WO2023168740A1 - 喹啉类化合物的新用途 - Google Patents

喹啉类化合物的新用途 Download PDF

Info

Publication number
WO2023168740A1
WO2023168740A1 PCT/CN2022/081439 CN2022081439W WO2023168740A1 WO 2023168740 A1 WO2023168740 A1 WO 2023168740A1 CN 2022081439 W CN2022081439 W CN 2022081439W WO 2023168740 A1 WO2023168740 A1 WO 2023168740A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
compound
formula
hydrogen
acid
Prior art date
Application number
PCT/CN2022/081439
Other languages
English (en)
French (fr)
Inventor
章文韬
蒋运运
Original Assignee
安徽中科拓苒药物科学研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽中科拓苒药物科学研究有限公司 filed Critical 安徽中科拓苒药物科学研究有限公司
Publication of WO2023168740A1 publication Critical patent/WO2023168740A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the invention belongs to the field of biomedicine, and specifically relates to the application of a class of quinoline compounds in anti-cancer drugs.
  • TME tumor microenvironment
  • Tumor associated macrophages are an important component of the TME and play an important role in the occurrence, development, infiltration and metastasis of tumors.
  • Macrophages can be divided into M1 type (classically activated macrophages) and M2 type (alternatively activated macrophages) based on their phenotype and secreted cytokines.
  • M1 macrophages mainly secrete pro-inflammatory cytokines and chemokines, thereby enhancing antigen presentation and promoting T cell proliferation and activation, participating in the inflammatory response and thereby improving the immune killing ability of tumor cells.
  • M2 macrophages have weak antigen presentation ability, can downregulate immune responses and inhibit CD8+T cytotoxicity in the TME, and can promote tumor occurrence and development.
  • M1 macrophages can be identified by the membrane protein CD80/86 and the secreted IL-1 ⁇ , IL-6 and other cytokines; while M2 macrophages can be identified by the expression of Arg-1 and CD206/163. Make an identification.
  • TAMs in tumor tissues are mainly M2 type, which is an important factor in the formation of immunosuppressive TME. More studies have shown that specific stimulation can induce the transformation of M2-type TAM into M1-type TAM, thereby inhibiting tumor growth and enhancing the efficacy of cancer immunity. Therefore, using TAM as a target and studying the regulatory factors that can promote the polarization of TAM to M1 type and promote the transformation of TAM from M2 type to M1 will provide new ideas for future tumor immunotherapy. This type of drugs can be used clinically. Significantly inhibits tumor growth, and even some solid tumors completely regress after treatment.
  • One object of the present invention is to provide a class of compounds that induce the transformation of M2-type TAMs into M1-type TAMs to inhibit tumor growth and enhance cancer immune efficacy, and therefore can be used to treat cancers dominated by M2-type macrophages in the tumor microenvironment. or tumors.
  • an object of the present invention is to provide a class of compounds that can inhibit the activity of CSF1R kinase kinase and related signaling pathways, and therefore can activate autoimmunity by inhibiting the phosphorylation of CSF1R and be used to treat cancer.
  • the present invention provides a compound of formula (I) or a pharmaceutically acceptable salt, solvate, ester, acid, metabolite or prodrug thereof for use in the treatment of cancers dominated by M2 macrophages in the tumor microenvironment. or use in oncology drugs:
  • Y is selected from
  • A is selected from an aryl group or a six-membered heterocyclic group
  • n is an integer selected from 1-3;
  • R 1 is selected from hydrogen, halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, and cyano;
  • R 2 and R 3 are each independently selected from hydrogen, halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, or R 2 and R 3 together form phenyl or five-membered hetero ring base.
  • n when Y is When , n is preferably 1; when Y is When , n is preferably 3.
  • A is preferably selected from phenyl, N-morpholinyl, N-piperidinyl or N-piperazinyl.
  • R 1 is selected from hydrogen, fluorine, chlorine, methyl, ethyl, propyl, or cyano;
  • R 2 and R 3 are each independently selected from hydrogen, fluorine, chlorine, methyl, ethyl, propyl. group, trifluoromethyl, difluoromethyl, trifluoroethyl, methoxy, ethoxy, propoxy, or R 2 and R 3 together form phenyl or dioxolane.
  • the present invention provides a compound of formula (Ia) or a pharmaceutically acceptable salt, solvate, ester, acid, metabolite or prodrug thereof for use in the treatment of tumor microenvironment as an M2 macrophage.
  • a compound of formula (Ia) or a pharmaceutically acceptable salt, solvate, ester, acid, metabolite or prodrug thereof for use in the treatment of tumor microenvironment as an M2 macrophage.
  • R 1 , R 2 and R 3 are as defined above.
  • R1 is selected from hydrogen, fluorine, chlorine, and methyl
  • R2 and R3 are each independently selected from hydrogen, fluorine, chlorine, methyl, and trifluoromethyl, or R2 and R3 together form phenyl.
  • the present invention provides a compound of formula (Ib) or a pharmaceutically acceptable salt, solvate, ester, acid, metabolite or prodrug thereof for use in the treatment of tumor microenvironment in the form of M2 Use in medicines for macrophage-based cancers or tumors:
  • R 1 , R 2 and R 3 are as defined above.
  • A is selected from phenyl or N-morpholinyl;
  • R 1 is hydrogen;
  • R 2 and R 3 are each independently selected from hydrogen, fluorine, chlorine, methyl, and trifluoromethyl.
  • the present invention relates to any of the compounds of formula (I), formula (Ia) and formula (Ib), or pharmaceutically acceptable salts, solvates, esters, acids, metabolites or prodrugs thereof, which can cause giant cysts in TME. Phages convert from the M2 type that promotes tumor growth to the M1 type, thereby changing the TME and achieving the purpose of treating cancer.
  • the compounds of formula (I), formula (Ia) and formula (Ib) of the present invention or their pharmaceutically acceptable salts, solvates, esters, acids, metabolites or prodrugs can inhibit the activity of CSF1R kinase and related signaling pathways. , thereby achieving the purpose of treating cancer.
  • the present invention relates to any of the compounds of formula (I), formula (Ia) and formula (Ib) or their pharmaceutically acceptable salts, solvates, esters, acids, metabolites or prodrugs, which are used for the treatment of tumor microorganisms.
  • the cancer or tumor is selected from the group consisting of ovarian cancer, cervical cancer, pancreatic cancer, prostate cancer, bladder cancer, lung cancer, thyroid cancer, breast cancer, pancreatic cancer, kidney cancer, gastric cancer, liver cancer, cervical cancer, endometrial cancer, Colorectal cancer, nasopharyngeal cancer, esophageal cancer, cholangiocarcinoma, bone metastatic cancer, papillary thyroid cancer, non-small cell lung cancer, small cell lung cancer, colon cancer, solid tumors, brain tumors, lymphoma, glioma, One or more of glioblastoma, melanoma, mesothelioma, glioblastoma, osteosarcoma, gastrointestinal stromal tumor, multiple myeloma, biliary carcinosarcoma, and leukemia.
  • the lymphoma includes non-Hodgkin lymphoma, B-cell or T-cell lymphoma; the leukemia includes chronic mye
  • the present invention also relates to a method for treating cancer or tumors dominated by M2 macrophages in the tumor microenvironment, which is characterized in that it includes administering to the patient any one of Formula (I) and Formula (Ia) described in the present invention. and a compound of formula (Ib) or a pharmaceutically acceptable salt, solvate, ester, acid, metabolite or prodrug thereof.
  • Figure 1 shows the effects of compound 2, BLZ945 and PLX3397 on IL-10 secretion after polarization of RAW264.7 cells.
  • Figure 2 shows the effects of compound 2, BLZ945 and PLX3397 on the expression of CD86 molecules after polarization of RAW264.7 cells.
  • Figure 3 shows the effects of compound 2 and PLX3397 on mouse body weight after administration in MC38 cell tumor transplantation mouse model.
  • Figure 4 shows the tumor inhibitory effect of Compound 2 and PLX3397 after administration in MC38 cell tumor transplantation mouse model.
  • Figure 5 shows the effect of compound 2 and PLX3397 on the proportion of M1 macrophages in the tumor microenvironment after administration in the MC38 cell tumor transplantation mouse model.
  • Figure 6 shows the effects of compound 2 and PLX3397 on the body weight of mice after administration in the 4T1 cell tumor transplantation mouse model.
  • Figure 7 shows the tumor inhibitory effect of Compound 2 and PLX3397 after administration in the 4T1 cell tumor transplantation mouse model.
  • Figure 8 shows the effect of compound 2 and PLX3397 on the proportion of M1 macrophages in the tumor microenvironment after administration in a 4T1 cell tumor transplantation mouse model.
  • Figure 9 shows the effect of compound 2 and PLX3397 on the proportion of M2 macrophages in the tumor microenvironment after administration in the 4T1 cell tumor transplantation mouse model.
  • the present invention adopts conventional methods such as mass spectrometry, NMR, HPLC, protein chemistry, biochemistry, recombinant DNA technology and pharmacology within the technical scope of the art.
  • mass spectrometry NMR, HPLC, protein chemistry, biochemistry, recombinant DNA technology and pharmacology
  • specific definitions are provided, the nomenclature and laboratory procedures and techniques chemically relevant to the analytical chemistry, synthetic organic chemistry, and medical and medicinal chemistry described herein are known to those skilled in the art.
  • the foregoing techniques and steps may be carried out by conventional methods that are well known in the art and described in various general and more specific documents, which are cited and discussed in this specification.
  • alkyl refers to an aliphatic hydrocarbon group, which may be branched or straight chain. Depending on the structure, an alkyl group can be a monovalent group or a bivalent group (i.e., an alkylene group). In the present invention, the alkyl group is preferably an alkyl group having 1 to 8 carbon atoms, more preferably a “lower alkyl group” having 1 to 6 carbon atoms, and even more preferably an alkyl group having 1 to 4 carbon atoms. Typical alkyl groups include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, etc.
  • alkyl includes all possible configurations and conformations of the alkyl group.
  • the "propyl” mentioned herein includes n-propyl and isopropyl
  • the "butyl” includes n-butyl. base, isobutyl and tert-butyl
  • "pentyl” includes n-pentyl, isopropyl, neopentyl, tert-pentyl, and pentyl-3-yl, etc.
  • alkoxy refers to -O-alkyl, where alkyl is as defined herein. Typical alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, etc.
  • cycloalkyl refers to a monocyclic or polycyclic group containing only carbon and hydrogen. Cycloalkyl groups include groups having 3 to 12 ring atoms. Depending on the structure, a cycloalkyl group can be a monovalent group or a bivalent group (eg, cycloalkylene). In the present invention, the cycloalkyl group is preferably a cycloalkyl group having 3 to 8 carbon atoms, and more preferably a “lower cycloalkyl group” having 3 to 6 carbon atoms.
  • cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and adamantane base.
  • aryl refers to a planar ring having a delocalized pi electron system and containing 4n+2 pi electrons, where n is an integer.
  • Aryl rings may be composed of five, six, seven, eight, nine, or more than nine atoms.
  • Aryl groups may be optionally substituted.
  • aryl includes carbocyclic aryl (eg, phenyl) and heterocyclic aryl (or “heteroaryl” or “heteroaryl”) groups (eg, pyridine).
  • the term includes monocyclic or fused polycyclic (ie, rings that share adjacent pairs of carbon atoms) groups.
  • aryl means an aryl ring in which each ring-constituting atom is a carbon atom.
  • Aryl rings can be composed of five, six, seven, eight, nine, or more than nine atoms.
  • Aryl groups may be optionally substituted. Examples of aryl groups include, but are not limited to, phenyl, naphthyl, phenanthrenyl, anthracenyl, fluorenyl, and indenyl.
  • an aryl group can be a monovalent group or a bivalent group (i.e., arylene group).
  • aryloxy refers to -O-aryl, where aryl is as defined herein.
  • heteroaryl refers to an aryl group that includes one or more ring heteroatoms selected from nitrogen, oxygen, and sulfur.
  • the N-containing “heteroaryl” part refers to an aromatic group in which at least one skeleton atom in the ring is a nitrogen atom.
  • a heteroaryl group can be a monovalent group or a bivalent group (i.e., a heteroarylene group).
  • heteroaryl groups include, but are not limited to, pyridyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazole base, isothiazolyl, pyrrolyl, quinolyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, indazolyl, indolizinyl, phthalazinyl, pyridazinyl, isoindole Indolyl, pteridinyl, purinyl, oxadiazolyl, thiadiazolyl, furazyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, quinazolinyl , naphthyridinyl and furopyr
  • heteroalkyl as used herein means an alkyl group as defined herein in which one or more of the backbone chain atoms are heteroatoms, such as oxygen, nitrogen, sulfur, silicon, phosphorus, or combinations thereof.
  • the heteroatom(s) may be located anywhere within the heteroalkyl group or at the position where the heteroalkyl group is attached to the rest of the molecule.
  • heterocycloalkyl or “heterocyclyl” as used herein refers to a non-aromatic ring in which one or more of the ring-constituting atoms is a heteroatom selected from the group consisting of nitrogen, oxygen and sulfur.
  • Heterocycloalkyl rings can be composed of three, four, five, six, seven, eight, nine or more than nine atoms. Heterocycloalkyl rings may be optionally substituted.
  • heterocycloalkyl groups include, but are not limited to, lactams, lactones, cyclic imines, cyclic thioimines, cyclic carbamates, tetrahydrothiopyran, 4H-pyran, tetrahydropyran, piperidine, 1,3-dioxin, 1,3-dioxane, 1,4-dioxin, 1,4-dioxane, piperazine, 1,3-oxathiane, 1,4- Oxathiane, 1,4-oxathiane, tetrahydro-1,4-thiazine, 2H-1,2-oxazine, maleimide, succinimide, succinimide Bituric acid, thiobarbituric acid, dioxopiperazine, hydantoin, dihydrouracil, morpholine, trioxane, hexahydro-1,3,5-triazine, tetrahydrothiophene,
  • halogen refers to fluorine, chlorine, bromine and iodine.
  • haloalkyl examples include alkyl, alkoxy or heteroalkyl structures in which at least one hydrogen is replaced by a halogen atom. In certain embodiments, if two or more hydrogen atoms are replaced by halogen atoms, the halogen atoms may be the same as or different from each other.
  • hydroxy refers to the -OH group.
  • cyano refers to the -CN group.
  • ester group refers to a chemical moiety having the formula -COOR, wherein R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (attached through a ring carbon) and heterocyclyl (attached through a ring carbon).
  • amino refers to the -NH group .
  • aminoacyl refers to the -CO- NH2 group.
  • amide or “amido” refers to -NR-CO-R', where R and R' are each independently hydrogen or alkyl.
  • optional means that one or more of the events described below may or may not occur, and includes both events that occur and events that do not occur.
  • optionally substituted or “substituted” means that the mentioned group may be substituted by one or more additional groups each and independently selected from alkyl, cycloalkyl , aryl, heteroaryl, heterocyclyl, hydroxyl, alkoxy, cyano, halogen, amide, nitro, haloalkyl, amino, methanesulfonyl, alkylcarbonyl, alkoxycarbonyl, heteroaryl Alkyl, heterocycloalkylalkyl, aminoacyl, amino protecting group, etc.
  • the amino protecting group is preferably selected from pivaloyl, tert-butoxycarbonyl, benzyloxycarbonyl, 9-fluorenemethoxycarbonyl, benzyl, p-methoxybenzyl, allyloxycarbonyl, trifluoroacetyl, and the like.
  • tyrosine protein kinase used in this article is a type of kinase that catalyzes the transfer of ⁇ -phosphate from ATP to protein tyrosine residues. It can catalyze the transfer of tyrosine residues in a variety of substrate proteins. Phosphorylation plays an important role in cell growth, proliferation, and differentiation.
  • the term “inhibition,” “inhibition,” or “inhibitor” of a kinase means that the phosphotransferase activity is inhibited.
  • a “metabolite” of a compound disclosed herein is a derivative of the compound that is formed when the compound is metabolized.
  • active metabolite refers to a biologically active derivative of a compound that is formed when the compound is metabolized.
  • metabolism refers to the sum of the processes by which a specific substance is changed by an organism (including but not limited to hydrolysis reactions and reactions catalyzed by enzymes, such as oxidation reactions). Therefore, enzymes can produce specific structural changes into compounds.
  • cytochrome P450 catalyzes various oxidation and reduction reactions
  • diphosphate glucuryltransferase catalyzes the conversion of activated glucuronic acid molecules to aromatic alcohols, aliphatic alcohols, carboxylic acids, amines, and free sulfhydryl groups.
