JPH0689732A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0689732A
JPH0689732A JP4241111A JP24111192A JPH0689732A JP H0689732 A JPH0689732 A JP H0689732A JP 4241111 A JP4241111 A JP 4241111A JP 24111192 A JP24111192 A JP 24111192A JP H0689732 A JPH0689732 A JP H0689732A
Authority
JP
Japan
Prior art keywords
fuel cell
pressure
exhaust heat
amount
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4241111A
Other languages
Japanese (ja)
Inventor
Tsuneo Uekusa
常雄 植草
Kazuo Oshima
一夫 大島
Hiroshi Adachi
博 安達
Toyoichi Tamura
豊一 田村
Kunihiro Nishizaki
邦博 西崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Tokyo Gas Co Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Tokyo Gas Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4241111A priority Critical patent/JPH0689732A/en
Publication of JPH0689732A publication Critical patent/JPH0689732A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make safe operation of power generating continuously with a fuel cell even when it is not possible to perform the heat exhaust process with its exhaust heat processing device. CONSTITUTION:The output of a fuel cell is supplied through a cell output control device 12. If the exhaust heat collecting heat-exchanger 7 is not capable of exhausting the heat emitted by the body 1 of the fuel cell to the outside of the cell coolant system, a control device 5 measures the pressure in a stream separator 3 using a pressure sensor 6, controls the cell output control device 12 so that the pressure becomes constant, and decreases the amount of power generation of the fuel cell. This discreasing causes the heat emission amount at power generating to balance with the natural heat radiating, etc., makes constant the reacting temp. of the fuel cell, and permits continued operation of power generation while the heat exhaust process to outside the cell coolant system is no more needed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池冷却水の排熱処理
装置が故障等で排熱処理ができないときでも、安全に発
電運転が続けられる燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell in which power generation operation can be safely continued even when exhaust heat treatment equipment for cell cooling water cannot be exhaust heat treated due to a failure or the like.

【0002】[0002]

【従来の技術】従来の燃料電池の一例を図6に示す。図
において、1は燃料電池本体、2は改質器、3は水蒸気
分離器、4は安全弁、6は圧力センサ、7は排熱回収熱
交換器、8は熱回収量制御弁、11は燃料電池の直流の
電気出力を交流出力に変換するインバータ、14は水処
理装置、15はイジェクタ、16は電池冷却水循環ポン
プ、17は熱回収量調節装置、17aはその信号線を示
す。
2. Description of the Related Art An example of a conventional fuel cell is shown in FIG. In the figure, 1 is a fuel cell main body, 2 is a reformer, 3 is a steam separator, 4 is a safety valve, 6 is a pressure sensor, 7 is an exhaust heat recovery heat exchanger, 8 is a heat recovery control valve, and 11 is a fuel. An inverter for converting the DC electric output of the battery into an AC output, 14 is a water treatment device, 15 is an ejector, 16 is a battery cooling water circulation pump, 17 is a heat recovery amount adjusting device, and 17a is its signal line.

【0003】燃料電池本体1では、改質器2で燃料を改
質して得た改質ガス中の水素と空気中の酸素が水の電気
分解の逆の反応を行うことで発電を行う。リン酸形燃料
電池では、この時の発電反応は200[℃]程度の温度
下で行われ、発熱を伴う。そこで、燃料電池本体1の温
度を200[℃]程度で一定に保つとともに、発熱した
熱を燃料電池本体1外部へ放熱するために、電池冷却水
を電池冷却水循環ポンプ16により燃料電池本体1内に
流している。燃料電池本体1で発する熱は、電池冷却水
系の高温水を水蒸気に変えることで熱回収する。回収し
た熱の一部は水蒸気のまま改質反応を行うために水蒸気
分離器3からイジェクタ15を通して燃料に混入されて
改質器2へ送られる。また、改質器2へ水蒸気を排出す
ることによる電池冷却水中の不純物の濃縮を防ぐため
に、水処理装置14に電池冷却水の一部をブローダウン
する。このブローダウン水とともに回収熱の一部も排出
される。残りの熱は排熱回収熱交換器7で凝縮して2次
冷却水により電池冷却水系外部へ放熱する。排熱回収熱
交換器7での回収熱量は、熱回収量制御弁8を操作する
ことにより制御する。すなわち、熱回収量制御弁8は、
熱回収量調節装置17により、水蒸気分離器3の圧力を
圧力センサ6で検出して、その圧力が設定圧力となるよ
うに、圧力が高い場合には排熱回収量が多くなるよう
に、圧力が低い場合には排熱回収量が少なくなるように
操作される。このため、燃料電池本体1から回収した熱
のうち、自然放熱と改質器2で利用される水蒸気の持ち
出すエネルギーとブローダウン水の持ち出すエネルギー
以外は、排熱回収熱交換器7から外部に放熱される。
In the fuel cell main body 1, hydrogen in the reformed gas obtained by reforming the fuel in the reformer 2 and oxygen in the air perform a reverse reaction of electrolysis of water to generate electricity. In the phosphoric acid fuel cell, the power generation reaction at this time is carried out at a temperature of about 200 [° C.], and heat is generated. Therefore, in order to keep the temperature of the fuel cell body 1 constant at about 200 [° C.] and to dissipate the generated heat to the outside of the fuel cell body 1, the cell cooling water is circulated in the fuel cell body 1 by the cell cooling water circulation pump 16. I'm running into. The heat generated by the fuel cell body 1 is recovered by converting high-temperature water in the cell cooling water system into steam. A part of the recovered heat is mixed with fuel from the steam separator 3 through the ejector 15 and sent to the reformer 2 in order to carry out the reforming reaction as steam. Further, in order to prevent the concentration of impurities in the battery cooling water by discharging the steam to the reformer 2, a part of the battery cooling water is blown down to the water treatment device 14. A part of the recovered heat is discharged together with the blowdown water. The remaining heat is condensed in the exhaust heat recovery heat exchanger 7 and radiated to the outside of the battery cooling water system by the secondary cooling water. The amount of heat recovered in the exhaust heat recovery heat exchanger 7 is controlled by operating the heat recovery amount control valve 8. That is, the heat recovery amount control valve 8 is
The pressure of the steam separator 3 is detected by the pressure sensor 6 by the heat recovery amount adjusting device 17, and the pressure is adjusted so that the pressure becomes the set pressure and the exhaust heat recovery amount increases when the pressure is high. When is low, the exhaust heat recovery amount is reduced. Therefore, of the heat recovered from the fuel cell main body 1, except the natural heat dissipation, the energy carried out by the steam used in the reformer 2 and the energy carried out by the blowdown water, the heat is recovered from the exhaust heat recovery heat exchanger 7 to the outside. To be done.

