WO2023167093A1 - Optical cable, rip cord dislodgement method, and optical fibre exposure method - Google Patents

Optical cable, rip cord dislodgement method, and optical fibre exposure method Download PDF

Info

Publication number
WO2023167093A1
WO2023167093A1 PCT/JP2023/006659 JP2023006659W WO2023167093A1 WO 2023167093 A1 WO2023167093 A1 WO 2023167093A1 JP 2023006659 W JP2023006659 W JP 2023006659W WO 2023167093 A1 WO2023167093 A1 WO 2023167093A1
Authority
WO
WIPO (PCT)
Prior art keywords
jacket
ripcord
optical cable
outer cover
load
Prior art date
Application number
PCT/JP2023/006659
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 辻本
健 大里
大樹 竹田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2023167093A1 publication Critical patent/WO2023167093A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present invention relates to an optical cable, a method for removing a ripcord, and a method for extracting an optical fiber.
  • Patent Document 1 describes a method for using a plurality of optical fiber core wires (optical fibers), a jacket covering the plurality of optical fiber core wires, and a device for tearing the jacket to expose the ends of the optical fiber core wires.
  • An optical cable is disclosed that includes a tear cord (ripcord).
  • the present invention has been made in view of the above-mentioned circumstances, and provides an optical cable capable of suppressing a decrease in the efficiency of optical fiber lead-out work even if the ripcord is unexpectedly cut, and a ripcord falling off from the optical cable.
  • An object of the present invention is to provide a method and a method for leading out an optical fiber in an optical cable.
  • An optical cable includes an optical fiber, a jacket that protects the optical fiber, and a part of the jacket in a circumferential direction, at least a part of which is exposed to the inner surface of the jacket. and a ripcord embedded in the outer cover, in a cross section orthogonal to the longitudinal direction of the outer cover, in an exposure direction in which the ripcord is exposed from the inner surface of the outer cover when viewed from the center of the ripcord. and the ripcord is configured to drop inside the jacket when a lateral pressure load larger than the withstand load of the optical cable is applied.
  • a method for removing a ripcord according to an aspect of the present invention comprises an optical fiber, an outer covering for protecting the optical fiber, and at least a part of the outer covering in the circumferential direction so as to be exposed to the inner surface of the outer covering. and a ripcord partially embedded in the jacket, wherein the optical cable extends in an exposure direction in which the ripcord is exposed from the inner surface of the jacket in a cross section perpendicular to the longitudinal direction of the jacket.
  • An optical fiber lead-out method comprises an optical fiber, a jacket for protecting the optical fiber, and at least a part of the jacket in the circumferential direction so as to be exposed to the inner surface of the jacket. and a ripcord partially embedded in the outer jacket, wherein the inner surface of the outer jacket in a cross section perpendicular to the longitudinal direction of the outer jacket.
  • FIG. 10 is a diagram for explaining a method of manually tearing the jacket of the optical cable according to the present embodiment by using the embedded trace of the rip cord.
  • 4 is a table showing the relationship between the embedding ratio of the ripcord, the presence or absence of falling off of the ripcord, and the propriety of tearing the outer cover by an operator's hand when the bending elastic modulus of the outer cover is 100 MPa.
  • 4 is a table showing the relationship between the embedding rate of the ripcord, the presence or absence of falling off of the ripcord, and the propriety of tearing of the outer cover by an operator's hand when the bending elastic modulus of the outer cover is 320 MPa.
  • 4 is a table showing the relationship between the embedding rate of the ripcord, the presence or absence of falling off of the ripcord, and the propriety of tearing the outer cover by an operator's hand when the bending elastic modulus of the outer cover is 500 MPa.
  • 4 is a table showing the relationship between the embedding ratio of the ripcord, the presence or absence of falling off of the ripcord, and the propriety of tearing of the outer cover by an operator's hand when the flexural modulus of the outer cover is 630 MPa.
  • the flexural modulus of the jacket of the optical cable is 790 MPa.
  • the optical cable 1 has a plurality of optical fibers 2, a jacket 3, a ripcord 4, a pressure wrap 5 as an arbitrary member, and a tensile member 6 as an arbitrary member.
  • a core 10 all the plurality of optical fibers 2 in a state of being housed inside a member radially outside of the optical cable 1 from all the plurality of optical fibers 2 are collectively referred to as a core 10 .
  • the number of optical fibers 2 may be one.
  • the one or more optical fibers 2 each extend in the longitudinal direction of the optical cable 1 (the direction orthogonal to the paper surface in FIG. 1).
  • the optical fiber 2 has a waveguide (made of glass, for example) for propagating an optical signal, and a resin coating layer covering the waveguide.
  • the coating layer may include a colored layer for identifying multiple optical fibers 2 .
  • the optical fiber 2 may be an optical fiber tape core wire, or may be unitized by bundling every certain number of cores.
  • the jacket 3 extends in the longitudinal direction of the optical cable 1.
  • the jacket 3 is a layer that protects the plurality of optical fibers 2 .
  • An inner surface 3a of the jacket 3 forms a space for accommodating a plurality of optical fibers 2.
  • the jacket 3 is formed to be elastically deformable.
  • a load that compresses the jacket 3 in a direction perpendicular to its longitudinal direction is called a lateral pressure load.
  • the jacket 3 shrinks in the compression direction in a cross section perpendicular to the longitudinal direction of the optical cable 1 (hereinafter also referred to as "the cross section of the optical cable 1"). and elastically deform so as to extend in a direction orthogonal to the compression direction.
  • Examples of materials for the jacket 3 having such characteristics include resin compositions containing polyolefins such as polyethylene and polypropylene, and polyvinyl chloride (PVC) as main components.
  • the characteristics and physical properties of the jacket 3, such as the modulus of elasticity, can be designed according to the types, composition ratios, and combinations of resins and additives that are the main components of the resin composition.
  • the pressure wrap 5 is interposed between the inner surface 3a of the jacket 3 and the plurality of optical fibers 2 housed inside the jacket 3 to cover the plurality of optical fibers 2.
  • the pressure wrap 5 may be wound vertically or horizontally around the optical fiber 2 .
  • the ratio of the pressure wrap 5 covering the optical fiber 2 may be changed according to the purpose of the pressure wrap 5 .
  • the presser wrap 5 may be made of a flexible sheet.
  • a specific example of the press wrap 5 is a sheet such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the presser wrap 5 may be provided with water absorbency.
  • the pressure wrap 5 constitutes the core 10 of the optical cable 1 housed inside the jacket 3 together with the plurality of optical fibers 2 described above.
  • the pressure wrap 5 is a member radially outside the optical cable 1 relative to all the plurality of optical fibers 2, the entirety of the plurality of optical fibers 2 is accommodated in the pressure wrap 5, and the plurality of optical fibers 2 as a whole are cores. 10 will be formed. Since the optical cable 1 has the presser wrap 5, contact between the ripcord 4 and the optical fibers 2 can be reduced when the ripcord 4 is removed from the jacket 3, and a plurality of optical fibers 2 form an optical fiber bundle. In this case, it is possible to prevent the ripcord 4 falling off from the jacket 3 from being buried in the optical fiber bundle and becoming difficult to take out. However, the optical cable 1 may not have the pressure winding 5, for example.
  • the jacket 3 is a member radially outside the optical cable 1 relative to all of the plurality of optical fibers 2, so that the plurality of optical fibers 2 described above are entirely housed in the inner surface 3a of the jacket 3, and the plurality of The entire optical fiber 2 will form the core 10 .
  • the ripcord 4 extends in the longitudinal direction of the optical cable 1.
  • the ripcord 4 is a member for tearing the jacket 3 positioned outside the ripcord 4 .
  • the ripcord 4 is made of a material that is not easily deformed or broken by the stress when tearing the outer cover 3, that is, a material with a high elastic modulus and high breaking strength, and can be designed to have a thickness according to the object to be torn.
  • Materials for the ripcord 4 include, for example, steel wires, twisted aramid fibers, and polyester fibers.
  • the ripcord 4 is at least partially embedded in the outer cover 3 so as to be exposed on the inner surface 3a of the outer cover 3. As shown in FIGS.
  • an embedding mark 31 is formed in the jacket 3 where the ripcord 4 is embedded.
  • the cross-sectional shape of the ripcord 4 in the cross section of the optical cable 1 is circular, but is not limited to this.
  • the cross-sectional shape of the rip cord 4 may be, for example, a shape having unevenness in the circumferential direction.
  • two ripcords 4 are arranged so as to sandwich the core 10 in the cross section of the optical cable 1 .
  • the two ripcords 4 are arranged so that the two ripcords 4 and the center 1C of the core 10 are aligned in a cross section of the optical cable 1 .
  • the direction in which one ripcord 4 and the center 1C of the core 10 are aligned and the direction in which the other ripcord 4 and the center 1C of the core 10 are aligned may, for example, cross each other.
  • the number of ripcords 4 is not limited to two, and may be one or three or more. When the number of ripcords 4 is plural, the plural ripcords 4 may be spaced apart in the circumferential direction of the jacket 3 .
  • the direction in which the ripcord 4 is exposed from the inner surface 3a of the outer cover 3 as viewed from the center of the ripcord 4 is referred to as the exposed direction.
  • the rip cord 4 falls off inside the jacket 3 in this exposure direction in the cross section (cross-sectional view) of the optical cable 1 .
  • the optical cable 1 is configured to drop inside the jacket 3 . That is, even if the optical cable 1 is subjected to a lateral pressure load that is less than the withstand load described above when the optical cable 1 is used, the ripcord 4 will not come off from the jacket 3 .
  • the above-mentioned “exposure direction” may correspond to the arrangement direction in which the ripcord 4 and the center 1C of the core 10 are aligned in the cross section of the optical cable 1, or the ripcord 4 and the center of the core 10 are aligned. It may correspond to the alignment direction. Although the center of the core 10 is aligned with the center 1C of the core 10 in FIG. 1, they may not be aligned. In FIG. 1 , the “exposure direction” corresponds to the direction toward the center 1C of the core 10 in the radial direction of the optical cable 1 . In addition, the “exposure direction” may not coincide with the direction toward the center 1C of the core 10 in the radial direction of the optical cable 1, for example.
  • the optical cable 1 when the optical cable 1 is used” may be, for example, when the optical cable 1 is laid, during maintenance and inspection, or when data communication is being performed by the laid optical cable 1, or the like.
  • the "withstand load of the optical cable 1 during use” may be, for example, the maximum lateral pressure load that can act on the optical cable 1 in the direction orthogonal to its longitudinal direction within the normal usage range of the optical cable 1.
  • the above-mentioned "withstanding load” may be, for example, a lateral pressure load that does not increase the transmission loss beyond the allowable value when the optical cable 1 is used.
  • the “withstanding load” may be a lateral pressure load at which the transmission loss in the optical cable 1 does not rise to 0.15 dB or more.
  • the “withstanding load” may vary depending on the specifications and uses of the optical cable 1 .
  • the embedding rate of the ripcord 4 in which the ripcord 4 is embedded in the jacket 3 will be explained.
  • the embedding ratio of the ripcord 4 is defined as the contact of the ripcord 4 with respect to the length of the entire circumference of the ripcord 4 in the cross section of the optical cable 1 shown in FIG. It is indicated by the ratio of length 4L.
  • the embedding rate of the ripcord 4 in this embodiment is 40% or more and less than 100%. The fact that the embedding rate of the ripcord 4 is less than 100% means that at least the ripcord 4 is exposed on the inner surface 3 a of the jacket 3 .
  • the jacket 3 described above is a circle whose dimension in the arrangement direction in which the ripcord 4 and the center 1C of the core 10 are aligned in the cross section of the optical cable 1 and the dimension in the orthogonal direction perpendicular to the arrangement direction are substantially equal. It is formed in a shape (substantially circular).
  • the above-mentioned “arrangement direction” and the corresponding “exposure direction” may be referred to as the vertical direction Y
  • the above-described "perpendicular direction” may be referred to as the horizontal direction X.
  • the thickness 3T of the jacket 3 in the vertical direction Y (exposure direction) will be described with reference to FIG.
  • the thickness 3T of the jacket 3 in the vertical direction Y is the thickness 3T of the jacket 3 that overlaps the ripcord 4 in the vertical direction Y.
  • the thickness 3T of the jacket 3 in the vertical direction Y is the total thickness of the jacket 3 from the inner surface 3a to the outer surface 3b of the jacket 3 in the vertical direction Y. This is the dimension after subtracting the length of the embedded part.
  • the thickness 3T of the jacket 3 in the vertical direction Y (exposure direction) may be referred to as "the thickness 3T of the jacket 3 on the ripcord 4".
  • the thickness 3T of the jacket 3 on the ripcord 4 is 0.5 mm or more and 4.0 mm or less.
  • a tensile strength member 6 is embedded in the jacket 3 .
  • the tensile strength member 6 has the function of suppressing contraction of the jacket 3 and protecting the optical fiber 2 from tensile stress in the longitudinal direction of the optical cable 1 .
  • Steel wire or fiber reinforced plastic (FRP), for example, can be used for the tensile member 6 .
  • the bending elastic modulus of the strength member 6 is higher than that of the jacket 3 .
  • the tensile members 6 are arranged in the cross section of the optical cable 1 so as to be aligned in the left-right direction X (perpendicular direction) with respect to the center 1C of the core 10, for example. In this embodiment, a pair of tensile members 6 are arranged so as to sandwich the core 10 in the cross section of the optical cable 1 .
  • a pair of tensile members 6 may be arranged in parallel with the longitudinal direction of the optical cable 1 .
  • two tensile members 6 are set as one set, and a pair of sets are arranged on both sides of the core 10, but this is not the only option.
  • a pair of three or more tensile strength members 6 may be arranged on both sides of the core 10 , or one tensile strength member 6 may be arranged on each side of the core 10 .
  • the plurality of tensile members 6 forming a set are spaced apart, but they may be in contact with each other, for example.
  • a plurality of tensile members 6 forming a set may be twisted.
  • three or more sets or three or more tensile members 6 may be arranged substantially evenly in the circumferential direction of the jacket 3 .
  • the optical cable 1 may not have the tension member 6, for example.
  • the jacket 3 of the present embodiment is easier to compress in the vertical direction Y (exposed direction) than in the horizontal direction X (perpendicular direction).
  • the optical cable 1 of the present embodiment has an anisotropy in bending in the cross section of the optical cable 1, which is easy to bend in a direction centering on the bending neutral line NL of the optical cable 1. have sex.
  • the neutral bending line NL is a line connecting the centers of the pair of tensile members 6 .
  • the portion of the optical cable 1 located above the neutral line NL extends in the longitudinal direction of the optical cable 1 and extends toward the neutral line NL.
  • the portion of the optical cable 1 positioned below is contracted in the longitudinal direction of the optical cable 1 .
  • the neutral line NL of bending extends in the left-right direction X (perpendicular direction). compresses in the vertical direction Y (exposure direction).
  • the optical fiber 2 can be led out by two different lead-out methods. A method for leading out the two optical fibers in the optical cable 1 will be described below.
  • the first optical fiber lead-out method (hereinafter referred to as the first lead-out method) is the same as the conventional method. That is, in the first lead-out method, the outer cover 3 is torn by pulling the ripcord 4 while the ripcord 4 is held by the outer cover 3 . Thereby, the optical fiber 2 can be exposed to the outside of the jacket 3 .
  • the second optical fiber lead-out method (hereinafter referred to as the second lead-out method), first, as shown in FIGS. drop-off method).
  • the cord removal process rip cord removal method
  • the center 1C of the core 10 and the rip cord 4 are aligned in the vertical direction Y (arrangement direction), when the optical cable 1 is in use.
  • a lateral pressure load larger than the withstand load is applied to the optical cable 1 .
  • the jacket 3 contracts in the vertical direction Y and extends in the horizontal direction X, as shown in FIG.
  • the portion of the jacket 3 that holds the ripcord 4 also extends in the left-right direction X. As shown in FIG. As a result, the holding of the ripcord 4 by the outer cover 3 is released, and the ripcord 4 drops inside the outer cover 3 . 3 and 4, the lateral pressure load is applied to the optical cable 1 by sandwiching the optical cable 1 in the vertical direction Y between the two flat plates 100, but the present invention is not limited to this.
  • a fiber lead-out process of leading the optical fiber 2 to the outside of the jacket 3 is performed.
  • the optical fiber 2 is exposed using the embedding trace 31 formed on the jacket 3 .
  • the embedded trace 31 after the ripcord 4 has fallen off is exposed on the inner surface 3a of the outer cover 3 and has a groove shape extending in the longitudinal direction of the outer cover 3.
  • Reference numeral 32 in FIG. 5 indicates a tear line 32 of the outer cover 3 to be torn by hand of the operator.
  • the rip cord 4 may be removed inside the jacket 3 by bending the optical cable 1 .
  • the optical cable 1 may be bent so that the bending neutral line NL (see FIG. 1) of the optical cable 1 is perpendicular to the vertical direction Y.
  • FIG. 1 By bending the optical cable 1 in this manner, the sheath 3 is shrunk in the vertical direction Y. As shown in FIG. As a result, a lateral pressure load is applied to the optical cable 1 in the vertical direction Y, and the ripcord 4 drops inside the jacket 3 .
  • the side pressure load can be applied to the optical cable 1 more easily than when the operator compresses the optical cable 1 with his or her fingers.
  • the lateral pressure load in the vertical direction Y (exposure direction) larger than the withstand load when the optical cable 1 is in use. is applied, the ripcord 4 drops inside the jacket 3. Therefore, even if the optical cable 1 is subjected to a lateral pressure load that is less than the withstand load of the optical cable 1 during use, the ripcord 4 does not fall off inside the jacket 3 and is held by the jacket 3 . That is, it is possible to prevent the rip cord 4 from unexpectedly falling inside the jacket 3 when the optical cable 1 is used.
  • the ripcord 4 By intentionally applying a lateral pressure load larger than the withstand load to the optical cable 1 , the ripcord 4 can be intentionally dropped inside the jacket 3 . If the ripcord 4 unexpectedly falls off the jacket 3, the ripcord 4 may become entangled with the optical fiber 2. As shown in FIG. In that case, the optical fiber 2 may be cut by the ripcord 4 when the jacket 3 is torn by the ripcord 4 . For this reason, it is undesirable for the ripcord 4 to unexpectedly fall off the jacket 3 .
  • either the first lead-out method or the second lead-out method can be selected depending on the environment in which the lead-out work is performed (for example, the temperature environment) and the skill level of the operator. can be selected to suppress a decrease in the efficiency of the optical fiber 2 lead-out work.
  • the first lead-out method is selected when the lead-out work is performed in a low-temperature environment or by an unskilled worker, the rip cord 4 may be unexpectedly damaged when the outer cover 3 is torn. It may break.
  • the second lead method is selected, the optical fiber 2 can be efficiently led.
  • the optical fiber 2 can be picked up efficiently by selecting the first picking method with a small number of steps.
  • the jacket 3 in the cross section of the optical cable 1, the jacket 3 is easily compressed in the exposure direction (vertical direction Y) in which the ripcord 4 is exposed from the inner surface 3a of the jacket 3, and the exposure direction It is difficult to compress the jacket 3 in the orthogonal direction (horizontal direction X).
  • the ripcord 4 can be easily dropped inside the outer cover 3 only by applying a side pressure load in the direction in which the outer cover 3 is easily compressed. be able to.
  • the tensile strength member 6 having a higher flexural modulus than the jacket 3 is arranged in the above orthogonal direction (horizontal direction X) with respect to the center 1C of the core 10 in the cross section of the optical cable 1. placed in position.
  • This tensile strength member 6 makes it difficult to compress the jacket 3 in the orthogonal direction. Therefore, it is possible to provide an optical cable 1 that is easy to compress in the exposure direction and difficult to compress in the orthogonal direction.
  • the thickness 3T of the jacket 3 in the exposure direction (vertical direction Y), that is, the thickness 3T of the jacket 3 on the ripcord 4 is 0.5 mm or more and 4.0 mm or less. is. Since the thickness 3T of the outer cover 3 in the exposure direction is 4.0 mm or less, after the ripcord 4 is dropped from the outer cover 3, the groove-like embedding mark of the outer cover 3 in which the ripcord 4 is embedded is left. Using 31 as a trigger, the jacket 3 can be easily torn off by hand. Note that if the thickness 3T of the outer cover 3 in the exposure direction is greater than 4.0 mm, the outer cover 3 is too thick, and it is difficult to tear the outer cover 3 by hand using the embedding marks 31 as a trigger. Become.
  • the lateral pressure load applied to cause the ripcord 4 to come off the inside of the jacket 3 is equal to the withstanding load when the optical cable 1 is in use. can be larger than In other words, it is possible to prevent the rip cord 4 from falling inside the jacket 3 due to a lateral pressure load that is less than the withstand load when the optical cable 1 is in use. Furthermore, in other words, it is possible to prevent the rip cord 4 from unexpectedly falling inside the jacket 3 when the optical cable 1 is used.
  • the embedding rate of the ripcord 4 embedded in the jacket 3 is 40% or more and less than 100%.
  • the ripcord 4 is buried at a rate of 40% or more, it is possible to prevent the ripcord 4 from unexpectedly falling off from the jacket 3 immediately after the optical cable 1 is manufactured and when the optical cable 1 is used.
  • the embedding rate of the ripcord 4 is less than 100%, the ripcord 4 is exposed inside the jacket 3 . As a result, the ripcord 4 can be removed from the jacket 3 by applying a lateral pressure load in the exposure direction to the optical cable 1 .
  • the bending elastic modulus of the jacket 3 in the table of FIG. 6 is 100 MPa
  • the bending elastic modulus of the jacket 3 in the table of FIG. 7 is 320 MPa.
  • the bending elastic modulus of the jacket 3 in the table of FIG. 8 is 500 MPa
  • the bending elastic modulus of the jacket 3 in the table of FIG. 9 is 630 MPa.
  • the bending elastic modulus of the jacket 3 in the table of FIG. 10 is 790 MPa.
  • Presence/absence of ripcord falling off in FIGS.
  • Presence in the column “Presence or absence of ripcord falling off” indicates that the ripcord 4 has fallen off from the jacket 3, and "No” indicates that the ripcord 4 has not fallen off from the jacket 3.
  • "-" in the column “whether or not the rip cord has come off” indicates that whether or not the rip cord 4 has come off has not been determined.
  • the lateral pressure load of 6000 N was applied to the optical cable 1 immediately after manufacturing the optical cable 1 ("Immediately after cable manufacturing" in FIGS. 6 to 10) and after manufacturing. It was confirmed in two states after applying in the direction Y (exposure direction) (“after application of 6000 N” in FIGS. 6 to 10).
  • a lateral pressure load of 6000 N is an example of a maximum lateral pressure load (hereinafter referred to as “maximum allowable load”) that can be allowed when using the optical cable 1 .
  • a lateral pressure load larger than the maximum allowable load is, for example, a load of a magnitude that does not restore the transmission loss even if the application of the lateral pressure load to the optical cable 1 is canceled, in other words, the characteristics of the optical cable 1 change irreversibly. load of magnitude.
  • the lateral pressure test to apply the above lateral pressure load is a test procedure according to Telcordia Technologies Generic Requirements GR-20-CORE (Issue4, July 2013) (hereinafter sometimes abbreviated as "Telcordia GR-20"). Is going.
  • a lateral pressure load of 6000 N is applied to the optical cable 1 in the vertical direction Y for 1 minute by sandwiching the optical cable 1 in the vertical direction Y with 100 mm square metal flat plates in an environment of 22°C.
  • the third condition is that the worker can tear the jacket 3 by hand after applying a lateral pressure load of 6000 N to the optical cable 1 (“Hand tearability” in FIGS. be).
  • An “x" in "Comprehensive Judgment” indicates that one or more of the above three conditions are not met, and that the product is unsatisfactory.
  • the ripcord 4 when the embedding ratio of the ripcord 4 is 30% or less, regardless of the bending elastic modulus of the jacket 3, the ripcord 4 is It is known to fall out of On the other hand, when the embedding ratio of the ripcord 4 is 40% or more, the ripcord 4 does not come off from the jacket 3 immediately after the optical cable 1 is manufactured regardless of the bending elastic modulus of the jacket 3 . That is, irrespective of the bending elastic modulus of the jacket 3, the embedding rate of the ripcord 4 is 40% or more. It can be seen that it is possible to prevent it from falling off.
  • the ripcord 4 when the bending elastic modulus of the jacket 3 is in the range of 100 MPa to 630 MPa, the ripcord 4 is detached from the jacket 3 by applying a lateral pressure load of 6000 N to the optical cable 1. It can be seen that the lower limit of the embedding rate of the ripcord 4 that can be used is 40%. When the embedding rate of the ripcord 4 is 30% or less, the ripcord 4 is dropped from the jacket 3 immediately after the optical cable 1 is manufactured. It is not possible to judge the presence or absence of falling off.
  • the rip cord 4 can be detached from the jacket 3 by applying a lateral pressure load of 6000 N to the optical cable 1.
  • the upper limit of the embedding rate of varies according to the flexural modulus of the jacket 3 .
  • the upper limit of the embedding ratio of the ripcord 4 that allows the ripcord 4 to fall off decreases as the bending elastic modulus of the outer cover 3 increases. This is because, as the embedding rate of the ripcord 4 increases, the amount of contraction of the outer cover 3 in the exposed direction in order to drop the ripcord 4 must be increased. This is because it becomes difficult to shrink the cover 3 in the exposure direction.
  • the embedding rate of the ripcord 4 (40% or more embedding rate) that allows the ripcord 4 to fall off the outer cover 3 by applying a lateral pressure load of 6000 N (maximum allowable load).
  • a lateral pressure load of 6000 N maximum allowable load
  • the ripcord 4 can be detached from the outer cover 3, but the outer cover 3 cannot be torn off by the operator's hand. This indicates that if the flexural modulus of the outer cover 3 is excessively high, it becomes difficult for the operator to tear the outer cover 3 by hand.
  • the jacket 3 can be torn by the operator's hand. . This is probably because even if the size of the embedding marks 31 is small, the bending elastic modulus of the outer cover 3 is low, so that the outer cover 3 is easily torn.
  • the lower limit of the embedding rate of the ripcord 4 at which the overall judgment is " ⁇ " is 40% in the range of the bending elastic modulus of the outer cover 3 from 100 MPa to 630 MPa. be.
  • the upper limit value of the embedding rate of the ripcord 4 at which the comprehensive judgment is "O” tends to decrease as the bending elastic modulus of the outer cover 3 increases. Therefore, the upper limit of the embedding rate of the ripcord 4 should be at least less than 100%, but it may be 90% or less, 80% or less, or 70% or less depending on the bending elastic modulus of the outer cover 3. preferably lower.
  • the lateral pressure load for detaching the ripcord 4 from the jacket 3 can be set smaller than the maximum allowable load (6000N).
  • the lower limit of the lateral pressure load can be set to the "second load” shown in FIG. 11, which will be described later. Therefore, when the lateral pressure load for detaching the ripcord 4 from the jacket 3 is set between the "second load” and the maximum allowable load (6000N), the upper limit of the embedding ratio of the ripcord 4 is , the lateral pressure load can be set smaller than the maximum allowable load (6000N). From this, the upper limit of the embedding ratio of the ripcord 4 based on the tables of FIGS. This is the maximum value to drop out.
  • the bending elastic modulus of the jacket 3 is, for example, 630 MPa or less.
  • the flexural modulus of the jacket 3, the withstand load of the optical cable 1 during use, the minimum lateral pressure load that allows the ripcord 4 to fall off the jacket 3, and the ripcord The relationship with the thickness 3T (see FIG. 1) of the jacket 3 on 4 will be described.
  • the rip cord 4 embedding rate is 70%.
  • the flexural modulus of the jacket 3 is different from each other.
  • the jacket 3 of Example A is designed to meet ICEA S-83-596 when the first load described below is applied.
  • the jacket 3 of Example B is designed to meet Telcordia GR-20 when the first load is applied.
  • the jacket 3 of Example C is designed to meet ICEA_S-104-696 when the first load is applied.
  • the jacket 3 of Example D is designed to meet the specific specifications of Telcordia GR-20 when the first load is applied.
  • the "first load” in FIG. 11 is the lateral pressure load applied to the optical cable 1 in the exposure direction (vertical direction Y) perpendicular to its longitudinal direction, and is the withstand load of the optical cable 1 during use.
  • the withstand load is the lateral pressure load at which the transmission loss in the optical cable 1 does not rise above the allowable value (for example, 0.15 dB or more).
  • the first load is proportional to the flexural modulus of the jacket 3 . That is, the higher the flexural modulus of the jacket 3, the larger the first load.
  • the “second load” in FIG. 11 is a lateral pressure load applied to the optical cable 1 in the exposure direction (vertical direction Y) orthogonal to its longitudinal direction, and the lateral pressure load that causes the ripcord 4 to come off the jacket 3. is the lower limit of The second load is larger than the first load described above due to the setting of the thickness 3T of the jacket 3 on the ripcord 4, which will be described later.
  • the maximum lateral pressure load that can be allowed when using the optical cable 1 of the jacket 3, that is, the maximum allowable load is 6000 N, which is larger than the second load. .
  • the thickness of the jacket on the ripcord is the thickness 3T of the jacket 3 on the ripcord 4 shown in FIG. In FIG. 11, the lower limit and upper limit of the thickness 3T of the jacket 3 are shown.
  • the lower limit of the thickness 3T of the jacket 3 is equal to each other in the four examples AD, which is 0.5 mm.
  • the second load (the lower limit of the lateral pressure load that causes the ripcord 4 to fall off) in the optical cable 1 of each embodiment is reduced to the first load (the use of the optical cable 1 load capacity at times).
  • the first load the use of the optical cable 1 load capacity at times.
  • the ripcord 4 unexpectedly falls off from the jacket 3.
  • the fact that the lower limit value of the thickness 3T of the jacket 3 is the same among the four Examples A to D is the first among the four Examples A to D due to the difference in the bending elastic modulus of the jacket 3. This is due to different loads.
  • the upper limit value of the thickness 3T of the outer cover 3 is a value at which the worker can tear the outer cover 3 by hand, triggered by the embedded trace 31 of the outer cover 3 after the ripcord 4 has fallen off. It is set according to the magnitude of the flexural modulus of 3. Specifically, the higher the flexural modulus of the jacket 3, the smaller the upper limit value of the thickness 3T of the jacket 3 at which the operator can tear the jacket 3 by hand.
  • Example A in which the bending elastic modulus of the jacket 3 is as small as 100 MPa, the upper limit of the thickness 3T of the jacket 3 is 4.0 mm.
  • the thickness 3T of the outer cover 3 is set to 4.0 mm or less, so that the operator can tear the outer cover 3 by hand. If the thickness 3T of the outer cover 3 is greater than 4.0 mm, the operator cannot tear the outer cover 3 by hand.
  • the bending elastic modulus of the jacket 3 is 320 MPa, and in Example B, which is larger than Example A, the upper limit of the thickness 3T of the jacket 3 is smaller than that in Example A, and is 3.5 mm. In Example B, by setting the thickness 3T of the jacket 3 to 3.5 mm or less, the worker can tear the jacket 3 by hand as in the case of Example A.
  • Example C in which the flexural modulus of the jacket 3 is 500 MPa, which is even larger than that in Example B, the upper limit of the thickness 3T of the jacket 3 is 3.0 mm, which is smaller than that in Example B.
  • Example C by setting the thickness 3T of the jacket 3 to 3.0 mm or less, the operator can tear the jacket 3 by hand as in Example A.
  • Example D in which the bending elastic modulus of the jacket 3 is 630 MPa, which is even larger than that in Example C, the upper limit of the thickness 3T of the jacket 3 is 2.5 mm, which is smaller than that in Example C.
  • Example D by setting the thickness 3T of the jacket 3 to 2.5 mm or less, the worker can tear the jacket 3 by hand as in Example A. From the above, considering the ease of tearing the outer cover 3 by the hand of the operator, the thickness 3T of the outer cover 3 should be at least 4.0 mm or less. 3.5 mm or less, 3.0 mm or less, or 2.5 mm or less.
  • the jacket 3 is such that, for example, in the cross section of the optical cable 1, the dimension in the exposure direction (vertical direction Y) in which the ripcord 4 is exposed from the inner surface 3a of the jacket 3 is the orthogonal direction ( It may be an elliptical shape 7 smaller than the dimension in the left-right direction X), a rectangular shape, or the like.
  • the outer cover 3 has such a shape, for example, even if the tensile strength member 6 is not embedded in the outer cover 3, the outer cover 3 can be easily compressed in the "exposed direction” rather than in the "perpendicular direction". can be done.
  • the outer cover 3 has a shape such as the above-described elliptical shape or rectangular shape, it is easy to bend in a direction centered on the neutral line of bending extending in the orthogonal direction (horizontal direction X), and in other directions (for example, the exposure direction ( It is difficult to bend in the direction centered on the neutral line of bending extending in the vertical direction Y). That is, the optical cable 1 having the jacket 3 having the shape described above has the same bending anisotropy as in the above embodiment.
  • the ripcord 4 may be buried inside the outer cover 3 without being exposed on the inner surface of the outer cover 3 .
  • the thickness of the inner portion of the jacket 3 located inside the ripcord 4 in the radial direction of the optical cable 1 is, for example, when a lateral pressure load larger than the withstand load of the optical cable 1 is applied to the optical cable 1 It may be set to such an extent that the inner portion of the outer cover 3 is fractured.
  • the present invention may be applied to a slot type optical cable having a slot rod in which a groove (slot) for accommodating the optical fiber 2 is formed, or may be applied to a slotless type optical cable having no slot rod. good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

