WO2023168581A1 - 一种电池的阻抗检测装置 - Google Patents

一种电池的阻抗检测装置 Download PDF

Info

Publication number
WO2023168581A1
WO2023168581A1 PCT/CN2022/079623 CN2022079623W WO2023168581A1 WO 2023168581 A1 WO2023168581 A1 WO 2023168581A1 CN 2022079623 W CN2022079623 W CN 2022079623W WO 2023168581 A1 WO2023168581 A1 WO 2023168581A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
battery
code
current
preset code
Prior art date
Application number
PCT/CN2022/079623
Other languages
English (en)
French (fr)
Inventor
范团宝
王洋
时小山
蒋越星
蒋明峰
胡章荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/079623 priority Critical patent/WO2023168581A1/zh
Publication of WO2023168581A1 publication Critical patent/WO2023168581A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • Embodiments of the present application relate to the field of batteries, and in particular, to a battery impedance detection device.
  • EIS electrochemical impedance spectroscopy
  • EIS detection is a static detection method, that is, the battery can only be detected when there is no interference current. Therefore, a method to implement EIS detection in a scenario where the battery has load interference is needed.
  • This application provides a battery impedance detection device to implement EIS detection in a scenario where the battery has load interference.
  • this application provides a battery impedance detection device.
  • the device includes: a first processing module for performing a first code transformation on a first signal according to a preset code to obtain an excitation signal, and applying the excitation signal to To the battery, the first signal is the original signal used to generate the excitation signal; the sampler is coupled to the battery and is used to sample the voltage of the battery after applying the excitation signal to the battery to obtain a sampled voltage signal; Two processing modules, configured to perform a second code transformation on the sampled voltage signal according to the preset code to obtain the first voltage signal; perform a second code transformation on the current signal of the battery according to the preset code to obtain the first current signal; and , determining the corresponding impedance of the battery according to the first voltage signal and the first current signal.
  • the interference signal spectrum can be eliminated at the test frequency of EIS detection, and EIS detection can be achieved when the battery is in a charging state or the battery is in a load discharging state, and the above
  • the method has the characteristics of strong anti-interference and high precision.
  • the first processing module includes: a first code conversion module, configured to multiply the preset code and the first signal to obtain the excitation signal.
  • the above method is used to implement the first code transformation and obtain the excitation signal.
  • the solution is simple and easy to implement.
  • other methods can be used to obtain the excitation signal, which is not limited in this application.
  • the frequency domain waveform of the excitation signal obtained through the first code transformation is different from the frequency domain waveform of the first signal.
  • the first processing module includes: a digital-to-analog converter DAC, used for digital-to-analog conversion of the excitation signal to obtain an analog signal; a current generator, used to generate the excitation current according to the analog signal, and Excitation current is applied to the battery.
  • a digital-to-analog converter DAC used for digital-to-analog conversion of the excitation signal to obtain an analog signal
  • a current generator used to generate the excitation current according to the analog signal, and Excitation current is applied to the battery.
  • the excitation signal can be converted into an excitation current, and the excitation current can be applied to the positive or negative electrode of the battery.
  • the sampler is also used to sample the current of the battery to obtain a current signal; alternatively, the current signal is calculated and determined based on the excitation signal.
  • the current signal can be obtained in a variety of ways.
  • the second processing module includes: a second code conversion module, used to multiply the preset code and the sampled voltage signal to obtain the first voltage signal, and to multiply the preset code and the current signal, to obtain the first current signal.
  • the above method is used to implement the second code conversion and obtain the first voltage signal and the first current signal.
  • the solution is simple and easy to implement.
  • the preset code is multiplied by the preset code to form a sequence of all ones.
  • the preset code is a sequence including +1 and -1.
  • the preset code is a periodic sequence
  • the sampler is also used to sample the voltage of the battery before the first processing module applies the excitation signal to the battery to obtain the interference voltage signal
  • the second The processing module is also used to determine the period of the preset code based on the interference sampling voltage signal.
  • the preset code is a non-periodic sequence. At this time, there is no need to determine the period of the preset code.
  • this application provides a battery impedance detection device, which includes:
  • a processor configured to perform a first code transformation on the first signal according to the preset code to obtain an excitation signal, and apply the excitation signal to the battery, where the first signal is the original signal used to generate the excitation signal; sampling The processor is coupled to the battery and is used to sample the voltage of the battery after applying the excitation signal to the battery to obtain the sampled voltage signal; the processor is also used to perform a second code transformation on the sampled voltage signal according to the preset code to obtain the sampled voltage signal. the first voltage signal; performing a second code transformation on the current signal of the battery according to the preset code to obtain the first current signal; and determining the corresponding impedance of the battery according to the first voltage signal and the first current signal.
  • the processor is configured to multiply the preset code and the first signal to obtain the excitation signal when performing a first code transformation on the first signal according to the preset code to obtain the excitation signal.
  • the processor is configured to perform digital-to-analog conversion on the excitation signal to obtain an analog signal when applying the excitation signal to the battery, generate an excitation current according to the analog signal, and apply the excitation current to the battery.
  • the sampler is also used to sample the current of the battery to obtain a current signal; alternatively, the current signal is calculated and determined based on the excitation signal.
  • the processor is also configured to perform a second code transformation on the sampled voltage signal according to the preset code to obtain the first voltage signal, and perform a second code transformation on the battery current signal according to the preset code. , when obtaining the first current signal, the preset code is multiplied by the sampled voltage signal to obtain the first voltage signal, and the preset code is multiplied by the current signal to obtain the first current signal.
  • the preset code is multiplied by the preset code to form a sequence of all ones.
  • the preset code is a sequence including +1 and -1.
  • the preset code is a periodic sequence
  • the sampler is also used to sample the voltage of the battery before the first processing module applies the excitation signal to the battery to obtain the interference voltage signal
  • the processor is also used to determine the period of the preset code based on the interference sampling voltage signal.
  • the preset code is a non-periodic sequence. At this time, there is no need to determine the period of the preset code.
  • the present application provides an electronic system, which includes the device described in the first aspect or the device described in the second aspect, and a battery.
  • the present application provides a battery impedance detection method.
  • the method includes: performing a first code transformation on the first signal according to a preset code to obtain an excitation signal, and applying the excitation signal to the battery, the first The signal is the original signal used to generate the excitation signal; after the excitation signal is applied to the battery, the voltage of the battery is sampled through the sampler to obtain the sampled voltage signal; the sampled voltage signal is subjected to a second code transformation according to the preset code, to obtain the first voltage signal; perform a second code transformation on the current signal of the battery according to the preset code to obtain the first current signal; and determine the corresponding impedance of the battery according to the first voltage signal and the first current signal.
  • the preset code when performing the first code transformation on the first signal according to the preset code to obtain the excitation signal, the preset code is multiplied by the first signal to obtain the excitation signal.
  • the excitation signal when the excitation signal is applied to the battery, the excitation signal is digital-to-analog converted to obtain an analog signal, an excitation current is generated according to the analog signal, and the excitation current is applied to the battery.
  • the current of the battery is sampled through a sampler to obtain the current signal; alternatively, the current signal is calculated and determined based on the excitation signal.
  • a second code transformation is performed on the sampled voltage signal according to the preset code to obtain the first voltage signal, and a second code transformation is performed on the current signal of the battery according to the preset code to obtain the first current.
  • the preset code is multiplied by the sampled voltage signal to obtain the first voltage signal, and the preset code is multiplied by the current signal to obtain the first current signal.
  • the preset code is multiplied by the preset code to form a sequence of all ones.
  • the preset code is a sequence including +1 and -1.
  • the preset code is a periodic sequence. Before applying the excitation signal to the battery, the voltage of the battery is sampled by a sampler to obtain an interference voltage signal; the preset code is determined based on the interference sampling voltage signal. cycle.
  • the preset code is a non-periodic sequence. At this time, there is no need to determine the period of the preset code.
  • this application also provides a device.
  • the device can perform the method design of the fourth aspect above.
  • the device may be a chip or circuit capable of performing the functions corresponding to the above methods, or a device including the chip or circuit.
  • the device includes: a memory for storing computer executable program code; and a processor, the processor is coupled to the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the device or the device installed with the device executes the method in any of the above possible designs.
  • the device may also include a communication interface, which may be a transceiver, or, if the device is a chip or a circuit, the communication interface may be an input/output interface of the chip, such as an input /output pins, etc.
  • a communication interface which may be a transceiver, or, if the device is a chip or a circuit, the communication interface may be an input/output interface of the chip, such as an input /output pins, etc.
  • the device includes corresponding functional units, respectively used to implement the steps in the above method.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • Hardware or software includes one or more units corresponding to the above functions.
  • the present application provides a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is run on a device, any one of the possible designs in the fourth aspect is executed. method in.
  • the present application provides a computer program product.
  • the computer program product includes a computer program.
  • the computer program is run on a device, the method in any possible design of the fourth aspect is executed.
  • FIG. 1 is a schematic diagram of an EIS detection in this application
  • FIG. 2 is a schematic diagram of a VCCS circuit in this application.
