WO2023168590A1 - 波束确定方法及装置 - Google Patents

波束确定方法及装置 Download PDF

Info

Publication number
WO2023168590A1
WO2023168590A1 PCT/CN2022/079693 CN2022079693W WO2023168590A1 WO 2023168590 A1 WO2023168590 A1 WO 2023168590A1 CN 2022079693 W CN2022079693 W CN 2022079693W WO 2023168590 A1 WO2023168590 A1 WO 2023168590A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
associated reference
time period
measurement
indication information
Prior art date
Application number
PCT/CN2022/079693
Other languages
English (en)
French (fr)
Inventor
池连刚
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/079693 priority Critical patent/WO2023168590A1/zh
Publication of WO2023168590A1 publication Critical patent/WO2023168590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a beam determination method and device.
  • Receive beam indication information sent by a network device wherein the beam indication information is used to indicate an associated reference signal identification sequence within a specified time period; the associated reference signal identification in the associated reference signal identification sequence is used to indicate the network
  • the terminal device can determine the transmission beam used by the network device within a specified time period based on the beam indication information sent by the network device, or determine its own transmission beam within the specified time period, which improves beam prediction and Track efficiency.
  • the method further includes: reporting a beam measurement result to the network device, wherein the beam measurement result is used to determine the beam indication information; or, determining at least one suggested association according to the beam measurement result. reference signal identification sequence, and report the at least one suggested associated reference signal identification sequence, where the at least one suggested associated reference signal identification sequence is used to determine the beam indication information.
  • the beam measurement results include: at least one measurement reference signal identifier, and at least one measurement result corresponding to each measurement reference signal identifier; wherein the associated reference signal identifier is the at least one measurement reference signal identifier. logo in.
  • the measurement reference signal identification includes at least one of the following: a measurement reference signal index, an index of a time-frequency resource occupied by the measurement reference signal.
  • the measurement results include measurement values of at least one of the following measurement quantities: reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI, and signal to interference plus noise ratio SINR.
  • the beam measurement result is obtained by the terminal device receiving and measuring the measurement reference signal according to the configuration information of the measurement reference signal; the configuration information of the measurement reference signal is determined by a protocol or by the network device. Preconfigured.
  • the beam indication information includes: the associated reference signal identification sequence; or, the beam indication information includes: the first M associated reference signal identifications in the associated reference signal identification sequence, and a calculation function, where , the calculation function is used to calculate subsequent associated reference signal identifiers in the associated reference signal identifier sequence based on the first M associated reference signal identifiers.
  • the method further includes: determining the associated reference signal identification sequence according to the beam indication information; and determining the associated reference signal identification sequence according to the associated reference signal identification sequence, the designated time period and the beam adjustment value within the designated time period.
  • Time granularity determine the associated reference signal identifier used in at least one sub-time period within the specified time period; within the sub-time period, for downlink transmission, use the associated reference signal identifier used in the sub-time period indicated by
  • the receiving beam of the terminal device corresponding to the transmitting beam of the network device is determined as the receiving beam of the signal received by the terminal device; for uplink transmission, the terminal device determines according to the receiving beam of the reference signal corresponding to the associated reference signal identifier. own transmit beam.
  • the designated time period and the time granularity of beam adjustment within the designated time period are determined based on designated configuration information; wherein the designated configuration information is agreed upon by a protocol or pre-configured by the network device.
  • the manner of indicating the starting time point and ending time point of the designated time period in the designated configuration information includes at least one of the following methods: radio frame number, subframe number, timeslot number, data and /or the symbol number of the reference signal; the way of indicating the time granularity in the specified configuration information may include at least one of the following ways: the number of radio frames, the number of subframes, the number of time slots, and the number of symbols.
  • the embodiment of the second aspect of the present disclosure proposes another beam determination method, which is applied to network equipment.
  • the method includes: sending beam indication information to a terminal device, wherein the beam indication information is used to indicate association within a specified time period.
  • Reference signal identification sequence; the associated reference signal identification in the associated reference signal identification sequence is used to indicate the transmission beam adopted by the network device; or the associated reference signal identification in the associated reference signal identification sequence is used for the
  • the terminal equipment determines its own transmission beam.
  • the method further includes: receiving a beam measurement result reported by the terminal device, and determining the beam indication information according to the beam measurement result; or, receiving at least one suggested association reference reported by the terminal device. signal identification sequence, and determine the beam indication information according to the at least one suggested correlation reference signal identification sequence; wherein the at least one suggested correlation reference signal identification sequence is determined according to the beam measurement result.
  • the beam measurement results include: at least one measurement reference signal identifier, and at least one measurement result corresponding to each measurement reference signal identifier; wherein the associated reference signal identifier is the at least one measurement reference signal identifier. logo in.
  • the measurement reference signal identification includes at least one of the following: a measurement reference signal index, an index of a time-frequency resource occupied by the measurement reference signal.
  • the measurement results include measurement values of at least one of the following measurement quantities: reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI, and signal to interference plus noise ratio SINR.
  • the beam measurement result is obtained by the terminal device receiving and measuring the measurement reference signal according to the configuration information of the measurement reference signal; the configuration information of the measurement reference signal is determined by a protocol or by the network device. Preconfigured.
  • the beam indication information includes: the associated reference signal identification sequence; or, the beam indication information includes: the first M associated reference signal identifications in the associated reference signal identification sequence, and a calculation function, where , the calculation function is used to calculate subsequent associated reference signal identifiers in the associated reference signal identifier sequence based on the first M associated reference signal identifiers.
  • the method further includes: determining the associated reference signal identification sequence according to the beam indication information; and determining the associated reference signal identification sequence according to the associated reference signal identification sequence, the designated time period and the beam adjustment value within the designated time period.
  • Time granularity determine the associated reference signal identifier used in at least one sub-time period within the specified time period; within the sub-time period, for downlink transmission, use the associated reference signal identifier used in the sub-time period indicated by
  • the transmit beam of the network device is determined as the transmit beam of the signal sent by the network device; for uplink transmission, the network device determines its own receive beam according to the transmit beam of the reference signal corresponding to the associated reference signal identifier.
  • the designated time period and the time granularity of beam adjustment within the designated time period are determined based on designated configuration information; wherein the designated configuration information is agreed upon by a protocol or pre-configured by the network device.
  • the manner of indicating the starting time point and ending time point of the designated time period in the designated configuration information includes at least one of the following methods: radio frame number, subframe number, timeslot number, data and /or the symbol number of the reference signal; the way of indicating the time granularity in the specified configuration information may include at least one of the following ways: the number of radio frames, the number of subframes, the number of time slots, and the number of symbols.
  • the third embodiment of the present disclosure proposes a beam determination device, which is applied to terminal equipment.
  • the device includes: a transceiver unit configured to receive beam indication information sent by a network device, wherein the beam indication information is used to indicate a specified The associated reference signal identification sequence within the time period; the associated reference signal identification in the associated reference signal identification sequence is used to indicate the transmission beam adopted by the network device; or, the associated reference signal in the associated reference signal identification sequence The identifier is used by the terminal device to determine its own transmission beam.
  • An embodiment of the fourth aspect of the present disclosure proposes another beam determination device, which is applied to network equipment.
  • the device includes: a transceiver unit, configured to send beam indication information to a terminal device, where the beam indication information is used to indicate a specified The associated reference signal identification sequence within the time period; the associated reference signal identification in the associated reference signal identification sequence is used to indicate the transmission beam adopted by the network device; or, the associated reference signal in the associated reference signal identification sequence
  • the identifier is used by the terminal device to determine its own transmission beam.
  • An embodiment of the fifth aspect of the present disclosure proposes a beam determination device.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The device executes the method described in the embodiment of the first aspect of the present disclosure.
  • An embodiment of the sixth aspect of the present disclosure proposes another beam determination device.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory to enable The device executes the method described in the embodiment of the second aspect of the present disclosure.
  • the seventh embodiment of the present disclosure provides a beam determination device, which is characterized in that it includes: a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor, Used to run the code instructions to perform the method described in the embodiment of the first aspect of the present disclosure.
  • the eighth embodiment of the present disclosure provides another beam determination device, which is characterized in that it includes: a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor , used to run the code instructions to perform the method described in the embodiment of the second aspect of the present disclosure.
  • the ninth embodiment of the present disclosure provides a computer-readable storage medium for storing instructions. When the instructions are executed, the method described in the first embodiment of the present disclosure is implemented.
  • the tenth aspect embodiment of the present disclosure provides another computer-readable storage medium for storing instructions. When the instructions are executed, the method described in the second aspect embodiment of the present disclosure is implemented.
  • An eleventh aspect embodiment of the present disclosure provides a computer program product that, when run on a computer, causes the computer to execute the method described in the first aspect embodiment.
  • the twelfth aspect embodiment of the present disclosure provides another computer program product, which, when run on a computer, causes the computer to execute the method described in the above-mentioned second aspect embodiment.
  • Figure 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a beam determination method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another beam determination method provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic flowchart of another beam determination method provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic flowchart of another beam determination method provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic flowchart of another beam determination method provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic flow chart of another beam determination method provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of a beam determining device provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of a beam determining device provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • Figure 11 is a block diagram of a terminal device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present disclosure. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network device 101 in the embodiment of the present disclosure is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission reception point (transmission reception point or transmit receive point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other future mobile Base stations in communication systems or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of the present disclosure do not limit the specific technologies and specific equipment forms used by network equipment.
  • the network equipment provided by the embodiments of the present disclosure may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present disclosure is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal equipment.
  • the International Telecommunications Union In terms of terahertz wireless communication spectrum allocation, the International Telecommunications Union (ITU) has completed the frequency allocation work for various services in the 100-275GHz frequency range. Among them, the globally unified identification spectrum allocated for land mobile services and fixed services is 97.2GHz.
  • WRC-19 2019 World Radio Conference
  • the conference added 275 new standards for land mobile services and fixed services in the 275-450GHz frequency range. ⁇ 296GHz, 306 ⁇ 313GHz, 318-333GHz, 356 ⁇ 450GHz four globally identified mobile service frequency bands, with a total new spectrum bandwidth of 137GHz.
  • the beam indication information sent by the network device can indicate a point in time.
  • the transmission beam used by the network equipment, or the transmission beam of the terminal equipment itself, and the transmission beam used by the network equipment or terminal equipment at each point in time need to be determined based on the beam indication information, which reduces the efficiency of beam prediction and tracking.
  • the present disclosure proposes a beam determination method and device.
  • FIG. 2 is a schematic flowchart of a beam determination method provided by an embodiment of the present disclosure.
  • the beam determination method may be executed by the terminal device in the communication system shown in FIG. 1 .
  • the beam determination method may include the following steps:
  • Step 201 Receive beam indication information sent by the network device.
  • the beam indication information is used to indicate the associated reference signal identification sequence within a specified time period; the associated reference signal identification in the associated reference signal identification sequence is used to indicate the transmission beam used by the network device; or, the associated reference signal identification sequence in the associated reference signal identification sequence
  • the associated reference signal identifier is used by the terminal device to determine its own transmission beam.
  • the network device may send measurement reference signals for beam measurement to the terminal device based on beams in multiple directions.
  • the terminal device receives and measures the measurement reference signals sent by the network device to obtain beam measurement results.
  • the beam used for data transmission between the network device and the terminal device may be a narrow beam.
  • the terminal device reports the beam measurement results to the network device, and the network device determines the beam indication information based on the beam measurement results;
  • the terminal device determines at least one suggested associated reference signal identification sequence according to the beam measurement result, and reports the at least one suggested associated reference signal identification sequence to the network device, and the network device determines at least one suggested associated reference signal identification sequence according to the at least one suggested associated reference signal identification sequence. Identification sequence to determine beam indication information.
  • the network device sends the beam indication information to the terminal device, where the beam indication information is used to indicate the associated reference signal identification sequence within the specified time period.
  • the associated reference signal identifier in the associated reference signal identifier sequence is used to indicate the transmit beam adopted by the network device.
  • the terminal device can determine the corresponding receive beam according to the transmit beam adopted by the network device, so that Beam alignment improves the accuracy of data transmission.
  • the terminal device can determine its own transmission beam based on beam reciprocity. That is to say, the terminal device can receive the reference signal corresponding to the associated reference signal identifier in the associated reference signal identification sequence. Beam determines its own sending beam, improving the accuracy of data transmission.
  • the transmission beam used by the network device within a specified time period can be determined, or its own transmission beam within the specified time period can be determined, which improves the prediction and tracking efficiency of the beam.
  • FIG. 3 is a schematic flowchart of another beam determination method provided by the embodiment of the present disclosure.
  • the beam determination method can be applied to terminal equipment.
  • the beam determination method can be executed independently. , can also be executed in conjunction with any embodiment or possible implementation in the embodiment, and can also be executed in conjunction with any technical solution in related technologies.
  • the beam determination method may include the following steps:
  • Step 301 Report beam measurement results to the network device, where the beam measurement results are used to determine beam indication information.
  • the network device may send a measurement reference signal for beam measurement to a terminal device based on beams in multiple directions.
  • the terminal device may receive the measurement reference signal according to the configuration information of the measurement reference signal, and evaluate the measurement reference signal. Make measurements and get beam measurement results.
  • the configuration information of the measurement reference signal can be agreed upon by a protocol or pre-configured by the network device.
  • the network device can send the configuration information of the measurement reference signal to the terminal device in a signaling manner.
  • the number of measurement reference signals may be at least one, each measurement reference signal may correspond to a measurement reference signal identifier, and the terminal device may measure the measurement reference signal at least once to obtain the corresponding measurement reference signal for each measurement reference signal.
  • the beam measurement result may include at least one measurement reference signal identifier, and at least one measurement result corresponding to each measurement reference signal identifier, where the measurement reference signal identifier may be the measurement reference signal index and the measurement reference signal occupied At least one of the indices of time-frequency resources.
  • the measurement results include the measurement value of at least one of the following measurement quantities: Reference Signal Receiving Power (RSRP), Reference Signal Receiving Quality (RSRQ), Received Signal Strength Indication (RSRQ) Strength Indication (RSSI), Signal to Interference plus Noise Ratio (SINR).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • RSSI Received Signal Strength Indication
  • SINR Signal to Interference plus Noise Ratio
  • the network device can determine the beam indication information based on the beam measurement results within the set time period. For example, there are multiple beam measurement results within the set time period. For example, each measurement reference signal corresponds to one beam measurement. As a result, the beam indication information can be determined based on the beam measurement result with the highest measurement value among the multiple beam measurement results; for another example, multiple measurements can be made for each of the multiple measurement reference signals within a set time. For each measurement reference signal, multiple beam measurement results corresponding to each measurement reference signal are obtained. According to the multiple measurement results, the average value of the beam measurement results corresponding to each measurement reference signal can be determined. Furthermore, according to the corresponding The beam indication information can be determined based on the average of the beam measurement results. For example, the beam indication information can be determined based on the largest average of the beam measurement results among the averages of multiple beam measurement results. This disclosure is for illustrative purposes only and is not specifically limited.