This optical cable comprises: an optical fibre; a sheath which protects the optical fibre; and a rip cord which is located at a part of the circumference of the sheath and at least a part of which is embedded in the sheath in a manner so as to be exposed from the inner surface of the sheath. The optical cable is configured such that the rip cord is dislodged to the inner side of the sheath when a side pressure load that is greater than the withstand load of the optical cable during use is applied from the inner surface of the sheath in the exposure direction in which the rip cord is exposed from the sheath, as seen from the centre of the rip cord, in a cross-section orthogonal to the longitudinal direction of the sheath 3.

Description

光ケーブル、リップコードの脱落方法及び光ファイバの口出し方法Optical cable, rip cord removal method and optical fiber lead-out method
 本発明は、光ケーブル、リップコードの脱落方法及び光ファイバの口出し方法に関する。
 本願は、2022年3月2日に日本に出願された特願2022-031428号について優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to an optical cable, a method for removing a ripcord, and a method for extracting an optical fiber.
This application claims priority to Japanese Patent Application No. 2022-031428 filed in Japan on March 2, 2022, the contents of which are incorporated herein.
 特許文献1には、複数の光ファイバ心線(光ファイバ)と、複数の光ファイバ心線を被覆する外被と、外被を引き裂いて光ファイバ心線の端部を口出しするために用いられる引き裂き紐(リップコード)と、を備える光ケーブルが開示されている。 Patent Document 1 describes a method for using a plurality of optical fiber core wires (optical fibers), a jacket covering the plurality of optical fiber core wires, and a device for tearing the jacket to expose the ends of the optical fiber core wires. An optical cable is disclosed that includes a tear cord (ripcord).
日本国特開2012-173398号公報Japanese Patent Application Laid-Open No. 2012-173398
 しかしながら、従来の光ケーブルでは、外被の引き裂き時にリップコードが不意に切れることがあり、口出し作業の効率が低下する、という問題がある。 However, with conventional optical cables, there is the problem that the ripcord may be cut unexpectedly when the outer sheath is torn, reducing the efficiency of the lead-out work.
 本発明は、上述した事情に鑑みてなされたものであって、リップコードが不意に切れたとしても、光ファイバの口出し作業の効率の低下を抑制することができる光ケーブル、光ケーブルにおけるリップコードの脱落方法及び光ケーブルにおける光ファイバの口出し方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and provides an optical cable capable of suppressing a decrease in the efficiency of optical fiber lead-out work even if the ripcord is unexpectedly cut, and a ripcord falling off from the optical cable. An object of the present invention is to provide a method and a method for leading out an optical fiber in an optical cable.
 本発明の一態様に係る光ケーブルは、光ファイバと、前記光ファイバを保護する外被と、前記外被の周方向の一部において、前記外被の内面に露出するように少なくとも一部が前記外被に埋め込まれたリップコードと、を備え、前記外被の長手方向に直交する断面において、前記リップコードの中心から見て前記外被の内面から前記リップコードが露出している露出方向に、光ケーブルの使用時における耐荷重よりも大きな側圧荷重を印加したときに、前記リップコードが前記外被の内側に脱落するように構成されている。 An optical cable according to an aspect of the present invention includes an optical fiber, a jacket that protects the optical fiber, and a part of the jacket in a circumferential direction, at least a part of which is exposed to the inner surface of the jacket. and a ripcord embedded in the outer cover, in a cross section orthogonal to the longitudinal direction of the outer cover, in an exposure direction in which the ripcord is exposed from the inner surface of the outer cover when viewed from the center of the ripcord. and the ripcord is configured to drop inside the jacket when a lateral pressure load larger than the withstand load of the optical cable is applied.
 本発明の一態様に係るリップコードの脱落方法は、光ファイバと、前記光ファイバを保護する外被と、前記外被の周方向の一部において、前記外被の内面に露出するように少なくとも一部が前記外被に埋め込まれたリップコードと、を備える光ケーブルにおいて、前記外被の長手方向に直交する断面において、前記外被の内面から前記リップコードが露出している露出方向に、光ケーブルの使用時における耐荷重よりも大きな側圧荷重を印加することで、前記リップコードを前記外被の内側に脱落させる。 A method for removing a ripcord according to an aspect of the present invention comprises an optical fiber, an outer covering for protecting the optical fiber, and at least a part of the outer covering in the circumferential direction so as to be exposed to the inner surface of the outer covering. and a ripcord partially embedded in the jacket, wherein the optical cable extends in an exposure direction in which the ripcord is exposed from the inner surface of the jacket in a cross section perpendicular to the longitudinal direction of the jacket. By applying a lateral pressure load larger than the withstand load during use, the ripcord is dropped inside the outer cover.
 本発明の一態様に係る光ファイバの口出し方法は、光ファイバと、前記光ファイバを保護する外被と、前記外被の周方向の一部において、前記外被の内面に露出するように少なくとも一部が前記外被に埋め込まれたリップコードと、を備える光ケーブルにおいて前記光ファイバを口出しする光ファイバの口出し方法であって、前記外被の長手方向に直交する断面において、前記外被の内面から前記リップコードが露出している露出方向に、光ケーブルの使用時における耐荷重よりも大きな側圧荷重を印加することで、前記リップコードを前記外被の内側に脱落させるコード脱落工程と、前記コード脱落工程の後に、前記外被の内面に露出するように前記外被に形成され、前記リップコードが埋め込まれていた溝状の埋設痕をきっかけとして、作業者が前記外被を引き裂くことで前記光ファイバを口出しするファイバ口出し工程と、を有する。 An optical fiber lead-out method according to an aspect of the present invention comprises an optical fiber, a jacket for protecting the optical fiber, and at least a part of the jacket in the circumferential direction so as to be exposed to the inner surface of the jacket. and a ripcord partially embedded in the outer jacket, wherein the inner surface of the outer jacket in a cross section perpendicular to the longitudinal direction of the outer jacket. a cord dropping step of dropping the ripcord to the inside of the jacket by applying a lateral pressure load larger than the withstand load of the optical cable in use in the exposure direction in which the ripcord is exposed from the cord; After the removal step, the operator tears the outer cover, triggered by a groove-shaped embedding mark formed on the outer cover so as to be exposed on the inner surface of the outer cover and in which the ripcord was embedded, thereby removing the rip cord. and a fiber tapping step of tapping the optical fiber.
 上記態様によれば、リップコードが不意に切れたとしても、光ファイバの口出し作業の効率の低下を抑制することができる。 According to the above aspect, even if the ripcord is unexpectedly cut, it is possible to suppress a decrease in the efficiency of the optical fiber lead-out work.
本実施形態に係る光ケーブルをその長手方向に直交する断面で示す図である。It is a figure which shows the optical cable based on this embodiment in the cross section orthogonal to the longitudinal direction. 図1の光ケーブルの要部を示す拡大断面図である。2 is an enlarged cross-sectional view showing a main part of the optical cable of FIG. 1; FIG. 本実施形態に係る光ケーブルにおいてリップコードを外被から脱落させる過程を示す図である。It is a figure which shows the process which falls off a rip cord from a jacket in the optical cable which concerns on this embodiment. 本実施形態に係る光ケーブルにおいてリップコードを外被から脱落させる過程を示す図である。It is a figure which shows the process which falls off a rip cord from a jacket in the optical cable which concerns on this embodiment. 本実施形態に係る光ケーブルにおいてリップコードの埋設痕を利用して作業者の手で外被を引き裂く方法を説明するための図である。FIG. 10 is a diagram for explaining a method of manually tearing the jacket of the optical cable according to the present embodiment by using the embedded trace of the rip cord. 外被の曲げ弾性率が100MPaである場合の、リップコードの埋設率と、リップコードの脱落の有無、及び、作業者の手による外被の引き裂きの可否との関係を示す表である。4 is a table showing the relationship between the embedding ratio of the ripcord, the presence or absence of falling off of the ripcord, and the propriety of tearing the outer cover by an operator's hand when the bending elastic modulus of the outer cover is 100 MPa. 外被の曲げ弾性率が320MPaである場合の、リップコードの埋設率と、リップコードの脱落の有無、及び、作業者の手による外被の引き裂きの可否との関係を示す表である。4 is a table showing the relationship between the embedding rate of the ripcord, the presence or absence of falling off of the ripcord, and the propriety of tearing of the outer cover by an operator's hand when the bending elastic modulus of the outer cover is 320 MPa. 外被の曲げ弾性率が500MPaである場合の、リップコードの埋設率と、リップコードの脱落の有無、及び、作業者の手による外被の引き裂きの可否との関係を示す表である。4 is a table showing the relationship between the embedding rate of the ripcord, the presence or absence of falling off of the ripcord, and the propriety of tearing the outer cover by an operator's hand when the bending elastic modulus of the outer cover is 500 MPa. 外被の曲げ弾性率が630MPaである場合の、リップコードの埋設率と、リップコードの脱落の有無、及び、作業者の手による外被の引き裂きの可否との関係を示す表である。4 is a table showing the relationship between the embedding ratio of the ripcord, the presence or absence of falling off of the ripcord, and the propriety of tearing of the outer cover by an operator's hand when the flexural modulus of the outer cover is 630 MPa. 外被の曲げ弾性率が790MPaである場合の、リップコードの埋設率と、リップコードの脱落の有無、及び、作業者の手による外被の引き裂きの可否との関係を示す表である。10 is a table showing the relationship between the ripcord embedding rate, the presence or absence of the ripcord coming off, and the possibility of tearing the outer cover by an operator's hand when the flexural modulus of the outer cover is 790 MPa. 光ケーブルの外被の曲げ弾性率と、光ケーブルの使用時における耐荷重(第一荷重)、リップコードを外被から脱落可能な最小の側圧荷重(第二荷重)、及び、リップコード上における外被の厚さとの関係を示す実施例の表である。The flexural modulus of the jacket of the optical cable, the withstand load (first load) when the optical cable is in use, the minimum lateral pressure load (second load) that allows the ripcord to fall off the jacket, and the jacket on the ripcord It is a table of examples showing the relationship between thickness and thickness.
 以下、本発明の一実施形態について図1~11を参照して説明する。
 図1に示すように、光ケーブル1は、複数の光ファイバ2と、外被3と、リップコード4と、任意の部材である押さえ巻き5と、任意の部材である抗張力体6と、を有する。本明細書では、全ての複数の光ファイバ2よりも、光ケーブル1の径方向外側の部材の内側に収容された状態の全ての複数の光ファイバ2をまとめてコア10という。なお、光ファイバ2は一本であってもよい。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 11. FIG.
As shown in FIG. 1, the optical cable 1 has a plurality of optical fibers 2, a jacket 3, a ripcord 4, a pressure wrap 5 as an arbitrary member, and a tensile member 6 as an arbitrary member. . In this specification, all the plurality of optical fibers 2 in a state of being housed inside a member radially outside of the optical cable 1 from all the plurality of optical fibers 2 are collectively referred to as a core 10 . Note that the number of optical fibers 2 may be one.
 1本あるいは複数の光ファイバ2は、それぞれ光ケーブル1の長手方向(図1において紙面に直交する方向)に延びる。図示しないが、光ファイバ2は、光信号を伝播させる導波路(例えばガラスからなる)と、導波路を覆う樹脂製のコーティング層と、を有する。コーティング層には、複数の光ファイバ2を識別するための着色層が含まれてもよい。また、光ファイバ2は、光ファイバテープ心線でもよいし、ある心数毎に束ねてユニット化されてもよい。 The one or more optical fibers 2 each extend in the longitudinal direction of the optical cable 1 (the direction orthogonal to the paper surface in FIG. 1). Although not shown, the optical fiber 2 has a waveguide (made of glass, for example) for propagating an optical signal, and a resin coating layer covering the waveguide. The coating layer may include a colored layer for identifying multiple optical fibers 2 . Also, the optical fiber 2 may be an optical fiber tape core wire, or may be unitized by bundling every certain number of cores.
 外被3は、光ケーブル1の長手方向に延びている。外被3は、複数の光ファイバ2を保護する層である。外被3の内面3aは複数の光ファイバ2を収容する空間を形成している。外被3は、弾性変形するように形成されている。外被3をその長手方向に直交する方向に圧縮する荷重を側圧荷重と称する。例えば、この側圧荷重が外被3に作用した際には、光ケーブル1の長手方向に直交する断面(以下、「光ケーブル1の断面」とも呼ぶ。)において、外被3は、圧縮方向に縮むように、かつ、圧縮方向に直交する方向に延びるように弾性変形する。このような特性を有する外被3の材料としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン、ポリ塩化ビニル(PVC)等を主成分とする樹脂組成物が挙げられる。弾性率などの外被3の特性や物性は、樹脂組成物の主成分となる樹脂や添加物の種類や組成比、組み合わせによって設計可能である。 The jacket 3 extends in the longitudinal direction of the optical cable 1. The jacket 3 is a layer that protects the plurality of optical fibers 2 . An inner surface 3a of the jacket 3 forms a space for accommodating a plurality of optical fibers 2. As shown in FIG. The jacket 3 is formed to be elastically deformable. A load that compresses the jacket 3 in a direction perpendicular to its longitudinal direction is called a lateral pressure load. For example, when this lateral pressure load acts on the jacket 3, the jacket 3 shrinks in the compression direction in a cross section perpendicular to the longitudinal direction of the optical cable 1 (hereinafter also referred to as "the cross section of the optical cable 1"). and elastically deform so as to extend in a direction orthogonal to the compression direction. Examples of materials for the jacket 3 having such characteristics include resin compositions containing polyolefins such as polyethylene and polypropylene, and polyvinyl chloride (PVC) as main components. The characteristics and physical properties of the jacket 3, such as the modulus of elasticity, can be designed according to the types, composition ratios, and combinations of resins and additives that are the main components of the resin composition.
