WO2023166861A1 - Water electrolysis device and control method - Google Patents

Water electrolysis device and control method Download PDF

Info

Publication number
WO2023166861A1
WO2023166861A1 PCT/JP2023/000784 JP2023000784W WO2023166861A1 WO 2023166861 A1 WO2023166861 A1 WO 2023166861A1 JP 2023000784 W JP2023000784 W JP 2023000784W WO 2023166861 A1 WO2023166861 A1 WO 2023166861A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrolysis
short circuit
cell
water electrolysis
Prior art date
Application number
PCT/JP2023/000784
Other languages
French (fr)
Japanese (ja)
Inventor
祥太 小川
昌宏 八巻
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2023166861A1 publication Critical patent/WO2023166861A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/06Detection or inhibition of short circuits in the cell
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a solid polymer type water electrolysis device that electrolyzes water to generate hydrogen and oxygen, and a control method thereof.
  • Patent Documents 1 and 2 disclose a solid polymer type water electrolysis cell (a water electrolysis cell stack) in which a plurality of electrolysis cells including a solid polymer electrolyte membrane are stacked in series. A water electrolyzer is disclosed.
  • oxygen remaining in the electrolysis cell reacts with hydrogen during the electrolysis stop period, and hydrogen peroxide (H 2 O 2 ) can be generated.
  • the hydrogen peroxide decomposes the solid polymer electrolyte membrane, possibly degrading the electrolytic cell.
  • An object of one aspect of the present invention is to suppress the generation of hydrogen peroxide during the period when electrolysis is stopped, and to reduce deterioration of the electrolytic cell.
  • a water electrolysis apparatus includes a water electrolysis tank in which a plurality of electrolytic cells each including a solid polymer electrolyte membrane are connected in series; a plurality of short circuits connected to each of one or more electrolysis cell units selected from the electrolysis cells and short-circuiting the electrolysis cell units when power supply to the water electrolyzer is stopped; Prepare.
  • a method for controlling a water electrolysis device includes the steps of supplying power to a water electrolysis tank in which a plurality of electrolysis cells each including a solid polymer electrolyte membrane are connected in series; When power supply to the water electrolyzer is stopped, a plurality of short circuits are closed for each unit of one or more of the electrolyzed cells selected from the plurality of electrolyzed cells included in the water electrolyzer. and short-circuiting the electrolysis cell units.
  • FIG. 1 is a block diagram showing a schematic configuration of a water electrolysis device according to one embodiment of the present invention
  • FIG. FIG. 2 is a cross-sectional view showing the configuration of the water electrolytic bath shown in FIG. 1
  • FIG. 2 is a block diagram showing a schematic configuration of a water electrolytic bath, a rectifier and a short circuit shown in FIG. 1
  • It is a schematic diagram which shows schematic structure of the said short circuit.
  • 4 is a flowchart showing an example of stop control executed by the water electrolysis device; 4 is a graph showing the change over time of the residual voltage of each electrolysis cell during the electrolysis stop period.
  • 4 is a flowchart showing an example of determination control executed by the water electrolysis device;
  • FIG. 5 is a schematic diagram showing a modification of the short circuit shown in FIG. 4; 4 is a graph showing measurement results of comparative tests in Examples.
  • FIG. 1 An embodiment of the present invention will be described below with reference to FIGS. 1 to 8.
  • FIG. 1 the following description is an example of the water electrolysis apparatus according to the present invention, and the technical scope of the present invention is not limited to the illustrated examples.
  • FIG. 1 is a block diagram showing a schematic configuration of a water electrolysis device 100 according to this embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of the water electrolytic bath 20 shown in FIG.
  • the water electrolysis device 100 according to the present embodiment electrolyzes pure water by applying a voltage to the solid polymer electrolyte membrane 4 and causing an electric current to flow to generate hydrogen (H 2 ) and oxygen (O 2 ).
  • This is a solid polymer type water electrolysis device.
  • the water electrolysis device 100 includes a water electrolyzer 20, a hydrogen gas-liquid separator 21, an oxygen gas-liquid separator 22, a water circulation line 23, a first ion exchanger 24, pure water It includes a tank 25 , a branch line 41 and a second ion exchanger 43 .
  • the water electrolysis device 100 also includes a rectifier (power supply unit) 50 and a short circuit 60 connected to the water electrolysis tank 20, and a control unit (determining unit) 70 that controls the operation of the water electrolysis device 100 as a whole.
  • the water circulation line 23 is a line for circulating water from the hydrogen gas-liquid separator 21 and the oxygen gas-liquid separator 22 to the water electrolytic bath 20 .
  • a circulation pump 27 for circulating water and a circulating water cooler 28 for cooling the circulating water before supplying it to the water electrolyzer 20 are arranged in the water circulation line 23 .
  • a hydrogen cooler 31 is arranged at the outlet of the hydrogen gas-liquid separator 21
  • an oxygen cooler 32 is arranged at the outlet of the oxygen gas-liquid separator 22 .
  • the branch line 41 is a line that takes out a part of the circulating water of the water circulation line 23 and treats it, and sends the treated water to the pure water tank 25 .
  • the branch line 41 is provided with a blow water cooler 42 that cools the circulating water taken out from the water circulation line 23 and a second ion exchanger 43 that ion-exchanges the cooled water.
  • the branch line 41 is connected to the pure water tank 25 at its downstream end.
  • the upstream end of the branch line 41 is connected between the circulation pump 27 and the circulation water cooler 28 of the water circulation line 23 .
  • a blow valve (flow control valve) 29 is arranged upstream of the branch line 41 .
  • the opening and closing of the blow valve 29 is automatically controlled by the electric conductivity of the circulating water obtained from the electric conductivity controller 30 arranged between the circulation pump 27 of the water circulation line 23 and the circulating water cooler 28 .
  • the water electrolytic bath 20 electrolyzes water using a polymer electrolyte membrane to generate oxygen at the anode and hydrogen at the cathode.
  • the water electrolyzer 20 is a water electrolysis cell stack in which a plurality of electrolysis cells 10 are connected in series.
  • the water electrolytic bath 20 has an anode main electrode (electrode) 1 and a cathode main electrode (electrode) 2 arranged at both ends thereof, and a plurality of electrodes arranged in series between the anode main electrode 1 and the cathode main electrode 2. It is mainly composed of an electrolytic cell 10 and four tightening bolts and nuts that integrate the plural electrolytic cells 10 .
  • the electrolysis cells 10 are arranged in the horizontal direction and connected, but the electrolysis cells 10 may be arranged in the vertical direction and connected.
  • One electrolysis cell 10 includes a titanium alloy bipolar plate 9 on the anode side, a porous anode feeder 7, a solid polymer electrolyte membrane 4, and catalyst electrode layers 5 and 6 provided on both sides thereof. It is composed of MEA (Membrane Electrode Assemblies) 3 including a membrane electrode assembly, a porous cathode feeder 8 and the cathode side of the adjacent bipolar plate 9 .
  • MEA Membrane Electrode Assemblies
  • Each electrolysis cell 10 arranged at both ends of the water electrolyzer 20 includes an anode main electrode 1 or a cathode main electrode 2 in place of one of the two bipolar plates 9 . That is, the electrolytic cell 10 arranged at the end of the water electrolytic bath 20 on the anode side is composed of the anode main electrode 1, the anode feeder 7, the MEA 3, the cathode feeder 8, and the cathode side of the bipolar plate 9. Configured. Further, the electrolysis cell 10 arranged at the cathode-side end of the water electrolyzer 20 is composed of the anode side of the bipolar plate 9, the anode feeder 7, the MEA 3, the cathode feeder 8, and the cathode main electrode 2. Configured.
  • water supplied from the water supply header 11 arranged at the bottom of the water electrolyzer 20 passes through the anode power feeder 7 and reaches the anode-side catalytic electrode layer 5 of the MEA 3 .
  • Electric power applied to the anode-side catalytic electrode layer 5 causes an electrolysis reaction of water to generate oxygen.
  • the generated oxygen passes through the anode feeder 7, rises together with unreacted water in the vertical flow path provided on the anode side of the bipolar plate 9, and reaches the oxygen header 12 arranged in the upper part of the water electrolyzer 20. Ejected.
  • the water electrolyzer 20 is supplied with electric power (direct current) required for water electrolysis from a rectifier 50 .
  • the rectifier 50 is connected to the anode main electrode 1 and the cathode main electrode 2 of the water electrolytic bath 20 and supplies power to the water electrolytic bath 20 .
  • electric power to be supplied to the water electrolyzer 20 in addition to electric power from a commercial power supply, renewable energy such as solar power generation and wind power generation, or surplus power thereof, or the like can be used.
  • the amount of power generated fluctuates greatly due to the effects of weather and other factors.
  • Oxygen and hydrogen remaining in the electrolysis cell 10 may react with each other during this stop period of electrolysis to generate hydrogen peroxide.
  • the hydrogen peroxide decomposes the solid polymer electrolyte membrane 4 , possibly degrading the electrolytic cell 10 .
  • the short circuit 60 is connected to each electrolysis cell 10.
  • the short circuit 60 short-circuits each electrolysis cell 10 during the electrolysis stop period of the water electrolyzer 20 .
  • the short circuit 60 short-circuits the mutually adjacent electrodes (anode main electrode 1, cathode main electrode 2, bipolar plate 9) of the electrolytic cell 10 during the electrolysis stop period of the water electrolytic bath 20.
  • FIG. thus, by closing the short circuit 60 and short-circuiting the electrolysis cell 10 during the electrolysis stop period, the oxygen and hydrogen remaining in the electrolysis cell 10 can be consumed using the fuel cell reaction. can.
  • the hydrogen gas-liquid separator 21 separates the hydrogen generated at the cathode of the water electrolyzer 20 and water.
  • the oxygen-gas-liquid separator 22 separates oxygen and water generated at the anode of the water electrolytic bath 20 .
  • oxygen generated at the anode of water electrolyzer 20 is sent to oxygen gas-liquid separator 22 .
  • the hydrogen generated at the cathode of the water electrolyzer 20 is sent to the hydrogen gas-liquid separator 21 .
  • most of the water discharged from the water electrolytic bath 20 is sent to the oxygen-gas-liquid separator 22 .
  • the hydrogen gas-liquid separator 21 and the oxygen gas-liquid separator 22 are connected by a pipe, and the water surface level of the hydrogen gas-liquid separator 21 and the water surface level of the oxygen gas-liquid separator 22 are controlled to be equal. be done.
  • the water sent to the hydrogen gas-liquid separator 21 and the oxygen gas-liquid separator 22 is re-supplied to the water electrolyzer 20 through the water circulation line 23, and part of it passes through the branch line 41 to the pure water tank 25. sent to
  • the pure water tank 25 stores water to be electrolyzed in the water electrolytic bath 20.
  • the pure water tank 25 stores water obtained by treating the supply water (city water, etc.) newly supplied to the water electrolyzer 20 by the first ion exchanger 24 .
  • the pure water tank 25 stores water obtained by treating the circulating water extracted from the water circulating line 23 to the branch line 41 with the second ion exchanger 43 .
  • a supply pump 26 for sending the water in the pure water tank 25 to the oxygen-gas-liquid separator 22 is arranged in a pipe connecting the pure-water tank 25 and the oxygen-gas-liquid separator 22 .
  • the water temporarily stored in the pure water tank 25 is sent to the oxygen-gas-liquid separator 22 by the supply pump 26 according to the preset level setting value of the oxygen-gas-liquid separator 22 .
  • the circulating water flowing through the water circulating line 23 is adjusted to a predetermined temperature (eg, 80° C.) by the circulating water cooler 28 and sent to the water electrolyzer 20 by the circulating pump 27 .
  • the set value of the circulating water for flowing the circulating water to the branch line 41 side is, for example, 1 ⁇ S/cm. ing.
  • the circulating water taken out to the branch line 41 is cooled to room temperature by the blow water cooler 42, supplied to the second ion exchanger 43, processed to have an electric conductivity of 0.5 ⁇ S/cm or less, and then sent to the pure water tank. 25. In this way, by extracting a part of the circulating water in the water circulating line 23 to the branch line 41 and treating it, the content of impurities in the circulating water can be suppressed.
  • the control unit 70 comprehensively controls the operation of the water electrolysis device 100 .
  • the control unit 70 is configured by a processor such as a CPU (Central Processing Unit).
  • the control unit 70 is configured by a logic circuit formed in an integrated circuit (IC chip) or the like.
  • the control unit 70 controls power supply to the water electrolyzer 20 and controls operation of the water electrolyzer 20 . Further, the control unit 70 controls opening and closing of the short circuit 60 based on the state of power supply to the water electrolytic bath 20 . For example, the control unit 70 closes the short circuit 60 when power supply to the water electrolyzer 20 is stopped, thereby short-circuiting each electrolytic cell 10 . Further, the control unit 70 determines the operating state of the short circuit 60 based on the residual voltage of the electrolytic cell 10 after a predetermined time has passed since the start of the short circuit of the electrolytic cell 10 .
  • FIG. 3 is a block diagram showing a schematic configuration of water electrolytic bath 20, rectifier 50 and short circuit 60 shown in FIG.
  • FIG. 4 is a schematic diagram showing a schematic configuration of the short circuit 60 shown in FIG.
  • a plurality of electrolytic cells 10 are connected in series to the water electrolytic bath 20, and a short circuit 60 is connected to each of these electrolytic cells 10.
  • the water electrolyzer 20 is a cell stack in which, for example, 30 electrolysis cells 10 are connected in series, 30 short circuits 60, which are the same number as the electrolysis cells 10, are arranged, and one short circuit is provided for each electrolysis cell 10.
  • a circuit 60 is connected.
  • the short circuit 60 is electrically connected to the two bipolar plates 9 that make up each electrolytic cell 10 .
  • the short circuit 60 may be electrically connected to the two bipolar plates 9 using, for example, measurement terminals of a voltmeter V attached to each electrolytic cell 10 .
  • the resistance value (required resistance value) of the short circuit 60 is adjusted to a range that consumes the residual voltage of the electrolytic cell 10 at the time of short circuit and obtains the effect of shorting the electrolytic cell 10 .
  • the residual voltage of the electrolytic cell 10 at the time of short circuit depends on the configuration of the water electrolytic cell 20, for example, the electrode surfaces 5a and 6a (see FIG. 2) of the catalyst electrode layers 5 and 6 facing each other with the solid polymer electrolyte membrane 4 interposed therebetween. It varies depending on the area, etc.
  • the resistance value of the short circuit 60 is preferably 0.002 ⁇ /mm 2 or more and 0.2 ⁇ /mm 2 or less per unit area of the electrode surfaces 5a and 6a, and 0.01 ⁇ /mm 2 or more and 0 0.1 ⁇ /mm 2 or less is more preferable.
  • the resistance value of the short circuit 60 is preferably 0.002 ⁇ /mm 2 or more and 0.2 ⁇ /mm 2 or less per unit area of the electrode surfaces 5a and 6a, and 0.01 ⁇ /mm 2 or more and 0 0.1 ⁇ /mm 2 or less is more preferable.
  • the short circuit 60 includes a relay 61, a fuse 62, and a conductor 63. It should be noted that the short circuit 60 may further include a resistive element in addition to each of these components, if necessary.
  • a relay (switching unit) 61 is a switch that switches between opening and closing of the short circuit 60 . Switching between the opening and closing of the relay 61 is controlled by the controller 70 .
  • the relay 61 is controlled to open at or immediately before the electrolysis operation of the water electrolyzer 20 is started, in other words, at the time or immediately before the operation of the rectifier 50 is started. For this reason, the short circuit 60 is opened during the electrolysis operation so that the electrolysis cell 10 is not short-circuited.
  • the relay 61 is controlled to be closed while the electrolysis of the water electrolytic bath 20 is stopped. Therefore, the short circuit 60 becomes a closed circuit during the electrolysis stop period, and the electrolysis cell 10 is short-circuited.
  • a semiconductor relay when used as the relay 61, leakage current from the semiconductor relay may occur, and the semiconductor relay may be damaged if a current exceeding the rated value is input. Therefore, it is preferable to use a mechanical relay as the relay 61 .
