WO2023167249A1 - Current detector - Google Patents

Current detector Download PDF

Info

Publication number
WO2023167249A1
WO2023167249A1 PCT/JP2023/007650 JP2023007650W WO2023167249A1 WO 2023167249 A1 WO2023167249 A1 WO 2023167249A1 JP 2023007650 W JP2023007650 W JP 2023007650W WO 2023167249 A1 WO2023167249 A1 WO 2023167249A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
pair
case body
core
core members
Prior art date
Application number
PCT/JP2023/007650
Other languages
French (fr)
Japanese (ja)
Inventor
誠 橋本
悠介 大野
Original Assignee
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所 filed Critical 株式会社タムラ製作所
Publication of WO2023167249A1 publication Critical patent/WO2023167249A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Definitions

  • the present invention relates to a current detector that detects current to be detected.
  • the present invention provides a core positioning technology.
  • the present invention provides the following solutions. Note that parentheses and the like in the following description are merely examples, and the present invention is not limited to them.
  • a current detector of the present invention includes a pair of core members and a case body.
  • Each of the pair of core members has a partial annular shape, and is arranged in a ring around the primary conductor through which the current to be detected flows, with the end faces of both ends facing each other. With this arrangement, the pair of core members form a convergence path of the magnetic field generated by conduction of the current to be detected.
  • the case body has an insertion portion (insertion hole, through hole, penetration portion, etc.) through which the primary conductor can be inserted. is a container-like member that can accommodate However, the distance and the position of the gap cannot be determined only by accommodating a pair of core members in the case body and arranging them in an annular shape.
  • the current detector of the present invention further includes a pressing member and a gap spacer.
  • the pressing member generates a force that presses the pair of core members in opposite directions from the outer side surfaces opposite to the end surfaces of the pair of core members while being accommodated in the case body.
  • One pressing member may be provided for each core member, or one pressing member may be provided for both of a pair of core members. In this manner, the pressing member generates a force that presses the pair of core members in the facing direction in the case body, thereby preventing the end faces from separating from each other.
  • the gap spacer forms a gap of a specified interval between the facing end faces of the pair of core members, and is therefore accommodated in the case together with the pair of core members. That is, the gap spacers are arranged at locations (two locations) where the end surfaces of the pair of core members face each other, and the pair of core members facing each other are provided in a pair of concave portions formed with the opening surfaces facing back to each other. A defined gap is formed between the end faces while receiving the ends of the . In this way, while the pair of core members are pressed in the opposing direction by the pressing member, the end portions of the pair of core members are pushed (against the pressing force) in the concave portions of the gap spacers at the locations where the respective end faces face each other.
  • the current detector has a circuit board, and the circuit board detects the current to be detected using a magnetic detection element (Hall sensor, probe coil, etc.) placed in the gap while being housed in the case body.
  • a detection circuit is formed to
  • the inventors of the present invention conceived that it is effective for stably maintaining the gap distance to receive each end portion with a gap spacer (recess) while pressing the pair of core members in the opposing direction as described above.
  • a gap spacer (recess) while pressing the pair of core members in the opposing direction as described above.
  • the gap spacer forms a gap between the opposed end faces of a pair of core members, and also has a cylindrical shape as a whole, so that the shape of the concave portion conforms to the outer shape of the end of each core member. It has a shape.
  • the gap spacer can also suppress the displacement of the core member in the opening direction of the case body, and can stabilize the interval and position of the gap formed by positioning the pair of core members.
  • the opening direction is not limited to the direction from the inside of the case body to the opening side, but may be the direction from the opening side to the inside.
  • the gap spacer not only positions the pair of core members as described above, but also contributes to the positioning of the circuit board. Positioning of the circuit board is achieved through cooperation between the structure of the gap spacer and the structure of the circuit board. That is, the circuit board has a partially ring-shaped board member, and electronic components mounted so as to protrude into the gap from the mounting surface of the board member. The electronic component can have a magnetic sensing element inside. A positioning hole is formed in the substrate member at a position overlapping the gap spacer, and the positioning hole penetrates the substrate member in the thickness direction.
  • a recess between gaps and a positioning protrusion are provided on the gap spacer side.
  • the inter-gap recess is formed by recessing a portion corresponding to the gap between the end surfaces of the pair of core members in the direction in which the substrate members are superimposed, so that the electronic component can be received therein.
  • the positioning protrusion is formed so as to protrude in the direction of the substrate members at a position where the substrate members are overlapped. Position the electronic component within the gap.
  • the current detector of the present invention can also have the following preferred modes.
  • a pair of recesses are formed in symmetrical shapes on both sides of the inter-gap recess, and a pair of positioning protrusions are formed in symmetrical positions around the inter-gap recess. It is a mode.
  • the concave portion of the gap spacer and the positioning protrusion can be combined with the core member in any direction with respect to the inter-gap concave portion. There is no need to confirm, and work efficiency can be improved.
  • the gap spacer can also have an abutment portion and an opening portion.
  • the abutting portion abuts on the end face of the core member at the deep position in the receiving direction of the recess, and positions the core member at the end face while being pushed by the pressing member in the case body.
  • the open portion allows the contact state between the contact portion and the end surface of the core member to be visually recognized from the outside through the inter-gap recessed portion in a state in which the recessed portion and the inter-gap recessed portion are opened.
  • the circuit board may have passage holes formed in the board member.
  • the passage hole is formed in a region that overlaps with at least one of the core member and the gap spacer, and penetrates in the thickness direction to serve as a passage for the filling material that fills the case body.
  • the filling material filled in the case body can be easily spread between the circuit board and the gap spacer or between the core member, and the filling efficiency can be improved. can.
  • the passage hole also serves as an air vent before the filler passes through, it is possible to suppress the occurrence of insufficient filling due to air pockets.
  • the core can be stably positioned.
  • FIG. 3 is a perspective view showing an assembled state of the current sensor 100;
  • FIG. 3 is a perspective view showing an assembled state of the current sensor 100;
  • 2 is an exploded perspective view schematically showing the configuration of current sensor 100.
  • FIG. 2 is an exploded perspective view schematically showing the configuration of current sensor 100.
  • FIG. 4 is a perspective view showing the detailed structure of a gap spacer 106;
  • FIG. 4 is a front view showing a positioning state of the core member 104;
  • FIG. FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 5;
  • FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 5;
  • FIG. 6B is a cross-sectional view along line VII-VII of FIG.
  • FIG. 6A 4 is a perspective view showing an insertion trajectory of a spring spacer 108;
  • FIG. 4 is a perspective view showing an insertion trajectory of a spring spacer 108;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts;
  • FIG. 3 is a diagram showing a housed state of a circuit board 110;
  • FIG. 3 is a diagram showing a housed state of a circuit board 110;
  • a magnetic proportional current sensor is used as an example of a current detector, but the present invention is not limited to this, and may be a magnetic balance current sensor or a flux gate. type current sensor.
  • FIG. 1 is a perspective view showing an assembled state of the current sensor 100 of one embodiment.
  • 2 and 3 are exploded perspective views schematically showing the configuration of the current sensor 100 of one embodiment. Note that the perspective view of FIG. 1B is obtained when the current sensor 100 shown in FIG. 1A is shown from a different direction (180° opposite side). 2 and 3, the oblique direction is reversed.
  • the current sensor 100 mainly includes a case body 102, a core member 104, a gap spacer 106, a spring spacer 108 and a circuit board 110, which are shown in FIGS.
  • the current sensor 100 is assembled on the assembly axis AX shown. Further, the core member 104 is assembled after being combined with the gap spacer 106 by bringing the assembly axis AX to the center.
  • the current sensor 100 is in one usage form as shown in FIG. 1 to 3 show the current sensor 100 in a posture assuming this type of use, in which a primary conductor (such as a busbar) (not shown) that conducts the current to be detected is inserted laterally (horizontally). It is assumed that Further, FIG. 1 shows the inside of the case body 102 sealed with the filler 105, but the filler 105 is not shown in FIGS. Note that the current sensor 100 may be used in other postures (for example, a flat posture, a small end standing posture, an inverted posture, etc.).
  • a primary conductor such as a busbar
  • the case body 102 has a rectangular container shape with one end face open (open) and the other end face closed. Further, the case body 102 has a rectangular insertion portion 103 formed in its center, so that the container shape of the case body 102 as a whole has a rectangular annular shape.
  • the insertion portion 103 penetrates through the center of the current sensor 100 in the assembled state in the thickness direction, and the primary conductor (not shown) extends in the insertion portion 103 in the lateral direction ( horizontal direction).
  • the case body 102 is integrally formed with a flange 102a for installing the current sensor 100 in an upright position.
  • a bracket portion 102b is formed in the case body 102 so as to extend from the insertion portion 103, and the case body 102 is screwed to a primary conductor (not shown) at the bracket portion 102b.
  • the core members 104 are arranged in pairs around primary conductors (not shown).
  • the pair of core members 104 are each formed in a horizontal U shape (so-called UU shape), and are rectangular with both end surfaces (that is, both end surfaces) 104a, which are tip surfaces of the U shape, facing each other. are arranged in a ring to constitute one magnetic core. At this time, gaps are formed between the end surfaces 104a of the pair of core members 104 (at two locations), which will be described later.
  • a soft magnetic material for example, ferrite, silicon steel, etc.
  • a primary conductor not shown
  • a magnetic field generated around it is converged on the pair of core members 104 .
  • the pair of core members 104 forms a magnetic field convergence path (magnetic circuit, magnetic path, magnetic flux path) in the circumferential direction.
  • a ground electrode 104 b is welded to each core member 104 .
  • the gap spacer 106 is, for example, a structural part made of resin, and has a rectangular tubular shape as a whole here.
  • the rectangular tubular shape follows the outer shape (here, prismatic shape) of the end portion of the core member 104. If the outer shape of the end portion of the core member 104 is cylindrical, the gap spacer 106 may have a cylindrical shape, and the gap spacer 106 may have a polygonal tubular shape if it has a polygonal prism shape other than a quadrangular prism.
  • the gap spacers 106 are arranged at positions (here, two positions) where the pair of core members 104 face their end faces 104a.
  • Each gap spacer 106 has a pair of recesses 106a on both sides when viewed in the direction in which the pair of core members 104 are combined (the direction in which the end faces 104a face each other). By doing so, the opening faces are facing back (in opposite directions).
  • These recesses 106a also have a bag shape that conforms to the outer shape of the end of the core member 104, and when the end of the core member 104 is inserted into the corresponding recess 106a, the inner surface of the recess 106a is It conforms to the outer surface at the end of the core member 104 . Also, the end surface 104a of the core member 104 abuts against each recess 106a. The concave portion 106a will be further described later.
  • the gap spacer 106 has an inter-gap concave portion 106b at a central position when viewed in the combination direction of the pair of core members 104. As shown in FIG.
  • the inter-gap recess 106b is located between the pair of recesses 106a on both sides and is recessed from the outer surface of the gap spacer 106 in the assembly axis AX direction.
  • the inter-gap concave portion 106b will also be described later.
  • a pair of spring spacers 108 correspond to the pair of core members 104 and are housed in the case body 102 together with the core members 104 .
  • the spring spacer 108 is supported by the case body 102 in an accommodated state, and generates a force that presses one corresponding core member 104 toward the other core member 104 (a pair of core members 104 are attached in a direction facing each other). force).
  • the spring spacer 108 has two legs 108b and two latching claws 108c formed at each end edge of a rectangular plate-like portion (no reference numeral), and a spring portion 108a at one long side edge of the plate-like portion. is formed.
  • the leg portion 108b, the latching claw 108c, and the spring portion 108a extend from the plate-like portion toward the inside of the case body 102, and when the current sensor 100 is assembled, the leg portion 108b, the latching claw 108c, and the spring portion 108a extend. is arranged between the outer peripheral surface of the core member 104 and the inner surface of the case body 102 . Therefore, the spring spacer 108 is housed in the case body 102 so as to cover one side surface and the outer peripheral surface of the core member 104 from the one end face opening side of the case body 102 . In this housed state, spring spacer 108 positions core member 104 at a predetermined position. Positioning by the spring spacer 108 will be further described later.
  • the circuit board 110 also has a shape that matches one end face opening of the case body 102 and one side face of the core member 104, but is not connected in a ring shape, and is like a holed rectangular shape divided in half. It has a character shape. That is, the circuit board 110 has an insulating board member having a U-shaped partial ring shape, and wiring patterns and via holes (not shown) are formed on both mounting surfaces and inner layer portions of the board member. Two ASICs 112 are mounted through holes on one mounting surface of the substrate member, and a connector 110a is mounted through holes on the other mounting surface.
  • the ASIC 112 is an electronic device in which a circuit including a magnetic detection element such as a Hall sensor is integrated.
  • the circuit board 110 In the assembled state of the current sensor 100 , the circuit board 110 is accommodated in the case body 102 so as to overlap the plate-like portion of one spring spacer 108 . In this housed state, the two ASICs 112 are arranged in the inter-gap recess 106 b of the gap spacer 106 .
  • a circuit for detecting the current to be detected using the output signal of the ASIC 112 is formed on the circuit board 110 . Therefore, various electronic components (chip components, ICs, etc.) (not shown) are also mounted on each mounting surface of the circuit board 110 (substrate member).
  • a through hole 110b for the ground electrode 104b is formed in the circuit board 110 as appropriate. Note that the circuit board 110 may be formed in an annular shape.
  • FIG. 4 is a perspective view showing the detailed structure of the gap spacer 106.
  • the gap spacer 106 has a rectangular tubular shape as a whole and has a pair of concave portions 106a on both sides inside. Between the pair of concave portions 106a on both sides, the inter-gap concave portions 106b are formed so as to be recessed (gouged) from the outer surface.
  • the pair of concave portions 106a on both sides are formed in a shape that is symmetrical (for example, point-symmetrical) about the inter-gap concave portion 106b.
  • Each concave portion 106a has a box-like bag shape, and the inside of the concave portion 106a has a shape (a so-called bottomed shape) where the inside of the concave portion 106a abuts (dead end). More specifically, a rib-shaped contact portion 106d is formed at a position (deep bottom) that abuts each recess 106a. Position the core member 104 . Although not shown in FIG. 4, the abutting portion 106d is formed in, for example, a square shape or a square shape when viewed from the opening side of the concave portion 106a. As a result, the contact range with the end surface 104a can be widened, and the positioning of the core member 104 can be made more reliable.
  • the surface that abuts the concave portion 106a is not closed and is partially formed with a window-like opening.
  • This open portion serves as an open portion 106c, and the open portion 106c is in a state of partially opening the recess 106a and the inter-gap recess 106b.
  • the contact portion 106d can be visually recognized, and when the core member 104 is assembled, the contact state between the contact portion 106d and the end face 104a can be visually recognized from the outside. Accordingly, in the process of assembling the current sensor 100, an operator or the like can visually confirm through the opening 106c that the core member 104 (end surface 104a) is correctly positioned.
