WO2022073292A1 - 镜头组件及具有其的拍摄设备 - Google Patents

镜头组件及具有其的拍摄设备 Download PDF

Info

Publication number
WO2022073292A1
WO2022073292A1 PCT/CN2020/133749 CN2020133749W WO2022073292A1 WO 2022073292 A1 WO2022073292 A1 WO 2022073292A1 CN 2020133749 W CN2020133749 W CN 2020133749W WO 2022073292 A1 WO2022073292 A1 WO 2022073292A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lens
glass body
glass
assembly
Prior art date
Application number
PCT/CN2020/133749
Other languages
English (en)
French (fr)
Inventor
张翔
刘勇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080073559.0A priority Critical patent/CN114556901A/zh
Publication of WO2022073292A1 publication Critical patent/WO2022073292A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present application relates to the technical field of lens devices, and in particular, to a lens assembly and a photographing device having the same.
  • some photographing devices are provided with a defogging glass on the front side of the lens.
  • the defogging glass includes a glass panel and a heating structure.
  • the heating structure is annular and is located on the outer periphery of the side of the glass panel facing the lens. The panel is heated for defogging.
  • the above heating structure directly heats the outer periphery of the glass panel, and the heat is then transferred to the middle of the glass panel.
  • the heating is not uniform in this way, and the temperature of the middle of the glass panel is slow, resulting in a slow defogging speed. If the heating is accelerated by increasing the power of the heating structure, the outer periphery of the glass panel is prone to overheating, especially in a low temperature environment, the excessive temperature difference will increase the risk of the glass panel and even the lens bursting.
  • Embodiments of the present application provide a lens assembly and a photographing device having the same.
  • an embodiment of the present application provides a lens assembly, comprising: a housing, with a receiving cavity in the housing, and a light-transmitting hole opened on the housing; a lens module, disposed in the receiving cavity, the lens module comprising: The lens, the light-transmitting hole is located on the front side of the lens; the glass component is arranged at the light-transmitting hole and is sealedly connected with the hole wall of the light-transmitting hole, and the glass component includes: a glass body with an avoidance area for avoiding the field of view of the lens a transparent conductive layer, the transparent conductive layer at least partially covers the avoidance area of the glass body; the first electrode and the second electrode are arranged on the glass body and are located outside the avoidance area, and the first electrode and the second electrode can pass through the transparent
  • the conductive layer is energized to heat the glass body.
  • first electrode and the second electrode are respectively located on opposite sides outside the avoidance area
  • the transparent conductive layer covers at least the part of the glass body between the first electrode and the second electrode
  • the transparent conductive layer is connected to the first electrode and the second electrode.
  • the second electrode is electrically connected.
  • the transparent conductive layer includes a conductive film formed on the surface of the glass body through a coating process.
  • the conductive film includes a metal ion film or a semiconductor film.
  • first electrode and the second electrode are arranged symmetrically with respect to the center of the glass body; or, both the first electrode and the second electrode are arranged along the edge of the glass body.
  • the lens module further includes a circuit board
  • the lens assembly further includes an electrical conduction structure
  • the first electrode and the second electrode are electrically connected to the circuit board through the electrical conduction structure.
  • the electrical conduction structure includes two first conductive transmission members, the first electrode and the second electrode are located on the inner side of the glass body, and the first ends of the two first conductive transmission members are respectively connected with the first electrode and the second electrode. Electrically connected, the second ends of the two first conductive transmission members are respectively electrically connected to the circuit board.
  • the outer side of the glass body has a first matching area independent of the avoidance area
  • the first matching area is connected to the inner side of the housing
  • the first matching area is arranged along the edge of the glass body
  • the first electrode and the second electrode are both. They are arranged on the inner side of the glass body, and their positions correspond to the positions of the first matching regions on the outer side of the glass body.
  • the inner surface of the glass body has a second matching area independent of the avoidance area, the second matching area is connected to the outer side of the housing, and at least part of the first electrode and at least part of the second electrode are located in the second matching area and the avoidance area. between.
  • the housing has two metal conduction parts spaced apart
  • the electrical conduction structure includes two metal conduction parts and two second conduction transmission parts
  • the first ends of the two second conduction transmission parts are respectively connected to the two metal conduction parts.
  • the second ends of the two second conductive transmission members are electrically connected to the circuit board respectively
  • the glass body has a third matching area independent of the avoidance area, and at least part of the first electrode and at least part of the second electrode are located in In the third matching area, after the third matching area is connected to the housing, the first electrode and the second electrode are respectively electrically connected to the two metal conductive parts.
  • the hole wall of the light-transmitting hole has an installation step, the glass assembly is installed at the installation step, the bottom surface of the installation step is bonded to the glass assembly, and the side surface of the installation step is in contact or clearance fit with the edge of the glass assembly.
  • At least one positioning surface is provided on the side surface of the installation step, and the edge of the glass assembly has a positioning mating surface matched with the positioning surface.
  • a dust ring which is arranged between the lens and the glass component, and the inner wall of the dust ring, the lens and the glass component together form a sealed cavity.
  • an embodiment of the present application provides a photographing device, including the above-mentioned lens assembly.
  • the glass body is heated by energizing the first electrode, the transparent conductive layer and the second electrode, thereby realizing defogging.
  • the transparent conductive layer covers the avoidance area. After the transparent conductive layer is energized, the avoidance area can be directly heated, so that the overall heating of the glass body is more uniform. Under a certain heating power, the glass body Quickly heat to the temperature that can defog/anti-fogging, achieve defogging/anti-fogging effect in a short time, and control the heating power within a reasonable range, there will be no local or overall overheating, effectively avoiding glass The body or the lens exploded.
  • FIG. 1 is a schematic diagram of an exploded structure of a lens assembly according to an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of the lens assembly of FIG. 1 applied to a pan-tilt camera;
  • Fig. 3 is a partial enlarged view of the lens assembly of Fig. 2;
  • FIG. 4 is a schematic structural diagram of a glass assembly of the lens assembly of FIG. 2;
  • FIG. 5 is a schematic structural diagram of the glass assembly of FIG. 4 from another angle
  • FIG. 6 is a schematic structural diagram of the glass assembly of FIG. 4 after mating with the housing and the first conductive transmission member;
  • FIG. 7 is a schematic structural diagram of a glass assembly of a lens assembly according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a glass assembly of a lens assembly according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of the glass assembly of FIG. 8 after being matched with the housing, the metal conductive portion, and the second conductive transmission member.
  • a and/or B includes scheme A, scheme B, or scheme that A and B satisfy at the same time.
  • spatially relative terms such as “above,” “below,” “top,” “bottom,” etc., may be used herein to describe only one device or feature as shown in the figure versus other devices or features.
  • the spatial relationship of features should be understood to also encompass different orientations in use or operation in addition to the orientation shown in the figures.
  • the embodiment of the present application provides a lens assembly, which can be applied to various shooting devices that need to have defogging and anti-fogging functions, such as a PTZ camera, a motion camera, a vehicle camera, a surveillance camera, etc., or even a Applicable to conventional types of cameras and camcorders.
  • a PTZ camera a motion camera
  • a vehicle camera a surveillance camera
  • a Applicable to conventional types of cameras and camcorders a Applicable to conventional types of cameras and camcorders.
  • the following will take the lens assembly applied to the gimbal camera as an example for detailed description.
  • FIG. 1 shows a schematic diagram of an exploded structure of a lens assembly according to an embodiment of the present application.
  • FIG. 2 shows a schematic cross-sectional view of the lens assembly of FIG. 1 applied to a pan-tilt camera.
  • FIG. 3 shows an enlarged partial view of the lens assembly of FIG. 2 .
  • FIG. 4 shows a schematic structural diagram of the inner side of the glass assembly 30 of the lens assembly of FIG. 2 .
  • the lens assembly includes a housing 10 , a lens module 20 and a glass assembly 30 .
  • the housing 10 has a receiving cavity 11 therein.
  • the casing 10 is provided with a light-transmitting hole 12 , and the light-transmitting hole 12 communicates with the receiving cavity 11 .
  • the lens module 20 is arranged in the receiving cavity 11 .
  • the lens module 20 includes a lens 21 , and the light-transmitting hole 12 is located on the front side of the lens 21 .
  • the glass assembly 30 is disposed at the light-transmitting hole 12 and is sealedly connected to the hole wall of the light-transmitting hole 12 .
  • the glass assembly 30 includes a glass body 31 , a transparent conductive layer, a first electrode 32 and a second electrode 33 .
  • the glass body 31 has an avoidance area 311 for avoiding the field of view of the lens 21 . Understandably, the avoidance area 311 is facing the lens 21 , the field of view of the lens 21 should be able to be located in the avoidance area 311 at the glass body 31 , and there is no obstruction in the avoidance area 311 that would block the lens 21 .
  • the transparent conductive layer at least partially covers the avoidance area 311 of the glass body 31 .
  • the first electrode 32 and the second electrode 33 are disposed on the glass body 31 and are located outside the avoidance area 311 , so as to avoid blocking the lens 21 .
  • the first electrode 32 and the second electrode 33 can be electrically connected through the transparent conductive layer, and the glass body 31 is heated after being electrified.
  • the glass body 31 is heated by energizing the first electrode 32 , the transparent conductive layer and the second electrode 33 , thereby realizing defogging.
  • the first electrode 32 , the transparent conductive layer and the second electrode 33 can also be energized before the temperature of the usage scene changes, so as to preheat the glass body 31 to prevent the generation of fog.
  • the transparent conductive layer can directly heat the avoidance area 311 after electrification, so that the overall heating of the glass body 31 is more uniform.
  • the glass body 31 is quickly heated to a temperature capable of defogging/anti-fogging, and the defogging/anti-fogging effect is achieved in a short time, and the heating power is controlled within a reasonable range, so that there will be no local or overall overheating In this case, the glass body 31 or the lens 21 is effectively prevented from bursting.