  • Step 302 Receive beam indication information sent by the network device.
  • the beam indication information is used to indicate the associated reference signal identification sequence within a specified time period; the associated reference signal identification in the associated reference signal identification sequence is used to indicate the transmission beam used by the network device; or, the associated reference signal identification sequence in the associated reference signal identification sequence
  • the associated reference signal identifier is used by the terminal device to determine its own transmission beam.
  • the network device can determine the beam indication information based on the beam measurement results reported by the terminal device.
  • FIG. 4 is a schematic flowchart of another beam determination method provided by the embodiment of the present disclosure.
  • the beam determination method can be applied to terminal equipment, and the path switching method can be executed separately. , can also be executed in conjunction with any embodiment or possible implementation in the embodiment, and can also be executed in conjunction with any technical solution in related technologies.
  • the beam determination method may include the following steps:
  • Step 401 Determine at least one suggested associated reference signal identification sequence according to the beam measurement result, and report at least one suggested associated reference signal identification sequence.
  • At least one suggested associated reference signal identification sequence is used to determine the beam indication information.
  • the terminal device receives the measurement reference signal according to the configuration information of the measurement reference signal, and measures the measurement reference signal. After obtaining the beam measurement result, at least one suggested associated reference signal identification sequence can be determined based on the beam measurement result. , and reports at least one suggested associated reference signal identification sequence, and the network device can determine the beam indication information based on the at least one suggested associated reference signal identification sequence.
  • the associated reference signal identifier may be an identifier of at least one measurement reference signal identifier.
  • At least one suggested correlation reference signal identification sequence can be determined from the measurement reference signal identification according to the beam measurement result with the highest measurement value among the beam measurement results within the set time period, wherein at least one suggested correlation reference signal identification sequence
  • the associated reference signal identifiers in the sequence can be the same associated reference signal identifier, or they can be multiple different associated reference signal identifiers.
  • the associated reference signal identifier in at least one suggested associated reference signal identifier sequence can be determined according to the actual situation. This disclosure No specific restrictions are made.
  • Step 402 Receive beam indication information sent by the network device.
  • the beam indication information is used to indicate the associated reference signal identification sequence within a specified time period; the associated reference signal identification in the associated reference signal identification sequence is used to indicate the transmission beam used by the network device; or, the associated reference signal identification sequence in the associated reference signal identification sequence
  • the associated reference signal identifier is used by the terminal device to determine its own transmission beam.
  • the terminal equipment can determine at least one suggested association reference signal identification sequence according to the beam measurement result, and report at least one suggested association reference signal identification sequence. Therefore, the network equipment can determine the at least one suggested association reference signal identification sequence according to the at least one suggested association reference signal reported by the terminal equipment.
  • the signal identification sequence can determine the beam indication information.
  • FIG. 5 is a schematic flowchart of another beam determination method provided by the embodiment of the present disclosure.
  • the beam determination method can be applied to terminal equipment.
  • the beam determination method can be executed independently. , can also be executed in conjunction with any embodiment or possible implementation in the embodiment, and can also be executed in conjunction with any technical solution in related technologies.
  • the beam determination method may include the following steps:
  • Step 501 Receive beam indication information sent by the network device.
  • the associated reference signal identifier in the associated reference signal identifier sequence is used to indicate the transmission beam used by the network device.
  • Step 502 Determine the associated reference signal identification sequence according to the beam indication information.
  • the beam indication information includes: an associated reference signal identification sequence; or, the beam indication information includes: the first M associated reference signal identifications in the associated reference signal identification sequence, and a calculation function, wherein the calculation function is used to calculate the associated reference signal identification sequence according to the first M
  • the associated reference signal identifiers are used to calculate subsequent associated reference signal identifiers in the sequence of associated reference signal identifiers.
  • the beam indication information includes: an associated reference signal identification sequence.
  • the associated reference signal identification sequence can be determined.
  • the associated reference signal identification sequence may be [1,1,2,3,4...].
  • the beam indication information includes: the first M associated reference signal identifiers in the associated reference signal identifier sequence, and a calculation function, wherein the calculation function is used to calculate the associated reference signal identifier sequence based on the first M associated reference signal identifiers. Subsequent correlation reference signal identification in .
  • M is 2, and the first two associated reference signal identifiers in the associated reference signal identifier sequence are f(1) and f(2), then the associated reference signal identifier f(3) in the associated reference signal identifier sequence can be calculated according to The associated reference signal identifiers f(1) and f(2) are determined. Similarly, the associated reference signal identifier in the associated reference signal identifier sequence can be determined based on the associated reference signal identifier f(2) and the associated reference signal identifier f(3).
  • the subsequent associated reference signal identification can be expressed as the following formula:
  • f(n) k 1 f(n-1)+k 2 f(n-2)+....k M f(nM);
  • k 1 , k 2 and k M are setting coefficients
  • M can represent the first M correlated reference signal identifiers
  • M can be a set value
  • n is the nth correlated reference signal identifier
  • the rounding method may include: rounding down, rounding up, or rounding.
  • Step 503 Determine the associated reference signal identifier used in at least one sub-time period within the specified time period based on the associated reference signal identifier sequence, the specified time period, and the time granularity of beam adjustment within the specified time period.
  • the time granularity of beam adjustment within the specified time period is used to divide the specified time period to obtain at least one sub-time period within the specified time period, and at least one sub-time period can correspond to the association reference in the associated reference signal identification sequence.
  • the signal identifier subsequence uses the associated reference signal identifier in the associated reference signal identifier subsequence as the associated reference signal identifier used in the corresponding sub-time period. Wherein, the associated reference signal identification sequence has a corresponding relationship with the specified time period.
  • the specified time period and the time granularity of the beam adjustment within the specified time period are determined based on the specified configuration information.
  • the specified configuration information is agreed by the protocol or pre-configured by the network device. Because, the associated reference signal identifiers in the associated reference signal identifier sequence within a specified time period can be combined with
  • Step 504 In the sub-time period, for downlink transmission, determine the reception beam of the terminal device corresponding to the transmission beam of the network device indicated by the associated reference signal identifier adopted in the sub-time period as the reception beam of the signal received by the terminal device.
  • the terminal device may determine reception based on the reception beam of the terminal device corresponding to the transmission beam of the network device indicated by the associated reference signal identifier adopted in the sub-time period.
  • the receiving beam of the signal may be determined based on the reception beam of the terminal device corresponding to the transmission beam of the network device indicated by the associated reference signal identifier adopted in the sub-time period.
  • the associated reference signal identification sequence is determined based on the beam indication information; the associated reference signal identification sequence, the designated time period, and the time granularity of the beam adjustment within the designated time period are determined to determine the method used for at least one sub-time period within the designated time period.
  • Correlated reference signal identifier within the sub-time period, for downlink transmission, the receiving beam of the terminal device corresponding to the transmit beam of the network device indicated by the associated reference signal identifier used in the sub-time period is determined as the reception of the signal received by the terminal device Therefore, the terminal device can determine the receiving beam of the received signal based on the receiving beam of the terminal device corresponding to the transmitting beam of the network device, thereby improving the prediction and tracking efficiency of the beam.
  • the embodiment of the present disclosure provides another beam determination method.
  • Figure 6 is a schematic flowchart of another beam determination method provided by the embodiment of the present disclosure.
  • the beam determination method can be applied to terminal equipment.
  • the beam determination method can be executed separately. , can also be executed in conjunction with any embodiment or possible implementation in the embodiment, and can also be executed in conjunction with any technical solution in related technologies.
  • the beam determination method may include the following steps:
  • Step 601 Receive beam indication information sent by the network device.
  • the associated reference signal identifier in the associated reference signal identifier sequence is used by the terminal device to determine its own transmission beam.
  • Step 602 Determine the associated reference signal identification sequence according to the beam indication information.
  • Step 603 Determine the associated reference signal identifier used in at least one sub-time period within the specified time period based on the associated reference signal identifier sequence, the specified time period, and the time granularity of beam adjustment within the specified time period.
  • Step 604 In the sub-time period, for uplink transmission, the terminal device determines its own transmit beam according to the receive beam of the reference signal corresponding to the associated reference signal identifier.
  • the terminal device within the sub-time period, for uplink transmission, can determine the beam direction of the data transmission between the network device and the terminal device according to the receiving beam of the measurement reference signal corresponding to the associated reference signal identifier. According to the beam reciprocity property, the beam direction can be used to determine its own transmitting beam.
  • the associated reference signal identification sequence is determined based on the beam indication information; at least one sub-time period within the designated time period is determined based on the associated reference signal identification sequence, the designated time period, and the time granularity of the beam adjustment within the designated time period.
  • the receiving beam of the reference signal determines its own transmitting beam, which improves the prediction and tracking efficiency of the beam.
  • the terminal device receives the beam indication information sent by the network device, where the beam indication information is used to indicate the associated reference signal identification sequence within a specified time period; the associated reference signal in the associated reference signal identification sequence The identifier is used to indicate the transmission beam used by the network device; or the associated reference signal identifier in the associated reference signal identifier sequence is used by the terminal device to determine its own transmission beam.
  • the terminal device can determine the transmission beam used by the network device within a specified time period through the beam indication information sent by the network device, or determine its own transmission beam within the specified time period, which improves the prediction and tracking efficiency of the beam.
  • FIG. 7 is a schematic flowchart of another beam determination method provided by an embodiment of the present disclosure. This beam determination method can be applied to network equipment.
  • the beam determination method may include the following steps:
  • Step 701 Send beam indication information to the terminal device.
  • the beam indication information is used to indicate the associated reference signal identification sequence within a specified time period; the associated reference signal identification in the associated reference signal identification sequence is used to indicate the transmission beam used by the network device, or the associated reference signal identification sequence in the associated reference signal identification sequence.
  • the associated reference signal identifier is used by the terminal device to determine its own transmission beam.
  • the network device may send measurement reference signals for beam measurement to the terminal device based on beams in multiple directions.
  • the terminal device receives and measures the measurement reference signals sent by the network device to obtain beam measurement results.
  • the terminal device reports the beam measurement results to the network device, and the network device determines the beam indication information based on the beam measurement results, and then the network device sends the beam indication information to the terminal device.
  • the terminal device determines at least one suggested associated reference signal identification sequence according to the beam measurement result, and reports the at least one suggested associated reference signal identification sequence to the network device, and the network device determines at least one suggested associated reference signal identification sequence according to the at least one suggested associated reference signal identification sequence.
  • the identification sequence determines the beam indication information, and then the network device sends the beam indication information to the terminal device.
  • the beam indication information is used to indicate the associated reference signal identification sequence within a specified time period.
  • the associated reference signal identifier in the associated reference signal identifier sequence is used to indicate the transmit beam adopted by the network device.
  • the terminal device can determine the corresponding receive beam according to the transmit beam adopted by the network device, so that Beam alignment improves the accuracy of data transmission.
  • the associated reference signal identifier in the associated reference signal identifier sequence is used by the terminal device to determine its own transmit beam according to the receiving beam of the reference signal corresponding to the associated reference signal identifier, which improves the efficiency of data transmission. accuracy.
  • the network device sends beam indication information to the terminal device, and the terminal device determines the transmission beam used by the network device within a specified time period based on the beam indication information, or the terminal device can determine the transmission beam used by the terminal device at the specified time based on the beam indication information.
  • the transmission beam within the segment improves the prediction and tracking efficiency of the beam.
  • the beam determination method further includes: receiving a beam measurement result reported by the terminal device, and determining the beam indication information according to the beam measurement result; or, receiving at least one suggested association reported by the terminal device Reference signal identification sequence, and determine the beam indication information according to at least one suggested associated reference signal identification sequence; wherein at least one suggested associated reference signal identification sequence is determined according to the beam measurement result.
  • the beam measurement results include: at least one measurement reference signal identifier, and at least one measurement result corresponding to each measurement reference signal identifier; wherein the associated reference signal identifier is at least one measurement result. Refer to the identification in Signal Identification.
  • the measurement reference signal identification includes at least one of the following: a measurement reference signal index, an index of a time-frequency resource occupied by the measurement reference signal.
  • the measurement results include measurement values of at least one of the following measurement quantities: reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI, signal and interference plus Noise ratio SINR.
  • the beam measurement results are obtained by the terminal device receiving and measuring the measurement reference signal according to the configuration information of the measurement reference signal; the configuration information of the measurement reference signal is agreed by the protocol or is preset by the network device. configuration.
  • the beam indication information includes: the associated reference signal identification sequence; or, the beam indication information includes: the first M associated reference signal identifications in the associated reference signal identification sequence, and the calculation function, wherein the calculation function is used to calculate subsequent associated reference signal identifiers in the associated reference signal identifier sequence based on the first M associated reference signal identifiers.
  • the beam determination method further includes: determining an associated reference signal identification sequence according to the beam indication information; and adjusting the beam according to the associated reference signal identification sequence, a specified time period, and a specified time period.
  • the time granularity is used to determine the associated reference signal identifier used in at least one sub-time period within the specified time period; within the sub-time period, for downlink transmission, the network device indicated by the associated reference signal identifier used in the sub-time period is The transmitting beam is determined as the transmitting beam used by the network device to transmit signals; for uplink transmission, the network device determines its own receiving beam according to the transmitting beam of the reference signal corresponding to the associated reference signal identifier.
  • the designated time period and the time granularity of beam adjustment within the designated time period are determined according to the designated configuration information; wherein the designated configuration information is agreed by the protocol or pre-configured by the network device .
  • the way of indicating the starting time point and the ending time point of the designated time period in the specified configuration information includes at least one of the following ways: radio frame number, subframe number , time slot number, symbol number of data and/or reference signal; the way to indicate the time granularity in the specified configuration information may include at least one of the following ways: the number of radio frames, the number of subframes, the number of time slots, symbols quantity.
  • the network device sends beam indication information to the terminal device, where the beam indication information is used to indicate the associated reference signal identification sequence within a specified time period; the associated reference signal identification sequence in the associated reference signal identification sequence , used to indicate the transmission beam adopted by the network equipment; or, the associated reference signal identifier in the associated reference signal identification sequence is used by the terminal equipment to determine its own transmission beam. Therefore, the network equipment sends the beam indication information to the terminal equipment, and the terminal The device can determine the transmission beam used by the network device within the specified time period based on the beam indication information, or the terminal equipment can determine the transmission beam used by the terminal equipment within the specified time period based on the beam indication information, which improves the prediction and tracking efficiency of the beam. .
  • the present disclosure also provides a beam determination device, because the beam determination device provided by the embodiments of the present disclosure is the same as the beam determination method provided by the above-mentioned embodiments of FIGS. 2 to 6 Correspondingly, therefore, the implementation of the beam determination method is also applicable to the beam determination device provided in the embodiment of the present disclosure, and will not be described in detail in the embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a beam determining device provided by an embodiment of the present disclosure.
  • the beam determining device is applied to terminal equipment.
  • the beam determination device 800 includes: a transceiver unit 810 .
  • the transceiver unit 810 is used to receive beam indication information sent by the network device, where the beam indication information is used to indicate the associated reference signal identification sequence within a specified time period; the associated reference signal identification sequence in the associated reference signal identification sequence is used to Indicates the transmission beam used by the network device; or, the associated reference signal identifier in the associated reference signal identification sequence is used by the terminal device to determine its own transmission beam.