  • a protruding positioning protrusion 106e is formed on the outer surface of the gap spacer 106 at a position where the circuit board 110 is superimposed during assembly, and the positioning protrusion 106e projects toward the circuit board 110 in the assembled state.
  • a pair of positioning projections 106e are formed at symmetrical (for example, point-symmetrical) positions about the inter-gap recess 106b. Positioning of the circuit board 110 by the positioning protrusion 106e will be further described later.
  • a notch 106f is formed in the gap spacer 106 from the opening edge of each recess 106a toward the inter-gap recess 106b. It has wideness and breadth.
  • the notches 106f are formed symmetrically (for example, point-symmetrically) on both sides in the same way that the pair of recesses 106a are symmetrical.
  • the shape of the gap spacer 106 remains the same (unchanged) even when it is rotated (reversed) by 180° about the assembly axis AX. Further, there are two positions where the end surfaces 104a of the pair of core members 104 face each other, and the gap spacer 106 can be used in common at both positions. Thereby, the gap spacer 106 can be used as a common universal component in the assembly process, and workability and work efficiency can be improved.
  • FIG. 5 is a front view showing the positioning state of the core member 104.
  • the pair of core members 104 are housed in the case body 102 and are annularly arranged with opposite end faces 104a. Both of the pair of spring spacers 108 are fixed to the case body 102 in a state of being housed in the case body 102, but the spring portion 108a does not contact the case body 102 and the plate-like portion is fixed to the fixed end. can be elastically deformed as At this time, if the facing direction of the pair of core members 104 is the direction of arrow A1 in FIG. At the same time, the restoring force (repulsive force) generates a force that presses the pair of core members 104 together in the arrow A1 direction.
  • the end surface 104a of the core member 104 is held in contact with the contact portion 106d in each recess 106a of the gap spacer 106, and a gap of a specified distance is formed between the opposing end surfaces 104a. .
  • the pair of core members 104 are positioned in the facing direction (arrow A1 direction) by the gap spacer 106 and the spring spacer 108 while being accommodated in the case body 102 . That is, the pair of core members 104 are pushed in the opposing direction by the spring portion 108a of the spring spacer 108, and are abutted against the contact portion 106d in the concave portion 106a of the gap spacer 106, thereby moving the pair of core members 104 in the opposing direction in the case body 102. Positioning is achieved by suppressing the displacement to
  • Positioning of the core member 104 in directions other than the facing direction is performed by ribs 102f on the inner surface of the case body 102, for example.
  • the ribs 102f are formed at a number of positions along the inner surfaces of the outer peripheral walls facing each other in a direction perpendicular to the facing direction of the pair of core members 104. It extends like a streak toward the end face opening.
  • Each core member 104 is guided by a large number of ribs 102f at its edge on the opposite side (deep side) of the opening when housed in the case body 102, and is positioned in a direction perpendicular to the facing direction along the opening surface.
  • a large number of ribs 102c and 102d are also formed on the inner surface of the case body 102, which will be described later.
  • the gap spacer 106 forms the gap as described above, and in addition to positioning the pair of core members 104 in the direction facing each other, suppresses the displacement of the core members 104 in the opening direction of the case body 102 . there is This point will be further described below.
  • FIG. 6 is a cross-sectional view (a cross-sectional view taken along line VI-VI in FIG. 5) showing an example of a structure for suppressing displacement of the core member 104 by the gap spacer 106.
  • FIG. 6A shows a structural example of this embodiment
  • FIG. 6B shows a structural example of a comparative example. A structural example of this embodiment will be described below in comparison with a comparative example.
  • FIG. 6A As described above, the pair of core members 104 are pressed in opposing directions by the spring portions 108a from the respective outer surfaces opposite to the respective end surfaces 104a. At this time, since the spring portion 108a is in line contact with the outer surface of the core member 104, each core member 104 has a contact point P with the spring portion 108a. , the possibility of tilting (rotational) displacement in the direction of the opening is conceivable. This is also due to the fact that the spring portions 108a press the pair of core members 104 against each other from both sides. However, in the case of the structural example of the present embodiment, such an inclination displacement of the core member 104 is suppressed because the concave portion 106a of the gap spacer 106 is shaped like a bag.
  • FIG. 6B A comparative structural example is one in which a block-shaped or plate-shaped spacer 60 is arranged in the gap. Even in this case, if the pair of core members 104 are pressed against each other by the spring portions 108a similar to those of the present embodiment, it is considered possible to form a gap with the spacer 60 and position the core members 104. FIG. However, on both sides of the gap, since the ends of the core member 104 are free in the opening direction of the case body 102, there is a possibility that the core member 104 is greatly inclined (rotationally) displaced about the fulcrum P in the opening direction. is high. In this case, the gap interval and gap position fluctuate, and the current detection accuracy tends to become unstable.
  • the end of the core member 104 is gripped in the shape of a bag by the inner surface of the recess 106a and the contact portion 106d. Tilt is constrained and displacement can be constrained as described above. As a result, the distance between the gaps formed between the end faces 104a can be stably maintained, and the deviation of the position of the gap from the normal position can be reliably suppressed, so that the current detection accuracy can be stabilized. can be done.
  • FIG. 7 is a cross-sectional view (a cross-sectional view taken along line VII-VII in FIG. 6A) showing an example of the positioning structure of the gap spacer 106 inside the case body 102.
  • the gap spacer 106 is positioned in the facing direction of the pair of core members 104 by ribs 102 c on the inner surface of the case body 102 .
  • Other ribs are formed between the two ribs 102c paired in the opposite direction, and these ribs also position the gap spacer 106 in the direction along the end face 104a of the core member 104.
  • It is 7 shows the cross-sectional shape of the contact portion 106d, it can be seen that the contact portion 106d contacts the end surface 104a at a plurality of locations within the recess 106a.
  • FIG. 8 is a perspective view showing an insertion trajectory of spring spacer 108 into case body 102 in the process of assembling current sensor 100 .
  • FIG. 8A shows the state before insertion of the spring spacer 108
  • FIG. 8B shows the state after insertion.
  • the spring spacer 108 is assembled so as to overlap the core member 104 with one end face opening of the case body 102 facing upward. Further, the leg portion 108b, the latching claw 108c and the spring portion 108a of each spring spacer 108 are inserted between the outer peripheral surface of the core member 104 and the inner surface of the case body 102 after the core member 104 is accommodated. In such an insertion trajectory of the spring spacer 108, the insertion of the leg portion 108b is guided by the ribs 102d on the inner surface of the case body 102. As shown in FIG. Further, in the insertion trajectory, the leg portion 108b, the latching claw 108c and the spring portion 108a are inserted in order with a time lag.
  • FIG. 9 is a continuous diagram showing the insertion trajectory of the spring spacer 108 for each part.
  • FIG. 9A is a plan view of the case body 102 and the spring spacer 108 viewed in the insertion direction
  • FIGS. 9C1 to 9C3 are sectional views showing the insertion trajectory of the spring portion 108a (CC sectional view in FIG. 9A), and FIGS. DD sectional view).
  • FIG. 9B1 At the initial stage of inserting the spring spacer 108, the tip portion of the leg portion 108b is first inserted along the inner surface of the case body 102 and inserted between the two ribs 102d at each position. As a result, the insertion start position of the spring spacer 108 with respect to the one end face opening of the case body 102 can be easily obtained.
  • FIGS. 9C1 and 9D1 On the other hand, when the tip of the leg portion 108b is inserted in the initial stage of insertion, the other spring portion 108a and latching claw 108c do not come into contact with the case body 102 or the core member 104.
  • FIGS. 9B1 At the initial stage of inserting the spring spacer 108, the tip portion of the leg portion 108b is first inserted along the inner surface of the case body 102 and inserted between the two ribs 102d at each position. As a result, the insertion start position of the spring spacer 108 with respect to the one end face opening of the
  • FIG. 9B2 Leg 108b is inserted between two more ribs 102d.
  • FIG. 9C2 The spring portion 108a extends so as to be inclined toward the center from its base end, but its tip portion is warped in the opposite direction to the facing direction of the core member 104.
  • This warped portion is located inside the outer peripheral edge of the core member 104 in the opposing direction. Therefore, the warped portion of the spring portion 108a contacts the outer peripheral edge of the core member 104 in the middle stage of insertion.
  • FIG. 9D2 On the inner surface of the case body 102, a projecting hooking portion 102e is formed corresponding to the position where the hooking claw 108c is inserted. functions at the end of Therefore, in the middle stage, the hooking claw 108c and the hooking portion 102e are not yet in contact with each other.
  • FIG. 9B3 The leg portion 108b is further inserted deeply between the two ribs 102d, and when the insertion is completed, the plate-like portion of the spring spacer 108 comes into contact with the ribs 102d and is positioned in the opening direction of the case body 102. . Moreover, although the leg portion 108b contacts the inner surface of the case body 102, it does not contact the core member 104 even after the insertion is completed.
  • FIG. 9C3 In addition, the spring part 108a is pushed back against the outer surface of the core member 104 and elastically deformed in the opposite direction to the opposing direction, and the restoring force presses the core member 104 in the opposing direction. Looking at the pair of spring spacers 108 on both sides, the pair of spring portions 108a are bent and deformed so as to expand in the opposite direction of the opposing direction. When the insertion is completed, the pair of spring portions 108a on both sides presses the pair of core members 104 in the opposite direction as described above. At this time, since the insertion position of the entire spring spacer 108 in the planar direction (the direction along the opening surface of the case body 102) is determined at the initial stage, the load and deflection amount of the spring portion 108a can be stably managed.
  • FIG. 9D3 At the final stage, the tip portion (turned portion) of the latching claw 108c contacts the latching portion 102e, and as the insertion progresses, the latching claw 108c bends toward the core member 104 (elastic deformation). do). At this time, since the insertion start position of the spring spacer 108 is determined at the initial stage of the insertion process, it is possible to stably manage the load and the amount of deflection received by the latching claw 108c. Then, when the tip portion (turned portion) of the hooking claw 108c passes the hooking portion 102e, the hooking hook 108c is restored from the bent state, and the tip portion (turned portion) is caught by the hooking portion 102e and inserted. Completed. As a result, the spring spacer 108 is prevented from falling off from the case body 102, and the core member 104 is held.
  • FIG. 10A and 10B are diagrams showing the accommodation state of the circuit board 110.
  • FIG. 10A is a plan view of the case body 102 viewed from the opening direction
  • FIG. 10B is a cross-sectional view perpendicular to the opening surface (BB cross-sectional view of FIG. 10A).
  • the circuit board 110 is accommodated from the opening side of the case body 102 so as to overlap the pair of core members 104 arranged in a ring. Since the substrate member of the circuit board 110 has a partial ring shape that matches the shape of the opening surface of the case body 102, the position of the circuit board 110 is roughly determined by inserting it through the opening. For proper positioning, the entire circuit board 110 needs to be precisely positioned. Such positioning of the circuit board 110 (board member) is performed in the direction along the opening surface of the case body 102 and the insertion direction (opening direction).
  • FIG. 10A As described above, the gap spacer 106 is formed with the positioning projection 106e, and the circuit board 110 is formed with the positioning hole 110c at the position corresponding to the positioning projection 106e.
  • two gaps are formed between the core members 104, and the gap spacers 106 are arranged in each gap, so that the circuit board 110 is also formed with two positioning holes 110c.
  • the positioning hole 110c is formed through the board member in the thickness direction, and when the circuit board 110 is accommodated (inserted state), the positioning protrusion 106e is inserted (so-called fitted) into the positioning hole 110c.
  • the circuit board 110 is positioned in the opposing direction by ensuring only a minimum clearance in the opposing direction of the pair of core members 104 between the positioning hole 110c and the positioning projection 106e.
  • the direction orthogonal to the facing direction of the core member 104 along the opening surface of the case body 102 is positioned, for example, based on the relationship between the outer edge shape of the circuit board 110 (board member) and the inner surface shape of the case body 102 . That is, the circuit board 110 is positioned in a direction perpendicular to the facing direction of the core member 104 because the outer edge of the board member is formed along the inner wall surface of the case body 102 . Furthermore, one of the two positioning holes 110c has a minimum clearance from the positioning projection 106e also in the direction perpendicular to the opposing direction, so that the insertion (fitting) relationship of these will also be positioned.
  • the ASIC 112 is also positioned with respect to the inter-gap recess 106 b, that is, the gap between the pair of core members 104 .
  • the gap spacer 106 positions the end surface 104a of the core member 104 to define the position of the gap, and also positions the ASIC 112 with respect to the defined gap. It is possible to detect a current to be detected that functions properly.
  • the circuit board 110 further has the following configuration. As shown in FIGS. 10A and 10B, a substrate member of the circuit board 110 is formed with a large number of passage holes 110d arranged in rows. The passage hole 110d penetrates the board member in the thickness direction, so that the board member of the circuit board 110 and the core member 104 are in communication with each other inside the case body 102 through the passage hole 110d. Therefore, when the filler 105 is filled into the case body 102 in the assembly process, the filler 105 can flow through the passage hole 110d, so that the filling efficiency can be enhanced. In addition, since the passage hole 110d also functions as an air vent during the filling process, it is possible to suppress the occurrence of a filling failure due to an air pool after filling.
  • the current sensor 100 of the embodiment described above the following advantages are obtained.
  • the spring portion 108a of the spring spacer 108 the two core members 104 are pressed against each other and positioned by the concave portion 106a (contact portion 106d) of the gap spacer 106, so that the gap distance can be maintained at the required value.
  • the concave portion 106a of the gap spacer 106 is bag-shaped (box-shaped with a bottom), and the end portion of the core member 104 is received in the concave portion 106a to suppress displacement.
  • the portion 108a serves as a fulcrum and tilts in a direction other than the facing direction (opening direction of the case body 102).
  • the present invention can be modified in various ways without being restricted by the above-described embodiment.
  • the overall shape of current sensor 100 may be other than rectangular annular.
  • case body 102 may be divided into a plurality of parts, or may be provided with an openable lid. Further, the shape of the case body 102 and the arrangement of ribs can be appropriately changed according to the shapes of the core member 104, the gap spacer 106, the spring spacer 108, etc., which are used, and the number of them is also the example given in the embodiment. is not limited to
  • the gap spacer 106 is arranged at the central position of the core member 104 in the opposing direction to form a gap, but the gap may be formed by the gap spacer 106 at another position. Also, the number of gaps may be more than two. Even in this case, the spacing and positions of the respective gaps can be properly maintained by positioning them while pressing them in the opposite direction by the spring spacers 108 .
  • the entire gap spacer 106 does not have to have the same rectangular tubular shape.
  • the outer shape of the concave portion 106a may be a cylindrical shape matching the outer shape of the end portion of the core member 104, and the portion corresponding to the inter-gap concave portion 106b may have a different shape.
  • the positioning of the circuit board 110 may be performed using means other than the fitting between the positioning protrusion 106e and the positioning hole 110c. Also, the number of positions where the circuit board 110 is positioned by the gap spacers 106 may be three or more.
  • the present invention provides core positioning technology.