  • the above heating power can be selected according to factors such as the size of the glass body 31, the specific material of the transparent conductive layer, etc., to ensure that the temperature of the glass body 31 after heating can reach the defogging/anti-fogging temperature and will not. Just too high.
  • the lens assembly shown in FIG. 1 and FIG. 2 is specifically applied to a pan-tilt camera.
  • the pan-tilt camera includes a body 100 and a lens assembly disposed on the body 100 , and the structure of the housing 10 of the lens assembly is adapted to the body 100 .
  • the housing 10 can serve as a front cover of the body 100 .
  • the structure of the housing 10 of the lens assembly should also be adjusted according to the specific type of photographing equipment.
  • the lens assembly of the camera includes a lens 21 and a light guide tube sleeved on the lens 21 , and the light guide tube serves as the housing 10 .
  • the glass assembly 30 is sealedly connected to the hole wall of the light-transmitting hole 12 , which replaces the original lens protection glass.
  • the glass assembly 30 and the original lens protective glass can also be disposed at the light-transmitting hole 12 at the same time, and the glass assembly 30 is located between the lens protective glass and the lens 21 .
  • the number of parts in this arrangement will increase, and the installation of double-layer glass on the front side of the lens 21 may affect the imaging effect of the lens 21 .
  • the first electrode 32 and the second electrode 33 are respectively located on opposite sides outside the avoidance area 311 .
  • the transparent conductive layer covers at least a portion of the glass body 31 between the first electrode 32 and the second electrode 33 .
  • the transparent conductive layer is electrically connected to the first electrode 32 and the second electrode 33 .
  • the current flows from the first electrode 32 to the second electrode 33 or from the second electrode 33 to the first electrode 32. During this process, the current will pass through the transparent conductive layer between the first electrode 32 and the second electrode 33. layer.
  • the first electrode 32 and the second electrode 33 are arranged on opposite sides of the avoidance area 311, so that the distance that the current flows on the transparent conductive layer can be maximized, thereby increasing the heat generation of the transparent conductive layer, thereby improving the resistance to the glass body 31. heating effect.
  • first electrode 32 and the second electrode 33 are not limited to be arranged on opposite sides of the avoidance area 311 , and in other embodiments of the present application, the first electrode 32 and the second electrode 33 may also be arranged in other ways , as long as there is an interval between the first electrode 32 and the second electrode 33 .
  • the first electrode 32 is located on the side of the avoidance area 311, and the second electrode 33 is located below the avoidance area 311.
  • the current flows between the first electrode 32 and the second electrode 33, it can still flow through a part of the transparent conductive layer.
  • the heating of the glass body 31 is achieved, but the heating effect is relatively poor compared to the foregoing manner in which the first electrode 32 and the second electrode 33 are located on opposite sides of the avoidance area 311 .
  • a transparent conductive layer covers the entire side surface of the glass body 31 , and the first electrode 32 and the second electrode 33 are connected on the transparent conductive layer, so as to realize the first The first electrode 32 and the second electrode 33 are electrically connected to the transparent conductive layer.
  • the transparent conductive layer can also cover part of the glass body 31 . In this case, it is necessary to ensure that the transparent conductive layer can cover the area between the first electrode 32 and the second electrode 33 .
  • the way in which the first electrode 32 and the second electrode 33 are electrically connected to the transparent conductive layer is not limited to the above-mentioned way. Between the electrode 32 and the second electrode 33 or the entire side surface of the glass body 31 is covered with a transparent conductive layer, and the transparent conductive layer is in contact with the first electrode 32 and the second electrode 33; or conduct conduction through other intermediate conductive members.
  • the transparent conductive layer includes a conductive film 34 formed on the surface of the glass body 31 through a coating process.
  • the conductive film 34 is directly formed on the surface of the glass body 31 through a coating process, and the conductive film 34 is more firmly combined with the glass body 31 , thereby improving the service life of the conductive film 34 .
  • the coating may be performed on the entire side surface of the glass body 31 , or local coating may be performed on the part of the glass body 31 where the transparent conductive layer needs to be provided.
  • the conductive film 34 may not be formed by a coating process. In other embodiments, the conductive film 34 may also be attached to the surface of the glass body 31 .
  • the type of the conductive film 34 formed by the coating process may be various transparent films having conductive properties.
  • the conductive film 34 includes, but is not limited to, a metal ion film or a semiconductor film.
  • the metal ion film may be an ITO metal conductive film, an AZO metal conductive film, or the like.
  • the semiconductor film may be a silicon conductive film or the like.
  • the type of the transparent conductive layer is not limited to the conductive film 34 , and in other embodiments, the transparent conductive layer may also be other structures capable of achieving conductivity and transparency.
  • the transparent conductive layer includes a layer structure formed by resistance wires, silver nanowires, carbon nanowires, etc., and the above-mentioned layer structure is covered on the glass body 31 to be electrically heated. Due to the small size of these materials, which can even reach the nanometer level, the layer structure formed by them can also be regarded as transparent and will not block the lens 21 .
  • the first electrode 32 and the second electrode 33 are arranged symmetrically with respect to the center of the glass body 31 .
  • the distance between the two electrodes is relatively long, that is to say, the distance that the current flows on the transparent conductive layer located between the first electrode 32 and the second electrode 33 is relatively long, thereby further increasing the heat generation of the transparent conductive layer and improving the effect on the glass body 31 heating effect.
  • the first electrode 32 and the second electrode 33 may also be asymmetrically arranged.
  • both the first electrode 32 and the second electrode 33 are arranged along the edge of the glass body 31 , so that the distance between the first electrode 32 and the second electrode 33 can be increased as much as possible. Therefore, the heating area formed by the transparent conductive layer between the first electrode 32 and the second electrode 33 is sufficiently large, thereby improving the heating effect. If the first electrode 32 and the second electrode 33 are also arranged symmetrically with respect to the center of the glass body 31, then the distance between the first electrode 32 and the second electrode 33 is the largest at this time, and the distance that the current flows on the transparent conductive layer is the largest Longer, the heating effect of the transparent conductive layer is the best. Of course, in other embodiments, at least one of the first electrode 32 and the second electrode 33 may not be disposed at the edge of the glass body 31, as long as the first electrode 32 and the second electrode 33 are located outside the avoidance area 311, that is, Can.
  • the lens module 20 further includes a circuit board
  • the lens assembly further includes an electrical conduction structure
  • the first electrode 32 and the second electrode 33 are electrically connected to the circuit board through the electrical conduction structure.
  • the circuit board inside the lens module 20 is connected to the first electrode 32 and the second electrode 33, and the glass assembly 30 is powered by the circuit board, so that no additional power supply is required, which is more convenient for layout.
  • an additional power source can also be added to supply power to the glass assembly 30 .
  • FIG. 6 shows a schematic structural diagram of the glass assembly 30 of FIG. 4 after being matched with the housing 10 and the first conductive transmission member 41 .
  • the electrical conductive structure includes two first conductive transmission members 41 , the first electrode 32 and the second electrode 33 are located on the inner side of the glass body 31 , and the two first conductive The first ends of the transmission members 41 are electrically connected to the first electrodes 32 and the second electrodes 33 respectively, and the second ends of the two first conductive transmission members 41 are respectively electrically connected to the circuit board by welding or the like.
  • the first conductive transmission member 41 may be various conductive transmission structures such as wires, flexible conductive sheets, and the like.
  • the two first conductive transmission members 41 can be smoothly led to the circuit board.
  • the specific method will be combined with the glass body 31 below.
  • the installation method and the positions of the first electrode 32 and the second electrode 33 are described in detail.
  • FIG. 5 shows a schematic structural diagram of the outer side of the glass assembly 30 of FIG. 4 .
  • the outer side of the glass body 31 has a first matching area 312 independent of the avoidance area 311 , and the first matching area 312 is connected to the inner side of the housing 10 ,
  • the glass assembly 30 is fixed to the housing 10 through the connection of the first mating area 312 to the inside of the housing 10 .
  • the surface of the housing 10 facing the lens 21 can be set as the inner surface, and the surface away from the lens 21 can be set as the outer surface.
  • the first mating region 312 is connected to the inner surface of the housing 10 . As shown in FIG.
  • the first electrode 32 and the second electrode 33 on the inner side of the glass body 31 are completely exposed in the receiving cavity 11 , and the first ends of the two first conductive transmission members 41 can be directly connected to the first The electrode 32 and the second electrode 33 are electrically connected.
  • the first matching area 312 is disposed along the edge of the glass body 31 .
  • the first electrode 32 and the second electrode 33 are both disposed on the inner side of the glass body 31 , and their positions correspond to the positions of the first matching regions 312 on the outer side of the glass body 31 .
  • the diameter of the glass body 31 is D 1
  • the diameter of the avoidance area 311 is D 2
  • the diameter of the light transmission hole 12 is D 3 , where D 1 >D 2 , and D 2 ⁇ D 3 .
  • the glass body 31 can be connected to the inner surface of the casing 10 around the light-transmitting hole 12 , where D 1 >D 3 .
  • the annular portion formed between the edge of the glass body 31 and the avoidance area 311 is used to set the first matching area 312 , the first electrode 32 and the second electrode 33 .
  • the size of the escape area 311 ie, the diameter D 2 of the escape area 311
  • the smaller the aforementioned annular portion is, the smaller the diameter D 1 of the glass body 31 is.
  • the radial dimension of the above-mentioned annular portion of the glass body 31 can be as small as possible , so that the overall size of the glass body 31 is as small as possible, which facilitates processing and assembly, and facilitates cost and weight control.
  • the first electrode 32 and the second electrode 33 have an arc shape with the same curvature as the glass body 31
  • the first matching region 312 is annular or an arc shape with the same curvature as the glass body 31
  • the first electrode 32 , the second electrode 33 The radial dimension is the same as the radial dimension of the first matching area 312, so that the first electrode 32, the second electrode 33 and the first matching area 312 completely overlap, the first electrode 32, the second electrode 33 and the first matching area 312.