 押さえ巻き5は、外被3の内面3aと外被3の内側に収容された複数の光ファイバ2との間に介在して、複数の光ファイバ2を覆う。押さえ巻き5は、例えば、光ファイバ2に、縦添え巻きされてもよいし、らせん状に横巻きされてもよい。また、押さえ巻き5の目的に応じて押さえ巻き5が光ファイバ2を覆う割合を変更してもよい。押さえ巻き5は、可撓性を有するシートからなっていてもよい。押さえ巻き5の具体例としては、例えばポリエチレンテレフタレート(PET)等のシートが挙げられる。押さえ巻き5には、吸水性を持たせてもよい。押さえ巻き5は、前述した複数の光ファイバ2と共に、外被3の内側に収容される光ケーブル1のコア10を構成している。押さえ巻き5が、全ての複数の光ファイバ2よりも光ケーブル1の径方向外側の部材となるので、前述した複数の光ファイバ2全体が押さえ巻き5に収容され、複数の光ファイバ2全体がコア10を形成することとなる。光ケーブル1が押え巻き5を有することで、リップコード4を外被3から脱落させたときにリップコード4と光ファイバ2との接触を低減したり、複数の光ファイバ2が光ファイバ束を構成している場合に、外被3から脱落したリップコード4が光ファイバ束に埋もれて取り出し難くなることを防止することができる。ただし、光ケーブル1は、例えば押さえ巻き5を有していなくてもよい。この場合、外被3が、全ての複数の光ファイバ2よりも光ケーブル1の径方向外側の部材となるので、前述した複数の光ファイバ2全体が外被3の内面3aに収容され、複数の光ファイバ2全体がコア10を形成することとなる。 The pressure wrap 5 is interposed between the inner surface 3a of the jacket 3 and the plurality of optical fibers 2 housed inside the jacket 3 to cover the plurality of optical fibers 2. For example, the pressure wrap 5 may be wound vertically or horizontally around the optical fiber 2 . Also, the ratio of the pressure wrap 5 covering the optical fiber 2 may be changed according to the purpose of the pressure wrap 5 . The presser wrap 5 may be made of a flexible sheet. A specific example of the press wrap 5 is a sheet such as polyethylene terephthalate (PET). The presser wrap 5 may be provided with water absorbency. The pressure wrap 5 constitutes the core 10 of the optical cable 1 housed inside the jacket 3 together with the plurality of optical fibers 2 described above. Since the pressure wrap 5 is a member radially outside the optical cable 1 relative to all the plurality of optical fibers 2, the entirety of the plurality of optical fibers 2 is accommodated in the pressure wrap 5, and the plurality of optical fibers 2 as a whole are cores. 10 will be formed. Since the optical cable 1 has the presser wrap 5, contact between the ripcord 4 and the optical fibers 2 can be reduced when the ripcord 4 is removed from the jacket 3, and a plurality of optical fibers 2 form an optical fiber bundle. In this case, it is possible to prevent the ripcord 4 falling off from the jacket 3 from being buried in the optical fiber bundle and becoming difficult to take out. However, the optical cable 1 may not have the pressure winding 5, for example. In this case, the jacket 3 is a member radially outside the optical cable 1 relative to all of the plurality of optical fibers 2, so that the plurality of optical fibers 2 described above are entirely housed in the inner surface 3a of the jacket 3, and the plurality of The entire optical fiber 2 will form the core 10 .
 リップコード4は、光ケーブル1の長手方向に延びている。リップコード4は、リップコード4より外側に位置する外被3を引き裂くための部材である。リップコード4には、外被3を引き裂くときの応力によって変形や破断し難い材料、つまり高弾性率かつ高破断強度の材料が用いられ、引き裂く対象に応じた太さに設計することができる。リップコード4の材料には、例えば、鋼線や撚り合わせたアラミド繊維、ポリエステル繊維などが挙げられる。図1,2に示すように、リップコード4は、外被3の内面3aに露出するように少なくとも一部が外被3に埋め込まれている。すなわち、外被3にリップコード4が埋設された埋設痕31が形成されている。本実施形態では、光ケーブル1の断面におけるリップコード4の断面形状が円形状であるが、これに限られない。リップコード4の断面形状は、例えば周方向に凹凸がある形状であってもよい。 The ripcord 4 extends in the longitudinal direction of the optical cable 1. The ripcord 4 is a member for tearing the jacket 3 positioned outside the ripcord 4 . The ripcord 4 is made of a material that is not easily deformed or broken by the stress when tearing the outer cover 3, that is, a material with a high elastic modulus and high breaking strength, and can be designed to have a thickness according to the object to be torn. Materials for the ripcord 4 include, for example, steel wires, twisted aramid fibers, and polyester fibers. As shown in FIGS. 1 and 2, the ripcord 4 is at least partially embedded in the outer cover 3 so as to be exposed on the inner surface 3a of the outer cover 3. As shown in FIGS. That is, an embedding mark 31 is formed in the jacket 3 where the ripcord 4 is embedded. In the present embodiment, the cross-sectional shape of the ripcord 4 in the cross section of the optical cable 1 is circular, but is not limited to this. The cross-sectional shape of the rip cord 4 may be, for example, a shape having unevenness in the circumferential direction.
 図1に示すように、リップコード4は、光ケーブル1の断面において、コア10を挟むように2つ配置されている。2つのリップコード4は、光ケーブル1の断面において、2つのリップコード4とコア10の中心1Cとが一直線に並ぶように配置されている。なお、一方のリップコード4とコア10の中心1Cとが並ぶ方向と、他方のリップコード4とコア10の中心1Cとが並ぶ方向とは、例えば交差してもよい。また、リップコード4の数は2つに限らず、1つでも3つ以上であってもよい。リップコード4の数が複数である場合、複数のリップコード4は外被3の周方向に離間して配置されていればよい。 As shown in FIG. 1, two ripcords 4 are arranged so as to sandwich the core 10 in the cross section of the optical cable 1 . The two ripcords 4 are arranged so that the two ripcords 4 and the center 1C of the core 10 are aligned in a cross section of the optical cable 1 . The direction in which one ripcord 4 and the center 1C of the core 10 are aligned and the direction in which the other ripcord 4 and the center 1C of the core 10 are aligned may, for example, cross each other. Also, the number of ripcords 4 is not limited to two, and may be one or three or more. When the number of ripcords 4 is plural, the plural ripcords 4 may be spaced apart in the circumferential direction of the jacket 3 .
 ここで、リップコード4の中心から見て外被3の内面3aからリップコード4が露出している方向を露出方向と称する。リップコード4は、光ケーブル1の断面(横断面視)において、この露出方向に、外被3の内側に脱落する。露出方向に、光ケーブル1の使用時における耐荷重よりも大きな側圧荷重を印加したときに、外被3の内側に脱落するように構成されている。すなわち、光ケーブル1の使用時において上記した耐荷重以下の側圧荷重が光ケーブル1に作用しても、リップコード4が外被3から脱落することはない。
 ここで、上記した「露出方向」は、光ケーブル1の断面において、リップコード4とコア10の中心1Cとが並ぶ配列方向に対応していてもよいし、リップコード4とコア10の中心とが並ぶ配列方向に対応していてもよい。図1では、コア10の中心がコア10の中心1Cと一致しているが、例えば一致していなくてもよい。図1において、「露出方向」は、光ケーブル1の径方向においてコア10の中心1Cに向かう方向に一致している。なお、「露出方向」は、例えば光ケーブル1の径方向においてコア10の中心1Cに向かう方向に一致しなくてもよい。
 また、「光ケーブル1の使用時」とは、例えば光ケーブル1の敷設時や保守点検時、あるいは、敷設された光ケーブル1によってデータ通信が行われている時などであってよい。また、「光ケーブル1の使用時における耐荷重」とは、例えば光ケーブル1を通常の使用範囲で、光ケーブル1に対してその長手方向に直交する方向に作用しうる最大の側圧荷重であってよい。また、上記の「耐荷重」は、例えば光ケーブル1の使用時において伝送損失が許容値以上に上昇しない側圧荷重であってよい。「耐荷重」は、光ケーブル1における伝送損失が0.15dB以上に上昇しない側圧荷重であってよい。「耐荷重」は、光ケーブル1の仕様や用途に応じて異なってよい。
Here, the direction in which the ripcord 4 is exposed from the inner surface 3a of the outer cover 3 as viewed from the center of the ripcord 4 is referred to as the exposed direction. The rip cord 4 falls off inside the jacket 3 in this exposure direction in the cross section (cross-sectional view) of the optical cable 1 . When a lateral pressure load larger than the withstand load of the optical cable 1 is applied in the exposure direction, the optical cable 1 is configured to drop inside the jacket 3 . That is, even if the optical cable 1 is subjected to a lateral pressure load that is less than the withstand load described above when the optical cable 1 is used, the ripcord 4 will not come off from the jacket 3 .
Here, the above-mentioned "exposure direction" may correspond to the arrangement direction in which the ripcord 4 and the center 1C of the core 10 are aligned in the cross section of the optical cable 1, or the ripcord 4 and the center of the core 10 are aligned. It may correspond to the alignment direction. Although the center of the core 10 is aligned with the center 1C of the core 10 in FIG. 1, they may not be aligned. In FIG. 1 , the “exposure direction” corresponds to the direction toward the center 1C of the core 10 in the radial direction of the optical cable 1 . In addition, the “exposure direction” may not coincide with the direction toward the center 1C of the core 10 in the radial direction of the optical cable 1, for example.
Also, "when the optical cable 1 is used" may be, for example, when the optical cable 1 is laid, during maintenance and inspection, or when data communication is being performed by the laid optical cable 1, or the like. Also, the "withstand load of the optical cable 1 during use" may be, for example, the maximum lateral pressure load that can act on the optical cable 1 in the direction orthogonal to its longitudinal direction within the normal usage range of the optical cable 1. Moreover, the above-mentioned "withstanding load" may be, for example, a lateral pressure load that does not increase the transmission loss beyond the allowable value when the optical cable 1 is used. The “withstanding load” may be a lateral pressure load at which the transmission loss in the optical cable 1 does not rise to 0.15 dB or more. The “withstanding load” may vary depending on the specifications and uses of the optical cable 1 .
 リップコード4が外被3に対して埋設されるリップコード4の埋設率について説明する。本実施形態において、リップコード4の埋設率は、図2に示す光ケーブル1の断面において、リップコード4の全周の長さに対してリップコード4が外被3に接触するリップコード4の接触長さ4Lの割合によって示される。本実施形態におけるリップコード4の埋設率は、40%以上かつ100%よりも小さい。リップコード4の埋設率が100%よりも小さいことは、少なくともリップコード4が外被3の内面3aに露出していることを意味する。 The embedding rate of the ripcord 4 in which the ripcord 4 is embedded in the jacket 3 will be explained. In this embodiment, the embedding ratio of the ripcord 4 is defined as the contact of the ripcord 4 with respect to the length of the entire circumference of the ripcord 4 in the cross section of the optical cable 1 shown in FIG. It is indicated by the ratio of length 4L. The embedding rate of the ripcord 4 in this embodiment is 40% or more and less than 100%. The fact that the embedding rate of the ripcord 4 is less than 100% means that at least the ripcord 4 is exposed on the inner surface 3 a of the jacket 3 .
 本実施形態において、前述した外被3は、光ケーブル1の断面において、リップコード4とコア10の中心1Cとが並ぶ配列方向における寸法と、配列方向に直交する直交方向における寸法とが略等しい円形状(略円形)に形成されている。以下の説明では、上記の「配列方向」及びこれに対応する「露出方向」を上下方向Yと呼び、上記の「直交方向」を左右方向Xと呼ぶことがある。 In this embodiment, the jacket 3 described above is a circle whose dimension in the arrangement direction in which the ripcord 4 and the center 1C of the core 10 are aligned in the cross section of the optical cable 1 and the dimension in the orthogonal direction perpendicular to the arrangement direction are substantially equal. It is formed in a shape (substantially circular). In the following description, the above-mentioned "arrangement direction" and the corresponding "exposure direction" may be referred to as the vertical direction Y, and the above-described "perpendicular direction" may be referred to as the horizontal direction X.
 図1を参照して、上下方向Y(露出方向)における外被3の厚さ3Tについて説明する。上下方向Yにおける外被3の厚さ3Tは、上下方向Yにおいてリップコード4上に重なる外被3の厚さ3Tである。言い換えれば、上下方向Yにおける外被3の厚さ3Tは、上下方向Yにおいて、外被3の内面3aから外面3bまで至る外被3全体の厚さから、リップコード4のうち外被3に埋設された部位の長さを差し引いた寸法である。以下の説明では、上下方向Y(露出方向)における外被3の厚さ3Tを、「リップコード4上の外被3の厚さ3T」と呼ぶことがある。本実施形態において、リップコード4上の外被3の厚さ3Tは、0.5mm以上かつ4.0mm以下である。 The thickness 3T of the jacket 3 in the vertical direction Y (exposure direction) will be described with reference to FIG. The thickness 3T of the jacket 3 in the vertical direction Y is the thickness 3T of the jacket 3 that overlaps the ripcord 4 in the vertical direction Y. In other words, the thickness 3T of the jacket 3 in the vertical direction Y is the total thickness of the jacket 3 from the inner surface 3a to the outer surface 3b of the jacket 3 in the vertical direction Y. This is the dimension after subtracting the length of the embedded part. In the following description, the thickness 3T of the jacket 3 in the vertical direction Y (exposure direction) may be referred to as "the thickness 3T of the jacket 3 on the ripcord 4". In this embodiment, the thickness 3T of the jacket 3 on the ripcord 4 is 0.5 mm or more and 4.0 mm or less.
 抗張力体6は、外被3に埋設されている。抗張力体6は、外被3の収縮を抑えたり、光ケーブル1の長手方向への引張応力から光ファイバ2を保護したりする機能を有する。抗張力体6には、例えば、鋼線や繊維強化プラスチック(FRP)を使用できる。
 抗張力体6の曲げ弾性率は、外被3の曲げ弾性率よりも高い。抗張力体6は、光ケーブル1の断面において、コア10の中心1Cに対して、例えば、左右方向X(直交方向)に並ぶ位置に配置されている。本実施形態において、抗張力体6は、光ケーブル1の断面において、コア10を挟むように一対配置されている。一対の抗張力体6は、光ケーブル1の長手方向に平行するように配置されてよい。
A tensile strength member 6 is embedded in the jacket 3 . The tensile strength member 6 has the function of suppressing contraction of the jacket 3 and protecting the optical fiber 2 from tensile stress in the longitudinal direction of the optical cable 1 . Steel wire or fiber reinforced plastic (FRP), for example, can be used for the tensile member 6 .
The bending elastic modulus of the strength member 6 is higher than that of the jacket 3 . The tensile members 6 are arranged in the cross section of the optical cable 1 so as to be aligned in the left-right direction X (perpendicular direction) with respect to the center 1C of the core 10, for example. In this embodiment, a pair of tensile members 6 are arranged so as to sandwich the core 10 in the cross section of the optical cable 1 . A pair of tensile members 6 may be arranged in parallel with the longitudinal direction of the optical cable 1 .
 図1においては、2本の抗張力体6を一組とし、一対の組をコア10の両側に配置しているが、これに限ることはない。例えば、3本以上の抗張力体6を一組として、一対の組をコア10の両側に配置してもよいし、抗張力体6がコア10の両側に1本ずつ配置されてもよい。また、図1においては、組をなす複数の抗張力体6が離間しているが、例えば接触してもよい。また、組をなす複数の抗張力体6が撚られていてもよい。また、3組以上もしくは3本以上の抗張力体6を外被3の周方向に略均等に配置してもよい。ただし、光ケーブル1は、例えば抗張力体6を有していなくてもよい。 In FIG. 1, two tensile members 6 are set as one set, and a pair of sets are arranged on both sides of the core 10, but this is not the only option. For example, a pair of three or more tensile strength members 6 may be arranged on both sides of the core 10 , or one tensile strength member 6 may be arranged on each side of the core 10 . Moreover, in FIG. 1, the plurality of tensile members 6 forming a set are spaced apart, but they may be in contact with each other, for example. Moreover, a plurality of tensile members 6 forming a set may be twisted. Also, three or more sets or three or more tensile members 6 may be arranged substantially evenly in the circumferential direction of the jacket 3 . However, the optical cable 1 may not have the tension member 6, for example.
 抗張力体6がコア10の中心1Cに対して左右方向Xに並ぶ位置に配置されていることで、外被3を左右方向Xにおいて圧縮し難くすることができる。これにより、本実施形態の外被3は、左右方向X(直交方向)よりも上下方向Y(露出方向)に圧縮しやすい。 By arranging the tensile members 6 in the horizontal direction X with respect to the center 1C of the core 10, it is possible to make it difficult to compress the jacket 3 in the horizontal direction X. As a result, the jacket 3 of the present embodiment is easier to compress in the vertical direction Y (exposed direction) than in the horizontal direction X (perpendicular direction).
 また、上記したように抗張力体6が配置されていることで、本実施形態の光ケーブル1は、光ケーブル1の断面において、光ケーブル1の曲げの中立線NLを中心とする方向に曲げやすい曲げ異方性を有する。この点について説明すれば、曲げの中立線NLは、一対の抗張力体6の中心同士を結ぶ線である。中立線NL上に抗張力体6が位置することで、光ケーブル1は中立線NLを中心とする方向に曲げやすく、他の方向には曲げにくい。
