WO2023166130A1 - Procédé de sélection de cellules clonales exprimant des molécules de liaison multispécifiques assemblées correctement - Google Patents
Procédé de sélection de cellules clonales exprimant des molécules de liaison multispécifiques assemblées correctement Download PDFInfo
- Publication number
- WO2023166130A1 WO2023166130A1 PCT/EP2023/055345 EP2023055345W WO2023166130A1 WO 2023166130 A1 WO2023166130 A1 WO 2023166130A1 EP 2023055345 W EP2023055345 W EP 2023055345W WO 2023166130 A1 WO2023166130 A1 WO 2023166130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- host cells
- polypeptides
- specific binding
- polypeptide
- binding site
- Prior art date
Links
- 230000009870 specific binding Effects 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 61
- 210000004027 cell Anatomy 0.000 claims description 211
- 230000027455 binding Effects 0.000 claims description 148
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 133
- 229920001184 polypeptide Polymers 0.000 claims description 132
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 132
- 239000003153 chemical reaction reagent Substances 0.000 claims description 97
- 108091007433 antigens Proteins 0.000 claims description 55
- 102000036639 antigens Human genes 0.000 claims description 55
- 239000000427 antigen Substances 0.000 claims description 54
- 150000007523 nucleic acids Chemical group 0.000 claims description 26
- 230000009919 sequestration Effects 0.000 claims description 22
- 210000004962 mammalian cell Anatomy 0.000 claims description 6
- 238000012216 screening Methods 0.000 abstract description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 21
- 102000018358 immunoglobulin Human genes 0.000 description 21
- 238000003556 assay Methods 0.000 description 19
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 16
- 101710145634 Antigen 1 Proteins 0.000 description 14
- 101100476210 Caenorhabditis elegans rnt-1 gene Proteins 0.000 description 14
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 14
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 13
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 11
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 10
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 10
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 9
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 9
- 238000013459 approach Methods 0.000 description 7
- 238000004113 cell culture Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 5
- 239000012228 culture supernatant Substances 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 102000005396 glutamine synthetase Human genes 0.000 description 5
- 108020002326 glutamine synthetase Proteins 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 3
- 241000235058 Komagataella pastoris Species 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 238000004720 dielectrophoresis Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 238000013515 script Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- 101100067974 Arabidopsis thaliana POP2 gene Proteins 0.000 description 2
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- 101100118549 Homo sapiens EGFR gene Proteins 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 101100123851 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HER1 gene Proteins 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000002073 fluorescence micrograph Methods 0.000 description 2
- 108091006047 fluorescent proteins Proteins 0.000 description 2
- 102000034287 fluorescent proteins Human genes 0.000 description 2
- 238000005734 heterodimerization reaction Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 102100021266 Alpha-(1,6)-fucosyltransferase Human genes 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 101100348617 Candida albicans (strain SC5314 / ATCC MYA-2876) NIK1 gene Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 101710098119 Chaperonin GroEL 2 Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 108091005942 ECFP Proteins 0.000 description 1
- -1 EYFP and ZsYellow Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 101000819490 Homo sapiens Alpha-(1,6)-fucosyltransferase Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235650 Kluyveromyces marxianus Species 0.000 description 1
- 241001099157 Komagataella Species 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 241000235087 Lachancea kluyveri Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 101001018085 Lysobacter enzymogenes Lysyl endopeptidase Proteins 0.000 description 1
- 241000699673 Mesocricetus auratus Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000282341 Mustela putorius furo Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241000320412 Ogataea angusta Species 0.000 description 1
- 241001452677 Ogataea methanolica Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 241001489192 Pichia kluyveri Species 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101100007329 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) COS1 gene Proteins 0.000 description 1
- 101100221606 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) COS7 gene Proteins 0.000 description 1
- 235000018368 Saccharomyces fragilis Nutrition 0.000 description 1
- 241000582914 Saccharomyces uvarum Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 101710198474 Spike protein Proteins 0.000 description 1
- 101000588258 Taenia solium Paramyosin Proteins 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 108091005948 blue fluorescent proteins Proteins 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011965 cell line development Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 108010082025 cyan fluorescent protein Proteins 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000012632 fluorescent imaging Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940031154 kluyveromyces marxianus Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002090 nanochannel Substances 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108010054624 red fluorescent protein Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000000954 titration curve Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
- G01N33/5023—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
- G01N33/56972—White blood cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6845—Methods of identifying protein-protein interactions in protein mixtures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6854—Immunoglobulins
Definitions
- the present invention relates to methods for selecting cells that express multi-specific binding molecules, such as antibodies, and in particular bispecific antibodies, with high levels of correctly assembled protein.