  • the inner edge of 312 is closely adjacent to the outer edge of the escape area 311 . At this time, the radial dimension of the aforementioned annular portion of the glass body 31 is minimized, so that the overall diameter of the glass body 31 is minimized.
  • the first matching region 312 is annular, and the first matching region 312 is bonded to the inner surface of the housing 10 by adhesive.
  • the first matching region 312 is blackened by silk screen printing, so as to play a role of masking (eg, covering the first electrode 32 and the second electrode 33 ).
  • the connection between the first matching region 312 and the inner surface of the housing 10 can also be performed in other ways, for example, the edge of the glass body 31 is snapped with the slot, or clamped by a clamp Glass body 31 and the like.
  • connection method between the glass body 31 and the casing 10 and the positions of the first electrode 32 and the second electrode 33 on the glass body 31 are not limited to this.
  • the body 31 is effectively connected to the housing 10, and the first electrode 32 and the second electrode 33 can be easily connected to electricity.
  • FIG. 7 shows a schematic structural diagram of the inner side of the glass assembly 30 of the lens assembly according to another embodiment of the present application, wherein the first electrode 32 and the second electrode 33 are completely located inside the second matching area 313 .
  • the inner surface of the glass body 31 has a second matching area 313 independent of the avoidance area 311 , and the second matching area 313 is connected to the outer side of the housing 10 through the first matching area 313 .
  • the connection of the two mating regions 313 to the outside of the housing 10 fixes the glass assembly 30 to the housing 10 .
  • “outside of the housing 10 ” refers to the outer surface of the housing 10 to which the second mating region 313 is connected.
  • the specific connection manner of the second matching region 313 and the outer side surface of the housing 10 is similar to that of the aforementioned first matching region 312 , and details are not described herein again.
  • the second matching area 313 , the first electrode 32 and the second electrode 33 are located on the same side of the glass body 31 , and at least part of the first electrode 32 and at least part of the second electrode 33 are located between the second matching area 313 and the avoidance area 311 , namely The first electrode 32 and the second electrode 33 are at least partially exposed to the second matching region 313 .
  • the second matching area 313 needs to be connected with the outer surface of the casing 10, and the parts of the first electrode 32 and the second electrode 33 exposed to the second matching area 313 can be connected. electricity, and will not interact with the connection of the second mating region 313 .
  • FIG. 7 shows the preferred mode of the glass assembly 30 in the above-mentioned embodiment, that is, the first electrode 32 and the second electrode 33 are completely exposed in the second matching area 313 , which avoids the first electrode 32 and the second electrode 33 and the interference between the second mating regions 313 .
  • the preferred embodiment of the glass assembly 30 shown in FIG. 7 will be described as an example. If the diameter D 3 of the light-transmitting hole 12 is larger than the diameter D 2 of the avoidance area 311 , the area formed between the second matching area 313 and the avoidance area 311 at least partially corresponds to the inside of the light-transmitting hole 12 .
  • the second electrode 33 is disposed in an area corresponding to the inside of the light-transmitting hole 12 , the first ends of the two first conductive transmission members 41 are electrically connected to the first electrode 32 and the second electrode 33 , and the two first conductive transmission members The second end of 41 extends into the receiving cavity 11 through the light-transmitting hole 12, and is finally led to the circuit board.
  • the first electrode 32 and the second electrode 33 will also be shielded by the casing 10 at this time. If there is a certain gap between the first electrode 32 , the second electrode 33 and the outer surface of the casing 10 , and the gap is sufficient to accommodate the end of the first conductive transmission member 41 , the first conductive transmission member 41 can also be used for connection. . In addition, if the first electrode 32 and the second electrode 33 are in close contact with the outer surface of the casing 10 , the casing 10 can also be provided with a metal conduction part for conduction, which will be described in detail below. illustrate.
  • the second matching area 313 is located outside the first electrode 32 and the second electrode 33, and At least part of the first electrode 32 and at least part of the second electrode 33 do not overlap with the second matching area 313 , which results in a larger annular portion formed between the edge of the glass body 31 and the escape area 311 .
  • the material (such as silver) of the first electrode 32 and the second electrode 33 is generally opaque or even if the first electrode 32 and the second electrode 33 are transparent electrodes, the connection of the first conductive transmission member 41 is more obvious. Therefore, The first electrode 32 and the second electrode 33 always have some unsightly parts.
  • FIG. 8 shows a schematic structural diagram of a glass assembly 30 of a lens assembly according to another embodiment of the present application, wherein the first electrode 32 and the second electrode 33 completely overlap with the third matching area 314 .
  • FIG. 9 is a schematic structural diagram of the glass assembly 30 of FIG. 8 after being matched with the housing 10 , the metal conductive portion 42 , and the second conductive transmission member 43 .
  • the housing 10 has two metal conductive parts 42 that are spaced apart.
  • the electrically conductive structure includes two metal conductive parts 42 and two second conductive transmission members 43 .
  • the first ends of the two second conductive transmission members 43 are electrically connected to the two metal conductive parts 42 respectively.
  • the second ends of the two second conductive transmission members 43 are respectively electrically connected to the circuit board.
  • the second conductive transmission member 43 may be various conductive transmission structures such as wires, flexible conductive sheets and the like.
  • the glass body 31 has a third matching region 314 independent of the avoidance region 311 , and at least part of the first electrode 32 and at least part of the second electrode 33 are located in the third matching region 314 .
  • the third matching region 314 , the first electrode 32 and the second electrode 33 may be located on the inner side of the glass body 31 or on the outer side of the glass body 31 at the same time.
  • the third matching area 314 is connected to the housing 10
  • the first electrode 32 and the second electrode 33 are respectively aligned with the two metal conductive parts 42 and are electrically connected, so that the first electrode 32,
  • the second electrode 33 is connected to the circuit board through the metal conductive portion 42 and the second conductive transmission member 43 .
  • the first electrode 32 and the second electrode 33 completely overlap with the third matching area 314 .
  • the third matching area 314 is bonded to the casing 10 by adhesive, and the third matching area 314 is overlapped with the first electrode 32 and the second electrode 33 , thereby reducing the glass manufacturing process.
  • the size of the metal conductive portion 42 can be reasonably designed to be as small as possible while ensuring conduction, which can reduce the heat generation of the metal conductive portion 42 and reduce the risk of leakage.
  • the metal conductive portion 42 may be a metal structure additionally disposed on the housing 10, or may be a part of the housing 10 itself. 10 is divided into two spaced metal sections.
  • a mounting step 121 is provided on the hole wall of the light-transmitting hole 12 .
  • the glass assembly 30 is installed at the installation step 121 .
  • the bottom surface of the installation step 121 is bonded to the glass assembly 30 , so as to realize the connection and fixation of the glass assembly 30 .
  • the side surface of the installation step 121 is in contact with or clearance fit with the edge of the glass assembly 30 , so as to play a certain installation and positioning role for the glass assembly 30 during the assembly process.
  • the housing 10 has a convex ring protruding inward, and a light-transmitting hole 12 is formed in the central hole of the convex ring.
  • the inner wall of the convex ring (the hole wall of the light-transmitting hole 12 ) has a mounting step 121 .
  • the bottom surface of the installation step 121 faces the lens 21 and has a glue groove. After the glue groove is filled with glue, the first matching area 312 on the outer side of the glass body 31 is attached to the bottom surface of the installation step 121 for bonding. At this time, it can be considered that the first matching region 312 is connected to the inner surface of the housing 10 .
  • At least one positioning surface 1211 is provided on the side of the installation step 121 .
  • the edge of the glass assembly 30 has a positioning mating surface 35 which is matched with the positioning surface 1211 .
  • the positioning surface 1211 and the positioning matching surface 35 are abutted with each other to achieve positioning.
  • the side surface of the installation step 121 and the glass body 31 are both circular, and the positioning surface 1211 is one and flat.
  • the positioning and matching surface 35 is one and is flat, and the positioning and matching surface 35 is disposed on the top of the glass body 31 .
  • the structure of the convex ring on the housing 10 is not limited to this, and other structures may also be used in other embodiments.
  • the convex ring of the housing 10 protrudes outward, the inner wall of the convex ring has a mounting step 121 , the bottom surface of the mounting step 121 still faces the lens 21 , the first matching area 312 on the outer side of the glass body 31 and the mounting step 121 .
  • the bottom surface is attached for bonding.
  • the protruding ring of the housing 10 protrudes outward, the first matching area 312 is still connected with the inner surface of the housing 10 .
  • the structure on the housing 10 for connecting the glass body 31 is not limited to the convex ring, and other connecting structures may also be used in other embodiments.
  • the hole wall of the light-transmitting hole 12 has a slot, and the edge of the glass body 31 is engaged with the slot.
  • the lens assembly further includes a dust ring 50 .
  • the dust ring 50 is provided between the lens 21 and the glass assembly 30 .
  • the inner wall of the dust ring 50 , the lens 21 and the glass assembly 30 together form a sealing cavity 60 , so as to play the role of sealing and dustproof.
  • the inner ring of the dustproof ring 50 should be larger than the viewing angle range of the lens 21 here.
  • the dustproof ring 50 is made of dustproof foam, which in addition to good sealing performance, can also play a certain role of buffering and shock absorption.
  • the material of the dustproof ring 50 is not limited to this, and in other embodiments, the dustproof ring 50 may also be made of other materials such as rubber.
  • Embodiments of the present application further provide a photographing device, which specifically includes the above-mentioned lens assembly.
  • the photographing device can be any kind of photographing device that needs to have defogging and anti-fogging functions, such as pan-tilt cameras, motion cameras, vehicle cameras, surveillance cameras, conventional cameras and video cameras, and the like.
  • FIG. 2 shows a schematic cross-sectional view when the photographing device is a pan-tilt camera. Since the photographing device of this embodiment has the above-mentioned lens assembly, it can realize rapid defogging and anti-fogging, is suitable for various harsh environments, has a low risk of explosion, and is safer to use.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Studio Devices (AREA)