【0004】排熱回収熱交換器7での排熱回収量を燃料
電池の外部への発電量に対する関係で示したのが、図5
である。排熱回収熱交換器7からの排熱回収量は上述し
たように電池冷却水系内の熱バランスから決定される。
燃料電池が定格負荷で発電している場合には、燃料電池
本体1での発熱量に対して、改質器2への水蒸気供給,
ブローダウン,自然放熱に伴なう放熱量が少ないため、
排熱回収熱交換器7での排熱回収量が多くなる。それに
対して、燃料電池が定格負荷の半分程度で発電している
場合、燃料電池本体1での発熱量と、改質器2への水蒸
気供給,ブローダウン水,自然放熱による放熱がバラン
スし、排熱回収熱交換器7からの放熱はなくなる。さら
に、燃料電池での発電量が0の場合には、再び、排熱回
収量が増加する。この理由は、燃料電池は外部への発電
量は0だが、実際には電池を保護するために、定格の半
分程度の負荷で発電しており、発電した電気は電池冷却
水系内の電気ヒータに流しているためである。このた
め、燃料電池の外部への発電量が0の時にも熱回収が行
え、図5のような関係となる。従って、燃料電池を定格
発電量付近あるいは、発電量0付近で運転する場合に
は、排熱回収熱交換器7で排熱回収を行わなければなら
ない。
FIG. 5 shows the relationship between the amount of exhaust heat recovered in the exhaust heat recovery heat exchanger 7 and the amount of power generation to the outside of the fuel cell.
Is. The amount of exhaust heat recovered from the exhaust heat recovery heat exchanger 7 is determined from the heat balance in the battery cooling water system as described above.
When the fuel cell is generating power at the rated load, the steam supply to the reformer 2 with respect to the heat generation amount in the fuel cell main body 1,
Since the amount of heat released due to blowdown and natural heat dissipation is small,
The amount of exhaust heat recovered in the exhaust heat recovery heat exchanger 7 increases. On the other hand, when the fuel cell is generating power at about half of the rated load, the heat generation amount in the fuel cell body 1 is balanced with the steam supply to the reformer 2, blowdown water, and heat dissipation by natural heat dissipation. No heat is radiated from the heat recovery heat exchanger 7. Furthermore, when the power generation amount in the fuel cell is 0, the exhaust heat recovery amount increases again. The reason for this is that the fuel cell produces 0 electricity to the outside, but actually it produces electricity with a load of about half the rating in order to protect the cell, and the electricity generated is supplied to the electric heater in the cell cooling water system. It is because it is flowing. Therefore, heat can be recovered even when the amount of power generation to the outside of the fuel cell is 0, and the relationship shown in FIG. 5 is obtained. Therefore, when the fuel cell is operated near the rated power generation amount or near the power generation amount 0, the exhaust heat recovery heat exchanger 7 must recover the exhaust heat.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記従来の
技術による燃料電池の排熱回収では、排熱回収熱交換器
7や熱回収量制御弁8,熱回収量調節装置17等からな
る排熱処理系の一部が故障して、電池冷却水系の外部に
熱を捨てることができなくなると、電池冷却水系の圧力
が上昇し、安全弁4から水蒸気を吹き出すことで放熱す
るか、あるいは燃料電池を緊急停止しなければならな
い。
By the way, in the exhaust heat recovery of the fuel cell according to the above conventional technique, the exhaust heat treatment including the exhaust heat recovery heat exchanger 7, the heat recovery amount control valve 8, the heat recovery amount adjusting device 17 and the like. If a part of the system fails and heat cannot be dissipated to the outside of the battery cooling water system, the pressure of the battery cooling water system rises, and steam is blown out from the safety valve 4 to dissipate heat, or the fuel cell is in an emergency. I have to stop.

【0006】しかし、160[℃]程度の水蒸気を安全
弁4から噴出させながら運転する方法は安全面や保全面
からは好ましい方法とは言えない。また、燃料電池を緊
急停止することは、電力供給を継続することができなく
なるとともに、電池セルを劣化させ寿命を短くすること
につながるので、望ましい方法ではない。
However, the method of operating while ejecting water vapor of about 160 ° C. from the safety valve 4 is not a preferable method from the viewpoint of safety and maintenance. Further, the emergency stop of the fuel cell is not desirable because it makes it impossible to continue the power supply and leads to deterioration of the battery cell to shorten its life.

【0007】このように、燃料電池本体の発熱を電池冷
却水系外部に排出することができない場合、従来まで
は、発電を引き続き行う場合には安全面で問題があり、
緊急停止させてしまうと電力供給ができなくなる上に電
池セルの寿命を縮めることにもなる点が問題であった。
As described above, when the heat generated in the fuel cell body cannot be discharged to the outside of the cell cooling water system, there is a safety problem until now when the power generation is continued.
There is a problem in that if the power supply is stopped in an emergency, power cannot be supplied and the life of the battery cell is shortened.