- Bispecific antibodies have shown much promise as a therapeutic approach: bispecific antibodies are entering clinical studies in record numbers, with most developed for cancer.
- Such molecules unlike naturally occurring IgG molecules, contain at least 2 and usually at least 4 different chains (e.g., two heavy and two light chains). Therefore, there are a number of different permutations for assembly of the complete product, whereas for naturally occurring IgG molecules there is only one.
- Multi-specific therapeutic molecules bind to at least two different antigens on the cancer cell as well as recruiting at least one effector cell (NK- or T-cell) to the tumour site.
- Protein engineering tools employed to generate such complex molecules therefore involve complex design of multiple polypeptide chains that need to come together in the correct ratio to form a fully functional multi-specific molecule. This poses a significant challenge to the cellular machinery.
- a method to determine the correct assembly of a tri-specific molecule for example: an IgG molecule that binds to HER1 (Antigen 1), HER2 (Antigen 2) on the cancer cell, and recruits a T-cell through an scFv that binds to CD3 (Antigen 3) on the T-cell receptor, using for example an In-Beacon assay and a plate-based assay.
- a tri-specific molecule for example: an IgG molecule that binds to HER1 (Antigen 1), HER2 (Antigen 2) on the cancer cell, and recruits a T-cell through an scFv that binds to CD3 (Antigen 3) on the T-cell receptor
- the present invention provides a method that enables individual cell clones to be analysed in vitro whilst growing and secreting recombinant protein.
- reagents that bind specifically to the correctly paired regions of the product different producing clones can be assessed and compared to enable selection of cells that efficiently produce improved ratios of correctly formed product to incorrectly formed product.
- the present invention provides a method of selecting a cell for expression of a multi-specific binding molecule comprising the following steps:
- step (d) selecting one or more host cells expressing a multi-specific binding molecule based on a comparison of the two levels measured in step (c).
- the present invention provides a method of selecting a cell for expression of a multi-specific binding molecule comprising the following steps:
- step (d) selecting one or more host cells expressing a multi-specific binding molecule based on a comparison of the two levels measured in step (c).
- the invention relates to a method of selecting a cell for expression of a multi-specific binding molecule comprising the following steps:
- step (d) selecting one or more host cells expressing a multi-specific binding molecule based on a comparison of the two levels measured in step (c).
- the third and fourth polypeptides are the same.
- the host cells comprise the same one or more nucleic acid sequences encoding the at least two or at least four polypeptides.
- the multi-specific binding molecules are secreted by the host cells.
- the multi-specific binding molecule is a multi-specific antibody or a bispecific antibody.
- the first and/or second labelled reagent comprises a target antigen of the multi-specific binding molecule.
- the labels for the first and second reagents are different.
- the first and/or second labelled reagent is a fluorescently-labelled reagent.
- the first and/or second labelled reagent is an anti-idiotypic antibody- fluorophore conjugate.
- the host cells are mammalian cells.
- the host cells are cultured in a volume of between about 0.3 nanoliters and about 500 microliters.
- the host cells are cultured in a microplate or in a fluidic device.
- the host cells are cultured in a microfluidic device, optionally wherein the microfluidic device comprises a microfluidic channel to which a plurality of sequestration pens are fluidically connected, optionally wherein the host cells are loaded into the microfluidic device such that a plurality of the sequestration pens are each loaded with one host cell.
- the method further comprises incubating a host cell selected according to step (d) under conditions that allow for expression of the at least two different polypeptides and assembly into a multi-specific binding molecule, and isolating the multi-specific binding molecule.
- the invention relates to a method of expressing in a host cell a multi-specific binding molecule, which method comprises incubating a host cell selected according to the method described herein under conditions that allow for expression of the at least two different polypeptides and assembly into a multi-specific binding molecule, and isolating the multi-specific binding molecule.
- the invention relates to a multi-specific binding molecule prepared by the method of expressing in a host cell a multi-specific binding molecule described herein.
