WO2023166830A1 - 自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラム、自動車の車体骨格部品における荷重伝達部材の製造方法 - Google Patents

自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラム、自動車の車体骨格部品における荷重伝達部材の製造方法 Download PDF

Info

Publication number
WO2023166830A1
WO2023166830A1 PCT/JP2022/047586 JP2022047586W WO2023166830A1 WO 2023166830 A1 WO2023166830 A1 WO 2023166830A1 JP 2022047586 W JP2022047586 W JP 2022047586W WO 2023166830 A1 WO2023166830 A1 WO 2023166830A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
vehicle body
optimization
analysis
optimization analysis
Prior art date
Application number
PCT/JP2022/047586
Other languages
English (en)
French (fr)
Inventor
遼 揚場
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020247026681A priority Critical patent/KR20240128107A/ko
Publication of WO2023166830A1 publication Critical patent/WO2023166830A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is an optimal load transmission structure that distributes the crashworthiness load input to the body frame parts during an automobile collision and transmits it to multiple load bearing members.
  • the present invention relates to an optimization analysis method, apparatus and program for a load transfer structure in an automobile body frame part for obtaining a load transfer structure, and a method for manufacturing a load transfer member in an automobile body frame part.
  • the percentage of electric vehicles (battery powered vehicles) in global car sales is expected to increase rapidly in the future.
  • the features of the body structure of electric vehicles that differ greatly from conventional engine vehicles (gasoline engine cars) include the installation of a large-capacity battery and its protective structure.
  • the side impact test of automobiles is an item for evaluating occupant injuries in many car assessments. In the side collision test of electric vehicles, the collision load input to the vehicle from the pole is concentrated load, and the distance from the position where the pole collides to the battery is short. However, it can be said that it is a particularly severe crash test.
  • FIG. 8 shows a vehicle body 100 of an electric vehicle in which a battery 101 is installed in a battery case 103 comprising an upper battery case 103a and a lower battery case 103b.
  • the vehicle body 100 has side sills 105, floor cross members 107, and battery case fixing parts 109, as shown in FIG.
  • the side sill 105 serves as a crashworthiness energy absorption part (hereinafter also referred to as an EA part) that absorbs collision energy when the pole 200 collides from the outside in the width direction of the vehicle body and a collision load is input.
  • EA part crashworthiness energy absorption part
  • These multiple load-bearing parts are arranged so as to abut on the side sill 105, and provide a load transfer path for distributing the collision load input to the side sill from the collision load input portion of the side sill to the load-bearing parts.
  • a load transfer path for distributing the collision load input to the side sill from the collision load input portion of the side sill to the load-bearing parts.
  • This load transmission structure must be a high-strength structure that can sufficiently absorb the impact energy from the outside, while the load transmitted to the load-bearing parts (hereinafter referred to as "transferred load”) must be It must be less than the loading capacity of each load-bearing part. In order to satisfy this condition, it is important for the side sill 105 having a load-transmitting structure to properly distribute the transmitted load to each load-bearing component.
  • the restraining positions of the automotive body model and multiple input loads and their input positions are set as crashworthiness analysis conditions and set. It is possible to find the optimum shape of the body frame parts, etc., that achieves the target conditions with respect to a plurality of input loads. Examples of target conditions include minimum strain energy, minimum stress, and maximum absorbed energy.
  • target conditions include minimum strain energy, minimum stress, and maximum absorbed energy.
  • the combination of the constraint condition and the target condition shown in Patent Document 1 when a collision load is input to a vehicle body provided with a vehicle body frame part and a load-bearing part, a plurality of load-bearing parts are separated from the body frame part. The size and distribution of the load transmitted to are not guaranteed. In particular, in the vehicle body 100 of the electric vehicle shown in FIG.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an optimum load transmission structure for distributing the collision load input to the body frame parts at the time of an automobile collision and transmitting it to a plurality of load-bearing parts.
  • the object is to provide an optimization analysis method, apparatus, and program for a load transmission structure in an automobile body frame part, and a method for manufacturing a load transmission part in the automobile body frame part.
  • the load in the direction opposite to the input direction of the acting collision load (hereinafter referred to as reaction force) is the same magnitude even if the direction in which the load acts is opposite. , the total reaction force from each load-bearing part is equal to the collision load input to the body frame part.
  • the reaction force acting in the direction opposite to the input direction of the collision load from each load-bearing part is We paid attention to the point that it is also a load transmission structure that transmits the collision load in the opposite direction to the body frame parts that input it.
  • the magnitude and distribution of the load transmitted to each load-bearing part which should be guaranteed, is reinterpreted as the magnitude and distribution of the reaction force of each load-bearing part, and the sum of the reaction forces of each load-bearing part is input to the body frame parts.
  • Appropriately distributed reaction force is transmitted from each load-bearing part in the direction opposite to the input direction of the collision load to the body frame parts to which the collision load is applied.
  • the present invention is based on such findings, and specifically has the following configuration.
  • An optimization analysis method for a load transmission structure in a vehicle body frame part of an automobile distributes a collision load input to the vehicle body frame part at the time of a collision of an automobile comprising a vehicle body frame part and a plurality of load-bearing parts.
  • a computer performs the following steps to obtain an optimum load transmission structure for transmitting the load to the plurality of load-bearing parts, wherein the vehicle body frame part and the load-bearing part are planar elements (two-dimensional A vehicle body model acquisition step of acquiring a vehicle body model of all or part of the vehicle modeled with elements and/or three-dimensional elements, and the load transmission structure in the vehicle body model can be arranged A design space setting process for setting a region as a design space, and an optimization block model for generating an optimization block model that is modeled with three-dimensional elements in the set design space and performs optimization analysis processing.
  • the load is transmitted to each of the impact load input portion and the plurality of load-bearing parts to the portion to which the impact load is input in the vehicle body frame part of the optimized analysis model.
  • a load condition that is set as the reaction force of the collision load for each of them and is used as an input load to the optimization analysis model; a constraint condition that constrains the displacement of the collision load input part; and a predetermined objective function as the optimization analysis conditions for the optimization analysis in the optimization analysis step, and if the displacements of the plurality of load transmission parts are equal and an optimization analysis condition setting step for setting the constraints.
  • the volume constraint ratio of the optimization block model is set to a predetermined value within the range of 3% or more and 7% or less of the volume of the entire design space. It is preferable to set the following and perform optimization analysis using the densimetry of topology optimization in the optimization analysis step.
  • the vehicle body frame component is a side sill disposed on the side of the vehicle and extending in the longitudinal direction of the vehicle, and the load-bearing component is a battery that connects a battery case disposed under the vehicle to the side sill.
  • the car body model is used as the case fixing part and the floor cross member, and side collision analysis is performed in which the pole collides with the side sill from the outside in the car body width direction in the car body model.
  • the transmission load determination step preferably determines the collision load to be input to the vehicle body frame component and the transmission load to the load-bearing component.
  • a method for manufacturing a load transmission member in a vehicle body frame part according to the present invention uses the load transmission structure optimization analysis method for a vehicle body frame part according to the present invention to determine the structure of the load transmission member of the vehicle body frame part. determining the shape of the load transmission member based on the determined structure of the load transmission member; and manufacturing the load transmission member according to the determined shape.
  • An optimization analysis apparatus for a load transmission structure in a body frame part of an automobile distributes a collision load input to the body frame part in a collision test of an automobile comprising a body frame part and a plurality of load-bearing parts. and the load-bearing parts are modeled by planar elements and/or three-dimensional elements.
  • a vehicle body model acquisition unit that acquires a part of the vehicle body model, a design space setting unit that sets a design space in the area where the load transmission structure is arranged in the vehicle body model, and a three-dimensional element in the set design space an optimization block model generation unit that generates an optimization block model that is modeled in and performs analysis processing for optimizing the load transmission structure; and an optimization analysis that combines the generated optimization block model with the vehicle body model.
  • a combination processing unit that generates a model, an analysis condition setting unit that sets analysis conditions for performing the optimization analysis processing, and an optimization unit that determines the optimum structure of the optimization block model under the set analysis conditions.
  • an optimization analysis unit that performs an optimization analysis, wherein the analysis condition setting unit assigns a collision load input portion to a portion to which the collision load is input in the optimization analysis model, and applies a load to each of the plurality of load-bearing parts.
  • a collision load input part and a load transmission part setting unit for setting a load transmission part as a part to be transmitted in the optimization analysis model, and the optimization analysis model so that the load is equal to or less than the load capacity of each of the plurality of load bearing parts.
  • a load-bearing part transmission load determination unit that determines the transmission load at the load-transmitting part of each load-bearing part by allocating the collision load input to the load-bearing part, and a reaction force of the collision load for each of the plurality of load-transmitting parts
  • Load constraint condition setting for setting a load condition that sets the transmission load to each load-bearing part as an input load to the optimization analysis model, and a constraint condition that constrains the displacement of the collision load input part and an optimization analysis condition for setting, as optimization analysis conditions for the optimization analysis performed in the optimization analysis unit, a predetermined objective function and a constraint condition that the displacements of the plurality of load transmission parts are equal.
  • the optimization analysis condition setting unit further sets the volume constraint rate of the optimization block model as the constraint condition within a range of 3% or more and 7% or less of the entire design space, and the optimization analysis unit Optimization analysis using the density method of topology optimization should be performed.
  • An optimization analysis program for a load transmission structure in a body frame part of an automobile distributes a collision load input to the body frame part in a collision test of an automobile comprising the body frame part and a plurality of load-bearing parts. and the load-bearing parts are modeled by plane elements and/or three-dimensional elements.
  • a vehicle body model acquisition unit that acquires a vehicle body model of all or part of an automobile, a design space setting unit that sets a design space in an area of the vehicle body model in which the load transmission structure is arranged, and the set design space.
  • an optimization block model generation unit that generates an optimization block model that is modeled with three-dimensional elements and performs analysis processing for optimizing the load transmission structure;
  • a coupling processing unit that generates an optimization analysis model, an analysis condition setting unit that sets analysis conditions for performing the optimization analysis processing, and an optimal structure of the optimization block model under the set analysis conditions. and a function to be executed as an optimization analysis unit that performs an optimization analysis for obtaining the
  • a collision load input part and load transmission part setting unit that sets a load transmission part as a part that transmits a load to each of the load parts in the optimization analysis model, and a load that is equal to or less than the withstand load of each of the plurality of load bearing parts.
  • a load-bearing part transmission load determining unit that determines the transmission load at the load-transmitting part of each of the load-bearing parts by distributing the collision load input to the optimization analysis model as follows; a load condition that sets the transmission load to each of the load-bearing parts as the reaction force of the collision load and is used as the input load to the optimized analysis model; a constraint condition that restrains the displacement of the collision load input part; a load constraint condition setting unit that sets a predetermined objective function as optimization analysis conditions for the optimization analysis performed in the optimization analysis unit; function as an optimization analysis condition setting unit that sets the
  • the optimization analysis condition setting unit further sets the volume constraint rate of the optimization block model as the constraint condition within a range of 3% or more and 7% or less of the entire design space, and the optimization analysis unit Optimization analysis using the density method of topology optimization should be performed.
  • a load condition in which a transmission load equal to or less than the withstand load of each load-bearing part is input as a reaction force of a collision load to a plurality of load-transmitting parts of a vehicle body frame part, and a collision load input part of the vehicle body frame part.
  • a constraint condition that constrains the displacement and a constraint condition that equalizes the displacements of a plurality of load transmission parts are set as analysis conditions, and an optimization analysis is performed to find the optimum load transmission structure.
  • the optimum load transmission structure is determined using the above optimization analysis, the shape of the load transmission member is determined based on the determined optimum load transmission structure, and the determined shape of the load transmission member A load transmission member is manufactured according to As a result, it is possible to manufacture a load transmission member capable of appropriately distributing the load transmitted from the vehicle body frame component to the plurality of load-bearing components.
  • FIG. 1 is a block diagram of an optimization analysis apparatus for a load transmission structure in a vehicle body frame part of an automobile according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a design space set for a vehicle body model and an optimized block model generated in the design space in Embodiment 1 of the present invention.
  • FIG. 3 is a diagram illustrating load conditions and constraint conditions set in the optimization analysis model as invention examples in Embodiment 1 and Example of the present invention ((a) Perspective view (vehicle interior), ( b) Perspective view (vehicle exterior)).
  • FIG. 4A and 4B are diagrams showing an optimum structure of a load transmission structure in a side sill as an invention example in Embodiment 1 and Example of the present invention ((a) perspective view, (b) cross-sectional view).
  • FIG. 5 is a flowchart showing the flow of processing of the optimization analysis method for the load transmission structure in the vehicle body frame part of the automobile according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram for explaining load conditions and restraint conditions set in the optimization analysis model as a comparative example in the embodiment ((a) perspective view (vehicle interior), (b) perspective view (vehicle exterior) ).
  • FIG. 5 is a flowchart showing the flow of processing of the optimization analysis method for the load transmission structure in the vehicle body frame part of the automobile according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram for explaining load conditions and restraint conditions set in the optimization analysis model as a comparative example in the embodiment ((a) perspective view (ve
  • FIG. 7 is a diagram showing a comparative example of the optimum structure of the load transmission structure in the side sill in the example ((a) perspective view, (b) cross-sectional view).
  • FIG. 8 is a diagram showing an example of a vehicle body of an electric vehicle.
  • FIG. 9 is a diagram illustrating a side impact test in which the pole collides with the vehicle body from the outside in the width direction of the vehicle body.
  • the body of an automobile which is the object of the present invention, will be described.
  • the X direction, the Y direction and the Z direction indicate the longitudinal direction of the vehicle body, the width direction of the vehicle body and the vertical direction of the vehicle body, respectively.
  • the present invention is directed to a vehicle body 100 including side sills 105, which are vehicle body frame parts, floor cross members 107, which are load-bearing parts, and battery case fixing parts 109.
  • the body frame parts are the body parts that make up the body frame.
  • the side sills 105 are vehicle body frame parts that are arranged on both sides in the width direction of the vehicle body so as to extend in the longitudinal direction of the vehicle body. As shown in FIG. 9, upper end portions and lower end portions of a side sill inner 105a and a side sill outer 105b having a hat cross-sectional shape are joined to each other so that the opening sides face each other to form a closed cross-sectional space.
  • the load-bearing parts are parts that are not allowed to deform in order to prevent the collision load input to the vehicle body from being input to other vehicle body parts as they are.
  • the battery case 103 is fixed by connecting two floor cross members 107a and 107b arranged in the longitudinal direction of the vehicle body and abutting on the side sill inner 105a to the lower part of the battery case 103 (battery case lower 103b) and the side sill inner 105a.
  • a battery case fixing component 109 used for the battery case is provided.
  • the side sill 105, the floor cross member 107, and the battery case fixing part 109 are modeled using planar elements and/or three-dimensional elements, and modeled element information and the like are stored in the vehicle body model file 31 (see FIG. 1) described later. You can store it.
  • load transmission structure optimization analysis method the optimization analysis method, apparatus, and program for the load transmission structure in the vehicle body frame part of the automobile according to the present invention
  • load transmission structure optimization analysis method the optimization analysis method, apparatus, and program for the load transmission structure in the vehicle body frame part of the automobile according to the present invention
  • a load transmission structure optimization analysis device 1 distributes a collision load input to a vehicle body frame part at the time of a collision of an automobile comprising a vehicle body frame part and a plurality of load-bearing parts, and divides the load into a plurality of load-bearing parts. It seeks the optimum load transmission structure to transmit to the load-bearing parts.
  • the load transfer structure optimization analysis device 1 is configured by a PC (personal computer) or the like, and includes a display device 3, an input device 5, and a memory storage device.
  • the display device 3, the input device 5, the storage device 7, and the working data memory 9 are connected to the arithmetic processing section 11, and their respective functions are executed by commands from the arithmetic processing section 11.
  • FIG. Hereinafter, each configuration of the load transmission structure optimization analysis device 1 according to the present embodiment will be described.
  • the display device 3 is used to display analysis results, etc., and is composed of a liquid crystal monitor (LCD monitor) or the like.
  • the input device 5 is used for instructing display of the vehicle body model file 31 and inputting conditions by the operator, and is composed of a keyboard, a mouse, and the like.
  • the storage device 7 is used for storing various files such as the vehicle body model file 31, and is composed of a hard disk or the like.
  • the working data memory 9 is used for temporary storage and calculation of data used by the arithmetic processing unit 11, and is composed of a RAM (Random Access Memory) or the like.
  • the arithmetic processing unit 11 includes a vehicle body model acquiring unit 13, a design space setting unit 15, an optimized block model generating unit 17, a coupling processing unit 19, an analysis condition setting unit 21, an optimal It has a transformation analysis unit 23 and is configured by a CPU (central processing unit) such as a PC.
  • a CPU central processing unit
  • Each of these units functions when the CPU executes a predetermined program. Functions of the above-described units in the arithmetic processing unit 11 will be described below.
  • the vehicle body model acquisition unit 13 acquires a vehicle body model of all or part of an automobile in which the vehicle body frame parts and load-bearing parts are modeled by plane elements and/or three-dimensional elements.
  • the vehicle body model acquiring unit 13 includes a side sill 105 that is a vehicle body frame component, a floor cross member 107 that is a load bearing component, and a battery case fixing component 109 as plane elements.
  • a body model 110 of a portion of a modeled automobile is obtained.
  • the design space setting unit 15 sets an area in which the load transmission structure can be arranged in the vehicle body model as a design space.
  • the design space setting unit 15 defines a region in the vehicle body model 110 in which the load transmission structure can be arranged, as shown in FIG. A design space 111 is set up.
  • the optimization block model generation unit 17 generates an optimization block model that is modeled with three-dimensional elements in the design space set by the design space setting unit 15 and subjected to optimization analysis processing.
  • the optimized block model generating section 17 generates an optimized block model 113 in the design space 111 set by the design space setting section 15, as shown in FIG.
  • the combination processing unit 19 combines the optimized block model generated by the optimized block model generation unit 17 with the vehicle body model to generate an optimized analysis model.
  • the coupling processing unit 19 couples the optimization block model 113 to the side sill 105 in the vehicle body model 110 (see FIG. 9) to generate the optimization analysis model 120.
  • FIG. 1 In the optimization analysis model 120 shown in FIG. 2, the display of the floor cross member 107 and the battery case fixing part 109, which are load-bearing parts, is omitted.
  • the analysis condition setting unit 21 sets analysis conditions for optimization analysis processing, and as shown in FIG. It has a section 21b, a load constraint condition setting section 21c, and an optimization analysis condition setting section 21d.
  • the collision load input part and load transmission part setting unit 21a selects a collision load input part to which a collision load is input in the vehicle body frame part of the optimization analysis model, and a vehicle body frame part that transmits the load to each of a plurality of load-bearing parts.
  • a plurality of load transmission parts are set in the part in.
  • a side collision in which the pole 200 collides with the side sill 105 on the outside in the vehicle width direction is targeted. Therefore, as shown in FIG.
  • the collision load input part and load transmission part setting unit 21a sets the collision load input part 121 to the part to which the collision load is input in the side sill 105 of the optimization analysis model 120, and the load resistance from the side sill 105.
  • a plurality of (three) load transmission portions 123 are set at portions where the load is transmitted to the floor cross member 107 and the battery case fixing member 109 which are load components.
  • the load-bearing part transmission load determining unit 21b distributes the collision load to be input to the optimization analysis model below the load-bearing load of a plurality of load-bearing parts, and determines the transmission load to the load-bearing parts at each load-transmitting part. be.
  • the transmission load should be determined by the placement and strength of each load-bearing part. What is important in determining the transmitted load is not its absolute value but its distribution, and the sum of the transmitted loads set to a plurality of load transmitting parts is distributed so as to be equal to the collision load input to the vehicle body frame parts. Further, the collision load to be input to the vehicle body frame part can be set as appropriate, but it is preferable to obtain the collision load by performing a collision analysis for the side collision test shown in FIG. 9, for example.