 中立線NLは、光ケーブル1を曲げた場合に、光ケーブル1の長手方向への伸縮が小さい光ケーブル1の位置を示している。例えば図1において、光ケーブル1が中立線NLの上側に凸となるように光ケーブル1を曲げた場合、中立線NLの上側に位置する光ケーブル1の部位は光ケーブル1の長手方向に延び、中立線NLの下側に位置する光ケーブル1の部位は光ケーブル1の長手方向に縮む。
In addition, since the tensile strength member 6 is arranged as described above, the optical cable 1 of the present embodiment has an anisotropy in bending in the cross section of the optical cable 1, which is easy to bend in a direction centering on the bending neutral line NL of the optical cable 1. have sex. To explain this point, the neutral bending line NL is a line connecting the centers of the pair of tensile members 6 . By positioning the tensile strength member 6 on the neutral line NL, the optical cable 1 can be easily bent in a direction centered on the neutral line NL and is difficult to bend in other directions.
The neutral line NL indicates the position of the optical cable 1 where the expansion and contraction in the longitudinal direction of the optical cable 1 is small when the optical cable 1 is bent. For example, in FIG. 1, when the optical cable 1 is bent so that the optical cable 1 protrudes upward from the neutral line NL, the portion of the optical cable 1 located above the neutral line NL extends in the longitudinal direction of the optical cable 1 and extends toward the neutral line NL. The portion of the optical cable 1 positioned below is contracted in the longitudinal direction of the optical cable 1 .
 本実施形態の光ケーブル1では、曲げの中立線NLが左右方向X(直交方向)に延びるため、上記した曲げの中立線NLを中心とする方向に光ケーブル1を曲げた際には、外被3が上下方向Y(露出方向)に圧縮する。 In the optical cable 1 of the present embodiment, the neutral line NL of bending extends in the left-right direction X (perpendicular direction). compresses in the vertical direction Y (exposure direction).
 以上のように構成される本実施形態の光ケーブル1では、2つの異なる口出し方法によって光ファイバ2を口出しすることができる。以下、光ケーブル1における2つの光ファイバの口出し方法について説明する。 In the optical cable 1 of this embodiment configured as described above, the optical fiber 2 can be led out by two different lead-out methods. A method for leading out the two optical fibers in the optical cable 1 will be described below.
<第一の光ファイバの口出し方法>
 第一の光ファイバの口出し方法(以下、第一の口出し方法と呼ぶ。)は、従来と同様の方法である。すなわち、第一の口出し方法では、リップコード4を外被3に保持させたままで、作業者がリップコード4を引っ張ることで外被3を引き裂く。これにより、光ファイバ2を外被3の外側に口出しできる。
<Method of Leading out the First Optical Fiber>
The first optical fiber lead-out method (hereinafter referred to as the first lead-out method) is the same as the conventional method. That is, in the first lead-out method, the outer cover 3 is torn by pulling the ripcord 4 while the ripcord 4 is held by the outer cover 3 . Thereby, the optical fiber 2 can be exposed to the outside of the jacket 3 .
<第二の光ファイバの口出し方法>
 第二の光ファイバの口出し方法(以下、第二の口出し方法と呼ぶ。)では、はじめに図3,4に示すように、リップコード4を外被3の内側に脱落させるコード脱落工程(リップコードの脱落方法)を実施する。
 コード脱落工程(リップコードの脱落方法)では、光ケーブル1の断面(横断面視)において、コア10の中心1Cとリップコード4とが並ぶ上下方向Y(配列方向)に、光ケーブル1の使用時における耐荷重よりも大きな側圧荷重を光ケーブル1に印加する。
この際、図4に示すように、外被3は上下方向Yに縮むと共に左右方向Xに延びる。このため、リップコード4を保持している外被3の部位も左右方向Xに延びる。これにより、外被3によるリップコード4の保持が解除され、リップコード4が外被3の内側に脱落する。図3,4においては、2枚の平板100により光ケーブル1を上下方向Yに挟むことで、光ケーブル1に側圧荷重を印加しているが、これに限られない。
<Method of Leading out the Second Optical Fiber>
In the second optical fiber lead-out method (hereinafter referred to as the second lead-out method), first, as shown in FIGS. drop-off method).
In the cord removal process (rip cord removal method), in the cross section (cross sectional view) of the optical cable 1, the center 1C of the core 10 and the rip cord 4 are aligned in the vertical direction Y (arrangement direction), when the optical cable 1 is in use. A lateral pressure load larger than the withstand load is applied to the optical cable 1 .
At this time, the jacket 3 contracts in the vertical direction Y and extends in the horizontal direction X, as shown in FIG. Therefore, the portion of the jacket 3 that holds the ripcord 4 also extends in the left-right direction X. As shown in FIG. As a result, the holding of the ripcord 4 by the outer cover 3 is released, and the ripcord 4 drops inside the outer cover 3 . 3 and 4, the lateral pressure load is applied to the optical cable 1 by sandwiching the optical cable 1 in the vertical direction Y between the two flat plates 100, but the present invention is not limited to this.
 コード脱落工程の後には、光ファイバ2を外被3の外側に口出しするファイバ口出し工程を実施する。ファイバ口出し工程では、図5に示すように、外被3に、リップコード4が埋め込まれていた埋設痕31が形成されている。外被3に形成された埋設痕31を利用して光ファイバ2を口出しする。リップコード4が脱落した後の埋設痕31は、外被3の内面3aに露出し、外被3の長手方向に延びる溝状である。この埋設痕31をきっかけとして作業者が手で外被3を引き裂くことで、光ファイバ2が外被3の外側に口出しされる。図5における符号32は、作業者の手によって引き裂かれる外被3の引き裂き線32を示している。 After the cord drop-off process, a fiber lead-out process of leading the optical fiber 2 to the outside of the jacket 3 is performed. In the fiber lead extraction step, as shown in FIG. The optical fiber 2 is exposed using the embedding trace 31 formed on the jacket 3 . The embedded trace 31 after the ripcord 4 has fallen off is exposed on the inner surface 3a of the outer cover 3 and has a groove shape extending in the longitudinal direction of the outer cover 3. As shown in FIG. A worker tears the jacket 3 by hand using the burial marks 31 as a trigger, and the optical fiber 2 is exposed outside the jacket 3 . Reference numeral 32 in FIG. 5 indicates a tear line 32 of the outer cover 3 to be torn by hand of the operator.
 第二の口出し方法のコード脱落工程においては、例えば光ケーブル1を曲げることでリップコード4を外被3の内側に脱落させてもよい。この場合、光ケーブル1の曲げの中立線NL(図1参照)が上下方向Yに直交するように光ケーブル1を曲げればよい。このように光ケーブル1を曲げることで、外被3は上下方向Yに縮む。その結果として、光ケーブル1に対して上下方向Yの側圧荷重が印加され、リップコード4が外被3の内側に脱落する。光ケーブル1を曲げる場合には、作業者が自身の手指で光ケーブル1を圧縮する場合と比較して、光ケーブル1に対して簡単に側圧荷重を印加することができる。 In the cord removal step of the second lead-out method, for example, the rip cord 4 may be removed inside the jacket 3 by bending the optical cable 1 . In this case, the optical cable 1 may be bent so that the bending neutral line NL (see FIG. 1) of the optical cable 1 is perpendicular to the vertical direction Y. FIG. By bending the optical cable 1 in this manner, the sheath 3 is shrunk in the vertical direction Y. As shown in FIG. As a result, a lateral pressure load is applied to the optical cable 1 in the vertical direction Y, and the ripcord 4 drops inside the jacket 3 . When bending the optical cable 1, the side pressure load can be applied to the optical cable 1 more easily than when the operator compresses the optical cable 1 with his or her fingers.
 以上説明したように、本実施形態の光ケーブル1、リップコードの脱落方法及び光ファイバの口出し方法によれば、上下方向Y(露出方向)に、光ケーブル1の使用時における耐荷重よりも大きな側圧荷重を印加したときに、リップコード4が外被3の内側に脱落する。このため、光ケーブル1の使用時における耐荷重以下の側圧荷重が光ケーブル1に作用しても、リップコード4が外被3の内側に脱落することがなく、外被3に保持される。
すなわち、光ケーブル1の使用時においてリップコード4が不意に外被3の内側に脱落することを防止できる。そして、耐荷重よりも大きな側圧荷重を意図的に光ケーブル1に印加することで、リップコード4を外被3の内側に意図的に脱落させることができる。
 なお、リップコード4が不意に外被3から脱落してしまうと、リップコード4が光ファイバ2に絡んでしまうことがある。その場合、リップコード4によって外被3を引き裂く際に、光ファイバ2がリップコード4によって切断されてしまう可能性がある。このため、リップコード4が不意に外被3から脱落してしまうことは好ましくない。
As described above, according to the optical cable 1, the method for removing the rip cord, and the method for pulling out the optical fiber according to the present embodiment, the lateral pressure load in the vertical direction Y (exposure direction) larger than the withstand load when the optical cable 1 is in use. is applied, the ripcord 4 drops inside the jacket 3. Therefore, even if the optical cable 1 is subjected to a lateral pressure load that is less than the withstand load of the optical cable 1 during use, the ripcord 4 does not fall off inside the jacket 3 and is held by the jacket 3 .
That is, it is possible to prevent the rip cord 4 from unexpectedly falling inside the jacket 3 when the optical cable 1 is used. By intentionally applying a lateral pressure load larger than the withstand load to the optical cable 1 , the ripcord 4 can be intentionally dropped inside the jacket 3 .
If the ripcord 4 unexpectedly falls off the jacket 3, the ripcord 4 may become entangled with the optical fiber 2. As shown in FIG. In that case, the optical fiber 2 may be cut by the ripcord 4 when the jacket 3 is torn by the ripcord 4 . For this reason, it is undesirable for the ripcord 4 to unexpectedly fall off the jacket 3 .
 リップコード4を意図的に外被3の内側に脱落できることで、口出し作業する環境(例えば温度環境)や作業者の熟練度に応じて、第一の口出し方法及び第二の口出し方法のいずれかを選択して、光ファイバ2の口出し作業の効率の低下を抑制することができる。例えば、低温環境下で口出し作業を実施したり、熟練度が低い作業者が口出し作業を実施したりする場合に、第一の口出し方法を選択すると外被3の引き裂き時にリップコード4が不意に切れてしまうことがある。このような場合に、第二の口出し方法を選択すると、光ファイバ2を効率よく口出しすることができる。また、熟練度が高い作業者が口出し作業を実施する場合には、工程数が少ない第一の口出し方法を選択することで、光ファイバ2を効率よく口出しすることができる。 Since the ripcord 4 can be intentionally dropped inside the outer cover 3, either the first lead-out method or the second lead-out method can be selected depending on the environment in which the lead-out work is performed (for example, the temperature environment) and the skill level of the operator. can be selected to suppress a decrease in the efficiency of the optical fiber 2 lead-out work. For example, if the first lead-out method is selected when the lead-out work is performed in a low-temperature environment or by an unskilled worker, the rip cord 4 may be unexpectedly damaged when the outer cover 3 is torn. It may break. In such a case, if the second lead method is selected, the optical fiber 2 can be efficiently led. Also, when a highly skilled worker performs the picking work, the optical fiber 2 can be picked up efficiently by selecting the first picking method with a small number of steps.
 また、本実施形態の光ケーブル1では、光ケーブル1の断面において、外被3の内面3aからリップコード4が露出している露出方向(上下方向Y)に外被3を圧縮しやすく、露出方向に直交する直交方向(左右方向X)に外被3を圧縮し難い。これにより、リップコード4が外被3に覆われて見えなくても、外被3が圧縮しやすい方向に側圧荷重を付与するだけで、リップコード4を簡単に外被3の内側に脱落させることができる。 In addition, in the optical cable 1 of the present embodiment, in the cross section of the optical cable 1, the jacket 3 is easily compressed in the exposure direction (vertical direction Y) in which the ripcord 4 is exposed from the inner surface 3a of the jacket 3, and the exposure direction It is difficult to compress the jacket 3 in the orthogonal direction (horizontal direction X). Thus, even if the ripcord 4 is covered with the outer cover 3 and cannot be seen, the ripcord 4 can be easily dropped inside the outer cover 3 only by applying a side pressure load in the direction in which the outer cover 3 is easily compressed. be able to.
 また、本実施形態の光ケーブル1では、外被3よりも曲げ弾性率が高い抗張力体6が、光ケーブル1の断面において、コア10の中心1Cに対して上記の直交方向(左右方向X)に並ぶ位置に配置されている。この抗張力体6により、外被3を直交方向に圧縮し難くすることができる。したがって、露出方向に圧縮しやすく、かつ、直交方向に圧縮し難い光ケーブル1を提供することができる。 In addition, in the optical cable 1 of the present embodiment, the tensile strength member 6 having a higher flexural modulus than the jacket 3 is arranged in the above orthogonal direction (horizontal direction X) with respect to the center 1C of the core 10 in the cross section of the optical cable 1. placed in position. This tensile strength member 6 makes it difficult to compress the jacket 3 in the orthogonal direction. Therefore, it is possible to provide an optical cable 1 that is easy to compress in the exposure direction and difficult to compress in the orthogonal direction.
 また、本実施形態の光ケーブル1では、露出方向(上下方向Y)における外被3の厚さ3T、すなわちリップコード4上の外被3の厚さ3Tが、0.5mm以上かつ4.0mm以下である。
 露出方向における外被3の厚さ3Tが4.0mm以下であることで、リップコード4を外被3から脱落させた後に、リップコード4が埋設されていた外被3の溝状の埋設痕31をきっかけとして、外被3を手で容易に引き裂くことができる。なお、露出方向における外被3の厚さ3Tが4.0mmよりも大きい場合には、外被3が厚すぎてしまうため、埋設痕31をきっかけとして外被3を手で引き裂くことが困難となる。
Further, in the optical cable 1 of the present embodiment, the thickness 3T of the jacket 3 in the exposure direction (vertical direction Y), that is, the thickness 3T of the jacket 3 on the ripcord 4 is 0.5 mm or more and 4.0 mm or less. is.
Since the thickness 3T of the outer cover 3 in the exposure direction is 4.0 mm or less, after the ripcord 4 is dropped from the outer cover 3, the groove-like embedding mark of the outer cover 3 in which the ripcord 4 is embedded is left. Using 31 as a trigger, the jacket 3 can be easily torn off by hand. Note that if the thickness 3T of the outer cover 3 in the exposure direction is greater than 4.0 mm, the outer cover 3 is too thick, and it is difficult to tear the outer cover 3 by hand using the embedding marks 31 as a trigger. Become.
 また、露出方向における外被3の厚さ3Tが0.5mm以上であることで、リップコード4を外被3の内側に脱落させるために印加する側圧荷重を、光ケーブル1の使用時における耐荷重よりも大きくすることができる。言い換えれば、光ケーブル1の使用時における耐荷重以下の側圧荷重によって、リップコード4が外被3の内側に脱落してしまうことを防止することができる。さらに言い換えれば、光ケーブル1の使用時において、リップコード4が不意に外被3の内側に脱落してしまうことを防止することができる。 In addition, since the thickness 3T of the jacket 3 in the exposure direction is 0.5 mm or more, the lateral pressure load applied to cause the ripcord 4 to come off the inside of the jacket 3 is equal to the withstanding load when the optical cable 1 is in use. can be larger than In other words, it is possible to prevent the rip cord 4 from falling inside the jacket 3 due to a lateral pressure load that is less than the withstand load when the optical cable 1 is in use. Furthermore, in other words, it is possible to prevent the rip cord 4 from unexpectedly falling inside the jacket 3 when the optical cable 1 is used.