- Figure 1 Diagram showing (A) an individual sequestration pen in a microfluidic device such as the Berkeley Lights Beacon as well as a representation of optoelectric positioning; and (B) a typical workflow using the Beacon to select cells.
- the antibodies shown are as an example, labelled anti-idiotypic antibodies that bind to a correctly formed binding site in the multispecific antibodies of interest that are produced by the cell clones in each pen.
- Figure 2 Normalized intensities of varying ratios of mAbs ‘spiked’ in null CCS (cell culture supernatant). Different ratios of monoclonal antibodies mAb1 and mAb2 were spiked into cell culture supernatant. mAb1 and mAb2 were immobilized in protein A-coated wells of a 96-well plate, washed and the ratio of binding sites determined by incubation with fluorescently labelled antigens specifically binding the binding sites of the monoclonal antibodies.
- Figure 3 Normalized intensities of microplate plate assay to determine the heterogeneity of bispecific antibodies with different architectures.
- Cell culture supernatant from host cells producing bispecific antibodies of two different architectures (Bs1 and Bs2) was added to protein A-coated wells of a 96-well plate, thereby immobilizing the bispecific antibodies.
- Antibodies were washed and the ratio of binding sites determined by incubation with fluorescently labelled antigens specifically binding the individual binding sites of the bispecific antibodies.
- the fluorescence intensity is determined and normalized for each of the reagents (i.e., labelled antigens), to obtain an intensity score for each reagent and well.
- a pairing score may be calculated by dividing the lowest intensity score by the highest intensity score for each well.
- a well comprising only perfectly assembled bispecific antibodies will yield identical intensity scores for each reagent and therefore a pairing score of 1 (i.e., 100%). Mispairing will result in different intensity scores for each reagent and thus pairing scores below 1 , e.g., 0.95, 0.9 or 0.8.
- the present invention provides a method of selecting a cell for expression of a multi-specific binding molecule comprising the following steps:
- step (d) selecting one or more host cells expressing a multi-specific binding molecule based on a comparison of the two levels measured in step (c).
- the present invention provides a method of selecting a cell for expression of a multi-specific binding molecule comprising the following steps:
- step (d) selecting one or more host cells expressing a multi-specific binding molecule based on a comparison of the two levels measured in step (c).
- the present invention provides a method of selecting a cell for expression of a multi-specific binding molecule comprising the following steps:
- step (d) selecting one or more host cells expressing a multi-specific binding molecule based on a comparison of the two levels measured in step (c).
- the first, second, third and fourth polypeptides may be referred to herein as polypeptides (i), (ii), (iii) and (iv), respectively.
- the methods described herein are for selecting a host cell for expression of a correctly assembled multi-specific binding molecule.
- the multi-specific binding molecule when correctly assembled, comprises one copy of each, the first and the second polypeptide, or one copy of each, the first, second, third and fourth polypeptide.
- the at least two polypeptides or the at least four polypeptides are heterologous polypeptides.
- a heterologous polypeptide is a polypeptide that is not natively expressed by the host cells, i.e. , a polypeptide that is derived from a different organism or cell type as compared to the host cells.
- the third and fourth polypeptides are the same.
- the target molecule to which the first binding site (formed by the first polypeptide or by the first and third polypeptides) binds is different to the target molecule to which the second binding site (formed by the second polypeptide or by the second and fourth polypeptides) binds.
- the first binding site is a first immunoglobulin antigen binding region
- the second binding site is a second immunoglobulin antigen binding region.
- the at least two polypeptides each comprise three immunoglobulin complementarity determining regions (CDRs).
- the first polypeptide may comprise a first set of three CDRs
- the second polypeptide may comprise a second set of three CDRs.
- the third polypeptide may comprise a third set of three CDRs
- the fourth polypeptide may comprise a fourth set of three CDRs.
- the first polypeptide comprises a first immunoglobulin heavy chain Fab region and the second polypeptide comprises a second immunoglobulin heavy chain Fab region.
- the third polypeptide comprises a first immunoglobulin light chain Fab region and the fourth polypeptide comprises a second immunoglobulin light chain Fab region.
- the first polypeptide comprises a first immunoglobulin heavy chain Fab region
- the second polypeptide comprises a second immunoglobulin heavy chain Fab region
- the third polypeptide comprises a first immunoglobulin light chain Fab region
- the fourth polypeptide comprises a second immunoglobulin light chain Fab region.