Abstract

Provided is a core positioning technology. A current sensor 100 comprises: a pair of core members 104 that are positioned assembled together in a ring shape around a primary conductor, in a condition in which respective end surfaces 104a of both end sections of each have been made to face each other; a case body 102 that has an insertion section 103 through which the primary conductor can be inserted, and accommodates the pair of core members 104 in the interior thereof via an opening that is formed in a ring shape around the insertion section 103; spring spacers 108 that produce a force pressing the pair of core members 104 together in the facing direction from outside surfaces thereof, which are on the opposite sides from the respective end surfaces 104a; gap spacers 106 that are respectively positioned in locations where the respective end surfaces 104a of the pair of core members 104 are facing, receive the respective end sections of the core members into pairs of recessed sections 106a, and in this condition form gaps between the end surfaces 104a and suppress displacement of the core members 104; and a circuit board 110.

Description

電流検出器current detector
 本発明は、被検出電流を検出する電流検出器に関する。 The present invention relates to a current detector that detects current to be detected.
 例えば従来、環状のコアに形成されたギャップ部にエプロン状の取付部が設けられた電流検出装置の先行技術が知られている(例えば、特許文献1参照。)。この電流検出装置は、予めコアのギャップ部を跨ぐようにして樹脂部材の取付部をインサート成形しておき、コアをケースに固定する際は、一体成形された取付部をケースにねじ留めしつつ、磁電変換素子を取付けたプリント回路基板も取付部と共締めして固定している。 For example, conventionally, there is known a prior art of a current detection device in which an apron-shaped mounting portion is provided in a gap portion formed in an annular core (see Patent Document 1, for example). In this current detection device, the mounting portion of the resin member is insert-molded in advance so as to straddle the gap portion of the core, and when the core is fixed to the case, the integrally molded mounting portion is screwed to the case. , the printed circuit board on which the magnetoelectric conversion element is mounted is also fastened together with the mounting portion.
 特に上記の先行技術は、コアのギャップ部分をインサート成形した樹脂部材の中に埋め込んでおくことで、温度変化による膨張収縮でキャップ部の間隔が変化することを抑えている。また、ケースに対する取付部とプリント回路基板との共締めにより、ギャップ部と磁電変換素子との位置の設定が正確に行われると考えられている。 In particular, in the above prior art, by embedding the gap portion of the core in an insert-molded resin member, it is possible to suppress changes in the gap between the cap portions due to expansion and contraction caused by temperature changes. Further, it is considered that the positions of the gap portion and the magnetoelectric conversion element can be accurately set by fastening the mounting portion to the case and the printed circuit board together.
実開平6-86080号公報Japanese Utility Model Laid-Open No. 6-86080
 しかしながら、上記の先行技術のように単独で環状に形成されたコアにギャップを形成している場合、たとえ樹脂部材をインサート成形していても、コア自身の熱変形によるギャップ間隔の変化はどうしても避けられない。また、樹脂部材を予めインサート成形しておくことは工数の増加を招くことになる。 However, in the case where the gap is formed in the single ring-shaped core as in the prior art, even if the resin member is insert-molded, the change in the gap distance due to the thermal deformation of the core itself cannot be avoided. can't Further, insert molding the resin member in advance leads to an increase in the number of man-hours.
 そうかといって、複数のコア部材に分割したものを単に環状に組み合わせてケース内に配置しただけの状態では、コア部材間にギャップは形成されるものの、コア部材を正しく位置決めして姿勢を保持しておかないと、ギャップ間隔やギャップ位置そのものが安定しないという問題がある。 On the other hand, if a plurality of divided core members are simply combined into a ring and arranged in a case, although a gap is formed between the core members, the core members are positioned correctly and the posture is maintained. Otherwise, there is a problem that the gap interval and the gap position itself are not stable.
 そこで本発明は、コアの位置決め技術を提供するものである。 Therefore, the present invention provides a core positioning technology.
 本発明は、以下の解決手段を提供する。なお、以下の説明における括弧書き等はあくまで例示であり、本発明はこれに限定されるものではない。 The present invention provides the following solutions. Note that parentheses and the like in the following description are merely examples, and the present invention is not limited to them.
 本発明の電流検出器は、一対のコア部材及びケース体を備える。一対のコア部材は、それぞれが部分環形状であり、両端部の各端面を互いに対向させた状態で、被検出電流が導通する一次導体の周囲に環状に組み合わせて配置される。この配置により、一対のコア部材は被検出電流の導通により発生する磁界の収束経路を形成する。また、ケース体は、一次導体を挿通可能な挿通部(挿通孔、貫通孔、貫通部等)を有しており、この挿通部の周囲に環状に形成された開口を通じて内部に一対のコア部材を収容可能な容器状の部材である。ただし、ケース体内に一対のコア部材を収容して環状に配置しただけではギャップの間隔やその位置が決まらない。 A current detector of the present invention includes a pair of core members and a case body. Each of the pair of core members has a partial annular shape, and is arranged in a ring around the primary conductor through which the current to be detected flows, with the end faces of both ends facing each other. With this arrangement, the pair of core members form a convergence path of the magnetic field generated by conduction of the current to be detected. Further, the case body has an insertion portion (insertion hole, through hole, penetration portion, etc.) through which the primary conductor can be inserted. is a container-like member that can accommodate However, the distance and the position of the gap cannot be determined only by accommodating a pair of core members in the case body and arranging them in an annular shape.
 そこで本発明の電流検出器は、さらに押圧部材及びギャップスペーサを備える。先ず、押圧部材は、ケース体内に収容された状態で、一対のコア部材同士をこれらの各端面とは反対側の各外側面から対向方向に押し付ける力を発生する。押圧部材は、各コア部材に対して1つずつでもよいし、一対のコア部材の両方に対して1つであってもよい。このように、ケース体内では押圧部材が一対のコア部材同士を対向方向に押し付ける力を発生させることで、各端面同士が離れてしまうことが防止されている。 Therefore, the current detector of the present invention further includes a pressing member and a gap spacer. First, the pressing member generates a force that presses the pair of core members in opposite directions from the outer side surfaces opposite to the end surfaces of the pair of core members while being accommodated in the case body. One pressing member may be provided for each core member, or one pressing member may be provided for both of a pair of core members. In this manner, the pressing member generates a force that presses the pair of core members in the facing direction in the case body, thereby preventing the end faces from separating from each other.
 次にギャップスペーサは、一対のコア部材の対向する端面間に規定間隔のギャップを形成するものであり、そのために一対のコア部材とともにケース体内に収容されるものである。すなわち、ギャップスペーサは、一対のコア部材同士が各端面を対向させる箇所(2箇所)にそれぞれ配置され、開口面が互いに背向して形成された一対の凹部内にそれぞれ対向する一対のコア部材の端部を受け入れた状態で、端面間に規定間隔のギャップを形成する。このように、押圧部材によって一対のコア部材が対向方向に押し付けられつつ、各端面を対向させる箇所では、それぞれギャップスペーサの凹部内で一対のコア部材の端部が(押し付けられる力に抗して)受け止められ、端面間にギャップ間隔を保持した状態に位置決めされる。なお、電流検出器は回路基板を備え、回路基板には、ケース体内に収容された状態で、ギャップ内に配置させた磁気検出素子(ホールセンサ、プローブコイル等)を用いて被検出電流を検出する検出回路が形成されている。 Next, the gap spacer forms a gap of a specified interval between the facing end faces of the pair of core members, and is therefore accommodated in the case together with the pair of core members. That is, the gap spacers are arranged at locations (two locations) where the end surfaces of the pair of core members face each other, and the pair of core members facing each other are provided in a pair of concave portions formed with the opening surfaces facing back to each other. A defined gap is formed between the end faces while receiving the ends of the . In this way, while the pair of core members are pressed in the opposing direction by the pressing member, the end portions of the pair of core members are pushed (against the pressing force) in the concave portions of the gap spacers at the locations where the respective end faces face each other. ) are received and positioned with a gap distance maintained between the end faces. The current detector has a circuit board, and the circuit board detects the current to be detected using a magnetic detection element (Hall sensor, probe coil, etc.) placed in the gap while being housed in the case body. A detection circuit is formed to
 本発明の発明者等は、上記のように一対のコア部材同士を対向方向に押し付けつつ、ギャップスペーサ(凹部)で各端部を受け止めることがギャップ間隔の安定した保持に有効であることに着想しているが、その上で、ケース体の開口方向へのコア部材の変位を抑制することがギャップ間隔やその位置の安定化に対し、より有効であるとの独自の知見を得ている。このためギャップスペーサは、一対のコア部材の対向する端面間にギャップを形成することに加え、全体を筒形状とすることで、凹部の形状を各コア部材の端部の外形に沿わせた袋形状としている。これにより、ギャップスペーサは、ケース体の開口方向へのコア部材の変位をも抑制することができ、一対のコア部材の位置決めによって形成したギャップの間隔及び位置を安定化させることができる。なお、開口方向はケース体の内側から開口側に向かう方向だけでなく、開口側から内側に向かう方向としてもよい。 The inventors of the present invention conceived that it is effective for stably maintaining the gap distance to receive each end portion with a gap spacer (recess) while pressing the pair of core members in the opposing direction as described above. However, we have obtained unique knowledge that suppressing the displacement of the core member in the opening direction of the case body is more effective for stabilizing the gap distance and its position. For this reason, the gap spacer forms a gap between the opposed end faces of a pair of core members, and also has a cylindrical shape as a whole, so that the shape of the concave portion conforms to the outer shape of the end of each core member. It has a shape. Thereby, the gap spacer can also suppress the displacement of the core member in the opening direction of the case body, and can stabilize the interval and position of the gap formed by positioning the pair of core members. The opening direction is not limited to the direction from the inside of the case body to the opening side, but may be the direction from the opening side to the inside.
 また、ギャップスペーサは、上記のように一対のコア部材を位置決めするだけでなく、回路基板の位置決めにも寄与する。回路基板の位置決めは、ギャップスペーサの構造と回路基板の構造との協働により達成される。すなわち、回路基板は部分環形状の基板部材を有し、また、基板部材の実装面からギャップ内に突出するようにして実装された電子部品を有している。電子部品は、磁気検出素子を内部に有することができる。そして基板部材には、ギャップスペーサと重なる位置に位置決め孔が形成されており、位置決め孔は基板部材を厚み方向に貫通している。 Further, the gap spacer not only positions the pair of core members as described above, but also contributes to the positioning of the circuit board. Positioning of the circuit board is achieved through cooperation between the structure of the gap spacer and the structure of the circuit board. That is, the circuit board has a partially ring-shaped board member, and electronic components mounted so as to protrude into the gap from the mounting surface of the board member. The electronic component can have a magnetic sensing element inside. A positioning hole is formed in the substrate member at a position overlapping the gap spacer, and the positioning hole penetrates the substrate member in the thickness direction.
 ギャップスペーサ側には、ギャップ間凹部及び位置決め突部が設けられている。このうちギャップ間凹部は、一対のコア部材の端面間の位置でギャップに対応する部分を基板部材の重ね合わせ方向に凹ませて形成されることで、内部に電子部品を受け入れ可能である。また、位置決め突部は、基板部材が重なる位置で基板部材の方向に突出して形成されており、基板部材の重ね合わせ状態で位置決め孔内に挿通されて基板部材を相対的に位置決めすることで、ギャップ内で電子部品を位置決めする。 A recess between gaps and a positioning protrusion are provided on the gap spacer side. Of these, the inter-gap recess is formed by recessing a portion corresponding to the gap between the end surfaces of the pair of core members in the direction in which the substrate members are superimposed, so that the electronic component can be received therein. In addition, the positioning protrusion is formed so as to protrude in the direction of the substrate members at a position where the substrate members are overlapped. Position the electronic component within the gap.
 これにより、(1)押圧部材及びギャップスペーサによるコア部材の位置決め、(2)ギャップ間隔及び位置の安定化に加えて、(3)ギャップ内での磁気検出素子の位置決め及びその安定化が同時に実現可能となる。したがって、電流検出器の検出精度のばらつきを抑え、長期間にわたり安定した性能を発揮させることができる。 As a result, (1) positioning of the core member by the pressing member and the gap spacer, (2) stabilization of the gap distance and position, and (3) positioning and stabilization of the magnetic sensing element within the gap are realized at the same time. It becomes possible. Therefore, variations in detection accuracy of the current detector can be suppressed, and stable performance can be exhibited over a long period of time.
 本発明の電流検出器は、以下の好ましい態様とすることもできる。
(1)ギャップスペーサは、ギャップ間凹部を中心として両側で一対の凹部が対称な形状に形成されるとともに、位置決め突部がギャップ間凹部を中心として対称な位置に一対をなして形成されている態様である。
The current detector of the present invention can also have the following preferred modes.
(1) In the gap spacer, a pair of recesses are formed in symmetrical shapes on both sides of the inter-gap recess, and a pair of positioning protrusions are formed in symmetrical positions around the inter-gap recess. It is a mode.
 上記の態様であれば、電流検出器の組み立て過程において、ギャップ間凹部を中心にギャップスペーサの凹部や位置決め突部をどちら向きにしてコア部材と組み合わせてもよいため、組み立ての際に向きを一々確認する必要がなく、作業効率を高めることができる。 In the above-described mode, in the process of assembling the current detector, the concave portion of the gap spacer and the positioning protrusion can be combined with the core member in any direction with respect to the inter-gap concave portion. There is no need to confirm, and work efficiency can be improved.
(2)ギャップスペーサは、当接部及び開通部を有することもできる。当接部は、凹部内の受け入れ方向の奥位置でコア部材の端面に当接し、ケース体内で押圧部材により押された状態のコア部材を端面にて位置決めする。また、開通部は、凹部とギャップ間凹部との間を開通させた状態で、ギャップ間凹部を通じて当接部とコア部材の端面との当接状態を外部から視認可能とする。 (2) The gap spacer can also have an abutment portion and an opening portion. The abutting portion abuts on the end face of the core member at the deep position in the receiving direction of the recess, and positions the core member at the end face while being pushed by the pressing member in the case body. Further, the open portion allows the contact state between the contact portion and the end surface of the core member to be visually recognized from the outside through the inter-gap recessed portion in a state in which the recessed portion and the inter-gap recessed portion are opened.
 上記の態様であれば、電流検出器の組み立て過程において、ギャップスペーサによって一対のコア部材が正しく位置決めされていることを目視で確認することができる。これにより、組み立て完成度が高まり、品質向上に寄与することができる。 According to the above aspect, it is possible to visually confirm that the pair of core members are correctly positioned by the gap spacer in the process of assembling the current detector. As a result, the degree of completeness of the assembly is enhanced, and it is possible to contribute to the improvement of quality.
(3)回路基板は、基板部材に通路孔が形成されていてもよい。通路孔は、コア部材及びギャップスペーサの少なくとも一方と重なり合う領域内に形成されており、厚み方向に貫通することでケース体内に充填される充填材の通路となるものである。 (3) The circuit board may have passage holes formed in the board member. The passage hole is formed in a region that overlaps with at least one of the core member and the gap spacer, and penetrates in the thickness direction to serve as a passage for the filling material that fills the case body.
 上記の態様であれば、電流検出器の組み立て過程において、ケース体内に充填させた充填材が回路基板とギャップスペーサとの間、又はコア部材との間に行き渡りやすくなり、充填効率を高めることができる。また、通路孔は、充填材が通過する前に空気の抜け孔にもなるため、空気溜りによって充填不良が発生することを抑制することができる。 According to the above aspect, in the process of assembling the current detector, the filling material filled in the case body can be easily spread between the circuit board and the gap spacer or between the core member, and the filling efficiency can be improved. can. In addition, since the passage hole also serves as an air vent before the filler passes through, it is possible to suppress the occurrence of insufficient filling due to air pockets.
 本発明によれば、コアを安定して位置決めすることができる。 According to the present invention, the core can be stably positioned.