Abstract

一种镜头组件及具有其的拍摄设备,其中,镜头组件包括:壳体,壳体内具有收容腔,壳体上开设有透光孔;镜头模组,设置在收容腔内,镜头模组包括镜头,透光孔位于镜头的前侧;玻璃组件,设置在透光孔处并与透光孔的孔壁密封连接,玻璃组件包括:玻璃本体,具有用于避让镜头的视场范围的避让区域;透明导电层,透明导电层至少部分地覆盖在玻璃本体的避让区域上;第一电极和第二电极,设置在玻璃本体上并位于避让区域的外部,第一电极和第二电极能够通过透明导电层接电以对玻璃本体进行加热。上述镜头组件能够在短时间内达到除雾/防起雾效果,并且将加热功率控制在合理范围内则不会出现局部或整体过热的情况,有效避免玻璃本体或镜头发生炸裂。

Description

镜头组件及具有其的拍摄设备
本公开要求在2020年10月09日提交中国专利局、申请号为202022229537.9、名称为“镜头组件及具有其的拍摄设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及镜头装置技术领域,具体涉及一种镜头组件及具有其的拍摄设备。
背景技术
当拍摄设备(例如云台相机、监控摄像头等)处于湿度较大的使用场景时,温度变化容易导致拍摄设备的镜头及镜头保护玻璃的内、外侧发生起雾现象。镜头保护玻璃外侧的雾气能够被擦拭掉或者快速自然消散,而镜头和镜头保护玻璃内侧的雾气无法进行擦拭,且自然消散速度较慢,严重影响到拍摄设备的正常使用。
在现有技术中,一些拍摄设备在镜头前侧设置除雾玻璃,除雾玻璃包括玻璃面板和加热结构,加热结构呈环形并位于玻璃面板朝向镜头的侧面的外周,加热结构通电后可对玻璃面板进行加热,从而进行除雾。
在对现有的除雾镜头研究过程中,发明人发现至少存在如下问题:
上述加热结构对玻璃面板的外周进行直接加热,热量再传导至玻璃面板的中部,然而这种方式加热不够均匀,玻璃面板中部升温慢,从而导致除雾速度较慢。若通过增大加热结构的功率来加快升温,玻璃面板的外周容易过热,特别是在低温环境中,温差过大会增加玻璃面板甚至镜头的炸裂风险。
公开内容
本申请实施例提出一种镜头组件及具有其的拍摄设备。
第一个方面,本申请实施例提供了一种镜头组件,包括:壳体,壳体内具有收容腔,壳体上开设有透光孔;镜头模组,设置在收容腔内,镜头模组包括镜头,透光孔位于镜头的前侧;玻璃组件,设置在透光孔处并与透光孔的孔壁密封连接,玻璃组件包括:玻璃本体,具有用于避让镜头的视场范围的避让区域;透明导电层,透明导电层至少部分地覆盖在玻璃本体的避让区域上;第一电极和第二电极,设置在玻璃本体上并位于避让区域的外部,第一电极和第二电极能够通过透明导电层接电以对玻璃本体进行加热。
进一步地,第一电极和第二电极分别处于避让区域外部相对的两侧,透明导电层至少覆盖在玻璃本体位于第一电极和第二电极之间的部分上,透明导电层与第一电极和第二电极电性连接。
进一步地,透明导电层包括通过镀膜工艺形成在玻璃本体的表面上的导电膜。
进一步地,导电膜包括金属离子膜或半导体膜。
进一步地,第一电极和第二电极相对于玻璃本体的中心对称设置;或者,第一电极和第二电极均沿玻璃本体的边缘设置。
进一步地,镜头模组还包括电路板,镜头组件还包括电传导结构,第一电极和第二电极通过电传导结构与电路板电性连接。
进一步地,电传导结构包括两个第一导电传输件,第一电极和第二电极位于玻璃本体的内侧面上,两个第一导电传输件的第一端分别与第一电极和第二电极电性连接,两个第一导电传输件的第二端分别与电路板电性连接。
进一步地,玻璃本体的外侧面上具有独立于避让区域的第一配合区域,第一配合区域与壳体的内侧连接,第一配合区域沿玻璃本体的边缘设置,第一电极和第二电极均设置在玻璃本体的内侧面上,且两者的位置与玻璃本体的外侧面上的第一配合区域的位置相对应。
进一步地,玻璃本体的内侧面上具有独立于避让区域的第二配合区域,第二配合区域与壳体的外侧连接,至少部分第一电极和至少部分第二电极位于第二配合区域与避让区域之间。
进一步地,壳体具有两个相间隔的金属传导部,电传导结构包括两个金属传导部和两个第二导电传输件,两个第二导电传输件的第一端分别与两个金属传导部电性连接,两个第二导电传输件的第二端分别与电路板电性连接,玻璃本体上具有独立于避让区域的第三配合区域,至少部分第一电极和至少部分第二电极位于第三配合区域内,当第三配合区域与壳体连接后,第一电极和第二电极分别与两个金属传导部电性连接。
进一步地,透光孔的孔壁上具有安装台阶,玻璃组件安装于安装台阶处,安装台阶的底面与玻璃组件粘接,安装台阶的侧面与玻璃组件的边沿相接触或间隙配合。
进一步地,安装台阶的侧面上具有至少一个定位面,玻璃组件的边沿具有与定位面相适配的定位配合面。
进一步地,还包括:防尘圈,设置在镜头和玻璃组件之间,防尘圈的内壁、镜头以及玻璃组件共同形成密封腔。
第二个方面,本申请实施例提供了一种拍摄设备,包括上述的镜头组件。
当镜头组件的镜头和/或玻璃组件产生雾气后,通过向第一电极、透明导电层和第二电极通电对玻璃本体进行加热,从而实现除雾。当然,也可以在使用场景的温度变化之前就向第一电极、透明导电层和第二电极通电,从而对玻璃本体预先进行加热,以此来防止雾气的产生。
由于避让区域大致位于玻璃本体的中部,透明导电层覆盖在避让区域上,透明导电层通电后可对避让区域进行直接加热,从而使玻璃本体整体加热更加均匀,在一定的加热功率下,玻璃本体快速加热到能够除雾/防起雾的温度,在短时间内达到除雾/防起雾效果,并且将加热功率控制在合理范围内,则不会出现局部或整体过热的情况,有效避免玻璃本体或镜头发生炸裂。
附图说明
图1是根据本申请一个实施例的镜头组件的分解结构示意图;
图2是图1的镜头组件应用到云台相机中的剖视示意图;
图3是图2的镜头组件的局部放大图;
图4是图2的镜头组件的玻璃组件的结构示意图;
图5是图4的玻璃组件的另一个角度的结构示意图;
图6是图4的玻璃组件与壳体、第一导电传输件配合后的结构示意图;
图7是根据本申请另一个实施例的镜头组件的玻璃组件的结构示意图;
图8是根据本申请另一个实施例的镜头组件的玻璃组件的结构示意图;
图9是图8的玻璃组件与壳体、金属传导部、第二导电传输件配合后的结构示意图。
需要说明的是,附图并不一定按比例来绘制,而是仅以不影响读者理解的示意性方式示出。
附图标记说明:
10、壳体;11、收容腔;12、透光孔;121、安装台阶;1211、定位面;20、镜头模组;21、镜头;30、玻璃组件;31、玻璃本体;311、避让区域;312、第一配合区域;313、第二配合区域;314、第三配合区域;32、第一电极;33、第二电极;34、导电膜;35、定位配合面;41、第一导电传输件;42、金属传导部;43、第二导电传输件;50、防尘圈;60、密封腔;100、机身。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一个实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,除非另外定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。若全文中涉及“第一”、“第二” 等描述,则该“第一”、“第二”等描述仅用于区别类似的对象,而不能理解为指示或暗示其相对重要性、先后次序或者隐含指明所指示的技术特征的数量,应该理解为“第一”、“第二”等描述的数据在适当情况下可以互换。若全文中出现“和/或”,其含义为包括三个并列方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。此外,为了便于描述,在这里可以使用空间相对术语,如“上方”、“下方”、“顶部”、“底部”等,仅用来描述如图中所示的一个器件或特征与其他器件或特征的空间位置关系,应当理解为也包含除了图中所示的方位之外的在使用或操作中的不同方位。
本申请实施例提供了一种镜头组件,该镜头组件可应用于各种需要具有除雾、防起雾功能的拍摄设备上,例如云台相机、运动相机、车载摄像头、监控摄像头等,甚至可以应用在常规类型的照相机、摄像机上。下面将以镜头组件应用于云台相机为例进行详细说明。
图1示出了本申请一个实施例的镜头组件的分解结构示意图。图2示出了图1的镜头组件应用到云台相机中的剖视示意图。图3示出了图2的镜头组件的局部放大图。图4示出了图2的镜头组件的玻璃组件30的内侧面的结构示意图。