  • Figure 3 is a schematic diagram of an EIS detection failure in this application when the battery is working online
  • FIG. 4 is a schematic structural diagram of the terminal equipment in this application.
  • FIG. 5 is a schematic diagram of the impedance detection device of the battery in this application.
  • Figure 6 is a schematic diagram of various components included in the first processing module 501 in this application;
  • Figure 7 is a schematic diagram of the time domain waveform and frequency domain waveform of the preset code in this application;
  • Figure 8 is a schematic diagram of the signals passing through each module when detecting the impedance of the battery in this application;
  • Figure 9 is a schematic diagram of the time domain waveform and frequency domain waveform of the excitation signal in this application.
  • Figure 10 is a schematic diagram of various components included in the second processing module 503 of the present application.
  • Figure 11 is a schematic diagram of the time domain waveform and frequency domain waveform of the first voltage signal in this application.
  • Figure 12 is a schematic diagram of the time domain waveform and frequency domain waveform of the first current signal in this application.
  • At least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • f 0 is the test frequency
  • fs is the sampling rate
  • A is the amplitude of the excitation signal.
  • * represents the multiplication sign.
  • S(t) is input to a current generator, such as a voltage-controlled current source (VCCS).
  • the current generator generates an excitation current I(t) corresponding to S(t), and applies to the battery.
  • I(t) is applied to the positive electrode of the battery.
  • the excitation current I(t) may also be applied to the negative electrode of the battery.
  • I(t) is applied to the positive electrode of the battery as an example.
  • the sampler After I(t) is applied to the battery, the sampler detects the voltage V(t) across the battery and performs analog-to-digital conversion to obtain V(n) corresponding to V(t). Since I(t) is a fixed periodic function, I(n) can be obtained by online sampling of the battery current through a sampler, or it can be stored as a constant through Fourier transformation of the current value obtained by sampling in advance, for example
  • the sampler may be an analog-to-digital converter (ADC).
  • N is the number of sampling points
  • f 0 is the test frequency
  • fs is the sampling rate
  • the excitation signal is a sine wave excitation signal as an example.
  • the excitation signal may also be a square wave signal or a triangular wave signal.
  • the above-mentioned EIS detection is a static detection method, which cannot realize EIS detection in scenarios where the battery has load interference, or it can be described as unable to realize dynamic detection when the battery is working online.
  • the battery's online working state may include the battery being in a charging state or a load discharging state.
  • the interference current I_noise(t) is generated due to charging or discharging. If this EIS detection is still used at this time, the voltage Vsn(t) at both ends of the battery at this time is including the current.
  • the voltage corresponding to the excitation response jointly generated by I(t) and I_noise(t) cannot obtain an accurate result of the battery's impedance at the test frequency f 0 , resulting in the failure of the EIS detection method.
  • this EIS detection method cannot satisfy scenarios that require EIS detection when the battery is charging or the load is discharging. For example, in order to ensure battery safety, batteries in new energy vehicles, a large number of batteries in photovoltaic power stations, and batteries in terminal equipment such as mobile phones, watches, and tablet computers may need to undergo EIS testing when the batteries are working online. The EIS detection method cannot meet the above needs.
  • Embodiments of the present application can be applied to various terminal devices, such as mobile phones, personal computers (PCs), tablets, wearable devices, new energy vehicles, photovoltaic power stations, etc.
  • terminal devices such as mobile phones, personal computers (PCs), tablets, wearable devices, new energy vehicles, photovoltaic power stations, etc.
  • the following uses the terminal device shown in Figure 4 as an example to illustrate the specific application scenarios of the embodiments of the present application.
  • FIG. 4 shows a schematic structural diagram of the terminal equipment.
  • the terminal device may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, Mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and user Identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the terminal device.
  • the terminal device may include more or less components than shown in the figures, or some components may be combined, or some components may be separated, or may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) wait.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • NPU neural-network processing unit
  • Processor 110 may reside within one or more chips.
  • the controller can be the nerve center and command center of the terminal device.
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through a wireless charging coil of the terminal device. While charging the battery 142, the charging management module 140 can also provide power to the terminal device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, internal memory 121, external memory, display screen 194, camera 193, wireless communication module 160, etc.
  • the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the terminal device.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement the data storage function. Such as saving music, videos, etc. files in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes instructions stored in the internal memory 121 to execute various functional applications and data processing of the terminal device.
  • the internal memory 121 may include a program storage area and a data storage area.
  • the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area can store data created during the use of the terminal device (such as audio data, phone book, etc.).
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, a flash memory device, universal flash storage (UFS), etc.
  • the internal memory 121 is used to store computer executable program codes corresponding to the embodiments of the present application; the processor 110 is coupled to the internal memory 121 .
  • the computer executable program code stored in the internal memory 121 includes instructions.
  • the terminal device causes the terminal device to perform the impedance spectrum detection method of the battery 142 provided by the embodiment of the present application.
  • the method includes: performing a first code transformation on the first signal according to a preset code to obtain an excitation signal, and applying the excitation signal to the battery; after applying the excitation signal to the battery, sampling the voltage of the battery 142 through a sampler to Obtain the sampled voltage signal; perform a second code transformation on the sampled voltage signal according to the preset code to obtain the first voltage signal; perform a second code transformation on the current signal of the battery 142 according to the preset code to obtain the first current signal, and The corresponding impedance of the battery 142 is determined according to the first voltage signal and the first current signal.
  • the above method will be described below with reference to the device shown in Figure 5 .
  • this application provides a battery impedance spectrum detection device to implement EIS detection in a scenario where the battery has load interference.
  • the device includes a first processing module 501, a sampler 502 and a second processing module 503.
  • the first processing module 501 and the second processing module 503 may be two functional modules in the processor.
  • the first processing module 501 and the second processing module 503 can be integrated into the same module.
  • the first processing module 501 and the second processing module 503 may reuse some modules.
  • the sampler 502 may be a hardware accelerator internal to the processor 110 or an independent hardware component.
  • the sampler 502 may be located inside the battery 142, which is not limited in this embodiment.
  • the first processing module 501 and the second processing module 503 are two functional modules in the processor 110 shown in FIG. 4 , or the first processing module 501 and the second processing module 503 are respectively located in the two processors 110 .
  • the first processing module 501 and the second processing module 503 can be implemented by hardware or software or a combination of both, which is not limited in this application.
  • the first processing module 501 and the second processing module 503 may be hardware accelerated logic computing circuits in the processor 110 .
  • the first processing module 501 and the second processing module 503 may be software modules executed by the processor 110 .
  • the impedance detection device can be used to measure the impedance of the battery 142 at the test frequency corresponding to the first signal. Furthermore, by changing the test frequency, the impedance of the battery 142 at a series of test frequencies can be obtained. Form an EIS impedance spectrum. It should be noted that the embodiments of the present application can not only be used to measure the impedance of the battery when there is load interference on the battery, such as when the battery is in a charging or load discharging state, but can also be used to measure the impedance of the battery when the battery is in a static state. Resistance scene. The detected impedance value or EIS impedance spectrum is used by the processor 110 to manage the battery 142 to achieve safe control of the battery 142 .
  • the first processing module 501 is used to perform a first code transformation on the first signal according to the preset code to obtain an excitation signal, and apply the excitation signal to the battery.
  • the first signal is used to generate an excitation signal. the original signal.
  • the sampler 502 is coupled to the battery and configured to sample the voltage of the battery after applying the excitation signal to the battery to obtain a sampled voltage signal.
  • the second processing module 503 is configured to perform a second code transformation on the sampled voltage signal according to the preset code to obtain the first voltage signal; and perform a second code transformation on the current signal of the battery according to the preset code to obtain the first current signal. ; And, determine the corresponding impedance of the battery according to the first voltage signal and the first current signal.
  • the first processing module 501 and the second processing module 503 can reuse part of the circuit, for example, reuse the circuit for multiplication calculation.
  • This embodiment does not Make limitations.
  • the first processing module 501 and the second processing module 503 are implemented in software, the first processing module 501 and the second processing module 503 can reuse part of the program or function, for example, reuse the program or function for performing multiplication calculations. The examples are not limiting.
  • FIG. 6 is a schematic diagram of each component included in the first processing module 501. It can be understood that the structure of Figure 6 does not constitute a specific limitation on the first processing module 501. In other embodiments of the present application, the first processing module 501 may include more or less components than shown in the figure, or combine some components, or split some components, or arrange different components.
  • the first processing module 501 includes: a first code conversion module 601 , a digital-to-analog converter 602 , and a current generator 603 .
  • the illustrated first code conversion module 601 can be implemented in hardware, software, or a combination of software and hardware.
  • Digital-to-analog converter 602 and current generator 603 may be hardware.
  • the first code conversion module 601 is used to multiply the preset code C(n) and the first signal to obtain the excitation signal.
  • the first signal can be a single-frequency signal or a multi-frequency signal, used to generate the excitation signal.
  • the first signal can be a sine wave signal, a square wave signal, a triangular wave signal, etc.
  • This application applies This is not a limitation.