  • the fuse (circuit protection unit) 62 opens (breaks) the short circuit 60 when a current (overcurrent) of a predetermined value or more flows through the short circuit 60 for a predetermined time or longer, or when the temperature of the fuse 62 exceeds a predetermined temperature. ) to protect the short circuit 60 .
  • a current (overcurrent) of a predetermined value or more flows through the short circuit 60 for a predetermined time or longer, or when the temperature of the fuse 62 exceeds a predetermined temperature.
  • an overcurrent of a predetermined value or more flows through the short circuit 60, generating heat and possibly causing a fire or the like.
  • the fuse element of the fuse 62 blows and the short circuit 60 is opened. Therefore, the short circuit 60 can be protected from overcurrent, and the occurrence of fire or the like can be prevented.
  • the fuse 62 has a characteristic of being fused by an overcurrent flowing through the short circuit 60 when the relay 61 is closed during the electrolysis operation.
  • a fuse having a fusing energy (l 2 t) of about 22500 or more, which is the thermal energy passing through the fuse 62 until the fuse element fuses after an overcurrent occurs can be preferably used.
  • the fuse element melts and the short circuit 60 is opened when the temperature of the fuse 62 exceeds a specified temperature due to overcurrent. Therefore, by using a thermal fuse as the fuse 62, overcurrent can be safely prevented and the temperature of the short circuit 60 can be controlled.
  • the short circuit 60 may include a circuit protector or the like as a circuit protection section instead of the fuse 62 .
  • Conductor 63 is a cable made of a conductive material.
  • the conducting wire 63 is, for example, a copper vinyl cable of 3.5 sq or more.
  • the conductor thickness (cross-sectional area) and length of the lead wire 63 are appropriately selected based on the required resistance value of the short circuit 60 required to consume the residual voltage of the electrolysis cell 10 at the time of short circuit.
  • the cross-sectional area of the conducting wire 63 is preferably 0.00006 mm 2 /mm 2 or more and 0.001 mm 2 /mm 2 or less per unit area of the electrode surfaces 5a and 6a.
  • the conductor wire 63 having a cross-sectional area within this range, the required resistance value of the short circuit 60 required to consume the residual voltage of the electrolytic cell 10 at the time of short circuit can be obtained without using a resistive element. can. In addition, it is possible to suppress the heat generation of the short circuit 60 against the current generated by the fuel cell reaction in the electrolysis cell 10 at the time of short circuit, thereby preventing troubles such as disconnection of the lead wire 63 .
  • FIG. 5 is a flowchart showing an example of stop control executed by the water electrolysis device 100.
  • the controller 70 controls the rectifier 50 and supplies power to the water electrolyzer 20 during the electrolysis operation period of the water electrolyzer 20 .
  • the control unit 70 opens the relay 61 and opens the short circuit 60 .
  • control unit (determination unit) 70 determines whether or not it is necessary to stop the electrolysis operation of the water electrolyzer 20 (S1).
  • the control unit 70 determines that it is necessary to stop the electrolysis operation (S1 YES), the power supply to the water electrolyzer 20 is stopped to stop the electrolysis operation of the water electrolyzer 20 (S2). Further, for example, when the amount of power generated by renewable energy becomes equal to or less than a predetermined value, the control unit 70 determines that it is necessary to stop the electrolysis operation (YES in S1), and stops the electrolysis operation of the water electrolyzer 20. (S2).
  • control unit 70 determines that it is necessary to stop the electrolysis operation (YES in S1). to stop the electrolysis operation of the water electrolyzer 20 (S2).
  • control unit 70 maintains power supply to the water electrolyzer 20 and repeats the determination of step S1. .
  • control unit 70 executes control to short-circuit the electrolysis cells 10 when the power supply to the water electrolyzer 20 is stopped (electrolysis is stopped) in step S2 (S3). Specifically, the control unit 70 closes each short circuit 60 by switching the relay 61 of each short circuit 60 from open to closed simultaneously with or immediately after stopping the electrolysis, thereby closing each electrolysis cell 10. short circuit. As a result, the oxygen and hydrogen remaining in the electrolytic cell 10 are consumed using the fuel cell reaction, and the residual voltage of the electrolytic cell 10 is lowered. Therefore, generation of hydrogen peroxide in the electrolytic cell 10 is suppressed, and as a result, the solid polymer electrolyte membrane 4 is less likely to be decomposed.
  • FIG. 6 is a graph showing the change over time of the residual voltage of each electrolysis cell 10 during the electrolysis stop period.
  • FIG. 6 shows the change over time of the residual voltage of each electrolytic cell 10 in a cell stack (water electrolytic bath 20) in which ten electrolytic cells 10 are stacked vertically.
  • No. 1 cell to "No. 10 cell” in the figure indicate that "No. 10 cell” to "No. 1 cell” are stacked in this order from the lower side in the vertical direction.
  • the electrolytic cell 10 located at the uppermost position in the vertical direction is referred to as "No. 1 cell”
  • the electrolytic cell 10 positioned at the lowermost position in the vertical direction is referred to as "No. 10 cell”.
  • each electrolytic cell 10 can be individually short-circuited, and generation of hydrogen peroxide can be effectively suppressed during the electrolysis stop period, and deterioration of the electrolytic cell 10 can be reduced.
  • the residual voltage of the water electrolytic bath 20 increases according to the number of the electrolytic cells 10 connected in series. For this reason, for example, there is a risk of electric shock during maintenance of the water electrolyzer 20 during the period when electrolysis is stopped. 20 can be safely maintained.
  • control unit 70 starts determination control for determining the operation state of the short circuit 60 when the short circuit control is executed in step S3. Details of the determination control will be described later.
  • control unit 70 executes control to cool the circulating water (S4).
  • the circulating water is at high temperature and high pressure during electrolysis operation. Therefore, the control unit 70 controls the circulating water cooler 28 to lower the temperature of the circulating water during the electrolysis operation.
  • control unit 70 executes control to reduce the pressure in the water electrolyzer 20 (S5).
  • the control unit 70 controls, for example, a hydrogen exhaust control valve (not shown) arranged downstream of the hydrogen cooler 31 to exhaust hydrogen into the atmosphere, thereby reducing the pressure in the water electrolyzer 20 .
  • control unit 70 executes control to stop the circulation of water (S6).
  • the controller 70 controls, for example, the circulation pump 27 to stop the circulation of the circulating water.
  • the control unit 70 ends the stop control.
  • the stop control executed by the water electrolysis device 100 includes step S3 of closing the short circuit 60 to short-circuit the electrolysis cells 10 when the power supply to the water electrolyzer 20 is stopped.
  • step S3 oxygen and hydrogen remaining in the electrolytic cell 10 can be consumed using the fuel cell reaction. Therefore, generation of hydrogen peroxide within the electrolytic cell 10 is suppressed, and as a result, the solid polymer electrolyte membrane 4 is less likely to be decomposed. Therefore, it is possible to suppress the generation of hydrogen peroxide during the stop period of electrolysis and reduce the deterioration of the electrolytic cell 10 .
  • FIG. 7 is a flowchart showing an example of determination control shown in FIG.
  • the control unit 70 performs determination control to determine whether the operating state of the short circuit 60 is normal or abnormal.
  • control unit (determination unit) 70 determines whether or not a predetermined time has passed since the short circuit of the electrolytic cell 10 was started in step S3 shown in FIG. 5 (S11). If the predetermined time has not passed since the start of the short circuit of the electrolytic cell 10 (NO in S11), the control unit 70 waits until the predetermined time has passed.
  • the control unit 70 determines whether or not the residual voltage of the electrolytic cell 10 is equal to or higher than a predetermined value (S12).
  • the control unit 70 acquires the residual voltage of each electrolysis cell 10 based on, for example, the output value from the voltmeter V attached to each electrolysis cell 10, and determines whether or not each acquired residual voltage is equal to or higher than a predetermined value. If at least one of the residual voltages of the electrolysis cells 10 is equal to or higher than the predetermined value (YES in S12), there is a possibility that the water electrolysis device 100 is malfunctioning.
  • the control unit 70 warns the user that there is a possibility that the water electrolysis device 100 is abnormal (S13).
  • the warning method is not particularly limited, for example, information such as the possibility that an abnormality has occurred in the short circuit 60 connected to the electrolytic cell 10 of which order is displayed on the display, a warning light is turned on, or a warning is given. uttering a sound, and the like.
  • control unit 70 terminates the determination control without issuing a warning in step S13.
  • the determination control executed by the water electrolysis device 100 it is possible to determine the operating state of the short circuit 60 based on the residual voltage of the electrolysis cell 10, so that the failure of the water electrolysis device 100 can be detected early. can do.
  • the water electrolysis apparatus 100 includes a water electrolytic bath 20 in which a plurality of electrolytic cells 10 each including a solid polymer electrolyte membrane 4 and electrodes sandwiching the solid polymer electrolyte membrane 4 are connected in series. , and a plurality of short circuits 60 connected to each of the plurality of electrolysis cells 10 included in the water electrolysis bath 20 and short-circuiting the electrolysis cells 10 when power supply to the water electrolysis bath 20 is stopped.
  • the short circuit 60 is closed to short-circuit the electrolysis cell 10, thereby utilizing the fuel cell reaction to remove the oxygen remaining in the electrolysis cell 10 and Can consume hydrogen. Therefore, generation of hydrogen peroxide is suppressed, and as a result, the solid polymer electrolyte membrane 4 is less likely to be decomposed.
  • the water electrolysis device 100 that can suppress the generation of hydrogen peroxide during the electrolysis stop period and reduce the deterioration of the electrolysis cell 10 .
  • the deterioration of the electrolysis cells 10 is reduced, thereby improving the energy efficiency during operation of the water electrolysis device 100. This will contribute to the achievement of the Sustainable Development Goals (SDGs).
  • SDGs Sustainable Development Goals
  • FIG. 8 is a schematic diagram showing a short circuit 60a that is a modification of the short circuit 60 shown in FIG.
  • the short circuit 60a is composed of a relay 61 and a lead wire 63.
  • the control unit 70 acquires the voltage of each electrolysis cell 10 during the electrolysis operation period from the voltmeter V attached to each electrolysis cell 10, and compares the acquired voltage with the reference voltage.
  • the control unit 70 warns the user that the water electrolysis device 100 may be malfunctioning. As a result, it is possible to prevent an overcurrent from flowing through the short circuit 60a due to the failure of the opening/closing operation of the relay 61, protect the short circuit 60a from overcurrent, and prevent fires from occurring.
  • the electrolysis voltage rise value (V) is measured in each of the cases where measures against short circuiting of the electrolysis cell 10 are taken during the stop period of electrolysis and where it is not taken.
  • a comparative test was conducted. In the water electrolysis device 100, as the decomposition of the solid polymer electrolyte membrane 4 progresses, the electrolysis voltage rise value during electrolysis operation increases. Therefore, in this comparative test, by comparing the electrolysis voltage rise value when short circuit countermeasures are taken and the electrolysis voltage rise value when short circuit countermeasures are not taken, the effect of suppressing decomposition of the solid polymer electrolyte membrane 4 by short circuit countermeasures. verified.
  • Table 1 is a table showing the conditions of the comparative test.
  • the water electrolyzer 20 was repeatedly operated for 15 seconds and then stopped for 7200 seconds, and the electrolysis voltage rise value during the electrolysis operation was measured.
  • FIG. 9 is a graph showing the results of the comparative test.
  • A1 and A2 shown in FIG. 9 show the measurement results when measures against short circuits are taken.
  • A3 shown in FIG. 9 shows the measurement result when no measures against short circuits are taken.
  • A1 short circuit at stop_circulation 7,200 sec
  • Measured results when control is performed are shown.
  • A2 short circuit at stop_circulation 120 sec” shown in FIG.
  • the measurement results are shown when control is performed to stop the circulating water.
  • A3: No countermeasure” shown in FIG. 9 is the measurement result when each electrolysis cell 10 is not short-circuited during the electrolysis stop period and control is performed to keep the circulating water flowing for 7200 seconds during the electrolysis stop period. indicates
  • A3 in which short-circuit countermeasures were not taken during the electrolysis stop period, had a larger electrolysis voltage rise value than A1 and A2, in which short-circuit countermeasures were taken.
  • the electrolytic voltage rise value of A2 was the smallest, and the electrolytic voltage rise value of A1 was between A2 and A3.
  • a water electrolysis device is selected from a water electrolysis tank in which a plurality of electrolysis cells each including a solid polymer electrolyte membrane are connected in series, and a plurality of the electrolysis cells included in the water electrolysis tank. a plurality of short circuits connected to each of the one or more electrolytic cell units and short-circuiting the electrolytic cell units when power supply to the water electrolytic bath is stopped.
  • the short circuit may be connected for each one of the electrolysis cells.
  • the operation state of the short circuit is determined based on the residual voltage of the electrolytic cell after a predetermined time has elapsed since the start of short circuiting of the electrolytic cell.
  • a determination unit may be further provided.
  • the short circuit further includes a switching unit (relay 61) for switching opening and closing of the short circuit, or It may further include a switching unit (relay 61) that switches between opening and closing of the circuit, and a circuit protection unit (fuse 62) that opens the short circuit when a current of a predetermined value or more flows through the short circuit. .
  • the electrolysis cell in Aspect 4, includes a catalyst electrode layer having electrode surfaces facing each other, arranged with the solid polymer electrolyte membrane interposed therebetween, and the electrode surfaces
  • a resistance value of the short circuit per unit area may be 0.002 ⁇ /mm 2 or more and 0.2 ⁇ /mm 2 or less.
  • the electrolytic cell in the above aspect 4 or 5, includes catalyst electrode layers arranged with the solid polymer electrolyte membrane interposed therebetween and having electrode surfaces facing each other, A cross-sectional area of the conductive wire used for the short circuit per unit area of the electrode surface may be 0.00006 mm 2 /mm 2 or more and 0.001 mm 2 /mm 2 or less.
  • a method for controlling a water electrolysis device comprises the steps of: supplying power to a water electrolysis cell in which a plurality of electrolytic cells each including a solid polymer electrolyte membrane are connected in series; and stopping the power supply to the water electrolysis cell. Taking this as an opportunity, a plurality of short circuits for short-circuiting the units of one or more of the electrolysis cells selected from the plurality of electrolysis cells contained in the water electrolysis tank are closed to short-circuit the units of the electrolysis cells.
  • a method for controlling a water electrolysis device is characterized in that, in aspect 7, the operation state of the short circuit is determined based on the residual voltage of the electrolysis cell after a first predetermined time has passed since the start of the short circuit of the electrolysis cell. may further include the step of determining
  • a method for controlling a water electrolysis device is the method for controlling a water electrolysis device according to aspect 7 or 8, in which the flow of circulating water circulating in the water electrolysis device is stopped after a second predetermined time has elapsed from the start of the short circuit of the electrolysis cell. Further steps may be included.
  • Electrolytic cell 20
  • Water electrolyzer 50 Rectifier 60
  • Short circuit 61
  • Relay switching part
  • Fuse circuit protection part
  • conducting wire 63
  • control unit determining unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