  • load-bearing part transmission load determination unit 21b distributes the collision load input to optimization analysis model 120 to the load-bearing load of floor cross member 107 and battery case fixing part 109 or less. Then, the transmission load at the load transmission portions 123a and 123b that transmit the load to the two floor cross members 107 is determined to be 200 kN, and the transmission load at the load transmission portion 123c of the battery case fixing member 109 is determined to be 300 kN.
  • the load constraint condition setting section 21c sets the transmission load to the load-bearing parts determined by the load-bearing part transmission load determination section 21b as the reaction force of the collision load for each of the load-bearing parts, and adds the load to the optimized analysis model. and a constraint condition that constrains the displacement of the collision load input portion.
  • the load constraint condition setting unit 21c impinges the transmission loads (200 kN, 200 kN and 300 kN) to the floor cross member 107 and the battery case fixing part 109 against the load transmission parts 123a, 123b and 123c.
  • a load condition that is set as a reaction force of the load (700 kN) to be an input load to the optimization analysis model 120 and a constraint condition that restricts the displacement of the collision load input portion 121 are set.
  • Setting the transmission load as a reaction force of the collision load to the load transmission portion means setting the transmission load to act on the load transmission portion in a direction opposite to the input direction of the collision load.
  • the optimization analysis condition setting unit 21d sets, as optimization analysis conditions for optimization analysis, a predetermined objective function and a constraint condition that the displacements of a plurality of load transmission parts are equal.
  • the objective function is set according to the optimization objective. For example, mass minimization, compliance minimization (stiffness maximization), displacement minimization displacement minimization, etc.
  • the minimization of the displacement of the load transmitting portion 123 is set as the objective function.
  • Constraints on the other hand, impose some restrictions on optimization, and in the present invention, as described above, the displacements of multiple load transmission parts are assumed to be equal. Multiple constraints can be set. Then, the volume constraint rate of the optimized block model (the ratio of the volume of the optimized block model remaining after the optimization process to the volume of the design space) is set to a predetermined value within the range of 3% to 7% of the volume of the entire design space. It is preferable to further set a constraint condition that is equal to or less than the value of .
  • the optimization analysis unit 23 is a step of performing optimization analysis for obtaining the optimum structure of the optimized block model under the analysis conditions set by the analysis condition setting unit 21 .
  • the optimization analysis unit 23 causes the optimization analysis model 120 generated by the combination processing unit 19 to combine the optimization block model 113 and the vehicle body model 110 into Under the set load conditions, constraint conditions, and optimization analysis conditions (objective function, constraint conditions), optimization analysis is performed with the optimization block model 113 as the analysis target for optimization, and the optimization of the optimization block model 113 is performed. structure. Then, the optimum structure of the optimized block model 113 is obtained as the optimum load transmission structure for transmitting the load to the plurality of load-bearing parts.
  • topology optimization can be applied to the optimization analysis by the optimization analysis unit 23. Then, if there are many intermediate densities when using the density method in topology optimization, it is preferable to discretize by giving a penalty coefficient as an optimized parameter. Note that the value of the penalty coefficient can be set as appropriate.
  • FIG. 4 shows the result of obtaining the optimum structure 125 of the optimized block model 113 by applying topology optimization to the optimization analysis unit 23 in this embodiment.
  • the floor cross member 107 and the battery case fixing part 109 are omitted.
  • the optimal structure 125 of the optimization block model 113 is configured so that the optimization block model 113 satisfies the analysis conditions (load condition, constraint condition, objective function, constraint condition) set by the analysis condition setting unit 21. Constituent three-dimensional elements are found by remaining and disappearing.
  • the optimization analysis unit 23 may perform topology optimization as described above, or may perform optimization analysis using another calculation method. Also, as the optimization analysis unit 23, for example, commercially available analysis software using the finite element method can be used.
  • a structural optimization analysis method distributes a collision load input to a vehicle body frame part and a plurality of load-bearing parts to a plurality of load-bearing parts when a vehicle crashes.
  • the optimum load transmission structure to be transmitted to the load component is obtained by the computer performing the following steps.
  • the structural optimization analysis method includes, as shown in FIG. and an optimization analysis step S11. Each of the above steps will be described below with reference to the vehicle body 100 of the electric vehicle shown in FIG.
  • the vehicle body model acquisition step S1 is a process of acquiring a vehicle body model of all or part of an automobile in which the vehicle body frame parts and load-bearing parts are modeled by plane elements and/or three-dimensional elements.
  • the vehicle body model acquisition unit 13 of the load transmission structure optimization analysis device 1 acquires the side sill 105, which is a vehicle body frame component, the floor cross member 107, which is a load bearing component, and the battery case.
  • a vehicle body model 110 of a part of an electric vehicle modeled by a plane element is obtained.
  • the design space setting step S3 is a step of setting an area in the vehicle body model in which the load transmission structure can be arranged as a design space.
  • the design space setting unit 15 of the load transmission structure optimization analysis device 1 can arrange the load transmission members in the vehicle body model 110 as shown in FIGS.
  • the optimized block model generating step S5 is a step of generating an optimized block model modeled with three-dimensional elements in the design space set in the design space setting step S3 and subjected to optimization analysis processing.
  • the optimization block model generation unit 17 of the load transmission structure optimization analysis device 1 creates a model between the side sill inner 105a and the side sill outer 105b as shown in FIG.
  • An optimized block model 113 is generated in the design space 111 set to .
  • the coupling processing step S7 is a step of coupling the optimized block model generated in the optimized block model generation step S5 to the vehicle body model to generate an optimized analysis model.
  • the coupling processing unit 19 of the load transfer structure optimization analysis apparatus 1 couples the optimization block model 113 to the vehicle body model 110 to generate the optimization analysis model 120.
  • the analysis condition setting step S9 is for setting analysis conditions for the optimization analysis process. As shown in FIG. It includes a step S9b, a load constraint condition setting step S9c, and an optimization analysis condition setting step S9d.
  • the collision load input part and load transmission part setting step S9a is a car body frame part that transmits the load to each of the collision load input parts and the load-bearing parts, which are the parts to which the collision load is input in the car body frame part of the optimized analysis model.
  • a load transmission part is set to the part in .
  • the object is a side collision in which the pole 200 collides with the side sill 105 on the outside in the vehicle width direction. Therefore, as shown in FIG.
  • a collision load input portion 121 is added to the portion of the side sill 105 of the optimization analysis model 120 to which the collision load is input, and from the side sill 105, the floor cross member 107 as a load-bearing component and the battery case fixing component
  • Load transmission portions 123a, 123b, and 123c are set as portions to which the load is transmitted to 109.
  • the collision load input portion 121 in the side sill 105, and the load transmission portions 123a, 123b, and 123c to the floor cross member 107 and the battery case fixing part 109 are, as shown in FIG. It is preferable to perform a side collision analysis in which the pole 200 collides with the side sill 105 from the outside of the vehicle body model 110 in the vehicle width direction, and set based on the result of the side collision analysis.
  • the load-bearing parts transmission load determination step S9b distributes the collision load to be input to the optimization analysis model to a load below the load-bearing load of a plurality of load-bearing parts, and determines the transmission load to the load-bearing parts at each load-transmitting part. be.
  • the transmission load should be determined by the placement and strength of each load-bearing part. Furthermore, the sum of the transmission loads set to the plurality of load transmission portions is distributed so as to be equal to the collision load input to the vehicle body frame component.
  • the load-bearing part transmission load determination unit 21b of the load transmission structure optimization analysis device 1 determines the side sill 105 in the optimization analysis model 120 as shown in FIG.
  • the impact load (700 kN) input to the is distributed below the withstand load of the floor cross member 107 and the battery case fixing part 109, and the transmission load (each 200 kN) at the load transmission parts 123a and 123b of the floor cross member 107 and the battery case fixing
  • a transmission load (300 kN) at the load transmission portion 123c of the part 109 is determined.
  • the collision load to be input to the side sill 105 and the transmission load to the floor cross member 107 and the battery case fixing part 109 are obtained by the side collision analysis of the vehicle body model 110 as shown in FIG. and determined based on the results of the side impact analysis.
  • the load to be transmitted to the load-bearing parts determined in the load-bearing part transmission load determination step S9b is set as the reaction force of the collision load for each of the load-bearing parts, and is added to the optimized analysis model. and a constraint condition that constrains the displacement of the collision load input portion.
  • the load constraint condition setting unit 21c of the load transmission structure optimization analysis device 1 sets the load to the floor cross member 107 and the battery case fixing part 109 as shown in FIG. a load condition in which the transmission loads (200 kN, 200 kN, and 300 kN) are set as reaction forces of the collision loads (700 kN) to the load transmission portions 123a, 123b, and 123c, respectively, and are input to the optimization analysis model 120; and a constraint condition that constrains the displacement of the collision load input portion 121 is set.
  • the optimization analysis condition setting step S9d sets, as optimization analysis conditions for the optimization analysis, a predetermined objective function and a constraint condition that the displacements of the plurality of load transmission parts are equal.
  • the optimization analysis condition setting unit 21d of the load transmission structure optimization analysis device 1 sets, as the optimization analysis condition, the objective function for minimizing the displacement of the load transmission part and a constraint that the displacements of the plurality of load transmission portions 123a, 123b, and 123c are equal.
  • a plurality of constraint conditions can be set in the optimization analysis condition setting step S9d. Furthermore, as a constraint condition, the volume constraint rate of the optimization block model (ratio of the volume of the optimization block model remaining after the optimization process to the volume of the design space) should be 3% or more and 7% or less of the volume of the entire design space. It is preferable to set within the range. Therefore, in the present embodiment, in addition to the constraint that the displacements of the load transmission parts 123a, 123b, and 123c are equal, the volume constraint rate of the optimization block model 113 is set to 5% of the volume of the entire design space 111. Set constraints.
  • the optimization analysis step S11 is a step of performing an optimization analysis for obtaining the optimum structure of the optimized block model under the analysis conditions set in the analysis condition setting step S9.
  • the optimization analysis unit 23 of the load transmission structure optimization analysis device 1 sets the analysis conditions (load Under the conditions and constraints and optimization analysis conditions (objective function, constraint conditions), optimization analysis is performed with the optimization block model 113 as the optimization analysis target, and as shown in FIG. 4, the optimization block model Find the optimal structure 125 of 113 . Then, the optimum structure 125 of the optimized block model 113 is obtained as the optimum load transmission structure of the side sill 105 that transmits the load to the multiple load-bearing parts.
  • topology optimization can be applied to the optimization analysis in the optimization analysis step S11.
  • the density method is used in topology optimization and there are many intermediate densities, it is preferable to discretize by giving a penalty coefficient as an optimization parameter.
  • the value of the penalty coefficient can be set appropriately.
  • the optimal structure 125 of the optimized block model 113 is such that solid elements constituting the optimized block model remain and It is obtained by erasing.
  • the optimization analysis step S11 may perform topology optimization as described above, or may be optimization analysis using another calculation method.
  • optimization analysis in the optimization analysis step for example, commercially available analysis software using the finite element method can also be used.
  • the present embodiment 1 is a load transmission structure optimization analysis device 1 (Fig. It can be configured as a load transmission structure optimization analysis program that causes each part in the arithmetic processing part 11 of 1) to function.
  • a load transmission structure optimization analysis program divides a collision load input to a vehicle body frame part and a plurality of load-bearing parts into a plurality of load-bearing parts when a vehicle crashes.
  • the object is to find an optimum load transmission structure for transmitting the load to the load-bearing parts of the above.
  • the load transmission structure optimization analysis program comprises a computer, like the arithmetic processing unit 11 shown in FIG. 19, an analysis condition setting unit 21, and an optimization analysis unit 23.
  • the load transmission structure optimization analysis program includes an analysis condition setting unit 21, a collision load input part and load transmission part setting unit 21a, a load-bearing part transmission load determination unit 21b, a load constraint condition setting unit 21c, an optimum It functions as a chemical analysis condition setting unit 21d.
  • the collision load input to the vehicle body frame part is distributed to the transmission load that is equal to or less than the withstand load of the plurality of load-bearing parts, and the distributed transmission We set the load condition that the load is input to the body frame parts as a reaction force of the collision load, and the constraint condition that restricts the displacement of the part where the collision load is input to the body frame parts, and optimize the load transmission structure. conversion processing.
  • the collision load input to the body frame parts can be distributed and transmitted to loads below the load-bearing load of the load-bearing parts.
  • the deformation of the battery case 103 can be prevented even in the event of a side collision of an electric vehicle having a vehicle body 100 in which the battery 101 is housed in the battery case 103. can be protected.
  • the embodiment according to the present invention described above is a battery case of an electric vehicle including a cabin space inside the vehicle and a battery-equipped BEV (Battery Electronic Vehicle) or PHV (Plug-in Hybrid Vehicle) at the time of a side collision.
  • BEV Battery Electronic Vehicle
  • PHV Plug-in Hybrid Vehicle
  • the present invention is not limited to the case of protecting the battery case in the event of a side collision of an electric vehicle, and may be intended for other forms of collision, vehicle body frame parts, and load-bearing parts.
  • the car body frame parts that are the target of car body structure design that takes into consideration the distribution of transmitted loads are the front side members in front collisions, and the small overlap frontal collisions. ) includes the front pillar lower.
  • the collision load is input to the front side members via the bumper reinforcement, transmitted to the crash box and front side members, and then from the front side members to the dash panel and The load is distributed to the side sills.
  • the dash panel or side sills are load-bearing parts that are not allowed to deform in order to protect the cabin space in the event of a frontal collision.
  • the collision load input to the front pillar lower through the front side members and tires is distributed from the front pillar lower to the side sills and front pillar upper (front pillar upper). be.
  • the side sills and front pillar uppers are deformed, there is a danger that they will enter the cabin space and injure the occupants. Therefore, in order to protect the cabin space in the event of a small overlap collision, the side sills and front pillar uppers are load-bearing parts that are not allowed to deform.
  • the load-bearing parts to which the load is to be transmitted have a load-bearing capacity that must not be exceeded. Is required.
  • the present invention can also be applied to a stiffening member that stiffens a vehicle body frame part, and the structure of the stiffening member of the vehicle body frame part takes into consideration the distribution of the transmitted load to the load-bearing parts of the vehicle body. It is possible to obtain design guidelines for shapes and shapes.
  • the above description is based on the description of a portion of the vehicle body of an automobile that includes side sills 105, which are vehicle body frame components, floor cross members 107, which are load-bearing components, and battery case fixing components 109, as illustrated in FIG.
  • side sills 105 which are vehicle body frame components
  • floor cross members 107 which are load-bearing components
  • battery case fixing components 109 battery case fixing components
  • the present invention manufactures a load transmission member for the vehicle body frame parts based on the found load transmission structure. It can be configured as a method. That is, in the method for manufacturing a load transmission member in a vehicle body frame part of an automobile according to Embodiment 2 of the present invention, the load transmission structure of the vehicle body frame part according to Embodiment 1 is optimized using the vehicle body. The structure of the load transmission member of the frame part is determined, and the load transmission member is manufactured based on the determined structure of the load transmission member.
  • the optimum structure 125 shown in FIG. determines the shape of the load transmission member based on Then, the load transmission member is designed and manufactured according to the determined shape of the load transmission member.
  • the optimum structure 125 required It is sufficient to design the shape so that the ridge line section of the sheet metal member is aligned with the columnar parts (for example, 125a, 125b, 125c in FIG. 4 described later) that can be seen inside, and the optimum structure ) 125, it is desirable to adjust the strength of the ridgeline portion of the sheet metal member according to the thickness of each columnar portion.
  • the strength of the ridge is adjusted by changing the thickness and material strength of the sheet metal member.
  • load transmission members can be used with the shape of the optimum structure 125 as it is. The maximum effect is obtained by manufacturing.
  • the collision load input to the body frame parts can be distributed and transmitted to a load that is less than the load capacity of multiple load-bearing parts. Space can be protected.
  • the side impact analysis shown in FIG. 9 was performed, and the impact load input portion and the impact load on the side sill 105 were determined as shown in FIG.
  • the side impact analysis it was assumed that a pole with a diameter of 250 mm collided with the side of the side sill 105 and the middle position between the two floor cross members 107 .
  • the vehicle body model 110 was acquired as the analysis target for the optimization analysis of the load transmission structure of the vehicle body frame parts.
  • the vehicle body model 110 is formed by modeling the side sill 105, which is a vehicle body frame component, and the floor cross member 107 and the battery case fixing component 109, which are load bearing components, using planar elements.
  • a design space 111 was set in the closed cross-sectional space between the side sill inner 105a and the side sill outer 105b as a region in which the load transmission structure in the vehicle body model 110 can be arranged.
  • an optimization block model 113 to be subjected to optimization analysis processing was generated, and the optimization block model 113 was combined with the vehicle body model 110 to generate an optimization analysis model 120.
  • the collision load input portion 121 is the portion where the pole 200 contacts the side sill 105 in the side collision analysis.
  • the load transmission parts 123 are the parts (123a and 123b) where the side sill 105 and the floor cross member 107 are connected, and the part where the side sill 105 and the battery case fixing part 109 are connected. (123c).
  • the transmission load transmitted from the side sill 105 to the floor cross member 107 and the battery case fixing part 109 was determined.
  • the transmission load at the load transmission portion 123c where the load is transmitted was determined to be 300 kN.
  • the transmission loads (200 kN, 200 kN and 300 kN) to the floor cross member 107 and the battery case fixing parts 109 are applied to the load transmission portions 123a, 123b and 123c, respectively. and a constraint condition for restricting the displacement of the collision load input portion 121 are set.
  • the optimization processing of the optimization block model was performed, and the optimum structure of the optimization block model was obtained as the optimum load transmission structure.
  • the objective function that minimizes the displacement of the collision load input part 121 and the constraint condition that the volume constraint rate of the optimized block model is 5% or less of the volume of the entire design space. set.
  • FIG. 4 shows the optimal structure 125 of the optimized block model obtained as an invention example. Furthermore, FIG. 7 shows the optimum structure 127 of the optimized block model obtained as a comparative example.
  • the optimal structure 125 of the optimized block model in the example of the invention includes a portion 125a extending from the upper portion of the side sill outer 105b to the load transmission portions 123a and 123b to the floor cross member 107, and the battery case fixing parts from the lower portion of the side sill outer 105b.
  • the structure has a portion 125c connecting the portions 125a and 125b.
  • the optimum structure 127 of the optimized block model in the comparative example includes a portion 127a extending from the upper portion of the side sill outer 105b to load transmission portions 123a and 123b to the floor cross member 107, and a battery case extending from the lower portion of the side sill outer 105b.
  • the structure has a portion 127b extending to a load transmission portion 123c to the fixed component 109, the portion connecting the portions 127a and 127b seen in the optimal structure 125 of the invention example is not obtained. I didn't. From this, it can be considered that the portion 125c in the optimal structure 125 of the invention example functions to equally minimize the displacements of the three load transmission portions 123a, 123b and 123c.
  • a load transmission test was conducted using the side sill 105 shown in FIG.
  • the optimum structure 125 (invention example) or the optimum structure 127 (comparative example) of the optimized block model was arranged inside the side sill 105, and a load of 700 kN was applied to the collision load input part 121.
  • the transmitted loads at the load transmitting portions 123a and 123b to the floor cross member 107 of the book and the load transmitting portion 123c to the battery case fixing part 109 were obtained.
  • Table 1 shows an analysis of the transmitted load at the load transmission portions 123a, 123b and 123 of the side sill 105 in which the optimized structure 125 of the optimized block model according to the invention example or the optimized structure 127 of the optimized block model according to the comparative example is arranged. Show the results.
  • floor cross member No. 1 and floor cross member No. 2 are the transmitted loads at the load transmitting portions 123a and 123b, respectively, and the transmitted load to the battery case fixing parts is the transmitted load at the load transmitting portion 123c. .
  • the transmitted load at each load transmission portion 123 was able to achieve load distribution almost as intended.
  • the transmitted load to the cross member is 50 kN smaller than the target, and the battery case is fixed.
  • the transmitted load to the part was 100kN larger, which was a result that was significantly different from the target.
  • the collision load input to the vehicle body frame parts is appropriately distributed so that the load is less than the withstand load of the load-bearing parts. It has been shown that it is possible to find an optimal load-transmitting structure that can transmit the load.
  • the optimization analysis of the load transmission structure in the vehicle body frame parts of an automobile seeks the optimum load transmission structure that distributes the collision load input to the vehicle body frame parts at the time of a collision and transmits it to a plurality of load-bearing parts. It is possible to provide a method, an apparatus, a program, and a method of manufacturing a load transmission member in a vehicle body frame component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Body Structure For Vehicles (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Abstract