- At least one of the polypeptides comprises a signal peptide that leads to secretion of the multi-specific binding molecule from the host cells.
- the multi-specific binding molecules are secreted by the host cells.
- the multi-specific binding molecule is a multi-specific antibody or a bispecific antibody.
- the first and second labelled reagent generally comprise a moiety that binds selectively to the first or second binding site, respectively, and a label. Selective binding of the first and second labelled reagent to the first or second binding site, respectively, generally requires correct assembly of the first or second binding site after expression of the polypeptides by the host cells.
- the first and/or second labelled reagent comprises a target antigen of the multi-specific binding molecule, i.e. , the labelled reagents comprise the target molecule to which the first and the second binding site bind, or a fragment thereof.
- the first and second labelled reagents comprise the target antigens of the multi-specific binding molecule.
- the first and/or second labelled reagent is an anti-idiotypic antibody or antibody fragment (e.g., Fab or scFv molecules).
- the first and second labelled reagents are anti-idiotypic antibodies or antibody fragments.
- the labels for the first and second reagents are different.
- the first and/or second labelled reagent is a fluorescently-labelled reagent.
- the first and second labelled reagents are fluorescently-labelled reagents.
- the first and/or second labelled reagent is an anti-idiotypic antibody- fluorophore conjugate.
- the first and second labelled reagents are anti-idiotypic antibody-fluorophore conjugates.
- the host cells are mammalian cells.
- the host cells are cultured in a volume of between about 0.3 nanoliters (nL) and about 500 microliters (pL).
- the cells are cultured in a volume of between about 0.4 nanoliters and about 250 microliters, more preferably between about 0.5 nanoliters and about 200 microliters.
- the host cells are cultured in a microplate.
- the microfluidic device comprises a microfluidic channel to which a plurality of sequestration pens are fluidically connected.
- the host cells may be loaded into the microfluidic device such that a plurality of the sequestration pens are each loaded with one host cell.
- a multi-specific binding molecule in the context of the present invention is a complex of two or more different polypeptide components that comprises at least two different binding sites which bind to target molecules.
- the present invention is applicable to molecular complexes where there are multiple components which could assemble in different ways with one another, and it is desired to maximise the correct assembly of the molecule.
- a clone is a host cell or a host cell population that is genetically homogenous.
- Each polypeptide component comprises a binding region for a target molecule of interest.
- the binding region of each component can pair with a binding region of another component to form a binding site for the target molecule.
- the overall molecular complex has at least two different binding sites, which may be for a different site on the same target molecule or, more commonly, two different target molecules.
- target molecules include cell surface molecules, such as receptors, spike proteins, extracellular proteins or any antigen protein.
- the first target molecule (Antigen 1) of the multi-specific binding molecule is HER1 and the second target molecule (Antigen 2) of the multi-specific binding molecule is HER2 on the cancer cell.
- the multi-specific binding molecule recruits a T-cell through an scFv that binds to CD3 (Antigen 3) on the T-cell receptor.
- the method of selecting a cell for expression of a multispecific binding molecule further comprises incubating a host cell selected as described herein under conditions that allow for expression of the at least two different polypeptides and assembly into a multi-specific binding molecule, and isolating the multi-specific binding molecule.
- the present invention provides a method of expressing in a host cell a multi-specific binding molecule, which method comprises incubating a host cell selected according to a method described herein under conditions that allow for expression of the at least two different polypeptides and assembly into a multi-specific binding molecule, and isolating the multi-specific binding molecule.
- the present invention provides a multi-specific binding molecule prepared by a method of selecting a cell for expression of a multi-specific binding molecule or a method of expressing in a host cell a multi-specific binding molecule described herein.
- polypeptides are single-domain antibodies.
- the multi-specific binding molecule is a multi-specific antibody or a bispecific antibody.
- the multi-specific binding molecule is an IgG-like bispecific antibody such as a DVD-IgG, IgG-scFv-scFv, scFv4, IgG-Fab, IgG-VH/VL or DVI- IgG.
- the target molecule to which the first binding site (formed by the first polypeptide or by the first and third polypeptides) binds is different to the target molecule to which the second binding site (formed by the second polypeptide or by the second and fourth polypeptides) binds.
- a typical example of the multi-specific binding molecule is a bispecific antibody which commonly comprises two different heavy chains and two different light chains such that, by contrast to a naturally-occurring IgG antibody, has two different antigen binding regions.