 また、本実施形態の光ケーブル1では、外被3に対して埋設されるリップコード4の埋設率が40%以上かつ100%よりも小さい。リップコード4の埋設率が40%以上であることで、光ケーブル1の製造直後及び光ケーブル1の使用時において、リップコード4が不意に外被3から脱落してしまうことを防止できる。また、リップコード4の埋設率が100%よりも小さいことで、リップコード4は外被3の内側に露出する。これにより、光ケーブル1に対して露出方向への側圧荷重を印加することで、リップコード4を外被3から脱落させることができる。 Further, in the optical cable 1 of this embodiment, the embedding rate of the ripcord 4 embedded in the jacket 3 is 40% or more and less than 100%. When the ripcord 4 is buried at a rate of 40% or more, it is possible to prevent the ripcord 4 from unexpectedly falling off from the jacket 3 immediately after the optical cable 1 is manufactured and when the optical cable 1 is used. In addition, since the embedding rate of the ripcord 4 is less than 100%, the ripcord 4 is exposed inside the jacket 3 . As a result, the ripcord 4 can be removed from the jacket 3 by applying a lateral pressure load in the exposure direction to the optical cable 1 .
 次に、図6~10の表を参照して、リップコード4の埋設率と、外被3からのリップコード4の脱落の有無、及び、作業者の手による外被3の引き裂きの可否との関係について説明する。
 図6~10の表では、外被3の曲げ弾性率が互いに異なっている。図6の表における外被3の曲げ弾性率は100MPaであり、図7の表における外被3の曲げ弾性率は320MPaである。また、図8の表における外被3の曲げ弾性率は500MPaであり、図9の表における外被3の曲げ弾性率は630MPaである。さらに、図10の表における外被3の曲げ弾性率は790MPaである。
Next, referring to the tables of FIGS. 6 to 10, the embedding rate of the ripcord 4, whether or not the ripcord 4 falls off from the jacket 3, and whether or not the jacket 3 can be torn by the operator's hand. I will explain the relationship between
In the tables of FIGS. 6 to 10, the flexural moduli of the jacket 3 are different from each other. The bending elastic modulus of the jacket 3 in the table of FIG. 6 is 100 MPa, and the bending elastic modulus of the jacket 3 in the table of FIG. 7 is 320 MPa. The bending elastic modulus of the jacket 3 in the table of FIG. 8 is 500 MPa, and the bending elastic modulus of the jacket 3 in the table of FIG. 9 is 630 MPa. Furthermore, the bending elastic modulus of the jacket 3 in the table of FIG. 10 is 790 MPa.
 図6~10における「リップコード脱落有無」は、外被3からのリップコード4の脱落の有無を意味する。「リップコード脱落有無」の欄における「有り」は、リップコード4が外被3から脱落したことを示し、「無し」は、リップコード4が外被3から脱落していないことを示す。また、「リップコード脱落有無」の欄における「-」は、リップコード4の脱落の有無を判定していないことを示す。 "Presence/absence of ripcord falling off" in FIGS. "Presence" in the column "Presence or absence of ripcord falling off" indicates that the ripcord 4 has fallen off from the jacket 3, and "No" indicates that the ripcord 4 has not fallen off from the jacket 3. In addition, "-" in the column "whether or not the rip cord has come off" indicates that whether or not the rip cord 4 has come off has not been determined.
 外被3からのリップコード4の脱落の有無については、光ケーブル1を製造した直後(図6~10における「ケーブル製造直後」)、及び、製造後の光ケーブル1に対して6000Nの側圧荷重を上下方向Y(露出方向)に印加した後(図6~10における「6000N印加後」)の2つの状態で確認した。6000Nの側圧荷重は、光ケーブル1の使用に際して許容し得る最大の側圧荷重(以下、「最大許容荷重」と呼ぶ。)の一例である。
最大許容荷重よりも大きい側圧荷重は、例えば、光ケーブル1に対する側圧荷重の印加を解除しても、伝送損失が復帰しない大きさの荷重、言い換えれば、光ケーブル1の特性が不可逆的に変化してしまう大きさの荷重である。上記した側圧荷重を印加する側圧試験は、Telcordia Technologies Generic Requirements GR-20-CORE(Issue4, July 2013)(以下、「Telcordia GR-20」と省略記載する場合もある。)に準じた試験手順で行っている。側圧試験では、温度22℃の環境下において、100mm四方の金属平板により光ケーブル1を上下方向Yに挟むことで、光ケーブル1に対して6000Nの側圧荷重を上下方向Yに1分間印加する。
Regarding the presence or absence of the rip cord 4 falling off from the outer sheath 3, the lateral pressure load of 6000 N was applied to the optical cable 1 immediately after manufacturing the optical cable 1 ("Immediately after cable manufacturing" in FIGS. 6 to 10) and after manufacturing. It was confirmed in two states after applying in the direction Y (exposure direction) (“after application of 6000 N” in FIGS. 6 to 10). A lateral pressure load of 6000 N is an example of a maximum lateral pressure load (hereinafter referred to as “maximum allowable load”) that can be allowed when using the optical cable 1 .
A lateral pressure load larger than the maximum allowable load is, for example, a load of a magnitude that does not restore the transmission loss even if the application of the lateral pressure load to the optical cable 1 is canceled, in other words, the characteristics of the optical cable 1 change irreversibly. load of magnitude. The lateral pressure test to apply the above lateral pressure load is a test procedure according to Telcordia Technologies Generic Requirements GR-20-CORE (Issue4, July 2013) (hereinafter sometimes abbreviated as "Telcordia GR-20"). Is going. In the lateral pressure test, a lateral pressure load of 6000 N is applied to the optical cable 1 in the vertical direction Y for 1 minute by sandwiching the optical cable 1 in the vertical direction Y with 100 mm square metal flat plates in an environment of 22°C.
 図6~10における「手での外被引裂き性」は、作業者の手による外被3の引裂きの可否を意味する。「手での外被引裂き性」の欄における「可」は、作業者の手によって外被3を引き裂くことができたことを示し、「不可」は、作業者の手によって外被3を引き裂くことができなかったことを示す。作業者の手による外被3の引裂きの可否については、製造後の光ケーブル1に対して6000N(最大許容荷重)の側圧荷重を上下方向Y(露出方向)に印加した後(図6~10における「6000N印加後」)の状態で確認した。 "Tearability of outer cover by hand" in FIGS. "Possible" in the column of "Tearable outer cover by hand" indicates that the outer cover 3 could be torn by the operator's hand, and "Unacceptable" indicates that the outer cover 3 was torn by the operator's hand. indicate that it was not possible. Regarding whether or not the jacket 3 can be torn by the operator's hand, after applying a lateral pressure load of 6000 N (maximum allowable load) to the manufactured optical cable 1 in the vertical direction Y (exposure direction) (see FIGS. 6 to 10 "After applying 6000 N").
 図6~10における「総合判定」は、「○(良)」と「×(不良)」とで示されている。「総合判定」における「○」は、以下の三つの条件を全て満たし、合格であることを示している。第一の条件は、製造直後の光ケーブル1においてリップコード4が脱落しないこと(図6~10の「ケーブル製造直後」における「リップコード脱落有無」が「無し」であること)である。第二の条件は、光ケーブル1に6000N(最大許容荷重)の側圧荷重を印加した後において、リップコード4が脱落すること(図6~10の「6000N印加後」における「リップコード脱落有無」が「有り」であること)である。第三の条件は、光ケーブル1に6000Nの側圧荷重を印加した後において、作業者が外被3を手で引き裂けること(図6~10の「手での外被引裂き性」が「可」であること)である。「総合判定」における「×」は、上記した三つの条件のうち一つ以上満たさず、不合格であることを示している。 "Comprehensive judgment" in FIGS. 6 to 10 is indicated by "○ (good)" and "X (bad)". "○" in "Comprehensive Judgment" indicates that all of the following three conditions are satisfied and passed. The first condition is that the ripcord 4 does not fall off in the optical cable 1 immediately after manufacture (the ``ripcord dropout presence/absence'' in ``immediately after cable manufacture'' in FIGS. 6 to 10 is ``no''). The second condition is that the ripcord 4 falls off after a lateral pressure load of 6000N (maximum allowable load) is applied to the optical cable 1 ("Whether or not the ripcord falls off" in "After applying 6000N" in FIGS. 6 to 10 is “Yes”). The third condition is that the worker can tear the jacket 3 by hand after applying a lateral pressure load of 6000 N to the optical cable 1 (“Hand tearability” in FIGS. be). An "x" in "Comprehensive Judgment" indicates that one or more of the above three conditions are not met, and that the product is unsatisfactory.
 図6~10に示すように、リップコード4の埋設率が30%以下である場合には、外被3の曲げ弾性率に関わらず、光ケーブル1を製造した直後においてリップコード4が外被3から脱落することが分かる。一方、リップコード4の埋設率が40%以上である場合には、外被3の曲げ弾性率に関わらず、光ケーブル1を製造した直後においてリップコード4が外被3から脱落しないことが分かる。すなわち、外被3の曲げ弾性率に関わらず、リップコード4の埋設率が40%以上であることで、光ケーブル1の製造直後及び光ケーブル1の使用時において、リップコード4が不意に外被3から脱落することを防止できることが分かる。 As shown in FIGS. 6 to 10, when the embedding ratio of the ripcord 4 is 30% or less, regardless of the bending elastic modulus of the jacket 3, the ripcord 4 is It is known to fall out of On the other hand, when the embedding ratio of the ripcord 4 is 40% or more, the ripcord 4 does not come off from the jacket 3 immediately after the optical cable 1 is manufactured regardless of the bending elastic modulus of the jacket 3 . That is, irrespective of the bending elastic modulus of the jacket 3, the embedding rate of the ripcord 4 is 40% or more. It can be seen that it is possible to prevent it from falling off.
 また、図6~9に示すように、外被3の曲げ弾性率が100MPa以上かつ630MPa以下の範囲では、光ケーブル1に6000Nの側圧荷重を印加することでリップコード4を外被3から脱落させることが可能なリップコード4の埋設率の下限値が、40%であることが分かる。なお、リップコード4の埋設率が30%以下である場合には、光ケーブル1の製造直後においてリップコード4が外被3から脱落しているため、6000Nの側圧荷重を印加したときのリップコード4の脱落の有無は判定できない。 Further, as shown in FIGS. 6 to 9, when the bending elastic modulus of the jacket 3 is in the range of 100 MPa to 630 MPa, the ripcord 4 is detached from the jacket 3 by applying a lateral pressure load of 6000 N to the optical cable 1. It can be seen that the lower limit of the embedding rate of the ripcord 4 that can be used is 40%. When the embedding rate of the ripcord 4 is 30% or less, the ripcord 4 is dropped from the jacket 3 immediately after the optical cable 1 is manufactured. It is not possible to judge the presence or absence of falling off.
 一方、外被3の曲げ弾性率が100MPa以上かつ630MPa以下の範囲において、光ケーブル1に対して6000Nの側圧荷重を印加することでリップコード4を外被3から脱落させることが可能なリップコード4の埋設率の上限値は、外被3の曲げ弾性率に応じて変化する。具体的に、リップコード4を脱落可能なリップコード4の埋設率の上限値は、外被3の曲げ弾性率が大きくなるほど小さくなる。これは、リップコード4の埋設率が大きくなるほど、リップコード4を脱落させるために外被3を露出方向に縮める量を大きくする必要があるが、外被3の曲げ弾性率が大きくなると、外被3を露出方向に縮め難くなるためである。 On the other hand, when the flexural modulus of the jacket 3 is in the range of 100 MPa or more and 630 MPa or less, the rip cord 4 can be detached from the jacket 3 by applying a lateral pressure load of 6000 N to the optical cable 1. The upper limit of the embedding rate of varies according to the flexural modulus of the jacket 3 . Specifically, the upper limit of the embedding ratio of the ripcord 4 that allows the ripcord 4 to fall off decreases as the bending elastic modulus of the outer cover 3 increases. This is because, as the embedding rate of the ripcord 4 increases, the amount of contraction of the outer cover 3 in the exposed direction in order to drop the ripcord 4 must be increased. This is because it becomes difficult to shrink the cover 3 in the exposure direction.
 そして、図10に示すように、外被3の曲げ弾性率が790MPaと過度に大きい場合には、リップコード4の埋設率が40%以上の範囲で、光ケーブル1に対して6000Nの側圧荷重を印加してもリップコード4を外被3から脱落させることができない。
 一方、図6に示すように、外被3の曲げ弾性率が100MPaと小さい場合には、リップコード4の埋設率が95%と大きくても、リップコード4を外被3から脱落させることができる。すなわち、外被3の曲げ弾性率が十分に小さく、リップコード4の埋設率が100%よりも小さい場合には、リップコード4を外被3から脱落させることができる。
As shown in FIG. 10, when the flexural modulus of the jacket 3 is excessively large at 790 MPa, a side pressure load of 6000 N is applied to the optical cable 1 within a range where the embedding rate of the rip cord 4 is 40% or more. Even if the voltage is applied, the ripcord 4 cannot be removed from the jacket 3.
On the other hand, as shown in FIG. 6, when the flexural modulus of the outer cover 3 is as small as 100 MPa, the ripcord 4 can be dropped from the outer cover 3 even if the ripcord 4 is embedded at a high embedding rate of 95%. can. That is, when the flexural modulus of the jacket 3 is sufficiently small and the embedding rate of the ripcord 4 is less than 100%, the ripcord 4 can be removed from the jacket 3 .
 図6~9に示すように、6000N(最大許容荷重)の側圧荷重を印加することでリップコード4を外被3から脱落させることができるリップコード4の埋設率(40%以上の埋設率)では、基本的に作業者の手によって外被3を引き裂くことができる。例外として、図9に示すように、外被3の曲げ弾性率が630MPaである光ケーブル1においてリップコード4の埋設率が80%である場合には、6000N(最大許容荷重)の側圧荷重を印加することでリップコード4を外被3から脱落できるが、作業者の手によって外被3を引き裂くことができない。これは、外被3の曲げ弾性率が過度に大きいと、作業者の手による外被3の引き裂きが困難になることを示している。 As shown in FIGS. 6 to 9, the embedding rate of the ripcord 4 (40% or more embedding rate) that allows the ripcord 4 to fall off the outer cover 3 by applying a lateral pressure load of 6000 N (maximum allowable load). , basically the mantle 3 can be torn by hand. As an exception, as shown in FIG. 9, when the rip cord 4 is buried at 80% in the optical cable 1 whose jacket 3 has a flexural modulus of 630 MPa, a lateral pressure load of 6000 N (maximum allowable load) is applied. By doing so, the ripcord 4 can be detached from the outer cover 3, but the outer cover 3 cannot be torn off by the operator's hand. This indicates that if the flexural modulus of the outer cover 3 is excessively high, it becomes difficult for the operator to tear the outer cover 3 by hand.
 また、図7~10に示すように、外被3の曲げ弾性率が320MPa以上の範囲で、リップコード4の埋設率が30%以下である光ケーブル1では、光ケーブル1の製造直後の状態でリップコード4が脱落しているが、作業者の手によって外被3を引き裂くことはできない。これは、外被3に対するリップコード4の埋設率が低いことに起因して、外被3におけるリップコード4の埋設痕31のサイズが小さいために、外被3を引き裂くことが困難になっていることが考えられる。
 一方、図6に示すように、外被3の曲げ弾性率が100MPaであってリップコード4の埋設率が30%以下である光ケーブル1では、作業者の手によって外被3を引き裂くことができる。これは、埋設痕31のサイズが小さくても、外被3の曲げ弾性率が低いことで外被3の引き裂きやすくなっていることが考えられる。
Further, as shown in FIGS. 7 to 10, in the optical cable 1 in which the flexural modulus of the jacket 3 is in the range of 320 MPa or more and the embedding rate of the rip cord 4 is 30% or less, the rip is Although the cord 4 has fallen off, the outer cover 3 cannot be torn off by the operator's hand. This is because the embedding rate of the ripcord 4 in the outer cover 3 is low, and the size of the embedded trace 31 of the ripcord 4 in the outer cover 3 is small, making it difficult to tear the outer cover 3. It is conceivable that there are
On the other hand, as shown in FIG. 6, in the optical cable 1 in which the bending elastic modulus of the jacket 3 is 100 MPa and the rip cord 4 embedding rate is 30% or less, the jacket 3 can be torn by the operator's hand. . This is probably because even if the size of the embedding marks 31 is small, the bending elastic modulus of the outer cover 3 is low, so that the outer cover 3 is easily torn.
 そして、図6~9に示すように、外被3の曲げ弾性率が100MPa以上かつ630MPa以下の範囲において、総合判定が「○」となるリップコード4の埋設率の下限値は、40%である。また、総合判定が「○」となるリップコード4の埋設率の上限値は、外被3の曲げ弾性率が大きくなるほど小さくなる傾向にある。このため、リップコード4の埋設率の上限値は、少なくとも100%よりも小さければよいが、外被3の曲げ弾性率に応じて、例えば90%以下、80%以下、あるいは、70%以下と下げることが好ましい。 As shown in FIGS. 6 to 9, the lower limit of the embedding rate of the ripcord 4 at which the overall judgment is "○" is 40% in the range of the bending elastic modulus of the outer cover 3 from 100 MPa to 630 MPa. be. Further, the upper limit value of the embedding rate of the ripcord 4 at which the comprehensive judgment is "O" tends to decrease as the bending elastic modulus of the outer cover 3 increases. Therefore, the upper limit of the embedding rate of the ripcord 4 should be at least less than 100%, but it may be 90% or less, 80% or less, or 70% or less depending on the bending elastic modulus of the outer cover 3. preferably lower.
