WO2023168729A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2023168729A1
WO2023168729A1 PCT/CN2022/080858 CN2022080858W WO2023168729A1 WO 2023168729 A1 WO2023168729 A1 WO 2023168729A1 CN 2022080858 W CN2022080858 W CN 2022080858W WO 2023168729 A1 WO2023168729 A1 WO 2023168729A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polarizer
layer
display device
compensation layer
Prior art date
Application number
PCT/CN2022/080858
Other languages
English (en)
French (fr)
Inventor
海博
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/755,534 priority Critical patent/US20240168338A1/en
Publication of WO2023168729A1 publication Critical patent/WO2023168729A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials

Definitions

  • the present application relates to the field of display technology, and in particular to a display device.
  • the existing vertical alignment liquid crystal display device has poor side view contrast, thereby affecting the image quality of the liquid crystal display device.
  • higher requirements are placed on the contrast of liquid crystal display devices. Improving the contrast of liquid crystal display devices is the future development trend of the panel industry.
  • the poor side view contrast of existing vertically aligned liquid crystal display devices is mainly caused by dark side light leakage.
  • the contrast of the picture will continue to decrease, and the clarity of the picture will decrease.
  • This is caused by the birefringence of the liquid crystal molecules in the liquid crystal layer changing as the viewing angle changes.
  • the compensation principle of the compensation film is to correct the phase difference produced by the liquid crystal at different viewing angles, so that the birefringence properties of the liquid crystal molecules are symmetrically compensated.
  • conventional compensation films all use optical compensation.
  • Optical compensation adjusts the compensation value by stretching the film layer. Since the film stretching is limited, the compensation value is also limited. It cannot match the phase difference of the vertically aligned liquid crystal display device, so the vertical alignment The improvement effect of dark-state side view light leakage of aligned liquid crystal display devices is limited.
  • the present application provides a display device to solve the problem of limited improvement effect on dark side view light leakage of a vertically aligned liquid crystal display device.
  • This application provides a display device, which includes:
  • the first polarizer is the first polarizer
  • the first polarizer and the second polarizer are arranged oppositely;
  • a liquid crystal display panel the liquid crystal display panel is disposed between the first polarizer and the second polarizer; wherein,
  • the first polarizer includes a first liquid crystal compensation layer
  • the second polarizer includes a second liquid crystal compensation layer.
  • the first polarizer further includes:
  • a first polarizing layer, the first liquid crystal compensation layer is located between the first polarizing layer and the liquid crystal display panel.
  • the second polarizer further includes:
  • a second polarizing layer, the second liquid crystal compensation layer is located between the second polarizing layer and the liquid crystal display panel.
  • the first liquid crystal compensation layer and the second liquid crystal compensation layer include liquid crystal polymer.
  • the birefringence index difference of the liquid crystal molecules in the liquid crystal polymer is between 0.05 and 0.15.
  • the thickness of the liquid crystal polymer is between 0.01 micron and 3 micron.
  • the first polarizer further includes:
  • the optical compensation layer is located between the first polarizing layer and the liquid crystal display panel.
  • the optical compensation layer is located between the first polarizing layer and the first liquid crystal compensation layer.
  • the first polarizer further includes:
  • a first support layer located between the first liquid crystal compensation layer and the liquid crystal display panel.
  • the first liquid crystal compensation layer is located between the first polarizing layer and the optical compensation layer.
  • the first polarizer further includes:
  • a first support layer located between the first polarizing layer and the first liquid crystal compensation layer.
  • the second polarizer further includes:
  • a second support layer is located between the second polarizing layer and the second liquid crystal compensation layer.
  • This application also provides a display device, which includes:
  • the first polarizer is the first polarizer
  • the first polarizer and the second polarizer are arranged oppositely;
  • a liquid crystal display panel the liquid crystal display panel is disposed between the first polarizer and the second polarizer; wherein,
  • the first polarizer includes a first liquid crystal compensation layer
  • the second polarizer includes a second liquid crystal compensation layer
  • the first polarizer is the light incident side
  • the second polarizer is the light exit side
  • the first polarizer further includes:
  • a first polarizing layer, the first liquid crystal compensation layer is located between the first polarizing layer and the liquid crystal display panel.
  • the first liquid crystal compensation layer and the second liquid crystal compensation layer include liquid crystal polymer.
  • the birefringence index difference of the liquid crystal molecules in the liquid crystal polymer is between 0.05 and 0.15.
  • the thickness of the liquid crystal polymer is between 0.01 micron and 3 micron.
  • the first polarizer further includes:
  • the optical compensation layer is located between the first polarizing layer and the liquid crystal display panel.
  • the optical compensation layer is located between the first polarizing layer and the first liquid crystal compensation layer.
  • the first liquid crystal compensation layer is located between the first polarizing layer and the optical compensation layer.
  • the present application provides a display device, wherein the display device includes: a first polarizer; a second polarizer, the first polarizer and the second polarizer are arranged oppositely; and a liquid crystal display panel, the liquid crystal display panel is arranged on Between the first polarizer and the second polarizer; wherein the first polarizer includes a first liquid crystal compensation layer; and the second polarizer includes a second liquid crystal compensation layer.
  • a liquid crystal compensation layer is provided on both the first polarizer and the second polarizer. The liquid crystal compensation layer does not increase the compensation value through stretching, but compensates through the refractive index difference and thickness control of the liquid crystal molecules.
  • the adjustment range is large and the restriction is small, which can match the high phase difference of the LCD panel, thereby further improving the dark side light leakage of the LCD panel, improving the contrast of the LCD panel, and improving the image quality; and the LCD There are liquid crystal compensation layers on both sides of the panel to achieve a greater compensation effect.
  • Figure 1 is a first structural schematic diagram of a display device provided by this application.
  • Figure 2 is a diagram showing the light leakage effect of a conventional display device at a dark viewing angle
  • Figure 3 is a light leakage effect diagram at a dark viewing angle of the display device of the present application.
  • Figure 4 is a second structural schematic diagram of the display device provided by the present application.
  • Figure 5 is a third structural schematic diagram of the display device provided by the present application.
  • Figure 6 is a fourth structural schematic diagram of the display device provided by the present application.
  • Figure 7 is a fifth structural schematic diagram of the display device provided by the present application.
  • Figure 8 is a sixth structural schematic diagram of the display device provided by the present application.
  • Figure 9 is a seventh structural schematic diagram of the display device provided by the present application.
  • Figure 10 is an eighth structural schematic diagram of the display device provided by the present application.
  • Figure 11 is a ninth structural schematic diagram of the display device provided by the present application.
  • Figure 12 is a tenth structural schematic diagram of the display device provided by the present application.
  • Figure 13 is an eleventh structural schematic diagram of the display device provided by the present application.
  • Figure 14 is a twelfth structural schematic diagram of the display device provided by the present application.