- a common light chain is used and so there are only three different chains, i.e., the third and fourth polypeptides may comprise an immunoglobulin light chain Fab region and may be identical.
- the polypeptide chains may comprise immunoglobulin antigen binding regions (i.e., the complementarity determining regions (CDRs)) optionally with some associated immunoglobulin constant region sequences.
- the polypeptide chains may comprise the Fab regions of an immunoglobulin without any Fc regions - these may be omitted or substituted with alternative sequences that provide for pairing such as other types of polypeptides that dimerize (e.g., a leucine zipper).
- Naturally occurring immunoglobulins generally have 3 CDRs on each polypeptide chain such that 6 CDRs form an antigen binding site.
- the immunoglobulin antigen binding region of each of the polypeptides typically includes 3 CDRs.
- the polypeptide chains are complete, or substantially complete immunoglobulin chains, such as immunoglobulin light chains or heavy chains.
- the sequences may be engineered to enhance correct heavy chain to heavy chain pairing by substitutions in the Fc region, e.g., mutations that create cysteine residues to provide for disulphide linkages; “knobs-in-holes” type mutations such as the WSAV approach; and/or substitutions that direct electrostatic interactions (electrostatic steering).
- sequences may be engineered to enhance correct heavy chain to light chain pairing by substitutions in the Fab region (constant or variable domains), e.g., mutations that create cysteine residues to provide for disulphide linkages; electrostatic steering; and/or domain swapping, such as the CrossMAbs approach.
- IgG-like bispecific antibodies such as DVD-IgG, IgG-scFv-scFv, scFv4, IgG-Fab, IgG-VH/VL, DVI-IgG; and fusions such as dock and lock (see Bratt et al., 2017, BioProcess International 15(11): 36-42).
- Any suitable host cell type may be used in the methods of the invention which can be genetically manipulated to express and secrete multi-specific binding molecules.
- Preferred host cells are those that can be used to express the multi-specific binding molecules on a large scale, for commercial production of the multi-specific molecule.
- the host cell is not a bacterial cell.
- the host cell is a eukaryotic cell, for example mammalian, yeast or insect cell. In one embodiment, the host cell is a mammalian cell.
- Example species from which host cell can be derived include human, mouse, rat, Chinese hamster, Syrian hamster, monkey, ape, dog, horse, ferret, and cat.
- the mammalian host cell is a Chinese hamster ovary (CHO) cell.
- the host cell is a CHO-K1 cell, a CHOK1SV cell, a DG44 CHO cell, a DUXB11 CHO cell, a CHO-S, a CHO GS knock-out cell, a CHOK1SV FUT8 knock-out cell, a CHOZN, ora CHO-derived cell.
- the CHO GS knock-out cell e.g., GSKO cell
- the CHO FLIT8 knockout cell is, for example, the Potelligent® CHOK1SV FLIT8 knock-out (Lonza Biologies, pic).
- mammalian host cells include HeLa, MDCK, HEK293, HEK293T, HT1080, H9, HepG2, MCF7, Jurkat, NIH3T3, PC12, PER.C6, BHK (baby hamster kidney), VERO, SP2/0, NSO, YB2/0, YO, EB66, C127 and COS (e.g., COS1 and COS7).
- the host cell is a cell other than a mammalian cell, such as avian, fish, insect, plant, fungus, or yeast cell.
- the eukaryotic cell is a lower eukaryotic cell such as, e.g., a yeast cell (e.g., Pichia genus (e.g., Pichia pastoris, Pichia methanolica, Pichia kluyveri, and Pichia angusta), Komagataella genus, Saccharomyces genus (e.g. Saccharomyces cerevisae, Saccharomyces kluyveri, Saccharomyces uvarum), or Kluyveromyces genus (e.g. Kluyveromyces lactis, Kluyveromyces marxianus).
- the eukaryotic cell is of the species Pichia pastoris. Examples for Pichia pastoris strains include but are not limited to X33, GS115, KM71 , KM71 H, and CBS7435.
- the eukaryotic cell is an insect cell (e.g., Sf9, MimicTM Sf9, Sf21 , High FiveTM (BT1-TN-5B1-4), or BT1-Ea88 cells).