This water electrolysis device comprises: a water electrolysis tank (20) in which a plurality of electrolysis cells (10) each including a solid polymer electrolyte membrane (4) are connected in series; and a plurality of short circuits (60) connected to each of the plurality of electrolysis cells (10) and which short the electrolysis cells (10) upon stoppage of power supply to the water electrolysis tank (20).

Description

水電解装置および制御方法Water electrolysis device and control method
 本発明は、水を電解して水素と酸素とを発生させる固体高分子型水電解装置およびその制御方法に関する。 The present invention relates to a solid polymer type water electrolysis device that electrolyzes water to generate hydrogen and oxygen, and a control method thereof.
 従来、自然エネルギーを一次エネルギーとする水素の製造技術が開発されており、その1つに固体高分子型水電解装置が知られている。固体高分子型水電解装置では、固体高分子電解質膜に電圧を印加して電流を流すことにより純水を電気分解し、固体高分子電解質膜の-側に水素(H)、+側に酸素(O)が発生する。 Conventionally, technologies for producing hydrogen using natural energy as primary energy have been developed, and one of them is known as a solid polymer type water electrolysis device. In a solid polymer type water electrolysis device, pure water is electrolyzed by applying a voltage to a solid polymer electrolyte membrane and causing an electric current to flow . Oxygen (O 2 ) is generated.
 また、この種の水電解装置に関して、特許文献1および2には、固体高分子電解質膜を含む複数の電解セルが直列に積層された水電解槽(水電解セルスタック)を備える固体高分子型水電解装置が開示されている。 Further, regarding this type of water electrolysis device, Patent Documents 1 and 2 disclose a solid polymer type water electrolysis cell (a water electrolysis cell stack) in which a plurality of electrolysis cells including a solid polymer electrolyte membrane are stacked in series. A water electrolyzer is disclosed.
日本国特開2015-48507号公報Japanese Patent Application Laid-Open No. 2015-48507 日本国特開2021-46602号公報Japanese Patent Application Laid-Open No. 2021-46602
 ここで、固体高分子型水電解装置では、電解停止期間中に電解セル内に残留している酸素と水素とが反応し、過酸化水素(H)が発生し得る。この過酸化水素により固体高分子電解質膜が分解されることで、電解セルが劣化する可能性があった。 Here, in the solid polymer type water electrolysis device, oxygen remaining in the electrolysis cell reacts with hydrogen during the electrolysis stop period, and hydrogen peroxide (H 2 O 2 ) can be generated. The hydrogen peroxide decomposes the solid polymer electrolyte membrane, possibly degrading the electrolytic cell.
 本発明の一態様は、電解停止期間中における過酸化水素の発生を抑え、電解セルの劣化を低減することを目的とする。 An object of one aspect of the present invention is to suppress the generation of hydrogen peroxide during the period when electrolysis is stopped, and to reduce deterioration of the electrolytic cell.
 前記課題を解決するために、本発明の一態様に係る水電解装置は、固体高分子電解質膜を含む電解セルが複数直列に接続された水電解槽と、前記水電解槽に含まれる複数の前記電解セルから選択される1つ以上の前記電解セルの単位ごとに接続され、前記水電解槽への給電が停止したことを契機として前記電解セルの単位を短絡する複数の短絡回路と、を備える。 In order to solve the above problems, a water electrolysis apparatus according to an aspect of the present invention includes a water electrolysis tank in which a plurality of electrolytic cells each including a solid polymer electrolyte membrane are connected in series; a plurality of short circuits connected to each of one or more electrolysis cell units selected from the electrolysis cells and short-circuiting the electrolysis cell units when power supply to the water electrolyzer is stopped; Prepare.
 また、前記課題を解決するために、本発明の一態様に係る水電解装置の制御方法は、固体高分子電解質膜を含む電解セルが複数直列に接続された水電解槽へ給電する工程と、前記水電解槽への給電が停止したことを契機として、前記水電解槽に含まれる複数の前記電解セルから選択される1つ以上の前記電解セルの単位ごとに短絡する複数の短絡回路を閉にして、前記電解セルの単位を短絡する工程と、を含む。 In order to solve the above-described problems, a method for controlling a water electrolysis device according to an aspect of the present invention includes the steps of supplying power to a water electrolysis tank in which a plurality of electrolysis cells each including a solid polymer electrolyte membrane are connected in series; When power supply to the water electrolyzer is stopped, a plurality of short circuits are closed for each unit of one or more of the electrolyzed cells selected from the plurality of electrolyzed cells included in the water electrolyzer. and short-circuiting the electrolysis cell units.
 本発明の一態様によれば、電解停止期間中における過酸化水素の発生を抑え、電解セルの劣化を低減することができる。 According to one aspect of the present invention, it is possible to suppress generation of hydrogen peroxide during the electrolysis stop period and reduce deterioration of the electrolytic cell.
本発明の一実施形態に係る水電解装置の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a water electrolysis device according to one embodiment of the present invention; FIG. 図1に示される水電解槽の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of the water electrolytic bath shown in FIG. 1; 図1に示される水電解槽、整流器および短絡回路の概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a water electrolytic bath, a rectifier and a short circuit shown in FIG. 1; 前記短絡回路の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the said short circuit. 前記水電解装置が実行する停止制御の一例を示すフローチャートである。4 is a flowchart showing an example of stop control executed by the water electrolysis device; 電解停止期間中における各電解セルの残電圧の時間変化を示すグラフである4 is a graph showing the change over time of the residual voltage of each electrolysis cell during the electrolysis stop period. 前記水電解装置が実行する判定制御の一例を示すフローチャートである。4 is a flowchart showing an example of determination control executed by the water electrolysis device; 図4に示される短絡回路の変形例を示す模式図である。FIG. 5 is a schematic diagram showing a modification of the short circuit shown in FIG. 4; 実施例における比較試験の測定結果を示すグラフである。4 is a graph showing measurement results of comparative tests in Examples.
 以下、本発明の一実施形態について、図1~図8に基づいて説明する。ただし、以下の説明は本発明に係る水電解装置の一例であり、本発明の技術的範囲は図示例に限定されるものではない。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 8. FIG. However, the following description is an example of the water electrolysis apparatus according to the present invention, and the technical scope of the present invention is not limited to the illustrated examples.
 〔水電解装置100の構成〕
 先ず、本発明の一実施形態に係る水電解装置100の構成について、図1および図2に基づいて説明する。図1は、本実施形態に係る水電解装置100の概略構成を示すブロック図である。図2は、図1に示される水電解槽20の構成を示す断面図である。本実施形態に係る水電解装置100は、固体高分子電解質膜4に電圧を印加して電流を流すことにより純水を電気分解し、水素(H)と酸素(O)とを発生させる固体高分子型水電解装置である。
[Configuration of water electrolysis device 100]
First, the configuration of a water electrolysis device 100 according to one embodiment of the present invention will be described based on FIGS. 1 and 2. FIG. FIG. 1 is a block diagram showing a schematic configuration of a water electrolysis device 100 according to this embodiment. FIG. 2 is a cross-sectional view showing the structure of the water electrolytic bath 20 shown in FIG. The water electrolysis device 100 according to the present embodiment electrolyzes pure water by applying a voltage to the solid polymer electrolyte membrane 4 and causing an electric current to flow to generate hydrogen (H 2 ) and oxygen (O 2 ). This is a solid polymer type water electrolysis device.
 図1に示すように、水電解装置100は、水電解槽20と、水素気液分離器21と、酸素気液分離器22と、水循環ライン23と、第1イオン交換器24と、純水タンク25と、分岐ライン41と、第2イオン交換器43とを含む。また、水電解装置100は、水電解槽20に接続される整流器(給電部)50および短絡回路60と、水電解装置100全体の動作を制御する制御部(判定部)70とを含む。 As shown in FIG. 1, the water electrolysis device 100 includes a water electrolyzer 20, a hydrogen gas-liquid separator 21, an oxygen gas-liquid separator 22, a water circulation line 23, a first ion exchanger 24, pure water It includes a tank 25 , a branch line 41 and a second ion exchanger 43 . The water electrolysis device 100 also includes a rectifier (power supply unit) 50 and a short circuit 60 connected to the water electrolysis tank 20, and a control unit (determining unit) 70 that controls the operation of the water electrolysis device 100 as a whole.
 水循環ライン23は、水素気液分離器21および酸素気液分離器22から水電解槽20へ水を循環させるラインである。水循環ライン23には、水を循環させるための循環ポンプ27と、水電解槽20へ供給する前に循環水を冷却する循環水冷却器28とが配置される。また、水素気液分離器21の出口には、水素冷却器31が配置され、酸素気液分離器22の出口には、酸素冷却器32が設けられる。 The water circulation line 23 is a line for circulating water from the hydrogen gas-liquid separator 21 and the oxygen gas-liquid separator 22 to the water electrolytic bath 20 . A circulation pump 27 for circulating water and a circulating water cooler 28 for cooling the circulating water before supplying it to the water electrolyzer 20 are arranged in the water circulation line 23 . A hydrogen cooler 31 is arranged at the outlet of the hydrogen gas-liquid separator 21 , and an oxygen cooler 32 is arranged at the outlet of the oxygen gas-liquid separator 22 .
 分岐ライン41は、水循環ライン23の循環水の一部を取り出して処理し、処理後の水を純水タンク25へ送るラインである。分岐ライン41には、水循環ライン23から取り出した循環水を冷却するブロー水冷却器42と、冷却後の水をイオン交換処理する第2イオン交換器43とが配置される。分岐ライン41は、その下流側端部が純水タンク25に接続される。また、分岐ライン41は、水循環ライン23の循環ポンプ27と循環水冷却器28との間に、その上流側端部が接続される。分岐ライン41の上流側には、ブロー弁(流量調整弁)29が配置される。ブロー弁29の開閉は、水循環ライン23の循環ポンプ27と循環水冷却器28との間に配置される電気伝導度コントローラ30から得られる循環水の電気伝導度によって自動制御される。 The branch line 41 is a line that takes out a part of the circulating water of the water circulation line 23 and treats it, and sends the treated water to the pure water tank 25 . The branch line 41 is provided with a blow water cooler 42 that cools the circulating water taken out from the water circulation line 23 and a second ion exchanger 43 that ion-exchanges the cooled water. The branch line 41 is connected to the pure water tank 25 at its downstream end. The upstream end of the branch line 41 is connected between the circulation pump 27 and the circulation water cooler 28 of the water circulation line 23 . A blow valve (flow control valve) 29 is arranged upstream of the branch line 41 . The opening and closing of the blow valve 29 is automatically controlled by the electric conductivity of the circulating water obtained from the electric conductivity controller 30 arranged between the circulation pump 27 of the water circulation line 23 and the circulating water cooler 28 .
 水電解槽20は、高分子電解質膜を用いて水を電解し、陽極に酸素、陰極に水素を発生させる。図2に示すように、水電解槽20は、電解セル10が複数直列に接続された水電解セルスタックである。水電解槽20は、その両端に配された陽極主電極(電極)1および陰極主電極(電極)2と、これら陽極主電極1と陰極主電極2との間に直列に配された複数の電解セル10と、これら複数の電解セル10を一体化する各4本の締付けボルトおよびナットとから主として構成される。なお、図示の例では、各電解セル10が水平方向に並んで接続されるが、各電解セル10が垂直方向に並んで接続される構成であってもよい。 The water electrolytic bath 20 electrolyzes water using a polymer electrolyte membrane to generate oxygen at the anode and hydrogen at the cathode. As shown in FIG. 2, the water electrolyzer 20 is a water electrolysis cell stack in which a plurality of electrolysis cells 10 are connected in series. The water electrolytic bath 20 has an anode main electrode (electrode) 1 and a cathode main electrode (electrode) 2 arranged at both ends thereof, and a plurality of electrodes arranged in series between the anode main electrode 1 and the cathode main electrode 2. It is mainly composed of an electrolytic cell 10 and four tightening bolts and nuts that integrate the plural electrolytic cells 10 . In addition, in the illustrated example, the electrolysis cells 10 are arranged in the horizontal direction and connected, but the electrolysis cells 10 may be arranged in the vertical direction and connected.
 1つの電解セル10は、チタン合金製の複極板9の陽極側と、多孔質の陽極給電体7と、固体高分子電解質膜4とその両面に設けられた触媒電極層5・6とを含むMEA(Membrane Electrode Assemblies:膜電極接合体)3と、多孔質の陰極給電体8と、隣の複極板9の陰極側とから構成される。 One electrolysis cell 10 includes a titanium alloy bipolar plate 9 on the anode side, a porous anode feeder 7, a solid polymer electrolyte membrane 4, and catalyst electrode layers 5 and 6 provided on both sides thereof. It is composed of MEA (Membrane Electrode Assemblies) 3 including a membrane electrode assembly, a porous cathode feeder 8 and the cathode side of the adjacent bipolar plate 9 .
 なお、水電解槽20の両端に配置される各電解セル10は、2つの複極板9のうちの一方に代えて陽極主電極1または陰極主電極2を含んで構成される。つまり、水電解槽20の陽極側の端に配置される電解セル10は、陽極主電極1と、陽極給電体7と、MEA3と、陰極給電体8と、複極板9の陰極側とから構成される。また、水電解槽20の陰極側の端に配置される電解セル10は、複極板9の陽極側と、陽極給電体7と、MEA3と、陰極給電体8と、陰極主電極2とから構成される。 Each electrolysis cell 10 arranged at both ends of the water electrolyzer 20 includes an anode main electrode 1 or a cathode main electrode 2 in place of one of the two bipolar plates 9 . That is, the electrolytic cell 10 arranged at the end of the water electrolytic bath 20 on the anode side is composed of the anode main electrode 1, the anode feeder 7, the MEA 3, the cathode feeder 8, and the cathode side of the bipolar plate 9. Configured. Further, the electrolysis cell 10 arranged at the cathode-side end of the water electrolyzer 20 is composed of the anode side of the bipolar plate 9, the anode feeder 7, the MEA 3, the cathode feeder 8, and the cathode main electrode 2. Configured.