  • Metabolites of the compounds disclosed herein can be identified by administering the compound to a host and analyzing tissue samples from the host, or by incubating the compound with hepatocytes in vitro and analyzing the resulting compound. Both methods are known in the art.
  • the metabolites of the compounds are formed by oxidation processes and correspond to the corresponding hydroxyl-containing compounds.
  • the compound is metabolized to a pharmaceutically active metabolite.
  • the term "modulate" means interacting directly or indirectly with a target to change the activity of the target, including, by way of example only, enhancing the activity of the target, inhibiting the activity of the target, limiting the activity of the target, or prolonging the activity of the target.
  • IC50 refers to the amount, concentration or dose of a particular test compound that achieves 50% inhibition of the maximal effect in an assay measuring such effect.
  • EC50 refers to the dose, concentration, or amount of a test compound that elicits a dose-dependent response of 50% of the maximal expression of a specific response induced, stimulated, or potentiated by a particular test compound.
  • the GI 50 used herein refers to the drug concentration required to inhibit the growth of 50% of cells, that is, the drug concentration at which the growth of 50% of cells (such as cancer cells) is inhibited or controlled.
  • Novel kinase inhibitor of the present invention Novel kinase inhibitor of the present invention
  • the present invention provides compounds of formula (I) or pharmaceutically acceptable salts, solvates, esters, acids, metabolites or prodrugs thereof:
  • Y is selected from
  • A is selected from an aryl group or a six-membered heterocyclic group
  • n is an integer selected from 1-3;
  • R 1 is selected from hydrogen, halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, and cyano;
  • R 2 and R 3 are each independently selected from hydrogen, halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, or R 2 and R 3 together form phenyl or five-membered hetero ring base.
  • n when Y is When , n is preferably 1; when Y is When , n is preferably 3.
  • A is preferably selected from phenyl, N-morpholinyl, N-piperidinyl or N-piperazinyl.
  • R 1 is selected from hydrogen, fluorine, chlorine, methyl, ethyl, propyl, or cyano;
  • R 2 and R 3 are each independently selected from hydrogen, fluorine, chlorine, methyl, ethyl, propyl. group, trifluoromethyl, difluoromethyl, trifluoroethyl, methoxy, ethoxy, propoxy, or R 2 and R 3 together form phenyl or dioxolane.
  • the present invention provides a compound of formula (Ia) or a pharmaceutically acceptable salt, solvate, ester, acid, metabolite or prodrug thereof:
  • R 1 , R 2 and R 3 are as defined above.
  • R1 is selected from hydrogen, fluorine, chlorine, and methyl
  • R2 and R3 are each independently selected from hydrogen, fluorine, chlorine, methyl, and trifluoromethyl, or R2 and R3 together form phenyl.
  • the present invention provides a compound of formula (Ib) or a pharmaceutically acceptable salt, solvate, ester, acid, metabolite or prodrug thereof:
  • R 1 , R 2 and R 3 are as defined above.
  • A is selected from phenyl or N-morpholinyl;
  • R 1 is hydrogen;
  • R 2 and R 3 are each independently selected from hydrogen, fluorine, chlorine, methyl, and trifluoromethyl.
  • the present invention relates to a compound of Table 1 below, or a pharmaceutically acceptable salt, solvate, ester, acid, metabolite or prodrug thereof.
  • a compound described herein is administered to an organism in need thereof and is metabolized in the body to produce metabolites that are then used to produce the desired effect, including the desired therapeutic effect.
  • compositions described herein can be prepared and/or used as pharmaceutically acceptable salts.
  • Types of pharmaceutically acceptable salts include, but are not limited to: (1) Acid addition salts, formed by reacting the free base form of the compound with a pharmaceutically acceptable inorganic acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, Nitric acid, phosphoric acid, metaphosphoric acid, etc.; or formed by reaction with organic acids such as acetic acid, propionic acid, caproic acid, cyclopentane propionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, malic acid, lemon Acid, succinic acid, maleic acid, tartaric acid, fumaric acid, trifluoroacetic acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methane sulfonic acid, ethane sulfonate Acid, 1,2-ethanedisulfonic acid, 2-hydroxy
  • the corresponding counterions of pharmaceutically acceptable salts can be analyzed and identified using a variety of methods including, but not limited to, ion exchange chromatography, ion chromatography, capillary electrophoresis, inductively coupled plasma, atomic absorption spectrometry, mass spectrometry, or any thereof. combination.
  • the salt is recovered using at least one of the following techniques: filtration, precipitation with a non-solvent followed by filtration, solvent evaporation, or in the case of aqueous solutions, lyophilization.
  • Screening and characterization of pharmaceutically acceptable salts, polymorphs and/or solvates can be accomplished using a variety of techniques including, but not limited to, thermal analysis, X-ray diffraction, spectroscopy, microscopic methods, elemental analysis.
  • Various spectroscopic techniques used include, but are not limited to, Raman, FTIR, UVIS, and NMR (liquid and solid states).
  • Various microscopy techniques include, but are not limited to, IR microscopy and Raman microscopy.
  • the compounds of formula (I), formula (Ia) and formula (Ib) of the present invention, or their pharmaceutically acceptable salts, solvates, esters, acids, metabolites or prodrugs, can prevent macrophages in the TME from promoting tumors.
  • the growing M2 type is converted into M1 type, thereby changing the TME and achieving the purpose of treating cancer.
  • the compounds of formula (I), formula (Ia) and formula (Ib) of the present invention or their pharmaceutically acceptable salts, solvates, esters, acids, metabolites or prodrugs can inhibit the activity of CSF1R kinase and related signaling pathways. , thereby achieving the purpose of treating cancer.
  • the compounds of formula (I), formula (Ia) and formula (Ib) of the present invention or their pharmaceutically acceptable salts, solvates, esters, acids, metabolites or prodrugs can be used to treat tumor microenvironments. Cancers or tumors dominated by M2 macrophages.
  • the cancer or tumor is selected from the group consisting of ovarian cancer, cervical cancer, pancreatic cancer, prostate cancer, bladder cancer, lung cancer, thyroid cancer, breast cancer, pancreatic cancer, kidney cancer, gastric cancer, liver cancer, cervical cancer, endometrial cancer, Colorectal cancer, nasopharyngeal cancer, esophageal cancer, cholangiocarcinoma, bone metastatic cancer, papillary thyroid cancer, non-small cell lung cancer, small cell lung cancer, colon cancer, solid tumors, brain tumors, lymphoma, glioma, One or more of glioblastoma, melanoma, mesothelioma, glioblastoma, osteosarcoma, gastrointestinal stromal tumor, multiple myeloma, biliary carcinosarcoma, and leukemia.
  • the lymphoma includes non-Hodgkin lymphoma, B-cell or T-cell lymphoma; the leukemia includes chronic mye
  • a medicament comprising a compound of the present invention may be administered to a patient by at least one of injection, oral administration, inhalation, rectal and transdermal administration.
  • the amount of a given drug will depend on factors such as the specific dosage regimen, the type and severity of the disease or condition, and the uniqueness of the subject or host in need of treatment (e.g., body weight). ), however, the dosage to be administered may be routinely determined by methods known in the art, depending upon the particular surrounding circumstances, including, for example, the particular drug being employed, the route of administration, the condition being treated, and the subject or host being treated.
  • the dosage administered will typically be in the range of 0.02-5000 mg/day, for example about 1-1500 mg/day.
  • the required dose may conveniently be presented as one dose, or as divided doses administered simultaneously (or within a short period of time) or at appropriate intervals, for example two, three, four or more divided doses per day.
  • the specific effective amount can be appropriately adjusted according to the patient's condition and in conjunction with the physician's diagnosis.
  • the reactions can be used sequentially to provide the compounds described herein; or they can be used to synthesize fragments that are added subsequently by methods described herein and/or methods known in the art.
  • provided herein are methods of making the tyrosine kinase inhibitor compounds described herein and methods of using them.
  • the compounds described herein can be synthesized using the following synthetic scheme. Compounds can be synthesized using methods similar to those described below, using appropriate alternative starting materials.
  • reaction product can be isolated and purified using conventional techniques, including but not limited to filtration, distillation, crystallization, chromatography and other methods. These products can be characterized using conventional methods, including physical constants and spectral data.
  • N-(4-((6,7-Dimethoxyquinolin-4-yl)oxy)phenyl)-2-(4-methyl-3-(trifluoromethyl)phenyl)acetamide ( 1): Add 4-((6,7-dimethoxyquinolin-4-yl)oxy)aniline (1 g) into a round-bottomed flask and then add N,N-dimethylformamide (10 ml) , HATU (1.92 g), 4-methyl-3-trifluoromethylphenylacetic acid (1.10 g) and N,N-diisopropylethylamine (0.87 g), the reaction system was stirred at room temperature overnight.
  • Example 33 1-(4-((6,7-dimethoxyquinolin-4-yl)oxy)phenyl)-3-(3-(3-(trifluoromethyl)phenyl)propanyl urea
  • Example 35 1-(4-((6,7-dimethoxyquinolin-4-yl)oxy)phenyl)-3-(3-(4-(trifluoromethyl)phenyl)propanyl urea
  • Example 38 N-(3-chloro-4-((6,7-dimethoxyquinolin-4-yl)oxy)phenyl)-2-(4-chloro-3-(trifluoromethyl) )phenyl)acetamide
  • the inhibitory effect of the compounds in this article on the proliferation of cancer cells is further evaluated.
  • CCK-8 purchased from China, MedChem Express
  • CCK-8 cell viability detection kit
  • the amount of formazan produced is related to the activity.
  • the cells after incubation were detected, the number of viable cells was quantified by a microplate reader, and the GI 50 of each compound was calculated (the results are shown in Table 2).
  • the TEL-CSF1R-BaF3 cell line (a cell line stably expressing CSF1R kinase) was constructed as follows: PCR amplification of the human CSF1R kinase region sequence was inserted into the MSCV-Puro vector (Clontech) with the N-terminal TEL fragment, and reversed Using the virus recording method, the cells were stably transferred into mouse BaF3 cells (purchased from ATCC, USA), and the IL-3 growth factor was removed, finally obtaining a cell line that relied on the CSF1R transfer protein.
  • Comparative Example Compounds 1-3 had no inhibitory effect on the proliferation of mouse myeloid cell line M-NSF-60 mediated by TEL-CSF1R-BaF3 expressing CSF1R kinase and M-CSF.
  • Comparative Example Compound 4 has certain inhibitory activity on the proliferation of mouse myeloid cell line M-NSF-60 mediated by TEL-CSF1R-BaF3 expressing CSF1R kinase and M-CSF, but the activity is lower than that of the compound of the present invention.
  • the compound of the present invention has a strong inhibitory effect on the proliferation of mouse myeloid cell line M-NSF-60 mediated by TEL-CSF1R-BaF3 expressing CSF1R kinase and M-CSF. Since CSF1R kinase is a key protein that controls macrophage polarization in the tumor microenvironment, inhibiting the activity of CSF1R kinase can reduce the transformation of macrophages into M2 macrophages that promote cancer development and increase M1 macrophages that inhibit cancer development. transformation of cells.
  • control compounds BLZ945 and PLX3397 purchased from MedChem Express, China were added with gradient dilutions and treated for 72 hours, and then the cells and supernatant were collected for qPCR and ELISA experiments respectively.
  • RNA extraction kit purchased from China Tiangen Biochemical, Cat. No.: DP451. Perform RNA extraction according to the instructions. Use the NanoDrop nucleic acid concentration meter to detect the concentration of RNA in the sample, and dilute the RNA solution to the same concentration.
  • This experiment used TaKaRa’s One Step TB PrimeScript TM PLUS RT-PCR Kit (purchased from Bao Bioengineering Co., Ltd., product number: RR096A), this kit contains the following ingredients:
  • the first step is reverse transcription reaction: 42°C for 5 minutes, 95°C for 10 seconds, 1Cycle;
  • the second step is PCR amplification: 95°C for 5 seconds, 60°C for 20 seconds, 40Cycles.
  • CD86 is a marker of M1 macrophages. As shown in Figure 2, after adding compound 2 to treat cells, it was found that the RNA level of CD86 increased in a dose-dependent manner as the drug concentration increased, indicating that the proportion of M1 cells in macrophages was gradually increasing. The effect of compound 2 at 1 ⁇ M is better than the effect of positive controls PLX3397 and BLZ945 at the same dose.
  • CSF1R kinase is a key protein that controls macrophage polarization in the tumor microenvironment
  • inhibiting the activity of CSF1R kinase can reduce the transformation of macrophages into M2 macrophages that promote cancer development and increase M1 macrophages that inhibit cancer development.
  • Cell polarization This example proves that the compounds involved in the present invention can reduce the transformation of macrophages into the M2 type and promote the transformation of macrophages into the M1 type, thereby inhibiting tumor growth and enhancing the efficacy of cancer immunity.
  • Example 43 In vivo drug efficacy detection
  • mice were orally administered methylcellulose (HKI) (purchased from Sinopharm, China) vehicle once a day (5 mice); the dose was 50 mg/ Compound 2 at a dose of 50 mg/kg mouse weight once daily (5 mice); PLX3397 at a dose of 50 mg/kg mouse weight once daily (5 mice).
  • HLI methylcellulose
  • mice were orally administered 10% HS-15 (purchased from BASF, Germany) vehicle (5 mice) every day; the dose of compound 2 was 50 mg/kg mouse weight every day.
  • HS-15 purchasedd from BASF, Germany
  • DMEM medium (10% FBS) (purchased from GIBCO, USA) was added to the tube to terminate digestion. Put it into a centrifuge, continue centrifugation at 1500 rpm for 10 minutes, and discard the supernatant. At the same time, prepare Percoll separation solution (purchased from Millipore, USA), and use 10 ⁇ PBS to prepare 90% Percoll separation working solution. Take a 15 ml centrifuge tube, add 3-4 ml of 70% Percoll separation solution to the tube, use 4 ml of 40% Percoll separation solution to resuspend the cells, and add the cell mixture to the 70% Percoll separation solution.
  • centrifuge tube into a centrifuge, and centrifuge at 25°C with density gradient at 1260g for 30 minutes (speed up 5, speed down 0). After centrifugation, place the centrifuge tube on the centrifuge tube rack, use a pipette tip to absorb the middle white blood cell layer, add it to 10 ml of PBS, mix and place in a centrifuge, and centrifuge at 1500 rpm. After 10 minutes, discard the cell supernatant, resuspend the cells in 5 ml of PBS, continue centrifugation at 1500 rpm for 10 minutes, and repeat washing once. The cells obtained are the white blood cells in the tumor tissue, and the cells are placed on ice for later use.
  • Cells are labeled with three antibodies. First, the markers on the cell surface are labeled, and then the intracellular factors are labeled. Cell surface staining: Take 1 ⁇ 10 6 cells, centrifuge at 3500 rpm for 5 minutes, discard the cell supernatant, add 1 ⁇ PBS (50 ⁇ l) (purchased from Sangon, China) to resuspend the cells, and add 1 ⁇ l to the tube.
  • 1 ⁇ PBS 50 ⁇ l
  • the transplanted tumor model of C57BL/6J mouse MC38 and Balb/c mouse 4T1 cells is a commonly used model of tumor immunity. After the drug activates the mouse's own tumor immunity, it inhibits the growth of the tumor through the mouse's own immunity.
  • the experimental results are shown in Figures 3-4 and 6-7.
  • Compound 2 and control compound PLX3397 had no obvious toxicity in the tumor immune model MC38 and 4T1 mouse tumor models, and showed good inhibition of mouse tumors. Effect. As the number of days of medication increased, the inhibitory effect of compound 2 on mouse tumors became more and more significant, and was superior to the effect of the control compound PLX3397.
  • the present invention provides a new use of quinoline inhibitor compounds, which can polarize macrophages from M2 type to M1 type by inhibiting CSF1R kinase activity, thereby achieving the effect of treating cancer or tumors. Therefore, the present invention is suitable for industrial applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药,其用于治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤的用途,其中Y、A、n、R1、R2和R3如说明书所定义。通过将肿瘤免疫微环境中M2型TAM转变为M1型TAM,改善肿瘤的微环境,促进巨噬细胞对肿瘤细胞的吞噬作用,进而抑制肿瘤的生长。