如图1至图4所示,镜头组件包括壳体10、镜头模组20以及玻璃组件30。壳体10内具有收容腔11。壳体10上开设有透光孔12,透光孔12与收容腔11连通。镜头模组20设置在收容腔11内。镜头模组20包括镜头21,透光孔12位于镜头21的前侧。玻璃组件30设置在透光孔12处并与透光孔12的孔壁密封连接。
玻璃组件30包括玻璃本体31、透明导电层、第一电极32和第二电极33。其中,玻璃本体31具有用于避让镜头21的视场范围的避让区域311。可以理解地,避让区域311正对镜头21,镜头21的视场范围在玻璃本体31处应能够位于避让区域311内,并且避让区域311内无任何会遮挡镜头21的遮挡物。透明导电层至少部分地覆盖在玻璃本体31的避让区域311上。第一电极32和第二电极33设置在玻璃本体31上并位于避让区域311的外部,从而避免对镜头21造成遮挡。第一电极32和第二电极33能够通过透明导电层导通接电,通电后对玻璃本体31进行加热。
当镜头组件的镜头21和/或玻璃组件30产生雾气后,通过向第一电极32、透明导电层和第二电极33通电对玻璃本体31进行加热,从而实现除雾。当然,也可以在使用场景的温度变化之前就向第一电极32、透明导电层和第二电极33通电,从而对玻璃本体31预先进行加热,以此来防止雾气的产生。
由于避让区域311大致位于玻璃本体31的中部,透明导电层覆盖在避让区域311上,透明导电层通电后可对避让区域311进行直接加热,从而使玻璃本体31整体加热更加均匀,在一定的加热功率下,玻璃本体31快速加热到能够除雾/防起雾的温度,在短时间内达到除雾/防起雾效果,并且将加热功率控制在合理范围内,则不会出现局部或整体过热的情况,有效避免玻璃本体31或镜头21发生炸裂。
需要说明的是,上述加热功率可根据玻璃本体31的尺寸、透明导电层的具体材质等方面的因素进行选择,保证玻璃本体31加热后的温度能够达到除雾/防起雾的温度 且不会过高即可。
此外,图1和图2示出的镜头组件具体应用在云台相机中。如图1和图2所示,云台相机包括机身100和设置在机身100上的镜头组件,镜头组件的壳体10的结构适应于机身100。具体地,当镜头组件与机身100装配后,壳体10可作为机身100的前壳。本领域人员可以理解地,如果镜头组件应用于其他类型的拍摄设备,镜头组件的壳体10的结构也应根据拍摄设备的具体类型进行调整。例如,当镜头组件应用在摄像机中时,摄像机的镜头组件包括镜头21和套设在镜头21上的导光筒,该导光筒作为壳体10。
在本实施例中,玻璃组件30与透光孔12的孔壁密封连接,替代了原有的镜头保护玻璃。当然,在其他实施方式中,也可以将玻璃组件30和原有的镜头保护玻璃同时设置在透光孔12处,玻璃组件30位于镜头保护玻璃和镜头21之间。但是,此种设置方式相比于本实施例,零件数量会增多,并且在镜头21前侧安装双层玻璃有可能会影响到镜头21的成像效果。
如图1和图4所示,在本申请一些实施例中,第一电极32和第二电极33分别处于避让区域311外部相对的两侧。透明导电层至少覆盖在玻璃本体31位于第一电极32和第二电极33之间的部分上。透明导电层与第一电极32和第二电极33电性连接。当通电后,电流从第一电极32流向第二电极33或从第二电极33流向第一电极32,在此过程中,电流会经过位于第一电极32和第二电极33之间的透明导电层。将第一电极32和第二电极33设置在避让区域311相对的两侧,这样能够尽量增大电流在透明导电层上流过的距离,从而增大透明导电层的发热,进而提高对玻璃本体31的加热效果。
需要说明的是,第一电极32和第二电极33不限于设置在避让区域311相对的两侧,在本申请另一些实施例中,第一电极32和第二电极33也可以以其他方式布置,只要保证第一电极32和第二电极33之间具有间隔即可。例如,第一电极32位于避让区域311的侧方,第二电极33位于避让区域311的下方,电流在第一电极32和第二电极33之间进行流动时仍可以流经一部分透明导电层,从而实现对玻璃本体31的加热,但是相比于前述第一电极32和第二电极33位于避让区域311相对两侧的方式而言,加热效果相对较差。
如图1和图4所示,在本申请一些实施例中,透明导电层覆盖在玻璃本体31整个侧面上,第一电极32和第二电极33连接在所述透明导电层上,从而实现第一电极32、第二电极33与透明导电层的电性连接。当然,在其他实施方式中,也可以将透明导电层覆盖部分玻璃本体31,此时则需要保证透明导电层能够覆盖第一电极32和第二电极33之间的区域即可。此外,第一电极32、第二电极33与透明导电层电性连接的方式也不限于上述方式,也可以先将第一电极32和第二电极33设置在玻璃本体31上,再在第一电极32和第二电极33之间或玻璃本体31整个侧面覆盖透明导电层,并使透明导电层与第一电极32、第二电极33接触;或者,通过其他中间导电件进行导通。
优选地,透明导电层包括通过镀膜工艺形成在玻璃本体31的表面上的导电膜34。通过镀膜工艺将导电膜34直接形成在玻璃本体31的表面,导电膜34与玻璃本体31结合更加牢固,从而提高导电膜34使用寿命。需要注意的是,可以在玻璃本体31整个侧面上进行镀膜,也可以在玻璃本体31需要设置透明导电层的部位进行局部镀膜。当然,导电膜34也可以不通过镀膜工艺形成,在其他实施方式中,导电膜34也可以贴设在玻璃本体31的表面。
通过镀膜工艺形成的导电膜34的类型可以为多种具有导电特性的透明膜。例如,导电膜34包括但不限于金属离子膜或半导体膜。其中,金属离子膜可以为ITO金属导电膜、AZO金属导电膜等。半导体膜可以为硅材质导电膜等。
需要说明的是,透明导电层的类型不限于导电膜34,在其他实施方式中,透明导电层也可以为其他能够实现导电且透明的结构。例如,透明导电层包括电阻丝、银纳米线、碳纳米线等形成的层结构,将上述层结构覆盖在玻璃本体31上进行通电加热。由于这些材料的尺寸很小,甚至能够到达纳米级别,其形成的层结构也可看作呈透明状,不会对镜头21产生遮挡。
如图1和图4所示,在本申请一些实施例中,第一电极32和第二电极33相对于玻璃本体31的中心对称设置,此时,第一电极32与第二电极33之间的距离相对较远,也就是说,电流在位于第一电极32和第二电极33之间的透明导电层上流过的距离较长,从而进一步增大透明导电层的发热,提高对玻璃本体31的加热效果。当然,在其他实施方式中,第一电极32和第二电极33也可以非对称设置。
如图1和图4所示,在本申请一些实施例中,第一电极32和第二电极33均沿玻璃本体31的边缘设置,这样可以尽量增大第一电极32和第二电极33之间的空间,从而使第一电极32和第二电极33之间的透明导电层形成的加热区域足够大,进而提高加热效果。如果第一电极32和第二电极33同时也相对于玻璃本体31的中心对称设置,那么此时第一电极32和第二电极33之间的距离最大,电流在透明导电层上流过的距离最长,透明导电层的发热效果也就最好。当然,在其他实施方式中,第一电极32和第二电极33中的至少一个也可以不设置在玻璃本体31的边缘处,只要保证第一电极32和第二电极33位于避让区域311外部即可。
在本申请一些实施例中,镜头模组20还包括电路板,镜头组件还包括电传导结构,第一电极32和第二电极33通过电传导结构与电路板电性连接。将镜头模组20内部的电路板与第一电极32和第二电极33连接,通过电路板为玻璃组件30供电,不用再额外设置电源,更加方便布置。当然,在其他实施方式中,只要安装空间允许,也可以额外增加电源为玻璃组件30供电。
图6示出了图4的玻璃组件30与壳体10、第一导电传输件41配合后的结构示意图。
如图6所示,在本申请一些实施例中,电传导结构包括两个第一导电传输件41,第一电极32和第二电极33位于玻璃本体31的内侧面上,两个第一导电传输件41的 第一端分别与第一电极32和第二电极33电性连接,两个第一导电传输件41的第二端分别与电路板通过焊接等方式电性连接。其中,第一导电传输件41可以为导线、柔性导电片等多种导电传输结构。
经过对玻璃本体31安装方式以及第一电极32和第二电极33位置的设计,可以使两个第一导电传输件41顺利地被引到电路板上,至于具体方式将在下文结合玻璃本体31安装方式以及第一电极32和第二电极33位置进行详细说明。
图5示出了图4的玻璃组件30的外侧面的结构示意图。
如图4和图5所示,在本申请一些实施例中,玻璃本体31的外侧面上具有独立于避让区域311的第一配合区域312,第一配合区域312与壳体10的内侧连接,通过第一配合区域312与壳体10内侧的连接将玻璃组件30固定到壳体10上。其中,无论壳体10是何种结构,均可将壳体10朝向镜头21的表面设定为内表面、背离镜头21的表面设定为外表面,上述“壳体10的内侧”指的是壳体10的内表面,第一配合区域312与壳体10的内表面连接。如图6所示,此时玻璃本体31的内侧面上的第一电极32、第二电极33完全裸露在收容腔11中,两个第一导电传输件41的第一端可直接与第一电极32、第二电极33电性连接。