  • the first signal is a sine wave signal is taken as an example.
  • the first signal s(n) A*sin(2 ⁇ f 0 n/f s ).
  • the preset code C(n) is a sequence including +1 and -1.
  • the preset code may be a periodic sequence including +1 and -1, or the preset code may be a non-periodic sequence including +1 and -1, for example, the preset code may be a random sequence including +1 and -1. sequence.
  • the preset code in this application is different from a general binary code. In this application, a high level is represented as 1 and a low level is represented as -1, thus forming a sequence including +1 and -1.
  • the preset code is multiplied by the preset code itself to form a sequence of all ones.
  • the preset code C(n) may be generated by a code generator.
  • the output ends of the code generator are respectively connected to the first processing module 501 and the second processing module 503.
  • the upper half of Figure 7 is the time domain waveform C(n) of the preset code
  • the lower half of Figure 7 is the frequency domain waveform C( ⁇ ) of the preset code.
  • the first code transformation can also be called wave code transformation.
  • the first code transformation can also adopt other methods to obtain the excitation signal Sc(n), which is not limited in this application. . It should be noted that the excitation signal obtained at this time is a digital signal.
  • the digital-to-analog converter 602 is used to perform digital-to-analog conversion on the excitation signal Sc(n) to obtain the analog signal Sc(t).
  • the current generator 603 is used to generate the excitation current Ic(t) according to the analog signal Sc(t), and apply the excitation current Ic(t) to the battery.
  • the current generator 603 may be a VCCS or other module for generating current, which is not limited in this embodiment.
  • the following describes the signals passing through each module in the first processing module 501 when detecting the impedance of the battery with reference to FIG. 8 .
  • the first code conversion module 601 compares s(n) with C(n). Multiply to obtain the excitation signal Sc(n). As shown in Figure 8, the excitation signal output by the first code conversion module 601 is Sc(n), and Sc(n) is a digital signal.
  • the upper part of Figure 9 is the time domain waveform Sc(n) of the excitation signal shown in formula (2)
  • the lower part of Figure 9 is the time domain waveform Sc(n) of the excitation signal shown in formula (2).
  • the digital-to-analog converter 602 performs digital-to-analog conversion on the excitation signal Sc(n) shown in formula (2) to generate an analog signal Sc(t).
  • the signal output by the digital-to-analog converter 602 is Sc(t), Sc(t) are analog signals.
  • the current generator 603 Assuming that the current generator 603 is VCCS, as shown in Figure 8, the current generator 603 generates the excitation current Ic(t) according to the analog signal Sc(t) shown in formula (3), and generates the excitation current Ic(t) Applied to a battery, such as the positive terminal of a battery.
  • is a constant coefficient.
  • the sampler 502 is used to sample the voltage Vcn(t) across the battery after applying the excitation signal to the battery, and perform analog-to-digital conversion on the collected voltage Vcn(t) of the battery to obtain the sampled voltage signal Vcn(n). .
  • the sampling voltage signal Vcn(n) is a digital signal.
  • the sampler 502 samples the voltage Vcn(t) of the battery, and performs analog-to-digital conversion on Vcn(t) to obtain a sampled voltage signal.
  • Vcn(n) The sampling voltage signal Vcn(n) is a digital signal corresponding to the battery voltage Vcn(t).
  • the sampler 502 can also be used to sample the current of the battery to obtain the current signal Ic(n).
  • the current signal obtained by the sampler 502 sampling the current of the battery is Ic(n).
  • the current signal Ic(n) may also be calculated and determined based on the excitation signal.
  • the current signal Ic(n) is calculated and determined based on the excitation signal, the current signal at this time does not consider the interference current.
  • the current of the battery is the excitation current Ic(t)
  • the current signal Ic(n) obtained by the sampler 502 or the current signal Ic(n) calculated and determined based on the excitation signal are both digital signals.
  • Figure 10 is a schematic diagram of various components included in the second processing module 503. It can be understood that the structure of FIG. 10 does not constitute a specific limitation on the second processing module 503. In other embodiments of the present application, the second processing module 503 may include more or less components than shown in the figure, or combine some components, or split some components, or arrange different components.
  • the second processing module 503 includes: a second code transformation module 1001, a Fourier transformation module 1002 and a calculation module 1003.
  • the components shown in the figures can be implemented in hardware, software or a combination of software and hardware.
  • the second code transformation module 1001, the Fourier transformation module 1002 and the calculation module 1003 may be hardware or software.
  • the second code conversion module 1001 is used to multiply the preset code C(n) and the sampled voltage signal Vcn(n) to obtain the first voltage signal V(n), and combine the preset code C(n) with the sampled voltage signal Vcn(n).
  • the current signals Ic(n) are multiplied to obtain the first current signal I(n).
  • the second code transformation can also be called inverse wave code transformation.
  • the second code transformation can also adopt other methods, which is not limited in this application.
  • the Fourier transform module 1002 is used to Fourier transform the first voltage signal V(n) to obtain the voltage Fourier transform result V(k), and perform Fourier transform the first current signal I(n) to obtain Current Fourier transform result I(k).
  • the calculation module 1003 is used to determine the corresponding impedance of the battery based on the voltage Fourier transform result V(k) and the current Fourier transform result I(k).
  • the following describes the signals passing through each module in the second processing module 503 when detecting the impedance of the battery with reference to FIG. 8 .
  • the second code conversion module 1001 multiplies the sampled voltage signal Vcn(n) obtained by the sampler 502 by the preset code C(n) corresponding to formula (1) to obtain the first voltage signal Vn(n), and converts the current signal Ic(n) is multiplied by the preset code C(n) corresponding to formula (1) to obtain the first current signal I(n). As shown in FIG. 8 , the first voltage signal Vn(n) and the first current signal I(n) are output through the second code conversion module 1001.
  • is the battery impedance related constant.
  • I_noise(t) B*cos(2 ⁇ nf 0 t)
  • I_noise(n) B*cos(2 ⁇ nf 0 n).
  • the interference current I_noise(t) is referenced by the load when the battery is loaded, such as a charging circuit or a discharging load circuit. The following derivation is carried out below.
  • the upper part of Figure 11 is the time domain waveform Vn(n) of the first voltage signal shown in formula (7), and the lower part of Figure 11 is the first voltage signal shown in formula (7).
  • the frequency domain waveform Vn( ⁇ ) of a voltage signal It can be seen that the amplitude corresponding to the test frequency f 0 has nothing to do with I_noise(n).
  • the fundamental frequency of Vn( ⁇ ) is the same as the test frequency f 0 .
  • the upper part of Figure 12 is the time domain waveform I(n) of the first current signal shown in formula (8), and the lower part of Figure 12 is the first current signal shown in formula (8).
  • the fundamental frequency of I( ⁇ ) is the same as the test frequency f 0 .
  • the Fourier transform module 1002 performs Fourier transform on the first voltage signal Vn(n) and the first current signal I(n) respectively, and obtains the voltage Fourier transform result V(k) and the current Fourier transform result I (k). As shown in FIG. 8 , the Fourier transform module 1002 outputs the voltage Fourier transform result V(k) and the current Fourier transform result I(k).
  • the calculation module 1003 is used to determine the corresponding impedance Z( ⁇ 0 ) of the battery based on the voltage Fourier transform result V(k) and the current Fourier transform result I(k).
  • the impedance Z( ⁇ 0 ) of the battery at the test frequency f 0 is:
  • the above process can also be called the detection stage, and the detection stage is used to detect the impedance of the battery.
  • the following describes the method of determining the period of the preset code.
  • the method of determining the period of the preset code can also be called the detection stage.
  • the detection stage is used to detect the frequency of the interference current, and then determine the period of the preset code.
  • the preset code serves as input to the detection phase.
  • the process of determining the period of the preset code may not be performed, that is, the following process does not need to be performed.
  • the following describes how to determine the period of the preset code.
  • the following scheme is executed when no excitation signal is applied to the battery to determine how to determine a suitable period of the preset code when load interference exists in order to perform subsequent excitation. Signal application and measurement.
  • the sampler 502 is also used to sample the voltage of the battery before the first processing module 501 applies the excitation signal to the battery, that is, when the excitation signal is not applied to the battery, to obtain an interference voltage signal.
  • the sampler 502 samples the voltage of the battery to obtain the interference voltage signal V'n(t) when no excitation signal is applied to the battery.
  • the second processing module 503 is also used to determine the period of the preset code according to the interference sampling voltage signal.
  • the Fourier transform module 1002 is used to Fourier transform the interference voltage signal to obtain the Fourier transform result corresponding to the interference voltage signal.
  • the Fourier transform result corresponding to the interference voltage signal includes N frequency domains. value, N is the number of sampling points;
  • the Fourier transform module 802 performs an N-point FFT transformation on V ' n(t) to obtain N frequency domain values.
  • the specific results are as follows: And use this to compare and judge the signal strength with the preset threshold ⁇ in the following order:
  • the EIS detection solution provided by the embodiment of the present application has the characteristics of strong anti-interference and high accuracy.
  • the reason is that the first code is first transformed into the first signal according to the preset code to obtain the excitation signal, and the excitation signal is applied to the battery, and then According to the preset code, the second code transformation is performed on the sampled voltage signal and the battery current signal respectively, thereby realizing that the fundamental frequency of the first voltage signal is the same as the fundamental frequency of the first signal (i.e., the test frequency), and the fundamental frequency of the first current signal is It is the same as the fundamental frequency of the first signal (i.e., the test frequency).
  • the interference current and corresponding voltage signal since only the second code conversion is performed (the first code conversion is not performed), its spectrum is widely spread to other frequency points, thus eliminating the interference signal spectrum at the EIS test frequency. Purpose.
  • this application also provides a device.
  • the device may be a chip or circuit capable of executing the previously mentioned solutions, including corresponding functions, such as a processor, such as the processor 110 in FIG. 4 .
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium, such as the internal memory 121 in Figure 4 .
  • a computer-readable storage medium such as the internal memory 121 in Figure 4 .
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory ROM, random access memory RAM, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种电池的阻抗检测装置,该装置包括:第一处理模块(501),用于根据预设码对第一信号做第一码变换,以获得激励信号,并将激励信号施加至电池,第一信号是用于生成激励信号的原始信号;采样器(502),耦合于电池,用于在将激励信号施加至电池之后,采样电池的电压,以获得采样电压信号;第二处理模块(503),用于根据预设码对采样电压信号做第二码变换,以获得第一电压信号;根据预设码对电池的电流信号做第二码变换,以获得第一电流信号;以及,根据第一电压信号和第一电流信号确定电池对应的阻抗。采用上述方法,能够实现在电池处于充电状态、或电池处于负载放电状态下实现EIS检测。