  • Figure 15 is a thirteenth structural schematic diagram of a display device provided by this application.
  • the poor side-view contrast of existing vertically aligned liquid crystal display panels is mainly caused by dark-state side-view light leakage.
  • the contrast of the picture will continue to decrease and the clarity of the picture will decrease. This is caused by the change in the birefringence of the liquid crystal molecules in the liquid crystal layer as the viewing angle changes.
  • This application uses a liquid crystal compensation layer to compensate for the birefringence of liquid crystal molecules in the liquid crystal layer.
  • the liquid crystal compensation layer regulates the compensation value through the refractive index difference and thickness of the liquid crystal molecules. Therefore, the adjustment range is large and the restrictions are small. It can be compared with the liquid crystal display panel.
  • FIG. 1 is a first structural schematic diagram of the display device 100 provided by this application.
  • This application provides a display device 100, which includes a first polarizer 110, a second polarizer 120 and a liquid crystal display panel 130.
  • the first polarizer 110 and the second polarizer 120 are disposed oppositely, and the liquid crystal display panel 130 is disposed between the first polarizer 110 and the second polarizer 120 , wherein the first polarizer 110 and the second polarizer 120 are disposed oppositely.
  • the polarizer 110 includes a first liquid crystal compensation layer 111; the second polarizer 120 includes a second liquid crystal compensation layer 121.
  • the first polarizer 110 further includes: a first polarizing layer 112 , and the first liquid crystal compensation layer 111 is located between the first polarizing layer 112 and the liquid crystal display panel 130 .
  • the second polarizer 120 further includes: a second polarizing layer 122 , and the second liquid crystal compensation layer 121 is located between the second polarizing layer 122 and the liquid crystal display panel 130 .
  • the liquid crystal display panel 130 includes a light entrance side and a light exit side.
  • the first polarizer 110 may be used as the light incident side
  • the second polarizer 120 may be used as the light exit side; or, the second polarizer 120 may be used as the light incident side, and the first polarizer 120 may be used as the light incident side.
  • the sheet 110 is the light-emitting side, which is not limited in this application.
  • the absorption axis of the first polarizing layer 112 is set at a first angle
  • the absorption axis of the second polarizing layer 122 is set at a second angle
  • the first angle is one of 90 degrees and 0 degrees
  • the second angle is 90 degrees. and another in 0 degrees.
  • the material of the first polarizing layer 112 and the second polarizing layer 122 is a polyvinyl alcohol film.
  • the polyvinyl alcohol film has high temperature and humidity resistance.
  • the temperature and humidity resistance material properties of the polyvinyl alcohol film can be adjusted by adjusting the concentration of the polyvinyl alcohol iodine solution. Formula, stretch ratio and stretch rate to achieve high temperature and humidity resistance. In this way, the entire polarizer has high temperature and humidity resistance.
  • the steps to determine that a polarizer has high temperature and humidity resistance are: for high temperature resistance, take a polarizer sample with a specification of 40 ⁇ 40mm, attach it to clean glass with a roller, and place it at 80°C ⁇ 5kgf / cm2 environment, after 15 minutes, determine whether the high temperature resistance of 80°C and 500 hours meets the specifications; for high moisture resistance properties, take a polarizer sample with a specification of 40 ⁇ 40mm and attach it to a clean surface with a roller. On glass, after placing it in an environment of 80°C Rate ⁇ 5%.
  • the display device 100 includes an upper polarizer and a lower polarizer
  • the first polarizer 110 is an upper polarizer or a lower polarizer
  • the second polarizer 120 is Lower polarizer or upper polarizer.
  • the first polarizer 110 is an upper polarizer
  • the second polarizer 120 is a lower polarizer.
  • the first liquid crystal compensation layer 111 and the second liquid crystal compensation layer 121 include liquid crystal polymer.
  • liquid crystal polymers Compared with ordinary photoelectric liquid crystal molecules, in terms of molecular structure, liquid crystal polymers not only have liquid crystal molecules, but also have one or more reactive functional groups at the ends of the liquid crystal molecules. The above combination can be photopolymerized into a polymer network. , forming a liquid crystal polymer. Since most of the polymerization initiators used are ultraviolet photosensitive types (wavelength 254-365nm), they are also called ultraviolet-reactive liquid crystals.
  • the first liquid crystal compensation layer 111 and the second liquid crystal compensation layer 121 are formed using a coating process.
  • the coating process includes wire bar coating, extrusion coating, and direct coating. Gravure coating method, reverse gravure coating method and die coating method.
  • the coating process is as follows: forming an alignment film on the substrate, subjecting the alignment film to friction alignment treatment, and then coating the liquid crystal polymer on the alignment film for alignment.
  • the formation process of the first liquid crystal compensation layer 111 and the second liquid crystal compensation layer 121 can also adopt the following method: forming liquid crystal polymer on the substrate, and then solidifying and aligning the liquid crystal polymer through ultraviolet light, The process is quite simple and fast.
  • the birefringence index difference of the liquid crystal molecules in the liquid crystal polymer is between 0.05 and 0.15.
  • the high birefringence index difference of the liquid crystal molecules can have a better compensation effect under the same thickness, thereby It can effectively reduce the thickness of liquid crystal polymer and reduce the thickness of display panels.
  • the thickness of the liquid crystal polymer is between 0.01 micron and 3 micron.
  • the thickness of the liquid crystal polymer can be set according to the characteristics of the specific liquid crystal display panel. By adjusting the thickness of the liquid crystal polymer, the birefringence of the liquid crystal molecules in the liquid crystal layer of the display panel can be fully compensated.
  • a liquid crystal compensation layer is respectively provided between the first polarizing layer 112 and the second polarizing layer 122 and the liquid crystal display panel 130, and the liquid crystal compensation layer is used to compensate for the birefringence of the liquid crystal molecules in the liquid crystal layer.
  • the liquid crystal compensation layer does not increase the compensation value through stretching, but adjusts the compensation value through the refractive index difference and thickness of the liquid crystal molecules. Therefore, the adjustment range is large and limited, and can match the high phase difference of the liquid crystal display panel 130, thereby Further improve the dark side light leakage of the liquid crystal display panel 130, improve the contrast of the liquid crystal display panel 130, and improve the image quality; and there are liquid crystal compensation layers on both sides of the liquid crystal display panel 130 to achieve a greater compensation effect. .
  • FIG. 2 is a light leakage effect diagram at a dark viewing angle of the existing display device 100 .
  • FIG. 3 is a light leakage effect diagram at a dark viewing angle of the display device 100 of the present application.
  • the maximum light leakage value of the existing display device 100 at dark viewing angles is 28 nits, while the maximum light leakage value at dark viewing angles of the display device 100 of the present application is 2.3 nits. Therefore, the present application It can greatly improve the dark side light leakage of the liquid crystal display, improve the contrast of the liquid crystal display, and improve the image quality.