Description

喹啉类化合物的新用途 技术领域
本发明属于生物医药领域,具体涉及一类喹啉类化合物在抗癌药物中的应用。
背景技术
癌症免疫治疗是继手术、放化疗和靶向治疗之后的新兴且最具前景的治疗方法,也是当下肿瘤研究领域的焦点和热点。然而,临床病例中仍有大部分患者对免疫治疗不敏感,其被证实与肿瘤微环境(tumor micro environment,TME)介导的免疫耐受密不可分。靶向TME解除免疫抑制有利于恢复和重建人体正常抗肿瘤免疫防御能力,增强免疫治疗疗效。
肿瘤相关巨噬细胞(tumor associated macrophage,TAM)是TME的重要组成部分,其在肿瘤的发生、发展、浸润及转移等多方面起重要作用。巨噬细胞按照其表型和分泌的细胞因子,可将其分为M1型(经典活化巨噬细胞)和M2型(替代活化巨噬细胞)。
M1型巨噬细胞主要分泌促炎细胞因子和趋化因子,从而增强抗原递呈并促进T细胞增殖活化,参与炎症反应进而提高对肿瘤细胞免疫杀伤能力。与之相反,M2型巨噬细胞抗原递呈能力较弱,且能下调免疫应答并抑制TME中CD8+T的细胞毒性,具有促进肿瘤发生和发展的作用。M1型巨噬细胞可通过膜蛋白CD80/86及其分泌的IL-1β、IL-6等细胞因子指标来鉴定;而M2型巨噬细胞可用Arg-1和CD206/163的表达量等指标来进行鉴定。
大量研究发现肿瘤组织中的TAM主要为M2型,是形成免疫抑制型TME的重要因素。更有研究表明,特定刺激可定向诱导M2型TAM转变为M1型TAM从而抑制肿瘤生长,增强癌症免疫疗效。因此,以TAM为靶点,研究能促进TAM向M1型极化和促使TAM从M2型转变为M1的调控因素,将为未来肿瘤的免疫治疗提供新的思路,这一类药物在临床上能够显著抑制肿瘤生长,甚至部分实体肿瘤在治疗后完全消退。
发明内容
本发明的一个目的在于提供一类化合物,其诱导M2型TAM转变为M1型TAM从而抑制肿瘤生长,增强癌症免疫疗效,因此能够用于治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤。此外,本发明的一个目的还在于提供一类化合物,其能抑制CSF1R激酶激酶及相关信号通路活性,因此能够通过抑制CSF1R的磷酸化,激活自身免疫,用于治疗癌症。
因此,本发明提供式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药在制备用于治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤的药物中的用途:
Figure PCTCN2022081439-appb-000001
其中,Y选自
Figure PCTCN2022081439-appb-000002
A选自芳基、或六元杂环基;
n为选自1-3的整数;
R 1选自氢、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、和氰基;
R 2和R 3各自独立地选自氢、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、或R 2和R 3一起形成苯基或五元杂环基。
在优选的实施方式中,当Y为
Figure PCTCN2022081439-appb-000003
时,n优选为1;当Y为
Figure PCTCN2022081439-appb-000004
时,n优选为3。另一方面,A优选地选自苯基、N-吗啉基、N-哌啶基或N-哌嗪基。进一步优选地,R 1选自氢、氟、氯、甲基、乙基、丙基、或氰基;R 2和R 3各自独立地选自氢、氟、氯、甲基、乙基、丙基、三氟甲基、二氟甲基、三氟乙基、甲氧基、乙氧基、丙氧基、或R 2和R 3一起形成苯基或二氧戊环。
在优选的实施方式中,本发明提供式(Ia)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药在制备用于治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤的药物中的用途:
Figure PCTCN2022081439-appb-000005
其中,R 1、R 2和R 3如上文所定义。
更优选其中R 1选自氢、氟、氯、和甲基;R 2和R 3各自独立地选自氢、氟、氯、甲基、和三氟甲基,或R 2和R 3一起形成苯基。
在又一优选的实施方式中,本发明提供式(Ib)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药在制备用于治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤的药物中的用途:
Figure PCTCN2022081439-appb-000006
其中,A、R 1、R 2和R 3如上文所定义。
更优选其中A选自苯基或N-吗啉基;R 1为氢;R 2和R 3各自独立地选自氢、氟、氯、甲基、和三氟甲基。
本发明涉及任一所述的式(I)、式(Ia)和式(Ib)的化合物、或其药学可接受盐、溶剂化物、酯、酸、代谢物或前药,能使TME中巨噬细胞从促进肿瘤生长的M2型转化为M1型,从而改变TME,达到治疗癌症的目的。此外,本发明的式(I)、式(Ia)和式(Ib)的化合物或其药学可接受盐、溶剂化物、酯、酸、代谢物或前药,能抑制CSF1R激酶及相关信号通路活性,从而达到治疗癌症的目的。
本发明涉及任一所述的式(I)、式(Ia)和式(Ib)的化合物或其药学可接受盐、溶剂化物、酯、酸、代谢物或前药,其用作治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤的药物。
所述癌症或肿瘤选自卵巢癌、子宫颈癌、膜腺癌、前列腺癌、膀胱癌、肺癌、甲状腺癌、乳腺癌、胰腺癌、肾癌、胃癌、肝癌、宫颈癌、子宫内膜癌、结肠直肠癌、鼻咽癌、食道癌、胆管癌、骨转移性癌症、乳头状甲状腺癌、非小细胞肺癌、小细胞肺癌、结肠癌、实体肿瘤、脑瘤、淋巴瘤、神经胶质瘤、胶质母细胞瘤、黑色素瘤、间皮瘤、成胶质细胞瘤、骨肉瘤、胃肠间质瘤、多发性骨髓瘤、胆道癌肉瘤、和白血病中的一种或多种。其中,所述淋巴瘤包括非霍奇金淋巴瘤、B细胞或T细胞淋巴瘤;所述白血病包括慢性粒细胞白血病或急性髓细胞性白血病。
本发明还涉及一种治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤的方法,其特征在于,包括对患者施用本发明任一所述的式(I)、式(Ia)和式(Ib)的化合物或其药学可接受盐、溶剂化物、酯、酸、代谢物或前药。
附图说明
图1示出化合物2、BLZ945及PLX3397对RAW264.7细胞极化后IL-10分泌的影响。
图2示出化合物2、BLZ945及PLX3397对RAW264.7细胞极化后CD86分子表达的影响。
图3示出化合物2和PLX3397在MC38细胞肿瘤移植小鼠模型中给药后对小鼠体重的影响。
图4示出化合物2和PLX3397在MC38细胞肿瘤移植小鼠模型中给药后对肿瘤抑制效果。
图5示出化合物2和PLX3397在MC38细胞肿瘤移植小鼠模型中给药后对肿瘤微环境中M1型巨噬细胞比例的影响。
图6示出化合物2和PLX3397在4T1细胞肿瘤移植小鼠模型中给药后对小鼠体重的影响。
图7示出化合物2和PLX3397在4T1细胞肿瘤移植小鼠模型中给药后对肿瘤抑制效果。
图8示出化合物2和PLX3397在4T1细胞肿瘤移植小鼠模型中给药后对肿瘤微环境中M1型巨噬细胞比例的影响。
图9示出化合物2和PLX3397在4T1细胞肿瘤移植小鼠模型中给药后对肿瘤微环境中M2型巨噬细胞比例的影响。
具体实施方式
术语
除非另外定义,所有本文使用的科技术语都具有与要求保护的主题所属领域的技术人员一般理解相同的含义。
除非另有说明,本发明采用本领域技术范围内的质谱、NMR、HPLC、蛋白质化学、生物化学、重组DNA技术和药理学等常规方法。除非提供具体的定义,否则与本文描述的分析化学、合成有机化学、以及医学和药物化学等化学上相关的命名和实验室操作和技术,是本领域技术人员已知的。一般而言,前述技术和步骤可以通过本领域众所周知的和在各种一般文献和更具体文献中描述的常规方法来实施,这些文献在本说明书中被引用和讨论。
术语“烷基”是指脂肪族烃基团,可以是支链或直链的烷基。根据结构,烷基可以是单价基团或双价基团(即亚烷基)。在本发明中,烷基优选是具有1-8个碳原子的烷基,更优选具有1-6个碳原子的“低级烷基”,甚至更优选具有1-4个碳原子的烷基。典型的烷基包括但不限于甲基、乙基、丙基、丁基、戊基、己基等。应理解,本文提到的“烷基”包括可能存在的所有构型和构象的该烷基,例如本文提到的“丙基”包括正丙基和异丙基,“丁基”包括正丁基、异丁基和叔丁基,“戊基”包括正戊基、异丙基、新戊基、叔戊基、和戊-3-基等。
术语“烷氧基”是指-O-烷基,其中烷基如本文中定义。典型的烷氧基包括但不限于甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基等。
术语“环烷基”是指单环或多环基,其仅含有碳和氢。环烷基包括具有3-12个环原子的基团。根据结构,环烷基可以是单价基团或双价基团(例如亚环烷基)。在本发明中,环烷基优选是具有3-8个碳原子的环烷基,更优选具有3-6个碳原子的“低级环烷基”。环烷基的例子包括但不限于,环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环戊烯基、环己烯基、环庚烯基和金刚烷基。
术语“芳香基”是指平面环具有离域的π电子系统并且含有4n+2个π电子,其中n是整数。芳香基环可以由五、六、七、八、九或多于九个原子构成。芳香基可以是任选取代的。术语“芳香基”包括碳环芳基(例如苯基)和杂环芳基(或“杂芳基”或“杂芳香基”)基团(例如吡啶)。该术语包括单环或稠环多环(即共用相邻的碳原子对的环)基团。
本文使用的术语“芳基”是指芳香基环中每一个构成环的原子都是碳原子。芳基环可以由五、六、七、八、九或多于九个原子构成。芳基可以是任选取代的。芳基的实例包括但不限于苯基、萘基、菲基、蒽基、芴基和茚基。根据结构,芳基可以是单价基团或双价基团(即亚芳基)。
术语“芳氧基”是指-O-芳基,其中芳基如本文中定义。
术语“杂芳基”是指芳基中包括一个或多个选自氮、氧和硫的环杂原子。含N“杂芳基”部分是指芳香基中环上至少有一个骨架原子是氮原子。根据结构,杂芳基可以是单价基团或双价基团(即亚杂芳基)。杂芳基的实例包括但不限于吡啶基、咪唑基、嘧啶基、吡唑基、三唑基、吡嗪基、四唑基、呋喃基、噻吩基、异噁唑基、噻唑基、噁唑基、异噻唑基、吡咯基、喹啉基、异喹啉基、吲哚基、苯并咪唑基、苯并呋喃基、吲唑基、吲嗪基、酞嗪基、哒嗪基、异吲哚基、蝶啶基、嘌呤基、噁二唑基、噻二唑基、呋咱基、苯并呋咱基、苯并噻吩基、苯并噻唑基、苯并噁唑基、喹唑啉基、萘啶基和呋喃并吡啶基等。
本文使用的术语“杂烷基”是指本文定义的烷基中的一个或多个骨架链原子是杂原子,例如氧、氮、硫、硅、磷或它们的组合。所述杂原子(一个或多个)可以位于杂烷基内部的任意位置或在杂烷基与分子的其余部分相连的位置。
本文使用的术语“杂环烷基”或“杂环基”是指非芳香基环中一个或多个构成环的原子是选自氮、氧和硫的杂原子。杂环烷基环可以由三、四、五、六、七、八、九或多于九个原子构成。杂环烷基环可以是任选取代的。杂环烷基的实例包括但不限于内酰胺、内酯、环亚胺、环硫代亚胺、环氨基甲酸酯、四氢噻喃、4H-吡喃、四氢吡喃、哌啶、1,3-二噁英、1,3-二噁烷、1,4-二噁英、1,4-二噁烷、哌嗪、1,3-氧硫杂环己烷、1,4-氧硫杂环己二烯、1,4-氧硫杂环己烷、四氢-1,4-噻嗪、2H-1,2- 噁嗪、马来酰亚胺、琥珀酰亚胺、巴比妥酸、硫代巴比妥酸、二氧代哌嗪、乙内酰脲、二氢尿嘧啶、吗啉、三噁烷、六氢-1,3,5-三嗪、四氢噻吩、四氢呋喃、吡咯啉、吡咯烷、咪唑烷,吡咯烷酮、吡唑啉、吡唑烷、咪唑啉、咪唑烷、1,3-二氧杂环戊烯、1,3-二氧杂环戊烷、1,3-二硫杂环戊烯、1,3-二硫杂环戊烷、异噁唑啉、异噁唑烷、噁唑啉、噁唑烷、噁唑烷酮、噻唑啉、噻唑烷和1,3-氧硫杂环戊烷。根据结构,杂环烷基可以是单价基团或双价基团(即亚杂环烷基)。
术语“卤”或“卤素”是指氟、氯、溴和碘。
术语“卤代烷基”、“卤代烷氧基”和“卤代杂烷基”包括烷基、烷氧基或杂烷基的结构,其中至少一个氢被卤原子置换。在某些实施方式中,如果两个或更多氢原子被卤原子置换,所述卤原子彼此相同或不同。
术语“羟基”是指-OH基团。
术语“氰基”是指-CN基团。
术语“酯基”是指具有式-COOR的化学部分,其中R选自烷基、环烷基、芳基、杂芳基(通过环碳连接)和杂环基(通过环碳连接)。
术语“氨基”是指-NH 2基团。
术语“氨酰基”是指-CO-NH 2基团。
术语“酰胺基”或“酰氨基”是指-NR-CO-R’,其中R和R’各自独立地为氢或烷基。
术语“任选”指后面描述的一个或多个事件可以发生或可以不发生,并且包括发生的事件和不发生的事件两者。术语“任选取代的”或“取代的”是指所提及的基团可以被一个或多个额外的基团取代,所述额外的基团各自并且独立地选自烷基、环烷基、芳基、杂芳基、杂环基、羟基、烷氧基、氰基、卤素、酰胺基、硝基、卤代烷基、氨基、甲磺酰基、烷基羰基、烷氧基羰基、杂芳基烷基、杂环烷基烷基、氨酰基、氨基保护基等。其中,氨基保护基优选选自新戊酰基、叔丁氧羰基、苄氧羰基、9-芴甲氧羰基、苄基、对甲氧苄基、烯丙氧羰基、和三氟乙酰基等。
本文使用的术语“酪氨酸蛋白激酶(tyrosine protein kinase,TPK)”是一类催化ATP上γ-磷酸转移到蛋白酪氨酸残基上的激酶,能催化多种底物蛋白质酪氨酸残基磷酸化,在细胞生长、增殖、分化中具有重 要作用。
本文使用的术语激酶的“抑制”、“抑制的”或“抑制剂”,是指磷酸转移酶活性被抑制。
本文公开的化合物的“代谢物”是当该化合物被代谢时形成的化合物的衍生物。术语“活性代谢物”是指当该化合物被代谢时形成的化合物的生物活性衍生物。本文使用的术语“被代谢”,是指特定物质被生物体改变的过程总和(包括但不限于水解反应和由酶催化的反应,例如氧化反应)。因此,酶可以产生特定的结构转变为化合物。例如,细胞色素P450催化各种氧化和还原反应,同时二磷酸葡萄糖甘酸基转移酶催化活化的葡萄糖醛酸分子至芳香醇、脂肪族醇、羧酸、胺和游离的巯基的转化。新陈代谢的进一步的信息可以从《The Pharmacological Basis of Therapeutics》,第九版,McGraw-Hill(1996)获得。本文公开的化合物的代谢物可以通过将化合物给予宿主并分析来自该宿主的组织样品、或通过将化合物与肝细胞在体外孵育并且分析所得化合物来鉴别。这两种方法都是本领域已知的。在一些实施方式中,化合物的代谢物是通过氧化过程形成并与相应的含羟基化合物对应。在一些实施方式中,化合物被代谢为药物活性代谢物。本文使用的术语“调节”,是指直接或间接与靶标相互作用,以改变靶标的活性,仅仅举例来说,包括增强靶标的活性、抑制靶标的活性、限制靶标的活性或者延长靶标的活性。