電流センサ100の組み立て状態を示す斜視図である。FIG. 3 is a perspective view showing an assembled state of the current sensor 100; 電流センサ100の組み立て状態を示す斜視図である。FIG. 3 is a perspective view showing an assembled state of the current sensor 100; 電流センサ100の構成を概略的に示す分解斜視図である。2 is an exploded perspective view schematically showing the configuration of current sensor 100. FIG. 電流センサ100の構成を概略的に示す分解斜視図である。2 is an exploded perspective view schematically showing the configuration of current sensor 100. FIG. ギャップスペーサ106の詳細構造を示す斜視図である。4 is a perspective view showing the detailed structure of a gap spacer 106; FIG. コア部材104の位置決め状態を示す正面図である。4 is a front view showing a positioning state of the core member 104; FIG. 図5のVI-VI線に沿う断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 5; 図5のVI-VI線に沿う断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 5; 図6AのVII-VII線に沿う断面図である。FIG. 6B is a cross-sectional view along line VII-VII of FIG. 6A; バネスペーサ108の挿入軌跡を示す斜視図である。4 is a perspective view showing an insertion trajectory of a spring spacer 108; FIG. バネスペーサ108の挿入軌跡を示す斜視図である。4 is a perspective view showing an insertion trajectory of a spring spacer 108; FIG. バネスペーサ108の挿入軌跡を部位別に示した連続図である。FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts; バネスペーサ108の挿入軌跡を部位別に示した連続図である。FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts; バネスペーサ108の挿入軌跡を部位別に示した連続図である。FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts; バネスペーサ108の挿入軌跡を部位別に示した連続図である。FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts; バネスペーサ108の挿入軌跡を部位別に示した連続図である。FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts; バネスペーサ108の挿入軌跡を部位別に示した連続図である。FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts; バネスペーサ108の挿入軌跡を部位別に示した連続図である。FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts; バネスペーサ108の挿入軌跡を部位別に示した連続図である。FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts; バネスペーサ108の挿入軌跡を部位別に示した連続図である。FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts; バネスペーサ108の挿入軌跡を部位別に示した連続図である。FIG. 4 is a continuous view showing the insertion trajectory of the spring spacer 108 according to parts; 回路基板110の収容状態を示す図である。FIG. 3 is a diagram showing a housed state of a circuit board 110; 回路基板110の収容状態を示す図である。FIG. 3 is a diagram showing a housed state of a circuit board 110;
 以下、本発明の実施形態について図面を参照しながら説明する。以下の実施形態では、電流検出器の一例として磁気比例式の電流センサを挙げているが、本発明はこれに限られるものではなく、磁気平衡式の電流センサであってもよいし、フラックスゲートタイプ電流センサであってもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a magnetic proportional current sensor is used as an example of a current detector, but the present invention is not limited to this, and may be a magnetic balance current sensor or a flux gate. type current sensor.
 図1は、一実施形態の電流センサ100の組み立て状態を示す斜視図である。また、図2及び図3は、一実施形態の電流センサ100の構成を概略的に示す分解斜視図である。なお、図1Aに示す電流センサ100を異なる方向(180°反対側)から示すと、図1Bの斜視図となる。また、図2と図3とでは、斜視する方向が反転している。 FIG. 1 is a perspective view showing an assembled state of the current sensor 100 of one embodiment. 2 and 3 are exploded perspective views schematically showing the configuration of the current sensor 100 of one embodiment. Note that the perspective view of FIG. 1B is obtained when the current sensor 100 shown in FIG. 1A is shown from a different direction (180° opposite side). 2 and 3, the oblique direction is reversed.
〔全体構成〕
 図2及び図3に示されているように、電流センサ100は主にケース体102、コア部材104、ギャップスペーサ106、バネスペーサ108及び回路基板110を備えており、これらが図2及び図3に示す組み立て軸線AX上に組み合わされて電流センサ100となる。また、コア部材104については、組み立て軸線AXを中心に寄せ合わせてギャップスペーサ106と組み合わされた上で組み立てられるものとなっている。
〔overall structure〕
As shown in FIGS. 2 and 3, the current sensor 100 mainly includes a case body 102, a core member 104, a gap spacer 106, a spring spacer 108 and a circuit board 110, which are shown in FIGS. The current sensor 100 is assembled on the assembly axis AX shown. Further, the core member 104 is assembled after being combined with the gap spacer 106 by bringing the assembly axis AX to the center.
 そして、電流センサ100は、ケース体102にコア部材104、ギャップスペーサ106、バネスペーサ108及び回路基板110を収容した状態で、図1に示されるような一使用形態となる。図1~3は、この使用形態を想定した姿勢で電流センサ100を示しており、この使用形態では、被検出電流を導通する図示しない一次導体(バスバー等)が横方向(水平方向)に挿通されることを想定している。また、図1では、ケース体102の内部が充填材105により封止された状態で示されているが、図2及び図3には充填材105が示されていない。なお、電流センサ100はその他の姿勢(例えば平置き姿勢、小端立て姿勢、倒立姿勢等)で使用される形態であってもよい。 Then, the current sensor 100 is in one usage form as shown in FIG. 1 to 3 show the current sensor 100 in a posture assuming this type of use, in which a primary conductor (such as a busbar) (not shown) that conducts the current to be detected is inserted laterally (horizontally). It is assumed that Further, FIG. 1 shows the inside of the case body 102 sealed with the filler 105, but the filler 105 is not shown in FIGS. Note that the current sensor 100 may be used in other postures (for example, a flat posture, a small end standing posture, an inverted posture, etc.).
〔ケース体〕
 ケース体102は、一端面が開口(開放)し、他端面が閉塞された矩形の容器状をなしている。また、ケース体102は、その中央に矩形状の挿通部103が形成されており、このためケース体102の容器形状は、全体として矩形の環状をなしている。挿通部103は、組み立て状態で電流センサ100の中央を厚み方向に貫通しており、上記の図示しない一次導体は、図1に示す電流センサ100の立姿勢において、挿通部103内を横方向(水平方向)に挿通されることになる。このためケース体102には、電流センサ100を立姿勢で設置するためのフランジ102aが一体に形成されている。また、ケース体102には、挿通部103に連なってブラケット部102bが突出して形成されており、このブラケット部102bにおいて、ケース体102が図示しない一次導体とねじ留めされるものとなっている。
[Case body]
The case body 102 has a rectangular container shape with one end face open (open) and the other end face closed. Further, the case body 102 has a rectangular insertion portion 103 formed in its center, so that the container shape of the case body 102 as a whole has a rectangular annular shape. The insertion portion 103 penetrates through the center of the current sensor 100 in the assembled state in the thickness direction, and the primary conductor (not shown) extends in the insertion portion 103 in the lateral direction ( horizontal direction). For this reason, the case body 102 is integrally formed with a flange 102a for installing the current sensor 100 in an upright position. A bracket portion 102b is formed in the case body 102 so as to extend from the insertion portion 103, and the case body 102 is screwed to a primary conductor (not shown) at the bracket portion 102b.
〔コア部材〕
 コア部材104は、図示しない一次導体の周囲で一対をなして配置されている。一対のコア部材104は、個々に横向きのU字形状(いわゆるU-U型)をなしており、互いにU字の先端面である両方の端面(つまり両端面)104aを対向させた状態で矩形の環状に配置され、1つの磁性体コアを構成する。このとき、一対のコア部材104の端面104a同士の間(2箇所)にギャップが形成されるが、これについてはさらに後述する。各コア部材104には軟磁性材料(例えばフェライト、珪素鋼等)が用いられており、図示しない一次導体に被検出電流が導通すると、その周囲に発生した磁界が一対のコア部材104に収束される。このとき一対のコア部材104は、その周方向に磁界の収束経路(磁気回路、磁気経路、磁束経路)を形成する。なお、各コア部材104にはグランド電極104bが溶接されている。
[Core member]
The core members 104 are arranged in pairs around primary conductors (not shown). The pair of core members 104 are each formed in a horizontal U shape (so-called UU shape), and are rectangular with both end surfaces (that is, both end surfaces) 104a, which are tip surfaces of the U shape, facing each other. are arranged in a ring to constitute one magnetic core. At this time, gaps are formed between the end surfaces 104a of the pair of core members 104 (at two locations), which will be described later. A soft magnetic material (for example, ferrite, silicon steel, etc.) is used for each core member 104 , and when a current to be detected passes through a primary conductor (not shown), a magnetic field generated around it is converged on the pair of core members 104 . be. At this time, the pair of core members 104 forms a magnetic field convergence path (magnetic circuit, magnetic path, magnetic flux path) in the circumferential direction. A ground electrode 104 b is welded to each core member 104 .
〔ギャップスペーサ〕
 ギャップスペーサ106は、例えば樹脂製の構造部品であり、ここでは全体として角筒形状をなしている。この角筒形状は、一例としてコア部材104の端部における外形状(ここでは角柱形状)に沿わせたものであり、コア部材104の端部の外形状が円柱形状であれば、ギャップスペーサ106を円筒形状としてもよいし、四角柱以外の多角柱形状であれば、ギャップスペーサ106を多角筒形状としてもよい。
[Gap spacer]
The gap spacer 106 is, for example, a structural part made of resin, and has a rectangular tubular shape as a whole here. As an example, the rectangular tubular shape follows the outer shape (here, prismatic shape) of the end portion of the core member 104. If the outer shape of the end portion of the core member 104 is cylindrical, the gap spacer 106 may have a cylindrical shape, and the gap spacer 106 may have a polygonal tubular shape if it has a polygonal prism shape other than a quadrangular prism.
〔凹部〕
 また、ギャップスペーサ106は、一対のコア部材104がこれらの両端面104aを対向させる位置(ここでは2箇所)にそれぞれ配置されている。個々のギャップスペーサ106は、一対のコア部材104の組み合わせ方向(端面104aの対向方向)でみた両側に一対をなす凹部106aを有しており、これら凹部106aは、ギャップスペーサ106の両端にて開口することにより、互いに開口面を背向(反対向きに)させている。これら凹部106aもまた、コア部材104の端部における外形状に沿わせた袋形状をなしており、コア部材104の端部が対応する凹部106a内に挿入された状態では、凹部106aの内面がコア部材104の端部における外面に沿う格好となる。また、各凹部106a内でコア部材104の端面104aは突き当たりの状態となる。なお、凹部106aについてはさらに後述する。
[Recess]
Also, the gap spacers 106 are arranged at positions (here, two positions) where the pair of core members 104 face their end faces 104a. Each gap spacer 106 has a pair of recesses 106a on both sides when viewed in the direction in which the pair of core members 104 are combined (the direction in which the end faces 104a face each other). By doing so, the opening faces are facing back (in opposite directions). These recesses 106a also have a bag shape that conforms to the outer shape of the end of the core member 104, and when the end of the core member 104 is inserted into the corresponding recess 106a, the inner surface of the recess 106a is It conforms to the outer surface at the end of the core member 104 . Also, the end surface 104a of the core member 104 abuts against each recess 106a. The concave portion 106a will be further described later.
〔ギャップ間凹部〕
 さらにギャップスペーサ106は、一対のコア部材104の組み合わせ方向でみた中央位置にギャップ間凹部106bを有している。このギャップ間凹部106bは、両側一対の凹部106aの間に位置しており、ギャップスペーサ106の外面からは組み立て軸線AX方向に凹んでいる。なお、ギャップ間凹部106bについてもさらに後述する。
[Recess between gaps]
Further, the gap spacer 106 has an inter-gap concave portion 106b at a central position when viewed in the combination direction of the pair of core members 104. As shown in FIG. The inter-gap recess 106b is located between the pair of recesses 106a on both sides and is recessed from the outer surface of the gap spacer 106 in the assembly axis AX direction. The inter-gap concave portion 106b will also be described later.
〔押圧部材〕
 バネスペーサ108は、一対のコア部材104に対応して一対をなしており、コア部材104ともにケース体102内に収容されるものとなっている。バネスペーサ108は、収容状態でケース体102に支持されるとともに、対応する一方のコア部材104を他方のコア部材104に向けて押し付ける力を発生させる(一対のコア部材104を互いの対向方向に付勢する)。バネスペーサ108は、矩形状をなす板状部分(参照符号なし)の両端縁に脚部108b及び掛止爪108cが2本ずつ形成されるとともに、板状部分の一方の長側縁にバネ部108aが形成されている。これら脚部108bや掛止爪108c、バネ部108aは板状部分からケース体102の内部に向けて延びており、電流センサ100の組み立て状態では、脚部108b、掛止爪108c及びバネ部108aはコア部材104の外周面とケース体102内面との間に配置される。このためバネスペーサ108は、ケース体102の一端面開口側からコア部材104の一側面及び外周面に被さるようにしてケース体102に収容されるものとなっている。この収容状態で、バネスペーサ108はコア部材104を所定位置に位置決めする。なお、バネスペーサ108による位置決めについてはさらに後述する。
[Pressing member]
A pair of spring spacers 108 correspond to the pair of core members 104 and are housed in the case body 102 together with the core members 104 . The spring spacer 108 is supported by the case body 102 in an accommodated state, and generates a force that presses one corresponding core member 104 toward the other core member 104 (a pair of core members 104 are attached in a direction facing each other). force). The spring spacer 108 has two legs 108b and two latching claws 108c formed at each end edge of a rectangular plate-like portion (no reference numeral), and a spring portion 108a at one long side edge of the plate-like portion. is formed. The leg portion 108b, the latching claw 108c, and the spring portion 108a extend from the plate-like portion toward the inside of the case body 102, and when the current sensor 100 is assembled, the leg portion 108b, the latching claw 108c, and the spring portion 108a extend. is arranged between the outer peripheral surface of the core member 104 and the inner surface of the case body 102 . Therefore, the spring spacer 108 is housed in the case body 102 so as to cover one side surface and the outer peripheral surface of the core member 104 from the one end face opening side of the case body 102 . In this housed state, spring spacer 108 positions core member 104 at a predetermined position. Positioning by the spring spacer 108 will be further described later.
〔回路基板〕
 回路基板110もまた、ケース体102の一端面開口やコア部材104の一側面に合わせた形状をなしているが、環状にはつながっておらず、孔空き矩形状を半割にしたようなコ字形状となっている。すなわち、回路基板110はコ字形の部分環形状をなす絶縁性の基板部材を有しており、その両側の実装面や内層部分に図示しない配線パターンやビアホールが形成されている。また、基板部材の一方の実装面には2つのASIC112がスルーホール実装されており、他方の実装面にはコネクタ110aがスルーホール実装されている。
[Circuit board]
The circuit board 110 also has a shape that matches one end face opening of the case body 102 and one side face of the core member 104, but is not connected in a ring shape, and is like a holed rectangular shape divided in half. It has a character shape. That is, the circuit board 110 has an insulating board member having a U-shaped partial ring shape, and wiring patterns and via holes (not shown) are formed on both mounting surfaces and inner layer portions of the board member. Two ASICs 112 are mounted through holes on one mounting surface of the substrate member, and a connector 110a is mounted through holes on the other mounting surface.
 ASIC112は、例えばホールセンサ等の磁気検出素子を含む回路が集積された電子デバイスである。電流センサ100の組み立て状態では、回路基板110は、一方のバネスペーサ108の板状部分に重ね合わせるようにしてケース体102に収容される。この収容状態で、2つのASIC112はギャップスペーサ106のギャップ間凹部106b内に配置されるものとなっている。回路基板110には、ASIC112の出力信号を用いて被検出電流を検出するための回路が形成されている。このため、回路基板110(基板部材)の各実装面には、図示しない各種の電子部品(チップ部品、IC等)もまた実装されている。また適宜、回路基板110にはグランド電極104bのスルーホール110bが形成されている。なお、回路基板110は環状に形成されていてもよい。 The ASIC 112 is an electronic device in which a circuit including a magnetic detection element such as a Hall sensor is integrated. In the assembled state of the current sensor 100 , the circuit board 110 is accommodated in the case body 102 so as to overlap the plate-like portion of one spring spacer 108 . In this housed state, the two ASICs 112 are arranged in the inter-gap recess 106 b of the gap spacer 106 . A circuit for detecting the current to be detected using the output signal of the ASIC 112 is formed on the circuit board 110 . Therefore, various electronic components (chip components, ICs, etc.) (not shown) are also mounted on each mounting surface of the circuit board 110 (substrate member). A through hole 110b for the ground electrode 104b is formed in the circuit board 110 as appropriate. Note that the circuit board 110 may be formed in an annular shape.
〔詳細構造〕
 図4は、ギャップスペーサ106の詳細構造を示す斜視図である。上記のようにギャップスペーサ106は、全体として角筒形状をなしているとともに、その内部には両側一対の凹部106aを有している。また、両側一対の凹部106a間には、上記のギャップ間凹部106bが外面から凹む(抉れた)ようにして形成されている。そして、両側一対の凹部106aは、ギャップ間凹部106bを中心として対称(例えば点対称)となる形状に形成されている。
[Detailed structure]
FIG. 4 is a perspective view showing the detailed structure of the gap spacer 106. As shown in FIG. As described above, the gap spacer 106 has a rectangular tubular shape as a whole and has a pair of concave portions 106a on both sides inside. Between the pair of concave portions 106a on both sides, the inter-gap concave portions 106b are formed so as to be recessed (gouged) from the outer surface. The pair of concave portions 106a on both sides are formed in a shape that is symmetrical (for example, point-symmetrical) about the inter-gap concave portion 106b.
〔当接部〕
 各凹部106aは箱形をした袋形状であり、その内部が突き当たり(行き止まり)となる形状(いわゆる有底形状)となっている。より詳細には、各凹部106a内の突き当たりになる位置(奥底)にはリブ状の当接部106dが形成されており、この当接部106dが対応するコア部材104の端面104aに当接し、コア部材104を位置決めする。図4には現れていないが、凹部106aの開口側からみて当接部106dは、例えば田字形状又は目字形状に形成されている。これにより、端面104aとの接触範囲を広げ、コア部材104の位置決めをより確実にすることができる。
[Contact part]
Each concave portion 106a has a box-like bag shape, and the inside of the concave portion 106a has a shape (a so-called bottomed shape) where the inside of the concave portion 106a abuts (dead end). More specifically, a rib-shaped contact portion 106d is formed at a position (deep bottom) that abuts each recess 106a. Position the core member 104 . Although not shown in FIG. 4, the abutting portion 106d is formed in, for example, a square shape or a square shape when viewed from the opening side of the concave portion 106a. As a result, the contact range with the end surface 104a can be widened, and the positioning of the core member 104 can be made more reliable.
