can not only adjust the heating effect of the heating element 223 by changing the size of the current output by the power chip 13, but can also adjust the coupling distance between the first coil 221 and the second coil 222. D, and the turns ratio between the first coil 221 and the second coil 222 to adjust the heating effect of the heating element 223. Therefore, the heating effect of the heating element 223 is controlled in a more flexible manner.
  • the heating assembly 22 further includes a temperature-controlled resistor 224 .
  • the temperature control resistor 224 is connected in series with the second coil 222 and with the heating element 223 . As the operating temperature (or operating current) changes, the resistance of the temperature control resistor 224 can change to control the size of the current flowing through the heating element 223, thereby realizing intelligent temperature control of the heating element 223.
  • the temperature-controlled resistor 224 may include a positive temperature coefficient resistor (the resistance value increases as the operating temperature increases), a negative temperature coefficient resistor (the resistance value decreases as the operating temperature increases), and a resettable fuse (when the self-recovery fuse When the line of the resettable fuse is short-circuited or overloaded, the resettable fuse will appear in a high resistance state, and the operating current flowing through the resettable fuse will decrease rapidly), etc.
  • the working status of the second coil 222 can be indirectly understood by monitoring the difference between the actual value and the predetermined value of the current on the second coil 222 .
  • the temperature-controlled resistor 224 as a self-restoring fuse as an example, when the difference between the actual value and the predetermined value is greater than the preset value, it means that the current value on the second coil 222 is small. At this time, it can be considered that the second coil 222 A short circuit or overload may occur.
  • temperature controlled resistor 224 is a positive temperature coefficient resistor.
  • the positive temperature coefficient resistor has a lower operating temperature and a smaller resistance, and the current flowing through the heating element 223 is larger.
  • the heat generated by the heating element 223 eg, resistance wire
  • the operating temperature of the positive temperature coefficient resistor gradually increases, the resistance value gradually increases, the current flowing through the heating element 223 gradually becomes smaller, and the heat generated by the heating element 223 gradually decreases. That is to say, the heating element 223 generates heat with a larger power for a period of time after starting to work, so that the camera 21 can be quickly heated; then, the heating power of the heating element 223 is reduced, thereby turning off the heating function.
  • temperature controlled resistor 224 is a negative temperature coefficient resistor.
  • the negative temperature coefficient resistor has a lower operating temperature and a larger resistance, and the current flowing through the heating element 223 is smaller.
  • the operating temperature of the negative temperature coefficient resistor gradually increases, the resistance gradually decreases, and the current flowing through the heating element 223 gradually increases. That is to say, the heating element 223 generates heat with a smaller power for a period of time after starting to work, and then gradually increases the heating power.
  • the process of heating the camera 21 by the heating element 223 is relatively gentle, which helps to ensure the structural stability of the heated components in the camera 21 to prevent damage to the internal components of the camera 21 caused by inconsistent thermal expansion coefficients, such as Loose parts, displacement of parts and shortened service life of parts, etc.
  • the temperature-controlled resistor 224 is a resettable fuse (eg, a delayed resettable fuse).
  • the resettable fuse has the dual functions of overcurrent and overheat protection and automatic recovery.
  • the self-restoring fuse presents a high resistance state, which is equivalent to the circuit of the second coil 222, the heating element 223 and the temperature control resistor 224 being broken.
  • the heating element 223 stops heating at this time. In this way, the heating time of the heating element 223 can be controlled by setting the protection setting value of the resettable fuse (for example, 100 milliseconds, 200 milliseconds or 300 milliseconds, etc., this disclosure is not limited).
  • the camera assembly 2 further includes at least one sleeve 225 ( FIG. 14 takes one sleeve 225 as an example).
  • the at least one sleeve 225 is configured to connect the first coil 221 and the first coil 225 .
  • At least one of the secondary coil 222 and the heating element 223 is wrapped around the camera 21 . It should be noted that this disclosure does not limit the material, shape, etc. of the sleeve 225.
  • the sleeve 225 is constructed of an insulating material (eg, an insulating organic material) such that the sleeve 225 can provide insulating protection to a component enclosed by the sleeve 225 .
  • sleeve 225 may be a heat shrink sleeve.
  • the first coil 221, the second coil 222 and the heating element(s) 223 can be wrapped around the outside of the lens holder 211 or inside the lens holder 211 through the heat shrinkable sleeve. outside of other components.
  • the heat shrinkable sleeve since the heat shrinkable sleeve has the characteristics of high-temperature shrinkage, softness, flame retardancy, insulation and anti-corrosion, etc., it can be heated with a hot air gun (for example, heated to 125°C without changing the internal structure of the camera 21 (above)) heat shrink the sleeve to shrink it, so that the heating element 223 is wrapped and fixed on the camera 21 through the heat shrink sleeve as shown in Figure 15.
  • the first coil 221 and the second coil 222 can also be fixed on the camera 21 in this fixing manner. Using this fixing method is not only simple to operate, but also does not affect the imaging quality of the camera 21 without changing the waterproof and dustproof structure of the camera 21 .
  • the use of a heat shrinkable sleeve to fix the heating component 22 is not limited to the size of the camera 21, and it is easy to realize the heating function of the cameras 21 of various sizes.
  • the first coil 221, the second coil 222 and the heating element 223 can be fixed on the camera 21 through other means (eg, bonding, snapping).
  • the sleeve 225 includes a first sleeve 2251 and a second sleeve 2252 , and the heating assembly 22 (only the first coil 221 is shown in FIG. 16 ) is located at the first sleeve 2251 and the second sleeve 2252 . between the second casing 2252. As shown in FIG. 17 , the second sleeve 2252 is located between the first sleeve 2251 and the camera 21 .
  • the second sleeve 2252 is wrapped around the outside of the camera 21 , and the first sleeve 2251 wraps the first coil 221 around the outside of the second sleeve 2252 , thereby realizing the first coil 221 of fixed.
  • the first sleeve 2251 and the second sleeve 2252 are both made of insulating material. In this way, the first sleeve 2251 and the second sleeve 2252 can provide at least two components wrapped between them.
  • the first sleeve 2251 is composed of an insulating material and the second sleeve 2252 is composed of a metallic material.
  • the first The second sleeve 2252 is equivalent to an electromagnetic shielding layer, thereby isolating the camera 21 from the first coil 221 to at least partially shield the electromagnetic interference from components in the camera 21, thereby preventing the magnetic field generated by the first coil 221 from being affected. interference, thereby further ensuring the normal operation of the second coil 222 and the heating element 223.
  • the second sleeve 2252 in this example can completely wrap the camera 21 to form an electromagnetic shielding cover for the camera 21 .
  • a shielded electromagnetic field area can be formed outside the camera 21 , and the changing magnetic field generated by the first coil 221 will not leak into the camera 21 , thereby improving the magnetic energy receiving intensity of the second coil 222 , thereby improving the performance of the second coil 222 .
  • the energy conversion rate that converts magnetic energy into electrical energy.
  • the second coil 222 and the heating element 223 can also be fixed by the first sleeve 2251 and the second sleeve 2252.
  • the first coil 221, the second coil 222 and the heating element 223 can also be fixed on the camera 21 through tape (for example, insulating tape) or other means, which is not limited in this disclosure.
  • the original power chip 13 in the electronic control unit 1 is used to power the first coil 221 .
  • the power supply unit (ie, power chip 13) of the first coil 221 can be controlled by the electronic control unit 1, thereby improving the intelligent power supply of the first coil 221.
  • a power conversion module can be connected in series between the first coil 221 and the power chip 13 to change the constant current output by the power chip 13 into a changing one through the power conversion module. current.
  • the power chip 13 itself can generate a changing current, which is not limited in this disclosure.
  • the first coil 221 may be powered by other power supplies (for example, a separate external power supply) in addition to the power chip 13 , which is not limited in this disclosure.
  • vehicle-mounted system may be, for example, the vehicle-mounted system 10 in the aforementioned embodiments.
  • vehicle-mounted system 10 for the beneficial effects of the vehicle-mounted system, please refer to the relevant descriptions of the vehicle-mounted system 10 and the beneficial effects of the camera assembly 2 in the vehicle-mounted system 10 in the aforementioned embodiments, which will not be mentioned here. Again.
  • some embodiments of the present disclosure also provide a vehicle.
  • the vehicle may be, for example, the vehicle 100 in the foregoing embodiment.
  • the beneficial effects of the vehicle refer to the relevant descriptions of the beneficial effects of the vehicle 100 and the camera assembly 2 in the vehicle 100 in the foregoing embodiments, which will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Studio Devices (AREA)