本発明に係る自動車の車体骨格部品における荷重伝達構造の最適化解析装置は、最適化解析の解析条件の設定において(21)、最適化解析モデル120の車体骨格部品における衝突荷重入力部位121と複数の荷重伝達部位123とを設定し(21a)、衝突荷重を複数の耐荷重部品の耐荷重以下に分配して各荷重伝達部位における伝達荷重を決定し(21b)、決定した伝達荷重を各荷重伝達部位123に対して衝突荷重の反力として設定する荷重条件と、衝突荷重入力部位121の変位を拘束する拘束条件と、を設定し(21c)、最適化解析条件として、所定の目的関数と、複数の荷重伝達部位123の変位が等しいとする制約条件と、を設定する(21d)。

Description

自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラム、自動車の車体骨格部品における荷重伝達部材の製造方法
 本発明は、自動車(automobile)の衝突時に車体骨格部品(body frame parts)に入力した衝突荷重(crashworthiness load)を分配して複数の耐荷重部品(load bearing member)に伝達させる最適な荷重伝達構造(load transfer structure)を求める自動車の車体骨格部品における荷重伝達構造の最適化解析方法(optimization analysis method)、装置及びプログラムと、自動車の車体骨格部品における荷重伝達部材の製造方法に関する。
 世界の自動車販売に占める電気自動車(battery powered vehicle)の割合は、今後急速に高まることが予想される。従来のエンジン車(gasoline engine car)と大きく異なる電気自動車の車体構造の特徴としては、大容量バッテリー(large-capacity battery)の搭載と、その保護構造が挙げられる。また、自動車の側面衝突試験(side impact test)は、多くの衝突アセスメント(car assessment)において乗員傷害を評価する項目である。そして、電気自動車の側面衝突試験は、ポールから自動車に入力する衝突荷重が集中荷重(concentrated loads)であることに加え、ポールが衝突する位置からバッテリーまでの距離が短いことから、バッテリー保護の観点でも特に厳しい衝突試験であると言える。
 図8は、バッテリーケース(battery case)アッパ103aとバッテリーケースロア103bとを備えてなるバッテリーケース103内にバッテリー101が設置されている電気自動車の車体100を示す。車体100は、図9に示すように、サイドシル(side sill)105と、フロアクロスメンバ(floor cross member)107やバッテリーケース固定部品109を有する。サイドシル105は、車体幅方向外側からポール200が衝突して衝突荷重が入力した際に衝突エネルギー(collision energy)を吸収する衝突エネルギー吸収部品(crashworthiness energy absorption part)(以降、EA部品ともいう)としての機能を備えた車体骨格部品である。フロアクロスメンバ107やバッテリーケース固定部品109は、サイドシル105に入力した大きな衝突荷重がバッテリーケース103にそのまま入力することを防ぐために変形が許容されない複数の耐荷重部品である。
 これら複数の耐荷重部品はサイドシル105に当接するように配設されており、サイドシルに入力した衝突荷重をサイドシルにおける衝突荷重入力部位から耐荷重部品へと分配する荷重伝達経路(load transfer path)を形成する。そして、バッテリー101に大きな衝突荷重が入力することを防ぐためには、荷重伝達経路中に単数又は複数の荷重伝達構造が配置されていることが要件となる。
 この荷重伝達構造は、外部からの衝突エネルギーを十分に吸収できる程度の高強度な構造でなければならない一方で、耐荷重部品へ伝達する荷重(以下、「伝達荷重(transferred load)」という)を各耐荷重部品の耐荷重(loading capacity)以下とする必要がある。そして、この条件を満たすためには、荷重伝達構造を備えたサイドシル105においては、各耐荷重部品への伝達荷重が適切に配分されることが重要となる。
 一方、高性能な自動車の車体構造を効率的に設計する手段として、コンピュータを用いた構造最適化解析(structural optimization analysis)により、車体における設計空間(design space)上の不要部位を削除して最適な構造を求める手法が用いられることがある(例えば、特許文献1参照)。当該手法においては、最適化の対象となる部品等の設計空間、車体に入力する衝突荷重に関する荷重条件(loading condition)や車体の拘束条件(constraint condition)、さらには最適化に関する目的関数(objectives)と制約条件(constraints)とを組み合わせた最適化解析条件(optimization analysis condition)を適宜設定する。これにより、車体剛性(rigidity)や重量等の性能が最大となる車体骨格部品等の最適な構造を求めることができる。
特許第5585672号公報
 特許文献1に開示されている手法によれば、車体モデル(automotive body model)の拘束位置(restraining position)や複数の入力荷重とその入力位置を衝突解析(crashworthiness analysis)条件として設定し、設定した複数の入力荷重に対し目的条件を達成する車体骨格部品等の最適な形状を求めることができる。目的条件としては、ひずみエネルギー(strain energy)最小、発生応力(stress)最小、吸収エネルギー(absorbed energy)最大等を例示できる。その一方で、特許文献1に示されている制約条件と目的条件の組み合わせでは、車体骨格部品と耐荷重部品とを備えた車体に衝突荷重が入力した時に、車体骨格部品から複数の耐荷重部品へと伝達する荷重の大きさや配分が保障されていない。特に、前述した図8に示したような電気自動車の車体100においては、バッテリー101を保護するために、EA部品である車体骨格部品から非EA部品である耐荷重部品への伝達荷重の分配を考慮することが特に重要である。しかしながら、特許文献1に記載された方法では、車体骨格部品から耐荷重部品への伝達荷重の分配を考慮して車体骨格部品における最適な荷重伝達構造を求めることはできなかった。
 本発明は、以上の問題を解決すべくなされたものであり、その目的は、自動車の衝突時に車体骨格部品に入力した衝突荷重を分配して複数の耐荷重部品に伝達させる最適な荷重伝達構造を求める自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラムと、自動車の車体骨格部品における荷重伝達部材(load transmission part)の製造方法を提供することにある。
 発明者らは、複数の耐荷重部品へと伝達する荷重の大きさや配分を保障しつつ、車体骨格部品に入力した衝突荷重を複数の耐荷重部品へと伝達させる荷重伝達構造の求め方について検討した。そして、発明者らは、作用・反作用の法則(law of action and reaction)より、衝突荷重が入力した車体骨格部品から各耐荷重部品へと伝達する荷重と、各耐荷重部品から車体骨格部品に作用する衝突荷重の入力方向とは逆向きの方向の荷重(以下、反力(reaction force)と称す)とは、荷重の作用する方向は逆向きではあっても大きさが同じであり、さらに、各耐荷重部品からの反力の総和は車体骨格部品に入力する衝突荷重と等しくなる点に着目した。
 さらに、車体骨格部品に入力した衝突荷重を複数の耐荷重部品に分配して伝達させる荷重伝達構造は、各耐荷重部品から衝突荷重の入力方向とは逆向きの方向に作用する反力が、衝突荷重の入力した車体骨格部品へと逆向きに伝達する荷重伝達構造でもある点に着目した。
 そこで、保障すべき各耐荷重部品へと伝達する荷重の大きさや配分を、各耐荷重部品の反力の大きさや配分と捉え直し、各耐荷重部品の反力の総和が車体骨格部品に入力する衝突荷重と等しくなるように適切に分配し、適切に分配された反力が各耐荷重部品から衝突荷重の入力方向とは逆向きの方向に、衝突荷重の入力した車体骨格部品へと伝達する最適な荷重伝達構造を求めることにより、複数の耐荷重部品へと伝達する荷重の大きさや配分を保証しつつ車体骨格部品に入力した衝突荷重を適切に分配して複数の耐荷重部品へ伝達させることが可能となる荷重伝達構造を求めることができることを見出した。
 本発明はかかる知見に基づくものであり、具体的には以下の構成を備える。
 本発明に係る自動車の車体骨格部品における荷重伝達構造の最適化解析方法は、車体骨格部品と複数の耐荷重部品とを備えてなる自動車の衝突時に前記車体骨格部品に入力した衝突荷重を分配して複数の前記耐荷重部品に伝達させる最適な荷重伝達構造を、コンピュータが以下の各ステップを行うことにより求めるものであって、前記車体骨格部品と前記耐荷重部品とが平面要素(two-dimensional element)及び/又は立体要素(three-dimensional element)でモデル化された前記自動車の全部又は一部の車体モデルを取得する車体モデル取得工程と、前記車体モデルにおける前記荷重伝達構造が配設可能な領域を設計空間として設定する設計空間設定工程と、該設定された設計空間に立体要素でモデル化されて最適化の解析処理を行う最適化ブロックモデル(optimization block model)を生成する最適化ブロックモデル生成工程と、該生成した最適化ブロックモデルを前記車体モデルに結合(connecting)して最適化解析モデルを生成する結合処理(connecting processing)工程と、前記最適化(optimization)の解析処理を行うための解析条件を設定する解析条件設定工程と、該設定した解析条件の下で前記最適化ブロックモデルの最適な構造を求める最適化解析(optimization analysis)を行う最適化解析工程と、を含み、前記解析条件設定工程は、前記最適化解析モデルの前記車体骨格部品における衝突荷重が入力する部位に衝突荷重入力部位(impact load input portion)と、複数の前記耐荷重部品のそれぞれに荷重を伝達させる前記車体骨格部品における部位に荷重伝達部位(load transferred portion)と、を設定する衝突荷重入力部位及び荷重伝達部位設定ステップと、前記最適化解析モデルに入力する衝突荷重を複数の前記耐荷重部品の耐荷重以下に分配し、各前記荷重伝達部位における前記耐荷重部品への伝達荷重を決定する耐荷重部品伝達荷重決定ステップと、該決定した前記耐荷重部品への伝達荷重を各前記荷重伝達部位のそれぞれに対して前記衝突荷重の反力として設定して前記最適化解析モデルへの入力荷重(input load)とする荷重条件と、前記衝突荷重入力部位の変位(displacement)を拘束する拘束条件と、を設定する荷重拘束条件(loading and constraint condition)設定ステップと、前記最適化解析工程における前記最適化解析の最適化解析条件として、所定の目的関数と、複数の前記荷重伝達部位の変位が等しいとする制約条件と、を設定する最適化解析条件設定ステップと、を含む。
 前記最適化解析条件設定ステップは、前記制約条件として、さらに前記最適化ブロックモデルの体積制約率(volume constraint ratio)を前記設計空間全体の体積の3%以上7%以下の範囲内の所定の値以下と設定し、前記最適化解析工程は、トポロジー最適化(topology optimization)の密度法(densimetry)を用いた最適化解析を行うとよい。
 前記車体骨格部品は、前記自動車の側部に配設されて車体前後方向に延在するサイドシルとし、前記耐荷重部品は、前記自動車の下部に配設されたバッテリーケースを前記サイドシルと接続するバッテリーケース固定部品とフロアクロスメンバとし、前記解析条件設定工程に先立って、前記車体モデルを対象とし、該車体モデルにおける車体幅方向外側から前記サイドシルにポールが衝突する側面衝突解析(side collision analysis)を行い、前記側面衝突解析の結果に基づいて、前記衝突荷重入力部位及び荷重伝達部位設定ステップは、前記車体モデルの車体骨格部品における前記衝突荷重入力部位及び荷重伝達部位を設定し、前記耐荷重部品伝達荷重決定ステップは、前記車体骨格部品に入力する衝突荷重及び耐荷重部品への伝達荷重を決定するとよい。
 本発明に係る自動車の車体骨格部品における荷重伝達部材の製造方法は、本発明に係る自動車の車体骨格部品における荷重伝達構造の最適化解析方法を用いて前記車体骨格部品の荷重伝達部材の構造を求め、該求めた荷重伝達部材の構造に基づいて該荷重伝達部材の形状を決定し、該決定した形状に従って前記荷重伝達部材を製造する。
 本発明に係る自動車の車体骨格部品における荷重伝達構造の最適化解析装置は、車体骨格部品と複数の耐荷重部品とを備えてなる自動車の衝突試験において前記車体骨格部品に入力した衝突荷重を分配して複数の前記耐荷重部品に伝達させる最適な荷重伝達構造を求めるものであって、前記車体骨格部品と前記耐荷重部品とが平面要素及び/又は立体要素でモデル化された前記自動車の全部又は一部の車体モデルを取得する車体モデル取得部と、前記車体モデルにおける前記荷重伝達構造が配設される領域に設計空間を設定する設計空間設定部と、該設定された設計空間に立体要素でモデル化されて前記荷重伝達構造の最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成部と、該生成した最適化ブロックモデルを前記車体モデルに結合して最適化解析モデルを生成する結合処理部と、前記最適化の解析処理を行うための解析条件を設定する解析条件設定部と、該設定した解析条件の下で前記最適化ブロックモデルの最適な構造を求める最適化解析を行う最適化解析部と、を備え、前記解析条件設定部は、前記最適化解析モデルにおける衝突荷重が入力する部位に衝突荷重入力部位と、複数の前記耐荷重部品のそれぞれに荷重を伝達させる部位に荷重伝達部位と、を前記最適化解析モデルに設定する衝突荷重入力部位及び荷重伝達部位設定部と、複数の前記耐荷重部品それぞれの耐荷重以下となるように前記最適化解析モデルに入力する衝突荷重を配分して各前記耐荷重部品の荷重伝達部位における伝達荷重を決定する耐荷重部品伝達荷重決定部と、複数の前記荷重伝達部位のそれぞれに対して前記衝突荷重の反力として各前記耐荷重部品への伝達荷重を設定して前記最適化解析モデルへの入力荷重とする荷重条件と、前記衝突荷重入力部位の変位を拘束する拘束条件と、を設定する荷重拘束条件設定部と、前記最適化解析部において行う前記最適化解析の最適化解析条件として、所定の目的関数と、複数の前記荷重伝達部位の変位が等しいとする制約条件と、を設定する最適化解析条件設定部と、を有する。