【0008】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、燃料電池の排熱処理装
置で排熱処理できない場合でも発電運転を引続き安全に
行える燃料電池を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel cell capable of continuously performing power generation operation safely even when exhaust heat treatment cannot be performed by an exhaust heat treatment apparatus of a fuel cell. It is in.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の燃料電池においては、水素と酸素とを入力
して発電を行うとともに熱を発する燃料電池本体と、前
記燃料電池本体を冷却する電池冷却水と、前記電池冷却
水中の水蒸気を分離する水蒸気分離器と、前記水蒸気分
離器内の圧力を測定する圧力センサと、前記燃料電池本
体での反応温度を一定に保つために前記測定した圧力が
一定になるように前記発電の時に発する熱を電池冷却水
系外部に排出する排熱処理装置とを具備した燃料電池に
おいて、前記排熱処理装置による前記水蒸気分離器内の
圧力の制御と並行してまたは切り換えて、前記燃料電池
の発電量を変化させることにより該水蒸気分離器内の圧
力を一定に制御する制御装置を具備することを特徴とし
ている。
In order to achieve the above object, in the fuel cell of the present invention, a fuel cell main body which inputs hydrogen and oxygen to generate power and generate heat, and the fuel cell main body are provided. Battery cooling water to be cooled, a water vapor separator for separating water vapor in the battery cooling water, a pressure sensor for measuring the pressure in the water vapor separator, and the above in order to keep the reaction temperature in the fuel cell main body constant. In a fuel cell provided with an exhaust heat treatment device for discharging heat generated during the power generation to the outside of the cell cooling water system so that the measured pressure becomes constant, in parallel with the control of the pressure in the steam separator by the exhaust heat treatment device. In addition, a control device for controlling the pressure in the water vapor separator to be constant by changing the power generation amount of the fuel cell is also provided.

【0010】[0010]

【作用】本発明の燃料電池では、燃料電池の発熱を排熱
処理装置で電池冷却水系外部へ排熱をしなくとも、燃料
電池の発電量によっては発電時の発熱量が自然放熱等に
より電池冷却水系内だけでバランスし、燃料電池の反応
温度を一定にできることを利用して、排熱処理装置等が
異常のときに発電量を変化させて反応温度を一定にす
る。ここで、燃料電池の発熱量と水蒸気分離器内の圧力
とは相関するので、電池冷却水系の水蒸気分離器内の圧
力が設定された一定の値となるように発電量を制御する
ことにより、その時の発熱量を減少させて反応温度を一
定にし、電池冷却水系外部への排熱を不要にして、燃料
電池の排熱処理装置で排熱処理できない場合でも発電運
転を安全に行えるようにする。
In the fuel cell of the present invention, even if the heat generated by the fuel cell is not exhausted to the outside of the cell cooling water system by the exhaust heat treatment device, the calorific value during power generation depends on the power generation of the fuel cell, and the cell is cooled by natural heat dissipation. Utilizing the fact that the reaction temperature of the fuel cell can be made constant by balancing only in the water system, the amount of power generation is changed to make the reaction temperature constant when the exhaust heat treatment device or the like is abnormal. Here, since the calorific value of the fuel cell and the pressure in the steam separator are correlated, by controlling the amount of power generation so that the pressure in the steam separator of the cell cooling water system becomes a set constant value, The amount of heat generated at that time is reduced to keep the reaction temperature constant, eliminating the need for exhaust heat to the outside of the cell cooling water system, and enabling safe power generation operation even when exhaust heat treatment cannot be performed by the exhaust heat treatment apparatus of the fuel cell.

【0011】[0011]

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0012】図1に本発明の第1の実施例の構成を示
す。本実施例は排熱回収装置(排熱処理装置)として熱
交換器を使用した場合である。
FIG. 1 shows the configuration of the first embodiment of the present invention. In this embodiment, a heat exchanger is used as an exhaust heat recovery device (exhaust heat treatment device).

【0013】図において、1は燃料電池本体、2は改質
器、3は水蒸気分離器、4は安全弁、5は制御装置、5
aはその信号線、6は圧力センサ、7は排燃回収熱交換
器、8は熱回収量制御弁、11はインバータ、12は燃
料電池電気出力制御装置、14は水処理装置、15はイ
ジェクタ、16は電池冷却水循環ポンプを示す。
In the figure, 1 is a fuel cell main body, 2 is a reformer, 3 is a steam separator, 4 is a safety valve, 5 is a controller, and 5 is a controller.
a is its signal line, 6 is a pressure sensor, 7 is an exhaust heat recovery heat exchanger, 8 is a heat recovery amount control valve, 11 is an inverter, 12 is a fuel cell electric output control device, 14 is a water treatment device, and 15 is an ejector. , 16 are battery cooling water circulation pumps.