Abstract

本公开一些实施例提供了一种摄像头组件、车载系统以及车辆,涉及摄像装置技术领域,用于解决摄像头起雾、起霜或结冰等问题。该摄像头组件包括摄像头、第一线圈、第二线圈和加热元件。其中,第一线圈设置于摄像头上,且被配置为产生磁场。第二线圈设置于摄像头上,其被配置为在第一线圈所产生的磁场的作用下产生电流。加热元件与第二线圈耦接,且被配置为在第二线圈所产生的电流的作用下产生热量,以加热摄像头。

Description

摄像头组件、车载系统以及车辆
本申请要求于2022年03月08日提交的、申请号为202210219609.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及摄像装置技术领域,尤其涉及一种摄像头组件、车载系统以及车辆。
背景技术
随着电子智能化的发展,摄像头在各个领域应用越来越广泛。在寒冷、潮湿的室外环境中使用摄像头时,摄像头的镜头上容易产生起雾、结冰等自然现象,从而降低该摄像头的成像质量,并影响用户的正常使用。
发明内容
本公开的实施例提供一种摄像头组件、车载系统以及车辆,用于改善摄像头的镜头起雾、起霜或者结冰的问题。
为达到上述目的,本公开的一些实施例采用如下技术方案。
一方面,本公开一些实施例提供一种摄像头组件,该摄像头组件包括摄像头、第一线圈、第二线圈和加热元件。其中,第一线圈设置于摄像头上,且被配置为产生磁场。第二线圈设置于摄像头上,且被配置为在第一线圈所产生的磁场的作用下产生电流。加热元件与第二线圈耦接,且被配置为在第二线圈所产生的电流的作用下产生热量,以加热摄像头。
在一些实施例中,该摄像头包括镜头座和透镜组。镜头座包括由第一侧壁围成的第一安装腔。透镜组位于该第一安装腔内。加热元件设置于透镜组与第一安装腔的内壁之间;或者,加热元件设置于第一安装腔的外壁上。
在一些实施例中,该摄像头包括镜头座、透镜组和图像传感器。镜头座包括由第一侧壁围成的第一安装腔以及由第二侧壁围成的第二安装腔。透镜组位于该第一安装腔内。图像传感器位于该第二安装腔内,且被配置为将来自镜头组的光线转换为电信号。加热元件设置于图像传感器与第二侧壁的内壁之间;或者,加热元件设置于第二侧壁的外壁上的第一位置处,以使第二侧壁位于加热元件与图像传感器之间。
在一些实施例中,该摄像头包括镜头座、透镜组、图像传感器和传输芯片。镜头座包括由第一侧壁围成的第一安装腔以及由第二侧壁围成的第二安装腔。透镜组位于该第一安装腔内。图像传感器位于该第二安装腔内,且被配置为将来自镜头组的光线转换为电信号。传输芯片位于该第二安装腔内。 传输芯片与图像传感器耦接,且被配置为传输所述图像传感器转换得到的电信号。加热元件设置于传输芯片与第二侧壁的内壁之间;或者,加热元件设置于第二侧壁的外壁上的第二位置处,以使第二侧壁位于加热元件与传输芯片之间。
在一些实施例中,该摄像头组件还包括至少一个套管。该至少一个套管被配置为将第一线圈、第二线圈以及加热元件中的至少一个包裹在摄像头上。
在一些实施例中,该套管包括第一套管和第二套管。第一套管被配置为将第一线圈、第二线圈以及加热元件中的至少一个包裹在第二套管上。第二套管包裹在摄像头上,且被配置为至少部分地屏蔽来自摄像头中的部件的电磁干扰。
在一些实施例中,该加热元件为电阻丝或加热膜中的至少一个。
在一些实施例中,该摄像头组件还包括温控电阻。该温控电阻与加热元件串联,且被配置为控制流经加热元件的电流的大小。
另一方面,本公开一些实施例还提供一种车载系统。该车载系统包括电子控制单元和摄像头组件。该摄像头组件包括摄像头、第一线圈、第二线圈和加热元件。其中,第一线圈设置于摄像头上,且被配置为产生磁场。第二线圈设置于摄像头上,且被配置为在第一线圈所产生的磁场的作用下产生电流。加热元件与第二线圈耦接,且被配置为在第二线圈所产生的电流的作用下产生热量,以加热摄像头。电子控制单元与摄像头组件耦接,且被配置为控制加热元件加热摄像头。
在一些实施例中,该电子控制单元包括图像处理器、微控制单元和电源芯片。图像处理器与摄像头耦接,且被配置为接收来自摄像头的电信号,以生成图像数据,并获取该图像数据所对应的图像的清晰度。微控制单元与图像处理器耦接,且被配置为在该图像的清晰度小于清晰度阈值的情况下,发出控制指令。电源芯片与微控制单元和第一线圈耦接,且被配置为根据该控制指令为该第一线圈供电。
在一些实施例中,该摄像头包括镜头座和透镜组。镜头座包括由第一侧壁围成的第一安装腔。透镜组位于该第一安装腔内。加热元件设置于透镜组与第一安装腔的内壁之间;或者,加热元件设置于第一安装腔的外壁上。
在一些实施例中,该摄像头包括镜头座、透镜组和图像传感器。镜头座包括由第一侧壁围成的第一安装腔以及由第二侧壁围成的第二安装腔。透镜组位于该第一安装腔内。图像传感器位于该第二安装腔内,且被配置为将来自镜头组的光线转换为电信号。加热元件设置于图像传感器与第二侧壁的内 壁之间;或者,加热元件设置于第二侧壁的外壁上的第一位置处,以使第二侧壁位于加热元件与图像传感器之间。
在一些实施例中,该摄像头包括镜头座、透镜组、图像传感器和传输芯片。镜头座包括由第一侧壁围成的第一安装腔以及由第二侧壁围成的第二安装腔。透镜组位于该第一安装腔内。图像传感器位于该第二安装腔内,且被配置为将来自镜头组的光线转换为电信号。传输芯片位于该第二安装腔内。传输芯片与图像传感器耦接,且被配置为传输所述图像传感器转换得到的电信号。加热元件设置于传输芯片与第二侧壁的内壁之间;或者,加热元件设置于第二侧壁的外壁上的第二位置处,以使第二侧壁位于加热元件与传输芯片之间。
在一些实施例中,该摄像头组件还包括至少一个套管。该至少一个套管被配置为将第一线圈、第二线圈以及加热元件中的至少一个包裹在摄像头上。
在一些实施例中,该套管包括第一套管和第二套管。第一套管被配置为将第一线圈、第二线圈以及加热元件中的至少一个包裹在第二套管上。第二套管包裹在摄像头上,且被配置为至少部分地屏蔽来自摄像头中的部件的电磁干扰。
在一些实施例中,该加热元件为电阻丝或加热膜中的至少一个。
在一些实施例中,该摄像头组件还包括温控电阻。该温控电阻与加热元件串联,且被配置为控制流经加热元件的电流的大小。
又一方面,本公开一些还提供一种车辆。该车辆包括车身和上述技术方案提及的车载系统,该车载系统设置于车身上。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的车辆的结构图;
图2为根据一些实施例的车载系统的一个结构图;
图3为根据一些实施例的车载系统的另一个结构图;
图4为根据一些实施例的加热元件的一个工作原理图;