 前記最適化解析条件設定部は、前記制約条件として、さらに前記最適化ブロックモデルの体積制約率を前記設計空間全体の3%以上7%以下の範囲内で設定し、前記最適化解析部は、トポロジー最適化の密度法を用いた最適化解析を行うとよい。
 本発明に係る自動車の車体骨格部品における荷重伝達構造の最適化解析プログラムは、車体骨格部品と複数の耐荷重部品とを備えてなる自動車の衝突試験において前記車体骨格部品に入力した衝突荷重を分配して複数の前記耐荷重部品に伝達させる最適な荷重伝達構造を求めるものであって、コンピュータを、前記車体骨格部品と前記耐荷重部品とが平面要素及び/又は立体要素でモデル化された前記自動車の全部又は一部の車体モデルを取得する車体モデル取得部と、前記車体モデルにおける前記荷重伝達構造が配設される領域に設計空間を設定する設計空間設定部と、該設定された設計空間に立体要素でモデル化されて前記荷重伝達構造の最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成部と、該生成した最適化ブロックモデルを前記車体モデルに結合して最適化解析モデルを生成する結合処理部と、前記最適化の解析処理を行うための解析条件を設定する解析条件設定部と、該設定した解析条件の下で前記最適化ブロックモデルの最適な構造を求める最適化解析を行う最適化解析部と、として実行させる機能を備え、前記解析条件設定部を、前記最適化解析モデルにおける衝突荷重が入力する部位に衝突荷重入力部位と、複数の前記耐荷重部品のそれぞれに荷重を伝達させる部位に荷重伝達部位と、を前記最適化解析モデルに設定する衝突荷重入力部位及び荷重伝達部位設定部と、複数の前記耐荷重部品それぞれの耐荷重以下となるように前記最適化解析モデルに入力する衝突荷重を配分して各前記耐荷重部品の荷重伝達部位における伝達荷重を決定する耐荷重部品伝達荷重決定部と、複数の前記荷重伝達部位のそれぞれに対して前記衝突荷重の反力として各前記耐荷重部品への伝達荷重を設定して前記最適化解析モデルへの入力荷重とする荷重条件と、前記衝突荷重入力部位の変位を拘束する拘束条件と、を設定する荷重拘束条件設定部と、前記最適化解析部において行う前記最適化解析の最適化解析条件として、所定の目的関数と、複数の前記荷重伝達部位の変位が等しいとする制約条件と、を設定する最適化解析条件設定部と、として機能させる。
 前記最適化解析条件設定部は、前記制約条件として、さらに前記最適化ブロックモデルの体積制約率を前記設計空間全体の3%以上7%以下の範囲内で設定し、前記最適化解析部は、トポロジー最適化の密度法を用いた最適化解析を行うとよい。
 本発明においては、車体骨格部品における複数の荷重伝達部位に衝突荷重の反力として各耐荷重部品の耐荷重以下の伝達荷重を入力荷重とする荷重条件と、車体骨格部品における衝突荷重入力部位の変位を拘束する拘束条件と、複数の荷重伝達部位の変位を等しくする制約条件と、を解析条件として設定し、最適な荷重伝達構造を求める最適化解析を行う。これにより、各耐荷重部品へと伝達する荷重の大きさや配分を保障しつつ、車体骨格部品から複数の耐荷重部品への伝達荷重を適切に分配することができる荷重伝達構造を求めることができる。さらに、本発明によれば、上記の最適化解析を用いて最適な荷重伝達構造を求め、求めた最適な荷重伝達構造に基づいて荷重伝達部材の形状を決定し、決定した荷重伝達部材の形状に従って荷重伝達部材を製造する。これにより、車体骨格部品から複数の耐荷重部品への伝達荷重を適切に分配することができる荷重伝達部材を製造することができる。
図1は、本発明の実施の形態1に係る自動車の車体骨格部品における荷重伝達構造の最適化解析装置のブロック図である。 図2は、本発明の実施の形態1において、車体モデルに設定した設計空間と、設計空間に生成した最適化ブロックモデルを示す図である。 図3は、本発明の実施の形態1及び実施例における発明例として、最適化解析モデルに設定した荷重条件と拘束条件とを説明する図である((a)斜視図(車内側)、(b)斜視図(車外側))。 図4は、本発明の実施の形態1及び実施例における発明例として、サイドシルにおける荷重伝達構造の最適構造を示す図である((a)斜視図、(b)断面図)。 図5は、本発明の実施の形態1に係る自動車の車体骨格部品における荷重伝達構造の最適化解析方法の処理の流れを示すフロー図である。 図6は、実施例における比較例として、最適化解析モデルに設定した荷重条件と拘束条件とを説明する図である((a)斜視図(車内側)、(b)斜視図(車外側))。 図7は、実施例において、サイドシルにおける荷重伝達構造の最適構造の比較例を示す図である((a)斜視図、(b)断面図)。 図8は、電気自動車の車体の一例を示す図である。 図9は、車体幅方向外側からポールが車体に衝突する側面衝突試験を説明する図である。
 本発明の実施の形態1及び実施の形態2について説明するに先立ち、本発明で対象とする自動車の車体について説明する。本願の図面において、X方向、Y方向及びZ方向は、それぞれ、車体前後方向、車体幅方向及び車体上下方向を示す。
 本発明は、図9に一例として示すように、車体骨格部品であるサイドシル105と、耐荷重部品であるフロアクロスメンバ107とバッテリーケース固定部品109と、を備えた車体100を対象とする。
 車体骨格部品は、車体骨格を構成する車体部品である。サイドシル105は、車体幅方向の両側において車体前後方向に延在して配設された車体骨格部品である。図9に示すように、ハット断面形状のサイドシルインナ105aとサイドシルアウタ105bとが互いに開口側を向かい合わせて閉断面空間を形成するように上端部同士と下端部同士が接合されている。
 耐荷重部品は、車体に入力した衝突荷重がそのまま他の車体部品へ入力することを防ぐために変形が許容されない部品である。車体100においては、前述した図8について説明したようにバッテリー101保護の観点から車体部品であるバッテリーケース103に衝突荷重がそのまま入力することを防ぐために、耐荷重部品として、バッテリーケース103の上部に配置されてサイドシルインナ105aに当接される車体前後方向に2つのフロアクロスメンバ107a、107bと、バッテリーケース103の下部(バッテリーケースロア103b)とサイドシルインナ105aとを接続してバッテリーケース103の固定に用いられるバッテリーケース固定部品109と、が設けられている。
 サイドシル105、フロアクロスメンバ107及びバッテリーケース固定部品109は、平面要素及び/立体要素を用いてモデル化されており、モデル化した要素情報等は、後述する車体モデルファイル31(図1参照)に記憶しておいてもよい。
 以下、車体100を解析対象とする場合について、本発明に係る自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラム(以下、それぞれ、「荷重伝達構造最適化解析方法」、「荷重伝達構造最適化解析装置」及び「荷重伝達構造最適化解析プログラム」という)について説明する。
[実施の形態1]
<荷重伝達構造最適化解析装置>
 本発明の実施の形態1に係る荷重伝達構造最適化解析装置1は、車体骨格部品と複数の耐荷重部品とを備えてなる自動車の衝突時に車体骨格部品に入力した衝突荷重を分配して複数の耐荷重部品に伝達させる最適な荷重伝達構造を求めるものである。図1に示すように、荷重伝達構造最適化解析装置1は、PC(パーソナルコンピュータ)等によって構成され、表示装置(display device)3と、入力装置(input device)5と、記憶装置(memory storage)7と、作業用データメモリ(working data memory)9と、演算処理部(arithmetic processing unit)11と、を備えている。そして、表示装置3、入力装置5、記憶装置7及び作業用データメモリ9は、演算処理部11に接続され、演算処理部11からの指令によってそれぞれの機能が実行される。以下、本実施の形態に係る荷重伝達構造最適化解析装置1の各構成について説明する。
 表示装置3は、解析結果の表示等に用いられ、液晶モニター(LCD monitor)等で構成される。入力装置5は、車体モデルファイル31の表示指示や操作者の条件入力等に用いられ、キーボードやマウス等で構成される。記憶装置7は、車体モデルファイル31等の各種ファイルの記憶等に用いられ、ハードディスク等で構成される。作業用データメモリ9は、演算処理部11で使用するデータの一時保存や演算に用いられ、RAM(Random Access Memory)等で構成される。
 演算処理部11は、図1に示すように、車体モデル取得部13と、設計空間設定部15と、最適化ブロックモデル生成部17と、結合処理部19と、解析条件設定部21と、最適化解析部23と、を有し、PC等のCPU(中央演算処理装置)によって構成される。これらの各部は、CPUが所定のプログラムを実行することによって機能する。演算処理部11における上記の各部の機能を以下に説明する。
≪車体モデル取得部≫
 車体モデル取得部13は、車体骨格部品と耐荷重部品とが平面要素及び/又は立体要素でモデル化された自動車の全部又は一部の車体モデルを取得するものである。本実施の形態において、車体モデル取得部13は、図9に示すように、車体骨格部品であるサイドシル105と、耐荷重部品であるフロアクロスメンバ107及びバッテリーケース固定部品109と、が平面要素でモデル化された自動車の一部の車体モデル110を取得する。
≪設計空間設定部≫
 設計空間設定部15は、車体モデルにおける荷重伝達構造が配設可能な領域を設計空間として設定するものである。本実施の形態において、設計空間設定部15は、車体モデル110における荷重伝達構造が配設可能な領域として、図9に示すように、サイドシルインナ105aとサイドシルアウタ105bとの間の閉断面空間に設計空間111を設定する。
≪最適化ブロックモデル生成部≫
 最適化ブロックモデル生成部17は、設計空間設定部15により設定された設計空間に立体要素でモデル化されて最適化の解析処理を行う最適化ブロックモデルを生成するものである。本実施の形態において、最適化ブロックモデル生成部17は、図2に示すように、設計空間設定部15により設定された設計空間111に最適化ブロックモデル113を生成する。
≪結合処理部≫
 結合処理部19は、最適化ブロックモデル生成部17により生成した最適化ブロックモデルを車体モデルに結合して最適化解析モデルを生成するものである。本実施の形態において、結合処理部19は、図2に示すように、最適化ブロックモデル113を車体モデル110(図9参照)におけるサイドシル105に結合して最適化解析モデル120を生成する。図2に示す最適化解析モデル120においては、耐荷重部品であるフロアクロスメンバ107とバッテリーケース固定部品109の表示は省略している。
≪解析条件設定部≫
 解析条件設定部21は、最適化の解析処理のための解析条件を設定するものであり、図1に示すように、衝突荷重入力部位及び荷重伝達部位設定部21aと、耐荷重部品伝達荷重決定部21bと、荷重拘束条件設定部21cと、最適化解析条件設定部21dと、を有する。
(衝突荷重入力部位及び荷重伝達部位設定部)
 衝突荷重入力部位及び荷重伝達部位設定部21aは、最適化解析モデルの車体骨格部品における衝突荷重が入力する部位に衝突荷重入力部位と、複数の耐荷重部品のそれぞれに荷重を伝達させる車体骨格部品における部位に複数の荷重伝達部位と、を設定するものである。荷重入力部位は1か所、荷重伝達部位は複数箇所とする。本実施の形態においては、図9に示すようにポール200がサイドシル105の車体幅方向外側に衝突する側面衝突を対象としている。このため、衝突荷重入力部位及び荷重伝達部位設定部21aは、図3に示すように、最適化解析モデル120のサイドシル105における衝突荷重が入力する部位に衝突荷重入力部位121と、サイドシル105から耐荷重部品であるフロアクロスメンバ107とバッテリーケース固定部品109へと荷重が伝達する部位に複数(三か所)の荷重伝達部位123(123a、123b及び123c)と、を設定する。
(耐荷重部品伝達荷重決定部)
 耐荷重部品伝達荷重決定部21bは、最適化解析モデルに入力する衝突荷重を複数の耐荷重部品の耐荷重以下に分配し、各荷重伝達部位における耐荷重部品への伝達荷重を決定するものである。
 伝達荷重は、各耐荷重部品の配置と強度によって決めればよい。伝達荷重の決定において重要なのは絶対値ではなくその配分であり、複数の荷重伝達部位に設定する伝達荷重の総和は、車体骨格部品に入力する衝突荷重と等しくなるように分配する。また、車体骨格部品に入力する衝突荷重は、適宜設定することができるが、例えば、図9に示す側面衝突試験を対象とした衝突解析を行って求めるとよい。
 本実施の形態において、耐荷重部品伝達荷重決定部21bは、図3に示すように、最適化解析モデル120に入力する衝突荷重をフロアクロスメンバ107及びバッテリーケース固定部品109の耐荷重以下に分配し、2つのフロアクロスメンバ107に荷重を伝達させる荷重伝達部位123a及び123bにおける伝達荷重をいずれも200kNとし、バッテリーケース固定部品109の荷重伝達部位123cにおける伝達荷重を300kNと決定する。
(荷重拘束条件設定部)
 荷重拘束条件設定部21cは、耐荷重部品伝達荷重決定部21bにより決定した耐荷重部品への伝達荷重を各荷重伝達部位のそれぞれに対して衝突荷重の反力として設定して最適化解析モデルへの入力荷重とする荷重条件と、衝突荷重入力部位の変位を拘束する拘束条件と、を設定するものである。
 本実施の形態において、荷重拘束条件設定部21cは、フロアクロスメンバ107及びバッテリーケース固定部品109への伝達荷重(200kN、200kN及び300kN)を荷重伝達部位123a、123b及び123cのそれぞれに対して衝突荷重(700kN)の反力として設定して最適化解析モデル120への入力荷重とする荷重条件と、衝突荷重入力部位121の変位を拘束する拘束条件と、を設定する。荷重伝達部位に対して衝突荷重の反力として伝達荷重を設定するとは、衝突荷重の入力方向とは逆向きの方向に伝達荷重が荷重伝達部位に作用するように設定することを意味する。
(最適化解析条件設定部)