如图4和图5所示,第一配合区域312沿玻璃本体31的边缘设置。第一电极32和第二电极33均设置在玻璃本体31的内侧面上,且两者的位置与玻璃本体31的外侧面上的第一配合区域312的位置相对应。玻璃组件30装配到壳体10上后,玻璃本体31的避让区域311需要正对镜头21,并且避让区域311的尺寸需要符合镜头21视场范围的要求。
假设避让区域311和透光孔12均呈圆形,玻璃本体31的直径为D 1,避让区域311的直径为D 2,透光孔12的直径为D 3,其中D 1>D 2,D 2≤D 3。由于玻璃本体31需要有效固定到透光孔12处,玻璃本体31可采用与壳体10位于透光孔12周围部分的内表面连接的方式,此时D 1>D 3。当然,在其他实施方式中,玻璃本体31也可采用与透光孔12的孔壁连接的方式,此时D 1=D 3
玻璃本体31的边沿与避让区域311之间形成的环形部分用于设置第一配合区域312、第一电极32以及第二电极33。在避让区域311的尺寸(即避让区域311的直径D 2)固定的前提下,上述环形部分越小,则玻璃本体31的直径D 1越小。因此,若将第一配合区域312和第一电极32、第二电极33设置在玻璃本体31的不同侧面上且均位于边缘处,则玻璃本体31的上述环形部分的径向尺寸可尽量地小,从而使玻璃本体31的整体尺寸尽量地小,便于加工和装配,且便于控制成本和重量。
特别地,第一电极32和第二电极33呈与玻璃本体31相同曲率的弧形,第一配合区域312呈环形或与玻璃本体31相同曲率的弧形,第一电极32、第二电极33的径向尺寸与第一配合区域312的径向尺寸相同,以使第一电极32、第二电极33与第一配合区域312完全重合,第一电极32、第二电极33以及第一配合区域312的内边沿与避让区域311的外边沿紧密相邻。此时,玻璃本体31的上述环形部分的径向尺寸最小, 从而使玻璃本体31的整体直径最小。
优选地,第一配合区域312呈环形,该第一配合区域312通过粘胶与壳体10的内表面粘接。具体地,在图5所示的玻璃本体31上,第一配合区域312通过丝印涂黑,从而能够起到遮丑(例如遮住第一电极32、第二电极33)的作用。可以理解地,在其他实施方式中,第一配合区域312与壳体10的内表面之间也可以通过其他方式进行连接,例如,通过玻璃本体31边沿与卡槽卡接,或者通过夹具夹持玻璃本体31等。
需要说明的是,玻璃本体31与壳体10的连接方式、第一电极32和第二电极33在玻璃本体31上的位置不限于此,在其他实施方式中,也可以为其他任何能够将玻璃本体31与壳体10有效连接、并且第一电极32和第二电极33能够便于接电的方式。
图7示出了本申请另一个实施例的镜头组件的玻璃组件30的内侧面的结构示意图,其中,第一电极32、第二电极33完全位于第二配合区域313的内侧。
如图7所示,在本申请另一些实施例中,玻璃本体31的内侧面上具有独立于避让区域311的第二配合区域313,第二配合区域313与壳体10的外侧连接,通过第二配合区域313与壳体10外侧的连接将玻璃组件30固定到壳体10上。同样地,“壳体10的外侧”指的是壳体10的外表面,第二配合区域313与壳体10的外表面连接。此外,第二配合区域313与壳体10的外侧面的具体连接方式与前述第一配合区域312的相似,在此不再赘述。
第二配合区域313、第一电极32和第二电极33位于玻璃本体31的同一侧面,至少部分第一电极32和至少部分第二电极33位于第二配合区域313与避让区域311之间,即第一电极32和第二电极33至少部分外露于第二配合区域313。当玻璃组件30装配到壳体10上时,第二配合区域313需要与壳体10的外表面进行连接,而第一电极32和第二电极33外露于第二配合区域313的部分可以进行接电,不会与第二配合区域313的连接处发生相互影响。图7示出了上述实施例的玻璃组件30的优选方式,即第一电极32、第二电极33完全外露于第二配合区域313,最大程度地避免了第一电极32、第二电极33与第二配合区域313之间的干涉。
以图7示出的玻璃组件30的优选方式为例进行说明。如果透光孔12的直径D 3大于避让区域311的直径D 2,此时第二配合区域313与避让区域311之间形成的区域至少部分对应于透光孔12内部,将第一电极32和第二电极33设置在对应于透光孔12内部的区域内,两个第一导电传输件41的第一端与第一电极32、第二电极33电性连接,两个第一导电传输件41的第二端穿过透光孔12伸向收容腔11内部,并最终被引到电路板上。
如果透光孔12的直径D 3等于避让区域311的直径D 2,此时第一电极32和第二电极33也会被壳体10遮挡。若使第一电极32、第二电极33与壳体10外表面之间具有一定缝隙,该缝隙足够容纳第一导电传输件41的端部,也可以采用第一导电传输件41的方式进行连接。此外,若第一电极32、第二电极33与壳体10外表面之间紧密贴合,也可以采用在壳体10上设置金属传导部的方式进行导通,此种方式在下文中将进 行详细说明。
在上述实施例中,为了便于第一电极32和第二电极33与收容腔11内的第一导电传输件41连接,第二配合区域313位于第一电极32和第二电极33的外侧,且至少部分第一电极32和至少部分第二电极33不与第二配合区域313重合,这就导致玻璃本体31的边沿与避让区域311之间形成的环形部分较大。此外,由于第一电极32和第二电极33的材质(例如银)一般不透明或者即使第一电极32和第二电极33为透明电极、第一导电传输件41的连接处也较为明显,因此,第一电极32和第二电极33总会存在一些不够美观的部分,为了遮丑,第一电极32和第二电极33的这些部分需要避开透光孔12。综合上述两方面原因,玻璃本体31的直径D 1需要做得较大,从而不便于加工、装配以及成本和重量的控制。即便如此,上述实施例的方式仍是可行的。
图8示出了本申请另一个实施例的镜头组件的玻璃组件30的结构示意图,其中,第一电极32、第二电极33完全与第三配合区域314重合。图9是图8的玻璃组件30与壳体10、金属传导部42、第二导电传输件43配合后的结构示意图。
如图8和图9所示,在本申请另一些实施例中,壳体10具有两个相间隔的金属传导部42。电传导结构包括两个金属传导部42和两个第二导电传输件43。两个第二导电传输件43的第一端分别与两个金属传导部42电性连接。两个第二导电传输件43的第二端分别与电路板电性连接。其中,第二导电传输件43可以为导线、柔性导电片等多种导电传输结构。
玻璃本体31上具有独立于避让区域311的第三配合区域314,至少部分第一电极32和至少部分第二电极33位于第三配合区域314内。第三配合区域314、第一电极32以及第二电极33可以同时位于玻璃本体31的内侧面,也可以同时位于玻璃本体31的外侧面。当玻璃组件30进行装配时,第三配合区域314与壳体10连接,第一电极32和第二电极33分别对准两个金属传导部42并进行电性连接,从而使第一电极32、第二电极33通过金属传导部42、第二导电传输件43与电路板导通。
以图8示出的玻璃组件30为例,第一电极32、第二电极33完全与第三配合区域314重合。在本实施例中,第三配合区域314通过粘胶与壳体10粘接,第三配合区域314与第一电极32、第二电极33重合,从而减少玻璃制作工艺。需要说明的是,金属传导部42的尺寸可以进行合理设计,在保证导通的同时尽量得小,这样可以减小金属传导部42的发热,并且降低漏电风险。其中,金属传导部42可以是额外设置在壳体10上的金属结构,也可以是壳体10自身的一部分,如将壳体10整体大部分采用金属材质,同时设置绝缘分隔部以将壳体10分为两个相间隔的金属部分。
如图1至图3所示,在本申请一些实施例中,透光孔12的孔壁上具有安装台阶121。玻璃组件30安装于安装台阶121处。安装台阶121的底面与玻璃组件30粘接,从而实现玻璃组件30的连接固定。安装台阶121的侧面与玻璃组件30的边沿相接触或间隙配合,从而在装配过程中对玻璃组件30起到一定的安装定位作用。
以图1至图3示出的镜头组件为例,壳体10具有一向内凸出的凸环,凸环的中心 孔形成透光孔12。凸环的内壁(透光孔12的孔壁)上具有安装台阶121。安装台阶121的底面朝向镜头21,该底面具有胶槽,胶槽充入粘胶后将玻璃本体31外侧面上的第一配合区域312与安装台阶121的底面贴合,从而进行粘接。此时,可看作是第一配合区域312与壳体10的内表面连接。