  • the display device 100 further includes: a first pressure-sensitive adhesive layer 140 attached to the liquid crystal display panel 130 close to the first polarizing layer. 112 on one side; a second pressure-sensitive adhesive layer 150 attached to the side of the liquid crystal display panel 130 close to the second polarizing layer 122 .
  • a pressure-sensitive adhesive layer as an adhesive between the liquid crystal display panel 130 and other layers, a good fixing effect can be achieved in a short time by applying slight pressure to the pressure-sensitive adhesive.
  • the advantage is that it can be as fast as a fluid. Moisturizes the contact surface and acts like a solid to prevent peeling when peeled off.
  • pressure-sensitive adhesive may not be included.
  • the first pressure-sensitive adhesive layer 140 and the second pressure-sensitive adhesive layer 150 are both polypropylene adhesives.
  • the first polarizer 110 further includes: a first protective layer 113 , the first protective layer 113 is located on a side of the first polarizing layer 112 away from the liquid crystal display panel 130 . side; the second polarizer 120 also includes a second protective layer 123, the second protective layer 123 is located on the side of the second polarizing layer 122 away from the liquid crystal display panel 130.
  • the material of the first protective layer 113 and the second protective layer 123 is any one of cellulose triacetate, polymethyl methacrylate and polyethylene terephthalate.
  • the layer 113 and the second protective layer 123 serve as the protective layer of the polarizing layer, have the function of isolating water vapor, and can also serve as the support of the entire polarizer.
  • Figure 4 is a second structural schematic diagram of the display device 100 provided by the present application.
  • the first polarizer 110 also includes: an optical compensation layer 114 ;
  • the optical compensation layer 114 is located between the first polarizing layer 112 and the liquid crystal display panel 130.
  • a liquid crystal compensation layer is provided on both sides of the liquid crystal display panel 130 to compensate for the birefringence of the liquid crystal molecules in the liquid crystal layer, and then between the first polarizing layer 112 and the liquid crystal display panel 130
  • An optical compensation layer 114 is provided, and the optical compensation layer 114 is used to further compensate for the birefringence of the liquid crystal molecules in the liquid crystal layer.
  • the compensation principle of the optical compensation layer 114 is generally to correct the phase difference produced by the liquid crystal at different viewing angles, so that the liquid crystal molecules can The birefringent properties are compensated by symmetry.
  • the optical compensation layer 114 includes a single optical axis compensation film or a dual optical axis compensation film.
  • the single optical axis compensation film is an anisotropic birefringent film with only one optical axis.
  • the dual-optical axis compensation film has two optical axes and three refractive indexes.
  • the dual-optical axis compensation film has an in-plane phase difference value Ro and an out-of-plane phase difference value Rth in the thickness direction.
  • the optical compensation layer 114 is located between the first polarizing layer 112 and the first liquid crystal compensation layer 111 . That is to say, in this embodiment, the first polarizing layer 112, the optical compensation layer 114 and the first liquid crystal compensation layer 111 are stacked in sequence.
  • the first polarizer 110 is an upper polarizer
  • the second polarizer 120 is a lower polarizer
  • Figure 5 is a third structural schematic diagram of the display device 100 provided by the present application. The difference between this embodiment and the display device 100 provided in Figure 4 is that the display device 100 includes an upper polarizer and a lower polarizer. , the first polarizer 110 is a lower polarizer, and the second polarizer 120 is an upper polarizer.
  • Figure 6 is a fourth structural schematic diagram of the display device 100 provided by the present application.
  • the first polarizer 110 also includes: a first support layer 115.
  • the first support layer 115 is located between the first liquid crystal compensation layer 111 and the liquid crystal display panel 130 .
  • the first support layer 115 is used to protect and support the first liquid crystal compensation layer 111 and prevent the first liquid crystal compensation layer 111 from shrinking.
  • the first support layer 115 is a cellulose triacetate film.
  • the cellulose triacetate film has the function of isolating water vapor and supporting due to its high water resistance, low thermal shrinkage and high durability. Therefore, the first support layer 115 can protect and support the first liquid crystal compensation layer 111 and prevent the first liquid crystal compensation layer 111 from shrinking.
  • the first support layer 115 is a non-compensation layer, it does not need to undergo special processing, and the manufacturing cost is low.
  • the first polarizer 110 is an upper polarizer
  • the second polarizer 120 is a lower polarizer
  • Figure 7 is a fifth structural schematic diagram of the display device 100 provided by the present application. The difference between this embodiment and the display device 100 provided in Figure 6 is that the display device 100 includes an upper polarizer and a lower polarizer. , the first polarizer 110 is a lower polarizer, and the second polarizer 120 is an upper polarizer.
  • Figure 8 is a sixth structural schematic diagram of the display device 100 provided by the present application.
  • the difference between this embodiment and the embodiment shown in Figure 4 is that the first liquid crystal compensation layer 111 is located on the first polarized light between layer 112 and the optical compensation layer 114 . That is to say, in this embodiment, the first polarizing layer 112, the first liquid crystal compensation layer 111 and the optical compensation layer 114 are stacked in sequence.
  • the first polarizer 110 is an upper polarizer
  • the second polarizer 120 is a lower polarizer
  • Figure 9 is a seventh structural schematic diagram of the display device 100 provided by the present application.
  • the difference between this embodiment and the display device 100 provided in Figure 8 is that the display device 100 includes an upper polarizer and a lower polarizer.
  • the first polarizer 110 is a lower polarizer
  • the second polarizer 120 is an upper polarizer.
  • Figure 10 is an eighth structural schematic diagram of the display device 100 provided by the present application.
  • the difference between this embodiment and the embodiment shown in Figure 8 is that the first polarizer 110 also includes: a first support layer 115.
  • the first support layer 115 is located between the first polarizing layer 112 and the first liquid crystal compensation layer 111.
  • the first supporting layer 115 is used to protect and support the first polarizing layer 112 and prevent the first polarizing layer 112 from shrinking.
  • the first support layer 115 is a cellulose triacetate film.
  • the cellulose triacetate film has the function of isolating water vapor and supporting due to its high water resistance, low thermal shrinkage and high durability. Therefore, the first support layer 115 can protect and support the first polarizing layer 112 and prevent the first polarizing layer 112 from shrinking.
  • the first support layer 115 is a non-compensation layer, it does not need to undergo special processing, and the manufacturing cost is low.
  • the first polarizer 110 is an upper polarizer
  • the second polarizer 120 is a lower polarizer
  • Figure 11 is a ninth structural schematic diagram of the display device 100 provided by this application.
  • the difference between this embodiment and the display device 100 provided in Figure 10 is that the display device 100 includes an upper polarizer and a lower polarizer.