【0014】本実施例の基本的な構成と各部の機能は、
図6の従来例と同様である。すなわち、燃料電池本体1
では、改質器2で燃料を改質して得た改質ガス中の水素
と空気中の酸素が水の電気分解の逆の反応を行うことで
発電を行う。リン酸形燃料電池では、この時の発電反応
は200[℃]程度の温度下で行われ、発熱を伴う。燃
料電池本体1の温度を200[℃]程度で一定に保つと
ともに、発熱した熱を燃料電池本体1外部へ放熱するた
めに、電池冷却水を電池冷却水循環ポンプ16により燃
料電池本体1内に流している。燃料電池本体1で発する
熱は、電池冷却水系の高温水を水蒸気に変えることで熱
回収する。回収した熱の一部は水蒸気のまま改質反応を
行うために水蒸気分離器3からイジェクタ15を通して
燃料に混入されて改質器2へ送られる。また、改質器2
へ水蒸気を排出することによる電池冷却水中の不純物の
濃縮を防ぐために、水処理装置14に電池冷却水の一部
をブローダウンする。このブローダウン水とともに回収
熱の一部も排出される。残りの熱は排熱回収熱交換器7
で凝縮して2次冷却水により外部に放熱する。排熱回収
熱交換器7での回収熱量は、2次冷却水の排熱回収制御
弁8を操作することにより制御する。すなわち、排熱回
収制御弁8は、制御装置5によって、水蒸気分離器3の
圧力を圧力センサ6で検出して、その圧力が設定圧力と
なるように、圧力が高い場合には排熱回収量が多くなる
ように、圧力が低い場合には排熱回収量が少なくなるよ
うに操作される。このため、燃料電池本体1から回収し
た熱のうち、自然放熱と改質器2で利用される水蒸気の
持ち出すエネルギーとブローダウン水の持ち出すエネル
ギー以外は、2次冷却水により排熱回収熱交換器7から
外部に放熱される。
The basic structure of this embodiment and the function of each part are as follows.
This is similar to the conventional example of FIG. That is, the fuel cell body 1
Then, the hydrogen in the reformed gas obtained by reforming the fuel in the reformer 2 and the oxygen in the air perform the opposite reaction of the electrolysis of water to generate electricity. In the phosphoric acid fuel cell, the power generation reaction at this time is carried out at a temperature of about 200 [° C.], and heat is generated. In order to keep the temperature of the fuel cell body 1 constant at about 200 [° C.] and to dissipate the generated heat to the outside of the fuel cell body 1, the cell cooling water is circulated into the fuel cell body 1 by the cell cooling water circulation pump 16. ing. The heat generated by the fuel cell body 1 is recovered by converting high-temperature water in the cell cooling water system into steam. A part of the recovered heat is mixed with fuel from the steam separator 3 through the ejector 15 and sent to the reformer 2 in order to carry out the reforming reaction as steam. In addition, the reformer 2
A part of the battery cooling water is blown down to the water treatment device 14 in order to prevent the concentration of impurities in the battery cooling water due to the discharge of water vapor. A part of the recovered heat is discharged together with the blowdown water. The remaining heat is the waste heat recovery heat exchanger 7
It is condensed and is radiated to the outside by the secondary cooling water. The amount of heat recovered by the exhaust heat recovery heat exchanger 7 is controlled by operating the exhaust heat recovery control valve 8 of the secondary cooling water. That is, the exhaust heat recovery control valve 8 detects the pressure of the water vapor separator 3 with the pressure sensor 6 by the control device 5, and when the pressure is high so that the pressure becomes the set pressure, the exhaust heat recovery amount. So that the exhaust heat recovery amount decreases when the pressure is low. Therefore, of the heat recovered from the fuel cell main body 1, except for natural heat dissipation and the energy carried out by the steam used in the reformer 2 and the energy carried out by the blowdown water, the exhaust heat recovery heat exchanger uses the secondary cooling water. Heat is radiated from 7 to the outside.

【0015】ここで、排熱回収熱交換器7で排熱処理が
できない場合に、制御装置5が上記した以外の制御を行
わないと、従来例で述べたように水蒸気分離器3内の水
蒸気圧力が上昇し、そのまま発電を続けると水蒸気分離
器3に取り付けた安全弁4から水蒸気が吹き出し、発電
運転を緊急停止したりしなければならない。そこで、本
実施例では、図6の従来例とは異なる点として、インバ
ータ11を通して交流出力に変換した燃料電池の電気出
力を燃料電池電気出力制御装置12を介して出力するよ
うに接続し、この燃料電池電気出力制御装置12を制御
装置5により制御して、安全弁4が作動する前に、次に
述べるように水蒸気分離器3内の圧力が一定になるよう
燃料電池の発電量を制御する。
Here, when the exhaust heat recovery heat exchanger 7 cannot perform the exhaust heat treatment, unless the control device 5 performs the control other than the above, the steam pressure in the steam separator 3 as described in the conventional example. Rises, and if power generation is continued as it is, steam must blow off from the safety valve 4 attached to the steam separator 3, and the power generation operation must be stopped urgently. Therefore, in the present embodiment, as a point different from the conventional example of FIG. 6, the electric output of the fuel cell converted into the AC output through the inverter 11 is connected so as to be output via the fuel cell electric output control device 12. The fuel cell electric output control device 12 is controlled by the control device 5 to control the power generation amount of the fuel cell so that the pressure in the steam separator 3 becomes constant before the safety valve 4 operates, as described below.

【0016】前述したように、図5は燃料電池の外部へ
の発電量と排熱回収熱交換器7による排熱回収量の関係
を示した図である。この図に示すように、発電量が定格
の50[%]程度にると、排熱回収熱交換器での排熱回
収量が0になる(A点とする)。また、発電量をさらに
小さくすると、ある発電量からは逆に熱回収量が増加し
てくる(熱量が増加し始める点をB点とする)。従っ
て、排熱回収熱交換器7で排熱を電池冷却水系外部に捨
てることができない場合には、A点とB点の間の発電量
で運転すれば、安全弁4を作動させることなく、発電運
転を継続することができる。
As described above, FIG. 5 is a diagram showing the relationship between the amount of power generated outside the fuel cell and the amount of exhaust heat recovered by the exhaust heat recovery heat exchanger 7. As shown in this figure, when the power generation amount is about 50% of the rated value, the exhaust heat recovery amount in the exhaust heat recovery heat exchanger becomes 0 (point A). Further, when the amount of power generation is further reduced, the amount of heat recovery increases from a certain amount of power generation (point B is the point at which the amount of heat begins to increase). Therefore, when the exhaust heat recovery heat exchanger 7 cannot dissipate the exhaust heat to the outside of the battery cooling water system, if the operation is performed at the power generation amount between the points A and B, the safety valve 4 is not operated and the power generation is performed. The operation can be continued.