图5为根据一些实施例的加热元件的另一个工作原理图;
图6a为根据一些实施例的摄像头组件的一个结构图;
图6b为根据一些实施例的摄像头组件的另一个结构图;
图7a为根据一些实施例的摄像头组件的又一个结构图;
图7b为根据一些实施例的摄像头组件的又一个结构图;
图8a为根据一些实施例的摄像头组件的又一个结构图;
图8b为根据一些实施例的摄像头组件的又一个结构图;
图9为根据一些实施例的摄像头组件的又一个结构图;
图10为根据一些实施例的摄像头组件的又一个结构图;
图11为根据一些实施例的摄像头组件的又一个结构图;
图12为根据一些实施例的多个加热元件的工作原理图;
图13为根据一些实施例的加热元件和温控电阻的工作原理图;
图14为根据一些实施例的加热元件的一个固定方式图;
图15为图14沿A-A′方向的剖面图;
图16为根据一些实施例的加热元件的另一个固定方式图;
图17为根据一些实施例的加热元件的又一个固定方式图。
附图标记:
车辆100;
车载系统10;电子控制单元1;图像处理器11;微控制单元12;电源芯
片13;摄像头组件2;摄像头21;镜头座211;第一侧壁2111;第一安装腔Q1;第二侧壁2112;第二安装腔Q2;透镜组212;图像传感器213;传输芯片214;基板215;第一基板2151;第二基板2152;空隙d;连接器216;加热组件22;第一线圈221;第一轴心线L1;第二线圈222;第二轴心线L2;耦合距离D;加热元件223;温控电阻224;套管225;第一套管2251;第二套管2252;显示设备3;
车身20。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one  embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层的厚度和区域的面积。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备 的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
在本公开的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
摄像头应用于车辆、户外监控和运动相机等诸多领域。当摄像头在寒冷、潮湿的环境中工作时,若该环境的温度变化(例如,该环境的温度骤降),则该环境中的水蒸气可能会在摄像头的透镜组(镜头)表面凝结或凝华,从而在该透镜组表面形成雾气或冰霜。由于光线需要从室外透射穿过透镜组,以进入摄像头内部成像,因此,透镜组上的雾气或冰霜会改变光线的传输路径,从而干扰成像、影响摄像头所拍摄的图像的清晰度,进而降低摄像头的成像效果。
针对上述技术问题,本公开一些实施例提供一种摄像头组件。该摄像头组件可以在透镜组上的雾气或冰霜等影响了摄像头的成像效果时,对该摄像头的至少一个部分(例如,透镜组)进行加热,以去除该雾气或冰霜,从而保证该摄像头的成像效果。
需要说明的是,本公开不限定该摄像头组件所应用的技术领域,例如,该摄像头组件可以应用于室外监控系统、交通监管系统、物业监控系统、运动相机或全景式监控影像系统(Around View Monitor,AVM)等。为便于描述,以下实施例以应用于车辆的摄像头组件为例,进行示例性说明。
如图1所示,本公开一些实施例提供一种车辆100。车辆100例如可以为轿车、客车和挂车等,车辆100可以包括车身20和如图2所示的车载系统10。其中,车载系统10可以设置于车身20上。
如图2所示,车载系统10包括电子控制单元(Electronic Control Unit,ECU)1和摄像头组件2。在一些实施例中,电子控制单元1可以设置于车身20的内部,摄像头组件2可以设置于车身20的外部。
电子控制单元1与摄像头组件2耦接,且被配置为控制加热摄像头组件2中的摄像头。另外,电子控制单元1还可以对摄像头组件2进行其他控制。例如,电子控制单元1可以开启摄像头组件2以采集车身20外部的环境图像,或者,电子控制单元1可以接收摄像头组件2采集到的环境图像的图像数据,并根据上述图像数据控制显示上述环境图像,从而增加驾驶员的视野范围。
在上述示例中,车辆100还包括如图2所示的显示设备3。显示设备3与电子控制单元1耦接,且被配置为在电子控制单元1的控制下,显示摄像头组件2采集到的环境图像。示例性地,上述显示设备3可以设置于车身20内部。本公开对显示设备3的类型不做限定,例如,显示设备3可以为电浆(plasma)投影组件、数字投影组件或液晶显示器等。
下面主要结合附图,对摄像头组件2的设置位置进行示例性说明。
在一些实施例中,继续参照图1,摄像头组件2设置在车身20的左右两侧中的至少一侧上(例如,设置在车辆100的两个后视镜中的至少一个上)。这样,可以通过摄像头组件2获取车身20的侧后方的图像,并通过车辆100内部的显示设备3将该图像呈现给驾驶员,以避免驾驶员在驾驶过程中倾斜头部去观察车身20侧后方的情况,有助于提高驾驶员驾驶时的注意力以及扩大驾驶员的观察范围。
需要说明的是,本公开对车辆100所包括的摄像头组件2的数量不作限定,图1以车辆100包括两个摄像头组件2、且该两个摄像头组件2分别设置在车辆100的两个后视镜上为例,进行示例性说明。
在另一些实施例中,摄像头组件2可以设置于车身20的尾端或车身20的前端等位置。这样,可以通过摄像头组件2为驾驶员提供这些位置处的图像,以减少驾驶员的视野盲区,有利于提高驾驶安全性。
下面主要结合附图,对电子控制单元1和摄像头组件2这两者的结构以及工作原理进行示例性说明。
在一些实施例中,如图3所示,电子控制单元1包括图像处理器11、微控制单元(Microcontroller Unit,MCU)12和电源芯片13;摄像头组件2包括摄像头21和能够加热摄像头21的加热组件22。其中,图像处理器11与摄像头21耦接,且被配置为接收来自摄像头21的电信号,以生成图像数据,并获取该图像数据所对应的图像的清晰度。微控制单元12与图像处理器11耦接,且被配置为在该图像的清晰度小于清晰度阈值的情况下,发出控制指令。电源芯片13与微控制单元12和加热组件22耦接,且被配置为根据该控制指令为加热组件22供电。