〔開通部〕
 ただし、凹部106aの突き当たりになる面は閉塞されておらず、部分的に窓状の開口が形成されている。この開口した部分が開通部106cとなっており、この開通部106cは、凹部106aとギャップ間凹部106bとの間を部分的に開通させた状態となっている。これにより、上記の当接部106dが視認可能となり、また、コア部材104の組み付け状態では、当接部106dと端面104aとの当接状態を外部から視認可能となっている。これにより、電流センサ100の組み立て過程において作業者等は、開通部106cを通じてコア部材104(端面104a)が正しく位置決めされていることを目視確認することができる。
[Opening part]
However, the surface that abuts the concave portion 106a is not closed and is partially formed with a window-like opening. This open portion serves as an open portion 106c, and the open portion 106c is in a state of partially opening the recess 106a and the inter-gap recess 106b. As a result, the contact portion 106d can be visually recognized, and when the core member 104 is assembled, the contact state between the contact portion 106d and the end face 104a can be visually recognized from the outside. Accordingly, in the process of assembling the current sensor 100, an operator or the like can visually confirm through the opening 106c that the core member 104 (end surface 104a) is correctly positioned.
〔位置決め突部〕
 また、ギャップスペーサ106の外面には、組み立て時に回路基板110が重ね合わされる位置に突起状の位置決め突部106eが形成されており、位置決め突部106eは組み立て状態で回路基板110の方向に突出している。また、位置決め突部106eはギャップ間凹部106bを中心とした対称(例えば点対称)の位置に一対をなして形成されている。なお、位置決め突部106eによる回路基板110の位置決め等についてはさらに後述する。
[Positioning protrusion]
A protruding positioning protrusion 106e is formed on the outer surface of the gap spacer 106 at a position where the circuit board 110 is superimposed during assembly, and the positioning protrusion 106e projects toward the circuit board 110 in the assembled state. there is A pair of positioning projections 106e are formed at symmetrical (for example, point-symmetrical) positions about the inter-gap recess 106b. Positioning of the circuit board 110 by the positioning protrusion 106e will be further described later.
 その他に、ギャップスペーサ106には、各凹部106aの開口縁からギャップ間凹部106bに向けて切欠部106fが形成されており、この切欠部106fは、コア部材104のグランド電極104bを受け入れ可能な深さ及び広さを有している。また、一対の凹部106aが対称であるのと同様に、切欠部106fもまた両側で対称(例えば点対称)に形成されている。 In addition, a notch 106f is formed in the gap spacer 106 from the opening edge of each recess 106a toward the inter-gap recess 106b. It has wideness and breadth. In addition, the notches 106f are formed symmetrically (for example, point-symmetrically) on both sides in the same way that the pair of recesses 106a are symmetrical.
〔ユニバーサル形状〕
 図4からも明らかなように、ギャップスペーサ106の形状は、組み立て軸線AXを中心に180°回転(反転)させた状態でも同一(不変)である。また、一対のコア部材104が端面104aを対向させる位置が2箇所あるが、そのどちらの位置にもギャップスペーサ106を共通に使用することができるものとなっている。これにより、組み立て過程でギャップスペーサ106を共通のユニバーサル部品とすることができ、作業性や作業効率を向上させることができる。
[Universal shape]
As is clear from FIG. 4, the shape of the gap spacer 106 remains the same (unchanged) even when it is rotated (reversed) by 180° about the assembly axis AX. Further, there are two positions where the end surfaces 104a of the pair of core members 104 face each other, and the gap spacer 106 can be used in common at both positions. Thereby, the gap spacer 106 can be used as a common universal component in the assembly process, and workability and work efficiency can be improved.
〔位置決め状態〕
 図5は、コア部材104の位置決め状態を示す正面図である。なお、図5に回路基板110は示されていない。
[Positioning state]
FIG. 5 is a front view showing the positioning state of the core member 104. FIG. Note that the circuit board 110 is not shown in FIG.
〔ギャップの形成〕
 一対のコア部材104は、ケース体102内に収容された状態で、両端面104aを対向させて環状に配置される。一対のバネスペーサ108は、ケース体102内に収容された状態では、いずれもケース体102に対して固定されているが、バネ部108aはケース体102に接触することなく、板状部分を固定端として弾性変形可能である。このとき、一対のコア部材104の対向方向を図5中の矢印A1方向とすると、上記のバネ部108aは、コア部材104の外側面に接触して矢印A1方向とは逆向きに弾性変形しつつ、その復元力(反発力)で一対のコア部材104を矢印A1方向に押し付け合う力を発生させている。これにより、ギャップスペーサ106の各凹部106a内では、コア部材104の端面104aが当接部106dに当接した状態に保持され、対向する端面104a間に規定間隔のギャップが形成されることになる。
[Gap formation]
The pair of core members 104 are housed in the case body 102 and are annularly arranged with opposite end faces 104a. Both of the pair of spring spacers 108 are fixed to the case body 102 in a state of being housed in the case body 102, but the spring portion 108a does not contact the case body 102 and the plate-like portion is fixed to the fixed end. can be elastically deformed as At this time, if the facing direction of the pair of core members 104 is the direction of arrow A1 in FIG. At the same time, the restoring force (repulsive force) generates a force that presses the pair of core members 104 together in the arrow A1 direction. As a result, the end surface 104a of the core member 104 is held in contact with the contact portion 106d in each recess 106a of the gap spacer 106, and a gap of a specified distance is formed between the opposing end surfaces 104a. .
〔対向方向の位置決め〕
 また、一対のコア部材104は、ケース体102内に収容された状態で、ギャップスペーサ106及びバネスペーサ108によって対向方向(矢印A1方向)に位置決めされることになる。すなわち、一対のコア部材104は、バネスペーサ108のバネ部108aで対向方向に押されつつ、ギャップスペーサ106の凹部106a内で当接部106dに突き当てられることにより、ケース体102内での対向方向への変位が抑えられて位置決めされる。
[Positioning in the opposite direction]
In addition, the pair of core members 104 are positioned in the facing direction (arrow A1 direction) by the gap spacer 106 and the spring spacer 108 while being accommodated in the case body 102 . That is, the pair of core members 104 are pushed in the opposing direction by the spring portion 108a of the spring spacer 108, and are abutted against the contact portion 106d in the concave portion 106a of the gap spacer 106, thereby moving the pair of core members 104 in the opposing direction in the case body 102. Positioning is achieved by suppressing the displacement to
〔対向方向以外の位置決め〕
 また、コア部材104の対向方向以外の位置決めは、例えばケース体102内面のリブ102fによって行われる。リブ102fは、一対のコア部材104の対向方向とは直交する方向で対向する外周壁の内面に沿って多数の位置に形成されており、各リブ102fは、ケース体102の他端側面から一端面開口に向けて筋状に延びている。各コア部材104は、ケース体102内に収容された状態で開口とは反対側(奥側)のエッジが多数のリブ102fによって案内され、開口面に沿う対向方向とは直交方向に位置決めされる。なお、ケース体102内面にはその他にも多数のリブ102c,102dが形成されているが、これらについては後述する。
[Positioning in directions other than opposing direction]
Positioning of the core member 104 in directions other than the facing direction is performed by ribs 102f on the inner surface of the case body 102, for example. The ribs 102f are formed at a number of positions along the inner surfaces of the outer peripheral walls facing each other in a direction perpendicular to the facing direction of the pair of core members 104. It extends like a streak toward the end face opening. Each core member 104 is guided by a large number of ribs 102f at its edge on the opposite side (deep side) of the opening when housed in the case body 102, and is positioned in a direction perpendicular to the facing direction along the opening surface. . A large number of ribs 102c and 102d are also formed on the inner surface of the case body 102, which will be described later.
〔コア部材の変位抑制〕
 ギャップスペーサ106は、上記のようにギャップを形成しつつ一対のコア部材104を互いの対向方向に位置決めすることに加えて、コア部材104がケース体102の開口方向に変位することを抑制している。以下、この点についてさらに説明する。
[Displacement Suppression of Core Member]
The gap spacer 106 forms the gap as described above, and in addition to positioning the pair of core members 104 in the direction facing each other, suppresses the displacement of the core members 104 in the opening direction of the case body 102 . there is This point will be further described below.
 図6は、ギャップスペーサ106によるコア部材104の変位抑制構造例を示した断面図(図5のVI-VI線に沿う断面図)である。ここでは、図6Aが本実施形態の構造例を示し、図6Bが比較例の構造例を示している。以下、比較例と対比しながら本実施形態の構造例について説明する。 FIG. 6 is a cross-sectional view (a cross-sectional view taken along line VI-VI in FIG. 5) showing an example of a structure for suppressing displacement of the core member 104 by the gap spacer 106. As shown in FIG. Here, FIG. 6A shows a structural example of this embodiment, and FIG. 6B shows a structural example of a comparative example. A structural example of this embodiment will be described below in comparison with a comparative example.
〔本実施形態の構造例〕
 図6A:上記のように一対のコア部材104は、各端面104aと反対側の各外側面からバネ部108aによって対向方向に押し付けられている。このとき、バネ部108aがコア部材104の外側面とは線接触しているため、図示の断面でみた場合、各コア部材104には、バネ部108aとの接触点を支点Pとしてケース体102の開口方向への傾き(回転)変位を生じる可能性が考えられることになる。これは、両側からバネ部108aが一対のコア部材104を対向方向に押し付け合っていることにも起因する。ただし、本実施形態の構造例の場合、ギャップスペーサ106の凹部106aが袋形状であることにより、このようなコア部材104の傾き変位が抑制されている。
[Structural example of the present embodiment]
FIG. 6A: As described above, the pair of core members 104 are pressed in opposing directions by the spring portions 108a from the respective outer surfaces opposite to the respective end surfaces 104a. At this time, since the spring portion 108a is in line contact with the outer surface of the core member 104, each core member 104 has a contact point P with the spring portion 108a. , the possibility of tilting (rotational) displacement in the direction of the opening is conceivable. This is also due to the fact that the spring portions 108a press the pair of core members 104 against each other from both sides. However, in the case of the structural example of the present embodiment, such an inclination displacement of the core member 104 is suppressed because the concave portion 106a of the gap spacer 106 is shaped like a bag.
〔比較例の構造例〕
 図6B:比較例となる構造例は、ブロック形状又は板形状のスペーサ60をギャップ内に配置したものである。この場合でも、本実施形態と同様のバネ部108aで一対のコア部材104を押し付け合えば、スペーサ60でギャップを形成し、コア部材104を位置決めすることはできると考えられる。しかしながら、ギャップの両側では、コア部材104の端部がケース体102の開口方向にフリーの状態であるため、支点Pを中心としてコア部材104が開口方向に大きく傾いて(回転)変位する可能性が高い。この場合、ギャップ間隔やギャップ位置が変動してしまい、電流検出精度が不安定になりやすい。
[Structure example of comparative example]
FIG. 6B: A comparative structural example is one in which a block-shaped or plate-shaped spacer 60 is arranged in the gap. Even in this case, if the pair of core members 104 are pressed against each other by the spring portions 108a similar to those of the present embodiment, it is considered possible to form a gap with the spacer 60 and position the core members 104. FIG. However, on both sides of the gap, since the ends of the core member 104 are free in the opening direction of the case body 102, there is a possibility that the core member 104 is greatly inclined (rotationally) displaced about the fulcrum P in the opening direction. is high. In this case, the gap interval and gap position fluctuate, and the current detection accuracy tends to become unstable.
 この点、本実施形態の構造例(図6A)の場合、コア部材104の端部は凹部106a内でその内面及び当接部106dによって袋状に掴まれているため、支点Pを中心とした傾きが拘束され、上記のように変位を抑制することができる。これにより、端面104a間に形成したギャップの間隔を安定して保持するとともに、ギャップの位置が正規の位置からずれてしまうことを確実に抑制することができるので、電流検出精度の安定を図ることができる。 In this regard, in the case of the structural example of this embodiment (FIG. 6A), the end of the core member 104 is gripped in the shape of a bag by the inner surface of the recess 106a and the contact portion 106d. Tilt is constrained and displacement can be constrained as described above. As a result, the distance between the gaps formed between the end faces 104a can be stably maintained, and the deviation of the position of the gap from the normal position can be reliably suppressed, so that the current detection accuracy can be stabilized. can be done.
〔ギャップスペーサの位置決め〕
 図7は、ケース体102内でのギャップスペーサ106の位置決め構造例を示す断面図(図6AのVII-VII線に沿う断面図)である。ギャップスペーサ106については、ケース体102内面のリブ102cによって一対のコア部材104の対向方向に位置決めされている。また、対向方向で対になる2つのリブ102c間には、その他のリブ(参照符号なし)が形成されており、これらのリブによってギャップスペーサ106がコア部材104の端面104aに沿う方向にも位置決めされている。なお、図7に当接部106dの断面形状が示されているように、凹部106a内で当接部106dは、上記のように複数箇所で端面104aに当接していることが分かる。
[Positioning of gap spacer]
FIG. 7 is a cross-sectional view (a cross-sectional view taken along line VII-VII in FIG. 6A) showing an example of the positioning structure of the gap spacer 106 inside the case body 102. As shown in FIG. The gap spacer 106 is positioned in the facing direction of the pair of core members 104 by ribs 102 c on the inner surface of the case body 102 . Other ribs (no reference numeral) are formed between the two ribs 102c paired in the opposite direction, and these ribs also position the gap spacer 106 in the direction along the end face 104a of the core member 104. It is 7 shows the cross-sectional shape of the contact portion 106d, it can be seen that the contact portion 106d contacts the end surface 104a at a plurality of locations within the recess 106a.
 また、コア部材104の端面104aに沿う方向では、コア部材104と凹部106a内面との間にある程度のクリアランスが設けられている。これにより、凹部106a内にコア部材104の端部を挿入する際の作業性が高まり、効率を向上させることができる。 Also, in the direction along the end surface 104a of the core member 104, a certain amount of clearance is provided between the core member 104 and the inner surface of the recess 106a. As a result, the workability of inserting the end of the core member 104 into the recess 106a is improved, and the efficiency can be improved.
〔バネスペーサ挿入軌跡〕
 図8は、電流センサ100の組み立て過程におけるケース体102内へのバネスペーサ108の挿入軌跡を示す斜視図である。このうち、図8Aがバネスペーサ108の挿入前を示し、図8Bが挿入後を示している。
[Spring spacer insertion trajectory]
FIG. 8 is a perspective view showing an insertion trajectory of spring spacer 108 into case body 102 in the process of assembling current sensor 100 . Among them, FIG. 8A shows the state before insertion of the spring spacer 108, and FIG. 8B shows the state after insertion.
 電流センサ100の組み立て過程では、ケース体102の一端面開口を上向きにした状態でバネスペーサ108がコア部材104に重ね合わせるようにして組み付けられる。また、各バネスペーサ108の脚部108b、掛止爪108c及びバネ部108aは、コア部材104の収容後にコア部材104の外周面とケース体102内面との間に挿入されるものとなっている。このようなバネスペーサ108の挿入軌跡において、脚部108bの挿入がケース体102内面のリブ102dによって案内される。また、挿入軌跡において、脚部108b、掛止爪108c及びバネ部108aは時間差を置いて順番に挿入される。 In the process of assembling the current sensor 100, the spring spacer 108 is assembled so as to overlap the core member 104 with one end face opening of the case body 102 facing upward. Further, the leg portion 108b, the latching claw 108c and the spring portion 108a of each spring spacer 108 are inserted between the outer peripheral surface of the core member 104 and the inner surface of the case body 102 after the core member 104 is accommodated. In such an insertion trajectory of the spring spacer 108, the insertion of the leg portion 108b is guided by the ribs 102d on the inner surface of the case body 102. As shown in FIG. Further, in the insertion trajectory, the leg portion 108b, the latching claw 108c and the spring portion 108a are inserted in order with a time lag.
 図9は、バネスペーサ108の挿入軌跡を部位別に示した連続図である。このうち、図9Aが挿入方向でみたケース体102及びバネスペーサ108の平面図であり、図9B1~図9B3が脚部108bの挿入軌跡を示す断面図(図9AのB-B断面図)であり、図9C1~図9C3がバネ部108aの挿入軌跡を示す断面図(図9AのC-C断面図)であり、図9D1~図9D3が掛止爪108cの挿入軌跡を示す断面図(図9AのD-D断面図)である。 FIG. 9 is a continuous diagram showing the insertion trajectory of the spring spacer 108 for each part. Among them, FIG. 9A is a plan view of the case body 102 and the spring spacer 108 viewed in the insertion direction, and FIGS. 9C1 to 9C3 are sectional views showing the insertion trajectory of the spring portion 108a (CC sectional view in FIG. 9A), and FIGS. DD sectional view).
〔挿入初期段階〕
 図9B1:バネスペーサ108の挿入初期段階では、最初に脚部108bの先端部分がケース体102の内面に沿って差し込まれ、各位置で2本のリブ102dの間に挿入される。これにより、ケース体102の一端面開口に対するバネスペーサ108の挿入開始位置を容易に得ることができる。
 図9C1,図9D1:一方、挿入初期に脚部108bの先端部分が差し込まれた段階で、他のバネ部108a及び掛止爪108cはケース体102やコア部材104と接触することはない。
[Initial stage of insertion]
FIG. 9B1: At the initial stage of inserting the spring spacer 108, the tip portion of the leg portion 108b is first inserted along the inner surface of the case body 102 and inserted between the two ribs 102d at each position. As a result, the insertion start position of the spring spacer 108 with respect to the one end face opening of the case body 102 can be easily obtained.
FIGS. 9C1 and 9D1: On the other hand, when the tip of the leg portion 108b is inserted in the initial stage of insertion, the other spring portion 108a and latching claw 108c do not come into contact with the case body 102 or the core member 104. FIGS.