 図6~9の表に基づく好適なリップコード4の埋設率の上限値は、リップコード4を外被3から脱落させるための側圧荷重を最大許容荷重である6000Nとした場合のものであるが、リップコード4を外被3から脱落させるための側圧荷重は、最大許容荷重(6000N)よりも小さく設定することができる。なお、側圧荷重の下限値は、後述する図11に示す「第二荷重」とすることができる。このため、リップコード4を外被3から脱落させるための側圧荷重が、「第二荷重」と最大許容荷重(6000N)との間で設定される場合、リップコード4の埋設率の上限値は、側圧荷重が最大許容荷重(6000N)である場合よりも小さく設定され得る。このことから、図6~9の表に基づくリップコード4の埋設率の上限値は、光ケーブル1の使用時における耐荷重よりも大きな側圧荷重を印加したときに、リップコード4が外被3から脱落する最大値である。 The preferred upper limit of the embedding ratio of the ripcord 4 based on the tables of FIGS. , the lateral pressure load for detaching the ripcord 4 from the jacket 3 can be set smaller than the maximum allowable load (6000N). Note that the lower limit of the lateral pressure load can be set to the "second load" shown in FIG. 11, which will be described later. Therefore, when the lateral pressure load for detaching the ripcord 4 from the jacket 3 is set between the "second load" and the maximum allowable load (6000N), the upper limit of the embedding ratio of the ripcord 4 is , the lateral pressure load can be set smaller than the maximum allowable load (6000N). From this, the upper limit of the embedding ratio of the ripcord 4 based on the tables of FIGS. This is the maximum value to drop out.
 図10に示すように、外被3の曲げ弾性率が790MPaと過度に大きい場合には、総合判定がいずれの埋設率であっても「×」である。このため、外被3の曲げ弾性率は、例えば630MPa以下とすることが好ましい。 As shown in FIG. 10, when the flexural modulus of the outer cover 3 is excessively large at 790 MPa, the overall judgment is "x" regardless of the embedding rate. Therefore, it is preferable that the bending elastic modulus of the jacket 3 is, for example, 630 MPa or less.
 次に、図11の表を参照して、外被3の曲げ弾性率と、光ケーブル1の使用時における耐荷重、リップコード4を外被3から脱落可能な最小の側圧荷重、及び、リップコード4上の外被3の厚さ3T(図1参照)との関係について説明する。
 図11に示す4つの実施例A~Dの光ケーブル1では、いずれもリップコード4の埋設率が70%である。4つの実施例A~Dの光ケーブル1では、外被3の曲げ弾性率が互いに異なっている。実施例Aの外被3は、後述する第一荷重を印加したときにICEA S-83-596を満たすように設計されている。実施例Bの外被3は、第一荷重を印加したときにTelcordia GR-20を満たすように設計されている。実施例Cの外被3は、第一荷重を印加したときにICEA_S-104-696を満たすように設計されている。実施例Dの外被3は、第一荷重を印加したときにTelcordia GR-20の特別仕様を満たすように設計されている。
Next, referring to the table of FIG. 11, the flexural modulus of the jacket 3, the withstand load of the optical cable 1 during use, the minimum lateral pressure load that allows the ripcord 4 to fall off the jacket 3, and the ripcord The relationship with the thickness 3T (see FIG. 1) of the jacket 3 on 4 will be described.
In the four optical cables 1 of Examples A to D shown in FIG. 11, the rip cord 4 embedding rate is 70%. In the optical cables 1 of the four examples A to D, the flexural modulus of the jacket 3 is different from each other. The jacket 3 of Example A is designed to meet ICEA S-83-596 when the first load described below is applied. The jacket 3 of Example B is designed to meet Telcordia GR-20 when the first load is applied. The jacket 3 of Example C is designed to meet ICEA_S-104-696 when the first load is applied. The jacket 3 of Example D is designed to meet the specific specifications of Telcordia GR-20 when the first load is applied.
 図11における「第一荷重」は、光ケーブル1に対してその長手方向に直交する露出方向(上下方向Y)に印加される側圧荷重であって、光ケーブル1の使用時における耐荷重である。耐荷重は、前述したように、例えば光ケーブル1における伝送損失が許容値以上(例えば0.15dB以上)に上昇しない側圧荷重である。第一荷重は、外被3の曲げ弾性率に比例する。すなわち、外被3の曲げ弾性率が大きいほど、第一荷重も大きくなる。 The "first load" in FIG. 11 is the lateral pressure load applied to the optical cable 1 in the exposure direction (vertical direction Y) perpendicular to its longitudinal direction, and is the withstand load of the optical cable 1 during use. As described above, the withstand load is the lateral pressure load at which the transmission loss in the optical cable 1 does not rise above the allowable value (for example, 0.15 dB or more). The first load is proportional to the flexural modulus of the jacket 3 . That is, the higher the flexural modulus of the jacket 3, the larger the first load.
 図11における「第二荷重」は、光ケーブル1に対してその長手方向に直交する露出方向(上下方向Y)に印加される側圧荷重であって、リップコード4が外被3から脱落する側圧荷重の下限値である。第二荷重は、後述するリップコード4上の外被3の厚さ3Tの設定により、前述した第一荷重よりも大きくなっている。
 なお、4つの実施例A~Dの光ケーブル1では、いずれも外被3の光ケーブル1の使用に際して許容し得る最大の側圧荷重、すなわち最大許容荷重が6000Nであり、上記した第二荷重よりも大きい。
The “second load” in FIG. 11 is a lateral pressure load applied to the optical cable 1 in the exposure direction (vertical direction Y) orthogonal to its longitudinal direction, and the lateral pressure load that causes the ripcord 4 to come off the jacket 3. is the lower limit of The second load is larger than the first load described above due to the setting of the thickness 3T of the jacket 3 on the ripcord 4, which will be described later.
In the optical cables 1 of the four examples A to D, the maximum lateral pressure load that can be allowed when using the optical cable 1 of the jacket 3, that is, the maximum allowable load, is 6000 N, which is larger than the second load. .
 図11における「リップコード上の外被厚さ」は、図1において示したリップコード4上の外被3の厚さ3Tである。図11においては、外被3の厚さ3Tの下限値と上限値とが示されている。 "The thickness of the jacket on the ripcord" in FIG. 11 is the thickness 3T of the jacket 3 on the ripcord 4 shown in FIG. In FIG. 11, the lower limit and upper limit of the thickness 3T of the jacket 3 are shown.
 図11に示すように、外被3の厚さ3Tの下限値は、4つの実施例A~Dにおいて互いに等しく、0.5mmである。外被3の厚さ3Tを0.5mm以上とすることで、各実施例の光ケーブル1における第二荷重(リップコード4を脱落させる側圧荷重の下限値)を、第一荷重(光ケーブル1の使用時における耐荷重)よりも大きくすることができる。これにより、光ケーブル1の使用時において、リップコード4が不意に外被3から脱落することを防止することができる。なお、外被3の厚さ3Tが0.5mmよりも小さい場合には、第二荷重が第一荷重と同等あるいは第一荷重よりも小さくなってしまう。この場合、光ケーブル1の通常の使用時においてリップコード4が不意に外被3から脱落してしまう。
 4つの実施例A~Dの間で、外被3の厚さ3Tの下限値が等しいことは、外被3の曲げ弾性率の違いに伴って4つの実施例A~Dの間で第一荷重が異なっていることに起因する。
As shown in FIG. 11, the lower limit of the thickness 3T of the jacket 3 is equal to each other in the four examples AD, which is 0.5 mm. By setting the thickness 3T of the jacket 3 to 0.5 mm or more, the second load (the lower limit of the lateral pressure load that causes the ripcord 4 to fall off) in the optical cable 1 of each embodiment is reduced to the first load (the use of the optical cable 1 load capacity at times). Thereby, it is possible to prevent the rip cord 4 from unexpectedly falling off from the jacket 3 when the optical cable 1 is used. In addition, when the thickness 3T of the jacket 3 is smaller than 0.5 mm, the second load is equal to or smaller than the first load. In this case, during normal use of the optical cable 1, the ripcord 4 unexpectedly falls off from the jacket 3.
The fact that the lower limit value of the thickness 3T of the jacket 3 is the same among the four Examples A to D is the first among the four Examples A to D due to the difference in the bending elastic modulus of the jacket 3. This is due to different loads.
 外被3の厚さ3Tの上限値は、リップコード4が脱落した後における外被3の埋設痕31をきっかけとして作業者が外被3を手で引き裂くことが可能な値であり、外被3の曲げ弾性率の大きさに応じて設定される。具体的に、外被3の曲げ弾性率が大きくなるほど、作業者が外被3を手で引き裂くことができる外被3の厚さ3Tの上限値は小さい値に設定される。 The upper limit value of the thickness 3T of the outer cover 3 is a value at which the worker can tear the outer cover 3 by hand, triggered by the embedded trace 31 of the outer cover 3 after the ripcord 4 has fallen off. It is set according to the magnitude of the flexural modulus of 3. Specifically, the higher the flexural modulus of the jacket 3, the smaller the upper limit value of the thickness 3T of the jacket 3 at which the operator can tear the jacket 3 by hand.
 外被3の曲げ弾性率が100MPaと小さい実施例Aでは、外被3の厚さ3Tの上限値が4.0mmである。実施例Aでは、外被3の厚さ3Tを4.0mm以下とすることで、作業者が外被3を手で引き裂くことができる。なお、外被3の厚さ3Tが4.0mmより大きい場合、作業者が外被3を手で引き裂くことができない。
 外被3の曲げ弾性率が320MPaであり、実施例Aよりも大きい実施例Bでは、外被3の厚さ3Tの上限値が実施例Aよりも小さく、3.5mmである。実施例Bでは、外被3の厚さ3Tを3.5mm以下とすることで、実施例Aの場合と同様に、作業者が外被3を手で引き裂くことができる。
In Example A in which the bending elastic modulus of the jacket 3 is as small as 100 MPa, the upper limit of the thickness 3T of the jacket 3 is 4.0 mm. In Example A, the thickness 3T of the outer cover 3 is set to 4.0 mm or less, so that the operator can tear the outer cover 3 by hand. If the thickness 3T of the outer cover 3 is greater than 4.0 mm, the operator cannot tear the outer cover 3 by hand.
The bending elastic modulus of the jacket 3 is 320 MPa, and in Example B, which is larger than Example A, the upper limit of the thickness 3T of the jacket 3 is smaller than that in Example A, and is 3.5 mm. In Example B, by setting the thickness 3T of the jacket 3 to 3.5 mm or less, the worker can tear the jacket 3 by hand as in the case of Example A.
 外被3の曲げ弾性率が500MPaであり、実施例Bよりもさらに大きい実施例Cでは、外被3の厚さ3Tの上限値が実施例Bよりもさらに小さく、3.0mmである。
実施例Cでは、外被3の厚さ3Tを3.0mm以下とすることで、実施例Aの場合と同様に、作業者が外被3を手で引き裂くことができる。
 外被3の曲げ弾性率が630MPaであり、実施例Cよりもさらに大きい実施例Dでは、外被3の厚さ3Tの上限値が実施例Cよりもさらに小さく、2.5mmである。
実施例Dでは、外被3の厚さ3Tを2.5mm以下とすることで、実施例Aの場合と同様に、作業者が外被3を手で引き裂くことができる。
 以上のことから、作業者の手による外被3の引き裂きやすさを考慮すると、外被3の厚さ3Tは、少なくとも4.0mm以下であればよいが、外被3の曲げ弾性率に応じて、3.5mm以下、3.0mm以下、あるいは、2.5mm以下と下げることが好ましい。
In Example C, in which the flexural modulus of the jacket 3 is 500 MPa, which is even larger than that in Example B, the upper limit of the thickness 3T of the jacket 3 is 3.0 mm, which is smaller than that in Example B.
In Example C, by setting the thickness 3T of the jacket 3 to 3.0 mm or less, the operator can tear the jacket 3 by hand as in Example A.
In Example D, in which the bending elastic modulus of the jacket 3 is 630 MPa, which is even larger than that in Example C, the upper limit of the thickness 3T of the jacket 3 is 2.5 mm, which is smaller than that in Example C.
In Example D, by setting the thickness 3T of the jacket 3 to 2.5 mm or less, the worker can tear the jacket 3 by hand as in Example A.
From the above, considering the ease of tearing the outer cover 3 by the hand of the operator, the thickness 3T of the outer cover 3 should be at least 4.0 mm or less. 3.5 mm or less, 3.0 mm or less, or 2.5 mm or less.
 以上、本発明の詳細について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲において種々の変更を加えることができる。 Although the details of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
 本発明において、外被3は、例えば光ケーブル1の断面において、外被3の内面3aからリップコード4が露出している露出方向(上下方向Y)における寸法が、露出方向に直交する直交方向(左右方向X)における寸法よりも小さい楕円形状7や長方形状などであってよい。外被3をこのような形状とした場合には、例えば外被3に抗張力体6が埋め込まれていなくても、外被3を「直交方向」よりも「露出方向」に圧縮しやすくすることができる。 In the present invention, the jacket 3 is such that, for example, in the cross section of the optical cable 1, the dimension in the exposure direction (vertical direction Y) in which the ripcord 4 is exposed from the inner surface 3a of the jacket 3 is the orthogonal direction ( It may be an elliptical shape 7 smaller than the dimension in the left-right direction X), a rectangular shape, or the like. When the outer cover 3 has such a shape, for example, even if the tensile strength member 6 is not embedded in the outer cover 3, the outer cover 3 can be easily compressed in the "exposed direction" rather than in the "perpendicular direction". can be done.
 外被3が上記した楕円形状や長方形状などの形状である場合には、直交方向(左右方向X)に延びる曲げの中立線を中心とする方向に曲げやすく、他の方向(例えば露出方向(上下方向Y)に延びる曲げの中立線を中心とする方向)には曲げにくい。すなわち、上記した形状の外被3を有する光ケーブル1は、上記実施形態と同様の曲げ異方性を有する。 When the outer cover 3 has a shape such as the above-described elliptical shape or rectangular shape, it is easy to bend in a direction centered on the neutral line of bending extending in the orthogonal direction (horizontal direction X), and in other directions (for example, the exposure direction ( It is difficult to bend in the direction centered on the neutral line of bending extending in the vertical direction Y). That is, the optical cable 1 having the jacket 3 having the shape described above has the same bending anisotropy as in the above embodiment.
 本発明では、例えば、リップコード4が外被3の内面に露出せずに外被3の内部に埋まっていてもよい。この場合、光ケーブル1の径方向においてリップコード4の内側に位置する外被3の内側部位の厚さは、例えば、光ケーブル1の使用時における耐荷重よりも大きな側圧荷重を光ケーブル1に印加したときに外被3の内側部位が破断する程度に設定されればよい。 In the present invention, for example, the ripcord 4 may be buried inside the outer cover 3 without being exposed on the inner surface of the outer cover 3 . In this case, the thickness of the inner portion of the jacket 3 located inside the ripcord 4 in the radial direction of the optical cable 1 is, for example, when a lateral pressure load larger than the withstand load of the optical cable 1 is applied to the optical cable 1 It may be set to such an extent that the inner portion of the outer cover 3 is fractured.
 本発明は、光ファイバ2を収容する溝(スロット)が形成されたスロットロッドを有するスロット型の光ケーブルに適用されてもよいし、スロットロッドを有さないスロットレス型の光ケーブルに適用されてもよい。 The present invention may be applied to a slot type optical cable having a slot rod in which a groove (slot) for accommodating the optical fiber 2 is formed, or may be applied to a slotless type optical cable having no slot rod. good.
1…光ケーブル、2…光ファイバ、3…外被、3a…外被3の内面、3T…外被3の厚さ、4…リップコード、4L…接触長さ、6…抗張力体、31…埋設痕、X…左右方向(直交方向)、Y…上下方向(露出方向) DESCRIPTION OF SYMBOLS 1... Optical cable 2... Optical fiber 3... Jacket 3a... Inner surface of jacket 3 3T... Thickness of jacket 3 4... Rip cord 4L... Contact length 6... Tensile member 31... Burying Marks, X... horizontal direction (perpendicular direction), Y... vertical direction (exposure direction)