在该实施例中,图像处理器11可以将摄像头21拍摄到的图像的清晰度发送至微控制单元12,微控制单元12可以将该图像的清晰度与清晰度阀值进行比较。在一些示例中,若该清晰度小于清晰度阈值,则说明摄像头21的透镜组表面可能存在雾气或冰霜,从而影响了摄像头21的成像效果。此时,微控制单元12可以对电源芯片13发出控制指令,以通过该控制指令指示电 源芯片13为加热组件22供电,从而加热摄像头21。这样,可以提高摄像头21的透镜组表面的温度,从而使该透镜组表面的雾气蒸发或使该透镜组表面的冰霜融化,进而提高摄像头21拍摄到的图像的清晰度、提升摄像头21的成像效果。在另一些示例中,若该清晰度大于或等于清晰度阀值,则说明摄像头21的成像效果较好。此时,微控制单元12可以不对电源芯片13发出控制指令。这样,加热组件22不会消耗车辆100中的电量,从而可以减少能源消耗。
需要说明的是,加热组件22的加热时间(即电源芯片13的供电时间)可以由用户或制造商设定,本公开对此不作限定。例如,该加热时间可以为:100毫秒、200毫秒或300毫秒等。此外,本公开对摄像头21的类型不作限定。
在另一些实施例中,电源芯片13可以不与微控制单元12耦接。在该实施例中,电源芯片13可以持续为加热组件22供电,以使加热组件22持续加热摄像头21。这样,可以简化加热组件22的控制过程。
下面主要结合附图,对加热组件22的结构进行示例性说明。
在一些实施例中,如图4所示,加热组件22包括第一线圈221、第二线圈222和加热元件223。其中,第一线圈221设置于摄像头21上,且被配置为产生磁场。示例性地,第一线圈221与电源芯片13耦接,电源芯片13可以为第一线圈221供电。第二线圈222设置于摄像头21上,且被配置为在第一线圈221所产生的磁场的作用下产生电流。加热元件223与第二线圈222耦接,且被配置为在第二线圈222所产生的电流的作用下产生热量,以加热摄像头21。
在该实施例中,第一线圈221和第二线圈222的工作原理如图5所示。示例性地,电源芯片13可以为第一线圈221提供变化的电流,例如交变电流。在变化的电流的作用下,第一线圈221可以产生变化的磁场。这样,通过第二线圈222的磁通量会发生变化,从而使第二线圈222内产生电流。第二线圈222内的电流可以流经与第二线圈222耦接的加热元件223,以使加热元件223在电流的作用下产生热量,从而加热摄像头21。
基于上述实施例,本公开实施例提供的摄像头组件2可以通过第一线圈221将电源芯片13提供的电能转化为磁能,再通过第二线圈222将第一线圈221的磁能转化为电能后提供给加热元件223,以使加热元件223加热摄像头21。由于第一线圈221与第二线圈222之间的能量传递无需依靠电路连接,因此,在第一线圈221的位置不变的情况下,第二线圈222和加热元件223 可以在不改变摄像头组件2中各部件的电路连接方式的前提下,灵活设置在摄像头21的不同位置处,以满足不同的加热需求。因此,本公开一些实施例提供的摄像头组件2的各部件具有较高的设置灵活性。
下面主要结合附图,对加热元件223的设置位置进行示例性说明。
在一些实施例中,如图6a所示,摄像头21包括镜头座211和透镜组212,镜头座211包括由第一侧壁2111围成的第一安装腔Q1。透镜组212位于第一安装腔Q1内,透镜组212可以包括多个透镜。在该实施例中,加热元件223设置在靠近透镜组212的位置处,以直接或近距离地加热透镜组212,从而提高去除透镜组212表面的雾气或冰霜等的效率。
在一些示例中,参照图6a,加热元件223设置于透镜组212与第一侧壁2111的内壁之间。其中,第一侧壁2111的内壁是指第一侧壁2111靠近透镜组212的一侧表面。这样,镜头座211可以对加热元件223进行保温,以减慢加热元件223所产生的热量的流失速度,同时,也可以保证摄像头21外部的美观性。
在另一些示例中,如图6b所示,加热元件223设置于第一侧壁2111的外壁上。其中,第一侧壁2111的外壁是指第一侧壁2111远离透镜组212的一侧表面。这样,加热元件223所产生的热量可以经第一侧壁2111传递至透镜组212,从而避免了透镜组212的温度急剧升高后可能引起的变形、移位等问题。
在另一些实施例中,如图7a所示,摄像头21还包括图像传感器213。镜头座211还包括由第二侧壁2112围成的第二安装腔Q2。图像传感器213位于第二安装腔Q2内,且被配置为将来自透镜组212的光线转换为电信号,即,进行光电转换。在图像传感器213的工作温度较低或工作环境潮湿的情况下,图像传感器213的画面输出效果较差。例如,在图像传感器213的工作温度低于零下40℃时,图像传感器213通常不能正常输出画面。基于此,在该实施例中,加热元件223设置在靠近图像传感器213的位置处,以直接或近距离地加热图像传感器213,从而保证图像传感器213的画面输出效果。
需要说明的是,即使加热元件223设置在靠近图像传感器213的位置处,加热元件223所产生的热量也可以传导至透镜组212,从而达到去除透镜组212外部的雾气或冰霜的目的。
在一些示例中,如图7a所示,加热元件223设置于图像传感器213与第二侧壁2112的内壁之间。其中,第二侧壁2112的内壁是指第二侧壁2112靠近图像传感器213的一侧表面。该示例的有益效果可以参照前文中图6a所对 应的示例的有益效果,在此不再赘述。
在另一些示例中,如图7b所示,加热元件223设置于第二侧壁2112的外壁上的第一位置处,以使第二侧壁2112位于加热元件223与图像传感器213之间。其中,第二侧壁2112的外壁是指第二侧壁2112远离图像传感器213的一侧表面。该示例的有益效果可以参照前文中图6b所对应的示例的有益效果,在此不再赘述。
在又一些实施例中,如图8a所示,摄像头21还包括传输芯片214。传输芯片214位于第二安装腔Q2内。传输芯片214与图像传感器213耦接,且被配置为传输图像传感器213转换得到的电信号。类似地,在传输芯片214的工作温度较低或工作环境潮湿的情况下,传输芯片214可能无法正常工作。基于此,在该实施例中,加热元件223设置在靠近传输芯片214的位置处,以直接或近距离地加热传输芯片214,从而保证传输芯片214正常运行。
在一些示例中,参照图8a,加热元件223设置于传输芯片214与第二侧壁2112的内壁之间。其中,第二侧壁2112的内壁为第二侧壁2112靠近传输芯片214(即靠近图像传感器213)的一侧表面。该示例的有益效果可以参照前文中图6a所对应的示例的有益效果,在此不再赘述。
在另一些示例中,如图8b所示,加热元件223设置于第二侧壁2112的外壁上的第二位置处,以使第二侧壁2112位于加热元件223与传输芯片214之间。其中,第二侧壁2112的外壁为第二侧壁2112远离传输芯片214(即远离图像传感器213)的一侧表面。该示例的有益效果可以参照前文中图6b所对应的示例的有益效果,在此不再赘述。