〔挿入中期段階〕
 図9B2:脚部108bがさらに2本のリブ102dの間に挿入されていく。
 図9C2:バネ部108aは、その基端から中央方向に向けて傾斜するように延びているが、先端部分がコア部材104の対向方向とは反対に反り返っている。この反り返り部分は、コア部材104の外周縁よりも対向方向の内側に入り込んでいる。このため挿入中期段階においては、バネ部108aの反り返り部分がコア部材104の外周縁に接触する。
[Middle stage of insertion]
Figure 9B2: Leg 108b is inserted between two more ribs 102d.
FIG. 9C2: The spring portion 108a extends so as to be inclined toward the center from its base end, but its tip portion is warped in the opposite direction to the facing direction of the core member 104. FIG. This warped portion is located inside the outer peripheral edge of the core member 104 in the opposing direction. Therefore, the warped portion of the spring portion 108a contacts the outer peripheral edge of the core member 104 in the middle stage of insertion.
 図9D2:ケース体102の内面には、掛止爪108cが挿入される位置に対応して出っ張り状の掛止部102eが形成されており、掛止爪108cは、掛止部102eとともに挿入過程の終盤において機能する。したがって、中期段階では掛止爪108cと掛止部102eとは未だ接触していない。 FIG. 9D2: On the inner surface of the case body 102, a projecting hooking portion 102e is formed corresponding to the position where the hooking claw 108c is inserted. functions at the end of Therefore, in the middle stage, the hooking claw 108c and the hooking portion 102e are not yet in contact with each other.
〔挿入終期段階~完了時〕
 図9B3:脚部108bがさらに2本のリブ102dの間に深く挿入されていき、挿入が完了すると、バネスペーサ108の板状部分がリブ102dに接触してケース体102の開口方向に位置決めされる。また、脚部108bはケース体102の内面には接触しているが、挿入の完了後もコア部材104とは接触しない。
[Late stage of insertion to completion]
FIG. 9B3: The leg portion 108b is further inserted deeply between the two ribs 102d, and when the insertion is completed, the plate-like portion of the spring spacer 108 comes into contact with the ribs 102d and is positioned in the opening direction of the case body 102. . Moreover, although the leg portion 108b contacts the inner surface of the case body 102, it does not contact the core member 104 even after the insertion is completed.
 図9C3:また、バネ部108aがコア部材104の外側面に押し返されて対向方向と反対側に弾性変形し、その復元力でコア部材104を対向方向に押し付ける。両側一対のバネスペーサ108でみると、一対のバネ部108aが対向方向の反対側に広がるようにして曲げ変形されることになる。そして、挿入が完了すると、両側一対のバネ部108aが上記のように一対のコア部材104を対向方向に押し付けた状態となる。このとき、初期段階でバネスペーサ108全体の平面方向(ケース体102の開口面に沿う方向)の挿入位置が決定しているため、バネ部108aの荷重及び撓み量の安定した管理が可能となる。 FIG. 9C3: In addition, the spring part 108a is pushed back against the outer surface of the core member 104 and elastically deformed in the opposite direction to the opposing direction, and the restoring force presses the core member 104 in the opposing direction. Looking at the pair of spring spacers 108 on both sides, the pair of spring portions 108a are bent and deformed so as to expand in the opposite direction of the opposing direction. When the insertion is completed, the pair of spring portions 108a on both sides presses the pair of core members 104 in the opposite direction as described above. At this time, since the insertion position of the entire spring spacer 108 in the planar direction (the direction along the opening surface of the case body 102) is determined at the initial stage, the load and deflection amount of the spring portion 108a can be stably managed.
 図9D3:終期段階において、掛止爪108cの先端部分(返し部分)が掛止部102eに接触し、さらに挿入が進んでいくと、掛止爪108cはコア部材104側に撓む(弾性変形する)。このとき、挿入過程の初期段階でバネスペーサ108の挿入開始位置が決定しているため、掛止爪108cが受ける荷重及び撓み量の安定した管理が可能となる。そして、掛止爪108cの先端部分(返し部分)が掛止部102eを通り過ぎると、掛止爪108cが撓んだ状態から復元し、先端部分(返し部分)が掛止部102eに引っ掛かって挿入完了となる。これにより、バネスペーサ108のケース体102からの脱落が防止され、コア部材104の保持が行われる。 FIG. 9D3: At the final stage, the tip portion (turned portion) of the latching claw 108c contacts the latching portion 102e, and as the insertion progresses, the latching claw 108c bends toward the core member 104 (elastic deformation). do). At this time, since the insertion start position of the spring spacer 108 is determined at the initial stage of the insertion process, it is possible to stably manage the load and the amount of deflection received by the latching claw 108c. Then, when the tip portion (turned portion) of the hooking claw 108c passes the hooking portion 102e, the hooking hook 108c is restored from the bent state, and the tip portion (turned portion) is caught by the hooking portion 102e and inserted. Completed. As a result, the spring spacer 108 is prevented from falling off from the case body 102, and the core member 104 is held.
〔回路基板の位置決め〕
 図10は、回路基板110の収容状態を示す図である。図10Aがケース体102の開口方向からみた平面図であり、図10Bが開口面に垂直な断面図(図10AのB-B断面図)である。
[Positioning of circuit board]
10A and 10B are diagrams showing the accommodation state of the circuit board 110. FIG. 10A is a plan view of the case body 102 viewed from the opening direction, and FIG. 10B is a cross-sectional view perpendicular to the opening surface (BB cross-sectional view of FIG. 10A).
 上記のように回路基板110は、環状に配置された一対のコア部材104に重ね合わせるようにしてケース体102の開口側から収容されるものとなっている。回路基板110は、基板部材がケース体102の開口面形状に合わせた部分環形状であるため、開口を通じて挿入することで大凡の位置は決まってくるが、実装されているASIC112をギャップに対して正しく位置決めするため、回路基板110全体を詳細に位置決めする必要がある。このような回路基板110(基板部材)の位置決めは、ケース体102の開口面に沿う方向及び挿入方向(開口方向)について行われる。 As described above, the circuit board 110 is accommodated from the opening side of the case body 102 so as to overlap the pair of core members 104 arranged in a ring. Since the substrate member of the circuit board 110 has a partial ring shape that matches the shape of the opening surface of the case body 102, the position of the circuit board 110 is roughly determined by inserting it through the opening. For proper positioning, the entire circuit board 110 needs to be precisely positioned. Such positioning of the circuit board 110 (board member) is performed in the direction along the opening surface of the case body 102 and the insertion direction (opening direction).
〔開口面に沿う方向の位置決め〕
 図10A:上記のように、ギャップスペーサ106には位置決め突部106eが形成されており、回路基板110には、位置決め突部106eと対応する位置に位置決め孔110cが形成されている。本実施形態では、コア部材104同士の間に2箇所のギャップが形成されており、それぞれにギャップスペーサ106が配置されているため、回路基板110にも2箇所に位置決め孔110cが形成されている。位置決め孔110cは、基板部材を厚み方向に貫通して形成されており、回路基板110の収容状態(挿入状態)では、位置決め突部106eが位置決め孔110c内に挿通(いわゆる嵌合)される。このとき、位置決め孔110cと位置決め突部106eとの間には、一対のコア部材104の対向方向に最小限のクリアランスだけが確保されていることで、回路基板110が対向方向で位置決めされる。
[Positioning along the opening surface]
FIG. 10A: As described above, the gap spacer 106 is formed with the positioning projection 106e, and the circuit board 110 is formed with the positioning hole 110c at the position corresponding to the positioning projection 106e. In this embodiment, two gaps are formed between the core members 104, and the gap spacers 106 are arranged in each gap, so that the circuit board 110 is also formed with two positioning holes 110c. . The positioning hole 110c is formed through the board member in the thickness direction, and when the circuit board 110 is accommodated (inserted state), the positioning protrusion 106e is inserted (so-called fitted) into the positioning hole 110c. At this time, the circuit board 110 is positioned in the opposing direction by ensuring only a minimum clearance in the opposing direction of the pair of core members 104 between the positioning hole 110c and the positioning projection 106e.
 また、ケース体102の開口面に沿うコア部材104の対向方向と直交する方向については、例えば、回路基板110(基板部材)の外縁形状とケース体102内面形状との関係から位置決めされている。すなわち、回路基板110は、基板部材の外縁がケース体102内壁面に沿う形状となっていることで、コア部材104の対向方向と直交する方向に位置決めされることになる。さらに、2箇所のうち一方の位置決め孔110cは、この対向方向と直交する方向についても位置決め突部106eとの間のクリアランスが最小限に設定されているため、これらの挿入(嵌合)関係によっても位置決めされることになる。 In addition, the direction orthogonal to the facing direction of the core member 104 along the opening surface of the case body 102 is positioned, for example, based on the relationship between the outer edge shape of the circuit board 110 (board member) and the inner surface shape of the case body 102 . That is, the circuit board 110 is positioned in a direction perpendicular to the facing direction of the core member 104 because the outer edge of the board member is formed along the inner wall surface of the case body 102 . Furthermore, one of the two positioning holes 110c has a minimum clearance from the positioning projection 106e also in the direction perpendicular to the opposing direction, so that the insertion (fitting) relationship of these will also be positioned.
〔開口(挿入)方向の位置決め〕
 図10A,図10B:また、ケース体102の開口方向、つまり、回路基板110の挿入方向については、ケース体102内面のリブ102c,102dとの接触により位置決めされている。
[Positioning in opening (insertion) direction]
10A and 10B: Further, the opening direction of the case body 102, that is, the insertion direction of the circuit board 110 is positioned by contact with the ribs 102c and 102d on the inner surface of the case body 102. FIG.
 これにより、ASIC112がギャップ間凹部106b、つまり、一対のコア部材104間のギャップに対しても位置決めされることになる。この場合、ギャップスペーサ106がコア部材104の端面104aを位置決めしてギャップの位置を規定し、かつ、その規定したギャップに対してASIC112も位置決めしていることになるので、ASIC112の磁気検出素子を適正に機能させた被検出電流の検出が可能になる。 As a result, the ASIC 112 is also positioned with respect to the inter-gap recess 106 b, that is, the gap between the pair of core members 104 . In this case, the gap spacer 106 positions the end surface 104a of the core member 104 to define the position of the gap, and also positions the ASIC 112 with respect to the defined gap. It is possible to detect a current to be detected that functions properly.
〔通路孔〕
 本実施形態では、さらに回路基板110が以下の構成を有する。
 図10A及び図10Bに示されているように、回路基板110の基板部材には多数の通路孔110dが列をなすようにして形成されている。通路孔110dは基板部材を厚み方向に貫通しており、このためケース体102内部において、回路基板110の基板部材とコア部材104との間は通路孔110dによっても連通した状態にある。このため、組み立て過程において充填材105がケース体102内に充填されると、通路孔110dを通って充填材105が流動することができることから、その充填効率を高めることができる。また、充填の過程で通路孔110dが空気抜きとしても機能するため、充填後の空気溜りによる充填不良が発生することを抑制することができる。
[passage hole]
In this embodiment, the circuit board 110 further has the following configuration.
As shown in FIGS. 10A and 10B, a substrate member of the circuit board 110 is formed with a large number of passage holes 110d arranged in rows. The passage hole 110d penetrates the board member in the thickness direction, so that the board member of the circuit board 110 and the core member 104 are in communication with each other inside the case body 102 through the passage hole 110d. Therefore, when the filler 105 is filled into the case body 102 in the assembly process, the filler 105 can flow through the passage hole 110d, so that the filling efficiency can be enhanced. In addition, since the passage hole 110d also functions as an air vent during the filling process, it is possible to suppress the occurrence of a filling failure due to an air pool after filling.
 上述した実施形態の電流センサ100によれば、以下の優位性が得られる。
(1)複数のコア部材104を組み合わせる構造の場合、各コア部材104の位置精度のばらつきによってギャップの間隔を要求値に近づけることが困難になるが、本実施形態では、バネスペーサ108のバネ部108aによって2つのコア部材104を互いの対向方向に押し付けつつ、ギャップスペーサ106の凹部106a(当接部106d)で位置決めするので、ギャップ間隔を要求値に維持することができる。
According to the current sensor 100 of the embodiment described above, the following advantages are obtained.
(1) In the case of a structure in which a plurality of core members 104 are combined, it is difficult to bring the gap distance closer to the required value due to variations in the positional accuracy of each core member 104. However, in this embodiment, the spring portion 108a of the spring spacer 108 , the two core members 104 are pressed against each other and positioned by the concave portion 106a (contact portion 106d) of the gap spacer 106, so that the gap distance can be maintained at the required value.
(2)製品出荷後もバネスペーサ108及びギャップスペーサ106位置決めは有効に作用するため、電流センサ100の使用環境の影響(例えば温度変化等)があったとしても、バネ部108aからの押し付け力がギャップ間隔を要求値に維持する方向に作用するため、検出精度を長期にわたって維持することができる。 (2) Since the positioning of the spring spacer 108 and the gap spacer 106 works effectively even after the product is shipped, even if the current sensor 100 is affected by the environment in which it is used (for example, temperature changes), the pressing force from the spring portion 108a does not affect the gap. The detection accuracy can be maintained for a long period of time because it acts in the direction of maintaining the required distance.
(3)ギャップスペーサ106の凹部106aが袋形状(有底の箱形状)であり、この凹部106a内にコア部材104の端部を受け入れて変位を抑制する構造であることから、バネスペーサ108のバネ部108aが支点となって対向方向以外(ケース体102の開口方向)に傾いてしまうことを確実に防止し、ギャップ間隔及び位置の変動を抑えて安定化させることができる。 (3) The concave portion 106a of the gap spacer 106 is bag-shaped (box-shaped with a bottom), and the end portion of the core member 104 is received in the concave portion 106a to suppress displacement. The portion 108a serves as a fulcrum and tilts in a direction other than the facing direction (opening direction of the case body 102).
(4)これにより、電流センサ100の検出精度を高く維持し、信頼性を向上させることができる。 (4) Thereby, the detection accuracy of the current sensor 100 can be maintained high, and the reliability can be improved.
 本発明は、上述した一実施形態に制約されることなく、種種に変形して実施することができる。例えば、電流センサ100の全体的な形状は、矩形環状以外であってもよい。 The present invention can be modified in various ways without being restricted by the above-described embodiment. For example, the overall shape of current sensor 100 may be other than rectangular annular.
 また、ケース体102は、複数パーツに分割された形態であってもよいし、開閉式の蓋体を備えていてもよい。また、ケース体102の形状やリブ類の配置は、使用するコア部材104やギャップスペーサ106、バネスペーサ108等の形状に合わせて適宜に変形可能であるし、それらの数も実施形態で挙げた例に限定されない。 Further, the case body 102 may be divided into a plurality of parts, or may be provided with an openable lid. Further, the shape of the case body 102 and the arrangement of ribs can be appropriately changed according to the shapes of the core member 104, the gap spacer 106, the spring spacer 108, etc., which are used, and the number of them is also the example given in the embodiment. is not limited to
 コア部材104は、対向方向の中央位置にギャップスペーサ106を配置してギャップを形成しているが、その他の位置でギャップスペーサ106によりギャップを形成してもよい。また、ギャップの数は2箇所より多くてもよい。この場合でも、バネスペーサ108により対向方向に押し付けつつ位置決めがなされることにより、それぞれのギャップの間隔及び位置を適正に維持することができる。 The gap spacer 106 is arranged at the central position of the core member 104 in the opposing direction to form a gap, but the gap may be formed by the gap spacer 106 at another position. Also, the number of gaps may be more than two. Even in this case, the spacing and positions of the respective gaps can be properly maintained by positioning them while pressing them in the opposite direction by the spring spacers 108 .
 ギャップスペーサ106は、全体が同じ角筒形状でなくてもよい。例えば、凹部106aの外形をコア部材104の端部の外形状に合わせた筒形状とし、ギャップ間凹部106bに対応する部分は異なる形状としてもよい。 The entire gap spacer 106 does not have to have the same rectangular tubular shape. For example, the outer shape of the concave portion 106a may be a cylindrical shape matching the outer shape of the end portion of the core member 104, and the portion corresponding to the inter-gap concave portion 106b may have a different shape.
 回路基板110の位置決めは、位置決め突部106eと位置決め孔110cとの嵌め合わせ以外の手段を用いて行ってもよい。また、回路基板110をギャップスペーサ106で位置決めする箇所は3箇所以上でもよい。 The positioning of the circuit board 110 may be performed using means other than the fitting between the positioning protrusion 106e and the positioning hole 110c. Also, the number of positions where the circuit board 110 is positioned by the gap spacers 106 may be three or more.
 その他、実施形態等において図示とともに挙げた構造はあくまで好ましい一例であり、基本的な構造に各種の要素を付加し、あるいは一部を置換しても本発明を好適に実施可能であることはいうまでもない。 In addition, the structures shown in the drawings in the embodiments etc. are merely preferable examples, and it is possible to suitably implement the present invention by adding various elements to the basic structure or by partially substituting. Not even.
 本発明は、コアの位置決め技術を提供する。 The present invention provides core positioning technology.
100  電流センサ
102  ケース体
104  コア部材
106  ギャップスペーサ
108  バネスペーサ
110  回路基板
100 Current sensor 102 Case body 104 Core member 106 Gap spacer 108 Spring spacer 110 Circuit board