  • the transceiver unit 810 is also configured to report the beam measurement results to the network device, where the beam measurement results are used to determine the beam indication information; or the beam determination device 800 further includes: processing unit, wherein the processing unit is configured to determine at least one suggested associated reference signal identification sequence according to the beam measurement result, and the transceiving unit 810 is further configured to report at least one suggested associated reference signal identification sequence, wherein the at least one suggested associated reference signal identification sequence The signal identification sequence is used to determine the beam indication information.
  • the beam measurement results include: at least one measurement reference signal identifier, and at least one measurement result corresponding to each measurement reference signal identifier; wherein the associated reference signal identifier is at least one measurement result. Refer to the identification in Signal Identification.
  • the measurement reference signal identification includes at least one of the following: a measurement reference signal index, an index of a time-frequency resource occupied by the measurement reference signal.
  • the measurement results include measurement values of at least one of the following measurement quantities: reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI, signal and interference plus Noise ratio SINR.
  • the beam measurement results are obtained by the terminal device receiving and measuring the measurement reference signal according to the configuration information of the measurement reference signal; the configuration information of the measurement reference signal is agreed by the protocol or is preset by the network device. configuration.
  • the beam indication information includes: the associated reference signal identification sequence; or, the beam indication information includes: the first M associated reference signal identifications in the associated reference signal identification sequence, and the calculation function, wherein the calculation function is used to calculate subsequent associated reference signal identifiers in the associated reference signal identifier sequence based on the first M associated reference signal identifiers.
  • the processing unit is also configured to determine the associated reference signal identification sequence according to the beam indication information; according to the associated reference signal identification sequence, the specified time period, and the time of beam adjustment within the specified time period. Granularity, determine the association reference signal identifier used in at least one sub-time period within the specified time period; within the sub-time period, for downlink transmission, determine the transmission beam of the network device indicated by the association reference signal identifier used in the sub-time period.
  • the receiving beam of the terminal device is determined as the receiving beam of the signal received by the terminal device; for uplink transmission, the terminal device determines its own transmitting beam according to the receiving beam of the reference signal corresponding to the associated reference signal identifier.
  • the specified time period and the time granularity of beam adjustment within the specified time period are determined based on the specified configuration information; wherein the specified configuration information is agreed by the protocol or pre-configured by the network device.
  • the way of indicating the starting time point and the ending time point of the designated time period in the specified configuration information includes at least one of the following ways: radio frame number, subframe number , time slot number, symbol number of data and/or reference signal; the way to indicate the time granularity in the specified configuration information may include at least one of the following ways: the number of radio frames, the number of subframes, the number of time slots , the number of symbols.
  • the beam determination device of the embodiment of the present disclosure is applied to a terminal device by receiving beam indication information sent by a network device, where the beam indication information is used to indicate the associated reference signal identification sequence within a specified time period; the associated reference signal identification sequence in the associated reference signal identification sequence The associated reference signal identifier is used to indicate the transmission beam used by the network device; or the associated reference signal identifier in the associated reference signal identifier sequence is used by the terminal device to determine its own transmission beam. Therefore, through the beam indication information sent by the network device, the transmission beam used by the network device within a specified time period can be determined, or its own transmission beam within the specified time period can be determined, which improves the prediction and tracking efficiency of the beam.
  • the present disclosure also provides a beam determination device. Since the beam determination device provided by the embodiment of the present disclosure corresponds to the beam determination method provided by the above-mentioned embodiment of FIG. 7, in the beam determination method The implementation of the determination method is also applicable to the beam determination device provided in the embodiment of the present disclosure, and will not be described in detail in the embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of a beam determining device provided by an embodiment of the present disclosure.
  • the beam determining device is applied to network equipment.
  • the beam determination device 900 includes: a transceiver unit 910 .
  • the transceiver unit 910 is used to send beam indication information to the terminal device, where the beam indication information is used to indicate the associated reference signal identification sequence within a specified time period; the associated reference signal identification in the associated reference signal identification sequence is used to indicate The transmission beam used by the network device; or the associated reference signal identifier in the associated reference signal identification sequence, which is used by the terminal device to determine its own transmission beam.
  • the transceiver unit 910 is also configured to receive the beam measurement result reported by the terminal device, and determine the beam indication information according to the beam measurement result; or, the beam determination device 900 Also included: a processing unit.
  • the transceiver unit 910 is also configured to receive at least one suggested associated reference signal identification sequence reported by the terminal device; the processing unit is configured to determine the beam indication information according to the at least one recommended associated reference signal identification sequence; wherein, at least one suggested The associated reference signal identification sequence is determined based on the beam measurement results.
  • the beam measurement results include: at least one measurement reference signal identifier, and at least one measurement result corresponding to each measurement reference signal identifier; wherein the associated reference signal identifier is at least one measurement reference signal identifier. Identity in signal identification.
  • the measurement reference signal identification includes at least one of the following: a measurement reference signal index, an index of a time-frequency resource occupied by the measurement reference signal.
  • the measurement results include measurement values of at least one of the following measurement quantities: reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI, signal and interference plus noise Than SINR.
  • the beam measurement result is obtained by the terminal device receiving and measuring the measurement reference signal according to the configuration information of the measurement reference signal; the configuration information of the measurement reference signal is determined by the protocol or by the network device. Preconfigured.
  • the beam indication information includes: the associated reference signal identification sequence; or, the beam indication information includes: the first M associated reference signal identifications in the associated reference signal identification sequence, and the calculation function , wherein the calculation function is used to calculate subsequent associated reference signal identifiers in the associated reference signal identifier sequence based on the first M associated reference signal identifiers.
  • the processing unit is also configured to determine the associated reference signal identification sequence according to the beam indication information; according to the associated reference signal identification sequence, the specified time period, and the time granularity of the beam adjustment within the specified time period. , determine the association reference signal identifier used in at least one sub-time period within the specified time period; within the sub-time period, for downlink transmission, determine the transmission beam of the network device indicated by the association reference signal identifier used in the sub-time period as The network device transmits a signal by a transmit beam; for uplink transmission, the network device determines its own receive beam based on the transmit beam of the reference signal corresponding to the associated reference signal identifier.
  • the specified time period and the time granularity of beam adjustment within the specified time period are determined based on specified configuration information; where the specified configuration information is agreed upon by a protocol or pre-configured by a network device.
  • the way of indicating the starting time point and the ending time point of the specified time period in the specified configuration information includes at least one of the following ways: radio frame number, subframe number, time slot number, symbol number of data and/or reference signal; the way to indicate the time granularity in the specified configuration information may include at least one of the following ways: the number of radio frames, the number of subframes, the number of time slots, and the number of symbols.
  • the beam determination device of the embodiment of the present disclosure is applied to network equipment by sending beam indication information to the terminal equipment, where the beam indication information is used to indicate the association reference signal identification sequence within a specified time period; the association in the association reference signal identification sequence The reference signal identifier is used to indicate the transmission beam used by the network device; or, the associated reference signal identifier in the associated reference signal identification sequence is used for the terminal device to determine its own transmission beam. Therefore, by sending the beam indication information to the terminal device, The terminal equipment can determine the transmission beam used by the network equipment within the specified time period based on the beam indication information, or the terminal equipment can determine the transmission beam used by the terminal equipment within the specified time period based on the beam indication information, which improves the prediction and tracking of the beam. efficiency.
  • the present disclosure also proposes a beam determination device.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory, so that the device executes FIG. 2 to The beam determination method described in the embodiment of Figure 6.
  • the present disclosure also proposes another beam determination device.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory, so that the device executes FIG. 7 The beam determination method described in the embodiment.
  • the present disclosure also proposes a beam determination method, including: a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor is used to run the code instructions to execute The beam determination method described in the embodiments of Figures 2 to 6.
  • the present disclosure also proposes another beam determination method, including: a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor is used to run the code instructions to The beam determination method described in the embodiment of Figure 7 is executed.
  • the present disclosure proposes a computer-readable storage medium for storing instructions.
  • the instructions When the instructions are executed, the beam determination method of the embodiments described in Figures 2 to 6 is implemented.
  • the present disclosure proposes another computer-readable storage medium for storing instructions.
  • the instructions When the instructions are executed, the beam determination method of the embodiment described in FIG. 7 is implemented.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • network device 1000 includes a processing component 1022 , which further includes at least one processor, and memory resources represented by memory 1032 for storing instructions, such as application programs, executable by processing component 1022 .
  • the application program stored in memory 1032 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 1022 is configured to execute instructions to perform any of the foregoing methods applied to the network device, for example, the method in the embodiment of FIG. 7 .
  • Network device 1000 may also include a power supply component 1026 configured to perform power management of network device 1000, a wired or wireless network interface 1050 configured to connect network device 1000 to a network, and an input-output (I/O) interface 1058 .
  • Network device 1000 may operate based on an operating system stored in memory 1032, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • Figure 11 is a block diagram of a terminal device provided by an embodiment of the present disclosure.
  • the terminal device 1100 may be a mobile phone, a computer, a digital broadcast user device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the terminal device 1100 may include at least one of the following components: a processing component 1102, a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1110, an input/output (I/O) interface 1112, a sensor component 1114, and Communication component 1116.
  • the processing component 1102 generally controls the overall operations of the terminal device 1100, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1102 may include at least one processor 1120 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1102 may include at least one module to facilitate interaction between processing component 1102 and other components. For example, processing component 1102 may include a multimedia module to facilitate interaction between multimedia component 1108 and processing component 1102.
  • the memory 1104 is configured to store various types of data to support operations at the terminal device 1100 . Examples of such data include instructions for any application or method operating on the terminal device 1100, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1104 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic or optical disk.
  • Power supply component 1106 provides power to various components of terminal device 1100 .
  • Power supply components 1106 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power to end device 1100 .
  • Multimedia component 1108 includes a screen providing an output interface between the terminal device 1100 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes at least one touch sensor to sense touches, slides, and gestures on the touch panel. The touch sensor may not only sense the boundary of the touch or sliding operation, but also detect the wake-up time and pressure related to the touch or sliding operation.
  • multimedia component 1108 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1110 is configured to output and/or input audio signals.
  • the audio component 1110 includes a microphone (MIC) configured to receive external audio signals when the terminal device 1100 is in an operating mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signals may be further stored in memory 1804 or sent via communications component 1116 .
  • audio component 1110 also includes a speaker for outputting audio signals.
  • the I/O interface 1112 provides an interface between the processing component 1102 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • the sensor component 1114 includes at least one sensor for providing various aspects of status assessment for the terminal device 1100 .
  • the sensor component 1114 can detect the open/closed state of the terminal device 1100 and the relative positioning of components, such as the display and keypad of the terminal device 1100.
  • the sensor component 1114 can also detect the terminal device 1100 or a terminal device 1100. Changes in the position of components, presence or absence of user contact with the terminal device 1100 , orientation or acceleration/deceleration of the terminal device 1100 and temperature changes of the terminal device 1100 .
  • Sensor assembly 1114 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1114 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1114 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1116 is configured to facilitate wired or wireless communication between the terminal device 1100 and other devices.
  • the terminal device 1100 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1116 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 1116 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal device 1100 may be configured by at least one application specific integrated circuit (ASIC), digital signal processor (DSP), digital signal processing device (DSPD), programmable logic device (PLD), field programmable gate Array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above methods shown in Figures 2 to 6.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processing device
  • PLD programmable logic device
  • FPGA field programmable gate Array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above methods shown in Figures 2 to 6.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1104 including instructions, which can be executed by the processor 1120 of the terminal device 1100 to complete the above-described FIGS. 2 to 6 is also provided. method shown.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • inventions of the present disclosure also provide a communication device.
  • the communication device may be a network device, a user device, or a chip, chip system, or processor that supports the network device to implement the above method. , it can also be a chip, chip system, or processor that supports the user equipment to implement the above method.
  • the device can be used to implement the method described in any of the above method embodiments. For details, please refer to the description in the above method embodiments.
  • the communication device may include one or more processors.
  • the processor may be a general-purpose processor or a special-purpose processor, etc.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, user equipment, user equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device may also include one or more memories, on which a computer program may be stored, and the processor executes the computer program, so that the communication device executes the method described in the above method embodiment.
  • data may also be stored in the memory.
  • the communication device and the memory can be provided separately or integrated together.
  • the communication device may also include a transceiver and an antenna.
  • the transceiver can be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver can include a receiver and a transmitter.
  • the receiver can be called a receiver or a receiving circuit, etc., and is used to implement the receiving function;
  • the transmitter can be called a transmitter or a transmitting circuit, etc., and is used to implement the transmitting function.
  • the communication device may also include one or more interface circuits.
  • Interface circuitry is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to cause the communication device to perform the method described in any of the above method embodiments.
  • a transceiver for implementing receiving and transmitting functions may be included in the processor.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor, causing the communication device to perform the method described in any of the above method embodiments.
  • the computer program may be embedded in the processor, in which case the processor may be implemented in hardware.
  • the communication device may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this disclosure can be implemented in IC (Integrated Circuit, integrated circuit), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, ASIC (Application Specific Integrated Circuit, application specific integrated circuit), PCB (Printed Circuit) Board, printed circuit board), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor), NMOS (nMetal-Oxide-Semiconductor, N-type metal oxide semiconductor), PMOS ( Positive Channel Metal Oxide Semiconductor, P-type metal oxide semiconductor), BJT (Bipolar Junction Transistor, bipolar junction transistor), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • NMOS nMetal-Oxide-Semiconductor, N-type metal oxide semiconductor
  • PMOS Positive Channel Metal Oxide Semiconductor, P-type metal oxide semiconductor
  • BJT Bipolar Junction Transistor, bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a user equipment, but the scope of the communication device described in the present disclosure is not limited thereto.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a system on a chip
  • the chip may include a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be multiple.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of the above embodiments of FIGS. 3 to 13 .
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of the embodiment of FIG. 14 described above.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, DSL (Digital Subscriber Line)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (for example, floppy disks, hard disks, magnetic tapes), optical media (for example, high-density DVD (Digital Video Disc, Digital Video Disc)), or semiconductor media (for example, SSD (Solid State Disk, Solid State Disk) Hard drive)) etc.
  • magnetic media for example, floppy disks, hard disks, magnetic tapes
  • optical media for example, high-density DVD (Digital Video Disc, Digital Video Disc)
  • semiconductor media for example, SSD (Solid State Disk, Solid State Disk) Hard drive
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • each table in this disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which is not limited by this disclosure.
  • it is not necessarily required to configure all the correspondences shown in each table.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this disclosure may be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Abstract