本文使用的IC 50是指在测量这样的效应的分析中获得最大效应的50%抑制的特定测试化合物的量、浓度或剂量。
本文使用的EC 50是指测定化合物的剂量、浓度或量,其引起特定测定化合物诱导、刺激或加强的特定反应的50%的最大表达的剂量依赖反应。
本文使用的GI 50是指使50%细胞生长被抑制所需的药物浓度,即药物使50%细胞(如癌细胞)的生长得到抑制或控制时的药物浓度。
本发明新型的激酶抑制剂
本发明提供式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药:
Figure PCTCN2022081439-appb-000007
其中,Y选自
Figure PCTCN2022081439-appb-000008
A选自芳基、或六元杂环基;
n为选自1-3的整数;
R 1选自氢、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、和氰基;
R 2和R 3各自独立地选自氢、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、或R 2和R 3一起形成苯基或五元杂环基。
在优选的实施方式中,当Y为
Figure PCTCN2022081439-appb-000009
时,n优选为1;当Y为
Figure PCTCN2022081439-appb-000010
时,n优选为3。另一方面,A优选地选自苯基、N-吗啉基、N-哌啶基或N-哌嗪基。进一步优选地,R 1选自氢、氟、氯、甲基、乙基、丙基、或氰基;R 2和R 3各自独立地选自氢、氟、氯、甲基、乙基、丙基、三氟甲基、二氟甲基、三氟乙基、甲氧基、乙氧基、丙氧基、或R 2和R 3一起形成苯基或二氧戊环。
在优选的实施方式中,本发明提供式(Ia)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药:
Figure PCTCN2022081439-appb-000011
其中,R 1、R 2和R 3如上文所定义。
更优选其中R 1选自氢、氟、氯、和甲基;R 2和R 3各自独立地选自氢、氟、氯、甲基、和三氟甲基,或R 2和R 3一起形成苯基。
在又一优选的实施方式中,本发明提供式(Ib)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药:
Figure PCTCN2022081439-appb-000012
其中,A、R 1、R 2和R 3如上文所定义。
更优选其中A选自苯基或N-吗啉基;R 1为氢;R 2和R 3各自独立地选自氢、氟、氯、甲基、和三氟甲基。
在优选的实施方式中,本发明涉及以下表1的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药。
表1
Figure PCTCN2022081439-appb-000013
Figure PCTCN2022081439-appb-000014
Figure PCTCN2022081439-appb-000015
对于各个变量,上述基团的任意组合也在本文考虑之中。可以理解的是:本文所提供的化合物上的取代基和取代模式可以由本领域技术人员进行选择,以便提供化学上稳定的且可以使用本领域已知的技术以及本文阐述的技术合成的化合物。
本文也描述了此化合物的药学可接受的盐、溶剂化物、酯、酸、药物活性代谢物和前药。
在另外的或进一步的实施方式中,将本文描述的化合物给予有需要的生物体后在其体内代谢产生代谢物,所产生的代谢物然后用于产生期望的效果,包括期望的治疗效果。
本文描述的化合物可以被制成和/或被用作药学可接受的盐。药学可接受的盐的类型包括但不限于:(1)酸加成盐,通过将化合物的游离碱形式与药学可接受的无机酸反应形成,所述无机酸如盐酸、氢溴酸、硫酸、硝酸、磷酸、偏磷酸等;或与有机酸反应形成,所述有机酸如乙酸、丙酸、己酸、环戊烷丙酸、羟基乙酸、丙酮酸、乳酸、丙二酸、苹果酸、柠檬酸、琥珀酸、马来酸、酒石酸、反丁烯二酸、三氟乙酸、苯甲酸、3-(4-羟基苯甲酰基)苯甲酸、肉桂酸、扁桃酸、甲烷磺酸、乙烷磺酸、1,2-乙二磺酸、2-羟基乙磺酸、苯磺酸、甲苯磺酸、4-甲基双环-[2.2.2]辛-2-烯-1-甲酸、2-萘磺酸、叔丁基乙酸、葡庚糖酸、4,4'-亚甲基双-(3-羟基-2-烯-1-甲酸)、3-苯基丙酸、三甲基乙酸、十二烷基硫酸、葡糖酸、谷氨酸、水杨酸、羟基萘酸、硬脂酸、粘康酸等;(2)碱加成盐,其在母体化合物中的酸性质子被金属离子置换时形成,例如碱金属离子(例如锂、钠、钾)、碱土金属离子(例如镁或钙)或铝离子;或与有机碱或无机碱配位,可接受的有机碱包括乙醇胺、二乙醇胺、三乙醇胺、三甲胺、N-甲基葡萄糖胺等;可接受的无机碱包括氢氧化铝、氢氧化钙、氢氧化钾、碳酸钠、氢氧化钠等。
药学可接受的盐的相应的平衡离子可以使用各种方法分析和鉴定,所述方法包括但不限于离子交换色谱、离子色谱、毛细管电泳、电感耦合等离子体、原子吸收光谱、质谱或它们的任何组合。
使用以下技术的至少一种回收所述盐:过滤、用非溶剂沉淀接着过滤、溶剂蒸发,或水溶液的情况下使用冻干法。
筛选和表征药学可接受的盐、多晶型和/或溶剂化物可以使用多种技术完成,所述技术包括但不限于热分析、X射线衍射、光谱、显微镜方法、元素分析。使用的各种光谱技术包括但不限于Raman、FTIR、UVIS和NMR(液体和固体状态)。各种显微镜技术包括但不限于IR显微镜检术和拉曼(Raman)显微镜检术。
本发明的药物用途
本发明的式(I)、式(Ia)和式(Ib)的化合物、或其药学可接受盐、溶剂化物、酯、酸、代谢物或前药,能使TME中巨噬细胞从促进肿瘤生长的M2型转化为M1型,从而改变TME,达到治疗癌症的目的。此外,本发明的式(I)、式(Ia)和式(Ib)的化合物或其药学可接受盐、溶剂化物、酯、酸、代谢物或前药,能抑制CSF1R激酶及相关信号通路活性,从而达到治疗癌症的目的。
因此,本发明的式(I)、式(Ia)和式(Ib)的化合物或其药学可接受盐、溶剂化物、酯、酸、代谢物或前药,能够用于治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤。
所述癌症或肿瘤选自卵巢癌、子宫颈癌、膜腺癌、前列腺癌、膀胱癌、肺癌、甲状腺癌、乳腺癌、胰腺癌、肾癌、胃癌、肝癌、宫颈癌、子宫内膜癌、结肠直肠癌、鼻咽癌、食道癌、胆管癌、骨转移性癌症、乳头状甲状腺癌、非小细胞肺癌、小细胞肺癌、结肠癌、实体肿瘤、脑瘤、淋巴瘤、神经胶质瘤、胶质母细胞瘤、黑色素瘤、间皮瘤、成胶质细胞瘤、骨肉瘤、胃肠间质瘤、多发性骨髓瘤、胆道癌肉瘤、和白血病中的一种或多种。其中,所述淋巴瘤包括非霍奇金淋巴瘤、B细胞或T细胞淋巴瘤;所述白血病包括慢性粒细胞白血病或急性髓细胞性白血病。
在本发明的实施方式中,可以通过注射、口服、吸入、直肠和经皮施用中的至少一种将包含本发明化合物的药物施用给患者。在根据本发明对患者进行治疗时,给定药物的量取决于诸多因素,如具体的给药方案、疾病或病症类型及其严重性、需要治疗的受治疗者或宿主的独特性(例如体重),但是,根据特定的周围情况,包括例如已采用的具体药物、给药途径、治疗的病症、以及治疗的受治疗者或宿主,施用剂量可由本领域已知的方法常规决定。通常,就成人治疗使用的剂量而言,施用剂量典型地在0.02-5000mg/天,例如约1-1500mg/天的范围。该所需剂量可以方便地被表现为一剂、或同时给药的(或在短时间内)或在适当的间隔的分剂量,例如每天二、三、四剂或更多分剂。本领域技术人员可以理解的是,尽管给出了上述剂量范围,但具体的有效量可根据患者的情况并结合医师诊断而适当调节。
化合物的制备
使用本领域技术人员已知的标准合成技术或使用本领域已知的方法与本文描述的方法组合,可以合成式(I)的化合物。另外,本文给出的溶剂、温度和其它反应条件可以根据本领域技术而改变。作为进一步的指导,也可以利用以下的合成方法。
所述反应可以按顺序使用,以提供本文描述的化合物;或它们可以用于合成片段,所述片段通过本文描述的方法和/或本领域已知的方法随后加入。
在某些实施方式中,本文提供的是本文描述的酪氨酸激酶抑制剂化合物的制备方法及其使用方法。在某些实施方式中,本文描述的化合物可以使用以下合成的方案合成。可以使用与下述类似的方法,通过使用适当的可选择的起始原料,合成化合物。
用于合成本文描述的化合物的起始原料可以被合成或可以从商业来源获得。本文描述的化合物和其它相关具有不同取代基的化合物可以使用本领域技术人员已知的技术和原料合成。制备本文公开的化合物的一般方法可以来自本领域已知的反应,并且该反应可以通过由本领域技术人员所认为适当的试剂和条件修改,以引入本文提供的分子中的各种部分。
如果需要,反应产物可以使用常规技术分离和纯化,包括但不限于过滤、蒸馏、结晶、色谱等方法。这些产物可以使用常规方法表征,包括物理常数和图谱数据。
制备式(I)的化合物的合成方案的非限制性实施例参见以下合成路线。
实施例1:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-甲基-3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000016
4-((6,7-二甲氧基喹啉-4-基)氧)苯胺(A2):在圆底烧瓶中加入4-羟 基苯胺(2.0克)后加入二甲基亚砜(30毫升),随后冰浴下滴加氢化钠(807毫克)。反应体系在室温下搅拌30分钟。然后加入4-氯-6,7-二甲氧基喹啉(4.1克),反应体系在90度下反应过夜。反应结束后,向体系中加水,过滤,固体分别用水和少量甲醇洗涤。所得褐色固体,直接用于下一步。
N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-甲基-3-(三氟甲基)苯基)乙酰胺(1):在圆底烧瓶中加入4-((6,7-二甲氧基喹啉-4-基)氧)苯胺(1克)后加入N,N-二甲基甲酰胺(10毫升)、HATU(1.92克)、4-甲基-3-三氟甲基苯乙酸(1.10克)和N,N-二异丙基乙胺(0.87克),反应体系在室温下搅拌过夜。反应结束后,向体系中加水,乙酸乙酯萃取,有机相用无水硫酸钠干燥。有机相经过滤,滤液在减压下出去溶剂,残留物经加压硅胶柱层析提纯后得化合物1。LC/MS:M+H 497.1。
实施例2:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯-3-(三氟甲基)苯基)-乙酰胺
Figure PCTCN2022081439-appb-000017
实施例2化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:517.11。
实施例3:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-苯基乙酰胺
Figure PCTCN2022081439-appb-000018
实施例3化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:415.16。
实施例4:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-3-(哌啶-1-基)丙酰胺
Figure PCTCN2022081439-appb-000019
实施例4化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:436.22。
实施例5:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯-3-氟苯基)乙酰胺
Figure PCTCN2022081439-appb-000020
实施例5化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:467.11。
实施例6:N-(2-氯-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000021
实施例6化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:517.11。
实施例7:N-(2-氯-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000022
实施例7化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:517.11。
实施例8:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000023
实施例8化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:483.15。
实施例9:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000024
实施例9化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:483.15。
实施例10:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(3,4-二甲氧基苯基)乙酰胺
Figure PCTCN2022081439-appb-000025
实施例10化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:475.18。
实施例11:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)2-(3,4-二甲基苯基)乙酰胺
Figure PCTCN2022081439-appb-000026
实施例11化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:443.19。
实施例12:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(3,4-二氟苯基)乙酰胺
Figure PCTCN2022081439-appb-000027
实施例12化合物的合成通过使用类似于实施例1中所述的步骤完 成。MS(ESI)m/z(M+1)+:451.14。