 最適化解析条件設定部21dは、最適化解析の最適化解析条件として、所定の目的関数と、複数の荷重伝達部位の変位が等しいとする制約条件と、を設定するものである。
 目的関数は、最適化の目的に応じて設定するものであり、例えば、質量最小化(mass minimization)、コンプライアンス最小化(compliance minimization)(剛性最大化(stiffness maximization))、荷重伝達部位の変位最小化(displacement minimization)、等が挙げられる。本実施の形態では、荷重伝達部位123の変位最小化を目的関数として設定する。
 一方、制約条件は、最適化において何らかの制約を課すものであり、本発明では、前述のとおり、複数の荷重伝達部位の変位が等しいとする。制約条件は、複数設定可能である。そして、最適化ブロックモデルの体積制約率(設計空間の体積に対する最適化処理により残存する最適化ブロックモデルの体積の比率)を、設計空間全体の体積の3%以上7%以下の範囲内の所定の値以下とする制約条件をさらに設定することが好ましい。
≪最適化解析部≫
 最適化解析部23は、解析条件設定部21により設定された解析条件の下で最適化ブロックモデルの最適な構造を求める最適化解析を行う工程である。
 本実施の形態において、最適化解析部23は、結合処理部19により最適化ブロックモデル113と車体モデル110との結合処理を行って生成した最適化解析モデル120に対して解析条件設定部21により設定された荷重条件及び拘束条件と最適化解析条件(目的関数、制約条件)との下で、最適化ブロックモデル113を最適化の解析対象として最適化解析を行い、最適化ブロックモデル113の最適な構造を求める。そして、最適化ブロックモデル113の最適な構造が、複数の耐荷重部品に伝達させる最適な荷重伝達構造として求められる。
 最適化解析部23による最適化解析には、例えば、トポロジー最適化を適用することができる。そして、トポロジー最適化において密度法を用いる際に中間的な密度が多い場合には、最適化パラメータ(optimized parameter)としてペナルティ係数(penalty coefficient)を与えて離散化(discretization)することが好ましい。なお、ペナルティ係数の値は適宜設定することができる。
 本実施の形態において最適化解析部23にトポロジー最適化を適用して最適化ブロックモデル113の最適構造125を求めた結果を図4に示す。図4においては、フロアクロスメンバ107とバッテリーケース固定部品109の表示は省略している。
 このように、最適化ブロックモデル113の最適構造125は、解析条件設定部21により設定された解析条件(荷重条件、拘束条件、目的関数、制約条件)を満たすように、最適化ブロックモデル113を構成する立体要素が残存及び消去することにより求められる。
 最適化解析部23は、上記のとおりトポロジー最適化を行うものでもよいし、他の計算方式による最適化解析であってもよい。また、最適化解析部23としては、例えば市販されている有限要素法(finite element method)を用いた解析ソフトを使用することもできる。
<荷重伝達構造最適化解析方法>
 本発明の実施の形態に係る構造最適化解析方法は、車体骨格部品と複数の耐荷重部品とを備えてなる自動車の衝突時に前記車体骨格部品に入力した衝突荷重を分配して複数の前記耐荷重部品に伝達させる最適な荷重伝達構造を、コンピュータが以下の各ステップを行うことにより求めるものである。構造最適化解析方法は、図5に示すように、車体モデル取得工程S1と、設計空間設定工程S3と、最適化ブロックモデル生成工程S5と、結合処理工程S7と、解析条件設定工程S9と、最適化解析工程S11と、を含む。以下、図9に示す電気自動車の車体100を対象として、上記の各工程について説明する。
≪車体モデル取得工程≫
 車体モデル取得工程S1は、車体骨格部品と耐荷重部品とが平面要素及び/又は立体要素でモデル化された自動車の全部又は一部の車体モデルを取得する工程である。本実施の形態において、車体モデル取得工程S1では、荷重伝達構造最適化解析装置1の車体モデル取得部13が、車体骨格部品であるサイドシル105と、耐荷重部品であるフロアクロスメンバ107及びバッテリーケース固定部品109と、が平面要素でモデル化された電気自動車の一部の車体モデル110を取得する。
≪設計空間設定工程≫
 設計空間設定工程S3は、車体モデルにおける荷重伝達構造が配設可能な領域を設計空間として設定する工程である。本実施の形態において、設計空間設定工程S3では、荷重伝達構造最適化解析装置1の設計空間設定部15が、図2及び図9に示すように、車体モデル110における荷重伝達部材が配設可能な領域であるサイドシルインナ105aとサイドシルアウタ105bとの間の閉断面空間を設計空間111として設定する。
≪最適化ブロックモデル生成工程≫
 最適化ブロックモデル生成工程S5は、設計空間設定工程S3において設定された設計空間に立体要素でモデル化されて最適化の解析処理を行う最適化ブロックモデルを生成する工程である。本実施の形態において、最適化ブロックモデル生成工程S5では、荷重伝達構造最適化解析装置1の最適化ブロックモデル生成部17が、図2に示すように、サイドシルインナ105aとサイドシルアウタ105bとの間に設定された設計空間111に最適化ブロックモデル113を生成する。
≪結合処理工程≫
 結合処理工程S7は、最適化ブロックモデル生成工程S5において生成した最適化ブロックモデルを車体モデルに結合して最適化解析モデルを生成する工程である。本実施の形態において、結合処理工程S7では、荷重伝達構造最適化解析装置1の結合処理部19が、最適化ブロックモデル113を車体モデル110に結合して最適化解析モデル120を生成する。
≪解析条件設定工程≫
 解析条件設定工程S9は、最適化の解析処理のための解析条件を設定するものであり、図5に示すように、衝突荷重入力部位及び荷重伝達部位設定ステップS9aと、耐荷重部品伝達荷重決定ステップS9bと、荷重拘束条件設定ステップS9cと、最適化解析条件設定ステップS9dと、を含む。
(衝突荷重入力部位及び荷重伝達部位設定ステップ)
 衝突荷重入力部位及び荷重伝達部位設定ステップS9aは、最適化解析モデルの車体骨格部品における衝突荷重が入力する部位に衝突荷重入力部位と、複数の耐荷重部品のそれぞれに荷重を伝達させる車体骨格部品における部位に荷重伝達部位と、を設定するものである。本実施の形態においては、前述した図9に示すようにポール200がサイドシル105の車体幅方向外側に衝突する側面衝突を対象としている。このため、図3に示すように、最適化解析モデル120のサイドシル105における衝突荷重が入力する部位に衝突荷重入力部位121と、サイドシル105から耐荷重部品であるフロアクロスメンバ107とバッテリーケース固定部品109へと荷重が伝達する部位に荷重伝達部位123a、123b及び123cと、を設定する。
 サイドシル105における衝突荷重入力部位121と、フロアクロスメンバ107とバッテリーケース固定部品109への荷重伝達部位123a、123b及び123cは、解析条件設定工程S9に先立って、前述した図9に示すように、車体モデル110の車体幅方向外側からポール200がサイドシル105に衝突する側面衝突解析を行い、該側面衝突解析の結果に基づいて設定するとよい。
(耐荷重部品伝達荷重決定ステップ)
 耐荷重部品伝達荷重決定ステップS9bは、最適化解析モデルに入力する衝突荷重を複数の耐荷重部品の耐荷重以下に分配し、各荷重伝達部位における耐荷重部品への伝達荷重を決定するものである。
 伝達荷重は、各耐荷重部品の配置と強度によって決めればよい。さらに、複数の荷重伝達部位に設定する伝達荷重の総和は、車体骨格部品に入力する衝突荷重と等しくなるように分配する。
 本実施の形態において、耐荷重部品伝達荷重決定ステップS9bでは、荷重伝達構造最適化解析装置1の耐荷重部品伝達荷重決定部21bが、図3に示すように、最適化解析モデル120におけるサイドシル105に入力する衝突荷重(700kN)をフロアクロスメンバ107及びバッテリーケース固定部品109の耐荷重以下に分配し、フロアクロスメンバ107の荷重伝達部位123a、123bにおける伝達荷重(それぞれ200kN)と、バッテリーケース固定部品109の荷重伝達部位123cにおける伝達荷重(300kN)と、を決定する。
 サイドシル105に入力する衝突荷重と、フロアクロスメンバ107及びバッテリーケース固定部品109への伝達荷重は、解析条件設定工程S9に先立って、前述した図9に示すように車体モデル110の側面衝突解析を行い、該側面衝突解析の結果に基づいて決定するとよい。
(荷重拘束条件設定ステップ)
 荷重拘束条件設定ステップS9cは、耐荷重部品伝達荷重決定ステップS9bにおいて決定した耐荷重部品への伝達荷重を各荷重伝達部位のそれぞれに対して衝突荷重の反力として設定して最適化解析モデルへの入力荷重とする荷重条件と、衝突荷重入力部位の変位を拘束する拘束条件と、を設定するものである。
 本実施の形態において、荷重拘束条件設定ステップS9cでは、荷重伝達構造最適化解析装置1の荷重拘束条件設定部21cが、図3に示すように、フロアクロスメンバ107及びバッテリーケース固定部品109への伝達荷重(200kN、200kN及び300kN)を荷重伝達部位123a、123b及び123cのそれぞれに対して衝突荷重(700kN)の反力として設定して最適化解析モデル120への入力荷重とする荷重条件と、衝突荷重入力部位121の変位を拘束する拘束条件と、を設定する。
(最適化解析条件設定ステップ)
 最適化解析条件設定ステップS9dは、最適化解析の最適化解析条件として、所定の目的関数と、複数の荷重伝達部位の変位が等しいとする制約条件と、を設定するものである。本実施の形態において、最適化解析条件設定ステップS9dでは、荷重伝達構造最適化解析装置1の最適化解析条件設定部21dが、最適化解析条件として、荷重伝達部位の変位を最小とする目的関数と、複数の荷重伝達部位123a、123b及び123cの変位が等しいとする制約条件と、を設定する。
 最適化解析条件設定ステップS9dにおいて、制約条件は、複数設定可能である。さらに、制約条件として、最適化ブロックモデルの体積制約率(設計空間の体積に対する最適化処理により残存する最適化ブロックモデルの体積の比率)を、設計空間全体の体積の3%以上7%以下の範囲内で設定することが好ましい。そこで、本実施の形態では、荷重伝達部位123a、123b及び123cそれぞれの変位が等しいとする制約条件に加えて、最適化ブロックモデル113の体積制約率を設計空間111全体の体積の5%とする制約条件を設定する。
≪最適化解析工程≫
 最適化解析工程S11は、解析条件設定工程S9において設定された解析条件の下で最適化ブロックモデルの最適な構造を求める最適化解析を行う工程である。
 本実施の形態において、最適化解析工程S11では、荷重伝達構造最適化解析装置1の最適化解析部23が、最適化解析モデル120に対して解析条件設定工程S9において設定された解析条件(荷重条件及び拘束条件と最適化解析条件(目的関数、制約条件))の下で、最適化ブロックモデル113を最適化の解析対象として最適化解析を行い、図4に示すように、最適化ブロックモデル113の最適構造125を求める。そして、最適化ブロックモデル113の最適構造125が、複数の耐荷重部品に伝達させるサイドシル105における最適な荷重伝達構造として求められる。
 最適化解析工程S11における最適化解析には、例えば、トポロジー最適化を適用することができる。そして、トポロジー最適化において密度法を用いる際に中間的な密度が多い場合には、最適化パラメータとしてペナルティ係数を与えて離散化することが好ましい。ペナルティ係数の値は適宜設定することができる。
 最適化ブロックモデル113の最適構造125は、解析条件設定工程S9において設定した解析条件(荷重条件、拘束条件、目的関数、制約条件)を満たすように最適化ブロックモデルを構成する立体要素が残存及び消去することにより求められる。
 最適化解析工程S11は、上記のとおりトポロジー最適化を行うものでもよいし、他の計算方式による最適化解析であってもよい。また、最適化解析工程における最適化解析は、例えば市販されている有限要素法を用いた解析ソフトを使用することもできる。
<荷重伝達構造最適化解析プログラム>
 上記の本実施の形態1についての説明は荷重伝達構造最適化解析装置及び方法についてのものであったが、本実施の形態1は、コンピュータによって構成された荷重伝達構造最適化解析装置1(図1)の演算処理部11における各部を機能させる荷重伝達構造最適化解析プログラムとして構成することができる。
 本発明の実施の形態1に係る荷重伝達構造最適化解析プログラムは、車体骨格部品と複数の耐荷重部品とを備えてなる自動車の衝突時に前記車体骨格部品に入力した衝突荷重を分配して複数の前記耐荷重部品に伝達させる最適な荷重伝達構造を求めるものである。荷重伝達構造最適化解析プログラムは、コンピュータを、図1に示す演算処理部11のように、車体モデル取得部13と、設計空間設定部15と、最適化ブロックモデル生成部17と、結合処理部19と、解析条件設定部21と、最適化解析部23と、として実行させる機能を備える。また、荷重伝達構造最適化解析プログラムは、解析条件設定部21を、衝突荷重入力部位及び荷重伝達部位設定部21aと、耐荷重部品伝達荷重決定部21bと、荷重拘束条件設定部21cと、最適化解析条件設定部21dと、として機能させるものである。
 以上、本実施の形態に係る荷重伝達構造最適化解析装置、方法及びプログラムによれば、車体骨格部品に入力した衝突荷重を複数の耐荷重部品の耐荷重以下の伝達荷重に配分、配分した伝達荷重を衝突荷重の反力として車体骨格部品に入力する入力荷重とする荷重条件と、車体骨格部品に衝突荷重が入力した部位の変位を拘束する拘束条件と、を設定し、荷重伝達構造の最適化処理を行う。これにより、複数の耐荷重部品へと伝達する荷重の大きさや配分を保障しつつ、車体骨格部品に入力した衝突荷重を耐荷重部品の耐荷重以下の荷重に配分して伝達させることができる最適な荷重伝達構造を求めることが可能となる。また、これにより、図8に例示するように、バッテリーケース103にバッテリー101が収納された車体100を備えた電気自動車の側面衝突時においてもバッテリーケース103の変形を防ぐことができ、バッテリー101を保護することができる。