本公开实施例公开了一种波束确定方法及装置,属于通信技术领域,其中,波束确定方法应用于终端设备,该方法包括:接收网络设备发送的波束指示信息,其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束;或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束,由此,终端设备根据网络设备发送的波束指示信息,可确定网络设备指定时间段内采用的发送波束,或者,确定自身在指定时间段内的发送波束,提高了波束的预测和跟踪效率。

Description

波束确定方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种波束确定方法及装置。
背景技术
在新无线技术(New Radio,NR)中,毫米波通信已经成为5G NR的关键技术。随着低频段无线频谱资源被消耗殆尽,发展和利用高频段的毫米波,乃至太赫兹通信技术成为一种必然趋势。
为了应对高频段毫米波、太赫兹通信所面临的在路损方面的严重挑战,需要基于波束(beam)(窄波束)的发送和接收进行数据传输,因此,如何准确且高效地预测和跟踪波束是非常重要的。
发明内容
接收网络设备发送的波束指示信息,其中,所述波束指示信息用于指示指定时间段内的关联参考信号标识序列;所述关联参考信号标识序列中的关联参考信号标识,用于指示所述网络设备采用的发送波束;所述关联参考信号标识序列中的关联参考信号标识,用于指示所述网络设备采用的发送波束;或者,所述关联参考信号标识序列中的关联参考信号标识,用于所述终端设备确定自身的发送波束。
在该技术方案中,终端设备根据网络设备发送的波束指示信息,可确定网络设备在指定时间段内采用的发送波束,或者,确定自身在指定时间段内的发送波束,提高了波束的预测和跟踪效率。
可选地,所述方法还包括:向所述网络设备上报波束测量结果,其中,所述波束测量结果用于确定所述波束指示信息;或者,根据所述波束测量结果确定至少一个建议的关联参考信号标识序列,并上报所述至少一个建议的关联参考信号标识序列,其中,所述至少一个建议的关联参考信号标识序列用于确定所述波束指示信息。
可选地,所述波束测量结果包括:至少一个测量参考信号标识,以及每个测量参考信号标识对应的至少一个测量结果;其中,所述关联参考信号标识,为所述至少一个测量参考信号标识中的标识。
可选地,所述测量参考信号标识包括以下中的至少一种:测量参考信号索引、测量参考信号占用的时频资源的索引。
可选地,所述测量结果包括以下中的至少一种测量量的测量数值:参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI、信号与干扰加噪声比SINR。
可选地,所述波束测量结果,由所述终端设备根据测量参考信号的配置信息接收所述测量参考信号并测量得到;所述测量参考信号的配置信息,由协议约定或者由所述网络设备预先配置。
可选地,所述波束指示信息包括:所述关联参考信号标识序列;或者,所述波束指示信息包括:所述关联参考信号标识序列中的前M个关联参考信号标识,以及计算函数,其中,所述计算函数用于根据前M个关联参考信号标识计算所述关联参考信号标识序列中的后续关联参考信号标识。
可选地,所述方法还包括:根据所述波束指示信息,确定所述关联参考信号标识序列;根据所述关联参考信号标识序列、所述指定时间段以及所述指定时间段内波束调整的时间粒度,确定所述指定时间段内的至少一个子时间段采用的关联参考信号标识;在所述子时间段内,针对下行传输,将所述子时间段采用的关联参考信号标识所指示的网络设备的发送波束所对应的终端设备的接收波束,确定为所述终端设备接收信号的接收波束;针对上行传输,所述终端设备根据所述关联参考信号标识对应的参考信号的接收波束,确定自身的发送波束。
可选地,所述指定时间段以及所述指定时间段内波束调整的时间粒度,根据指定配置信息确定;其中,所述指定配置信息,由协议约定或者由所述网络设备预先配置。
可选地,所述指定配置信息中指示所述指定时间段的起始时间点和终止时间点的方式包括以下方式中的至少一种:无线帧号、子帧号、时隙编号、数据和/或参考信号的符号编号;所述指定配置信息中指示所述时间粒度的方式可以包括以下方式中的至少一种:无线帧的数量、子帧的数量、时隙的数量、符号的数量。
本公开第二方面实施例提出了另一种波束确定方法,应用于网络设备,所述方法包括:向终端设备发送波束指示信息,其中,所述波束指示信息用于指示指定时间段内的关联参考信号标识序列;所述关联参考信号标识序列中的关联参考信号标识,用于指示所述网络设备采用的发送波束;或者,所述关联参考信号标识序列中的关联参考信号标识,用于所述终端设备确定自身的发送波束。
可选地,所述方法还包括:接收所述终端设备上报的波束测量结果,并根据所述波束测量结果确定所述波束指示信息;或者,接收所述终端设备上报的至少一个建议的关联参考信号标识序列,并根据所述至少一个建议的关联参考信号标识序列确定所述波束指示信息;其中,所述至少一个建议的关联参考信号标识序列,根据所述波束测量结果确定。
可选地,所述波束测量结果包括:至少一个测量参考信号标识,以及每个测量参考信号标识对应的至少一个测量结果;其中,所述关联参考信号标识,为所述至少一个测量参考信号标识中的标识。
可选地,所述测量参考信号标识包括以下中的至少一种:测量参考信号索引、测量参考信号占用的时频资源的索引。
可选地,所述测量结果包括以下中的至少一种测量量的测量数值:参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI、信号与干扰加噪声比SINR。
可选地,所述波束测量结果,由所述终端设备根据测量参考信号的配置信息接收所述测量参考信号并测量得到;所述测量参考信号的配置信息,由协议约定或者由所述网络设备预先配置。
可选地,所述波束指示信息包括:所述关联参考信号标识序列;或者,所述波束指示信息包括:所述关联参考信号标识序列中的前M个关联参考信号标识,以及计算函数,其中,所述计算函数用于根据前M个关联参考信号标识计算所述关联参考信号标识序列中的后续关联参考信号标识。
可选地,所述方法还包括:根据所述波束指示信息,确定所述关联参考信号标识序列;根据所述关联参考信号标识序列、所述指定时间段以及所述指定时间段内波束调整的时间粒度,确定所述指定时间段内的至少一个子时间段采用的关联参考信号标识;在所述子时间段内,针对下行传输,将所述子时间段采用的关联参考信号标识所指示的网络设备的发送波束,确定为所述网络设备发送信号的发送波束;针对上行传输,所述网络设备根据所述关联参考信号标识对应的参考信号的发送波束,确定自身的接收波束。
可选地,所述指定时间段以及所述指定时间段内波束调整的时间粒度,根据指定配置信息确定;其中,所述指定配置信息,由协议约定或者由所述网络设备预先配置。
可选地,所述指定配置信息中指示所述指定时间段的起始时间点和终止时间点的方式包括以下方式中的至少一种:无线帧号、子帧号、时隙编号、数据和/或参考信号的符号编号;所述指定配置信息中指示所述时间粒度的方式可以包括以下方式中的至少一种:无线帧的数量、子帧的数量、时隙的数量、符号的数量。
本公开第三方面实施例提出了一种波束确定装置,应用于终端设备,所述装置包括:收发单元,用于接收网络设备发送的波束指示信息,其中,所述波束指示信息用于指示指定时间段内的关联参考信号标识序列;所述关联参考信号标识序列中的关联参考信号标识,用于指示所述网络设备采用的发送波束;或者,所述关联参考信号标识序列中的关联参考信号标识,用于所述终端设备确定自身的发送波束。
本公开第四方面实施例提出了另一种波束确定装置,应用于网络设备,所述装置包括:收发单元,用于向终端设备发送波束指示信息,其中,所述波束指示信息用于指示指定时间段内的关联参考信号标识序列;所述关联参考信号标识序列中的关联参考信号标识,用于指示所述网络设备采用的发送波束;或者,所述关联参考信号标识序列中的关联参考信号标识,用于所述终端设备确定自身的发送波束。
本公开第五方面实施例提出了一种波束确定装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行本公开第一方面实施例所述的方法。
本公开第六方面实施例提出了另一种波束确定装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行本公开第二方面实施例所述的方法。
本公开第七方面实施例提出了一种波束确定装置,其特征在于,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行本公开第一方面实施例所述的方法。
本公开第八方面实施例提出了另一种波束确定装置,其特征在于,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行本公开第二方面实施例所述的方法。
本公开第九方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使本公开第一方面实施例所述的方法被实现。
本公开第十方面实施例提出了另一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使本公开第二方面实施例所述的方法被实现。
本公开第十一方面实施例提出了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面实施例所述的方法。
本公开第十二方面实施例提出了另一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面实施例所述的方法。
本公开附加的方面和优点将在下面的描述中部分给出,将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1为本公开实施例提供的一种通信系统结构示意图;
图2为本公开实施例提供的一种波束确定方法的流程示意图;
图3为本公开实施例提供的另一种波束确定方法的流程示意图;
图4为本公开实施例提供的另一种波束确定方法的流程示意图;
图5为本公开实施例提供的另一种波束确定方法的流程示意图;
图6为本公开实施例提供的另一种波束确定方法的流程示意图;
图7为本公开实施例提供的另一种波束确定方法的流程示意图;
图8为本公开实施例所提供的一种波束确定装置的结构示意图;
图9为本公开实施例所提供的一种波束确定装置的结构示意图;
图10为本公开实施例所提供的一种网络设备的结构示意图;
图11为本公开实施例所提供的一种终端设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101、一个终端设备102为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输接收点(transmission reception point或transmit receive point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
在太赫兹无线通信频谱分配方面,国际电信联盟(ITU)已经完成100~275GHz频率范围内各用业务的频率划分工作,其中,为陆地移动业务和固定业务分配的全球统一标识频谱有97.2GHz。在2019年 世界无线电大会(WRC-19)上,基于WRC-15第767号决议和WRC-19第1.15议题研究结果,大会又为陆地移动业务和固定业务在275~450GHz频率范围内新增275~296GHz、306~313GHz、318-333GHz、356~450GHz四个全球标识的移动业务频段,新增频谱带宽合计137GHz。
需要了解的是,由于相同距离下,频率越高,路损越大;通过减小波束宽度,能够增大信号增益,避免路损过大。上述通信系统中,为了应对高频段毫米波、太赫兹通信所面临的路损的挑战,需要使用窄波束进行数据传输,相关技术中,根据网络设备发送的波束指示信息可指示一个时间点上的网络设备采用的发送波束,或者,终端设备自身的发送波束,网络设备或终端设备在每个时间点上采用的发送波束,均需要分别根据波束指示信息确定,降低了波束预测和跟踪效率。
针对上述问题,本公开提出了波束确定方法及装置。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的波束确定方法及装置进行详细地介绍。
请参见图2,图2为本公开实施例提供的一种波束确定方法的流程示意图。该波束确定方法可以由图1所示的通信系统中的终端设备执行。
如图2所示,该波束确定方法可包括如下步骤:
步骤201,接收网络设备发送的波束指示信息。
其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束;或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束。
在本公开实施例中,网络设备可基于多个方向上的波束向终端设备发送用于波束测量的测量参考信号,终端设备接收并测量网络设备发送的测量参考信号,得到波束测量结果。其中,需要说明的是,为了使信号增益最大化,在本公开实施例中,网络设备和终端设备之间用于数据传输的波束可为窄波束。
作为一种示例,终端设备将波束测量结果上报至网络设备,网络设备根据波束测量结果,确定波束指示信息;
作为另一种示例,终端设备根据波束测量结果,确定至少一个建议的关联参考信号标识序列,并将至少一个建议的关联参考信号标识序列上报至网络设备,网络设备根据至少一个建议的关联参考信号标识序列,确定波束指示信息。
进而,网络设备将波束指示信息发送至终端设备,其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列。
作为一种示例,针对下行传输,关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束,终端设备可根据网络设备采用的发送波束,确定对应的接收波束,以使波束对准,提高数据传输的准确性。
作为另一种示例,针对上行传输,终端设备可根据波束互易性,确定自身的发送波束,也就是说,终端设备可根据关联参考信号标识序列中的关联参考信号标识对应的参考信号的接收波束,确定自身的发送波束,提高了数据传输的准确性。
综上,通过接收网络设备发送的波束指示信息,可确定网络设备指定时间段内采用的发送波束,或者,确定自身在指定时间段内的发送波束,提高了波束的预测和跟踪效率。
本公开实施例提供了另一种波束确定方法,图3为本公开实施例提供的另一种波束确定方法的流程示意图,该波束确定方法可应用于终端设备,该波束确定方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一 起被执行。