实施例13:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氟-3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000028
实施例13化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:501.14。
实施例14:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(2,6-二氟苯基)乙酰胺
Figure PCTCN2022081439-appb-000029
实施例14化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:451.14。
实施例15:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(2,4-二氟苯基)乙酰胺
Figure PCTCN2022081439-appb-000030
实施例15化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:451.14。
实施例16:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(3-氟-4-甲基苯基)乙酰胺
Figure PCTCN2022081439-appb-000031
实施例16化合物的合成通过使用类似于实施例1中所述的步骤完 成。MS(ESI)m/z(M+1)+:447.17。
实施例17:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(3,4-二氯苯基)乙酰胺
Figure PCTCN2022081439-appb-000032
实施例17化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:483.08。
实施例18:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(苯并[d][1,3]二氧杂环戊烯-5-基)乙酰胺
Figure PCTCN2022081439-appb-000033
实施例18化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:459.15。
实施例19:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(萘-2-基)乙酰胺
Figure PCTCN2022081439-appb-000034
实施例19化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:465.18。
实施例20:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(3-氟苯基)乙酰胺
Figure PCTCN2022081439-appb-000035
实施例20化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:433.15。
实施例21:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-甲基哌嗪-1-基)乙酰胺
Figure PCTCN2022081439-appb-000036
实施例21化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:437.21。
实施例22:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-3-(4-甲基哌嗪-1-基)丙酰胺
Figure PCTCN2022081439-appb-000037
实施例22化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:451.23。
实施例23:N-(2-氯-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯-3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000038
实施例23化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:551.07。
实施例24:N-(2-氟-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯-3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000039
实施例24化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:535.10。
实施例25:N-(3-氟-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯-3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000040
实施例25化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:535.10。
实施例26:N-(2-甲基-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯-3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000041
实施例26化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:531.12。
实施例27:N-(3-甲基-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯-3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000042
实施例27化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:531.12。
实施例28:1-(4-((6,7-二氧甲基喹啉-4-基)氧)苯基)-3-(3-吗啉丙基)脲
Figure PCTCN2022081439-appb-000043
(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)氨基甲酸苯酯(G1):将4-((6,7-二甲氧基喹啉-4-基)氧)苯胺(1克)溶于二氯甲烷(30毫升),加入吡啶(0.4克),冰浴下滴加氯甲酸苯酯(0.8克),加完继续搅 拌3小时。反应结束后,向反应体系中加水,二氯甲烷萃取,有机相用无水硫酸钠干燥,过滤,减压除去二氯甲烷,残留物经加压硅胶柱层析提纯后得化合物G1。MS:(M+1)417.14。
1-(4-((6,7-二氧甲基喹啉-4-基)氧)苯基)-3-(3-吗啉代丙基)脲(42):圆底烧瓶中加入(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)氨基甲酸苯酯(50毫克)、N-(3-氨丙基)吗啉(26毫克)、N,N-二异丙基乙胺(23毫克)和四氢呋喃(3毫升)。将反应混合物在80度下反应过夜。反应结束后,将反应体系浓缩,残留物经加压硅胶柱层析提纯后得化合物28。MS:(M+1)467.22。
实施例29:1-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-3-(3-(4-甲基哌嗪-1-基)丙基)脲
Figure PCTCN2022081439-appb-000044
实施例29化合物的合成通过使用类似于实施例28中所述的步骤完成。MS(ESI)m/z(M+1)+:480.26。
实施例30:1-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-3-(3-苯基丙基)脲
Figure PCTCN2022081439-appb-000045
实施例30化合物的合成通过使用类似于实施例28中所述的步骤完成。MS(ESI)m/z(M+1)+:458.20。
实施例31:1-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-3-(3-(3-氟苯基)丙基)脲
Figure PCTCN2022081439-appb-000046
实施例31化合物的合成通过使用类似于实施例28中所述的步骤完成。MS(ESI)m/z(M+1)+:476.19。
实施例32:1-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-3-(3-(4-氟苯基)丙基)脲
Figure PCTCN2022081439-appb-000047
实施例32化合物的合成通过使用类似于实施例28中所述的步骤完成。MS(ESI)m/z(M+1)+:476.19。
实施例33:1-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-3-(3-(3-(三氟甲基)苯基)丙基)脲
Figure PCTCN2022081439-appb-000048
实施例33化合物的合成通过使用类似于实施例28中所述的步骤完成。MS(ESI)m/z(M+1)+:526.19。
实施例34:(1-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-3-(3-(3-(甲基)苯基)丙基)脲
Figure PCTCN2022081439-appb-000049
实施例34化合物的合成通过使用类似于实施例28中所述的步骤完成。MS(ESI)m/z(M+1)+:472.22。
实施例35:1-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-3-(3-(4-(三氟甲基)苯基)丙基)脲
Figure PCTCN2022081439-appb-000050
实施例35化合物的合成通过使用类似于实施例28中所述的步骤完成。MS(ESI)m/z(M+1)+:526.19。
实施例36:N-(3-三氟甲基-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯 -3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000051
实施例36化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:585.10。
实施例37:N-(3-甲氧基-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯-3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000052
实施例37化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:547.12。
实施例38:N-(3-氯-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯-3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000053
实施例38化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:551.08。
实施例39:N-(3-氰基-4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(4-氯-3-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000054
实施例39化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:542.11。
实施例40:N-(4-((6,7-二甲氧基喹啉-4-基)氧)苯基)-2-(2-(三氟甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000055
实施例40化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:483.15。
比较例1:N-(6-((6,7-二甲氧基喹啉-4-基)氧)吡啶-3-基)-2-苯基乙酰胺
Figure PCTCN2022081439-appb-000056
6,7-二甲氧基-4-((5-硝基吡啶-2-基)氧)喹啉(D2):在圆底烧瓶中加入4-羟基-6,7-二甲氧基喹啉(0.5克)后加入乙腈(10毫升),随后加入碳酸铯(0.87克),室温搅拌5分钟,随后加入2-氯-5-硝基吡啶(0.42克),室温搅拌过夜。反应结束后,过滤,滤液浓缩,残留物经加压硅胶柱层析提纯后得化合物D2。
6-((6,7-二甲氧基喹啉-4-基)氧)吡啶-3-胺(D3):在圆底烧瓶中加入6,7-二甲氧基-4-((5-硝基吡啶-2-基)氧)喹啉(0.42克)后加入甲醇(10毫升)、钯/碳(0.11克),在氢气氛围下反应过夜。反应结束后,过滤,滤液浓缩,残留物经加压硅胶柱层析提纯后得化合物D3。LC/MS:M+H 298.11。
N-(6-((6,7-二甲氧基喹啉-4-基)氧)吡啶-3-基)-2-苯基乙酰胺(比较例化合物1)::在圆底烧瓶中加入6-((6,7-二甲氧基喹啉-4-基)氧)吡啶-3-胺(50毫克)后加入N,N-二甲基甲酰胺(2毫升)、HATU(96毫克)、苯乙酸(34毫克)和N,N-二异丙基乙胺(66毫克),反应体系在室温下搅拌过夜。反应结束后,向体系中加水,乙酸乙酯萃取,有机相用无水硫酸钠干燥。有机相经过滤,滤液在减压下出去溶剂,残留物经加压硅胶柱层析提纯后得比较例化合物1。LC/MS:M+H 416.16。
比较例2:N-(5-氯-6-((6,7-二甲氧基喹啉-4-基)氧)吡啶-3-基)-2-(3-(三氟 甲基)苯基)乙酰胺
Figure PCTCN2022081439-appb-000057
比较例2化合物的合成通过使用类似于比较例1中所述的步骤完成。MS(ESI)m/z(M+1)+:518.10。
比较例3:N-(3-(三氟甲基)苄基)-4-((6,7-二甲氧基喹啉-4-基)氧)苯甲酰胺
Figure PCTCN2022081439-appb-000058