在一些示例中,图像传感器213和传输芯片214可以设置在如图9所示的一个基板(例如为覆铜箔层压板)215上,也可以分别设置于两个基板215(例如,图10所示的第一基板2151和第二基板2152)上。示例性地,当基板215为两个时,图像传感器213可以与第一基板2151耦接,传输芯片214可以与第二基板2152耦接,且第一基板2151与第二基板2152之间具有空隙d。在该示例中,加热元件223可以设置在空隙d与第二侧壁2112的内壁之间;或者,加热元件223也可以设置在第二侧壁2112的外壁上的第三位置处,以使第二侧壁2112位于加热元件223与空隙d之间。这样,一个加热元件223可以同时加热图像传感器213和传输芯片214。
在又一些实施例中,如图11所示,摄像头21还包括连接器216。连接器216的一端被配置为与传输芯片214耦接,连接器216的另一端被配置为与电子控制单元1耦接。连接器216被配置为将传输芯片214的电信号传输给电 子控制单元1。在低温环境下,连接器216可能出现接触不良等问题,从而导致传输芯片214的电信号不能正常传输至电子控制单元1。基于此,在该实施例中,加热元件223设置于连接器216处(例如,至少部分地包裹连接器216)。这样,可以在环境温度较低时加热连接器216,从而保证系统的传输稳定性。
在又一些实施例中,摄像头21还可以包括其他部件(例如,红外滤光片、防尘垫片和屏蔽壳等,本公开实施例未一一列举),当摄像头21中的某个部件有加热需求时,加热元件223可以设置在靠近该部件的位置处。
在一些实施例中,摄像头组件2可以包括多个加热元件223。在一些示例中,该多个加热元件223可以设置在摄像头21的同一位置处,以集中加热该位置处的部件,从而加快该部件的加热速度。在另一些示例中,该多个加热元件223可以分布在摄像头21的至少两个不同的位置处,以加热摄像头21中的多个部件,从而保障摄像头21在低温环境中的正常运行。示例性地,以图12中的两个加热元件223为例,一个加热元件223可以设置在如上所述的第一侧壁2111的外壁上、另一个加热元件223可以设置在如上所述的第二侧壁2112的外壁上。
在一些示例中,上述多个加热元件223可以分别对应耦接多个第二线圈222。在该示例中,摄像头组件2还包括多个第二线圈222,一个第一线圈221所产生的磁场可以使该多个第二线圈222内产生电流,以使该多个第二线圈222分别为该多个加热元件223供电,从而提高了摄像头组件2的能量转化效率、提升了利用摄像头21的加热效果。
在另一些示例中,上述多个加热元件223共同耦接一个第二线圈222。如图12所示,多个加热元件223(图12以两个加热元件223为例)均与第二线圈222串联连接。
在一些实施例中,加热组件22可以在装配摄像头21时预设在摄像头21内部,从而与摄像头21连接为一体结构。加热组件22内部的各个部件可以统一设置在摄像头21的内部(或外部),也可以分开设置在摄像头21的内部和外部,本公开对此不作限定。
下面对加热元件223的结构进行示例性说明。
在相关技术中,通常采用金属体作为加热元件。金属体的加热效果与该金属体的尺寸和厚度成正比,若要获得较好的加热效果,则需要较大尺寸和厚度的金属体。然而,由于摄像头21本身的体积较小,难以在摄像头21中设置较大尺寸和厚度的金属体,因此,相关技术中的加热元件的加热效果较 差。此外,摄像头21要求具备防水、防尘性能,由于金属体和非金属体(例如,塑料)的热膨胀系数不一致,因此,在采用金属体作为加热元件为摄像头21进行加热时,加热元件与摄像头21的其他部件之间可能出现缝隙,较难实现较高的防水、防尘要求。基于上述技术问题,在一些实施例中,加热元件223可以为电阻丝或加热膜中的至少一个。需要说明的是,本公开对电阻丝或加热膜的类型均不作限定。
在一些示例中,加热元件223为电阻丝。电阻丝的加热效果可以通过更改电阻丝参数(例如,阻值)来调整,无需依靠增大电阻丝的体积实现加热效果的提升。此外,电阻丝易于缠绕在摄像头21的各个位置处、设置方式简单,且占用空间小。
在另一些示例中,加热元件223为加热膜。加热膜例如可以为透明柔性膜,透明柔性膜具有一定的透光率,以保证外部光线可以透过该透明柔性膜后在摄像头21内部成像。透明柔性膜可以完全覆盖设置于透镜组212的外表面(即透镜组212上会产生雾气或冰霜的一侧表面)或部分覆盖设置于透镜组212的外表面边缘。或者,加热膜也可以覆盖设置于摄像头21中的其他部件的内部或者表面,本公开对此不作限定。
为了方便说明,后续实施例以加热元件223为电阻丝为例,进行示例性说明。在相关技术中,加热组件通常仅包括电阻丝,该电阻丝与电源芯片直接电连接。电阻丝的加热效果需要通过控制电源芯片13输出的电流的大小来调整,控制方式单一。
基于此,在一些实施例中,如图12所示,第一线圈221的第一轴心线L1与第二线圈222的第二轴心线L2平行(图12以第一轴心线L1与第二轴心线L2重合为例),此时,第二线圈222和第一线圈221之间的耦合距离D与第二线圈222在第一线圈221所产生的磁场的作用下产生的电流的大小成正比。例如,可以通过减小(或增大)耦合距离D,控制第一线圈221产生的电流增大(或减小),从而控制电阻丝的加热效果增强(或减弱)。在另一些实施例中,也可以通过改变第一线圈221和第二线圈222之间的匝数比例控制第二线圈222产生的电流的大小,从而调整电阻丝的加热效果。这样,本公开实施例提供的加热组件22不仅可以通过改变电源芯片13输出的电流的大小来调整加热元件223的加热效果,还可以通过改变第一线圈221和第二线圈222之间的耦合距离D、以及第一线圈221和第二线圈222之间的匝数比例来调整加热元件223的加热效果,因此,加热元件223的加热效果的控制方式更加灵活。
在一些实施例中,如图13所示,加热组件22还包括温控电阻224。温控电阻224与第二线圈222串联连接,且与加热元件223串联连接。随工作温度(或工作电流)的变化,温控电阻224的阻值可以发生变化,以控制流经加热元件223的电流的大小,从而实现加热元件223的智能控温。示例性地,温控电阻224可以包括正温度系数电阻(阻值随工作温度升高而增大)、负温度系数电阻(阻值随工作温度升高而减小)和自恢复保险丝(当自恢复保险丝的线路发生短路或过载时,该自恢复保险丝呈现高阻值状态,流经该自恢复保险丝的工作电流迅速减小)等。这样,可以通过监控第二线圈222上的电流的实际值和预定值之间的差值,间接了解第二线圈222的工作状态。以温控电阻224为自恢复保险丝为例,当该实际值与预定值之间的差值大于预设值时,说明第二线圈222上的电流值较小,此时可以认为第二线圈222可能发生短路或过载。