如图3所示,该波束确定方法可包括如下步骤:
步骤301,向网络设备上报波束测量结果,其中,波束测量结果用于确定波束指示信息。
在本公开实施例中,网络设备可基于多个方向上的波束向终端设备发送用于波束测量的测量参考信号,终端设备可根据测量参考信号的配置信息接收测量参考信号,并对测量参考信号进行测量,得到波束测量结果。其中,测量参考信号的配置信息,可由协议约定,或者,由网络设备预先配置,比如,网络设备可以以信令的方式将测量参考信号的配置信息发送至终端设备。
其中,需要说明的是,测量参考信号的数量可为至少一个,每个测量参考信号可对应一个测量参考信号标识,终端设备可对测量参考信号进行至少一次测量,以得到每个测量参考信号对应的至少一个测量结果,波束测量结果可包括至少一个测量参考信号标识,以及每个测量参考信号标识对应的至少一个测量结果,其中,测量参考信号标识可为测量参考信号索引和测量参考信号占用的时频资源的索引中的至少一个。测量结果包括以下中的至少一种测量量的测量数值:参考信号接收功率(Reference Signal Receiving Power,简称RSRP)、参考信号接收质量(Reference Signal Receiving Quality,简称RSRQ)、接收信号强度指示(Received Signal Strength Indication,RSSI)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
在本公开实施例中,网络设备可根据设定时间内的波束测量结果,确定波束指示信息,比如,设定时间段内存在多个波束测量结果,如,每个测量参考信号对应一个波束测量结果,可根据多个波束测量结果中测量量数值最高的波束测量结果,确定波束指示信息;又比如,针对设定时间内的多个测量参考信号中的每个测量参考信号,可多次测量每个测量参考信号,得到每个测量参考信号对应的多个波束测量结果,根据多个测量结果可确定每个测量参考信号对应的波束测量结果的平均值,进而,根据每个测量参考信号对应的波束测量结果的平均值,可确定波束指示信息,如,可根据多个波束测量结果平均值中最大的波束测量结果平均值,确定波束指示信息。本公开仅作示例性说明,不做具体限定。
步骤302,接收网络设备发送的波束指示信息。
其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束;或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束。
综上,通过向网络设备上报波束测量结果,其中,波束测量结果用于确定波束指示信息,由此,网络设备可根据终端设备上报的波束测量结果,确定波束指示信息。
本公开实施例提供了另一种波束确定方法,图4为本公开实施例提供的另一种波束确定方法的流程示意图,该波束确定方法可应用于终端设备,该路径切换方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图4所示,该波束确定方法可包括如下步骤:
步骤401,根据波束测量结果确定至少一个建议的关联参考信号标识序列,并上报至少一个建议的关联参考信号标识序列。
其中,至少一个建议的关联参考信号标识序列用于确定波束指示信息。
在本公开实施例中,终端设备根据测量参考信号的配置信息接收测量参考信号,并对测量参考信号进行测量,得到波束测量结果后,可根据波束测量结果确定至少一个建议的关联参考信号标识序列,并上报至少一个建议的关联参考信号标识序列,网络设备可根据至少一个建议的关联参考信号标识序列,确定波束指示信息。其中,需要说明的是,关联参考信号标识,可为至少一个测量参考信号标识中的标识。
比如,可根据设定时间段内的波束测量结果中测量量数值最高的波束测量结果,从测量参考信号标识中确定至少一个建议的关联参考信号标识序列,其中,至少一个建议的关联参考信号标识序列中的关联参考信号标识可为同一关联参考信号标识,也可为多个不同的关联参考信号标识,至少一个建议的关联参考信号标识序列中的关联参考信号标识可根据实际情况确定,本公开不做具体限定。
步骤402,接收网络设备发送的波束指示信息。
其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束;或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束。
综上,终端设备可根据波束测量结果确定至少一个建议的关联参考信号标识序列,并上报至少一个建议的关联参考信号标识序列,由此,网络设备可根据终端设备上报的至少一个建议的关联参考信号标识序列,可确定波束指示信息。
本公开实施例提供了另一种波束确定方法,图5为本公开实施例提供的另一种波束确定方法的流程示意图,该波束确定方法可应用于终端设备,该波束确定方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图5所示,该波束确定方法可包括如下步骤:
步骤501,接收网络设备发送的波束指示信息。
其中,关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束。
步骤502,根据波束指示信息,确定关联参考信号标识序列。
可选地,波束指示信息包括:关联参考信号标识序列;或者,波束指示信息包括:关联参考信号标识序列中的前M个关联参考信号标识,以及计算函数,其中,计算函数用于根据前M个关联参考信号标识计算关联参考信号标识序列中的后续关联参考信号标识。
作为一种示例,波束指示信息包括:关联参考信号标识序列,根据波束指示信息,可确定关联参考信号标识序列。比如,关联参考信号标识序列可为[1,1,2,3,4…]。
作为另一种示例,波束指示信息包括:关联参考信号标识序列中的前M个关联参考信号标识,以及计算函数,其中,计算函数用于根据前M个关联参考信号标识计算关联参考信号标识序列中的后续关联参考信号标识。
比如,M为2,关联参考信号标识序列中的前2个关联参考信号标识为f(1)和f(2),则关联参考信号标识序列中的关联参考信号标识f(3),可根据关联参考信号标识f(1)和f(2)确定,同理,关联参考信号标识序列中的关联参考信号标识可根据关联参考信号标识f(2)和关联参考信号标识f(3)确定。后续关联参考信号标识可表现为如下公式:
f(n)=k 1f(n-1)+k 2f(n-2)+....k Mf(n-M);
其中,k 1、k 2与k M为设定系数,M可表示前M个关联参考信号标识,M可为设定值,n为第n个关联参考信号标识;接着,可对f(n)进行取整,其中,取整方式可包括:向下取整、向上取整或四舍五入。
步骤503,根据关联参考信号标识序列、指定时间段以及指定时间段内波束调整的时间粒度,确定指定时间段内的至少一个子时间段采用的关联参考信号标识。
进一步地,采用指定时间段内波束调整的时间粒度,对指定时间段进行划分,以得到指定时间段内的至少一个子时间段,至少一个子时间段可对应关联参考信号标识序列中的关联参考信号标识子序列,将关联参考信号标识子序列中的关联参考信号标识作为对应子时间段采用的关联参考信号标识。其中, 关联参考信号标识序列与指定时间段具有对应关系。
其中,需要说明的是,指定时间段以及指定时间段内波束调整的时间粒度,根据指定配置信息确定,指定配置信息,由协议约定或者由网络设备预先配置。由于,可将指定时间段内的关联参考信号标识序列中的关联参考信号标识与
此外,指定配置信息中指示指定时间段的起始时间点和终止时间点的方式可包括以下方式中的至少一种:无线帧号、子帧号、时隙编号、数据和/或参考信号的符号编号;指定配置信息中指示时间粒度的方式可以包括以下方式中的至少一种:无线帧的数量、子帧的数量、时隙的数量、符号的数量。
步骤504,在子时间段内,针对下行传输,将子时间段采用的关联参考信号标识所指示的网络设备的发送波束所对应的终端设备的接收波束,确定为终端设备接收信号的接收波束。
在本公开实施例中,在子时间段内,针对下行传输,终端设备可根据该子时间段采用的关联参考信号标识所指示的网络设备的发送波束所对应的终端设备的接收波束,确定接收信号的接收波束。
综上,通过根据波束指示信息,确定关联参考信号标识序列;根据关联参考信号标识序列、指定时间段以及指定时间段内波束调整的时间粒度,确定指定时间段内的至少一个子时间段采用的关联参考信号标识;在子时间段内,针对下行传输,将子时间段采用的关联参考信号标识所指示的网络设备的发送波束所对应的终端设备的接收波束,确定为终端设备接收信号的接收波束,由此,终端设备根据网络设备的发送波束所对应的终端设备的接收波束,可确定接收信号的接收波束,提高了波束的预测和跟踪效率。
本公开实施例提供了另一种波束确定方法,图6为本公开实施例提供的另一种波束确定方法的流程示意图,该波束确定方法可应用于终端设备,该波束确定方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图6所示,该波束确定方法可包括如下步骤:
步骤601,接收网络设备发送的波束指示信息。
其中,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束。
步骤602,根据波束指示信息,确定关联参考信号标识序列。
步骤603,根据关联参考信号标识序列、所述指定时间段以及指定时间段内波束调整的时间粒度,确定指定时间段内的至少一个子时间段采用的关联参考信号标识。
步骤604,在子时间段内,针对上行传输,终端设备根据关联参考信号标识对应的参考信号的接收波束,确定自身的发送波束。
在本公开实施例中,在子时间段内,针对上行传输,终端设备根据关联参考信号标识对应的测量参考信号的接收波束,可确定网络设备与终端设备传输数据的波束方向,根据波束互易性,采用该波束方向可确定自身的发送波束。
综上,通过根据波束指示信息,确定关联参考信号标识序列;根据关联参考信号标识序列、所述指定时间段以及指定时间段内波束调整的时间粒度,确定指定时间段内的至少一个子时间段采用的关联参考信号标识;在子时间段内,针对上行传输,终端设备根据关联参考信号标识对应的参考信号的接收波束,确定自身的发送波束,由此,终端设备可根据参考信号标识对应的参考信号的接收波束,确定自身的发送波束,提高了波束的预测和跟踪效率。
本公开实施例的波束确定方法,终端设备通过接收网络设备发送的波束指示信息,其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束;或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束。由此,终端设备通过网络设备发送的波束指示信息,可确定网络设备指定时间 段内采用的发送波束,或者,确定自身在指定时间段内的发送波束,提高了波束的预测和跟踪效率。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
本公开实施例提供了另一种波束确定方法,图7为本公开实施例提供的另一种波束确定方法的流程示意图。该波束确定方法可应用于网络设备。
如图7所示,该波束确定方法可以包括如下步骤:
步骤701,向终端设备发送波束指示信息。
其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束,或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束。
在本公开实施例中,网络设备可基于多个方向上的波束向终端设备发送用于波束测量的测量参考信号,终端设备接收并测量网络设备发送的测量参考信号,得到波束测量结果。
作为一种示例,终端设备将波束测量结果上报至网络设备,网络设备根据波束测量结果,确定波束指示信息,进而,网络设备将波束指示信息发送至终端设备。
作为另一种示例,终端设备根据波束测量结果,确定至少一个建议的关联参考信号标识序列,并将至少一个建议的关联参考信号标识序列上报至网络设备,网络设备根据至少一个建议的关联参考信号标识序列,确定波束指示信息,进而,网络设备将波束指示信息发送至终端设备。
其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列。作为一种示例,针对下行传输,关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束,终端设备可根据网络设备采用的发送波束,确定对应的接收波束,以使波束对准,提高数据传输的准确性。
作为另一种示例,针对上行传输,关联参考信号标识序列中的关联参考信号标识,用于终端设备根据关联参考信号标识对应的参考信号的接收波束,确定自身的发送波束,提高了数据传输的准确性。
综上,网络设备通过向终端设备发送波束指示信息,终端设备根据该波束指示信息确定网络设备在指定时间段内采用的发送波束,或者,终端设备根据该波束指示信息可确定终端设备在指定时间段内的发送波束,提高了波束的预测和跟踪效率。
作为本公开实施例的一种可能的实现方式,波束确定方法还包括:接收终端设备上报的波束测量结果,并根据波束测量结果确定波束指示信息;或者,接收终端设备上报的至少一个建议的关联参考信号标识序列,并根据至少一个建议的关联参考信号标识序列确定波束指示信息;其中,至少一个建议的关联参考信号标识序列,根据波束测量结果确定。
作为本公开实施例的一种可能的实现方式,波束测量结果包括:至少一个测量参考信号标识,以及每个测量参考信号标识对应的至少一个测量结果;其中,关联参考信号标识,为至少一个测量参考信号标识中的标识。
作为本公开实施例的一种可能的实现方式,测量参考信号标识包括以下中的至少一种:测量参考信号索引、测量参考信号占用的时频资源的索引。
作为本公开实施例的一种可能的实现方式,测量结果包括以下中的至少一种测量量的测量数值:参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI、信号与干扰加噪声比SINR。
作为本公开实施例的一种可能的实现方式,波束测量结果,由终端设备根据测量参考信号的配置信息接收测量参考信号并测量得到;测量参考信号的配置信息,由协议约定或者由网络设备预先配置。
作为本公开实施例的一种可能的实现方式,波束指示信息包括:所述关联参考信号标识序列;或者,波束指示信息包括:关联参考信号标识序列中的前M个关联参考信号标识,以及计算函数,其中,计算函数用于根据前M个关联参考信号标识计算关联参考信号标识序列中的后续关联参考信号标识。