  • the first polarizer 110 is a lower polarizer
  • the second polarizer 120 is an upper polarizer.
  • FIG. 12 is a tenth structural schematic diagram of the display device 100 provided by this application.
  • the second polarizer 120 further includes: a second support layer 124 , the second support layer 124 is located between the second polarizer layer 122 and the third support layer 124 . between two liquid crystal compensation layers 121.
  • the second supporting layer 124 is used to protect and support the second polarizing layer 122 and prevent the second polarizing layer 122 from shrinking.
  • the second support layer 124 is a cellulose triacetate film.
  • the cellulose triacetate film has the function of isolating water vapor and supporting due to its high water resistance, low thermal shrinkage and high durability. Therefore, the second support layer 124 can protect and support the second polarizing layer 122 and prevent the second polarizing layer 122 from shrinking.
  • the second support layer 124 is a non-compensation layer, it does not need to undergo special processing, and the manufacturing cost is low.
  • the first polarizer 110 is an upper polarizer
  • the second polarizer 120 is a lower polarizer
  • Figure 13 is an eleventh structural schematic diagram of the display device 100 provided by this application. The difference between this embodiment and the display device 100 provided in Figure 12 is that the display device 100 includes an upper polarizer and a lower polarizer. film, the first polarizer 110 is a lower polarizer, and the second polarizer 120 is an upper polarizer.
  • FIG. 14 is a twelfth structural schematic diagram of the display device 100 provided by this application.
  • the second polarizer 120 further includes: a third support layer 125 , the third support layer 125 is located between the second liquid crystal compensation layer 121 and the between the liquid crystal display panels 130 .
  • the third support layer 125 is used to protect and support the second liquid crystal compensation layer 121 and prevent the second liquid crystal compensation layer 121 from shrinking.
  • the third support layer 125 is a cellulose triacetate film.
  • the cellulose triacetate film has the function of isolating water vapor and supporting due to its high water resistance, low thermal shrinkage, and high durability. Therefore, the third support layer 125 125 can protect and support the second liquid crystal compensation layer 121 and prevent the second liquid crystal compensation layer 121 from shrinking.
  • the third support layer 125 is a non-compensation layer, it does not need to undergo special processing, and the manufacturing cost is low.
  • the first polarizer 110 is an upper polarizer
  • the second polarizer 120 is a lower polarizer
  • Figure 15 is a thirteenth structural schematic diagram of a display device 100 provided by this application. The difference between this embodiment and the display device 100 provided in Figure 14 is that the display device 100 includes an upper polarizer and a lower polarizer. film, the first polarizer 110 is a lower polarizer, and the second polarizer 120 is an upper polarizer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示装置(100),通过在第一偏光片(110)和第二偏光片(120)上均设有液晶补偿层,液晶补偿层不是通过拉伸实现补偿值的提升,而是通过液晶分子的折射率差和厚度调控补偿值,故调整范围大,受限制小,可与液晶显示面板(130)的高相位差匹配,从而进一步改善液晶显示面板(130)的暗态侧视漏光,改善液晶显示面板(130)的对比度,而提高画质。

Description

显示装置 技术领域