优选地,安装台阶121的侧面上具有至少一个定位面1211。玻璃组件30的边沿具有与定位面1211相适配的定位配合面35。当玻璃组件30安装于安装台阶121处时,定位面1211与定位配合面35相互贴合以实现定位。如图1所示,在本实施例中,安装台阶121的侧面和玻璃本体31均呈圆形,定位面1211为一个且为平面,该定位面1211设置在安装台阶121的侧面的顶部。相应地,定位配合面35为一个且为平面,该定位配合面35设置在玻璃本体31的顶部。
需要说明的是,壳体10上凸环的结构不限于此,在其他实施方式中也可以为其他结构。例如,壳体10的凸环向外凸出,凸环的内壁上具有安装台阶121,安装台阶121的底面仍然朝向镜头21,玻璃本体31外侧面上的第一配合区域312与安装台阶121的底面贴合,从而进行粘接。此时,虽然壳体10的凸环是向外凸出的,但是第一配合区域312仍然是与壳体10的内表面连接。此外,壳体10上用于连接玻璃本体31的结构不限于凸环,在其他实施方式中,也可以为其他连接结构。例如,透光孔12的孔壁具有卡槽,玻璃本体31边沿与卡槽卡接。
如图1至图3所示,在本申请一些实施例中,镜头组件还包括防尘圈50。防尘圈50设置在镜头21和玻璃组件30之间。防尘圈50的内壁、镜头21以及玻璃组件30共同形成密封腔60,从而起到密封防尘的作用。需要说明的是,为了不影响镜头21的成像效果,防尘圈50的内圈应大于镜头21在此处的视角范围。优选地,防尘圈50的材质为防尘泡棉,防尘泡棉除了具有良好的密封性能,还能够起到一定的缓冲、减震作用。当然,防尘圈50的材质不限于此,在其他实施方式中,防尘圈50还可以采用橡胶等其他材质。
本申请实施例还提供了一种拍摄设备,具体包括上述镜头组件。拍摄设备可以为各种需要具有除雾、防起雾功能的拍摄设备,例如云台相机、运动相机、车载摄像头、监控摄像头、常规类型的照相机和摄像机等。图2示出了拍摄设备为云台相机时的剖视示意图。本实施例的拍摄设备由于具有上述镜头组件,从而能够实现快速除雾、防起雾,适用于各种恶劣环境,并且炸裂风险低,使用更加安全。
对于本申请的实施例,还需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种镜头组件,其特征在于,包括:
    壳体(10),所述壳体(10)内具有收容腔(11),所述壳体(10)上开设有透光孔(12);
    镜头模组(20),设置在所述收容腔(11)内,所述镜头模组(20)包括镜头(21),所述透光孔(12)位于所述镜头(21)的前侧;
    玻璃组件(30),设置在所述透光孔(12)处并与所述透光孔(12)的孔壁密封连接,所述玻璃组件(30)包括:
    玻璃本体(31),具有用于避让所述镜头(21)的视场范围的避让区域(311);
    透明导电层,所述透明导电层至少部分地覆盖在所述玻璃本体(31)的所述避让区域(311)上;
    第一电极(32)和第二电极(33),设置在所述玻璃本体(31)上并位于所述避让区域(311)的外部,所述第一电极(32)和所述第二电极(33)能够通过所述透明导电层接电以对所述玻璃本体(31)进行加热。
  2. 根据权利要求1所述的镜头组件,其特征在于,
    所述第一电极(32)和所述第二电极(33)分别处于所述避让区域(311)外部相对的两侧,所述透明导电层至少覆盖在所述玻璃本体(31)位于所述第一电极(32)和所述第二电极(33)之间的部分上,所述透明导电层与所述第一电极(32)和所述第二电极(33)电性连接。
  3. 根据权利要求1所述的镜头组件,其特征在于,
    所述透明导电层包括通过镀膜工艺形成在所述玻璃本体(31)的表面上的导电膜(34)。
  4. 根据权利要求3所述的镜头组件,其特征在于,
    所述导电膜(34)包括金属离子膜或半导体膜。
  5. 根据权利要求2所述的镜头组件,其特征在于,
    所述第一电极(32)和所述第二电极(33)相对于所述玻璃本体(31)的中心对称设置;或者,
    所述第一电极(32)和所述第二电极(33)均沿所述玻璃本体(31)的边缘设置。
  6. 根据权利要求1所述的镜头组件,其特征在于,
    所述镜头模组(20)还包括电路板,所述镜头组件还包括电传导结构,所述第一电极(32)和所述第二电极(33)通过所述电传导结构与所述电路板电性连接。
  7. 根据权利要求6所述的镜头组件,其特征在于,
    所述电传导结构包括两个第一导电传输件(41),所述第一电极(32)和所述第二电极(33)位于所述玻璃本体(31)的内侧面上,两个所述第一导电传输件(41)的第一端分别与所述第一电极(32)和所述第二电极(33)电性连接,两个所述第一导电传输件(41)的第二端分别与所述电路板电性连接。
  8. 根据权利要求1所述的镜头组件,其特征在于,
    所述玻璃本体(31)的外侧面上具有独立于所述避让区域(311)的第一配合区域(312),所述第一配合区域(312)与所述壳体(10)的内侧连接,所述第一配合区域(312)沿所述玻璃本体(31)的边缘设置,所述第一电极(32)和所述第二电极(33)均设置在所述玻璃本体(31)的内侧面上,且两者的位置与所述玻璃本体(31)的外侧面上的所述第一配合区域(312)的位置相对应。
  9. 根据权利要求1所述的镜头组件,其特征在于,
    所述玻璃本体(31)的内侧面上具有独立于所述避让区域(311)的第二配合区域(313),所述第二配合区域(313)与所述壳体(10)的外侧连接,至少部分所述第一电极(32)和至少部分所述第二电极(33)位于所述第二配合区域(313)与所述避让区域(311)之间。
  10. 根据权利要求6所述的镜头组件,其特征在于,
    所述壳体(10)具有两个相间隔的金属传导部(42),所述电传导结构包括两个所述金属传导部(42)和两个第二导电传输件(43),两个所述第二导电传输件(43)的第一端分别与两个所述金属传导部(42)电性连接,两个所述第二导电传输件(43)的第二端分别与所述电路板电性连接,
    所述玻璃本体(31)上具有独立于所述避让区域(311)的第三配合区域(314),至少部分所述第一电极(32)和至少部分所述第二电极(33)位于所述第三配合区域(314)内,当所述第三配合区域(314)与所述壳体(10)连接后,所述第一电极(32)和所述第二电极(33)分别与两个所述金属传导部(42)电性连接。
  11. 根据权利要求1所述的镜头组件,其特征在于,
    所述透光孔(12)的孔壁上具有安装台阶(121),所述玻璃组件(30)安装于所述安装台阶(121)处,所述安装台阶(121)的底面与所述玻璃组件(30)粘接,所述安装台阶(121)的侧面与所述玻璃组件(30)的边沿相接触或间隙配合。
  12. 根据权利要求11所述的镜头组件,其特征在于,
    所述安装台阶(121)的侧面上具有至少一个定位面(1211),所述玻璃组件(30)的边沿具有与所述定位面(1211)相适配的定位配合面(35)。
  13. 根据权利要求1所述的镜头组件,其特征在于,还包括:
    防尘圈(50),设置在所述镜头(21)和所述玻璃组件(30)之间,所述防尘圈(50)的内壁、所述镜头(21)以及所述玻璃组件(30)共同形成密封腔(60)。
  14. 一种拍摄设备,其特征在于,包括权利要求1至13中任一项所述的镜头组件。
PCT/CN2020/133749 2020-10-09 2020-12-04 镜头组件及具有其的拍摄设备 WO2022073292A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080073559.0A CN114556901A (zh) 2020-10-09 2020-12-04 镜头组件及具有其的拍摄设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022229537.9U CN212811844U (zh) 2020-10-09 2020-10-09 镜头组件及具有其的拍摄设备
CN202022229537.9 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022073292A1 true WO2022073292A1 (zh) 2022-04-14