【0017】そこで、圧力センサ6で測定した水蒸気分
離器3内の圧力が安全弁4の作動する圧力より少し低い
圧力まで達していて、しかも排熱回収熱交換器7で排熱
処理できない場合には、圧力センサ6での測定値と水蒸
気分離器3内の設定圧力値とから制御装置5において燃
料電池負荷を演算し、この演算結果に基づいて制御装置
5から発した信号で燃料電池電気出力制御装置12によ
り燃料電池の負荷を低減させ、燃料電池本体1での発電
量を減少させ、電池本体1での発熱量と、改質器2で利
用する水蒸気のもち出す熱量やブローダウン水のもち出
す熱量や自然放熱量などの和がバランスするようにして
排熱回収熱交換器7で排熱回収する必要がない発電量で
運転する。この時、発電量を低くし過ぎると図5のB点
を超えて再び、排熱回収熱交換器7での熱回収が必要と
なり、水蒸気分離器3内の圧力が上昇してしまうので、
制御装置5で演算して得られる燃料電池負荷には下限値
を設けておく、この方法により、排熱回収熱交換器7で
排熱処理できない場合でも発電運転を持続することがで
きる。
Therefore, when the pressure in the water vapor separator 3 measured by the pressure sensor 6 has reached a pressure slightly lower than the pressure at which the safety valve 4 operates, and the exhaust heat recovery heat exchanger 7 cannot perform the exhaust heat treatment, The fuel cell load is calculated in the control device 5 from the measured value of the pressure sensor 6 and the set pressure value in the water vapor separator 3, and the fuel cell electric output control device is operated by the signal generated from the control device 5 based on the calculation result. 12, the load of the fuel cell is reduced, the amount of power generation in the fuel cell main body 1 is reduced, and the amount of heat generated in the cell main body 1 and the amount of heat generated by the steam used in the reformer 2 and the blowdown water are also generated. The exhaust heat recovery heat exchanger 7 is operated at a power generation amount that does not require exhaust heat recovery so that the sum of heat amount and natural heat dissipation amount is balanced. At this time, if the amount of power generation is made too low, point B in FIG. 5 will be exceeded and heat recovery by the exhaust heat recovery heat exchanger 7 will be required again, and the pressure in the steam separator 3 will rise.
A lower limit value is set for the fuel cell load calculated by the control device 5. By this method, the power generation operation can be continued even when the exhaust heat recovery heat exchanger 7 cannot perform the exhaust heat treatment.

【0018】図2に本発明の第2の実施例の構成を示
す。本実施例は排熱回収装置として蒸気炊き吸収式冷凍
機を使用した場合である。
FIG. 2 shows the configuration of the second embodiment of the present invention. In this embodiment, a steam cooked absorption refrigerator is used as an exhaust heat recovery device.

【0019】図において、1は燃料電池本体、2は改質
器、3は水蒸気分離器、4は安全弁、5は制御装置、5
aはその信号線、6は圧力センサ、9は水蒸気排出量制
御弁、10は吸収式冷凍機、11はインバータ、12は
燃料電池電気出力制御装置、14は水処理装置、15は
イジェクタ、16は電池冷却水循環ポンプを示す。
In the figure, 1 is a fuel cell main body, 2 is a reformer, 3 is a steam separator, 4 is a safety valve, 5 is a controller, and 5 is a controller.
a is its signal line, 6 is a pressure sensor, 9 is a steam discharge control valve, 10 is an absorption refrigerator, 11 is an inverter, 12 is a fuel cell electric output control device, 14 is a water treatment device, 15 is an ejector, 16 Indicates a battery cooling water circulation pump.

【0020】本実施例は、第1の実施例の排熱回収熱交
換器7に代えて吸収式冷凍器10を使用し、この吸収式
冷凍器10に水蒸気排出量制御弁9を介して燃料電池本
体1での熱回収で発生した電池冷却水系の水蒸気を供給
する。本実施例において、第1の実施例と同様に吸収式
冷凍機10の故障等により排熱処理できなくて、水蒸気
分離器3内の圧力が上昇し、予め設定しておいた圧力値
(安全弁4の作動するより少し低い圧力)に達した場合
には、制御装置5からの信号で燃料電池電気出力制御装
置12により燃料電池の負荷を低減して、燃料電池本体
1での発電量を減少させて、燃料電池の発熱量を少なく
する。これにより、電池冷却水系外に放熱することなく
(水蒸気排出量制御弁9を閉じたまま)発電運転を維持
することができる。
In this embodiment, an absorption refrigerating machine 10 is used in place of the exhaust heat recovery heat exchanger 7 of the first embodiment, and the absorption refrigerating machine 10 is supplied with a fuel via a steam discharge control valve 9. Water vapor of the battery cooling water system generated by heat recovery in the battery body 1 is supplied. In the present embodiment, as in the first embodiment, the exhaust heat treatment cannot be performed due to a failure of the absorption refrigerator 10, and the pressure in the steam separator 3 rises, and the preset pressure value (safety valve 4 (A little lower than the pressure at which the fuel cell operates), the load of the fuel cell is reduced by the fuel cell electric output control device 12 by the signal from the control device 5, and the amount of power generation in the fuel cell main body 1 is reduced. The heat generation of the fuel cell. As a result, the power generation operation can be maintained without radiating heat to the outside of the battery cooling water system (while keeping the steam discharge amount control valve 9 closed).

【0021】図3に本発明の第3の実施例の構成を示
す。
FIG. 3 shows the configuration of the third embodiment of the present invention.