 上記の本発明に係る実施の形態は、側面衝突時に車両内部の車室空間(cabin space)及びバッテリー搭載したBEV(Battery Electronic Vehicle)やPHV(Plug-in Hybrid Vehicle)を含む電気自動車のバッテリーケースを保護するためにサイドシルの内部に設ける荷重伝達構造の最適な構造を求める場合を例としたものであった。
 もっとも、本発明は、電気自動車の側面衝突時におけるバッテリーケースを保護する場合に限るものではなく、その他の衝突形態や車体骨格部品及び耐荷重部品を対象とするものであってもよい。
 具体例として、伝達荷重の分配を考慮した車体構造の設計の対象となる車体骨格部品としては、前面衝突(front collision)ではフロントサイドメンバ(front side member)、スモールオーバーラップ衝突(small overlap frontal collision)ではフロントピラーロア(front pillar lower)が挙げられる。
 前面衝突においてはバンパーレインフォース(bumper reinforcement)を介してフロントサイドメンバに衝突荷重が入力し、クラッシュボックス(crash box)、フロントサイドメンバへと伝わり、その後フロントサイドメンバからダッシュパネル(dash panel)やサイドシルへと荷重が分配される。このとき、ダッシュパネルやサイドシルが変形すると車室空間へと侵入して乗員が損傷する危険がある。そのため、前面衝突時に車室空間を保護するために、ダッシュパネルやサイドシルは変形が許容されない耐荷重部品に該当する。
 また、スモールオーバーラップ衝突では、フロントサイドメンバやタイヤを介してフロントピラーロアに入力された衝突荷重は、フロントピラーロアからサイドシルやフロントピラーアッパー(front pillar upper)へと荷重が分配されて伝達される。このとき、前面衝突と同様、サイドシルやフロントピラーアッパーが変形すると車室空間へと侵入して乗員が損傷する危険がある。そのため、スモールオーバーラップ衝突時に車室空間を保護するためには、サイドシルやフロントピラーアッパーは変形が許容されない耐荷重部品に該当する。
 そして、あらゆる衝突形態において、荷重伝達先の耐荷重部品にはそれぞれ越えてはならない耐荷重があるため、車体骨格部品における荷重伝達系路上には、伝達先へ適切に荷重を配分できる荷重伝達構造が必要となる。本発明は、車体骨格部品を補剛する補剛部材(stiffing member)にも適用することができ、車体における耐荷重部品への伝達荷重の分配を考慮して車体骨格部品の補剛部材の構造や形状に関する設計指針を求めることが可能となる。
 また、上記の説明は、図9に例示するように、車体骨格部品であるサイドシル105と、耐荷重部品であるフロアクロスメンバ107とバッテリーケース固定部品109と、を備えた自動車の一部の車体モデルを解析対象とするものであったが、本発明は、自動車の全部の車体モデルを解析対象とするものであってもよい。
[実施の形態2]
 前述した実施の形態1は、自動車の車体骨格部品における最適な荷重伝達構造を求めるものであったが、本発明は、該求めた荷重伝達構造に基づいて車体骨格部品における荷重伝達部材を製造する方法として構成することができる。すなわち、本発明の実施の形態2に係る自動車の車体骨格部品における荷重伝達部材の製造方法は、実施の形態1に係る自動車の車体骨格部品における荷重伝達構造の最適化解析方法を用いて前記車体骨格部品の荷重伝達部材の構造を求め、求めた荷重伝達部材の構造に基づいて該荷重伝達部材を製造するものである。
 例えば、前述した実施の形態1に係る自動車の車体骨格部品における荷重伝達構造の最適化解析方法を用いて、最適な荷重伝達構造として図4に示す最適構造125が求められた場合、最適構造125に基づいて荷重伝達部材の形状を決定する。そして、決定した荷重伝達部材の形状に従って、荷重伝達部材を設計・製造する。プレス成形(press forming)やロールフォーミング(roll forming)などの金属板(metal sheet)の加工によって製造可能な板金部材(sheet metal part)で荷重伝達部材を実現するにあたっては、求められた最適構造125内に見られる柱状の部位(例えば、後述する図4の125a、125b、125c)に、板金部材の稜線部(ridge line section)が沿うような形状に設計すればよく、さらに最適構造(optimum structure)125内の各柱状の部位の太さに応じて板金部材の稜線部の強度を調整することが望ましい。稜線部の強度の調整は、板金部材の板厚や材料強度(material strength)を変えることによって行う。また、鋳造部品(cast part)やアルミ材押出し材(aluminum extruded material)等、より形状自由度が高い金属加工方法(metal forming method)を扱える場合は、最適構造125の形状そのままに荷重伝達部材を製造することで最大の効果が得られる。
 これにより、自動車の衝突時に車体骨格部品に入力した衝突荷重を複数の耐荷重部品の耐荷重以下の荷重に分配して伝達させることができ、自動車の衝突時に車体部品(バッテリー等)や車室空間を保護することができる。
 本発明に係る自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラムの効果を検証する実験を行ったので、以下、これについて説明する。
 本実施例では、前述した実施の形態1と同様に、図8に示すような、バッテリーケース103にバッテリー101が収納された電気自動車の車体100の側面にポール200が衝突した際にバッテリーケース103を保護するため、図9に示すサイドシル105とフロアクロスメンバ107とバッテリーケース固定部品109とを備えた車体モデル110を解析対象とし、サイドシル105に入力した衝突荷重を分配してフロアクロスメンバ107及びバッテリーケース固定部品109に伝達する最適な荷重伝達構造を求めた(発明例)。
 そして、最適化解析を行うに先立って、本実施例では、まず、図9に示す側面衝突解析を行い、図3に示すように、サイドシル105における衝突荷重入力部位及び衝突荷重を求めた。側面衝突解析においては、サイドシル105の側面かつ2本のフロアクロスメンバ107の中間位置に直径250mmのポールが衝突するものとした。
 続いて、車体骨格部品における荷重伝達構造の最適化解析の解析対象とする車体モデル110を取得した。車体モデル110は、図2に示すように、車体骨格部品であるサイドシル105と、耐荷重部品であるフロアクロスメンバ107とバッテリーケース固定部品109と、が平面要素でモデル化されたものである。
 次に、車体モデル110における荷重伝達構造が配設可能な領域として、サイドシルインナ105aとサイドシルアウタ105bとの間の閉断面空間に設計空間111を設定した。
 次に、設計空間111に、最適化の解析処理の対象とする最適化ブロックモデル113を生成し、最適化ブロックモデル113を車体モデル110と結合して最適化解析モデル120を生成した。
 次に、生成した最適化解析モデル120に対して、最適化の解析処理を行うための解析条件を設定した。最適化の解析処理の解析条件の設定において、まず、側面衝突解析の結果に基づいて、図3に示すように、サイドシル105における衝突荷重入力部位121と、複数の荷重伝達部位123と、を設定した。衝突荷重入力部位121は、側面衝突解析においてポール200がサイドシル105に接触する部位とした。さらに、荷重伝達部位123は、図3に示すようにサイドシル105とフロアクロスメンバ107とが接続している部位(123a及び123b)と、サイドシル105とバッテリーケース固定部品109とが接続している部位(123c)とした。
 次に、サイドシル105からフロアクロスメンバ107とバッテリーケース固定部品109へと伝達する伝達荷重を決定した。本実施例では、図9に示す車体モデル110の側面衝突解析の結果に基づいて、フロアクロスメンバ107へと荷重が伝達する荷重伝達部位123a及び123bにおける伝達荷重を200kN、バッテリーケース固定部品109へと荷重が伝達する荷重伝達部位123cにおける伝達荷重を300kNと決定した。
 次に、図3に示すように、フロアクロスメンバ107及びバッテリーケース固定部品109への伝達荷重(200kN、200kN及び300kN)を荷重伝達部位123a、123b及び123cのそれぞれに対して衝突荷重(700kN)の反力として設定して最適化解析モデル120への入力荷重とする荷重条件と、衝突荷重入力部位121の変位を拘束する拘束条件と、を設定した。
 次に、最適化解析条件として、荷重伝達部位123(123a、123b及び123c)における変位を最小とする目的関数と、3か所の荷重伝達部位123a、123b及び123cにおける変位が等しいとする制約条件を設定した。さらに、制約条件として、最適化ブロックモデルの体積制約率を設計空間全体の体積の5%以下を設定した。
 そして、解析条件として設定した荷重条件、拘束条件及び最適化解析条件の下で、最適化ブロックモデルの最適化処理を行い、最適な荷重伝達構造として、最適化ブロックモデルの最適構造を求めた。
 本実施例では、比較対象として、図6に示すように、衝突荷重入力部位121に衝突荷重(=700kN)が入力する荷重条件と、荷重伝達部位123(123a、123b、123c)の変位を拘束する拘束条件と、を設定し、発明例と同様に最適化処理を行い、最適化ブロックモデル113の最適構造を求めた(比較例)。比較例における最適化解析条件については、衝突荷重入力部位121の変位を最小とする目的関数と、最適化ブロックモデルの体積制約率を設計空間全体の体積の5%以下とする制約条件と、を設定した。
 図4に、発明例として求めた最適化ブロックモデルの最適構造125を示す。さらに、図7に、比較例として求めた最適化ブロックモデルの最適構造127を示す。
 発明例における最適化ブロックモデルの最適構造125は、サイドシルアウタ105bの上部からフロアクロスメンバ107への荷重伝達部位123a及び123bへと延在する部位125aと、サイドシルアウタ105bの下部からバッテリーケース固定部品109への荷重伝達部位123cへと延在する部位125bと、に加え、部位125aと部位125bとを連結する部位125cと、を有する構造となった。
 一方、比較例における最適化ブロックモデルの最適構造127は、サイドシルアウタ105bの上部からフロアクロスメンバ107への荷重伝達部位123a及び123bへと延在する部位127aと、サイドシルアウタ105bの下部からバッテリーケース固定部品109への荷重伝達部位123cへと延在する部位127bと、を有する構造となったものの、発明例の最適構造125で見られた、部位127aと部位127bとを接続する部位は得られなかった。このことから、発明例の最適構造125における部位125cは、3か所の荷重伝達部位123a、123b及び123cにおける変位が等しく最小とするために機能する部位と考えられる。
 次に、最適化解析により求めた最適構造の効果を検証するために、図6に示すサイドシル105を用いて、荷重伝達試験を実施した。荷重伝達試験においては、サイドシル105の内側に最適化ブロックモデルの最適構造125(発明例)又は最適構造127(比較例)を配設し、衝突荷重入力部位121に700kNの荷重を付与し、2本のフロアクロスメンバ107への荷重伝達部位123a及び123bとバッテリーケース固定部品109への荷重伝達部位123cにおける伝達荷重を求めた。表1に、発明例に係る最適化ブロックモデルの最適構造125又は比較例に係る最適化ブロックモデルの最適構造127が配設されたサイドシル105の荷重伝達部位123a、123b及び123における伝達荷重の解析結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、フロアクロスメンバNo.1及びフロアクロスメンバNo.2は荷重伝達部位123a及び荷重伝達部位123bそれぞれにおける伝達荷重、バッテリーケース固定部品への伝達荷重は荷重伝達部位123cにおける伝達荷重である。
 表1に示すように、発明例に係る最適化ブロックモデルの最適構造125の場合、各荷重伝達部位123における伝達荷重はほぼ目標通りの荷重分配を実現できた。これに対し、比較例に係る最適化ブロックモデルの最適構造127の場合、荷重伝達部位123における伝達荷重を調整することはできないため、クロスメンバへの伝達荷重は目標よりも50kN小さく、バッテリーケース固定部品への伝達荷重は100kN大きい結果となり、目標と大きく異なる結果となった。
 以上、本発明に係る自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラムによれば、車体骨格部品に入力した衝突荷重を適切に配分して耐荷重部品の耐荷重以下の荷重で伝達させることができる最適な荷重伝達構造を求めることが可能であることが示された。
 本発明によれば、自動車の衝突時に車体骨格部品に入力した衝突荷重を分配して複数の耐荷重部品に伝達させる最適な荷重伝達構造を求める自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラムと、自動車の車体骨格部品における荷重伝達部材の製造方法を提供することができる。
 1 荷重伝達構造最適化解析装置
 3 表示装置
 5 入力装置
 7 記憶装置
 9 作業用データメモリ
 11 演算処理部
 13 車体モデル取得部
 15 設計空間設定部
 17 最適化ブロックモデル生成部
 19 結合処理部
 21 解析条件設定部
 21a 衝突荷重入力部位及び荷重伝達部位設定部
 21b 耐荷重部品伝達荷重決定部
 21c 荷重拘束条件設定部
 21d 最適化解析条件設定部
 23 最適化解析部
 31 車体モデルファイル
 100 車体
 101 バッテリー
 103 バッテリーケース
 103a バッテリーケースアッパ
 103b バッテリーケースロア
 105 サイドシル
 105a サイドシルインナ
 105b サイドシルアウタ
 107 フロアクロスメンバ
 107a フロアクロスメンバ
 107b フロアクロスメンバ
 109 バッテリーケース固定部品
 110 車体モデル
 111 設計空間
 113 最適化ブロックモデル
 120 最適化解析モデル
 121 衝突荷重入力部位
 123 荷重伝達部位
 123a 荷重伝達部位
 123b 荷重伝達部位
 123c 荷重伝達部位
 125 最適構造
 125a 部位
 125b 部位
 125c 部位
 127 最適構造
 127a 部位
 127b 部位
 200 ポール