作为本公开实施例的一种可能的实现方式,波束确定方法还包括:根据所述波束指示信息,确定关联参考信号标识序列;根据关联参考信号标识序列、指定时间段以及指定时间段内波束调整的时间粒度,确定指定时间段内的至少一个子时间段采用的关联参考信号标识;在子时间段内,针对下行传输,将所述子时间段采用的关联参考信号标识所指示的网络设备的发送波束,确定为网络设备发送信号的发送波束;针对上行传输,网络设备根据关联参考信号标识对应的参考信号的发送波束,确定自身的接收波束。
作为本公开实施例的一种可能的实现方式,指定时间段以及所述指定时间段内波束调整的时间粒度,根据指定配置信息确定;其中,指定配置信息,由协议约定或者由网络设备预先配置。
作为本公开实施例的一种可能的实现方式,指定配置信息中指示所述指定时间段的起始时间点和终止时间点的方式包括以下方式中的至少一种:无线帧号、子帧号、时隙编号、数据和/或参考信号的符号编号;指定配置信息中指示时间粒度的方式可以包括以下方式中的至少一种:无线帧的数量、子帧的数量、时隙的数量、符号的数量。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
本公开实施例的波束确定方法,网络设备通过向终端设备发送波束指示信息,其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束;或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束,由此,网络设备通过向终端设备发送波束指示信息,终端设备根据该波束指示信息可确定网络设备在指定时间段内采用的发送波束,或者,终端设备根据该波束指示信息可确定终端设备在指定时间段内的发送波束,提高了波束的预测和跟踪效率。
与上述图2至图6实施例提供的波束确定方法相对应,本公开还提供一种波束确定装置,由于本公开实施例提供波束确定装置与上述图2至图6实施例提供的波束确定方法相对应,因此在波束确定方法的实施方式也适用于本公开实施例提供的波束确定装置,在本公开实施例中不再详细描述。
图8为本公开实施例所提供的一种波束确定装置的结构示意图。该波束确定装置应用于终端设备。
如图8所示,波束确定装置800包括:收发单元810。
其中,收发单元810,用于接收网络设备发送的波束指示信息,其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束;或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束。
作为本公开实施例的一种可能的实现方式,收发单元810,还用于向网络设备上报波束测量结果,其中,波束测量结果用于确定波束指示信息;或者,波束确定装置800还包括:处理单元,其中,处理单元,用于根据波束测量结果确定至少一个建议的关联参考信号标识序列,收发单元810,还用于上报至少一个建议的关联参考信号标识序列,其中,至少一个建议的关联参考信号标识序列用于确定波束指示信息。
作为本公开实施例的一种可能的实现方式,波束测量结果包括:至少一个测量参考信号标识,以及每个测量参考信号标识对应的至少一个测量结果;其中,关联参考信号标识,为至少一个测量参考信号标识中的标识。
作为本公开实施例的一种可能的实现方式,测量参考信号标识包括以下中的至少一种:测量参考信号索引、测量参考信号占用的时频资源的索引。
作为本公开实施例的一种可能的实现方式,测量结果包括以下中的至少一种测量量的测量数值:参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI、信号与干扰加噪声比SINR。
作为本公开实施例的一种可能的实现方式,波束测量结果,由终端设备根据测量参考信号的配置信 息接收测量参考信号并测量得到;测量参考信号的配置信息,由协议约定或者由网络设备预先配置。
作为本公开实施例的一种可能的实现方式,波束指示信息包括:所述关联参考信号标识序列;或者,波束指示信息包括:关联参考信号标识序列中的前M个关联参考信号标识,以及计算函数,其中,计算函数用于根据前M个关联参考信号标识计算关联参考信号标识序列中的后续关联参考信号标识。
作为本公开实施例的一种可能的实现方式,处理单元,还用于根据波束指示信息,确定关联参考信号标识序列;根据关联参考信号标识序列、指定时间段以及指定时间段内波束调整的时间粒度,确定指定时间段内的至少一个子时间段采用的关联参考信号标识;在子时间段内,针对下行传输,将子时间段采用的关联参考信号标识所指示的网络设备的发送波束所对应的终端设备的接收波束,确定为终端设备接收信号的接收波束;针对上行传输,终端设备根据关联参考信号标识对应的参考信号的接收波束,确定自身的发送波束。
作为本公开实施例的一种可能的实现方式,指定时间段以及指定时间段内波束调整的时间粒度,根据指定配置信息确定;其中,指定配置信息,由协议约定或者由网络设备预先配置。
作为本公开实施例的一种可能的实现方式,指定配置信息中指示所述指定时间段的起始时间点和终止时间点的方式包括以下方式中的至少一种:无线帧号、子帧号、时隙编号、数据和/或参考信号的符号编号;指定配置信息中指示所述时间粒度的方式可以包括以下方式中的至少一种:无线帧的数量、子帧的数量、时隙的数量、符号的数量。
本公开实施例的波束确定装置,应用于终端设备,通过接收网络设备发送的波束指示信息,其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束;或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束。由此,通过网络设备发送的波束指示信息,可确定网络设备指定时间段内采用的发送波束,或者,确定自身在指定时间段内的发送波束,提高了波束的预测和跟踪效率。
与上述图7实施例提供的波束确定方法相对应,本公开还提供一种波束确定装置,由于本公开实施例提供波束确定装置与上述图7实施例提供的波束确定方法相对应,因此在波束确定方法的实施方式也适用于本公开实施例提供的波束确定装置,在本公开实施例中不再详细描述。
图9为本公开实施例所提供的一种波束确定装置的结构示意图。该波束确定装置应用于网络设备。
如图9所示,该波束确定装置900包括:收发单元910。
其中,收发单元910,用于向终端设备发送波束指示信息,其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束;或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束。
作为本公开实施例的一种可能实现方式,收发单元910,还用于接收所述终端设备上报的波束测量结果,并根据所述波束测量结果确定所述波束指示信息;或者,波束确定装置900还可包括:处理单元。
其中,收发单元910,还用于接收终端设备上报的至少一个建议的关联参考信号标识序列;处理单元,用于根据至少一个建议的关联参考信号标识序列确定波束指示信息;其中,至少一个建议的关联参考信号标识序列,根据波束测量结果确定。
作为本公开实施例的一种可能实现方式,波束测量结果包括:至少一个测量参考信号标识,以及每个测量参考信号标识对应的至少一个测量结果;其中,关联参考信号标识,为至少一个测量参考信号标识中的标识。
作为本公开实施例的一种可能实现方式,测量参考信号标识包括以下中的至少一种:测量参考信号索引、测量参考信号占用的时频资源的索引。
作为本公开实施例的一种可能实现方式,测量结果包括以下中的至少一种测量量的测量数值:参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI、信号与干扰加噪声比SINR。
作为本公开实施例的一种可能实现方式,波束测量结果,由所述终端设备根据测量参考信号的配置信息接收测量参考信号并测量得到;测量参考信号的配置信息,由协议约定或者由网络设备预先配置。
作为本公开实施例的一种可能实现方式,波束指示信息包括:所述关联参考信号标识序列;或者,波束指示信息包括:关联参考信号标识序列中的前M个关联参考信号标识,以及计算函数,其中,计算函数用于根据前M个关联参考信号标识计算关联参考信号标识序列中的后续关联参考信号标识。
作为本公开实施例的一种可能实现方式,处理单元,还用于根据波束指示信息,确定关联参考信号标识序列;根据关联参考信号标识序列、指定时间段以及指定时间段内波束调整的时间粒度,确定指定时间段内的至少一个子时间段采用的关联参考信号标识;在子时间段内,针对下行传输,将子时间段采用的关联参考信号标识所指示的网络设备的发送波束,确定为网络设备发送信号的发送波束;针对上行传输,网络设备根据关联参考信号标识对应的参考信号的发送波束,确定自身的接收波束。
作为本公开实施例的一种可能实现方式,指定时间段以及指定时间段内波束调整的时间粒度,根据指定配置信息确定;其中,指定配置信息,由协议约定或者由网络设备预先配置。
作为本公开实施例的一种可能实现方式,指定配置信息中指示指定时间段的起始时间点和终止时间点的方式包括以下方式中的至少一种:无线帧号、子帧号、时隙编号、数据和/或参考信号的符号编号;指定配置信息中指示时间粒度的方式可以包括以下方式中的至少一种:无线帧的数量、子帧的数量、时隙的数量、符号的数量。
本公开实施例的波束确定装置,应用于网络设备,通过向终端设备发送波束指示信息,其中,波束指示信息用于指示指定时间段内的关联参考信号标识序列;关联参考信号标识序列中的关联参考信号标识,用于指示网络设备采用的发送波束;或者,关联参考信号标识序列中的关联参考信号标识,用于终端设备确定自身的发送波束,由此,通过向终端设备发送波束指示信息,终端设备根据该波束指示信息可确定网络设备在指定时间段内采用的发送波束,或者,终端设备根据该波束指示信息可确定终端设备在指定时间段内的发送波束,提高了波束的预测和跟踪效率。
为了实现上述实施例,本公开还提出一种波束确定装置,该装置包括处理器和存储器,存储器中存储有计算机程序,处理器执行存储器中存储的计算机程序,以使所述装置执行图2至图6实施例所述的波束确定方法。
为了实现上述实施例,本公开还提出另一种波束确定装置,该装置包括处理器和存储器,存储器中存储有计算机程序,处理器执行存储器中存储的计算机程序,以使所述装置执行图7实施例所述的波束确定方法。
为了实现上述实施例,本公开还提出一种波束确定方法,包括:处理器和接口电路;接口电路,用于接收代码指令并传输至所述处理器;处理器,用于运行代码指令以执行图2至图6实施例所述的波束确定方法。
为了实现上述实施例,本公开还提出另一种波束确定方法,包括:处理器和接口电路;接口电路,用于接收代码指令并传输至所述处理器;处理器,用于运行代码指令以执行图7实施例所述的波束确定方法。
为了实现上述实施例,本公开提出一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使图2至图6所述实施例的波束确定方法被实现。
为了实现上述实施例,本公开提出另一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使图7所述实施例的波束确定方法被实现。
如图10所示,图10为本公开实施例所提供的一种网络设备的结构示意图。参照图10,网络设备1000包括处理组件1022,其进一步包括至少一个处理器,以及由存储器1032所代表的存储器资源,用于存储可由处理组件1022的执行的指令,例如应用程序。存储器1032中存储的应用程序可以包括一个 或一个以上的每一个对应于一组指令的模块。此外,处理组件1022被配置为执行指令,以执行上述方法前述应用在所述网络设备的任意方法,例如,如图7实施例的方法。
网络设备1000还可以包括一个电源组件1026被配置为执行网络设备1000的电源管理,一个有线或无线网络接口1050被配置为将网络设备1000连接到网络,和一个输入输出(I/O)接口1058。网络设备1000可以操作基于存储在存储器1032的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
图11为本公开实施例所提供的一种终端设备的框图。例如,终端设备1100可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,终端设备1100可以包括以下至少一个组件:处理组件1102,存储器1104,电源组件1106,多媒体组件1108,音频组件1110,输入/输出(I/O)的接口1112,传感器组件1114,以及通信组件1116。
处理组件1102通常控制终端设备1100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1102可以包括至少一个处理器1120来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1102可以包括至少一个模块,便于处理组件1102和其他组件之间的交互。例如,处理组件1102可以包括多媒体模块,以方便多媒体组件1108和处理组件1102之间的交互。
存储器1104被配置为存储各种类型的数据以支持在终端设备1100的操作。这些数据的示例包括用于在终端设备1100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1106为终端设备1100的各种组件提供电力。电源组件1106可以包括电源管理系统,至少一个电源,及其他与为终端设备1100生成、管理和分配电力相关联的组件。
多媒体组件1108包括在所述终端设备1100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1108包括一个前置摄像头和/或后置摄像头。当终端设备1100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1110被配置为输出和/或输入音频信号。例如,音频组件1110包括一个麦克风(MIC),当终端设备1100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1804或经由通信组件1116发送。在一些实施例中,音频组件1110还包括一个扬声器,用于输出音频信号。