4-((6,7-二甲氧基喹啉-4-基)氧)苯甲酸甲酯(E2):在圆底烧瓶中加入4-氯-6,7-二甲氧基喹啉(1.0克)和4-羟基苯甲酸甲酯(0.68克),145度下搅拌过夜。反应结束后,加入饱和碳酸氢钠溶液,乙酸乙酯萃取,有机相经无水硫酸钠干燥,过滤。滤液浓缩,残留物经加压硅胶柱层析提纯后得化合物E2。
4-((6,7-二甲氧基喹啉-4-基)氧)苯甲酸(E3):在圆底烧瓶中加入4-((6,7-二甲氧基喹啉-4-基)氧)苯甲酸甲酯(0.5克)和甲醇/四氢呋喃(5:1,10毫升)、氢氧化锂(0.18克),室温下反应过夜。反应结束后,浓缩,浓盐酸调节pH为5左右。过滤,滤饼用水洗涤得化合物E3。LC/MS:M+H 326.10。
N-(3-(三氟甲基)苄基)-4-((6,7-二甲氧基喹啉-4-基)氧)苯甲酰胺(比较例化合物3):在圆底烧瓶中加入4-((6,7-二甲氧基喹啉-4-基)氧)苯甲酸(20毫克)后加入N,N-二甲基甲酰胺(2毫升)、3-三氟甲基苄胺(13毫克)、EDCI(17毫克)、HOBT(12毫克)和三乙胺(12毫克),反应体系在室温下搅拌过夜。反应结束后,向体系中加水,乙酸乙酯萃取,有机相用无水硫酸钠干燥。有机相经过滤,滤液在减压下除去溶剂,残留物经加压硅胶柱层析提纯后得比较例化合物3。LC/MS:M+H 483.15。
比较例4:N-(4-((6,7-二甲氧基喹唑啉-4-基)氧)苯基)-2-(3-甲氧基苯基)乙酰胺
Figure PCTCN2022081439-appb-000059
比较例4化合物的合成通过使用类似于实施例1中所述的步骤完成。MS(ESI)m/z(M+1)+:446.17。
实施例41:对癌细胞增殖的影响
通过测试本发明的化合物对癌细胞生长的影响,进一步评估文中化合物对癌细胞增殖的抑制作用。
在实施例中将不同浓度(0.000508μM、0.00152μM、0.00457μM、0.0137μM、0.0411μM、0.123μM、0.370μM、1.11μM、3.33μM、10μM于DMSO中)的本发明化合物以及比较例化合物1-4加入到TEL-CSF1R-BaF3(本实验室构建)和M-NSF-60(购自中国南京科佰,一种M-CSF(CSF-1)介导的小鼠成髓细胞系,利用该细胞系评估化合物对癌细胞增殖的抑制作用时,在细胞培养基中添加浓度为50ng/mL的M-CSF)中,并孵育72小时。通过CCK-8(购自中国,MedChem Express)细胞活力检测试剂盒(CCK-8可被活细胞中的脱氢酶还原为具有高度水溶性的黄色甲瓒产物,生成的甲瓒物数量与活细胞的数量成正比)对孵育后的细胞进行检测,通过酶标仪对活细胞的数目进行定量,并计算各个化合物的GI 50(结果示于表2中)。
TEL-CSF1R-BaF3细胞株(稳定表达CSF1R激酶的细胞株)的构建方法为:PCR扩增人类CSF1R激酶区序列,并插入到带有N端TEL片段的MSCV-Puro载体(Clontech),通过逆转录病毒方法,稳定转入小鼠BaF3细胞(购自美国ATCC),并且撤除IL-3生长因子,最终得到依赖CSF1R转入蛋白的细胞系。
表2的结果表明,本发明的化合物对于CSF1R激酶活性具有很强的抑制作用。比较例化合物1-3对表达CSF1R激酶的TEL-CSF1R-BaF3和M-CSF介导的小鼠成髓细胞系M-NSF-60的增殖均无抑制作用。比较例化合物4对表达CSF1R激酶的TEL-CSF1R-BaF3和M-CSF介导 的小鼠成髓细胞系M-NSF-60的增殖具有一定的抑制活性,但活性低于本发明的化合物。而本发明的化合物对表达CSF1R激酶的TEL-CSF1R-BaF3和M-CSF介导的小鼠成髓细胞系M-NSF-60的增殖均有很强的抑制作用。由于CSF1R激酶是控制肿瘤微环境中巨噬细胞极化的关键蛋白,通过抑制CSF1R激酶的活性可以减少巨噬细胞转化为促进癌症发展的M2型巨噬细胞,增加抑制癌症发展的M1型巨噬细胞的转化。
表2.本发明的化合物对不同癌细胞增殖的抑制活性
实施例No. TEL-CSF1R-BaF3(GI 50/μM) M-NSF-60(GI 50/μM)
1 0.002 0.009
2 0.003 0.03
3 0.012 0.1
5 0.001 0.035
6 0.017 0.06
7 0.009 0.03
8 0.001 0.006
9 0.002 0.007
10 0.009 0.038
11 0.001 0.005
12 0.003 0.065
13 0.002 0.018
14 0.012 0.26
15 0.003 0.051
16 0.001 0.033
17 0.002 0.042
18 0.002 0.062
19 0.0008 0.074
20 0.006 0.13
23 0.008 0.061
24 0.002 0.024
25 0.003 0.05
26 0.006 0.06
27 0.003 0.041
28 0.012 --
29 0.011 --
37 0.004 0.075
38 0.026 0.32
39 0.022 0.61
40 0.007 0.091
比较例1 >10 >10
比较例2 2.54 7.84
比较例3 1.23 2.4
比较例4 0.17 0.55
注:表2中“--”表示未检测。
实施例42:细胞转化实验
使用移液枪吹散RAW264.7细胞(购自美国ATCC),将细胞加入离心管中,放入离心机,在800rpm下离心4分钟。将细胞上清弃掉,按照0.5×10 5/毫升密度铺于6孔透明板中,用含有10%FBS的1640培养基培养(1640培养基购自美国Corning,FBS购自澳大利亚Excel),于37℃,5%CO 2培养箱中培养12小时;然后将6孔透明板取出,向1640培养基(购自美国Corning)中加入20ng/ml白介素4或白介素13因子(均购自中国北京义翘神州),并随后一起加入6孔透明板的细胞孔中,细胞在培养基中培养24小时;观察细胞形态,若细胞由圆形逐渐变为梭形,用小鼠的IL-10ELISA试剂盒(购自中国武汉赛培生物),按照试剂盒说明书检测培养基上清中白介素10分泌,若白介素10分泌浓度增加,则代表着RAW264.7细胞被诱导为M2型巨噬细胞。细胞成功诱导后,分别加梯度稀释好的随机抽选的本发明化合物2、对照化合物BLZ945和PLX3397(购自中国MedChem Express)处理72小时,然后收细胞和上清分别进行qPCR和ELISA实验。
qPCR-细胞RNA抽提
本实验使用的是RNA抽提试剂盒(购自中国天根生化,货号: DP451),按照说明书进行RNA抽提,使用NanoDrop核酸浓度测定仪检测样品中RNA的浓度,并将RNA溶液稀释至相同的浓度。
实时荧光定量PCR实验
本实验使用的是TaKaRa的One Step TB
Figure PCTCN2022081439-appb-000060
PrimeScript TMPLUS RT-PCR Kit(购自宝生物工程有限公司,货号:RR096A),该试剂盒中含有以下成分:
Figure PCTCN2022081439-appb-000061
操作步骤如下:
①将PCR引物取出,冰上放置。所用引物序列如下:
Figure PCTCN2022081439-appb-000062
②如下在冰上配置RT-PCR反应液。
Figure PCTCN2022081439-appb-000063
③RT-PCR反应试剂配置好后,混匀并分装至8连管中,向管中加入2微升RNA样品,轻弹管底至溶液混匀,放入离心机中稍离心。
④打开荧光定量PCR仪,至仪器自检完成后,将样品放入仪器中,按照以下程序进行PCR反应:第一步为反转录反应:42℃5分钟,95℃10秒,1Cycle;第二步为PCR扩增:95℃5秒,60℃20秒,40Cycles。
⑤实验完成以后,将样品取出,关闭仪器。用罗氏分析软件
Figure PCTCN2022081439-appb-000064
96 SW 1.1分析数据,将分析后的数据导入Graphpad Prism7.0中作图,结果参见图1和图2。
实验表明,细胞诱导成为M2型巨噬细胞以后,M2型巨噬细胞中分泌的IL-10水平远高于M1型巨噬细胞,这说明IL-10主要由M2型细胞分泌,M1型巨噬细胞分泌较少。如图1所示,加入本发明的化合物2处理M2型巨噬细胞后,M2型巨噬细胞中IL-10分泌水平随着药物浓度增加而呈现剂量依赖性降低,表明巨噬细胞中M2型细胞在逐渐减少,化合物2在1μM时的作用效果优于阳性对照PLX3397和BLZ945在同等剂量下的作用效果。此外,CD86是M1型巨噬细胞的标志。如图2所示,加化合物2处理细胞后,发现CD86的RNA水平随着药物浓度增加呈现剂量依赖性增加,表明巨噬细胞中M1型细胞的比例在逐渐增加。化合物2在1μM时的作用效果优于阳性对照PLX3397和BLZ945在同等剂量下的作用效果。由于CSF1R激酶是控制肿瘤微环境中巨噬细胞极化的关键蛋白,通过抑制CSF1R激酶的活性可以减少巨噬细胞转化为促进癌症发展的M2型巨噬细胞,增加抑制癌症发展的M1型巨噬细胞的极化。通过本实施例证明,本发明所涉及的化合物能减少巨噬细胞向M2型转化,并促进巨噬细胞向M1型转化,从而抑制肿瘤生长,增强癌症免疫疗效。
实施例43:体内药效检测
在本实施例中,分别测试化合物2及对照化合物PLX3397(购自中国MedChem Express)在MC38及4T1的小鼠模型中的实验结果。
实验步骤如下:
(1)从江苏集萃药康生物科技股份有限公司购买饲养6周龄的MC38移植瘤模型使用的C57BL/6J雄性小鼠,4T1移植瘤模型使用的Balb/c雄性小鼠,以上小鼠均饲养于SPF级实验室中,饮水及垫料均经高压消毒无菌处理,有关小鼠的所有操作均在无菌条件下进行。
(2)第0天分别在所有C57BL/6J小鼠左侧背部皮下分别注入约1×10 6个MC38细胞(购自ATCC),在Balb/c小鼠左侧背部皮下分别注入约1×10 6个4T1细胞(购自ATCC)。
(3)对于MC38的小鼠模型从第6天开始,每天使对应小鼠口服给药 甲基纤维素(HKI)(购自中国国药)溶媒每天一次(5只小鼠);剂量为50mg/kg鼠重的化合物2每天一次(5只小鼠);剂量为50mg/kg鼠重的PLX3397每天一次(5只小鼠)。对于4T1的小鼠模型从第6天开始,每天使对应小鼠口服给药10%HS-15(购自德国巴斯夫)溶媒(5只小鼠);剂量为50mg/kg鼠重的化合物2每天一次(5只小鼠);剂量为50mg/kg鼠重的PLX3397每天一次(5只小鼠)。
(4)从第6天开始,每天用游标卡尺测量皮下肿瘤的长/宽,并每天记录小鼠体重,分别确定不同模型小鼠中化合物2及对照化合物PLX3397对小鼠体重的影响,结果参见图3和图6。
(5)分别统计不同模型小鼠内皮下肿瘤生长趋势,肿瘤体积计算方法:长×宽×宽/2mm 3,结果参见图4和图7。
(6)肿瘤浸润淋巴细胞分离,首先用手术刀片将肿瘤组织切碎(组织块小于1mm 3),加入6毫升消化液(胶原酶IV和0.005%DNaseI酶,均购自美国Sigma)重悬,并转移至15毫升离心管中,然后将离心管放入37℃摇床,220r/min振荡消化2小时。使用200目筛网过筛,收集至50毫升离心管中,1500rpm,离心10分钟。然后弃上清,并向管中加入10毫升的DMEM培养基(10%FBS)(购自美国GIBCO)终止消化。放入离心机中,继续1500rpm,离心10分钟,弃上清。同时配置Percoll分离液(购自美国Millipore),使用10×PBS配置90%Percoll分离工作液。取15毫升离心管,向管中加入3-4毫升70%Percoll分离液,使用4毫升40%Percoll分离液重悬细胞,并将细胞混合液加到70%Percoll分离液。将离心管放入离心机,25℃条件下密度梯度离心,1260g,离心30分钟(升速5,降速0)。离心结束后,将离心管放于离心管架上,用枪头吸取中间白细胞层,加入至10毫升PBS中,混匀并放置离心机中,于1500rpm条件下离心。10分钟后将细胞上清弃掉,并使用5毫升PBS将细胞重悬,继续1500rpm,离心10分钟,重复洗涤一次。得到的细胞即为肿瘤组织中的白细胞,将细胞冰上放置备用。
(7)流式抗体标记,细胞由3个抗体标记,首先标记细胞表面的marker,然后再标记胞内的因子。细胞表面染色:取1×10 6细胞,3500rpm,离心5分钟,将细胞上清弃掉,加入1×PBS(50微升)(购自中国生 工)重悬细胞,向管中加入1微升CD86抗体和1微升F4/80抗体(CD86、F4/80抗体均购自美国BD Pharmingen),放置4℃孵育30分钟;然后3500rpm,离心5分钟,弃上清。用1×染色缓冲液洗涤细胞2次,细胞中加入100μL PBS重悬备用。细胞内因子染色:用破膜/固定液处理细胞,首先向细胞悬液中加入250微升细胞破膜/固定液(货号:554714,购自美国BD Biosciences),冰上孵育20分钟;然后取1毫升1×BD Perm/Wash缓冲液将细胞重悬,并放置离心机中,3500rpm,离心5分钟;将细胞上清弃掉,重复操作;然后向管中加入50微升1×BD Perm/Wash缓冲液,重悬细胞,并向细胞悬液中加入适量的1微升CD206抗体(均购自美国BD Pharmingen),于4℃条件下孵育30分钟;重复操作;最后使用PBS重悬细胞,并上机进行检测。使用Flowjo处理数据,将数据导入Graphpad Prism软件中作图,结果参见图5、8和9。
C57BL/6J小鼠MC38及Balb/c小鼠4T1细胞的移植瘤模型是肿瘤免疫常用的模型,用药后药物激活小鼠自身的肿瘤免疫之后,通过小鼠自身免疫抑制肿瘤的生长。实验结果如图3-4和图6-7所示,化合物2及对照化合物PLX3397在肿瘤免疫模型MC38及4T1的小鼠肿瘤模型中,没有明显的毒性,并且表现出很好的抑制小鼠肿瘤的效果。随着用药天数的增加,化合物2对小鼠肿瘤的抑制作用愈发显著,并且优于对照化合物PLX3397的效果。
此外,如图5、8和9所示,通过对肿瘤微环境中的巨噬细胞比例检测发现,给药化合物2组的肿瘤周围中M1型巨噬细胞的比例远高于溶媒组,且同等剂量下化合物2组肿瘤微环境中M1型巨噬细胞的比例也高于PLX3397组。这说明本发明的化合物能够诱导M2型TAM转变为M1型TAM从而抑制肿瘤生长,因此能够用于治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤。
工业应用性
本发明提供一种喹啉类抑制剂化合物的新用途,其可以通过抑制CSF1R激酶活性而使巨噬细胞从M2型向M1型极化,从而达到治疗癌症或肿瘤的效果。因而,本发明适于工业应用。
尽管本文对本发明作了详细说明,但本发明不限于此,本技术领域的技术人员可以根据本发明的原理进行修改,因此,凡按照本发明的原理进行的各种修改都应当理解为落入本发明的保护范围。