Description

一种电池的阻抗检测装置 技术领域
本申请实施例涉及电池领域,尤其涉及一种电池的阻抗检测装置。
背景技术
随着充电速度以及电池能量密度增加,电池安全风险不断升高。尤其对于三元体系锂电池,在温度升高过程中产生的初生态氧极易引发爆炸,对用户人身财产安全构成严重威胁。因此,能否在电池自燃之前通过技术手段提前检测并预防成为高能量密度锂离子电池安全使用的关键。
电化学阻抗谱(electrochemical impedance spectroscopy,EIS)作为电池安全的有效检测手段,包含了丰富的电池基本的电化学信息和物理过程信息,可以用于检测电池内短路、析锂、过温、鼓包等异常情况,是一种提前检测并预防电池故障的有效手段。
但是,EIS检测是一种静态检测方法,即电池在没有干扰电流情况下才能进行检测,因此需要一种在电池存在负载干扰的场景下实现EIS检测的方法。
发明内容
本申请提供一种电池的阻抗检测装置,用以在电池存在负载干扰的场景下实现EIS检测。
第一方面,本申请提供一种电池的阻抗检测装置,该装置包括:第一处理模块,用于根据预设码对第一信号做第一码变换,以获得激励信号,并将激励信号施加至电池,所述第一信号是用于生成所述激励信号的原始信号;采样器,耦合于电池,用于在将激励信号施加至电池之后,采样电池的电压,以获得采样电压信号;第二处理模块,用于根据预设码对采样电压信号做第二码变换,以获得第一电压信号;根据预设码对电池的电流信号做第二码变换,以获得第一电流信号;以及,根据第一电压信号和第一电流信号确定电池对应的阻抗。
采用上述方法,通过第一码变换和第二码变换,可以实现在EIS检测的测试频率上消除干扰信号频谱,能够实现在电池处于充电状态、或电池处于负载放电状态下实现EIS检测,且上述方法具有抗干扰强,精度高的特点。
在一种可能的设计中,第一处理模块包括:第一码变换模块,用于将预设码与第一信号相乘,以获得激励信号。
采用上述方式实现第一码变换,获得激励信号,方案简便容易实现。此外,还可以采用其他方式获得激励信号,本申请对此不作限定。通过第一码变换获得的激励信号的频域波形与第一信号的频域波形不同。
在一种可能的设计中,第一处理模块包括:数模转换器DAC,用于对激励信号进行数模转换,以获得模拟信号;电流产生器,用于根据模拟信号产生激励电流,并将激励电流施加至电池。
采用上述设计,可以实现将激励信号转换为激励电流,激励电流可以施加于电池的正极或负极。
在一种可能的设计中,采样器,还用于采样电池的电流,以获得电流信号;或者,电流信号是根据激励信号进行计算确定的。
采用上述设计,电流信号可以采用多种方式获得。
在一种可能的设计中,第二处理模块包括:第二码变换模块,用于将预设码与采样电压信号相乘,以获得第一电压信号,将预设码与电流信号相乘,以获得第一电流信号。
采用上述方式实现第二码变换,获得第一电压信号和第一电流信号,方案简便容易实现。
在一种可能的设计中,预设码与预设码相乘为全1序列。
在一种可能的设计中,预设码为包括+1和-1的序列。
在一种可能的设计中,预设码为周期性序列,采样器,还用于在第一处理模块将激励信号施加至电池之前,对电池的电压进行采样,以获得干扰电压信号;第二处理模块,还用于根据干扰采样电压信号确定预设码的周期。
在一种可能的设计中,预设码为非周期序列。此时,不需要确定预设码的周期。
第二方面,本申请提供一种电池的阻抗检测装置,该装置包括:
处理器,用于根据预设码对第一信号做第一码变换,以获得激励信号,并将激励信号施加至电池,所述第一信号是用于生成所述激励信号的原始信号;采样器,耦合于电池,用于在将激励信号施加至电池之后,采样电池的电压,以获得采样电压信号;处理器,还用于根据预设码对采样电压信号做第二码变换,以获得第一电压信号;根据预设码对电池的电流信号做第二码变换,以获得第一电流信号;以及,根据第一电压信号和第一电流信号确定电池对应的阻抗。
在一种可能的设计中,处理器,用于在根据预设码对第一信号做第一码变换,以获得激励信号时,将预设码与第一信号相乘,以获得激励信号。
在一种可能的设计中,处理器,用于在将激励信号施加至电池时,对激励信号进行数模转换,以获得模拟信号,根据模拟信号产生激励电流,并将激励电流施加至电池。
在一种可能的设计中,采样器,还用于采样电池的电流,以获得电流信号;或者,电流信号是根据激励信号进行计算确定的。
在一种可能的设计中,处理器,还用于在根据预设码对采样电压信号做第二码变换,以获得第一电压信号,根据预设码对电池的电流信号做第二码变换,以获得第一电流信号时,将预设码与采样电压信号相乘,以获得第一电压信号,将预设码与电流信号相乘,以获得第一电流信号。
在一种可能的设计中,预设码与预设码相乘为全1序列。
在一种可能的设计中,预设码为包括+1和-1的序列。
在一种可能的设计中,预设码为周期性序列,采样器,还用于在第一处理模块将激励信号施加至电池之前,对电池的电压进行采样,以获得干扰电压信号;处理器,还用于根据干扰采样电压信号确定预设码的周期。
在一种可能的设计中,预设码为非周期序列。此时,不需要确定预设码的周期。
第三方面,本申请提供一种电子系统,该系统包括第一方面所述的装置或第二方面所述的装置,以及电池。
第四方面,本申请提供一种电池的阻抗检测方法,该方法包括:根据预设码对第一信号做第一码变换,以获得激励信号,并将激励信号施加至电池,所述第一信号是用于 生成所述激励信号的原始信号;在将激励信号施加至电池之后,通过采样器采样电池的电压,以获得采样电压信号;根据预设码对采样电压信号做第二码变换,以获得第一电压信号;根据预设码对电池的电流信号做第二码变换,以获得第一电流信号;以及,根据第一电压信号和第一电流信号确定电池对应的阻抗。
在一种可能的设计中,在根据预设码对第一信号做第一码变换,以获得激励信号时,将预设码与第一信号相乘,以获得激励信号。
在一种可能的设计中,在将激励信号施加至电池时,对激励信号进行数模转换,以获得模拟信号,根据模拟信号产生激励电流,并将激励电流施加至电池。
在一种可能的设计中,通过采样器采样电池的电流,以获得电流信号;或者,电流信号是根据激励信号进行计算确定的。
在一种可能的设计中,在根据预设码对采样电压信号做第二码变换,以获得第一电压信号,根据预设码对电池的电流信号做第二码变换,以获得第一电流信号时,将预设码与采样电压信号相乘,以获得第一电压信号,将预设码与电流信号相乘,以获得第一电流信号。
在一种可能的设计中,预设码与预设码相乘为全1序列。
在一种可能的设计中,预设码为包括+1和-1的序列。
在一种可能的设计中,预设码为周期性序列,在将激励信号施加至电池之前,通过采样器对电池的电压进行采样,以获得干扰电压信号;根据干扰采样电压信号确定预设码的周期。
在一种可能的设计中,预设码为非周期序列。此时,不需要确定预设码的周期。
第五方面,本申请还提供一种装置。该装置可以执行上述第四方面的方法设计。该装置可以是能够执行上述方法对应的功能的芯片或电路,或者是包括该芯片或电路的设备。
在一种可能的实现方式中,该装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该装置或者安装有该装置的设备执行上述任意一种可能的设计中的方法。
在一种可能的实现方式中,该装置还可以包括通信接口,该通信接口可以是收发器,或者,如果该装置为芯片或电路,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
在一种可能的设计中,该装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
第六方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在装置上运行时,执行上述第四方面中任意一种可能的设计中的方法。
第七方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在装置上运行时,执行上述第四方面中任意一种可能的设计中的方法。
附图说明
图1为本申请中一种EIS检测的示意图;
图2为本申请中一种VCCS的电路的示意图;
图3为本申请中当电池在线工作时一种EIS检测失效的示意图;
图4为本申请中终端设备的结构示意图;
图5为本申请中电池的阻抗检测装置的示意图;
[根据细则91更正 24.03.2022]
图6为本申请中第一处理模块501包括的各个组成部分的示意图;
[根据细则91更正 24.03.2022]
图7为本申请中预设码的时域波形和频域波形的示意图;
图8为本申请中在检测电池的阻抗时经过各个模块的信号的示意图;
图9为本申请中激励信号的时域波形和频域波形的示意图;
图10为本申请第二处理模块503包括的各个组成部分的示意图;
图11为本申请中第一电压信号的时域波形和频域波形的示意图;
图12为本申请中第一电流信号的时域波形和频域波形的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请的说明书和权利要求书及上述附图中的术语“第一”、第二”以及相应术语标号等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“至少一项”是指一项或者多项,“多项”是指两项或两项以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
为便于理解本申请实施例,以下一种EIS检测进行简要介绍:
如图1所示,对于激励信号S(n),例如,S(n)=A*sin(2πf 0n/f s),首先通过数模变换器(digital-to-analog converter,DAC)进行数模变换产生与S(n)对应的模拟激励信号S(t)。其中,f 0为测试频率,fs为采样率,A为激励信号的振幅。在本申请中,*表示乘号。
接下来,将S(t)输入到电流产生器,例如,压控电流源(voltage-controlled current source,VCCS),电流产生器产生与S(t)对应的激励电流I(t),并施加至电池。如图1所示,I(t)施加于电池的正极,此外,激励电流I(t)还可能施加于电池的负极,此处仅以激励电流I(t)施加于电池的正极为例进行说明。示例性地,一种VCCS的电路包括一个运算放大器和一个功率MOS管,如图2所示。因此,I(t)与S(t)成比例关系,例如,I(t)=α*S(t),其中α为常数。
在I(t)施加于电池之后,采样器检测电池两端的电压V(t),并进行模数变换,获得与V(t)对应的V(n)。由于I(t)是个固定的周期函数,因此,I(n)可以通过采样器在线采样电池的电流获得,或者也可以通过事先采样得到的电流值经傅里叶变换后作为一个常量储存,例如
Figure PCTCN2022079623-appb-000001
示例性地,采样器可以为模数转换器(analog-to-digital converter,ADC)。
进一步地,对V(n)进行N点快速傅里叶变换(fast fourier transform,FFT)变换获得V(k),
Figure PCTCN2022079623-appb-000002
对I(n)进行N点FFT变换获得I(k),