Claims (5)

  1.  両端部の各端面を互いに対向させた状態で、被検出電流が導通する一次導体の周囲に環状に組み合わせて配置される一対のコア部材と、
     前記一次導体を挿通可能な挿通部を有し、前記挿通部の周囲に環状に形成された開口を通じて内部に一対の前記コア部材を収容するケース体と、
     前記ケース体内に収容された状態で、一対の前記コア部材同士を前記各端面とは反対側の各外側面から対向方向に押し付ける力を発生する押圧部材と、
     前記ケース体内に収容されて一対の前記コア部材同士が各端面を対向させる箇所にそれぞれ配置され、開口面が互いに背向して形成された一対の凹部内にそれぞれ対向する一対の前記コア部材の端部を受け入れた状態で、一対の前記コア部材の対向する端面間に規定間隔のギャップを形成するとともに前記ケース体の開口方向への前記コア部材の変位を抑制するギャップスペーサと、
     前記ケース体内に収容された状態で、前記ギャップ内に配置させた磁気検出素子を用いて被検出電流を検出する検出回路が形成された回路基板とを備えた電流検出器。
    a pair of core members arranged in an annular manner around a primary conductor through which a current to be detected conducts, with the end surfaces of both ends facing each other;
    a case body having an insertion portion through which the primary conductor can be inserted, and housing the pair of core members therein through an annular opening formed around the insertion portion;
    a pressing member that generates a force that presses the pair of core members in opposite directions from the respective outer side surfaces opposite to the respective end surfaces while being housed in the case body;
    The pair of core members are accommodated in the case body and are arranged at locations where the end faces of the pair of core members face each other, and the pair of core members facing each other are placed in a pair of recesses formed with the opening faces facing back to each other. a gap spacer that forms a gap of a specified distance between the facing end surfaces of the pair of core members in a state where the end portions are received and suppresses displacement of the core members in an opening direction of the case body;
    and a circuit board on which is formed a detection circuit that detects a current to be detected by using the magnetic detection element arranged in the gap while being accommodated in the case body.
  2.  請求項1に記載の電流検出器において、
     前記回路基板は、
     前記ケース体内で前記コア部材及び前記ギャップスペーサと前記ケース体の開口方向に重ね合わせて配置される部分環形状の基板部材と、
     前記基板部材の実装面から前記ギャップ内に向けて突出して実装された前記磁気検出素子を有する電子部品と、
     前記基板部材の前記ギャップスペーサと重なる位置に厚み方向に貫通して形成された位置決め孔とを有し、
     前記ギャップスペーサは、
     一対の前記コア部材の端面間の位置で前記ギャップに対応する部分を前記基板部材の重ね合わせ方向に凹ませて形成され、内部に前記電子部品を受け入れ可能なギャップ間凹部と、
     前記基板部材が重なる位置で前記基板部材の方向に突出して形成され、前記基板部材の重ね合わせ状態で前記位置決め孔内に挿通されて前記基板部材を相対的に位置決めすることで、前記ギャップ内で前記電子部品を位置決めする位置決め突部とを有することを特徴とする電流検出器。
    The current detector of claim 1, wherein
    The circuit board is
    a partially ring-shaped substrate member disposed in the case body so as to overlap the core member and the gap spacer in the opening direction of the case body;
    an electronic component having the magnetic detection element mounted so as to protrude into the gap from the mounting surface of the substrate member;
    a positioning hole penetrating in the thickness direction at a position overlapping the gap spacer of the substrate member;
    The gap spacer is
    an inter-gap recess that is formed by recessing a portion corresponding to the gap between the end surfaces of the pair of core members in the direction in which the substrate members are superimposed, and that is capable of receiving the electronic component therein;
    It is formed so as to protrude in the direction of the substrate members at a position where the substrate members are overlapped, and is inserted into the positioning hole in the overlapping state of the substrate members to relatively position the substrate members in the gap. and a positioning protrusion for positioning the electronic component.
  3.  請求項2に記載の電流検出器において、
     前記ギャップスペーサは、
     前記ギャップ間凹部を中心として両側で一対の前記凹部が対称な形状に形成されるとともに、前記位置決め突部が前記ギャップ間凹部を中心として対称な位置に一対をなして形成されていることを特徴とする電流検出器。
    The current detector of claim 2, wherein
    The gap spacer is
    A pair of recesses are formed in a symmetrical shape on both sides with respect to the inter-gap recess, and a pair of positioning protrusions are formed at symmetrical positions with respect to the inter-gap recess. current detector.
  4.  請求項2又は3に記載の電流検出器において、
     前記ギャップスペーサは、
     前記凹部内の受け入れ方向の奥位置で前記コア部材の端面に当接し、前記ケース体内で前記押圧部材により押された状態の前記コア部材を端面にて位置決めする当接部と、
     前記凹部と前記ギャップ間凹部との間を開通させた状態で、前記ギャップ間凹部を通じて前記当接部と前記コア部材の端面との当接状態を外部から視認可能とする開通部とを有することを特徴とする電流検出器。
    The current detector according to claim 2 or 3,
    The gap spacer is
    a contact portion that contacts the end face of the core member at a depth position in the receiving direction in the recess and positions the core member in the state of being pushed by the pressing member in the case body at the end face;
    An open portion is provided so that a state of contact between the contact portion and the end surface of the core member can be visually recognized from the outside through the inter-gap recess in a state where the recess and the inter-gap recess are opened. A current detector characterized by:
  5.  請求項2から4のいずれかに記載の電流検出器において、
     前記基板部材は、
     前記コア部材及び前記ギャップスペーサの少なくとも一方と重なり合う領域内に形成され、厚み方向に貫通することで前記ケース体内に充填される充填材の通路となる通路孔を有することを特徴とする電流検出器。
    The current detector according to any one of claims 2 to 4,
    The substrate member is
    A current detector comprising a passage hole formed in a region overlapping at least one of the core member and the gap spacer and penetrating in a thickness direction to serve as a passage for a filler filled in the case body. .
PCT/JP2023/007650 2022-03-04 2023-03-01 Current detector WO2023167249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-033723 2022-03-04
JP2022033723A JP2023128994A (en) 2022-03-04 2022-03-04 current detector