【0022】図において、1は燃料電池本体、2は改質
器、3は水蒸気分離器、4は安全弁、5は制御装置、5
aはその信号線、6は圧力センサ、7は排燃回収熱交換
器、8は熱回収量制御弁、11はインバータ、12は燃
料電池電気出力制御装置、13は商用電源制御装置、1
4は水処理装置、15はイジェクタ、16は電池冷却水
循環ポンプ、18は商用電源を示す。
In the figure, 1 is a fuel cell main body, 2 is a reformer, 3 is a steam separator, 4 is a safety valve, 5 is a controller, and 5 is a controller.
a is its signal line, 6 is a pressure sensor, 7 is an exhaust heat recovery heat exchanger, 8 is a heat recovery amount control valve, 11 is an inverter, 12 is a fuel cell electric output control device, 13 is a commercial power supply control device, 1
Reference numeral 4 is a water treatment device, 15 is an ejector, 16 is a battery cooling water circulation pump, and 18 is a commercial power source.

【0023】本実施例は、第1の実施例と同様に排熱回
収装置として熱交換器を使用した場合であり、異なる点
は商用電源18を商用電源制御装置13を介して燃料電
池電気出力制御装置12からの燃料電池出力に接続し、
燃料電池出力と商用電源18とで連係運転を行っている
点である。
This embodiment is similar to the first embodiment in that a heat exchanger is used as an exhaust heat recovery device. The difference is that the commercial power source 18 outputs the fuel cell electrical output via the commercial power source controller 13. Connect to the fuel cell output from the controller 12,
The point is that the fuel cell output and the commercial power supply 18 are operating in coordination.

【0024】ここで、排熱回収熱交換器7で排熱回収が
できなくて、水蒸気分離器3内の温度が上昇した場合に
は、圧力センサ6の検出値と水蒸気分離器3の圧力設定
値に基づいて、制御装置5で、燃料電池側および商用電
源18側の負荷分担量を演算し、制御装置5からの信号
で、燃料電池出力制御装置12において燃料電池側の負
荷量を減少させ、商用電源制御装置13において商用電
源18側の負荷量を増加させることで、燃料電池本体1
での発電量を減少させ、燃料電池本体1での発熱量と、
改質器2で利用する水蒸気のもち出す熱量やブローダウ
ン水のもち出す熱量や自然放熱量などの和がバランスす
るようにして、排熱回収熱交換器7で排熱回収する必要
がない発電量で運転する。この時、制御装置5で演算し
て得られる燃料電池負荷分担量には下限値を設けておく
点は第1の実施例と同様である。この本実施例の方法で
は、商用電源18との連系運転を行っているので、排熱
回収熱交換器7から排熱を放出できなくて燃料電池での
発電量を減少させた場合に、その減少分だけ商用電源1
8の負荷分担量を増加させて、外部での電気使用量を一
定に保つように制御することができる。
Here, when the exhaust heat recovery heat exchanger 7 cannot recover the exhaust heat and the temperature inside the steam separator 3 rises, the detected value of the pressure sensor 6 and the pressure setting of the steam separator 3 are set. Based on the value, the control device 5 calculates the load sharing amount on the fuel cell side and the commercial power supply 18 side, and the signal from the control device 5 causes the fuel cell output control device 12 to reduce the load amount on the fuel cell side. By increasing the load on the commercial power supply 18 side in the commercial power supply control device 13,
The amount of heat generated in the fuel cell main body 1,
Power generation that does not need to recover exhaust heat in the exhaust heat recovery heat exchanger 7 by balancing the amounts of heat generated by the steam used in the reformer 2, the heat generated by blowdown water, and the natural heat dissipation. Drive in quantity. At this time, the lower limit value is set for the fuel cell load sharing amount calculated by the control device 5 as in the first embodiment. In the method of this embodiment, since the interconnection operation with the commercial power source 18 is performed, when the exhaust heat cannot be released from the exhaust heat recovery heat exchanger 7 and the power generation amount in the fuel cell is reduced, Commercial power source 1
It is possible to increase the load sharing amount of No. 8 and control so as to keep the amount of electricity used outside constant.

【0025】図4に本発明の第4の実施例の構成を示
す。
FIG. 4 shows the configuration of the fourth embodiment of the present invention.

【0026】図において、1は燃料電池本体、2は改質
器、3は水蒸気分離器、4は安全弁、5は制御装置、5
aは信号線、6は圧力センサ、9は水蒸気排出量制御
弁、10は吸収式冷凍機、11はインバータ、12は燃
料電池電気出力制御装置、13は商用電源制御装置、1
4は水処理装置、15はイジェクタ、16は電池冷却水
循環ポンプ、18は商用電源を示す。
In the figure, 1 is a fuel cell main body, 2 is a reformer, 3 is a water vapor separator, 4 is a safety valve, 5 is a controller, and 5 is a controller.
a is a signal line, 6 is a pressure sensor, 9 is a steam discharge control valve, 10 is an absorption refrigerator, 11 is an inverter, 12 is a fuel cell electric output control device, 13 is a commercial power supply control device, 1
Reference numeral 4 is a water treatment device, 15 is an ejector, 16 is a battery cooling water circulation pump, and 18 is a commercial power source.