Claims (8)

  1.  車体骨格部品と複数の耐荷重部品とを備えてなる自動車の衝突時に前記車体骨格部品に入力した衝突荷重を分配して複数の前記耐荷重部品に伝達させる最適な荷重伝達構造を、コンピュータが以下の各ステップを行うことにより求める自動車の車体骨格部品における荷重伝達構造の最適化解析方法であって、
     前記車体骨格部品と前記耐荷重部品とが平面要素及び/又は立体要素でモデル化された前記自動車の全部又は一部の車体モデルを取得する車体モデル取得工程と、
     前記車体モデルにおける前記荷重伝達構造が配設可能な領域を設計空間として設定する設計空間設定工程と、
     該設定された設計空間に立体要素でモデル化されて最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成工程と、
     該生成した最適化ブロックモデルを前記車体モデルに結合して最適化解析モデルを生成する結合処理工程と、
     前記最適化の解析処理を行うための解析条件を設定する解析条件設定工程と、
     該設定した解析条件の下で前記最適化ブロックモデルの最適な構造を求める最適化解析を行う最適化解析工程と、を含み、
     前記解析条件設定工程は、
      前記最適化解析モデルの前記車体骨格部品における衝突荷重が入力する部位に衝突荷重入力部位と、複数の前記耐荷重部品のそれぞれに荷重を伝達させる前記車体骨格部品における部位に荷重伝達部位と、を設定する衝突荷重入力部位及び荷重伝達部位設定ステップと、
      前記最適化解析モデルに入力する衝突荷重を複数の前記耐荷重部品の耐荷重以下に分配し、各前記荷重伝達部位における前記耐荷重部品への伝達荷重を決定する耐荷重部品伝達荷重決定ステップと、
      該決定した前記耐荷重部品への伝達荷重を各前記荷重伝達部位のそれぞれに対して前記衝突荷重の反力として設定して前記最適化解析モデルへの入力荷重とする荷重条件と、前記衝突荷重入力部位の変位を拘束する拘束条件と、を設定する荷重拘束条件設定ステップと、
     前記最適化解析工程における前記最適化解析の最適化解析条件として、所定の目的関数と、複数の前記荷重伝達部位の変位が等しいとする制約条件と、を設定する最適化解析条件設定ステップと、を含む、自動車の車体骨格部品における荷重伝達構造の最適化解析方法。
  2.  前記最適化解析条件設定ステップは、前記制約条件として、さらに前記最適化ブロックモデルの体積制約率を前記設計空間全体の体積の3%以上7%以下の範囲内の所定の値以下と設定し、
     前記最適化解析工程は、トポロジー最適化の密度法を用いた最適化解析を行う、請求項1に記載の自動車の車体骨格部品における荷重伝達構造の最適化解析方法。
  3.  前記車体骨格部品は、前記自動車の側部に配設されて車体前後方向に延在するサイドシルとし、
     前記耐荷重部品は、前記自動車の下部に配設されたバッテリーケースを前記サイドシルと接続するバッテリーケース固定部品とフロアクロスメンバとし、
     前記解析条件設定工程に先立って、前記車体モデルを対象とし、該車体モデルにおける車体幅方向外側から前記サイドシルにポールが衝突する側面衝突解析を行い、
     前記側面衝突解析の結果に基づいて、
      前記衝突荷重入力部位及び荷重伝達部位設定ステップは、前記車体モデルの車体骨格部品における前記衝突荷重入力部位及び荷重伝達部位を設定し、
      前記耐荷重部品伝達荷重決定ステップは、前記車体骨格部品に入力する衝突荷重及び耐荷重部品への伝達荷重を決定する、請求項1又は2に記載の自動車の車体骨格部品における荷重伝達構造の最適化解析方法。
  4.  請求項1乃至請求項3のうち、いずれか1項に記載の自動車の車体骨格部品における荷重伝達構造の最適化解析方法を用いて前記車体骨格部品の荷重伝達部材の構造を求め、
     該求めた荷重伝達部材の構造に基づいて該荷重伝達部材の形状を決定し、
     該決定した形状に従って前記荷重伝達部材を製造する、自動車の車体骨格部品における荷重伝達部材の製造方法。
  5.  車体骨格部品と複数の耐荷重部品とを備えてなる自動車の衝突試験において前記車体骨格部品に入力した衝突荷重を分配して複数の前記耐荷重部品に伝達させる最適な荷重伝達構造を求める自動車の車体骨格部品における荷重伝達構造の最適化解析装置であって、
     前記車体骨格部品と前記耐荷重部品とが平面要素及び/又は立体要素でモデル化された前記自動車の全部又は一部の車体モデルを取得する車体モデル取得部と、
     前記車体モデルにおける前記荷重伝達構造が配設される領域に設計空間を設定する設計空間設定部と、
     該設定された設計空間に立体要素でモデル化されて前記荷重伝達構造の最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成部と、
     該生成した最適化ブロックモデルを前記車体モデルに結合して最適化解析モデルを生成する結合処理部と、
     前記最適化の解析処理を行うための解析条件を設定する解析条件設定部と、
     該設定した解析条件の下で前記最適化ブロックモデルの最適な構造を求める最適化解析を行う最適化解析部と、を備え、
     前記解析条件設定部は、
      前記最適化解析モデルにおける衝突荷重が入力する部位に衝突荷重入力部位と、複数の前記耐荷重部品のそれぞれに荷重を伝達させる部位に荷重伝達部位と、を前記最適化解析モデルに設定する衝突荷重入力部位及び荷重伝達部位設定部と、
      複数の前記耐荷重部品それぞれの耐荷重以下となるように前記最適化解析モデルに入力する衝突荷重を配分して各前記耐荷重部品の荷重伝達部位における伝達荷重を決定する耐荷重部品伝達荷重決定部と、
      複数の前記荷重伝達部位のそれぞれに対して前記衝突荷重の反力として各前記耐荷重部品への伝達荷重を設定して前記最適化解析モデルへの入力荷重とする荷重条件と、前記衝突荷重入力部位の変位を拘束する拘束条件と、を設定する荷重拘束条件設定部と、
     前記最適化解析部において行う前記最適化解析の最適化解析条件として、所定の目的関数と、複数の前記荷重伝達部位の変位が等しいとする制約条件と、を設定する最適化解析条件設定部と、を有する、自動車の車体骨格部品における荷重伝達構造の最適化解析装置。
  6.  前記最適化解析条件設定部は、前記制約条件として、さらに前記最適化ブロックモデルの体積制約率を前記設計空間全体の3%以上7%以下の範囲内で設定し、
     前記最適化解析部は、トポロジー最適化の密度法を用いた最適化解析を行う、請求項5に記載の自動車の車体骨格部品における荷重伝達構造の最適化解析装置。
  7.  車体骨格部品と複数の耐荷重部品とを備えてなる自動車の衝突試験において前記車体骨格部品に入力した衝突荷重を分配して複数の前記耐荷重部品に伝達させる最適な荷重伝達構造を求める自動車の車体骨格部品における荷重伝達構造の最適化解析プログラムであって、
     コンピュータを、
     前記車体骨格部品と前記耐荷重部品とが平面要素及び/又は立体要素でモデル化された前記自動車の全部又は一部の車体モデルを取得する車体モデル取得部と、
     前記車体モデルにおける前記荷重伝達構造が配設される領域に設計空間を設定する設計空間設定部と、
     該設定された設計空間に立体要素でモデル化されて前記荷重伝達構造の最適化の解析処理を行う最適化ブロックモデルを生成する最適化ブロックモデル生成部と、
     該生成した最適化ブロックモデルを前記車体モデルに結合して最適化解析モデルを生成する結合処理部と、
     前記最適化の解析処理を行うための解析条件を設定する解析条件設定部と、
     該設定した解析条件の下で前記最適化ブロックモデルの最適な構造を求める最適化解析を行う最適化解析部と、として実行させる機能を備え、
     前記解析条件設定部を、
      前記最適化解析モデルにおける衝突荷重が入力する部位に衝突荷重入力部位と、複数の前記耐荷重部品のそれぞれに荷重を伝達させる部位に荷重伝達部位と、を前記最適化解析モデルに設定する衝突荷重入力部位及び荷重伝達部位設定部と、
      複数の前記耐荷重部品それぞれの耐荷重以下となるように前記最適化解析モデルに入力する衝突荷重を配分して各前記耐荷重部品の荷重伝達部位における伝達荷重を決定する耐荷重部品伝達荷重決定部と、
      複数の前記荷重伝達部位のそれぞれに対して前記衝突荷重の反力として各前記耐荷重部品への伝達荷重を設定して前記最適化解析モデルへの入力荷重とする荷重条件と、前記衝突荷重入力部位の変位を拘束する拘束条件と、を設定する荷重拘束条件設定部と、
     前記最適化解析部において行う前記最適化解析の最適化解析条件として、所定の目的関数と、複数の前記荷重伝達部位の変位が等しいとする制約条件と、を設定する最適化解析条件設定部と、として機能させる、自動車の車体骨格部品における荷重伝達構造の最適化解析プログラム。
  8.  前記最適化解析条件設定部は、前記制約条件として、さらに前記最適化ブロックモデルの体積制約率を前記設計空間全体の3%以上7%以下の範囲内で設定し、
     前記最適化解析部は、トポロジー最適化の密度法を用いた最適化解析を行う、請求項7に記載の自動車の車体骨格部品における荷重伝達構造の最適化解析プログラム。
PCT/JP2022/047586 2022-03-03 2022-12-23 自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラム、自動車の車体骨格部品における荷重伝達部材の製造方法 WO2023166830A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247026681A KR20240128107A (ko) 2022-03-03 2022-12-23 자동차의 차체 골격 부품에 있어서의 하중 전달 구조의 최적화 해석 방법, 장치 및 프로그램, 자동차의 차체 골격 부품에 있어서의 하중 전달 부재의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-032258 2022-03-03
JP2022032258A JP7306510B1 (ja) 2022-03-03 2022-03-03 自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラム、自動車の車体骨格部品における荷重伝達部材の製造方法