Claims (20)

  1. 式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药,其用于治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤的用途:
    Figure PCTCN2022081439-appb-100001
    其中,Y选自
    Figure PCTCN2022081439-appb-100002
    A选自芳基、或六元杂环基;
    n为选自1-3的整数;
    R 1选自氢、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、和氰基;
    R 2和R 3各自独立地选自氢、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、或R 2和R 3一起形成苯基或五元杂环基。
  2. 根据权利要求1所述的式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药的用途,其中A选自苯基、N-吗啉基、N-哌啶基或N-哌嗪基。
  3. 根据权利要求1或2所述的式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药的用途,其中当Y为
    Figure PCTCN2022081439-appb-100003
    时,n为1;当Y为
    Figure PCTCN2022081439-appb-100004
    时,n为3。
  4. 根据权利要求1-3中任一项所述的式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药的用途,其中R 1选自氢、 氟、氯、甲基、乙基、丙基、或氰基;R 2和R 3各自独立地选自氢、氟、氯、甲基、乙基、丙基、三氟甲基、二氟甲基、三氟乙基、甲氧基、乙氧基、丙氧基、或R 2和R 3一起形成苯基或二氧戊环。
  5. 根据权利要求1-4中任一项所述的式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药的用途,其中式(I)的化合物选自式(Ia)的化合物:
    Figure PCTCN2022081439-appb-100005
    其中R 1选自氢、氟、氯、和甲基;R 2和R 3各自独立地选自氢、氟、氯、甲基、和三氟甲基,或R 2和R 3一起形成苯基。
  6. 根据权利要求1-4中任一项所述的式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药的用途,其中式(I)的化合物选自式(Ib)的化合物:
    Figure PCTCN2022081439-appb-100006
    其中A选自苯基或N-吗啉基;R 1为氢;R 2和R 3各自独立地选自氢、氟、氯、甲基、和三氟甲基。
  7. 根据权利要求1-6中任一项所述的式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药的用途,其中式(I)的化合物选自以下化合物:
    Figure PCTCN2022081439-appb-100007
    Figure PCTCN2022081439-appb-100008
    Figure PCTCN2022081439-appb-100009
  8. 根据权利要求1-7中任一项所述的式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药的用途,其中
    所述癌症或肿瘤选自卵巢癌、子宫颈癌、膜腺癌、前列腺癌、膀胱癌、肺癌、甲状腺癌、乳腺癌、胰腺癌、肾癌、胃癌、肝癌、宫颈癌、子宫内膜癌、结肠直肠癌、鼻咽癌、食道癌、胆管癌、骨转移性癌症、乳头状甲状腺癌、非小细胞肺癌、小细胞肺癌、结肠癌、实体肿瘤、脑瘤、淋巴瘤、神经胶质瘤、胶质母细胞瘤、黑色素瘤、间皮瘤、成胶质细胞瘤、骨肉瘤、胃肠间质瘤、多发性骨髓瘤、胆道癌肉瘤、和白血病中的一种或多种。
  9. 根据权利要求8所述的式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药的用途,其中所述淋巴瘤选自非霍奇金淋巴瘤、B细胞或T细胞淋巴瘤。
  10. 根据权利要求8所述的式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药的用途,其中所述白血病选自慢性粒细胞白血病或急性髓细胞性白血病。
  11. 一种治疗肿瘤微环境中以M2型巨噬细胞为主的癌症或肿瘤的方法,包括对患者施用治疗有效量的式(I)的化合物或其药学可接受的盐、溶剂化物、酯、酸、代谢物或前药:
    Figure PCTCN2022081439-appb-100010
    其中,Y选自
    Figure PCTCN2022081439-appb-100011
    A选自芳基、或六元杂环基;
    n为选自1-3的整数;
    R 1选自氢、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、和氰基;
    R 2和R 3各自独立地选自氢、卤素、C 1-6烷基、C 1-6卤代烷基、C 1-6烷氧基、或R 2和R 3一起形成苯基或五元杂环基。
  12. 根据权利要求11所述的方法,其中A选自苯基、N-吗啉基、N-哌啶基或N-哌嗪基。
  13. 根据权利要求11或12所述的方法,其中当Y为
    Figure PCTCN2022081439-appb-100012
    时,n为1;当Y为
    Figure PCTCN2022081439-appb-100013
    时,n为3。
  14. 根据权利要求11-13中任一项所述的方法,其中R 1选自氢、氟、氯、甲基、乙基、丙基、或氰基;R 2和R 3各自独立地选自氢、氟、氯、甲基、乙基、丙基、三氟甲基、二氟甲基、三氟乙基、甲氧基、乙氧基、丙氧基、或R 2和R 3一起形成苯基或二氧戊环。
  15. 根据权利要求11-14中任一项所述的方法,其中式(I)的化合物选自式(Ia)的化合物:
    Figure PCTCN2022081439-appb-100014
    其中R 1选自氢、氟、氯、和甲基;R 2和R 3各自独立地选自氢、氟、氯、甲基、和三氟甲基,或R 2和R 3一起形成苯基。
  16. 根据权利要求11-14中任一项所述的方法,其中式(I)的化合物选自式(Ib)的化合物:
    Figure PCTCN2022081439-appb-100015
    其中A选自苯基或N-吗啉基;R 1为氢;R 2和R 3各自独立地选自氢、氟、氯、甲基、和三氟甲基。
  17. 根据权利要求11-16中任一项所述的方法,其中式(I)的化合物选自以下化合物:
    Figure PCTCN2022081439-appb-100016
    Figure PCTCN2022081439-appb-100017
    Figure PCTCN2022081439-appb-100018
  18. 根据权利要求11-17中任一项所述的方法,其中
    所述癌症或肿瘤选自卵巢癌、子宫颈癌、膜腺癌、前列腺癌、膀胱癌、肺癌、甲状腺癌、乳腺癌、胰腺癌、肾癌、胃癌、肝癌、宫颈癌、子宫内膜癌、结肠直肠癌、鼻咽癌、食道癌、胆管癌、骨转移性癌症、乳头状甲状腺癌、非小细胞肺癌、小细胞肺癌、结肠癌、实体肿瘤、脑瘤、淋巴瘤、神经胶质瘤、胶质母细胞瘤、黑色素瘤、间皮瘤、成胶质细胞瘤、骨肉瘤、胃肠间质瘤、多发性骨髓瘤、胆道癌肉瘤、和白血病中的一种或多种。
  19. 根据权利要求18所述的方法,其中所述淋巴瘤选自非霍奇金淋巴瘤、B细胞或T细胞淋巴瘤。
  20. 根据权利要求18所述的方法,其中所述白血病选自慢性粒细胞白血病或急性髓细胞性白血病。
PCT/CN2022/081439 2022-03-08 2022-03-17 喹啉类化合物的新用途 WO2023168740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210227577.0A CN116763787A (zh) 2022-03-08 2022-03-08 喹啉类化合物的新用途
CN202210227577.0 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023168740A1 true WO2023168740A1 (zh) 2023-09-14