本申请涉及显示技术领域,具体涉及一种显示装置。
背景技术
现有的垂直配向液晶显示装置的侧视对比度不佳,从而影响液晶显示装置的画质。特别是随着高动态范围图像电视的发展,对液晶显示装置对比度的要求更高,提升液晶显示装置的对比度是未来面板行业的发展趋势。
现有的垂直配向液晶显示装置的侧视对比度不佳主要是由于暗态侧视漏光所引起的。随着薄膜晶体管液晶显示装置的观察角度增大,则会使得画面的对比度不断降低,画面的清晰度下降。这是由于液晶层中液晶分子的双折射率随观察角度变化而发生变化导致的,采用广视角补偿膜进行补偿,可以有效降低暗态画面的漏光,并在一定视角范围内能大幅度提高画面的对比度。补偿膜的补偿原理是将液晶在不同视角产生的相位差进行修正,让液晶分子的双折射性质得到对称性的补偿。但是常规补偿膜都是采用光学补偿,光学补偿通过对膜层拉伸实现补偿值的调整,由于薄膜拉伸有限制故补偿值也有限制,无法与垂直配向液晶显示装置的相位差匹配,因此垂直配向液晶显示装置的暗态侧视漏光的改善效果有限。
技术问题
本申请提供一种显示装置,以解决垂直配向液晶显示装置的暗态侧视漏光的改善效果有限的问题。
技术解决方案
本申请提供一种显示装置,其包括:
第一偏光片;
第二偏光片,所述第一偏光片和所述第二偏光片相对设置;
液晶显示面板,所述液晶显示面板设置在所述第一偏光片和所述第二偏光片之间;其中,
所述第一偏光片包括第一液晶补偿层;
所述第二偏光片包括第二液晶补偿层。
可选的,在本申请一些实施例中,所述第一偏光片还包括:
第一偏光层,所述第一液晶补偿层位于所述第一偏光层与所述液晶显示面板之间。
可选的,在本申请一些实施例中,所述第二偏光片还包括:
第二偏光层,所述第二液晶补偿层位于所述第二偏光层与所述液晶显示面板之间。
可选的,在本申请一些实施例中,所述第一液晶补偿层和所述第二液晶补偿层包括液晶聚合物。
可选的,在本申请一些实施例中,所述液晶聚合物中的液晶分子的双折射率差在0.05至0.15之间。
可选的,在本申请一些实施例中,所述液晶聚合物的厚度在0.01微米至3微米之间。
可选的,在本申请一些实施例中,所述第一偏光片还包括:
光学补偿层;所述光学补偿层位于所述第一偏光层与所述液晶显示面板之间。
可选的,在本申请一些实施例中,所述光学补偿层位于所述第一偏光层与所述第一液晶补偿层之间。
可选的,在本申请一些实施例中,所述第一偏光片还包括:
第一支撑层,所述第一支撑层位于所述第一液晶补偿层与所述液晶显示面板之间。
可选的,在本申请一些实施例中,所述第一液晶补偿层位于所述第一偏光层与所述光学补偿层之间。
可选的,在本申请一些实施例中,所述第一偏光片还包括:
第一支撑层,所述第一支撑层位于所述第一偏光层与所述第一液晶补偿层之间。
可选的,在本申请一些实施例中,所述第二偏光片还包括:
第二支撑层,所述第二支撑层位于所述第二偏光层与所述第二液晶补偿层之间。
本申请还提供一种显示装置,其包括:
第一偏光片;
第二偏光片,所述第一偏光片和所述第二偏光片相对设置;
液晶显示面板,所述液晶显示面板设置在所述第一偏光片和所述第二偏光片之间;其中,
所述第一偏光片包括第一液晶补偿层;
所述第二偏光片包括第二液晶补偿层;
所述第一偏光片为入光侧,所述第二偏光片为出光侧。
可选的,在本申请一些实施例中,所述第一偏光片还包括:
第一偏光层,所述第一液晶补偿层位于所述第一偏光层与所述液晶显示面板之间。
可选的,在本申请一些实施例中,所述第一液晶补偿层和所述第二液晶补偿层包括液晶聚合物。
可选的,在本申请一些实施例中,所述液晶聚合物中的液晶分子的双折射率差在0.05至0.15之间。
可选的,在本申请一些实施例中,所述液晶聚合物的厚度在0.01微米至3微米之间。
可选的,在本申请一些实施例中,所述第一偏光片还包括:
光学补偿层;所述光学补偿层位于所述第一偏光层与所述液晶显示面板之间。
可选的,在本申请一些实施例中,所述光学补偿层位于所述第一偏光层与所述第一液晶补偿层之间。
可选的,在本申请一些实施例中,所述第一液晶补偿层位于所述第一偏光层与所述光学补偿层之间。
有益效果
本申请提供一种显示装置,其中显示装置包括:第一偏光片;第二偏光片,所述第一偏光片和所述第二偏光片相对设置;液晶显示面板,所述液晶显示面板设置在所述第一偏光片和所述第二偏光片之间;其中,所述第一偏光片包括第一液晶补偿层;所述第二偏光片包括第二液晶补偿层。本申请通过在所述第一偏光片和所述第二偏光片上均设有液晶补偿层,液晶补偿层不是通过拉伸实 现补偿值的提升,而是通过液晶分子的折射率差和厚度调控补偿值,故调整范围大,受限制小,可与液晶显示面板的高相位差匹配,从而进一步改善液晶显示面板的暗态侧视漏光,改善液晶显示面板的对比度,而提高画质;而且液晶显示面板的两侧均设有液晶补偿层,综合起到更大的补偿效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的显示装置的第一结构示意图;
图2是现有的显示装置的暗态视角漏光效果图;
图3是本申请的显示装置的暗态视角漏光效果图;
图4是本申请提供的显示装置的第二结构示意图;
图5是本申请提供的显示装置的第三结构示意图;
图6是本申请提供的显示装置的第四结构示意图;
图7是本申请提供的显示装置的第五结构示意图;
图8是本申请提供的显示装置的第六结构示意图;
图9是本申请提供的显示装置的第七结构示意图;
图10是本申请提供的显示装置的第八结构示意图;
图11是本申请提供的显示装置的第九结构示意图;
图12是本申请提供的显示装置的第十结构示意图;
图13是本申请提供的显示装置的第十一结构示意图;
图14是本申请提供的显示装置的第十二结构示意图;
图15是本申请提供的显示装置的第十三结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
现有的垂直配向液晶显示面板的侧视对比度不佳主要是由于暗态侧视漏光所引起的。随着薄膜晶体管液晶显示面板的观察角度增大,则会使得画面的对比度不断降低,画面的清晰度下降。这是由于液晶层中液晶分子的双折射率随观察角度变化而发生变化导致的。本申请利用液晶补偿层对液晶层中液晶分子的双折射率进行补偿,液晶补偿层通过液晶分子的折射率差和厚度调控补偿值,故调整范围大,受限制小,可与液晶显示面板的高相位差匹配,从而改善液晶显示面板的暗态侧视漏光,改善液晶显示面板的对比度,而提高画质;而且在液晶显示面板的两侧均设有液晶补偿层,综合起到更大的补偿效果。
本申请提供一种显示装置,以下进行详细说明。需要说明的是,以下实施例的描述顺序不作为对本申请实施例优选顺序的限定。
请参阅图1,图1是本申请提供的显示装置100的第一结构示意图。本申请提供一种显示装置100,其包括第一偏光片110、第二偏光片120和液晶显示面板130。
所述第一偏光片110和所述第二偏光片120相对设置,所述液晶显示面板130设置在所述第一偏光片110和所述第二偏光片120之间,其中,所述第一偏光片110包括第一液晶补偿层111;所述第二偏光片120包括第二液晶补偿层121。
在一些实施例中,所述第一偏光片110还包括:第一偏光层112,所述第一液晶补偿层111位于所述第一偏光层112与所述液晶显示面板130之间。
在一些实施例中,所述第二偏光片120还包括:第二偏光层122,所述第二液晶补偿层121位于所述第二偏光层122与所述液晶显示面板130之间。
可以理解的是,所述液晶显示面板130包括入光侧和出光侧。本实施例可以以所述第一偏光片110为入光侧,所述第二偏光片120为出光侧;或者,也可以以所述第二偏光片120为入光侧,所述第一偏光片110为出光侧,本申请不加以限定。
其中,第一偏光层112的吸收轴呈第一角度设置,第二偏光层122的吸收轴呈第二角度设置,第一角度为90度和0度中的一种,第二角度为90度和0度中的另一种。第一偏光层112和第二偏光层122的材料为聚乙烯醇薄膜,聚乙烯醇薄膜具有高耐温湿的特性,聚乙烯醇薄膜的耐温湿材料特性可以通过调整聚乙烯醇碘溶液的配方、拉伸倍率和拉伸速率来实现高耐温湿特性。这样,使得整块偏光片具有了高耐温湿的特性。具体地,判定偏光片具有高耐温湿的步骤为:针对高耐温特性,取规格为40×40mm的偏光片样品,用滚轮将其贴附在洁净的玻璃上,置于80℃×5kgf/cm 2环境中,15分钟后,判定80℃,500小时的高耐温性是否符合规格;针对高耐湿特性,取规格为40×40mm的偏光片样品,用滚轮将其贴附在洁净的玻璃上,置于80℃×5kgf/cm 2环境中15分钟后,判定60℃、90%RH(湿度),500小时的耐湿性是否符合规格,其中判定规格为偏光片的单体穿透变化率≤5%。