在一些示例中,温控电阻224为正温度系数电阻。在该示例中,在第二线圈222开始产生电流之后的一段时间内,正温度系数电阻的工作温度较低、阻值较小,流经加热元件223的电流较大。此时,加热元件223(例如,电阻丝)产生的热量较大。随时间的推移,正温度系数电阻的工作温度逐渐升高、阻值逐渐变大,流经加热元件223的电流逐渐变小,加热元件223产生的热量逐渐减小。也就是说,加热元件223开始工作后的一段时间内以较大功率发热,从而可以快速加热摄像头21;然后,加热元件223的加热功率降低,从而关闭加热功能。
在另一些示例中,温控电阻224为负温度系数电阻。在该示例中,在第二线圈222开始产生电流之后的一段时间内,负温度系数电阻的工作温度较低、阻值较大,流经加热元件223的电流较小。随时间的推移,负温度系数电阻的工作温度逐渐升高、阻值逐渐减小,流经加热元件223的电流逐渐变大。也就是说,加热元件223开始工作后的一段时间内以较小功率发热,然后逐步增大加热功率。在该示例中,加热元件223对摄像头21进行加热的过程较为温和,有助于保证摄像头21内被加热的部件的结构稳定性,以防止因热膨胀系数不一致导致的摄像头21的内部部件损害,例如零件松动、零件位移和零件使用寿命缩短等。
在又一些示例中,温控电阻224为自恢复保险丝(例如,延迟型自恢复保险丝)。在该示例中,自恢复保险丝具有过流过热保护和自动恢复的双重功能。当工作电流大于自恢复保险丝的保护设定值时,自恢复保险丝呈现高阻值状态,相当于第二线圈222、加热元件223和温控电阻224这一回路断 开,此时加热元件223停止加热。这样,可以通过设置自恢复保险丝的保护设定值,控制加热元件223的加热时间(例如,100毫秒、200毫秒或300毫秒等,本公开对此不作限定)。
下面主要结合附图,对第一线圈221、第二线圈222和加热元件223在摄像头21上的固定方式进行示例性说明。
在一些实施例中,如图14所示,摄像头组件2还包括至少一个套管225(图14以一个套管225为例),该至少一个套管225被配置为将第一线圈221、第二线圈222和加热元件223中的至少一个包裹在摄像头21上。需要说明的是,本公开不限定套管225的材料、形状等。
在一些示例中,套管225由绝缘材料(例如,绝缘有机材料)构成,这样,套管225可以为被该套管225包裹的部件提供绝缘保护。示例性地,套管225可以为热收缩套管。这样,该热收缩套管能够在受热之后冷缩固定,第一线圈221、第二线圈222和(多个)加热元件223可以通过热收缩套管包裹在镜头座211外侧或镜头座211内部的其他部件的外侧。在该情况下,由于热收缩套管具有高温收缩、柔软阻燃、绝缘防蚀等特性,因此,在不改变摄像头21的内部结构的情况下,可以通过热风枪加热(例如,加热至125℃以上)热收缩套管以使其收缩,从而通过热收缩套管将加热元件223按照如图15所示的方式包裹固定在摄像头21上。类似地,也可以通过该种固定方式将第一线圈221和第二线圈222固定在摄像头21上。采用该种固定方式,不仅操作简单,并且可以在不改变摄像头21的防水、防尘结构的前提下,不影响摄像头21的成像品质。此外,采用热收缩套管固定加热组件22不限于摄像头21的尺寸,易于实现各种尺寸摄像头21的加热功能。在另一些实施例中,第一线圈221、第二线圈222和加热元件223均可以通过其他方式(例如,粘接、卡接)固定在摄像头21上。
在另一些实施例中,如图16所示,套管225包括第一套管2251和第二套管2252,加热组件22(图16仅示出第一线圈221)位于第一套管2251和第二套管2252之间。如图17所示,第二套管2252位于第一套管2251和摄像头21之间。在该实施例中,以第一线圈221为例,第二套管2252包裹在摄像头21外侧,第一套管2251将第一线圈221包裹在第二套管2252外侧,从而实现第一线圈221的固定。在一些示例中,第一套管2251和第二套管2252均由绝缘材料构成,这样,第一套管2251和第二套管2252可以为包裹在这两者之间的部件提供至少两个方向上的绝缘保护。在另一些示例中,第一套管2251由绝缘材料构成、且第二套管2252由金属材料构成。这样,第 二套管2252相当于一个电磁屏蔽层,从而可以将摄像头21与第一线圈221隔离开,以至少部分地屏蔽来自摄像头21中的部件的电磁干扰,从而防止第一线圈221所产生的磁场受到干扰,进而进一步保证第二线圈222和加热元件223正常工作。示例性地,该示例中的第二套管2252可以完全包裹摄像头21,以形成摄像头21的电磁屏蔽罩。这样,摄像头21的外部可以形成屏蔽的电磁场区域,第一线圈221所产生的变化的磁场不会外泄进入摄像头21中,从而可以提高第二线圈222的磁能接收强度,进而提高第二线圈222将磁能转化为电能的能量转化率。类似地,第二线圈222和加热元件223也可以通过第一套管2251和第二套管2252进行固定。
在另一些实施例中,第一线圈221、第二线圈222和加热元件223也可以通过胶带(例如,绝缘胶带)或其他方式固定在摄像头21上,本公开对此不作限定。
在一些实施例中,采用电子控制单元1内原有的电源芯片13为第一线圈221进行供电。这样,不仅可以省去外接电源的成本,而且可以通过电子控制单元1对第一线圈221的供电单元(即电源芯片13)进行控制,从而提高第一线圈221的供电智能化程度。为了为第一线圈221提供变化的电流,示例性地,可以在第一线圈221与电源芯片13之间串联连接电源转换模块,以通过电源转换模块将电源芯片13输出的恒定电流变为变化的电流。或者,电源芯片13自身可以产生变化的电流,本公开对此不作限定。在另一些实施例中,第一线圈221可以采用除电源芯片13之外的其他电源(例如,单独的外接电源)供电,本公开对此不作限定。
另一方面,本公开一些实施例还提供一种车载系统。该车载系统例如可以为前述实施例中的车载系统10,该车载系统的有益效果可以参照前述实施例中关于车载系统10以及车载系统10中的摄像头组件2的有益效果的相关记载,在此不再赘述。
又一方面,本公开一些实施例还提供一种车辆。该车辆例如可以为前述实施例中的车辆100,该车辆的有益效果可以参照前述实施例中关于车辆100以及车辆100中的摄像头组件2的有益效果的相关记载,在此不再赘述。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (18)