Publications (1)

Publication Number Publication Date
WO2023166830A1 true WO2023166830A1 (ja) 2023-09-07

Family

ID=87072519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047586 WO2023166830A1 (ja) 2022-03-03 2022-12-23 自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラム、自動車の車体骨格部品における荷重伝達部材の製造方法

Country Status (3)

Country Link
JP (1) JP7306510B1 (ja)
KR (1) KR20240128107A (ja)
WO (1) WO2023166830A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110238401A1 (en) * 2010-03-23 2011-09-29 Honda Motor Co., Ltd. Structural Optimization for Vehicle Crashworthiness
JP5585672B2 (ja) 2013-02-01 2014-09-10 Jfeスチール株式会社 形状最適化解析方法及び装置
JP2017226353A (ja) * 2016-06-23 2017-12-28 本田技研工業株式会社 車体の下部構造
CN110059418A (zh) * 2019-04-23 2019-07-26 北斗航天汽车(北京)有限公司 一种基于cae的新能源汽车整车正面结构抗撞性的模拟测试方法
JP2020086564A (ja) * 2018-11-16 2020-06-04 Jfeスチール株式会社 形状最適化解析方法及び装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585672U (ja) 1978-12-11 1980-06-13

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110238401A1 (en) * 2010-03-23 2011-09-29 Honda Motor Co., Ltd. Structural Optimization for Vehicle Crashworthiness
JP5585672B2 (ja) 2013-02-01 2014-09-10 Jfeスチール株式会社 形状最適化解析方法及び装置
JP2017226353A (ja) * 2016-06-23 2017-12-28 本田技研工業株式会社 車体の下部構造
JP2020086564A (ja) * 2018-11-16 2020-06-04 Jfeスチール株式会社 形状最適化解析方法及び装置
CN110059418A (zh) * 2019-04-23 2019-07-26 北斗航天汽车(北京)有限公司 一种基于cae的新能源汽车整车正面结构抗撞性的模拟测试方法

Also Published As

Publication number Publication date
KR20240128107A (ko) 2024-08-23
JP7306510B1 (ja) 2023-07-11
JP2023128127A (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
Reddy et al. Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection
CN107000791B (zh) 车辆用车架
Deb et al. Design of an aluminium-based vehicle platform for front impact safety
Qi et al. On design of hybrid material double-hat thin-walled beams under lateral impact
Christensen et al. Nonlinear optimization of vehicle safety structures: Modeling of structures subjected to large deformations
More et al. Design and analysis of side door intrusion beam for automotive safety
Mirzaamiri et al. Crash test simulation and structure improvement of IKCO 2624 truck according to ECE-R29 regulation
DE102018211969A1 (de) Fahrzeugfrontkarosserie-Verstärkungsstruktur
Asadinia et al. Sensitivity analysis and optimization for occupant safety in automotive frontal crash test
Guler et al. Crashworthiness evaluation of an intercity coach against rollover accidents1
Güler et al. Experimental and numerical study on the crashworthiness evaluation of an intercity coach under frontal impact conditions
Deb Crashworthiness design issues for lightweight vehicles
WO2023166830A1 (ja) 自動車の車体骨格部品における荷重伝達構造の最適化解析方法、装置及びプログラム、自動車の車体骨格部品における荷重伝達部材の製造方法
Babu et al. Crash analysis of car chassis frame using finite element method
Ambrósio Crash analysis and dynamical behaviour of light road and rail vehicles
Chen et al. Effect of lateral stiffness coefficient of loader ROPS on human injury in a lateral rollover incident
Joshi et al. Finite element analysis of rear under-run protection device (RUPD) for impact loading
CN113291381A (zh) 一种汽车b柱加强结构及汽车b柱
JP6933200B2 (ja) 形状最適化解析方法及び装置
Mayrhofer et al. Enhanced coach and bus occupant safety
CN110422134B (zh) 一种轻型货车隔板装置及其设计方法
Kim et al. Development of a topology optimization program considering density and homogeni-zation methods
Lefer et al. Car-to-truck frontal crash compatibility
Ponnadai Analysis of side impact beams in car side door
Nejad et al. Computational aided design for generating a modular, lightweight car concept

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247026681

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022929972

Country of ref document: EP

Ref document number: 2401005671

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022929972

Country of ref document: EP

Effective date: 20240902