Publications (1)

Publication Number Publication Date
WO2023167249A1 true WO2023167249A1 (en) 2023-09-07

Family

ID=87883878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007650 WO2023167249A1 (en) 2022-03-04 2023-03-01 Current detector

Country Status (2)

Country Link
JP (1) JP2023128994A (en)
WO (1) WO2023167249A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159769U (en) * 1987-04-09 1988-10-19
JP2009222729A (en) * 2009-07-09 2009-10-01 Yazaki Corp Current sensor
JP2010071822A (en) * 2008-09-18 2010-04-02 Tdk Corp Current sensor
US20180306841A1 (en) * 2015-10-16 2018-10-25 Harting Electric Gmbh & Co. Kg Sensor assembly for a current sensor, current sensor with such a sensor assembly, holder for such a current sensor, and method for assembling a current sensor
JP2021009078A (en) * 2019-07-01 2021-01-28 株式会社タムラ製作所 Current detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159769U (en) * 1987-04-09 1988-10-19
JP2010071822A (en) * 2008-09-18 2010-04-02 Tdk Corp Current sensor
JP2009222729A (en) * 2009-07-09 2009-10-01 Yazaki Corp Current sensor
US20180306841A1 (en) * 2015-10-16 2018-10-25 Harting Electric Gmbh & Co. Kg Sensor assembly for a current sensor, current sensor with such a sensor assembly, holder for such a current sensor, and method for assembling a current sensor
JP2021009078A (en) * 2019-07-01 2021-01-28 株式会社タムラ製作所 Current detector

Also Published As

Publication number Publication date
JP2023128994A (en) 2023-09-14

Similar Documents

Publication Publication Date Title
JP6274229B2 (en) Contact device and electromagnetic contactor using the same
KR100291117B1 (en) Electromagnetic relay
US20160336579A1 (en) Secondary battery
JP6838477B2 (en) Resin molded product
WO2005029057A1 (en) Sensor and sensor producing method
WO2023167249A1 (en) Current detector
JP7109407B2 (en) current detector
JP2007017407A (en) Sensor
JP4434885B2 (en) motor
JPH076596Y2 (en) Electromagnetic relay
JP7205357B2 (en) temperature sensor unit
JPH1090003A (en) Electric part
JP2001343353A (en) Gas sensor
JP2011254606A (en) Electric connection box
JP7194083B2 (en) Electronics and current detectors
JP6871230B2 (en) Electrical junction box
JPH0747965Y2 (en) Electric motor stator
JPH0622220Y2 (en) Current-voltage converter
JP2751381B2 (en) Rotation detector
JP4099941B2 (en) Electromagnetic relay
JP2009054343A (en) Electromagnetic relay
WO2022162837A1 (en) Vibration measurement device
KR102195911B1 (en) Terminal assembly for oxygen sensor
JP2002093500A (en) Connector for printed wiring board
JP2004354135A (en) Current sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763506

Country of ref document: EP

Kind code of ref document: A1