请参阅图1,而且,可以理解的是,所述显示装置100包括上偏光片和下偏光片,所述第一偏光片110为上偏光片或下偏光片,所述第二偏光片120为下偏光片或上偏光片。具体地,在本实施例中,所述第一偏光片110为上偏光片,所述第二偏光片120为下偏光片。
其中,所述第一液晶补偿层111和所述第二液晶补偿层121包括液晶聚合物。相比于普通的光电液晶分子,在分子结构上,液晶聚合物除了具有液晶分子以外,液晶分子的末端还带有一个或多个可反应官能基,上述的组合可经光聚合成高分子网络,即形成液晶聚合物。由于所使用的聚合起始剂多为紫外线感光型(波长为254~365nm),也称为紫外线反应性液晶。
传统光学膜多以高分子经单轴或双轴延伸而成,原本分子轴呈杂乱排列的同向性会随着延伸方向而偏转至异向性,从而使不同方向的入射光的行进速度产生差异,即相位延迟现象,可用来调整或补偿光的相位。
一般相位延迟量可由薄膜的双轴折射率的差异△n与薄膜的厚度d乘积计 算,即R=△nd。而无论是棒状或碟状的液晶分子,虽然整体异向性仍取决于排列规则,但基本上液晶的双折射率约在0.1,双折射率是传统高分子延伸膜十倍甚至百倍,因此液晶分子所制作出的光学膜薄膜厚度可以非常小,非常适用于卷对卷的涂布制程。
其中,在一些实施例中,所述第一液晶补偿层111和所述第二液晶补偿层121采用涂布式工艺形成,一般涂布式包括线棒涂布法、挤出涂布法、直接凹版涂布法、反向凹版涂布法及模涂法。具体地,涂布式工艺过程如下:在衬底上形成一层配向膜,并对配向膜进行摩擦配向处理,然后把液晶高分子涂布在配向膜上进行配向。
另外,所述第一液晶补偿层111和所述第二液晶补偿层121的形成工艺过程也可以采用如下的方式:在衬底上形成液晶高分子,再通过紫外光将液晶高分子固化配向,制程相当简便快速。
在一些实施例中,所述液晶聚合物中的液晶分子的双折射率差在0.05至0.15之间,液晶分子的高双折射率差可以在同等厚度的情况下具有更好的补偿效果,从而可以有效减少液晶聚合物的厚度,降低显示面板的厚度。
在一些实施例中,所述液晶聚合物的厚度在0.01微米至3微米之间。液晶聚合物的厚度可以根据具体液晶显示面板特性设置,通过调节液晶聚合物的厚度从而对显示面板液晶层的液晶分子的双折射率完全补偿。
本申请通过在所述第一偏光层112和第二偏光层122与所述液晶显示面板130之间分别设有液晶补偿层,利用液晶补偿层对液晶层中液晶分子的双折射率进行补偿,液晶补偿层不是通过拉伸实现补偿值的提升,而是通过液晶分子的折射率差和厚度调控补偿值,故调整范围大,受限制小,可与液晶显示面板130的高相位差匹配,从而进一步改善液晶显示面板130的暗态侧视漏光,改善液晶显示面板130的对比度,而提高画质;而且在液晶显示面板130的两侧均设有液晶补偿层,综合起到更大的补偿效果。
请参考图2和图3,图2是现有的显示装置100的暗态视角漏光效果图;图3是本申请的显示装置100的暗态视角漏光效果图。请参考以下效果对比表,通过对比得知,现有的显示装置100的暗态视角漏光最大值为28nits,而本申请的显示装置100的暗态视角漏光最大值为2.3nits,因此,本申请能够大大改 善液晶显示的暗态侧视漏光,改善液晶显示的对比度,而提高画质。
效果对比表
Figure PCTCN2022080858-appb-000001
进一步地,在一些实施例中,所述显示装置100还包括:第一压敏胶层140,所述第一压敏胶层140贴附在所述液晶显示面板130靠近所述第一偏光层112的一侧;第二压敏胶层150,所述第二压敏胶层150贴附在所述液晶显示面板130靠近所述第二偏光层122的一侧。通过设有压敏胶层作为液晶显示面板130与其他层的粘结剂,对压敏胶施加轻微的压力,即可在短时间内达到良好的固定效果,其优点是能像流体般快速的润湿接触表面,剥离时又像固体般的防止剥离。应当说明的是,作为本发明的其他实施方式,也可以不包括压敏胶。其中,所述第一压敏胶层140和第二压敏胶层150均为聚丙烯类胶。
再进一步地,在一些实施例中,所述第一偏光片110还包括:第一保护层113,所述第一保护层113位于所述第一偏光层112远离所述液晶显示面板130的一侧;所述第二偏光片120还包括第二保护层123,所述第二保护层123位于所述第二偏光层122远离所述液晶显示面板130的一侧。其中,所述第一保护层113和第二保护层123的材料为三醋酸纤维素、聚甲基丙烯酸甲酯和聚对苯二甲酸乙二醇酯中的任意一种,所述第一保护层113和第二保护层123作为偏光层的保护层,具有隔绝水汽的作用,同时可作为整个偏光片的支撑。
请参阅图4,图4是本申请提供的显示装置100的第二结构示意图,本实施例与图1所示的实施例不同的是:所述第一偏光片110还包括:光学补偿层114;所述光学补偿层114位于所述第一偏光层112与所述液晶显示面板130之间。
本申请在液晶显示面板130的两侧都设有液晶补偿层对液晶层中液晶分子的双折射率进行补偿的基础上,再在所述第一偏光层112与所述液晶显示面板130之间设有光学补偿层114,利用光学补偿层114对液晶层中液晶分子的双折射率进行进一步补偿,光学补偿层114的补偿原理一般是将液晶在不同视角产 生的相位差进行修正,让液晶分子的双折射性质得到对称性的补偿。
所述光学补偿层114包括单光轴补偿膜或双光轴补偿膜,单光轴补偿膜是各向异性双折射膜,只有一个光轴。而双光轴补偿膜具有两个光轴和三个折射率,双光轴补偿膜具有面内相位差值Ro和厚度方向的面外相位差值Rth。
具体地,在一些实施例中,所述光学补偿层114位于所述第一偏光层112与所述第一液晶补偿层111之间。也即是在本实施例中,所述第一偏光层112、所述光学补偿层114和所述第一液晶补偿层111依次层叠设置。
具体地,在本实施例中,所述第一偏光片110为上偏光片,所述第二偏光片120为下偏光片。
请参阅图5,图5是本申请提供的显示装置100的第三结构示意图,本实施例与图4所提供的显示装置100不同的是:所述显示装置100包括上偏光片和下偏光片,所述第一偏光片110为下偏光片,所述第二偏光片120为上偏光片。
请参阅图6,图6是本申请提供的显示装置100的第四结构示意图,本实施例与图4所示的实施例不同的是:所述第一偏光片110还包括:第一支撑层115,所述第一支撑层115位于所述第一液晶补偿层111与所述液晶显示面板130之间。
第一支撑层115用于保护和支撑第一液晶补偿层111,并防止第一液晶补偿层111收缩。具体地,第一支撑层115为三醋酸纤维素薄膜,三醋酸纤维素薄膜由于具有高耐水性、低热收缩性以及高耐久性等特点,而具有隔绝水汽和支撑的作用,因此第一支撑层115可以保护和支撑第一液晶补偿层111,并防止第一液晶补偿层111收缩。而且由于第一支撑层115为非补偿层,不需要经过特殊工艺处理,制造成本低。
具体地,在本实施例中,所述第一偏光片110为上偏光片,所述第二偏光片120为下偏光片。
请参阅图7,图7是本申请提供的显示装置100的第五结构示意图,本实施例与图6所提供的显示装置100不同的是:所述显示装置100包括上偏光片和下偏光片,所述第一偏光片110为下偏光片,所述第二偏光片120为上偏光 片。
请参阅图8,图8是本申请提供的显示装置100的第六结构示意图,本实施例与图4所示的实施例不同的是:所述第一液晶补偿层111位于所述第一偏光层112与所述光学补偿层114之间。也即是在本实施例中,所述第一偏光层112、所述第一液晶补偿层111和所述光学补偿层114依次层叠设置。
具体地,在本实施例中,所述第一偏光片110为上偏光片,所述第二偏光片120为下偏光片。