 水電解槽20では、水電解槽20の下部に配置される給水ヘッダ11から供給された水が、陽極給電体7を通ってMEA3の陽極側触媒電極層5に達する。陽極側触媒電極層5で付加された電力によって水の電気分解反応が起こり、酸素が発生する。発生した酸素は、陽極給電体7を通り、複極板9の陽極側に設けられた垂直流路内を未反応の水とともに上昇し、水電解槽20の上部に配置される酸素ヘッダ12に排出される。一方、MEA3の陰極側触媒電極層6の表面で発生した水素と固体高分子電解質膜4を透過した水は、陰極給電体8を通り、複極板9の陰極側に設けられた垂直流路内を上昇し、水電解槽20の上部に配置される水素ヘッダ13に排出される。 In the water electrolyzer 20 , water supplied from the water supply header 11 arranged at the bottom of the water electrolyzer 20 passes through the anode power feeder 7 and reaches the anode-side catalytic electrode layer 5 of the MEA 3 . Electric power applied to the anode-side catalytic electrode layer 5 causes an electrolysis reaction of water to generate oxygen. The generated oxygen passes through the anode feeder 7, rises together with unreacted water in the vertical flow path provided on the anode side of the bipolar plate 9, and reaches the oxygen header 12 arranged in the upper part of the water electrolyzer 20. Ejected. On the other hand, hydrogen generated on the surface of the cathode-side catalyst electrode layer 6 of the MEA 3 and water that has permeated the solid polymer electrolyte membrane 4 pass through the cathode feeder 8 and flow through the vertical flow path provided on the cathode side of the bipolar plate 9. It rises inside and is discharged to the hydrogen header 13 arranged in the upper part of the water electrolyzer 20 .
 この水電解槽20には、水の電解に必要な電力(直流電流)が整流器50から供給される。整流器50は、水電解槽20の陽極主電極1と陰極主電極2とに接続され、水電解槽20へ給電する。水電解槽20へ供給する電力としては、商用電源からの電力のほか、例えば太陽光発電、風力発電等の再生可能エネルギーまたはその余剰電力等を使用することができる。 The water electrolyzer 20 is supplied with electric power (direct current) required for water electrolysis from a rectifier 50 . The rectifier 50 is connected to the anode main electrode 1 and the cathode main electrode 2 of the water electrolytic bath 20 and supplies power to the water electrolytic bath 20 . As electric power to be supplied to the water electrolyzer 20, in addition to electric power from a commercial power supply, renewable energy such as solar power generation and wind power generation, or surplus power thereof, or the like can be used.
 ここで、再生可能エネルギーまたはその余剰電力等は、天候等の影響により発電量の変動が大きい。このような不安定な電力を使用した場合、水電解装置100の運転に必要な電力が得られない期間中は、水電解槽20の電解運転を停止する必要性がある。この電解停止期間中に電解セル10内に残留している酸素と水素とが反応し、過酸化水素が発生し得る。この過酸化水素により固体高分子電解質膜4が分解されることで、電解セル10が劣化する可能性があった。 Here, with renewable energy or its surplus power, etc., the amount of power generated fluctuates greatly due to the effects of weather and other factors. When such unstable power is used, it is necessary to stop the electrolysis operation of the water electrolyzer 20 during the period when the power required for the operation of the water electrolyzer 100 cannot be obtained. Oxygen and hydrogen remaining in the electrolysis cell 10 may react with each other during this stop period of electrolysis to generate hydrogen peroxide. The hydrogen peroxide decomposes the solid polymer electrolyte membrane 4 , possibly degrading the electrolytic cell 10 .
 そこで、水電解装置100では、電解セル10ごとに短絡回路60を接続している。短絡回路60は、水電解槽20の電解停止期間中に電解セル10ごとに短絡する。換言すれば、短絡回路60は、水電解槽20の電解停止期間中に電解セル10の互いに隣り合う電極(陽極主電極1・陰極主電極2・複極板9)間を短絡する。このように、電解停止期間中に短絡回路60を閉回路にして電解セル10を短絡することにより、燃料電池反応を利用して電解セル10内に残留している酸素および水素を消費することができる。このため、電解セル10内での過酸化水素の発生が抑えられ、その結果、固体高分子電解質膜4が分解され難くなる。従って、電解停止期間中における過酸化水素の発生を抑え、電解セル10の劣化を低減することができる。なお、短絡回路60の詳細については後述する。 Therefore, in the water electrolysis device 100, the short circuit 60 is connected to each electrolysis cell 10. The short circuit 60 short-circuits each electrolysis cell 10 during the electrolysis stop period of the water electrolyzer 20 . In other words, the short circuit 60 short-circuits the mutually adjacent electrodes (anode main electrode 1, cathode main electrode 2, bipolar plate 9) of the electrolytic cell 10 during the electrolysis stop period of the water electrolytic bath 20. FIG. Thus, by closing the short circuit 60 and short-circuiting the electrolysis cell 10 during the electrolysis stop period, the oxygen and hydrogen remaining in the electrolysis cell 10 can be consumed using the fuel cell reaction. can. Therefore, generation of hydrogen peroxide within the electrolytic cell 10 is suppressed, and as a result, the solid polymer electrolyte membrane 4 is less likely to be decomposed. Therefore, it is possible to suppress the generation of hydrogen peroxide during the stop period of electrolysis and reduce the deterioration of the electrolytic cell 10 . Details of the short circuit 60 will be described later.
 水素気液分離器21は、水電解槽20の陰極で発生した水素と水とを分離する。また、酸素気液分離器22は、水電解槽20の陽極で発生した酸素と水とを分離する。図1において、水電解槽20の陽極で発生した酸素は、酸素気液分離器22へ送られる。また、水電解槽20の陰極で発生した水素は水素気液分離器21へ送られる。このとき、水電解槽20から排出される水の大部分が酸素気液分離器22へ送られる。水素気液分離器21と酸素気液分離器22とは配管で繋がれており、水素気液分離器21の水面レベルと酸素気液分離器22と水面レベルとが、同等になるように制御される。水素気液分離器21と酸素気液分離器22とに送られた水は、水循環ライン23を経て水電解槽20へ再供給されると共に、その一部は分岐ライン41を経て純水タンク25へ送られる。 The hydrogen gas-liquid separator 21 separates the hydrogen generated at the cathode of the water electrolyzer 20 and water. In addition, the oxygen-gas-liquid separator 22 separates oxygen and water generated at the anode of the water electrolytic bath 20 . In FIG. 1, oxygen generated at the anode of water electrolyzer 20 is sent to oxygen gas-liquid separator 22 . Also, the hydrogen generated at the cathode of the water electrolyzer 20 is sent to the hydrogen gas-liquid separator 21 . At this time, most of the water discharged from the water electrolytic bath 20 is sent to the oxygen-gas-liquid separator 22 . The hydrogen gas-liquid separator 21 and the oxygen gas-liquid separator 22 are connected by a pipe, and the water surface level of the hydrogen gas-liquid separator 21 and the water surface level of the oxygen gas-liquid separator 22 are controlled to be equal. be done. The water sent to the hydrogen gas-liquid separator 21 and the oxygen gas-liquid separator 22 is re-supplied to the water electrolyzer 20 through the water circulation line 23, and part of it passes through the branch line 41 to the pure water tank 25. sent to
 純水タンク25は、水電解槽20で電解される水を貯える。純水タンク25には、水電解槽20へ新規に供給される供給水(市水等)を第1イオン交換器24によって処理した水が貯えられる。また、純水タンク25には、水循環ライン23から分岐ライン41に取り出した循環水を第2イオン交換器43によって処理した水が貯えられる。純水タンク25と酸素気液分離器22とを繋ぐ配管には、純水タンク25の水を酸素気液分離器22へ送るための供給ポンプ26が配置される。純水タンク25に一旦貯えられた水は、予め設定しておいた酸素気液分離器22のレベルの設定値に合わせて、供給ポンプ26によって酸素気液分離器22へ送られる。 The pure water tank 25 stores water to be electrolyzed in the water electrolytic bath 20. The pure water tank 25 stores water obtained by treating the supply water (city water, etc.) newly supplied to the water electrolyzer 20 by the first ion exchanger 24 . The pure water tank 25 stores water obtained by treating the circulating water extracted from the water circulating line 23 to the branch line 41 with the second ion exchanger 43 . A supply pump 26 for sending the water in the pure water tank 25 to the oxygen-gas-liquid separator 22 is arranged in a pipe connecting the pure-water tank 25 and the oxygen-gas-liquid separator 22 . The water temporarily stored in the pure water tank 25 is sent to the oxygen-gas-liquid separator 22 by the supply pump 26 according to the preset level setting value of the oxygen-gas-liquid separator 22 .
 水循環ライン23を流れる循環水は、循環水冷却器28で所定温度(例えば80℃)に調整されて、循環ポンプ27によって水電解槽20へ送られる。分岐ライン41側に循環水を流すための循環水の設定値は例えば1μS/cmとされ、それ以上の場合にはブロー弁29が開き、それ未満の場合にはブロー弁29が閉じるようになっている。分岐ライン41に取り出された循環水は、ブロー水冷却器42で常温まで冷却され、第2イオン交換器43へ供給されて電気伝導度が例えば0.5μS/cm以下に処理され、純水タンク25へ供給される。このように、水循環ライン23の循環水の一部を分岐ライン41に取り出して処理することにより、循環水中の不純物含有量を抑えることができる。 The circulating water flowing through the water circulating line 23 is adjusted to a predetermined temperature (eg, 80° C.) by the circulating water cooler 28 and sent to the water electrolyzer 20 by the circulating pump 27 . The set value of the circulating water for flowing the circulating water to the branch line 41 side is, for example, 1 μS/cm. ing. The circulating water taken out to the branch line 41 is cooled to room temperature by the blow water cooler 42, supplied to the second ion exchanger 43, processed to have an electric conductivity of 0.5 μS/cm or less, and then sent to the pure water tank. 25. In this way, by extracting a part of the circulating water in the water circulating line 23 to the branch line 41 and treating it, the content of impurities in the circulating water can be suppressed.
 制御部70は、水電解装置100の動作を統括的に制御する。制御部70は、例えばCPU(Central Processing Unit)等のプロセッサによって構成される。または、制御部70は、集積回路(ICチップ)等に形成された論理回路によって構成される。 The control unit 70 comprehensively controls the operation of the water electrolysis device 100 . The control unit 70 is configured by a processor such as a CPU (Central Processing Unit). Alternatively, the control unit 70 is configured by a logic circuit formed in an integrated circuit (IC chip) or the like.
 制御部70は、水電解槽20への給電を制御し、水電解槽20の運転を制御する。また、制御部70は、水電解槽20への給電状態に基づいて短絡回路60の開閉を制御する。例えば、制御部70は、水電解槽20への給電が停止したことを契機として短絡回路60の閉にして、電解セル10ごとに短絡する。また、制御部70は、電解セル10の短絡開始から所定時間経過後の該電解セル10の残電圧に基づいて、短絡回路60の動作状態を判定する。 The control unit 70 controls power supply to the water electrolyzer 20 and controls operation of the water electrolyzer 20 . Further, the control unit 70 controls opening and closing of the short circuit 60 based on the state of power supply to the water electrolytic bath 20 . For example, the control unit 70 closes the short circuit 60 when power supply to the water electrolyzer 20 is stopped, thereby short-circuiting each electrolytic cell 10 . Further, the control unit 70 determines the operating state of the short circuit 60 based on the residual voltage of the electrolytic cell 10 after a predetermined time has passed since the start of the short circuit of the electrolytic cell 10 .
 〔短絡回路60の構成〕
 次に、水電解装置100が備える短絡回路60の構成について、図3および図4に基づいて説明する。図3は、図1に示される水電解槽20、整流器50および短絡回路60の概略構成を示すブロック図である。図4は、図3に示される短絡回路60の概略構成を示す模式図である。
[Structure of short circuit 60]
Next, the configuration of the short circuit 60 included in the water electrolysis device 100 will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a block diagram showing a schematic configuration of water electrolytic bath 20, rectifier 50 and short circuit 60 shown in FIG. FIG. 4 is a schematic diagram showing a schematic configuration of the short circuit 60 shown in FIG.
 図3に示すように、水電解槽20には複数の電解セル10が直列に接続されており、これらの電解セル10ごとに短絡回路60が接続される。水電解槽20が例えば30個の電解セル10が直列に接続されるセルスタックである場合、電解セル10と同数の30個の短絡回路60が配置され、1つの電解セル10ごとに1つの短絡回路60が接続される。 As shown in FIG. 3, a plurality of electrolytic cells 10 are connected in series to the water electrolytic bath 20, and a short circuit 60 is connected to each of these electrolytic cells 10. If the water electrolyzer 20 is a cell stack in which, for example, 30 electrolysis cells 10 are connected in series, 30 short circuits 60, which are the same number as the electrolysis cells 10, are arranged, and one short circuit is provided for each electrolysis cell 10. A circuit 60 is connected.
 図4に示すように、短絡回路60は、各電解セル10を構成する2つの複極板9に電気的に接続される。短絡回路60は、例えば電解セル10ごとに取り付けられる電圧計Vの計測端子を利用して2つの複極板9に電気的に接続されてもよい。 As shown in FIG. 4 , the short circuit 60 is electrically connected to the two bipolar plates 9 that make up each electrolytic cell 10 . The short circuit 60 may be electrically connected to the two bipolar plates 9 using, for example, measurement terminals of a voltmeter V attached to each electrolytic cell 10 .