  1. 一种摄像头组件,包括:
    摄像头;
    第一线圈,设置于所述摄像头上,且被配置为产生磁场;
    第二线圈,设置于所述摄像头上,且被配置为在所述第一线圈所产生的磁场的作用下产生电流;和
    加热元件,与所述第二线圈耦接,且被配置为在所述第二线圈所产生的电流的作用下产生热量,以加热所述摄像头。
  2. 根据权利要求1所述的摄像头组件,其中,
    所述摄像头包括:
    镜头座,包括由第一侧壁围成的第一安装腔;和
    透镜组,位于所述第一安装腔内;
    所述加热元件设置于所述透镜组与所述第一侧壁的内壁之间;或者,所述加热元件设置于所述第一侧壁的外壁上。
  3. 根据权利要求1所述的摄像头组件,其中,
    所述摄像头包括:
    镜头座,包括由第一侧壁围成的第一安装腔以及由第二侧壁围成的第二安装腔;
    透镜组,位于所述第一安装腔内;和
    图像传感器,位于所述第二安装腔内,且被配置为将来自所述透镜组的光线转换为电信号;
    所述加热元件设置于所述图像传感器与所述第二侧壁的内壁之间;或者,所述加热元件设置于所述第二侧壁的外壁上的第一位置处,以使所述第二侧壁位于所述加热元件与所述图像传感器之间。
  4. 根据权利要求1所述的摄像头组件,其中,
    所述摄像头包括:
    镜头座,包括由第一侧壁围成的第一安装腔以及由第二侧壁围成的第二安装腔;
    透镜组,位于所述第一安装腔内;
    图像传感器,位于所述第二安装腔内,且被配置为将来自所述透镜组的光线转换为电信号;和
    传输芯片,位于所述第二安装腔内;所述传输芯片与所述图像传感器耦接,且被配置为传输所述图像传感器转换得到的电信号;
    所述加热元件设置于所述传输芯片与所述第二侧壁的内壁之间;或者,所述加热元件设置于所述第二侧壁的外壁上的第二位置处,以使所述第二侧壁位于所述加热元件与所述传输芯片之间。
  5. 根据权利要求1至4中任一项所述的摄像头组件,还包括:
    至少一个套管,被配置为将所述第一线圈、所述第二线圈以及所述加热元件中的至少一个包裹在所述摄像头上。
  6. 根据权利要求5所述的摄像头组件,其中,所述套管包括:
    第一套管,被配置为将所述第一线圈、所述第二线圈以及所述加热元件中的至少一个包裹在第二套管上;
    所述第二套管,包裹在所述摄像头上,且被配置为至少部分地屏蔽来自所述摄像头中的部件的电磁干扰。
  7. 根据权利要求1至6中任一项所述的摄像头组件,其中,所述加热元件为电阻丝或加热膜中的至少一个。
  8. 根据权利要求1至7中任一项所述的摄像头组件,还包括:
    温控电阻;所述温控电阻与所述加热元件串联,且被配置为控制流经所述加热元件的电流的大小。
  9. 一种车载系统,包括:
    摄像头组件,包括:
    摄像头;
    第一线圈,设置于所述摄像头上,且被配置为产生磁场;
    第二线圈,设置于所述摄像头上,且被配置为在所述第一线圈所产生的磁场的作用下产生电流;和
    加热元件,与所述第二线圈耦接,且被配置为在所述第二线圈所产生的电流的作用下产生热量,以加热所述摄像头;和
    电子控制单元,与所述摄像头组件耦接,且被配置为控制所述加热元件加热所述摄像头。
  10. 根据权利要求9所述的车载系统,其中,所述电子控制单元包括:
    图像处理器,与所述摄像头耦接,且被配置为接收来自所述摄像头的电信号,以生成图像数据,并获取所述图像数据所对应的图像的清晰度;
    微控制单元,与所述图像处理器耦接,且被配置为在所述图像的清晰度小于清晰度阈值的情况下,发出控制指令;和
    电源芯片,与所述微控制单元和所述第一线圈耦接,且被配置为根据所述控制指令为所述第一线圈供电。
  11. 根据权利要求9或10所述的车载系统,其中,
    所述摄像头包括:
    镜头座,包括由第一侧壁围成的第一安装腔;和
    透镜组,位于所述第一安装腔内;
    所述加热元件设置于所述透镜组与所述第一侧壁的内壁之间;或者,所述加热元件设置于所述第一侧壁的外壁上。
  12. 根据权利要求9或10所述的车载系统,其中,
    所述摄像头包括:
    镜头座,包括由第一侧壁围成的第一安装腔以及由第二侧壁围成的第二安装腔;
    透镜组,位于所述第一安装腔内;和
    图像传感器,位于所述第二安装腔内,且被配置为将来自所述透镜组的光线转换为电信号;
    所述加热元件设置于所述图像传感器与所述第二侧壁的内壁之间;或者,所述加热元件设置于所述第二侧壁的外壁上的第一位置处,以使所述第二侧壁位于所述加热元件与所述图像传感器之间。
  13. 根据权利要求9或10所述的车载系统,其中,
    所述摄像头包括:
    镜头座,包括由第一侧壁围成的第一安装腔以及由第二侧壁围成的第二安装腔;
    透镜组,位于所述第一安装腔内;
    图像传感器,位于所述第二安装腔内,且被配置为将来自所述透镜组的光线转换为电信号;和
    传输芯片,位于所述第二安装腔内;所述传输芯片与所述图像传感器耦接,且被配置为传输所述图像传感器转换得到的电信号;
    所述加热元件设置于所述传输芯片与所述第二侧壁的内壁之间;或者,所述加热元件设置于所述第二侧壁的外壁上的第二位置处,以使所述第二侧壁位于所述加热元件与所述传输芯片之间。
  14. 根据权利要求9至13中任一项所述的车载系统,其中,所述摄像头组件还包括:
    至少一个套管,被配置为将所述第一线圈、所述第二线圈以及所述加热元件中的至少一个包裹在所述摄像头上。
  15. 根据权利要求14所述的车载系统,其中,所述套管包括:
    第一套管,被配置为将所述第一线圈、所述第二线圈以及所述加热元件中的至少一个包裹在第二套管上;
    所述第二套管,包裹在所述摄像头上,且被配置为至少部分地屏蔽来自所述摄像头中的部件的电磁干扰。
  16. 根据权利要求9至15中任一项所述的车载系统,其中,所述加热元件为电阻丝或加热膜中的至少一个。
  17. 根据权利要求9至16中任一项所述的车载系统,其中,所述摄像头组件还包括:
    温控电阻;所述温控电阻与所述加热元件串联,且被配置为控制流经所述加热元件的电流的大小。
  18. 一种车辆,包括:
    车身;和
    如权利要求9至17中任一项所述的车载系统,所述车载系统设置于所述车身上。
PCT/CN2023/078914 2022-03-08 2023-03-01 摄像头组件、车载系统以及车辆 WO2023169266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210219609.2 2022-03-08
CN202210219609.2A CN116781999A (zh) 2022-03-08 2022-03-08 一种摄像头组件、车载系统以及车辆