I/O接口1112为处理组件1102和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1114包括至少一个传感器,用于为终端设备1100提供各个方面的状态评估。例如,传感器组件1114可以检测到终端设备1100的打开/关闭状态,组件的相对定位,例如所述组件为终端设备1100的显示器和小键盘,传感器组件1114还可以检测终端设备1100或终端设备1100一个组件的位置改变,用户与终端设备1100接触的存在或不存在,终端设备1100方位或加速/减速和终端设备1100的温度变化。传感器组件1114可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体 的存在。传感器组件1114还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1114还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1116被配置为便于终端设备1100和其他设备之间有线或无线方式的通信。终端设备1100可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1116经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1116还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端设备1100可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述图2至图6所示的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1104,上述指令可由终端设备1100的处理器1120执行以完成上述图2至图6所示的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
为了实现上述实施例,本公开实施例还提供了一种通信装置,通信装置可以是网络设备,也可以是用户设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持用户设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述任一方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
其中,通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,用户设备、用户设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述任一方法实施例中描述的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述任一方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在IC(Integrated Circuit,集成电路)、模拟IC、射频集成电路RFIC、混合信号IC、ASIC(Application Specific Integrated Circuit,专用集成电路)、PCB(Printed Circuit Board,印刷电路板)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)、NMOS(nMetal-Oxide-Semiconductor,N型金属氧化物半导体)、PMOS(Positive Channel Metal Oxide Semiconductor,P型金属氧化物半导体)、BJT(Bipolar Junction Transistor,双极结型晶体管)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者用户设备,但本公开中描述的通信装置的范围并不限于此。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、用户设备、智能用户设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,芯片可以包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述图3至图13实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述图14实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、DSL(Digital Subscriber Line,数字用户线))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁 性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度DVD(Digital Video Disc,数字视频光盘))、或者半导体介质(例如,SSD(Solid State Disk,固态硬盘))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种波束确定方法,其特征在于,应用于终端设备,所述方法包括:
    接收网络设备发送的波束指示信息,其中,所述波束指示信息用于指示指定时间段内的关联参考信号标识序列;
    所述关联参考信号标识序列中的关联参考信号标识,用于指示所述网络设备采用的发送波束;
    或者,
    所述关联参考信号标识序列中的关联参考信号标识,用于所述终端设备确定自身的发送波束。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述网络设备上报波束测量结果,其中,所述波束测量结果用于确定所述波束指示信息;
    或者,
    根据所述波束测量结果确定至少一个建议的关联参考信号标识序列,并上报所述至少一个建议的关联参考信号标识序列,其中,所述至少一个建议的关联参考信号标识序列用于确定所述波束指示信息。
  3. 根据权利要求2所述的方法,其特征在于,所述波束测量结果包括:至少一个测量参考信号标识,以及每个测量参考信号标识对应的至少一个测量结果;
    其中,所述关联参考信号标识,为所述至少一个测量参考信号标识中的标识。
  4. 根据权利要求3所述的方法,其特征在于,所述测量参考信号标识包括以下中的至少一种:
    测量参考信号索引、测量参考信号占用的时频资源的索引。
  5. 根据权利要求3所述的方法,其特征在于,所述测量结果包括以下中的至少一种测量量的测量数值:参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI、信号与干扰加噪声比SINR。
  6. 根据权利要求2所述的方法,其特征在于,所述波束测量结果,由所述终端设备根据测量参考信号的配置信息接收所述测量参考信号并测量得到;
    所述测量参考信号的配置信息,由协议约定或者由所述网络设备预先配置。
  7. 根据权利要求1所述的方法,其特征在于,所述波束指示信息包括:所述关联参考信号标识序列;
    或者,
    所述波束指示信息包括:所述关联参考信号标识序列中的前M个关联参考信号标识,以及计算函数,其中,所述计算函数用于根据前M个关联参考信号标识计算所述关联参考信号标识序列中的后续关联参考信号标识。
  8. 根据权利要求1或7所述的方法,其特征在于,所述方法还包括:
    根据所述波束指示信息,确定所述关联参考信号标识序列;
    根据所述关联参考信号标识序列、所述指定时间段以及所述指定时间段内波束调整的时间粒度,确定所述指定时间段内的至少一个子时间段采用的关联参考信号标识;
    在所述子时间段内,针对下行传输,将所述子时间段采用的关联参考信号标识所指示的网络设备的发送波束所对应的终端设备的接收波束,确定为所述终端设备接收信号的接收波束;
    针对上行传输,所述终端设备根据所述关联参考信号标识对应的参考信号的接收波束,确定自身的 发送波束。
  9. 根据权利要求8所述的方法,其特征在于,所述指定时间段以及所述指定时间段内波束调整的时间粒度,根据指定配置信息确定;
    其中,所述指定配置信息,由协议约定或者由所述网络设备预先配置。
  10. 根据权利要求9所述的方法,其特征在于,所述指定配置信息中指示所述指定时间段的起始时间点和终止时间点的方式包括以下方式中的至少一种:无线帧号、子帧号、时隙编号、数据和/或参考信号的符号编号;
    所述指定配置信息中指示所述时间粒度的方式可以包括以下方式中的至少一种:无线帧的数量、子帧的数量、时隙的数量、符号的数量。
  11. 一种波束确定方法,其特征在于,应用于网络设备,所述方法包括:
    向终端设备发送波束指示信息,其中,所述波束指示信息用于指示指定时间段内的关联参考信号标识序列;
    所述关联参考信号标识序列中的关联参考信号标识,用于指示所述网络设备采用的发送波束;
    或者,
    所述关联参考信号标识序列中的关联参考信号标识,用于所述终端设备确定自身的发送波束。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备上报的波束测量结果,并根据所述波束测量结果确定所述波束指示信息;
    或者,
    接收所述终端设备上报的至少一个建议的关联参考信号标识序列,并根据所述至少一个建议的关联参考信号标识序列确定所述波束指示信息;其中,所述至少一个建议的关联参考信号标识序列,根据所述波束测量结果确定。
  13. 根据权利要求12所述的方法,其特征在于,所述波束测量结果包括:至少一个测量参考信号标识,以及每个测量参考信号标识对应的至少一个测量结果;
    其中,所述关联参考信号标识,为所述至少一个测量参考信号标识中的标识。
  14. 根据权利要求13所述的方法,其特征在于,所述测量参考信号标识包括以下中的至少一种:
    测量参考信号索引、测量参考信号占用的时频资源的索引。
  15. 根据权利要求13所述的方法,其特征在于,所述测量结果包括以下中的至少一种测量量的测量数值:参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI、信号与干扰加噪声比SINR。
  16. 根据权利要求12所述的方法,其特征在于,所述波束测量结果,由所述终端设备根据测量参考信号的配置信息接收所述测量参考信号并测量得到;
    所述测量参考信号的配置信息,由协议约定或者由所述网络设备预先配置。
  17. 根据权利要求11所述的方法,其特征在于,所述波束指示信息包括:所述关联参考信号标识序列;
    或者,
    所述波束指示信息包括:所述关联参考信号标识序列中的前M个关联参考信号标识,以及计算函 数,其中,所述计算函数用于根据前M个关联参考信号标识计算所述关联参考信号标识序列中的后续关联参考信号标识。
  18. 根据权利要求11或17所述的方法,其特征在于,所述方法还包括:
    根据所述波束指示信息,确定所述关联参考信号标识序列;
    根据所述关联参考信号标识序列、所述指定时间段以及所述指定时间段内波束调整的时间粒度,确定所述指定时间段内的至少一个子时间段采用的关联参考信号标识;
    在所述子时间段内,针对下行传输,将所述子时间段采用的关联参考信号标识所指示的网络设备的发送波束,确定为所述网络设备发送信号的发送波束;
    针对上行传输,所述网络设备根据所述关联参考信号标识对应的参考信号的发送波束,确定自身的接收波束。
  19. 根据权利要求18所述的方法,其特征在于,所述指定时间段以及所述指定时间段内波束调整的时间粒度,根据指定配置信息确定;
    其中,所述指定配置信息,由协议约定或者由所述网络设备预先配置。
  20. 根据权利要求19所述的方法,其特征在于,所述指定配置信息中指示所述指定时间段的起始时间点和终止时间点的方式包括以下方式中的至少一种:无线帧号、子帧号、时隙编号、数据和/或参考信号的符号编号;
    所述指定配置信息中指示所述时间粒度的方式可以包括以下方式中的至少一种:无线帧的数量、子帧的数量、时隙的数量、符号的数量。
  21. 一种波束确定装置,其特征在于,应用于终端设备,所述装置包括:
    收发单元,用于接收网络设备发送的波束指示信息,其中,所述波束指示信息用于指示指定时间段内的关联参考信号标识序列;
    所述关联参考信号标识序列中的关联参考信号标识,用于指示所述网络设备采用的发送波束;
    或者,
    所述关联参考信号标识序列中的关联参考信号标识,用于所述终端设备确定自身的发送波束。
  22. 一种波束确定装置,其特征在于,应用于网络设备,所述装置包括:
    收发单元,用于向终端设备发送波束指示信息,其中,所述波束指示信息用于指示指定时间段内的关联参考信号标识序列;
    所述关联参考信号标识序列中的关联参考信号标识,用于指示所述网络设备采用的发送波束;
    或者,
    所述关联参考信号标识序列中的关联参考信号标识,用于所述终端设备确定自身的发送波束。
  23. 一种波束确定装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至10中任一项所述的方法。
  24. 一种波束确定装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求11至20中任一项所述的方法。
  25. 一种波束确定装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至10中任一项所述的方法。
  26. 一种波束确定装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求11至20中任一项所述的方法。
  27. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至10中任一项所述的方法被实现。
  28. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求11至20中任一项所述的方法被实现。
PCT/CN2022/079693 2022-03-08 2022-03-08 波束确定方法及装置 WO2023168590A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079693 WO2023168590A1 (zh) 2022-03-08 2022-03-08 波束确定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079693 WO2023168590A1 (zh) 2022-03-08 2022-03-08 波束确定方法及装置