 短絡回路60の抵抗値(要求抵抗値)は、短絡時の電解セル10の残電圧を消費して、電解セル10の短絡の効果を得られる範囲に調整される。短絡時の電解セル10の残電圧は、水電解槽20の構成、例えば、固体高分子電解質膜4を挟んで互いに対向する触媒電極層5・6の電極面5a・6a(図2参照)の面積等に応じて異なる。このため、短絡回路60の抵抗値は、電極面5a・6aの単位面積当たり0.002μΩ/mm以上、0.2μΩ/mm以下であることが好ましく、0.01μΩ/mm以上、0.1μΩ/mm以下であることがより好ましい。短絡回路60の抵抗値をこの範囲に設定することにより、短絡時の電解セル10の残電圧を適切に消費して、短絡の効果を好適に得ることができる。 The resistance value (required resistance value) of the short circuit 60 is adjusted to a range that consumes the residual voltage of the electrolytic cell 10 at the time of short circuit and obtains the effect of shorting the electrolytic cell 10 . The residual voltage of the electrolytic cell 10 at the time of short circuit depends on the configuration of the water electrolytic cell 20, for example, the electrode surfaces 5a and 6a (see FIG. 2) of the catalyst electrode layers 5 and 6 facing each other with the solid polymer electrolyte membrane 4 interposed therebetween. It varies depending on the area, etc. Therefore, the resistance value of the short circuit 60 is preferably 0.002 μΩ/mm 2 or more and 0.2 μΩ/mm 2 or less per unit area of the electrode surfaces 5a and 6a, and 0.01 μΩ/mm 2 or more and 0 0.1 μΩ/mm 2 or less is more preferable. By setting the resistance value of the short circuit 60 within this range, the residual voltage of the electrolysis cell 10 at the time of short circuit can be appropriately consumed, and the effect of short circuit can be preferably obtained.
 短絡回路60は、リレー61と、ヒューズ62と、導線63とを含む。なお、短絡回路60は、これらの各構成のほか、必要に応じて抵抗素子をさらに含んでいてもよい。 The short circuit 60 includes a relay 61, a fuse 62, and a conductor 63. It should be noted that the short circuit 60 may further include a resistive element in addition to each of these components, if necessary.
 リレー(切替部)61は、短絡回路60の開閉を切り替えるスイッチである。リレー61の開閉の切り換えは、制御部70によって制御される。リレー61は、水電解槽20の電解運転開始時またはその直前、換言すれば、整流器50の運転開始時またはその直前に開に制御される。このため、電解運転期間中は短絡回路60が開放され、電解セル10が短絡しないようになっている。一方、リレー61は、水電解槽20が電解停止期間中は、閉に制御される。このため、電解停止期間中は短絡回路60が閉回路となり、電解セル10が短絡する。 A relay (switching unit) 61 is a switch that switches between opening and closing of the short circuit 60 . Switching between the opening and closing of the relay 61 is controlled by the controller 70 . The relay 61 is controlled to open at or immediately before the electrolysis operation of the water electrolyzer 20 is started, in other words, at the time or immediately before the operation of the rectifier 50 is started. For this reason, the short circuit 60 is opened during the electrolysis operation so that the electrolysis cell 10 is not short-circuited. On the other hand, the relay 61 is controlled to be closed while the electrolysis of the water electrolytic bath 20 is stopped. Therefore, the short circuit 60 becomes a closed circuit during the electrolysis stop period, and the electrolysis cell 10 is short-circuited.
 なお、リレー61として半導体リレーを使用した場合、半導体リレーからの漏れ電流が生じると共に、定格値以上の電流が入力されると半導体リレーが破損する可能性がある。このため、リレー61として、機械式リレー(メカニカルリレー)を使用することが好ましい。 In addition, when a semiconductor relay is used as the relay 61, leakage current from the semiconductor relay may occur, and the semiconductor relay may be damaged if a current exceeding the rated value is input. Therefore, it is preferable to use a mechanical relay as the relay 61 .
 ヒューズ(回路保護部)62は、短絡回路60に所定値以上の電流(過電流)が所定時間以上流れた場合、またはヒューズ62が規定温度以上になった場合に、短絡回路60を開放(遮断)することで短絡回路60を保護する。例えばリレー61の開閉動作に不具合が生じ、電解運転期間中にリレー61が閉になった場合、短絡回路60に所定値以上の過電流が流れ、発熱が生じ火災等の原因となり得る。このような過電流が短絡回路60に流れた場合、ヒューズ62のヒューズエレメントが溶断して短絡回路60が開放される。このため、過電流から短絡回路60を保護することがきると共に、火災等の発生を未然に防ぐことができる。 The fuse (circuit protection unit) 62 opens (breaks) the short circuit 60 when a current (overcurrent) of a predetermined value or more flows through the short circuit 60 for a predetermined time or longer, or when the temperature of the fuse 62 exceeds a predetermined temperature. ) to protect the short circuit 60 . For example, if the opening/closing operation of the relay 61 fails and the relay 61 is closed during the electrolysis operation, an overcurrent of a predetermined value or more flows through the short circuit 60, generating heat and possibly causing a fire or the like. When such an overcurrent flows through the short circuit 60, the fuse element of the fuse 62 blows and the short circuit 60 is opened. Therefore, the short circuit 60 can be protected from overcurrent, and the occurrence of fire or the like can be prevented.
 ヒューズ62には、電解運転期間中にリレー61が閉になった場合に短絡回路60に流れる過電流によって溶断する特性を有するものが使用される。例えば、ヒューズ62として、過電流発生後からヒューズエレメントが溶断するまでにヒューズ62を通過する熱エネルギーである溶断エネルギー(lt)が22500以上程度のものを好適に使用することができる。 The fuse 62 has a characteristic of being fused by an overcurrent flowing through the short circuit 60 when the relay 61 is closed during the electrolysis operation. For example, as the fuse 62, a fuse having a fusing energy (l 2 t) of about 22500 or more, which is the thermal energy passing through the fuse 62 until the fuse element fuses after an overcurrent occurs, can be preferably used.
 また、ヒューズ62として温度ヒューズを使用した場合、過電流によりヒューズ62が規定温度以上になると、ヒューズエレメントが溶断して短絡回路60が開放される。このため、ヒューズ62として温度ヒューズを使用することで、安全に過電流を防止することができると共に、短絡回路60の温度管理を行うことができる。なお、短絡回路60は、ヒューズ62に代えてサーキットプロテクタ等を回路保護部として含んでいてもよい。 Also, when a thermal fuse is used as the fuse 62, the fuse element melts and the short circuit 60 is opened when the temperature of the fuse 62 exceeds a specified temperature due to overcurrent. Therefore, by using a thermal fuse as the fuse 62, overcurrent can be safely prevented and the temperature of the short circuit 60 can be controlled. Note that the short circuit 60 may include a circuit protector or the like as a circuit protection section instead of the fuse 62 .
 導線63は、導電性材料からなるケーブルである。導線63は、例えば3.5sq以上である銅製のビニルケーブル等である。導線63の導体の太さ(断面積)および長さは、短絡時の電解セル10の残電圧を消費するために必要な短絡回路60の要求抵抗値に基づいて適宜選択される。例えば導線63の導体が銅製である場合、導線63の断面積は、電極面5a・6aの単位面積当たり0.00006mm/mm以上、0.001mm/mm以下であることが好ましく、0.00009mm/mm以上、0.0005mm/mmの以下であることがより好ましい。この範囲の断面積を有する導線63を使用することにより、短絡時の電解セル10の残電圧を消費するために必要な短絡回路60の要求抵抗値を、抵抗素子を使用せずに得ることができる。また、短絡時に電解セル10における燃料電池反応により生じる電流に対して、短絡回路60の発熱を抑え、導線63の断線等の障害を防ぐことができる。 Conductor 63 is a cable made of a conductive material. The conducting wire 63 is, for example, a copper vinyl cable of 3.5 sq or more. The conductor thickness (cross-sectional area) and length of the lead wire 63 are appropriately selected based on the required resistance value of the short circuit 60 required to consume the residual voltage of the electrolysis cell 10 at the time of short circuit. For example, when the conductor of the conducting wire 63 is made of copper, the cross-sectional area of the conducting wire 63 is preferably 0.00006 mm 2 /mm 2 or more and 0.001 mm 2 /mm 2 or less per unit area of the electrode surfaces 5a and 6a. It is more preferably 0.00009 mm 2 /mm 2 or more and 0.0005 mm 2 /mm 2 or less. By using the conductor wire 63 having a cross-sectional area within this range, the required resistance value of the short circuit 60 required to consume the residual voltage of the electrolytic cell 10 at the time of short circuit can be obtained without using a resistive element. can. In addition, it is possible to suppress the heat generation of the short circuit 60 against the current generated by the fuel cell reaction in the electrolysis cell 10 at the time of short circuit, thereby preventing troubles such as disconnection of the lead wire 63 .
 〔水電解装置100の制御〕
 次に、水電解装置100の制御について、図5~図7に基づいて説明する。以下では、水電解装置100の制御方法の一例として、水電解装置100の運転を停止する停止制御、および短絡回路60の動作状態を判定する判定制御について説明する。
[Control of water electrolysis device 100]
Next, control of the water electrolysis device 100 will be described with reference to FIGS. 5 to 7. FIG. Below, as an example of the control method of the water electrolysis device 100, the stop control for stopping the operation of the water electrolysis device 100 and the determination control for determining the operation state of the short circuit 60 will be described.
 (停止制御)
 先ず、図5および図6に基づいて、水電解装置100の停止制御(制御方法)について説明する。図5は、水電解装置100が実行する停止制御の一例を示すフローチャートである。水電解槽20の電解運転期間中、制御部70は整流器50を制御し、水電解槽20へ給電する。また、制御部70は、リレー61を開に制御し、短絡回路60を開放する。
(stop control)
First, based on FIG.5 and FIG.6, the stop control (control method) of the water electrolysis apparatus 100 is demonstrated. FIG. 5 is a flowchart showing an example of stop control executed by the water electrolysis device 100. As shown in FIG. The controller 70 controls the rectifier 50 and supplies power to the water electrolyzer 20 during the electrolysis operation period of the water electrolyzer 20 . In addition, the control unit 70 opens the relay 61 and opens the short circuit 60 .
 水電解装置100の停止制御では、制御部(判定部)70は、水電解槽20の電解運転を停止する必要性があるか否かを判定する(S1)。 In the stop control of the water electrolysis device 100, the control unit (determination unit) 70 determines whether or not it is necessary to stop the electrolysis operation of the water electrolyzer 20 (S1).
 例えば、水電解槽20で発生した水素を貯える水素タンク(図示省略)内の水素量が所定値以上になった場合、制御部70は、電解運転を停止する必要性があると判定し(S1でYES)、水電解槽20への給電を止めて水電解槽20の電解運転を停止する(S2)。また、例えば再生可能エネルギーの発電量が所定値以下になった場合、制御部70は、電解運転を停止する必要性があると判定し(S1でYES)、水電解槽20の電解運転を停止する(S2)。さらに、例えば水電解槽20の電解運転の停止指示の入力を使用者から受け付けた場合、制御部70は、電解運転を停止する必要性があると判定し(S1でYES)、水電解槽20への給電を止めて水電解槽20の電解運転を停止する(S2)。 For example, when the amount of hydrogen in a hydrogen tank (not shown) storing hydrogen generated in the water electrolyzer 20 reaches or exceeds a predetermined value, the control unit 70 determines that it is necessary to stop the electrolysis operation (S1 YES), the power supply to the water electrolyzer 20 is stopped to stop the electrolysis operation of the water electrolyzer 20 (S2). Further, for example, when the amount of power generated by renewable energy becomes equal to or less than a predetermined value, the control unit 70 determines that it is necessary to stop the electrolysis operation (YES in S1), and stops the electrolysis operation of the water electrolyzer 20. (S2). Furthermore, for example, when an input of an instruction to stop the electrolysis operation of the water electrolyzer 20 is received from the user, the control unit 70 determines that it is necessary to stop the electrolysis operation (YES in S1). to stop the electrolysis operation of the water electrolyzer 20 (S2).
 一方、水電解槽20の電解運転を停止する必要性がないと判定した場合(S1でNO)、制御部70は、水電解槽20への給電を維持し、ステップS1の判定を繰り返し実行する。 On the other hand, when it is determined that there is no need to stop the electrolysis operation of the water electrolyzer 20 (NO in S1), the control unit 70 maintains power supply to the water electrolyzer 20 and repeats the determination of step S1. .
 次に、制御部70は、ステップS2にて水電解槽20への給電を停止(電解停止)したことを契機として各電解セル10を短絡する制御を実行する(S3)。具体的には、制御部70は、電解停止と同時、またはその直後に各短絡回路60のリレー61を開から閉に切り替えて各短絡回路60を閉回路にすることで、各電解セル10を短絡する。これにより、燃料電池反応を利用して電解セル10内に残留している酸素および水素が消費され、電解セル10の残電圧が低下する。従って、電解セル10内での過酸化水素の発生が抑えられ、その結果、固体高分子電解質膜4が分解され難くなる。 Next, the control unit 70 executes control to short-circuit the electrolysis cells 10 when the power supply to the water electrolyzer 20 is stopped (electrolysis is stopped) in step S2 (S3). Specifically, the control unit 70 closes each short circuit 60 by switching the relay 61 of each short circuit 60 from open to closed simultaneously with or immediately after stopping the electrolysis, thereby closing each electrolysis cell 10. short circuit. As a result, the oxygen and hydrogen remaining in the electrolytic cell 10 are consumed using the fuel cell reaction, and the residual voltage of the electrolytic cell 10 is lowered. Therefore, generation of hydrogen peroxide in the electrolytic cell 10 is suppressed, and as a result, the solid polymer electrolyte membrane 4 is less likely to be decomposed.
 図6は、電解停止期間中における各電解セル10の残電圧の時間変化を示すグラフである。図6では、10個の電解セル10を垂直方向へ積層したセルスタック(水電解槽20)における各電解セル10の残電圧の時間変化を示している。なお、図中の「No.1セル」~「No.10セル」は、垂直方向の下側から「No.10セル」~「No.1セル」の順で積層したことを示す。つまり、垂直方向の最も上側に位置する電解セル10を「No.1セル」と表記し、垂直方向の最も下側に位置する電解セル10を「No.10セル」と表記している。 FIG. 6 is a graph showing the change over time of the residual voltage of each electrolysis cell 10 during the electrolysis stop period. FIG. 6 shows the change over time of the residual voltage of each electrolytic cell 10 in a cell stack (water electrolytic bath 20) in which ten electrolytic cells 10 are stacked vertically. Note that "No. 1 cell" to "No. 10 cell" in the figure indicate that "No. 10 cell" to "No. 1 cell" are stacked in this order from the lower side in the vertical direction. In other words, the electrolytic cell 10 located at the uppermost position in the vertical direction is referred to as "No. 1 cell", and the electrolytic cell 10 positioned at the lowermost position in the vertical direction is referred to as "No. 10 cell".