Figure PCTCN2022079623-appb-000003
Figure PCTCN2022079623-appb-000004
最终,在测试频率f 0下电池的阻抗Z(ω 0)为:
Figure PCTCN2022079623-appb-000005
其中,N为采样点的数量,f 0为测试频率,fs为采样率,则
Figure PCTCN2022079623-appb-000006
其中k为正整数。
按上述方法依次施加测试频率为f 0、f 1、…fm的正弦波激励信号,其中,m为正整数,分别确定得到的Z(ω 0)、Z(ω 1)、…、Z(ω m),形成EIS阻抗谱。
需要说明的是,在图1中,激励信号以正弦波激励信号为例进行说明,此外激励信号还可以为方波信号或三角波信号等。
但是,上述EIS检测是一种静态检测方法,无法实现电池存在负载干扰的场景下进行EIS检测,或者又可描述为无法实现电池在线工作状态下的动态检测。电池在线工作状态可以包括电池处于充电状态或负载放电状态。如图3所示,当电池在线工作时,由于充电或放电产生干扰电流I_noise(t),此时如果仍然采用这种EIS检测,则此时的电池两端的电压Vsn(t)为包含了电流I(t)和I_noise(t)共同产生的激励响应对应的电压,不能获得在测试频率f 0下电池的阻抗的准确结果,导致该EIS检测方法失效。
因此,对于需要在电池处于充电或负载放电状态下均能实现EIS检测的场景,该EIS检测方法无法满足。例如,为了保证电池安全,新能源汽车上的电池,光伏电站具有的大量电池、以及手机、手表、平板电脑等终端设备内含的电池,均可能需要在电池在线工作时进行EIS检测,而该EIS检测方法则无法满足上述需求。
本申请实施例可以应用于各种不同的终端设备,例如手机、个人计算机(personal computer,PC)、平板、穿戴设备、新能源汽车,光伏电站等。以下以图4所示的终端设备为例说明本申请实施例的具体应用场景。
如图4所示为终端设备的结构示意图。终端设备可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端设备的具体限定。在本申请另一些实施例中,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件 的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。处理器110可以位于一个或多个芯片内。
其中,控制器可以是终端设备的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过终端设备的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为终端设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端设备的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行终端设备的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储终端设备使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一 个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
示例性地,内部存储器121,用于存储本申请实施例对应的计算机可执行程序代码;处理器110与内部存储器121耦合。其中,内部存储器121所存储的计算机可执行程序代码包括指令,当处理器110执行所述指令时,使该终端设备执行本申请实施例提供的电池142的阻抗谱检测的方法。该方法包括:根据预设码对第一信号做第一码变换,以获得激励信号,并将激励信号施加至电池;在将激励信号施加至电池之后,通过采样器采样电池142的电压,以获得采样电压信号;根据预设码对采样电压信号做第二码变换,以获得第一电压信号,根据预设码对电池142的电流信号做第二码变换,以获得第一电流信号,并根据第一电压信号和第一电流信号确定电池142对应的阻抗。以下结合如图5所示的装置对上述方法进行说明。
[根据细则91更正 24.03.2022]
如图5所示,本申请提供一种电池的阻抗谱检测装置,用以实现在电池存在负载干扰的场景下实现EIS检测。其中,该装置包括第一处理模块501、采样器502和第二处理模块503。示例性地,第一处理模块501和第二处理模块503可以为处理器中的两个功能模块。可选地,第一处理模块501和第二处理模块503可以集成在同一个模块内。可选地,第一处理模块501和第二处理模块503可以复用部分模块。采样器502可以为处理器110内部的硬件加速器,或者为一个独立硬件部件。或者,采样器502可以位于电池142内部,本实施例不做限定。例如,第一处理模块501和第二处理模块503为图4所示的处理器110中的两个功能模块,或者第一处理模块501和第二处理模块503分别位于两个处理器110中。其中,第一处理模块501和第二处理模块503可以通过硬件实现或者软件或二者结合实现,本申请对此不作限定。例如,第一处理模块501和第二处理模块503可以为处理器110中的硬件加速逻辑计算电路。又或者,第一处理模块501和第二处理模块503可以为处理器110所执行的软件模块。
可以理解的是,采用本申请提供的阻抗检测装置可以测量在第一信号对应的测试频率下的电池142的阻抗,进一步地,通过改变测试频率,可以获一系列测试频率下电池142的阻抗,形成EIS阻抗谱。需要说明的是,本申请实施例不仅可以应用于在电池存在负载干扰的场景下测量电池的阻抗的场景,例如电池处于充电或负载放电状态等,也可以应用于在电池处于静态下测量电池的阻抗的场景。所述检测到的阻抗值或EIS阻抗谱被处理器110用于对电池142的管理,实现对电池142的安全控制。
结合图5,其中,第一处理模块501,用于根据预设码对第一信号做第一码变换,以获得激励信号,并将激励信号施加至电池,第一信号是用于生成激励信号的原始信号。采样器502,耦合于电池,用于在将激励信号施加至电池之后,采样电池的电压,以获得采样电压信号。第二处理模块503,用于根据预设码对采样电压信号做第二码变换,以获得第一电压信号;根据预设码对电池的电流信号做第二码变换,以获得第一电流信号;以及,根据第一电压信号和第一电流信号确定电池对应的阻抗。当第一处理模块501和第二处理模块503以硬件电路实现时,第一处理模块501和第二处理模块503可以复用部分电路,例如复用用于进行乘法计算的电路,本实施例不做限定。当第一处理模块501和第二处理模块503以软件实现时,第一处理模块501和第二处理模块503可以复用部分程序或函数,例如复用用于进行乘法计算的程序或函数,本实施例不做限定。
以下对上述装置中的各个组成部分进行说明:其中,图6为对第一处理模块501包括的各个组成部分的示意图。可以理解的是,图6的结构并不构成对第一处理模块501的具 体限定。在本申请另一些实施例中,第一处理模块501可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
如图6所示,第一处理模块501包括:第一码变换模块601,数模转换器602,电流产生器603。其中,图示的第一码变换模块601可以以硬件,软件或软件和硬件的组合实现。数模转换器602和电流产生器603可以为硬件。
其中,第一码变换模块601,用于将预设码C(n)与第一信号相乘,以获得激励信号。
示例性地,第一信号作为原始信号,可以单频信号或多频信号,用于产生所述激励信号,例如,第一信号可以为正弦波信号、方波信号或三角波信号等,本申请对此不作限定。下文中仅以第一信号为正弦波信号为例进行说明。例如,第一信号s(n)=A*sin(2πf 0n/f s)。其中,f 0为测试频率,fs为采样率。假设取f 0=125Hz,f s=32KHz,则第一信号s(n)=A*sin(2πn/256)。
示例性地,预设码C(n)为包括+1和-1的序列。例如,预设码可以为包括+1和-1的周期性序列,或者预设码可以为包括+1和-1的非周期性序列,例如预设码可以为包括+1和-1的随机序列。可以理解的是,本申请中的预设码不同于一般的二进制码。在本申请中,高电平表示为1,低电平表示为-1,由此形成包括+1和-1的序列。此外,预设码与该预设码自身相乘为全1序列。
示例性地,预设码C(n)可以由码生成器产生。码生成器的输出端分别连接第一处理模块501和第二处理模块503。
以预设码C(n)取周期性方波序列为例:
Figure PCTCN2022079623-appb-000007
其中,
Figure PCTCN2022079623-appb-000008
为基频,P为周期长度,P为f s/f 0的正整数倍,即P=m*f s/f 0,m为正整数。例如,取m=8为例,则P=8×32KHz÷125Hz=2048。C(n)的长度为第一信号一次采样的采样点数,即采样点数N。N=i*P,其中i为正整数,取i=4,P=2048为例,则N=8192。其中,上述P和i的确定方式可以参考下文中的相关描述。
则在P=2048,N=8192时,C(n)可以表达为:
Figure PCTCN2022079623-appb-000009
如图7所示,图7中的上半部分为预设码的时域波形C(n),图7中的下半部分为预设码的频域波形C(ω)。
可以理解的是,第一码变换又可以称为波码变换,第一码变换除了相乘的方式之外,还可以采用其他方式,以得到激励信号Sc(n),本申请对此不作限定。需要说明的是,此时获得的激励信号为数字信号。
数模转换器602,用于对激励信号Sc(n)进行数模转换,以获得模拟信号Sc(t)。
电流产生器603,用于根据模拟信号Sc(t)产生激励电流Ic(t),并将激励电流Ic(t)施加至电池。
示例性地,电流产生器603可以为VCCS或其他用于产生电流的模块,本实施例不做限定。
以下结合图8说明在检测电池的阻抗时经过第一处理模块501中的各个模块的信号。
以第一信号为s(n)=A*sin(2πf 0n/f s)和预设码为公式(1)为例,第一码变换模块601将s(n)与C(n)相乘,获得激励信号Sc(n),如图8所示,第一码变换模块601输出的激励 信号为Sc(n),Sc(n)为数字信号。
其中,
Figure PCTCN2022079623-appb-000010
Figure PCTCN2022079623-appb-000011
假设取f 0=125Hz,f s=32KHz,P=2048,N=8192,则有:
Figure PCTCN2022079623-appb-000012
如图9所示,图9中的上半部分为公式(2)所示的激励信号的时域波形Sc(n),图9中的下半部分为公式(2)所示的激励信号的频域波形Sc(ω)。其中,由Sc(n)可知,Sc(n)不再是完整的正弦波的波形,由Sc(ω)可知,Sc(ω)的两个谐波(x=109.315,x=140.625)分别位于s(n)的基频(x=125)(即测试频率)的两侧。
接下来,数模转换器602对公式(2)所示的激励信号Sc(n)进行数模变换,产生模拟信号Sc(t),如图8所示,数模转换器602输出的信号为Sc(t),Sc(t)为模拟信号。