请参阅图9,图9是本申请提供的显示装置100的第七结构示意图,本实施例与图8所提供的显示装置100不同的是:所述显示装置100包括上偏光片和下偏光片,所述第一偏光片110为下偏光片,所述第二偏光片120为上偏光片。
请参阅图10,图10是本申请提供的显示装置100的第八结构示意图,本实施例与图8所示的实施例不同的是:所述第一偏光片110还包括:第一支撑层115,所述第一支撑层115位于所述第一偏光层112与所述第一液晶补偿层111之间。
第一支撑层115用于保护和支撑第一偏光层112,并防止第一偏光层112收缩。具体地,第一支撑层115为三醋酸纤维素薄膜,三醋酸纤维素薄膜由于具有高耐水性、低热收缩性以及高耐久性等特点,而具有隔绝水汽和支撑的作用,因此第一支撑层115可以保护和支撑第一偏光层112,并防止第一偏光层112收缩。而且由于第一支撑层115为非补偿层,不需要经过特殊工艺处理,制造成本低。
具体地,在本实施例中,所述第一偏光片110为上偏光片,所述第二偏光片120为下偏光片。
请参阅图11,图11是本申请提供的显示装置100的第九结构示意图,本实施例与图10所提供的显示装置100不同的是:所述显示装置100包括上偏光片和下偏光片,所述第一偏光片110为下偏光片,所述第二偏光片120为上偏光片。
请参阅图12,图12是本申请提供的显示装置100的第十结构示意图。本实施例与图1所示的实施例不同的是:所述第二偏光片120还包括:第二支撑层124,所述第二支撑层124位于所述第二偏光层122与所述第二液晶补偿层121之间。
第二支撑层124用于保护和支撑第二偏光层122,并防止第二偏光层122收缩。具体地,第二支撑层124为三醋酸纤维素薄膜,三醋酸纤维素薄膜由于具有高耐水性、低热收缩性以及高耐久性等特点,而具有隔绝水汽和支撑的作用,因此第二支撑层124可以保护和支撑第二偏光层122,并防止第二偏光层122收缩。而且由于第二支撑层124为非补偿层,不需要经过特殊工艺处理,制造成本低。
具体地,在本实施例中,所述第一偏光片110为上偏光片,所述第二偏光片120为下偏光片。
请参阅图13,图13是本申请提供的显示装置100的第十一结构示意图,本实施例与图12所提供的显示装置100不同的是:所述显示装置100包括上偏光片和下偏光片,所述第一偏光片110为下偏光片,所述第二偏光片120为上偏光片。
请参阅图14,图14是本申请提供的显示装置100的第十二结构示意图。本实施例与图1所示的实施例不同的是:所述第二偏光片120还包括:第三支撑层125,所述第三支撑层125位于所述第二液晶补偿层121与所述液晶显示面板130之间。
第三支撑层125用于保护和支撑所述第二液晶补偿层121,并防止所述第二液晶补偿层121收缩。具体地,第三支撑层125为三醋酸纤维素薄膜,三醋酸纤维素薄膜由于具有高耐水性、低热收缩性以及高耐久性等特点,而具有隔绝水汽和支撑的作用,因此第三支撑层125可以保护和支撑所述第二液晶补偿层121,并防止所述第二液晶补偿层121收缩。而且由于第三支撑层125为非补偿层,不需要经过特殊工艺处理,制造成本低。
具体地,在本实施例中,所述第一偏光片110为上偏光片,所述第二偏光 片120为下偏光片。
请参阅图15,图15是本申请提供的显示装置100的第十三结构示意图,本实施例与图14所提供的显示装置100不同的是:所述显示装置100包括上偏光片和下偏光片,所述第一偏光片110为下偏光片,所述第二偏光片120为上偏光片。
以上对本申请实施例所提供的一种显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示装置,其中,包括:
    第一偏光片;
    第二偏光片,所述第一偏光片和所述第二偏光片相对设置;
    液晶显示面板,所述液晶显示面板设置在所述第一偏光片和所述第二偏光片之间;其中,
    所述第一偏光片包括第一液晶补偿层;
    所述第二偏光片包括第二液晶补偿层。
  2. 根据权利要求1所述的显示装置,其中,所述第一偏光片还包括:
    第一偏光层,所述第一液晶补偿层位于所述第一偏光层与所述液晶显示面板之间。
  3. 根据权利要求1所述的显示装置,其中,所述第二偏光片还包括:
    第二偏光层,所述第二液晶补偿层位于所述第二偏光层与所述液晶显示面板之间。
  4. 根据权利要求1所述的显示装置,其中,所述第一液晶补偿层和所述第二液晶补偿层包括液晶聚合物。
  5. 根据权利要求4所述的显示装置,其中,所述液晶聚合物中的液晶分子的双折射率差在0.05至0.15之间。
  6. 根据权利要求4所述的显示装置,其中,所述液晶聚合物的厚度在0.01微米至3微米之间。
  7. 根据权利要求2所述的显示装置,其中,所述第一偏光片还包括:
    光学补偿层;所述光学补偿层位于所述第一偏光层与所述液晶显示面板之间。
  8. 根据权利要求7所述的显示装置,其中,所述光学补偿层位于所述第一偏光层与所述第一液晶补偿层之间。
  9. 根据权利要求8所述的显示装置,其中,所述第一偏光片还包括:
    第一支撑层,所述第一支撑层位于所述第一液晶补偿层与所述液晶显示面板之间。
  10. 根据权利要求7所述的显示装置,其中,所述第一液晶补偿层位于所述第一偏光层与所述光学补偿层之间。
  11. 根据权利要求10所述的显示装置,其中,所述第一偏光片还包括:
    第一支撑层,所述第一支撑层位于所述第一偏光层与所述第一液晶补偿层之间。
  12. 根据权利要求3所述的显示装置,其中,所述第二偏光片还包括:
    第二支撑层,所述第二支撑层位于所述第二偏光层与所述第二液晶补偿层之间。
  13. 一种显示装置,其中,包括:
    第一偏光片;
    第二偏光片,所述第一偏光片和所述第二偏光片相对设置;
    液晶显示面板,所述液晶显示面板设置在所述第一偏光片和所述第二偏光片之间;其中,
    所述第一偏光片包括第一液晶补偿层;
    所述第二偏光片包括第二液晶补偿层;
    所述第一偏光片为入光侧,所述第二偏光片为出光侧。
  14. 根据权利要求13所述的显示装置,其中,所述第一偏光片还包括:
    第一偏光层,所述第一液晶补偿层位于所述第一偏光层与所述液晶显示面板之间。
  15. 根据权利要求13所述的显示装置,其中,所述第一液晶补偿层和所述第二液晶补偿层包括液晶聚合物。
  16. 根据权利要求15所述的显示装置,其中,所述液晶聚合物中的液晶分子的双折射率差在0.05至0.15之间。
  17. 根据权利要求15所述的显示装置,其中,所述液晶聚合物的厚度在0.01微米至3微米之间。
  18. 根据权利要求14所述的显示装置,其中,所述第一偏光片还包括:
    光学补偿层;所述光学补偿层位于所述第一偏光层与所述液晶显示面板之间。
  19. 根据权利要求18所述的显示装置,其中,所述光学补偿层位于所述第一偏光层与所述第一液晶补偿层之间。
  20. 根据权利要求18所述的显示装置,其中,所述第一液晶补偿层位于所 述第一偏光层与所述光学补偿层之间。
PCT/CN2022/080858 2022-03-07 2022-03-15 显示装置 WO2023168729A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/755,534 US20240168338A1 (en) 2022-03-07 2022-03-15 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210218899.9A CN114545687A (zh) 2022-03-07 2022-03-07 显示装置
CN202210218899.9 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023168729A1 true WO2023168729A1 (zh) 2023-09-14

Family

ID=81663966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080858 WO2023168729A1 (zh) 2022-03-07 2022-03-15 显示装置