 電解停止時に電解セル10内に残留している酸素量と水素量は電解セル10ごとに異なるため、図6に示すように、各電解セル10の残電圧は「No.1セル」~「No.10セル」ごとに異なる。このため、例えば複数の電解セル10全体を1つの短絡回路60によって短絡した場合、各電解セル10の残電圧の低下にばらつきが生じ、電解セル10内での過酸化水素の発生を効果的に抑えることができない。 Since the amount of oxygen and the amount of hydrogen remaining in the electrolysis cell 10 when electrolysis is stopped differs for each electrolysis cell 10, as shown in FIG. .10 cells”. Therefore, for example, when a plurality of electrolysis cells 10 are all short-circuited by one short circuit 60, the residual voltage of each electrolysis cell 10 varies, and the generation of hydrogen peroxide in the electrolysis cell 10 is effectively prevented. I can't hold back.
 従って、1つの電解セル10ごとに1つの短絡回路60が接続されることが好ましい。これにより、ステップS3にて、電解セル10ごとに個別に短絡することが可能となり、電解停止期間中における過酸化水素の発生を効果的に抑え、電解セル10の劣化を低減することができる。また、直列に接続される電解セル10の数に応じて水電解槽20の残電圧が大きくなる。このため、例えば電解停止期間中に水電解槽20をメンテナンスする際に感電する危険性があるが、電解セル10ごとに個別に短絡して残電圧を効率的に低下させることにより、水電解槽20を安全にメンテナンスすることができる。 Therefore, it is preferable to connect one short circuit 60 to each electrolytic cell 10 . As a result, in step S3, each electrolytic cell 10 can be individually short-circuited, and generation of hydrogen peroxide can be effectively suppressed during the electrolysis stop period, and deterioration of the electrolytic cell 10 can be reduced. Moreover, the residual voltage of the water electrolytic bath 20 increases according to the number of the electrolytic cells 10 connected in series. For this reason, for example, there is a risk of electric shock during maintenance of the water electrolyzer 20 during the period when electrolysis is stopped. 20 can be safely maintained.
 なお、制御部70は、ステップS3にて短絡する制御を実行した場合、短絡回路60の動作状態を判定する判定制御を開始する。なお、判定制御の詳細は後述する。 It should be noted that the control unit 70 starts determination control for determining the operation state of the short circuit 60 when the short circuit control is executed in step S3. Details of the determination control will be described later.
 次に、制御部70は、ステップS3にて電解セル10を短絡した後、循環水を冷却する制御を実行する(S4)。電解運転期間中は循環水が高温・高圧になっている。このため、制御部70は、循環水冷却器28を制御し、電解運転期間中よりも循環水の温度を低下させる。 Next, after short-circuiting the electrolysis cell 10 in step S3, the control unit 70 executes control to cool the circulating water (S4). The circulating water is at high temperature and high pressure during electrolysis operation. Therefore, the control unit 70 controls the circulating water cooler 28 to lower the temperature of the circulating water during the electrolysis operation.
 次に、制御部70は、ステップS4にて電解水を冷却した後、水電解槽20を減圧する制御を実行する(S5)。制御部70は、例えば水素冷却器31の下流側に配置された水素排気用の制御弁(図示省略)を制御し、水素を大気中へ排気することにより水電解槽20を減圧する。 Next, after cooling the electrolyzed water in step S4, the control unit 70 executes control to reduce the pressure in the water electrolyzer 20 (S5). The control unit 70 controls, for example, a hydrogen exhaust control valve (not shown) arranged downstream of the hydrogen cooler 31 to exhaust hydrogen into the atmosphere, thereby reducing the pressure in the water electrolyzer 20 .
 最後に、制御部70は、ステップS5にて水電解槽20を減圧した後、循環水を停止する制御を実行する(S6)。制御部70は、例えば循環ポンプ27を制御し、循環水の循環を停止させる。これにより、水電解装置100の運転が停止し、制御部70は停止制御を終了する。 Finally, after depressurizing the water electrolytic bath 20 in step S5, the control unit 70 executes control to stop the circulation of water (S6). The controller 70 controls, for example, the circulation pump 27 to stop the circulation of the circulating water. As a result, the operation of the water electrolysis device 100 is stopped, and the control unit 70 ends the stop control.
 このように、水電解装置100が実行する停止制御は、水電解槽20への給電が停止したことを契機として短絡回路60を閉回路にして電解セル10を短絡するステップS3を含む。これにより、燃料電池反応を利用して電解セル10内に残留している酸素および水素を消費することができる。このため、電解セル10内での過酸化水素の発生が抑えられ、その結果、固体高分子電解質膜4が分解され難くなる。従って、電解停止期間中における過酸化水素の発生を抑え、電解セル10の劣化を低減することができる。 Thus, the stop control executed by the water electrolysis device 100 includes step S3 of closing the short circuit 60 to short-circuit the electrolysis cells 10 when the power supply to the water electrolyzer 20 is stopped. As a result, oxygen and hydrogen remaining in the electrolytic cell 10 can be consumed using the fuel cell reaction. Therefore, generation of hydrogen peroxide within the electrolytic cell 10 is suppressed, and as a result, the solid polymer electrolyte membrane 4 is less likely to be decomposed. Therefore, it is possible to suppress the generation of hydrogen peroxide during the stop period of electrolysis and reduce the deterioration of the electrolytic cell 10 .
 (判定制御)
 次に、図7に基づいて、短絡回路60の動作状態を判定する判定制御(制御方法)について説明する。図7は、図5に示される判定制御の一例を示すフローチャートである。例えば電解セル10の短絡開始(S11)から所定時間(第1所定時間)経過した時点で電解セル10の残電圧が所定値まで低下していない場合、短絡回路60に何らかの不具合が生じている可能性がある。そこで、制御部70は、短絡回路60の動作状態が正常または異常かを判定する判定制御を実行する。
(judgment control)
Next, determination control (control method) for determining the operating state of the short circuit 60 will be described with reference to FIG. FIG. 7 is a flowchart showing an example of determination control shown in FIG. For example, if the residual voltage of the electrolytic cell 10 has not decreased to a predetermined value after a predetermined time (first predetermined time) has elapsed since the start of short circuiting of the electrolytic cell 10 (S11), it is possible that some problem has occurred in the short circuit 60. have a nature. Therefore, the control unit 70 performs determination control to determine whether the operating state of the short circuit 60 is normal or abnormal.
 判定制御では、制御部(判定部)70は、図5に示すステップS3にて電解セル10の短絡を開始してから所定時間経過したか否かを判定する(S11)。電解セル10の短絡開始から所定時間経過していない場合(S11でNO)、制御部70は、所定時間経過するまで待機する。 In the determination control, the control unit (determination unit) 70 determines whether or not a predetermined time has passed since the short circuit of the electrolytic cell 10 was started in step S3 shown in FIG. 5 (S11). If the predetermined time has not passed since the start of the short circuit of the electrolytic cell 10 (NO in S11), the control unit 70 waits until the predetermined time has passed.
 一方、電解セル10の短絡開始から所定時間経過した場合(S11でYES)、制御部70は、電解セル10の残電圧が所定値以上か否かを判定する(S12)。制御部70は、例えば電解セル10ごとに取り付けられる電圧計Vからの出力値に基づいて各電解セル10の残電圧を取得し、取得した残電圧ごとに所定値以上か否かを判定する。各電解セル10の残電圧のうちの少なくとも1つが所定値以上である場合(S12でYES)、水電解装置100に異常が生じている可能性がある。 On the other hand, if a predetermined time has passed since the start of the short circuit of the electrolytic cell 10 (YES in S11), the control unit 70 determines whether or not the residual voltage of the electrolytic cell 10 is equal to or higher than a predetermined value (S12). The control unit 70 acquires the residual voltage of each electrolysis cell 10 based on, for example, the output value from the voltmeter V attached to each electrolysis cell 10, and determines whether or not each acquired residual voltage is equal to or higher than a predetermined value. If at least one of the residual voltages of the electrolysis cells 10 is equal to or higher than the predetermined value (YES in S12), there is a possibility that the water electrolysis device 100 is malfunctioning.
 そこで、電解セル10の残電圧が所定値以上である場合、制御部70は、水電解装置100に異常が生じている可能性があることを使用者に警告を行う(S13)。警告の方法は特に限定されないが、例えば何番目の電解セル10に接続される短絡回路60に異常が生じている可能性がある等の情報をディスプレイに表示する、警告灯を点灯させる、または警告音を発する等が挙げられる。 Therefore, when the residual voltage of the electrolysis cell 10 is equal to or higher than a predetermined value, the control unit 70 warns the user that there is a possibility that the water electrolysis device 100 is abnormal (S13). Although the warning method is not particularly limited, for example, information such as the possibility that an abnormality has occurred in the short circuit 60 connected to the electrolytic cell 10 of which order is displayed on the display, a warning light is turned on, or a warning is given. uttering a sound, and the like.
 一方、電解セル10の残電圧が所定値未満である場合(S12でNO)、制御部70は、ステップS13の警告を行うことなく、判定制御を終了する。 On the other hand, if the residual voltage of the electrolytic cell 10 is less than the predetermined value (NO in S12), the control unit 70 terminates the determination control without issuing a warning in step S13.
 このように、水電解装置100が実行する判定制御によれば、電解セル10の残電圧に基づいて短絡回路60の動作状態を判定することができるため、水電解装置100の不具合を早期に発見することができる。 In this way, according to the determination control executed by the water electrolysis device 100, it is possible to determine the operating state of the short circuit 60 based on the residual voltage of the electrolysis cell 10, so that the failure of the water electrolysis device 100 can be detected early. can do.
 〔水電解装置100の効果〕
 以上のように、本実施形態に係る水電解装置100は、固体高分子電解質膜4および該固体高分子電解質膜4を挟む電極を含む電解セル10が複数直列に接続された水電解槽20と、水電解槽20に含まれる複数の電解セル10ごとに接続され、水電解槽20への給電が停止したことを契機として電解セル10を短絡する複数の短絡回路60とを備える。
[Effect of water electrolysis device 100]
As described above, the water electrolysis apparatus 100 according to the present embodiment includes a water electrolytic bath 20 in which a plurality of electrolytic cells 10 each including a solid polymer electrolyte membrane 4 and electrodes sandwiching the solid polymer electrolyte membrane 4 are connected in series. , and a plurality of short circuits 60 connected to each of the plurality of electrolysis cells 10 included in the water electrolysis bath 20 and short-circuiting the electrolysis cells 10 when power supply to the water electrolysis bath 20 is stopped.
 水電解装置100では、電解停止時(給電停止時)に短絡回路60を閉回路にして電解セル10を短絡することにより、燃料電池反応を利用して電解セル10内に残留している酸素および水素を消費することができる。このため、過酸化水素の発生が抑えられ、その結果、固体高分子電解質膜4が分解され難くなる。 In the water electrolysis apparatus 100, when the electrolysis is stopped (when the power supply is stopped), the short circuit 60 is closed to short-circuit the electrolysis cell 10, thereby utilizing the fuel cell reaction to remove the oxygen remaining in the electrolysis cell 10 and Can consume hydrogen. Therefore, generation of hydrogen peroxide is suppressed, and as a result, the solid polymer electrolyte membrane 4 is less likely to be decomposed.
 従って、本実施形態によれば、電解停止期間中における過酸化水素の発生を抑え、電解セル10の劣化を低減することが可能な水電解装置100を実現することができる。 Therefore, according to the present embodiment, it is possible to realize the water electrolysis device 100 that can suppress the generation of hydrogen peroxide during the electrolysis stop period and reduce the deterioration of the electrolysis cell 10 .
 また、水電解装置100のような構成によれば、電解セル10の劣化を低減することにより、水電解装置100運転時のエネルギー効率が向上する。これにより、持続可能な開発目標(SDGs)の達成に貢献できる。 In addition, according to the configuration of the water electrolysis device 100, the deterioration of the electrolysis cells 10 is reduced, thereby improving the energy efficiency during operation of the water electrolysis device 100. This will contribute to the achievement of the Sustainable Development Goals (SDGs).
 〔変形例〕
 (変形例1)
 上述した実施形態では、1つの電解セル10ごとに、1つの短絡回路60が接続される水電解装置100の構成例について説明した。しかしながら、本発明に係る水電解装置は、この構成に限定されない。本発明に係る水電解装置は、水電解槽20に含まれる複数の電解セル10から選択される1つ、または隣り合う2つ以上の電解セル10の単位ごとに、1つの短絡回路60が接続されていてもよい。つまり、複数の電解セル10の単位(例えば、隣り合う2~3つ程度の電解セル10の単位)ごとに、1つの短絡回路60が接続される構成であってもよい。
[Modification]
(Modification 1)
In the embodiment described above, the configuration example of the water electrolysis device 100 in which one short circuit 60 is connected to each electrolysis cell 10 has been described. However, the water electrolysis device according to the present invention is not limited to this configuration. In the water electrolysis apparatus according to the present invention, one short circuit 60 is connected for each unit of one or two or more adjacent electrolysis cells 10 selected from a plurality of electrolysis cells 10 included in the water electrolysis tank 20. may have been That is, one short circuit 60 may be connected to each unit of a plurality of electrolytic cells 10 (for example, units of about two to three adjacent electrolytic cells 10).