Figure PCTCN2022079623-appb-000013
假设电流产生器603为VCCS,如图8所示,则电流产生器603根据公式(3)所示的模拟信号Sc(t)产生的激励电流Ic(t),并将激励电流Ic(t)施加至电池,例如电池的正极。
其中,
Figure PCTCN2022079623-appb-000014
Figure PCTCN2022079623-appb-000015
其中,α为常数系数。
采样器502用于在将激励信号施加至电池之后,采样电池两端的电压Vcn(t),并对采集到的电池的电压Vcn(t)进行模数变换,以获得采样电压信号Vcn(n)。其中,采样电压信号Vcn(n)为数字信号。
示例性地,如图8所示,在将激励信号Ic(t)施加至电池之后,采样器502采样电池的电压Vcn(t),并对Vcn(t)进行模数变换,获得采样电压信号为Vcn(n)。其中,采样电压信号Vcn(n)为与电池的电压Vcn(t)对应的数字信号。
此外,采样器502,还可以用于采样电池的电流,以获得电流信号Ic(n)。示例性地,如图8所示,采样器502采样电池的电流获得的电流信号为Ic(n)。
或者,在另一种实现方案中,电流信号Ic(n)也可以是根据激励信号进行计算确定的。此外,当电流信号Ic(n)是根据激励信号进行计算确定时,此时的电流信号未考虑干扰电流。示例性地,电池的电流为激励电流Ic(t),电流信号Ic(n)为与Ic(t)对应的数字信号。由于Ic(t)=α*Sc(t),则Ic(n)=α*Sc(n),α为常数。
需要说明的是,上述通过采样器502获得的电流信号Ic(n)或根据激励信号进行计算确定的电流信号Ic(n)均是数字信号。
图10为对第二处理模块503包括的各个组成部分的示意图。可以理解的是,图10的结构并不构成对第二处理模块503的具体限定。在本申请另一些实施例中,第二处理模块503可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
如图10所示,第二处理模块503包括:第二码变换模块1001、傅里叶变换模块1002和计算模块1003。其中,图示的部件可以以硬件,软件或软件和硬件的组合实现。示例性地,第二码变换模块1001、傅里叶变换模块1002和计算模块1003可以为硬件或软件。
其中,第二码变换模块1001,用于将预设码C(n)与采样电压信号Vcn(n)相乘,以获得第一电压信号V(n),将预设码C(n)与电流信号Ic(n)相乘,以获得第一电流信号I(n)。
可以理解的是,第二码变换又可以称为波码反变换,第二码变换除了相乘的方式之外,还可以采用其他方式,本申请对此不作限定。
傅里叶变换模块1002,用于将第一电压信号V(n)进行傅里叶变换获得电压傅里叶变换结果V(k),将第一电流信号I(n)进行傅里叶变换获得电流傅里叶变换结果I(k)。
计算模块1003,用于根据电压傅里叶变换结果V(k)和电流傅里叶变换结果I(k)确定电池对应的阻抗。
以下结合图8说明在检测电池的阻抗时经过第二处理模块503中的各个模块的信号。
第二码变换模块1001,将采样器502获得的采样电压信号Vcn(n)与公式(1)对应的预设码C(n)相乘,获得第一电压信号Vn(n),将电流信号Ic(n)与公式(1)对应的预设码C(n)相乘,获得第一电流信号I(n)。如图8所示,经过第二码变换模块1001输出第一电压信号Vn(n)和第一电流信号I(n)。
下文以Vcn(n)=μ*(Ic(n)+I_noise(n))为例,其中,I_noise(n)为与干扰电流I_noise(t)对应的数字信号,μ为电池阻抗相关常数。假设干扰电流I_noise(t)的频率正好落在测试频率f 0上,即I_noise(t)=B*cos(2πnf 0t),则I_noise(n)=B*cos(2πnf 0n)。需理解,干扰电流I_noise(t)是电池带有负载的时候,例如充电电路或放电负载电路的时候,由负载引用的。下面进行如下推导。
Figure PCTCN2022079623-appb-000016
其中,
Figure PCTCN2022079623-appb-000017
I(n)=Ic(n)*C(n)=α*Sc(n)*C(n)=α*S(n)*C(n)*C(n)=α*S(n)    公式(6)
其中,C(n)*C(n)=1。
假设取f 0=125Hz,f s=32KHz,P=2048,N=8192,代入公式(5)和公式(6)则有:
Figure PCTCN2022079623-appb-000018
I(n)=α*A*sin(2πn/256)                     公式(8)
如图11所示,图11中的上半部分为公式(7)所示的第一电压信号的时域波形Vn(n),图11中的下半部分为公式(7)所示的第一电压信号的频域波形Vn(ω)。可见,测试频率f 0对应的幅值与I_noise(n)无关。Vn(ω)的基频与测试频率f 0相同。
如图12所示,图12中的上半部分为公式(8)所示的第一电流信号的时域波形I(n),图12中的下半部分为公式(8)所示的第一电流信号的频域波形I(ω)。I(ω)的基频与测试频率f 0相同。
傅里叶变换模块1002对第一电压信号Vn(n)和第一电流信号I(n)分别进行傅里叶变换,获得电压傅里叶变换结果V(k)和电流傅里叶变换结果I(k)。如图8所示,经过傅里叶变换模块1002输出电压傅里叶变换结果V(k)和电流傅里叶变换结果I(k)。
示例性地,对Vn(n)进行N点FFT变换,获得V(k),
Figure PCTCN2022079623-appb-000019
对I(n)进行N点FFT变换,获得I(k),
Figure PCTCN2022079623-appb-000020
计算模块1003,用于根据电压傅里叶变换结果V(k)和电流傅里叶变换结果I(k)确定电池对应的阻抗Z(ω 0)。
示例性地,在测试频率f 0下的电池的阻抗Z(ω 0)为:
Figure PCTCN2022079623-appb-000021
假设取f 0=125Hz,N=8192,fs=32KHz,则
Figure PCTCN2022079623-appb-000022
需要说明的是,上述过程又可称为检测阶段,检测阶段用于检测电池的阻抗。下面对预设码的周期的确定方式进行说明,预设码的周期的确定方式又可称为侦测阶段,侦测阶段用于检测干扰电流的频率,进而确定预设码的周期,将预设码作为检测阶段的输入。此外,当预设码为非周期序列时,可以不执行确定预设码的周期的过程,即不需要执行下述过程。
以下对预设码的周期的确定方式进行说明,以下方案在未对电池施加激励信号的时候执行,以确定在负载干扰存在的时候如何确定一个合适的预设码的周期,以便执行后续的激励信号施加和测量。
采样器502,还用于在第一处理模块501将激励信号施加至电池之前,即未施加激励信号至电池时,对电池的电压进行采样,以获得干扰电压信号。
示例性地,采样器502,在未施加激励信号至电池时,对电池的电压进行采样,以获得干扰电压信号V’n(t)。
第二处理模块503,还用于根据干扰采样电压信号确定预设码的周期。
示例性地,傅里叶变换模块1002,用于将干扰电压信号进行傅里叶变换,获得干扰电压信号对应的傅里叶变换结果,干扰电压信号对应的傅里叶变换结果包括N个频域值,N为采样点数量;
计算模块1003,还用于在
Figure PCTCN2022079623-appb-000023
Figure PCTCN2022079623-appb-000024
Figure PCTCN2022079623-appb-000025
Figure PCTCN2022079623-appb-000026
时,确定所述预设码型的周期长度P=N/i,其中,
Figure PCTCN2022079623-appb-000027
属于N个频域 值,f为测试频率,δ为预设门限,i为正整数。
示例性地,傅里叶变换模块802对V n(t)进行N点FFT变换,获得N个频域值,具体如下结果:
Figure PCTCN2022079623-appb-000028
Figure PCTCN2022079623-appb-000029
并以此对其信号强度与预设门限δ按照如下顺序进行对比判断:
(a)判断|V(ω 0)|<δ,如果满足,则fc=0Hz,ωc=2π*fc=0,否则执行(b);
(b)判断
Figure PCTCN2022079623-appb-000030
Figure PCTCN2022079623-appb-000031
如果满足,则i=1,
Figure PCTCN2022079623-appb-000032
否则执行(c);
(c)判断
Figure PCTCN2022079623-appb-000033
Figure PCTCN2022079623-appb-000034
如果满足,则i=2,
Figure PCTCN2022079623-appb-000035
Figure PCTCN2022079623-appb-000036
否则执行(d);……
通过上述过程,确定预设码的周期长度为P,其中,
Figure PCTCN2022079623-appb-000037
且满足P=m*f s/f 0,其中m为正整数。因此,能够实现即使干扰电流在同频强干扰的情况下仍然可获得较高的阻抗检测精度。
例如,假设取f 0=125Hz,fs=32KHz,N=8192,判断
Figure PCTCN2022079623-appb-000038
Figure PCTCN2022079623-appb-000039
但满足
Figure PCTCN2022079623-appb-000040
Figure PCTCN2022079623-appb-000041
则确定i=4,长度为8192的预设码的C(n)周期长度P=2048。
本申请实施例提供的EIS检测方案具有抗干扰强,精度高的特点,其原因在于先根据预设码对第一信号做第一码变换,获得激励信号,并将激励信号施加至电池,然后根据预设码对采样电压信号和电池的电流信号分别做第二码变换,从而实现第一电压信号的基频与第一信号的基频(即测试频率)相同,第一电流信号的基频与第一信号的基频(即测试频率)相同。但对于干扰电流及相应的电压信号,由于只进行了第二码变换(未进行第一码变换),其频谱大量扩散到其它频点上,因而实现在EIS的测试频率上消除干扰信号频谱的目的。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
第五方面,本申请还提供一种装置。该装置可以是能够执行之前提到的方案,其包括对应的功能的芯片或电路,例如包括处理器,如图4内处理器110。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一 点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质,如图4的内部存储器121中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (16)