Publications (1)

Publication Number Publication Date
WO2023168590A1 true WO2023168590A1 (zh) 2023-09-14

Family

ID=87937007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079693 WO2023168590A1 (zh) 2022-03-08 2022-03-08 波束确定方法及装置

Country Status (1)

Country Link
WO (1) WO2023168590A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110300444A (zh) * 2018-03-23 2019-10-01 维沃移动通信有限公司 信息传输方法、终端及网络设备
CN111385824A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种信息传输方法、网络设备、终端设备及存储介质
CN113966000A (zh) * 2020-07-20 2022-01-21 华为技术有限公司 用于波束训练的方法和装置
CN114126062A (zh) * 2021-11-11 2022-03-01 中国信息通信研究院 一种无线通信系统节点波束指示方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110300444A (zh) * 2018-03-23 2019-10-01 维沃移动通信有限公司 信息传输方法、终端及网络设备
CN111385824A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种信息传输方法、网络设备、终端设备及存储介质
CN113966000A (zh) * 2020-07-20 2022-01-21 华为技术有限公司 用于波束训练的方法和装置
CN114126062A (zh) * 2021-11-11 2022-03-01 中国信息通信研究院 一种无线通信系统节点波束指示方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "DL beam indication for periodic and aperiodic reference signals", 3GPP DRAFT; R1-1714291 DL BEAM INDICATION FOR PERIODIC AND APERIODIC REFERENCE SIGNALS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051317077 *

Similar Documents

Publication Publication Date Title
CN111512685B (zh) 信道状态信息测量方法、装置及计算机存储介质
WO2023184116A1 (zh) 侧行链路sidelink通信方法及装置
EP4319257A1 (en) Beam recovery method and apparatus, user equipment, network side device, and storage medium
CN113767675A (zh) 节能配置方法及其装置
WO2023173381A1 (zh) 侧行链路通信方法及装置
WO2023206183A1 (zh) 成功PScell添加或更换报告的相关信息记录方法、装置
WO2023168590A1 (zh) 波束确定方法及装置
WO2023206182A1 (zh) 成功PScell添加或更换报告的位置信息记录方法、装置
WO2023028849A1 (zh) 参考信号测量方法、装置、用户设备、网络侧设备及存储介质
CN115280833A (zh) 信道状态信息的处理方法、装置及通信设备
US20230137584A1 (en) Multiple-input multiple-output mode configuration method and apparatus, and storage medium
CN115088297A (zh) 上报方法、装置
CN113728723A (zh) 辅助配置方法及其装置
WO2023236161A1 (zh) 波束管理方法、装置
WO2022261937A1 (zh) 干扰测量方法及其装置
WO2023206176A1 (zh) 测量报告发送方法、测量报告接收方法、装置
WO2022246847A1 (zh) 干扰测量方法、干扰处理方法及其装置
WO2023178568A1 (zh) 一种测量方法及设备/存储介质/装置
WO2023193276A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023173254A1 (zh) 一种定时调整方法/装置/设备及存储介质
WO2023216079A1 (zh) 资源配置方法/装置/用户设备/网络侧设备及存储介质
WO2023206177A1 (zh) Ai波束模型确定方法、装置
WO2023225829A1 (zh) 多prach传输配置方法、装置
WO2023206032A2 (zh) 直连sidelink非连续接收DRX的控制方法及装置
WO2023178567A1 (zh) 一种上报方法/装置/设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930236

Country of ref document: EP

Kind code of ref document: A1