Family

ID=75091435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133749 WO2022073292A1 (zh) 2020-10-09 2020-12-04 镜头组件及具有其的拍摄设备

Country Status (2)

Country Link
CN (2) CN212811844U (zh)
WO (1) WO2022073292A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116609989A (zh) * 2023-07-19 2023-08-18 杭州目博科技有限公司 一种巡检车防水防雾镜头

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437173A (zh) * 2023-04-14 2023-07-14 江苏泽景汽车电子股份有限公司 相机外壳及摄像模组
CN118301796B (zh) * 2024-06-04 2024-10-15 浙江大华技术股份有限公司 加热视窗、摄像头以及加热视窗的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2107742U (zh) * 1991-12-14 1992-06-17 天津市电视技术研究所 摄像机防护罩内的加热器
CN208924337U (zh) * 2018-08-31 2019-05-31 湖北华鑫光电有限公司 一种防静电除湿手机摄像头
US20190212549A1 (en) * 2016-08-11 2019-07-11 Lg Innotek Co., Ltd. Camera module
CN110326282A (zh) * 2017-02-13 2019-10-11 Lg伊诺特有限公司 相机模块及车辆
CN210183401U (zh) * 2019-06-27 2020-03-24 浙江大华技术股份有限公司 视窗组件及其摄像机
CN211063668U (zh) * 2019-12-19 2020-07-21 浙江大华技术股份有限公司 可加热玻璃、视窗组件及摄像机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687084B2 (ja) * 1993-10-01 1997-12-08 辰口工業硝子株式会社 除曇ミラー
TWM408051U (en) * 2011-01-04 2011-07-21 Topview Optronics Corp Defogging and defrosting device for camera protection lens
JP2014218385A (ja) * 2013-05-01 2014-11-20 株式会社モノハ 透明導電膜ガラスヒーター
CN108064350A (zh) * 2016-12-23 2018-05-22 深圳市柔宇科技有限公司 光学镜头、摄像头模组及终端
CN209748678U (zh) * 2019-06-18 2019-12-06 宁波石墨烯创新中心有限公司 摄像头除雾装置及除雾摄像头
CN209881920U (zh) * 2019-08-12 2019-12-31 威海联合影像有限公司 一种防雾摄像头模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2107742U (zh) * 1991-12-14 1992-06-17 天津市电视技术研究所 摄像机防护罩内的加热器
US20190212549A1 (en) * 2016-08-11 2019-07-11 Lg Innotek Co., Ltd. Camera module
CN110326282A (zh) * 2017-02-13 2019-10-11 Lg伊诺特有限公司 相机模块及车辆
CN208924337U (zh) * 2018-08-31 2019-05-31 湖北华鑫光电有限公司 一种防静电除湿手机摄像头
CN210183401U (zh) * 2019-06-27 2020-03-24 浙江大华技术股份有限公司 视窗组件及其摄像机
CN211063668U (zh) * 2019-12-19 2020-07-21 浙江大华技术股份有限公司 可加热玻璃、视窗组件及摄像机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116609989A (zh) * 2023-07-19 2023-08-18 杭州目博科技有限公司 一种巡检车防水防雾镜头
CN116609989B (zh) * 2023-07-19 2023-10-03 杭州目博科技有限公司 一种巡检车防水防雾镜头

Also Published As

Publication number Publication date
CN114556901A (zh) 2022-05-27
CN212811844U (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022073292A1 (zh) 镜头组件及具有其的拍摄设备
JP6995862B2 (ja) カメラモジュールおよびモバイル端末
CN107085300B (zh) 虚像显示装置以及影像元件单元的制造方法
WO2018152909A1 (zh) 云台装置及无人机
CN101916766B (zh) 成像装置模块和采用该成像装置模块的便携式电子设备
CN109257526A (zh) 摄像设备
WO2018141133A1 (zh) 一种摄像模组及移动终端
US20210091148A1 (en) Electronic device including display and camera device
CN114173042B (zh) 冷柜摄像机
CN216291184U (zh) 摄像组件和摄像机
JP2000148028A (ja) 平面表示装置
JP7541844B2 (ja) 撮像装置および車両
JP2005184357A (ja) 撮像装置
CN111491079B (zh) 照相机装置
CN211478843U (zh) 投影机
WO2020147744A1 (zh) 摄像机
CN216434527U (zh) 一种内窥镜摄像头
JP4280990B2 (ja) 撮像装置
CN220691240U (zh) 镜头模组及电子装置
EP4290289A1 (en) Drive motor, camera module, and electronic device
CN217563700U (zh) 相机
CN220254582U (zh) 一种具备加热功能的摄像模组
CN215344775U (zh) 一种带加热装置的摄像头
CN220820446U (zh) 导热粘尘滤光模组和摄像设备
CN213814242U (zh) 一种高密封性投影仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956607

Country of ref document: EP

Kind code of ref document: A1