  1. 一种电池的阻抗检测装置,其特征在于,所述装置包括:
    第一处理模块,用于根据预设码对第一信号做第一码变换,以获得激励信号,并将所述激励信号施加至电池,所述第一信号是用于生成所述激励信号的原始信号;
    采样器,耦合于所述电池,用于在将所述激励信号施加至所述电池之后,采样所述电池的电压,以获得采样电压信号;
    第二处理模块,用于:根据所述预设码对所述采样电压信号做第二码变换,以获得第一电压信号;根据所述预设码对所述电池的电流信号做所述第二码变换,以获得第一电流信号;以及,根据所述第一电压信号和所述第一电流信号确定所述电池对应的阻抗。
  2. 如权利要求1所述的装置,其特征在于,所述第一处理模块包括:第一码变换模块,用于将所述预设码与所述第一信号相乘,以获得所述激励信号。
  3. 如权利要求1或2所述的装置,其特征在于,所述第一处理模块包括:
    数模转换器DAC,用于对所述激励信号进行数模转换,以获得模拟信号;
    电流产生器,用于根据所述模拟信号产生激励电流,并将所述激励电流施加至所述电池。
  4. 如权利要求1-3任一项所述的装置,其特征在于,所述采样器,还用于采样所述电池的电流,以获得所述电流信号;
    或者,所述电流信号是根据所述激励信号进行计算确定的。
  5. 如权利要求1-4任一项所述的装置,其特征在于,所述第二处理模块包括:
    第二码变换模块,用于将所述预设码与所述采样电压信号相乘,以获得第一电压信号,将所述预设码与所述电流信号相乘,以获得第一电流信号。
  6. 如权利要求1-5任一项所述的装置,其特征在于,所述预设码与所述预设码相乘为全1序列。
  7. 如权利要求6所述的装置,其特征在于,所述预设码为包括+1和-1的序列。
  8. 如权利要求1-7任一项所述的装置,其特征在于,所述预设码为周期性序列,所述采样器,还用于在所述第一处理模块将所述激励信号施加至所述电池之前,对所述电池的电压进行采样,以获得干扰电压信号;
    所述第二处理模块,还用于根据所述干扰采样电压信号确定所述预设码的周期。
  9. 一种电池的阻抗检测装置,其特征在于,所述装置包括:
    处理器,用于根据预设码对第一信号做第一码变换,以获得激励信号,并将所述激励信号施加至电池,所述第一信号是用于生成所述激励信号的原始信号;
    采样器,耦合于所述电池,用于在将所述激励信号施加至所述电池之后,采样所述电池的电压,以获得采样电压信号;
    所述处理器,还用于根据所述预设码对所述采样电压信号做第二码变换,以获得第一电压信号;根据所述预设码对所述电池的电流信号做所述第二码变换,以获得第一电流信号;以及,根据所述第一电压信号和所述第一电流信号确定所述电池对应的阻抗。
  10. 如权利要求9所述的装置,其特征在于,所述处理器,用于在根据预设码对第一信号做第一码变换,以获得激励信号时,将所述预设码与所述第一信号相乘,以获得所述激励信号。
  11. 如权利要求9或10所述的装置,其特征在于,所述处理器,用于在将所述激励信号施加至电池时,对所述激励信号进行数模转换,以获得模拟信号,根据所述模拟信号产生激励电流,并将所述激励电流施加至所述电池。
  12. 如权利要求9-11任一项所述的装置,其特征在于,所述采样器,还用于采样所述电池的电流,以获得所述电流信号;
    或者,所述电流信号是根据所述激励信号进行计算确定的。
  13. 如权利要求9-12任一项所述的装置,其特征在于,所述处理器,还用于在根据所述预设码对所述采样电压信号做第二码变换,以获得第一电压信号,根据所述预设码对所述电池的电流信号做所述第二码变换,以获得第一电流信号时,将所述预设码与所述采样电压信号相乘,以获得第一电压信号,将所述预设码与所述电流信号相乘,以获得第一电流信号。
  14. 如权利要求9-13任一项所述的装置,其特征在于,所述预设码与所述预设码相乘为全1序列。
  15. 如权利要求14所述的装置,其特征在于,所述预设码为包括+1和-1的序列。
  16. 如权利要求9-15任一项所述的装置,其特征在于,所述预设码为周期性序列,所述采样器,还用于在所述第一处理模块将所述激励信号施加至所述电池之前,对所述电池的电压进行采样,以获得干扰电压信号;
    所述处理器,还用于根据所述干扰采样电压信号确定所述预设码的周期。
PCT/CN2022/079623 2022-03-07 2022-03-07 一种电池的阻抗检测装置 WO2023168581A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079623 WO2023168581A1 (zh) 2022-03-07 2022-03-07 一种电池的阻抗检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079623 WO2023168581A1 (zh) 2022-03-07 2022-03-07 一种电池的阻抗检测装置