【0027】本実施例は、第2の実施例と同様に排熱回
収装置として吸収式冷凍機10を使用した場合におい
て、第3の実施例の燃料電池出力と商用電源18とで連
系運転を行っている例である。本実施例では、第3の実
施例と同様に商用電源18との連系運転を行っているの
で、吸収式冷凍機10への放熱ができなくて燃料電池で
の発電量を減少させた場合に、その減少分だけ商用電源
18の負荷分担量を増加させて、外部での電気使用量を
一定に保つように制御することができる。
In the present embodiment, as in the second embodiment, when the absorption refrigerator 10 is used as the exhaust heat recovery device, the fuel cell output of the third embodiment and the commercial power supply 18 are interconnected. It is an example of performing. In the present embodiment, since the interconnection operation with the commercial power source 18 is performed as in the third embodiment, when the heat dissipation to the absorption refrigerator 10 cannot be performed and the power generation amount in the fuel cell is reduced. In addition, the load sharing amount of the commercial power source 18 can be increased by the decrease amount, and control can be performed so as to keep the amount of electricity used outside constant.

【0028】なお、上記実施例では、排熱回収装置につ
いて、排熱回収が完全に停止した状態を想定して説明し
たが、排熱回収能力がかなり低下した状態ではあるが稼
働している状態など何らかの原因で排熱処理能力が低下
した場合においても、図5の特性図に沿って発電量を変
化させて適用し得ることは自明であり、安全弁が作動し
ないように発電運転を安全に継続させることができる。
このように、本発明は、その主旨に沿って種々に応用さ
れ、種々の実施態様を取り得るものである。
In the above embodiment, the exhaust heat recovery apparatus has been described on the assumption that exhaust heat recovery is completely stopped. However, the exhaust heat recovery apparatus is in an operating state although the exhaust heat recovery capability is considerably lowered. Even if the exhaust heat treatment capacity is lowered due to some reason, it is obvious that the power generation amount can be changed according to the characteristic diagram of FIG. 5, and the power generation operation can be safely continued so that the safety valve does not operate. be able to.
As described above, the present invention can be applied in various ways in accordance with the gist thereof and can take various embodiments.

【0029】[0029]

【発明の効果】以上の説明で明らかなように、本発明の
燃料電池によれば、排熱処理装置により外部に放熱でき
ない場合でも、燃料電池を緊急停止することなく、電力
供給を引続き行える。従って、燃料電池セルの劣化を防
止することができ長寿命化の効果が得られるとともに、
電力供給系全体の信頼性向上の効果も得られる。
As is apparent from the above description, according to the fuel cell of the present invention, even if the heat dissipating apparatus cannot dissipate heat to the outside, the power supply can be continued without stopping the fuel cell in an emergency. Therefore, it is possible to prevent the deterioration of the fuel cell unit and obtain the effect of extending the life, and
The effect of improving the reliability of the entire power supply system can also be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す構成図FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す構成図FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す構成図FIG. 3 is a configuration diagram showing a third embodiment of the present invention.

【図4】本発明の第4の実施例を示す構成図FIG. 4 is a configuration diagram showing a fourth embodiment of the present invention.

【図5】燃料電池における発電量と排熱回収量との関係
を示す図
FIG. 5 is a diagram showing a relationship between a power generation amount and an exhaust heat recovery amount in a fuel cell.

【図6】従来例の燃料電池の構成図FIG. 6 is a configuration diagram of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