 このような構成であっても、電解停止期間中に短絡回路60を閉回路にして電解セル10を短絡することにより、燃料電池反応を利用して電解セル10内に残留している酸素および酸素を消費することができる。このため、電解停止期間中における過酸化水素の発生を抑え、電解セル10の劣化を低減することができる。 Even with such a configuration, by closing the short circuit 60 and short-circuiting the electrolysis cell 10 during the electrolysis stop period, the oxygen remaining in the electrolysis cell 10 and the oxygen remaining in the electrolysis cell 10 can be can be consumed. Therefore, it is possible to suppress the generation of hydrogen peroxide during the period when electrolysis is stopped, and to reduce deterioration of the electrolytic cell 10 .
 (変形例2)
 また、上述した実施形態では、短絡回路60が、ヒューズ62を備える構成例について説明した。しかしながら、短絡回路60において、ヒューズ62を省略することも可能である。
(Modification 2)
Further, in the above-described embodiment, the configuration example in which the short circuit 60 includes the fuse 62 has been described. However, it is also possible to omit the fuse 62 in the short circuit 60 .
 図8は、図4に示される短絡回路60の変形例である短絡回路60aを示す模式図である。図8に示すように、短絡回路60aは、リレー61と、導線63とから構成される。例えばリレー61の開閉動作に不具合が生じ、電解運転期間中にリレー61が閉になった場合、電解セル10の電圧が、正常運転時の電解セル10の電圧である基準電圧に比べて低くなる。そこで、制御部70は、電解セル10ごとに取り付けられる電圧計Vから電解運転期間中の各電解セル10の電圧を取得し、取得した電圧と基準電圧とを比較する。基準電圧に比べて電圧計Vから取得した電圧が低い場合、水電解装置100に何らかの不具合が生じている可能性がある。このため、制御部70は、水電解装置100に不具合が生じている可能性があることを使用者に警告する。これにより、リレー61の開閉動作の不具合により短絡回路60aに過電流が流れることを回避し、過電流から短絡回路60aを保護することがきると共に、火災等の発生を未然に防ぐことができる。 FIG. 8 is a schematic diagram showing a short circuit 60a that is a modification of the short circuit 60 shown in FIG. As shown in FIG. 8, the short circuit 60a is composed of a relay 61 and a lead wire 63. As shown in FIG. For example, if the opening/closing operation of the relay 61 fails and the relay 61 is closed during the electrolysis operation, the voltage of the electrolysis cell 10 becomes lower than the reference voltage, which is the voltage of the electrolysis cell 10 during normal operation. . Therefore, the control unit 70 acquires the voltage of each electrolysis cell 10 during the electrolysis operation period from the voltmeter V attached to each electrolysis cell 10, and compares the acquired voltage with the reference voltage. If the voltage obtained from the voltmeter V is lower than the reference voltage, the water electrolysis device 100 may have some problem. Therefore, the control unit 70 warns the user that the water electrolysis device 100 may be malfunctioning. As a result, it is possible to prevent an overcurrent from flowing through the short circuit 60a due to the failure of the opening/closing operation of the relay 61, protect the short circuit 60a from overcurrent, and prevent fires from occurring.
 本発明の一実施例について、図9に基づいて説明する。本実施例では、本発明に係る水電解装置100を用いて、電解停止期間中に電解セル10の短絡対策を施した場合と施さなかった場合の各々における電解電圧上昇値(V)を計測する比較試験を行った。水電解装置100では、固体高分子電解質膜4の分解が進行するに従って、電解運転期間中の電解電圧上昇値が大きくなる。そこで、本比較試験では、短絡対策を施した場合の電解電圧上昇値と、短絡対策を施さない場合の電解電圧上昇値と比較することで、短絡対策による固体高分子電解質膜4の分解抑制効果を検証した。 An embodiment of the present invention will be described based on FIG. In this embodiment, using the water electrolysis device 100 according to the present invention, the electrolysis voltage rise value (V) is measured in each of the cases where measures against short circuiting of the electrolysis cell 10 are taken during the stop period of electrolysis and where it is not taken. A comparative test was conducted. In the water electrolysis device 100, as the decomposition of the solid polymer electrolyte membrane 4 progresses, the electrolysis voltage rise value during electrolysis operation increases. Therefore, in this comparative test, by comparing the electrolysis voltage rise value when short circuit countermeasures are taken and the electrolysis voltage rise value when short circuit countermeasures are not taken, the effect of suppressing decomposition of the solid polymer electrolyte membrane 4 by short circuit countermeasures. verified.
Figure JPOXMLDOC01-appb-T000001
 表1は、比較試験の条件を示す表である。比較試験では、表1に示す条件下において、水電解槽20を15秒間電解運転した後に7200秒間電解停止する制御を繰り返し行い、電解運転期間中の電解電圧上昇値を計測した。
Figure JPOXMLDOC01-appb-T000001
Table 1 is a table showing the conditions of the comparative test. In the comparative test, under the conditions shown in Table 1, the water electrolyzer 20 was repeatedly operated for 15 seconds and then stopped for 7200 seconds, and the electrolysis voltage rise value during the electrolysis operation was measured.
 図9は、比較試験の結果を示すグラフである。図9に示すA1およびA2は、短絡対策を施した場合の計測結果を示す。また、図9に示すA3は、短絡対策を施さなかった場合の計測結果を示す。具体的には、図9に示す「A1:停止時短絡_循環7,200sec」は、電解停止期間中に各電解セル10を短絡させ、且つ、電解停止期間の7200秒間、循環水を流し続ける制御を行った場合の計測結果を示す。また、図9に示す「A2:停止時短絡_循環120sec」は、電解停止期間中に各電解セル10を短絡させ、且つ、短絡開始から120秒(第2所定時間)後に循環ポンプ27を止めて循環水を停止する制御を行った場合の計測結果を示す。また、図9に示す「A3:対策なし」は、電解停止期間中に各電解セル10を短絡させず、且つ、電解停止期間の7200秒間、循環水を流し続ける制御を行った場合の計測結果を示す。 FIG. 9 is a graph showing the results of the comparative test. A1 and A2 shown in FIG. 9 show the measurement results when measures against short circuits are taken. Further, A3 shown in FIG. 9 shows the measurement result when no measures against short circuits are taken. Specifically, "A1: short circuit at stop_circulation 7,200 sec" shown in FIG. Measured results when control is performed are shown. In addition, "A2: short circuit at stop_circulation 120 sec" shown in FIG. The measurement results are shown when control is performed to stop the circulating water. In addition, "A3: No countermeasure" shown in FIG. 9 is the measurement result when each electrolysis cell 10 is not short-circuited during the electrolysis stop period and control is performed to keep the circulating water flowing for 7200 seconds during the electrolysis stop period. indicates
 図9に示すように、電解停止期間中に短絡対策を施さなかったA3は、短絡対策を施したA1およびA2に比べて、電解電圧上昇値が大きかった。また、短絡対策を施したA1およびA2では、A2の電解電圧上昇値が最も小さくなり、A1の電解電圧上昇値がA2とA3との間くらいになった。 As shown in FIG. 9, A3, in which short-circuit countermeasures were not taken during the electrolysis stop period, had a larger electrolysis voltage rise value than A1 and A2, in which short-circuit countermeasures were taken. In addition, in A1 and A2 in which short-circuit measures were taken, the electrolytic voltage rise value of A2 was the smallest, and the electrolytic voltage rise value of A1 was between A2 and A3.
 以上の比較試験の結果により、電解停止期間中に短絡対策を施すことにより、電解運転期間中の電解電圧上昇値が小さくなることが確認できた。これは、電解停止期間中に短絡対策を施すことにより過酸化水素の発生が抑えられ、固体高分子電解質膜4の分解が抑制されたためであると推察される。 From the results of the above comparison test, it was confirmed that the electrolysis voltage rise value during the electrolysis operation period was reduced by taking short-circuit countermeasures during the electrolysis stop period. It is presumed that this is because the generation of hydrogen peroxide was suppressed and the decomposition of the solid polymer electrolyte membrane 4 was suppressed by taking short-circuit countermeasures during the electrolysis stop period.
 〔まとめ〕
 本発明の態様1に係る水電解装置は、固体高分子電解質膜を含む電解セルが複数直列に接続された水電解槽と、前記水電解槽に含まれる複数の前記電解セルから選択される1つ以上の前記電解セルの単位ごとに接続され、前記水電解槽への給電が停止したことを契機として前記電解セルの単位を短絡する複数の短絡回路と、を備える。
〔summary〕
A water electrolysis device according to aspect 1 of the present invention is selected from a water electrolysis tank in which a plurality of electrolysis cells each including a solid polymer electrolyte membrane are connected in series, and a plurality of the electrolysis cells included in the water electrolysis tank. a plurality of short circuits connected to each of the one or more electrolytic cell units and short-circuiting the electrolytic cell units when power supply to the water electrolytic bath is stopped.
 本発明の態様2に係る水電解装置では、上記態様1において、前記短絡回路は、1つの前記電解セルごとに接続されていてもよい。 In the water electrolysis apparatus according to Aspect 2 of the present invention, in Aspect 1 above, the short circuit may be connected for each one of the electrolysis cells.
 本発明の態様3に係る水電解装置では、上記態様1または2において、前記電解セルの短絡開始から所定時間経過後の該電解セルの残電圧に基づいて、前記短絡回路の動作状態を判定する判定部(制御部70)をさらに備えていてもよい。 In the water electrolysis apparatus according to aspect 3 of the present invention, in the above aspect 1 or 2, the operation state of the short circuit is determined based on the residual voltage of the electrolytic cell after a predetermined time has elapsed since the start of short circuiting of the electrolytic cell. A determination unit (control unit 70) may be further provided.
 本発明の態様4に係る水電解装置では、上記態様1から3のいずれかの態様において、前記短絡回路は、前記短絡回路の開閉を切り替える切替部(リレー61)をさらに含む、または、前記短絡回路の開閉を切り替える切替部(リレー61)と、前記短絡回路に所定値以上の電流が流れた場合に、該短絡回路を開放する回路保護部(ヒューズ62)とを、さらに含んでいてもよい。 In the water electrolysis device according to Aspect 4 of the present invention, in any one of Aspects 1 to 3, the short circuit further includes a switching unit (relay 61) for switching opening and closing of the short circuit, or It may further include a switching unit (relay 61) that switches between opening and closing of the circuit, and a circuit protection unit (fuse 62) that opens the short circuit when a current of a predetermined value or more flows through the short circuit. .
 本発明の態様5に係る水電解装置では、上記態様4において、前記電解セルは、前記固体高分子電解質膜を挟んで配置され、互いに対向する電極面を有する触媒電極層を含み、前記電極面の単位面積当たりの前記短絡回路の抵抗値は、0.002μΩ/mm以上0.2μΩ/mm以下であってもよい。 In the water electrolysis device according to Aspect 5 of the present invention, in Aspect 4, the electrolysis cell includes a catalyst electrode layer having electrode surfaces facing each other, arranged with the solid polymer electrolyte membrane interposed therebetween, and the electrode surfaces A resistance value of the short circuit per unit area may be 0.002 μΩ/mm 2 or more and 0.2 μΩ/mm 2 or less.
 本発明の態様5に係る水電解装置では、上記態様4または5において、前記電解セルは、前記固体高分子電解質膜を挟んで配置され、互いに対向する電極面を有する触媒電極層を含み、前記電極面の単位面積当たりの前記短絡回路に使用される導線の断面積は、0.00006mm/mm以上0.001mm/mm以下であってもよい。 In the water electrolysis device according to aspect 5 of the present invention, in the above aspect 4 or 5, the electrolytic cell includes catalyst electrode layers arranged with the solid polymer electrolyte membrane interposed therebetween and having electrode surfaces facing each other, A cross-sectional area of the conductive wire used for the short circuit per unit area of the electrode surface may be 0.00006 mm 2 /mm 2 or more and 0.001 mm 2 /mm 2 or less.
 本発明の態様7に係る水電解装置の制御方法は、固体高分子電解質膜を含む電解セルが複数直列に接続された水電解槽へ給電する工程と、前記水電解槽への給電が停止したことを契機として、前記水電解槽に含まれる複数の前記電解セルから選択される1つ以上の前記電解セルの単位ごとに短絡する複数の短絡回路を閉にして、前記電解セルの単位を短絡する工程と、を含む。 A method for controlling a water electrolysis device according to aspect 7 of the present invention comprises the steps of: supplying power to a water electrolysis cell in which a plurality of electrolytic cells each including a solid polymer electrolyte membrane are connected in series; and stopping the power supply to the water electrolysis cell. Taking this as an opportunity, a plurality of short circuits for short-circuiting the units of one or more of the electrolysis cells selected from the plurality of electrolysis cells contained in the water electrolysis tank are closed to short-circuit the units of the electrolysis cells. and
 本発明の態様8に係る水電解装置の制御方法は、前記態様7において、前記電解セルの短絡開始から第1所定時間経過後の該電解セルの残電圧に基づいて、前記短絡回路の動作状態を判定する工程をさらに含んでいてもよい。 A method for controlling a water electrolysis device according to aspect 8 of the present invention is characterized in that, in aspect 7, the operation state of the short circuit is determined based on the residual voltage of the electrolysis cell after a first predetermined time has passed since the start of the short circuit of the electrolysis cell. may further include the step of determining
 本発明の態様9に係る水電解装置の制御方法は、前記態様7または8において、前記電解セルの短絡開始から第2所定時間経過後に、前記水電解装置を循環する循環水の流れを停止させる工程をさらに含んでいてもよい。 A method for controlling a water electrolysis device according to aspect 9 of the present invention is the method for controlling a water electrolysis device according to aspect 7 or 8, in which the flow of circulating water circulating in the water electrolysis device is stopped after a second predetermined time has elapsed from the start of the short circuit of the electrolysis cell. Further steps may be included.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and can be modified in various ways within the scope of the claims. It is included in the technical scope of the invention.
 5・6 触媒電極層
 5a・6a 電極面
 10 電解セル
 20 水電解槽
 50 整流器
 60・60a 短絡回路
 61 リレー(切替部)
 62 ヒューズ(回路保護部)
 63 導線
 70 制御部(判定部)
100 水電解装置