Publications (1)

Publication Number Publication Date
WO2023168581A1 true WO2023168581A1 (zh) 2023-09-14

Family

ID=87936949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079623 WO2023168581A1 (zh) 2022-03-07 2022-03-07 一种电池的阻抗检测装置

Country Status (1)

Country Link
WO (1) WO2023168581A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451772A (zh) * 2016-04-08 2019-03-08 加拿大电池能源公司 基于实时电池特性的电池充电

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451772A (zh) * 2016-04-08 2019-03-08 加拿大电池能源公司 基于实时电池特性的电池充电

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 1 May 2020, SOUTHWEST JIAOTONG UNIVERSITY, CN, article WANG, XIAOTONG: "Research on EIS Measurement Design and Fault Diagnosis Method of Fuel Cell", pages: 1 - 73, XP009548933, DOI: 10.27414/d.cnki.gxnju.2020.000602 *
LI WEI-HENG, HUANG QIU-AN, YANG WEI-MING, YANG CHANG-PING, ZHANG JIU-JUN : " Recent Advancement in Pseudo-Random Binary Sequence Signals-Based Fast Reconstruction of Impedance Spectrum and Its Applications in Electrochemical Energy Sources ", JOURNAL OF ELECTROCHEMISTRY, vol. 26, no. 3, 1 June 2020 (2020-06-01), pages 370 - 388, XP093091608, DOI: 10.13208/j.electrochem.190309 *
PETRONE G.; ZAMBONI W.; SPAGNUOLO G.; DESSI R.: "EIS Method for the On-Board Evaluation of the Fuel Cell Impedance", 2018 IEEE 4TH INTERNATIONAL FORUM ON RESEARCH AND TECHNOLOGY FOR SOCIETY AND INDUSTRY (RTSI), IEEE, 10 September 2018 (2018-09-10), pages 1 - 6, XP033459014, DOI: 10.1109/RTSI.2018.8548402 *
WANG, XIAOTONG; LI, QI; WANG, TIANHONG; LIU, JIAWEI; JIANG, LU: "EIS Measurement Based on DIBS Excitation Signal and Fault Diagnosis Method of Fuel Cell", PROCEEDINGS OF THE CSEE, ZHONGGUO DIANJI GONGCHENG XUEHUI, CN, vol. 40, no. 14, 20 July 2020 (2020-07-20), CN , pages 4526 - 4537, 4732, XP009549186, ISSN: 0258-8013, DOI: 10.13334/j.0258-8013.pcsee.191043 *
ZHOU, SU ET AL.: "Research on An Algorithm of Situ Electrochemical Impedance Spectroscopies Measurement of Fuel Cell", MECHATRONICS, no. 10, 7 January 2016 (2016-01-07), pages 27 - 33, XP009549190, ISSN: 1007-080X, DOI: 10.16413/j.cnki.issn.1007-080x.2015.10.006 *

Similar Documents

Publication Publication Date Title
CN103198256B (zh) 用于检测应用程序状态的检测系统及方法
CN111142030B (zh) 用于内短路电流检测方法、装置、设备及可读存储介质
WO2019062358A1 (zh) 应用程序管控方法及终端设备
CN111239617A (zh) 充放电测试的控制方法、装置、存储介质及系统
WO2019062317A1 (zh) 应用程序管控方法及电子设备
WO2019085749A1 (zh) 应用程序管控方法、装置、介质及电子设备
CN112540304A (zh) 电池电量管理方法、电子设备及计算机存储介质
US10324512B2 (en) Device power management based on detected power source
WO2019085750A1 (zh) 应用程序管控方法、装置、介质及电子设备
JP2014522228A (ja) 知的認識充電方法及び知的認識充電装置、並びにコネクター
WO2023168581A1 (zh) 一种电池的阻抗检测装置
WO2024093963A1 (zh) 电池寿命确定方法、装置、电子设备及存储介质
CN117491880A (zh) 一种锂电池开路电压曲线标定方法、装置及电子设备
US11250849B2 (en) Voice wake-up detection from syllable and frequency characteristic
US8880367B1 (en) Method for accurately performing power estimation on a battery of an electronic device, and associated apparatus
CN114454766B (zh) 动力电池充电方法、系统和设备
CN111319510B (zh) 一种预估电动车辆续驶里程的方法和装置
CN209894886U (zh) 一种便携式锂电池内阻检测仪
CN110988717B (zh) 电池检测方法、存储介质及终端设备
CN110994052B (zh) 延长电池续航能力的方法及装置、存储介质、终端设备
CN113543006A (zh) 耳机测试方法、装置、电子设备及介质
US20200412156A1 (en) Electronic device, charging control method, and computer program
WO2020042726A1 (zh) 充电管理方法、装置及应用所述方法的电子设备
US11815970B2 (en) Enabling system boot-up in low temperature environments
US20120074910A1 (en) Battery charge management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930227

Country of ref document: EP

Kind code of ref document: A1