1…燃料電池本体 2…改質器 3…水蒸気分離器 4…安全弁 5…制御装置 6…圧力センサ 7…排燃回収熱交換器 8…熱回収量制御弁 9…水蒸気排出量制御弁 10…吸収式冷凍機 11…インバータ 12…燃料電池電気出力制御装置 13…商用電源制御装置 14…水処理装置 18…商用電源 1 ... Fuel cell main body 2 ... Reformer 3 ... Steam separator 4 ... Safety valve 5 ... Control device 6 ... Pressure sensor 7 ... Exhaust fuel recovery heat exchanger 8 ... Heat recovery amount control valve 9 ... Steam exhaust amount control valve 10 ... Absorption refrigerator 11 ... Inverter 12 ... Fuel cell electric output control device 13 ... Commercial power supply control device 14 ... Water treatment device 18 ... Commercial power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安達 博 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 田村 豊一 東京都港区海岸1丁目5番20号 東京瓦斯 株式会社内 (72)発明者 西崎 邦博 東京都港区海岸1丁目5番20号 東京瓦斯 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroshi Adachi 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Toyoichi Tamura 1-5-20 Kaigan, Minato-ku, Tokyo No. Tokyo Gas Co., Ltd. (72) Inventor Kunihiro Nishizaki 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素と酸素とを入力して発電を行うとと
もに熱を発する燃料電池本体と、前記燃料電池本体を冷
却する電池冷却水と、前記電池冷却水中の水蒸気を分離
する水蒸気分離器と、前記水蒸気分離器内の圧力を測定
する圧力センサと、前記燃料電池本体での反応温度を一
定に保つために前記測定した圧力が一定になるように前
記発電の時に発する熱を電池冷却水系外部に排出する排
熱処理装置とを具備した燃料電池において、 前記排熱処理装置による前記水蒸気分離器内の圧力の制
御と並行してまたは切り換えて、前記燃料電池の発電量
を変化させることにより該水蒸気分離器内の圧力を一定
に制御する制御装置を具備することを特徴とする燃料電
池。
1. A fuel cell main body that inputs hydrogen and oxygen to generate electricity and generate heat, a cell cooling water that cools the fuel cell main body, and a water vapor separator that separates water vapor in the cell cooling water. A pressure sensor for measuring the pressure in the water vapor separator, and a heat generated during the power generation so that the measured pressure becomes constant in order to keep the reaction temperature in the fuel cell main body constant outside the cell cooling water system. In the fuel cell having an exhaust heat treatment device for discharging the steam, the steam separation is performed by changing the power generation amount of the fuel cell in parallel with or switching the control of the pressure in the steam separator by the exhaust heat treatment device. A fuel cell comprising a control device for controlling the pressure inside the container to a constant value.
【請求項2】 水素と酸素とを入力して発電を行うとと
もに熱を発する燃料電池本体と、前記燃料電池本体を冷
却する電池冷却水と、前記電池冷却水中の水蒸気を分離
する水蒸気分離器と、前記水蒸気分離器内の圧力を測定
する圧力センサと、前記燃料電池本体での反応温度を一
定に保つために前記測定した圧力が一定になるように前
記発電の時に発する熱を電池冷却水系外部に排出する排
熱処理装置とを具備した燃料電池において、 前記排熱処理装置で排熱処理しない、あるいは、できな
いために前記水蒸気分離器圧力が上昇したことを前記圧
力センサで検出した場合に、前記燃料電池の発電量を所
定の値に減少させることで、前記燃料電池本体からの発
熱量を減少させて該水蒸気分離器圧力を設定値に戻すよ
うに制御する制御装置を具備することを特徴とする燃料
電池。
2. A fuel cell main body that inputs hydrogen and oxygen to generate power and generate heat, a cell cooling water that cools the fuel cell main body, and a water vapor separator that separates water vapor in the cell cooling water. A pressure sensor for measuring the pressure in the water vapor separator, and a heat generated during the power generation so that the measured pressure becomes constant in order to keep the reaction temperature in the fuel cell main body constant outside the cell cooling water system. In the fuel cell provided with the exhaust heat treatment apparatus for discharging to the fuel cell, the fuel cell is detected when the pressure sensor detects that the steam separator pressure has risen because the exhaust heat treatment apparatus does not or cannot perform the exhaust heat treatment. A control device for reducing the amount of heat generated from the fuel cell main body to reduce the amount of power generation of the water vapor separator to a predetermined value and returning the steam separator pressure to a set value. Fuel cell and said Rukoto.
【請求項3】 水素と酸素とを入力して発電を行うとと
もに熱を発する燃料電池本体と、前記燃料電池本体を冷
却する電池冷却水と、前記電池冷却水中の水蒸気を分離
する水蒸気分離器と、前記水蒸気分離器内の圧力を測定
する圧力センサと、前記燃料電池本体での反応温度を一
定に保つために前記測定した圧力が一定になるように前
記発電の時に発する熱を電池冷却水系外部に排出する排
熱処理装置とを具備した燃料電池において、 商用電源と連系運転中に、前記排熱処理装置で排熱処理
しない、あるいは、できないために前記水蒸気分離器圧
力が上昇したことを前記圧力センサで検出した場合に、
燃料電池の負荷分担量を減少させ、該商用電源の負荷分
担量を増加させることで、前記燃料電池本体からの発電
量を所定の値に減少させて該燃料電池本体からの発熱量
を減少させ、該水蒸気分離器圧力を設定値に戻すように
制御する制御装置を具備することを特徴とする燃料電
池。
3. A fuel cell main body that inputs hydrogen and oxygen to generate power and generate heat, a cell cooling water that cools the fuel cell main body, and a water vapor separator that separates water vapor in the cell cooling water. A pressure sensor for measuring the pressure in the water vapor separator, and a heat generated during the power generation so that the measured pressure becomes constant in order to keep the reaction temperature in the fuel cell main body constant outside the cell cooling water system. In a fuel cell equipped with an exhaust heat treatment device that discharges into the fuel cell, the pressure sensor indicates that the steam separator pressure has risen because the exhaust heat treatment device does not or cannot perform the exhaust heat treatment during the interconnection operation with the commercial power source. When detected by
By reducing the load sharing amount of the fuel cell and increasing the load sharing amount of the commercial power source, the power generation amount from the fuel cell body is reduced to a predetermined value and the heat generation amount from the fuel cell body is reduced. A fuel cell comprising a controller for controlling the pressure of the water vapor separator to return to a set value.
JP4241111A 1992-09-10 1992-09-10 Fuel cell Pending JPH0689732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4241111A JPH0689732A (en) 1992-09-10 1992-09-10 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4241111A JPH0689732A (en) 1992-09-10 1992-09-10 Fuel cell

Publications (1)

Publication Number Publication Date
JPH0689732A true JPH0689732A (en) 1994-03-29

Family

ID=17069453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4241111A Pending JPH0689732A (en) 1992-09-10 1992-09-10 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0689732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083622A (en) * 2000-09-06 2002-03-22 Denso Corp Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083622A (en) * 2000-09-06 2002-03-22 Denso Corp Fuel cell system

Similar Documents

Publication Publication Date Title
EP1434702B1 (en) Fuel cell control system and method
JP2007250374A (en) Fuel cell system
JP4685518B2 (en) Waste heat power generation equipment
KR100641126B1 (en) Extinguishing system for fuel cell
KR20070022561A (en) System for protecting freezing of fuel cell
KR102182798B1 (en) Direct current (DC) load leveler
JP2006294458A (en) Fuel cell system
JP5799766B2 (en) Fuel cell system
KR20070085877A (en) Purging water with reactant air pump powered by operation fuel cell system during shutdown
JPH0689732A (en) Fuel cell
KR20060068172A (en) Air cooling system of fuel cell
JP2008312330A (en) Waste heat power generating apparatus and operation method for the waste heat power generating apparatus
JP2674867B2 (en) Fuel cell generator
CN210985724U (en) Metal fuel new forms of energy emergency power source car
JP2002141091A (en) Control device of fuel cell power supply
JPS60208067A (en) Fuel cell power generating system
JPH06140066A (en) Fuel cell power generating system
JPH11303611A (en) Steam turbine operation method for coke dry quenching plant
JP2000208160A (en) Fuel cell system and water collection method
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
JP2005166497A (en) Fuel cell system
JPH0626131B2 (en) Load control device for fuel cell system
JP4304829B2 (en) Operation method of fuel cell power generator
JP4645017B2 (en) Fuel cell power generation system
JPH06295735A (en) Fuel cell power generation system