Publications (1)

Publication Number Publication Date
WO2023169266A1 true WO2023169266A1 (zh) 2023-09-14

Family

ID=87937217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078914 WO2023169266A1 (zh) 2022-03-08 2023-03-01 摄像头组件、车载系统以及车辆

Country Status (2)

Country Link
CN (1) CN116781999A (zh)
WO (1) WO2023169266A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108027547A (zh) * 2015-07-09 2018-05-11 Lg伊诺特有限公司 摄像机模块
CN111343732A (zh) * 2018-12-18 2020-06-26 Aptiv技术有限公司 加热装置
CN111343739A (zh) * 2018-12-18 2020-06-26 Aptiv技术有限公司 加热装置
CN113253547A (zh) * 2021-06-07 2021-08-13 江西联创电子有限公司 带加热装置的摄像模组
US20220053112A1 (en) * 2020-08-14 2022-02-17 Magna Electronics Inc. Vehicular camera with inductive lens heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108027547A (zh) * 2015-07-09 2018-05-11 Lg伊诺特有限公司 摄像机模块
US20180210161A1 (en) * 2015-07-09 2018-07-26 Lg Innotek Co., Ltd. Camera module
CN111343732A (zh) * 2018-12-18 2020-06-26 Aptiv技术有限公司 加热装置
CN111343739A (zh) * 2018-12-18 2020-06-26 Aptiv技术有限公司 加热装置
US20220053112A1 (en) * 2020-08-14 2022-02-17 Magna Electronics Inc. Vehicular camera with inductive lens heater
CN113253547A (zh) * 2021-06-07 2021-08-13 江西联创电子有限公司 带加热装置的摄像模组

Also Published As

Publication number Publication date
CN116781999A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
JP5795422B2 (ja) 発熱素子を有するカメラ
US11042076B2 (en) Camera module with heating element
CN107690594B (zh) 透镜镜筒和包括该透镜镜筒的相机模块
JP2022136126A (ja) レンズユニットおよびカメラモジュール
CN107741680A (zh) 自动加热摄像模组
CN107703702A (zh) 带去霜除雾功能的摄像模组
CN107728408A (zh) 带加热装置的摄像模组
CN111698396A (zh) 一种除霜除雾摄像头及汽车
TWM580190U (zh) 鏡頭加熱模組以及使用其之加熱式鏡頭與加熱式攝像頭
JP2023153344A (ja) レンズユニットおよびカメラモジュール
WO2023169266A1 (zh) 摄像头组件、车载系统以及车辆
US11927747B2 (en) Camera module, vehicle camera and monitoring system
CN208239776U (zh) 带去霜除雾功能的摄像模组
WO2022073292A1 (zh) 镜头组件及具有其的拍摄设备
KR20180006045A (ko) 렌즈 어셈블리 및 이를 포함하는 카메라 모듈
CN208156394U (zh) 带加热装置的摄像模组
CN208156395U (zh) 自动加热摄像模组
JP2020201328A (ja) ヒータ制御システム
CN219181608U (zh) 摄影装置与摄影装置加热模块
CN214623270U (zh) 成像组件和镜头
CN210694085U (zh) 一种双目活体逆光式摄像头
CN206620203U (zh) 一种散热效果好的摄像机
CN216599766U (zh) 一种摄像模组
CN111064871A (zh) 一种汽车摄像头镜头防雾结构及其工作方法
CN219715909U (zh) 摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765844

Country of ref document: EP

Kind code of ref document: A1