 
5 6 Catalytic electrode layer 5a 6a Electrode surface 10 Electrolytic cell 20 Water electrolyzer 50 Rectifier 60 60a Short circuit 61 Relay (switching part)
62 Fuse (circuit protection part)
63 conducting wire 70 control unit (determining unit)
100 water electrolyzer

Claims (9)

  1.  固体高分子電解質膜を含む電解セルが複数直列に接続された水電解槽と、
     前記水電解槽に含まれる複数の前記電解セルから選択される1つ以上の前記電解セルの単位ごとに接続され、前記水電解槽への給電が停止したことを契機として前記電解セルの単位を短絡する複数の短絡回路と、
    を備える水電解装置。
    a water electrolytic bath in which a plurality of electrolytic cells each containing a solid polymer electrolyte membrane are connected in series;
    One or more electrolysis cell units selected from the plurality of electrolysis cells included in the water electrolysis bath are connected, and the electrolysis cell units are connected when power supply to the water electrolysis bath is stopped. a plurality of short circuits that short;
    A water electrolysis device comprising:
  2.  前記短絡回路は、1つの前記電解セルごとに接続される、請求項1に記載の水電解装置。 The water electrolysis device according to claim 1, wherein the short circuit is connected for each one of the electrolysis cells.
  3.  前記電解セルの短絡開始から所定時間経過後の該電解セルの残電圧に基づいて、前記短絡回路の動作状態を判定する判定部をさらに備える、請求項1または2に記載の水電解装置。 The water electrolysis apparatus according to claim 1 or 2, further comprising a determination unit that determines the operating state of the short circuit based on the residual voltage of the electrolysis cell after a predetermined time has passed since the start of the short circuit of the electrolysis cell.
  4.  前記短絡回路は、
      前記短絡回路の開閉を切り替える切替部をさらに含む、
     または、
      前記短絡回路の開閉を切り替える切替部と、
      前記短絡回路に所定値以上の電流が流れた場合に、該短絡回路を開放する回路保護部とを、さらに含む、請求項1または2に記載の水電解装置。
    The short circuit is
    Further comprising a switching unit for switching opening and closing of the short circuit,
    or
    a switching unit that switches between opening and closing of the short circuit;
    3. The water electrolysis device according to claim 1, further comprising a circuit protector that opens the short circuit when a current of a predetermined value or more flows through the short circuit.
  5.  前記電解セルは、前記固体高分子電解質膜を挟んで配置され、互いに対向する電極面を有する触媒電極層を含み、
     前記電極面の単位面積当たりの前記短絡回路の抵抗値は、0.002μΩ/mm以上、0.2μΩ/mm以下である、請求項4に記載の水電解装置。
    The electrolytic cell includes catalyst electrode layers arranged with the solid polymer electrolyte membrane interposed therebetween and having electrode surfaces facing each other,
    The water electrolysis device according to claim 4, wherein the resistance value of the short circuit per unit area of the electrode surface is 0.002 µΩ/mm 2 or more and 0.2 µΩ/mm 2 or less.
  6.  前記電解セルは、前記固体高分子電解質膜を挟んで配置され、互いに対向する電極面を有する触媒電極層を含み、
     前記電極面の単位面積当たりの前記短絡回路に使用される導線の断面積は、0.00006mm/mm以上、0.001mm/mm以下である、請求項4に記載の水電解装置。
    The electrolytic cell includes catalyst electrode layers arranged with the solid polymer electrolyte membrane interposed therebetween and having electrode surfaces facing each other,
    5. The water electrolysis device according to claim 4, wherein the cross-sectional area of the conductive wire used for the short circuit per unit area of the electrode surface is 0.00006 mm 2 /mm 2 or more and 0.001 mm 2 /mm 2 or less. .
  7.  水電解装置の制御方法であって、
     固体高分子電解質膜を含む電解セルが複数直列に接続された水電解槽へ給電する工程と、
     前記水電解槽への給電が停止したことを契機として、前記水電解槽に含まれる複数の前記電解セルから選択される1つ以上の前記電解セルの単位ごとに短絡する複数の短絡回路を閉にして、前記電解セルの単位を短絡する工程と、
    を含む水電解装置の制御方法。
    A control method for a water electrolysis device,
    a step of supplying power to a water electrolytic bath in which a plurality of electrolytic cells each containing a solid polymer electrolyte membrane are connected in series;
    When power supply to the water electrolyzer is stopped, a plurality of short circuits are closed for each unit of one or more of the electrolyzed cells selected from the plurality of electrolyzed cells included in the water electrolyzer. and short-circuiting the unit of the electrolytic cell;
    A method of controlling a water electrolysis device comprising:
  8.  前記電解セルの短絡開始から第1所定時間経過後の該電解セルの残電圧に基づいて、前記短絡回路の動作状態を判定する工程をさらに含む、請求項7に記載の水電解装置の制御方法。 8. The method for controlling a water electrolysis device according to claim 7, further comprising the step of determining the operating state of said short circuit based on the residual voltage of said electrolysis cell after a first predetermined time has passed since said short circuit of said electrolysis cell started. .
  9.  前記電解セルの短絡開始から第2所定時間経過後に、前記水電解装置を循環する循環水の流れを停止させる工程をさらに含む、請求項7または8に記載の水電解装置の制御方法。 The method for controlling a water electrolysis device according to claim 7 or 8, further comprising a step of stopping the flow of circulating water circulating in the water electrolysis device after a second predetermined time has passed since the start of the short circuit of the electrolysis cell.
PCT/JP2023/000784 2022-03-03 2023-01-13 Water electrolysis device and control method WO2023166861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032772A JP2023128433A (en) 2022-03-03 2022-03-03 Water electrolysis apparatus and control method
JP2022-032772 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023166861A1 true WO2023166861A1 (en) 2023-09-07

Family

ID=87883617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000784 WO2023166861A1 (en) 2022-03-03 2023-01-13 Water electrolysis device and control method

Country Status (3)

Country Link
JP (1) JP2023128433A (en)
TW (1) TW202340536A (en)
WO (1) WO2023166861A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054177A (en) * 1998-07-31 2000-02-22 Toto Ltd Electrolyzer
JP2007115533A (en) * 2005-10-20 2007-05-10 Hitachi Ltd Shutdown method of solid polymer fuel cell system and solid polymer fuel cell system
JP2008004319A (en) * 2006-06-21 2008-01-10 Toyota Motor Corp Fuel cell system, and its operation stop method
JP2008300296A (en) * 2007-06-01 2008-12-11 Toyota Motor Corp Fuel cell system
JP2016518519A (en) * 2013-03-19 2016-06-23 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Electrolysis stack and electrolysis device
JP2021046600A (en) * 2019-09-20 2021-03-25 Eneos株式会社 Method for controlling hydrogen generation system, and hydrogen generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054177A (en) * 1998-07-31 2000-02-22 Toto Ltd Electrolyzer
JP2007115533A (en) * 2005-10-20 2007-05-10 Hitachi Ltd Shutdown method of solid polymer fuel cell system and solid polymer fuel cell system
JP2008004319A (en) * 2006-06-21 2008-01-10 Toyota Motor Corp Fuel cell system, and its operation stop method
JP2008300296A (en) * 2007-06-01 2008-12-11 Toyota Motor Corp Fuel cell system
JP2016518519A (en) * 2013-03-19 2016-06-23 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Electrolysis stack and electrolysis device
JP2021046600A (en) * 2019-09-20 2021-03-25 Eneos株式会社 Method for controlling hydrogen generation system, and hydrogen generation system

Also Published As

Publication number Publication date
JP2023128433A (en) 2023-09-14
TW202340536A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
CA2997414C (en) Fuel cell system ride-through of electric grid disturbances
JP2782854B2 (en) Fuel cell protection device
WO2009084447A1 (en) Fuel cell system
KR101579628B1 (en) System and method for operating a high temperature fuel cell as a back-up power supply with reduced performance decay
RU2624222C2 (en) Method of tracking, protection and safe electrolytic system switching off
US10854898B2 (en) Direct current (DC) load levelers
CN101953011B (en) Fuel battery start method
WO2023166861A1 (en) Water electrolysis device and control method
JP7129941B2 (en) Water electrolysis device performance recovery method and water electrolysis device
KR20200135632A (en) Fuel cell system
US8338046B2 (en) Fuel cell system
JP3940287B2 (en) Method, system and apparatus for dissipating residual fuel in a fuel cell stack
JP5159569B2 (en) Fuel cell system and control method thereof
JP3991146B2 (en) Solid polymer water electrolyzer
WO2024090173A1 (en) Water electrolysis system
JP2018170147A (en) Fuel battery system
US11158873B2 (en) Control device for fuel cell system
JPH07150382A (en) Jumper switch apparatus for electrolytic tank electrically connected in series
JP2010212026A (en) Fuel cell system
DE102017205862B3 (en) Fuel cell system with a predetermined breaking point
JPH10212590A (en) Operation of hydrogen and oxygen generator and hydrogen and oxygen generator used therefor
JPH0689732A (en) Fuel cell
JP2012243664A (en) Fuel cell system and shutdown method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763124

Country of ref document: EP

Kind code of ref document: A1