Family

ID=87936994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081439 WO2023168740A1 (zh) 2022-03-08 2022-03-17 喹啉类化合物的新用途

Country Status (2)

Country Link
CN (1) CN116763787A (zh)
WO (1) WO2023168740A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243582A1 (en) * 1999-12-24 2002-09-25 Kirin Beer Kabushiki Kaisha Quinoline and quinazoline derivatives and drugs containing the same
CN103405429A (zh) * 2013-08-22 2013-11-27 中国药科大学 一类vegfr-2抑制剂及其用途
CN111303024A (zh) * 2018-12-12 2020-06-19 安徽中科拓苒药物科学研究有限公司 一种喹啉结构的pan-KIT激酶抑制剂及其用途
CN114025755A (zh) * 2019-04-12 2022-02-08 台湾卫生研究院 以杂环化合物作为激酶抑制剂的治疗用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243582A1 (en) * 1999-12-24 2002-09-25 Kirin Beer Kabushiki Kaisha Quinoline and quinazoline derivatives and drugs containing the same
CN103405429A (zh) * 2013-08-22 2013-11-27 中国药科大学 一类vegfr-2抑制剂及其用途
CN111303024A (zh) * 2018-12-12 2020-06-19 安徽中科拓苒药物科学研究有限公司 一种喹啉结构的pan-KIT激酶抑制剂及其用途
CN114025755A (zh) * 2019-04-12 2022-02-08 台湾卫生研究院 以杂环化合物作为激酶抑制剂的治疗用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, Y. ET AL.: "Discovery of 2-(4-Chloro-3-(Trifluoromethyl)Phenyl)-N-(4-((6,7-Dimethoxyquinolin-4-yl)Oxy)Phenyl)Acetamide (CHMFL-KIT-64) as a Novel Orally Available Potent Inhibitor against Broad-Spectrum Mutants of c-KIT Kinase for Gastrointestinal Stromal Tumors", J. MED. CHEM., vol. 62, no. 13, 17 June 2019 (2019-06-17), XP055940696, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.9b00280 *

Also Published As

Publication number Publication date
CN116763787A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
US10596174B2 (en) Pyrrolopyrimidine compounds as inhibitors of protein kinases
WO2017101803A1 (zh) 一种新型egfr和alk激酶的双重抑制剂
ES2318649T3 (es) Procedimiento de preparacion de derivados de 4-fenoxi quinolinas.
ES2423851T3 (es) Compuesto de aciltiourea o sal del mismo y uso del mismo
BR112018004175B1 (pt) Composto pirazolo[3,4-d]pirimidina, composição farmacêutica, inibidor de her2 e agente antitumor contendo o dito composto e usos terapêuticos do dito composto
CN114057771B (zh) 大环化合物及其制备方法和应用
BR112015002709B1 (pt) Compostos, composição farmacêutica, uso dos mesmos e uso de uma combinação de composto ou composição farmacêutica e um segundo agente profilático ou agente terapêutico
WO2020259683A1 (zh) 2,4-二取代嘧啶衍生物及其制备方法和用途
US20150152088A1 (en) Alkynyl heteroaromatic compound and use thereof
US11352352B2 (en) Aminopyrimidine compound, preparation method therefor and use thereof
JP6704422B2 (ja) キナゾリン誘導体の塩およびその製造方法
US9586965B2 (en) Pyrrolo[2,3-d]pyrimidine compounds as inhibitors of protein kinases
US20190084988A1 (en) Wdr5 inhibitors and modulators
CN113880772B (zh) 一类cdk激酶抑制剂及其应用
WO2018001251A1 (zh) 苯并呋喃吡唑胺类蛋白激酶抑制剂
CN116283953B (zh) 含噻唑结构的吲哚啉类化合物及其制备方法和应用
WO2023168740A1 (zh) 喹啉类化合物的新用途
WO2019157959A1 (zh) 一种嘧啶类化合物、其制备方法及其医药用途
WO2020118753A1 (zh) 一种喹啉结构的pan-KIT激酶抑制剂及其用途
JP2023536634A (ja) 自己免疫疾患および癌の処置のための小分子
CN109438279B (zh) 一种克服egfr耐药突变的小分子化合物及其制备方法和用途
WO2023173480A1 (zh) 一种选择性csf1r抑制剂及其用途
WO2023206655A1 (zh) 一种PI3Kδ抑制剂及其用途
EP3632912A1 (en) Pyridoquinazoline derivatives useful as protein kinase inhibitors
WO2023025164A1 (zh) 芳基磷氧化合物的晶型、制备方法及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930375

Country of ref document: EP

Kind code of ref document: A1