Claims (9)

  1.  光ファイバと、
     前記光ファイバを保護する外被と、
     前記外被の周方向の一部において、前記外被の内面に露出するように少なくとも一部が前記外被に埋め込まれたリップコードと、
     を備え、
     前記外被の長手方向に直交する断面において、前記リップコードの中心から見て前記外被の内面から前記リップコードが露出している露出方向に、光ケーブルの使用時における耐荷重よりも大きな側圧荷重を印加したときに、前記リップコードが前記外被の内側に脱落するように構成されている光ケーブル。
    an optical fiber;
    a jacket that protects the optical fiber;
    a ripcord at least partially embedded in the outer cover so as to be exposed on the inner surface of the outer cover in a part of the outer cover in the circumferential direction;
    with
    In a cross section perpendicular to the longitudinal direction of the jacket, a lateral pressure load greater than the withstand load of the optical cable in use in the exposure direction in which the ripcord is exposed from the inner surface of the jacket when viewed from the center of the ripcord. an optical cable configured such that the ripcord drops inside the jacket when a is applied to the cable.
  2.  前記耐荷重は、光ケーブルの使用時における前記光ファイバの伝送損失が0.15dB以上に上昇しない側圧荷重である請求項1に記載の光ケーブル。 The optical cable according to claim 1, wherein the withstand load is a lateral pressure load that does not increase the transmission loss of the optical fiber to 0.15 dB or more when the optical cable is used.
  3.  前記外被は、前記断面において、前記露出方向に直交する直交方向よりも前記露出方向に圧縮しやすい請求項1又は請求項2に記載の光ケーブル。 The optical cable according to claim 1 or claim 2, wherein the jacket is more likely to be compressed in the exposure direction than in the orthogonal direction perpendicular to the exposure direction in the cross section.
  4.  前記外被に埋設され、前記外被よりも曲げ弾性率が高い抗張力体をさらに備え、
     前記抗張力体は、前記断面において、コアの中心に対して前記直交方向に並ぶ位置に配置されている請求項3に記載の光ケーブル。
    Further comprising a tensile strength body embedded in the outer cover and having a higher flexural modulus than the outer cover,
    4. The optical cable according to claim 3, wherein, in the cross section, the tensile members are arranged at positions aligned in the orthogonal direction with respect to the center of the core.
  5.  前記露出方向における前記外被の厚さが、0.5mm以上かつ4.0mm以下である請求項1から請求項4のいずれか一項に記載の光ケーブル。 The optical cable according to any one of claims 1 to 4, wherein the thickness of the jacket in the exposure direction is 0.5 mm or more and 4.0 mm or less.
  6.  前記断面において前記リップコードが前記外被に接触する前記リップコードの周方向の接触長さが、前記リップコードの全周の長さの40%以上かつ100%よりも小さい請求項1から請求項5のいずれか一項に記載の光ケーブル。 1 to claim 1, wherein the contact length of the ripcord in the circumferential direction where the ripcord contacts the jacket in the cross section is 40% or more and less than 100% of the length of the entire circumference of the ripcord. 6. The optical cable according to any one of 5.
  7.  光ケーブルの使用時における耐荷重よりも大きな側圧荷重を、横断面視においてリップコードと光ケーブルの中心とが並ぶ配列方向に印加することで、前記リップコードを外被の内側に脱落させる、リップコードの脱落方法。 By applying a lateral pressure load larger than the withstand load of the optical cable in use in the arrangement direction in which the ripcord and the center of the optical cable are aligned in a cross-sectional view, the ripcord is dropped inside the jacket. drop off method.
  8.  前記外被の長手方向に直交する断面において、前記光ケーブルの曲げの中立線が前記配列方向に直交するように、前記光ケーブルを曲げることで前記側圧荷重が印加される請求項7に記載のリップコードの脱落方法。 8. The ripcord according to claim 7, wherein the lateral pressure load is applied by bending the optical cable so that a neutral line of bending of the optical cable is perpendicular to the arrangement direction in a cross section orthogonal to the longitudinal direction of the jacket. How to fall off.
  9.  光ケーブルの使用時における耐荷重よりも大きな側圧荷重を、横断面視においてリップコードと光ケーブルの中心とが並ぶ配列方向に印加することで、前記リップコードを外被の内側に脱落させるコード脱落工程と、
     前記コード脱落工程の後に、前記外被の内面に露出するように前記外被に形成され、前記リップコードが埋め込まれていた溝状の埋設痕をきっかけとして、作業者が前記外被を引き裂くことで光ファイバを口出しするファイバ口出し工程と、を有する光ファイバの口出し方法。
    a cord dropping step of dropping the ripcord to the inside of the jacket by applying a lateral pressure load larger than the withstanding load of the optical cable in use in the direction in which the ripcord and the center of the optical cable are aligned in a cross-sectional view; ,
    After the cord dropping step, a worker tearing the outer cover triggered by a groove-shaped embedding mark formed in the outer cover so as to be exposed on the inner surface of the outer cover and in which the ripcord was embedded. and a fiber lead-out step of lead-out the optical fiber.
PCT/JP2023/006659 2022-03-02 2023-02-24 Optical cable, rip cord dislodgement method, and optical fibre exposure method WO2023167093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022031428 2022-03-02
JP2022-031428 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023167093A1 true WO2023167093A1 (en) 2023-09-07