Country Status (3)

Country Link
US (1) US20240168338A1 (zh)
CN (1) CN114545687A (zh)
WO (1) WO2023168729A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509841A (zh) * 2022-03-07 2022-05-17 Tcl华星光电技术有限公司 偏光片及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1608218A (zh) * 2001-11-19 2005-04-20 新日本石油株式会社 圆偏振器及液晶显示器件
TW200736764A (en) * 2006-03-30 2007-10-01 Optimax Tech Corp Optical compensation apparatus, and liquid crystal device having the optical compensation apparatus
CN101055366A (zh) * 2006-04-13 2007-10-17 力特光电科技股份有限公司 光学补偿结构以及具有该光学补偿结构的液晶显示装置
JP2008249915A (ja) * 2007-03-30 2008-10-16 Casio Comput Co Ltd 液晶表示素子
CN101556350A (zh) * 2008-04-09 2009-10-14 北京京东方光电科技有限公司 偏光膜和用于液晶显示面板的偏光膜
JP2012002832A (ja) * 2010-06-14 2012-01-05 Nitto Denko Corp 液晶パネルおよび液晶表示装置
CN114509898A (zh) * 2022-03-07 2022-05-17 Tcl华星光电技术有限公司 显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200842417A (en) * 2006-12-28 2008-11-01 Sony Corp Optical compensation plate, liquid crystal display device, projection type liquid crystal display device, display device manufacturing method, and adjusting method
CN101414023A (zh) * 2007-10-19 2009-04-22 奇美电子股份有限公司 液晶补偿偏光板、双光轴补偿膜以及显示装置及其光程补偿方法
CN107918230B (zh) * 2017-11-03 2021-03-16 惠科股份有限公司 液晶显示装置
CN107966846B (zh) * 2017-12-12 2020-07-31 惠州市华星光电技术有限公司 一种液晶显示面板及液晶显示器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1608218A (zh) * 2001-11-19 2005-04-20 新日本石油株式会社 圆偏振器及液晶显示器件
TW200736764A (en) * 2006-03-30 2007-10-01 Optimax Tech Corp Optical compensation apparatus, and liquid crystal device having the optical compensation apparatus
CN101055366A (zh) * 2006-04-13 2007-10-17 力特光电科技股份有限公司 光学补偿结构以及具有该光学补偿结构的液晶显示装置
JP2008249915A (ja) * 2007-03-30 2008-10-16 Casio Comput Co Ltd 液晶表示素子
CN101556350A (zh) * 2008-04-09 2009-10-14 北京京东方光电科技有限公司 偏光膜和用于液晶显示面板的偏光膜
JP2012002832A (ja) * 2010-06-14 2012-01-05 Nitto Denko Corp 液晶パネルおよび液晶表示装置
CN114509898A (zh) * 2022-03-07 2022-05-17 Tcl华星光电技术有限公司 显示装置

Also Published As

Publication number Publication date
US20240168338A1 (en) 2024-05-23
CN114545687A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023168731A1 (zh) 显示装置
KR102057611B1 (ko) 역파장 분산 위상 지연 필름 및 이를 포함하는 표시 장치
WO2023168779A1 (zh) 显示装置
WO2023168725A1 (zh) 偏光片及显示装置
WO2023168732A1 (zh) 偏光片及显示装置
US7023513B2 (en) Laminated quarter-wave plate or circularly polarizing plate, liquid-crystal display device using the same and method for producing the same
TWI383191B (zh) 液晶顯示裝置
JP4137438B2 (ja) 光学フィルムおよびこれを用いた偏光フィルム、および偏光フィルムの視野角改良方法
WO2019114099A1 (zh) 一种液晶显示面板及液晶显示器
CN110612475B (zh) 液晶显示装置
JP2008242467A (ja) 光学フィルムおよびこれを用いた偏光フィルム、および偏光フィルムの視野角改良方法
WO2006100901A1 (ja) 液晶パネル、液晶テレビおよび液晶表示装置
US10481435B2 (en) Horizontal alignment-type liquid crystal display device
WO2017164004A1 (ja) 光学フィルム、偏光板、画像表示装置、光学フィルムの製造方法および偏光板の製造方法
JP2008181091A (ja) 光学積層体およびそれを用いた液晶パネル
WO2006035635A1 (ja) 液晶表示装置
JP4855466B2 (ja) 特定のガラス転移温度を有する物質を用いた多層補償フィルム
WO2023168729A1 (zh) 显示装置
CN110582722B (zh) 液晶显示装置
KR20190040330A (ko) 광학 소자, 광학 소자의 제조 방법 및 액정 표시 장치
US20160341998A1 (en) Display Substrate, Method for Manufacturing Display Substrate and Display Device
JP2009139825A (ja) 光学異方膜の製造方法
TW202237382A (zh) 偏光板及偏光板的製造方法
JP3336100B2 (ja) 視角補償板、楕円偏光板及び液晶表示装置
TW202013028A (zh) 疊層以及包括其的液晶顯示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17755534

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930366

Country of ref document: EP

Kind code of ref document: A1