Family

ID=87883702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006659 WO2023167093A1 (en) 2022-03-02 2023-02-24 Optical cable, rip cord dislodgement method, and optical fibre exposure method

Country Status (2)

Country Link
TW (1) TW202343053A (en)
WO (1) WO2023167093A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113207A (en) * 1984-06-19 1986-01-21 テレホン ケイブルズ リミテツド Optical fiber cable
JP2001110243A (en) * 1999-10-12 2001-04-20 Sumitomo Electric Ind Ltd Cable and its manufacture as well as coating removing method in midway of cable
JP2001264602A (en) * 2000-01-11 2001-09-26 Sumitomo Electric Ind Ltd Method for removing coating cable and intermediate part of cable
JP2013228647A (en) * 2012-04-27 2013-11-07 Furukawa Electric Co Ltd:The Optical fiber cable
US20180292625A1 (en) * 2015-05-28 2018-10-11 Prysmian S.P.A. Optical cable for terrestrial networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113207A (en) * 1984-06-19 1986-01-21 テレホン ケイブルズ リミテツド Optical fiber cable
JP2001110243A (en) * 1999-10-12 2001-04-20 Sumitomo Electric Ind Ltd Cable and its manufacture as well as coating removing method in midway of cable
JP2001264602A (en) * 2000-01-11 2001-09-26 Sumitomo Electric Ind Ltd Method for removing coating cable and intermediate part of cable
JP2013228647A (en) * 2012-04-27 2013-11-07 Furukawa Electric Co Ltd:The Optical fiber cable
US20180292625A1 (en) * 2015-05-28 2018-10-11 Prysmian S.P.A. Optical cable for terrestrial networks

Also Published As

Publication number Publication date
TW202343053A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
CA2087295C (en) Utility optical fiber cable
JP4297372B2 (en) Optical fiber cable, optical fiber extraction method, and optical fiber extraction tool
US20150153529A1 (en) Optical fiber cables with polyethylene binder
JP2017026754A (en) Optical fiber ribbon and optical fiber cable
JP7188932B2 (en) Optical fiber tape core wire, optical fiber cable, and fusion splicing method for optical fiber tape core wire
WO2005101080A1 (en) Optical fiber tape unit and optical fiber cable
JP2012083418A (en) Optical fiber cord
WO2005101081A1 (en) Optical fiber tape unit and optical fiber cable
WO2023167093A1 (en) Optical cable, rip cord dislodgement method, and optical fibre exposure method
JP5479687B2 (en) Optical fiber core and optical fiber cable
JP4185473B2 (en) Optical fiber cord
JP6967472B2 (en) Fiber optic cable
JP4751368B2 (en) Fiber optic cable
JP4249202B2 (en) Optical fiber tape and optical cable
JP2007101955A (en) Optical fiber unit and optical fiber cable
JP6413593B2 (en) Fiber optic cable
JP2005107441A (en) Optical fiber cable
JP5879620B2 (en) Optical connection box
JP6302120B1 (en) Fiber optic cable
JP5014460B2 (en) Fiber optic cable
JP4172626B2 (en) Optical fiber ribbon
JPH103020A (en) Optical cable and its production
JP3990489B2 (en) Optical cable
JP4144613B2 (en) Optical fiber core, optical fiber tape unit and optical fiber cable using the same
JP4878888B2 (en) Optical fiber cable and lead-out method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763352

Country of ref document: EP

Kind code of ref document: A1