- insect cell e.g., Sf9, MimicTM Sf9, Sf21 , High FiveTM (BT1-TN-5B1-4), or BT1-Ea88 cells.
- Suitable host cells are commercially available, for example, from culture collections such as the DSMZ (Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH, Braunschweig, Germany) or the American Type Culture Collection (ATCC). Population of Host Cells Transformed with Nucleic Acid Sequences Expressing Multispecific Binding Molecules
- Nucleic acid sequences encoding the different components of the multi-specific binding molecules can be introduced into populations of host cells using techniques well known in the art.
- the sequences encoding the constituent polypeptide chains, operably linked to regulatory control elements that drive expression of the polypeptides in the host cells are typically present in one or more nucleic acid vectors.
- One or more of the polypeptides will also typically include a signal sequence that directs secretion of the polypeptide from the host.
- the vectors typically include one or more selectable markers to enable selection of host cells that have taken up the nucleic acid vectors. Examples of selectable markers include dhfr and amino acid auxotrophy-based markers such as glutamine synthetase (GS).
- a population of cells may be generated wherein a plurality of the cells comprise one or more nucleic acid sequences encoding (i) a first polypeptide comprising a first immunoglobulin antigen binding region, such as an immunoglobulin CDR; (ii) a second polypeptide comprising a second immunoglobulin antigen binding region, such as an immunoglobulin CDR; (iii) a third polypeptide comprising a third immunoglobulin antigen binding region, such as an immunoglobulin CDR; and (iv) a fourth polypeptide comprising a fourth immunoglobulin antigen binding region, such as an immunoglobulin CDR, wherein the first and third immunoglobulin antigen binding regions (e.g., CDRs) together form a first antigen binding site and the second and fourth immunoglobulin antigen binding regions (e.g., CDRs) together form a second antigen binding site different to the
- the purpose of the selection process is to identify and develop further particular clones that produce high levels of correctly paired molecular complexes of interest (e.g., multi-specific binding molecules).
- Various genetic factors may mean that in a population of clones that have been transformed with the same sequences, not all clones behave in the same manner.
- the host cells within the population of host cells used in the methods according to the invention comprise the same one or more nucleic acid sequences encoding the polypeptides described herein.
- the host cells used in the methods according to the invention comprise the same one or more nucleic acid sequences encoding the at least two polypeptides.
- the host cells used in the methods according to the invention comprise the same one or more nucleic acid sequences encoding the at least four polypeptides.
- the host cells have all been transformed with the same one or more nucleic acid sequences.
- providing a population of host cells comprising one or more nucleic acid sequences comprises introduction of the one or more nucleic acid sequences into the host cells.
- providing a population of host cells comprising one or more nucleic acid sequences further comprises selecting host cells for successful introduction of the one or more nucleic acid sequences into the host cells.
- the variation comes from the host cells themselves.
- the population of cells that is subject to testing and selection contains the same sequences encoding the first, second, and, where applicable, third and fourth polypeptides. Due to transformation efficiencies, it is possible that not every cell in the population contains all of the sequences but those cells would in any case not be of interest.
- the CDRs may be part of an immunoglobulin Fab region and accordingly the plurality of the cells may comprise (i) a first polypeptide comprising a first immunoglobulin heavy chain Fab region; (ii) a second polypeptide comprising a second immunoglobulin heavy chain Fab region; (iii) a third polypeptide comprising a first immunoglobulin light chain Fab region; and (iv) a fourth polypeptide comprising a second immunoglobulin light chain Fab region.
- the first immunoglobulin heavy chain Fab region and the first immunoglobulin light chain Fab region together form a first immunoglobulin antigen binding region; and the second immunoglobulin heavy chain Fab region and the second immunoglobulin light chain Fab region together form a second immunoglobulin antigen binding region different to the first immunoglobulin antigen binding region.
- some approaches include a common chain such that there are 3 different polypeptides rather than 4 or more. Accordingly, one of the polypeptides (i) to (iv) may be identical to one or the others.
- the third and the fourth polypeptide may be identical and there are in reality three different polypeptides: a first, a second and a third polypeptide such that the first polypeptide pairs with the third polypeptide for the first antigen binding site and the second polypeptide also pairs with the third polypeptide for the second antigen binding site.
- polypeptides may also comprise Fc regions to form full length heavy and light chains.
- polypeptides may have been modified to promote heavy chain-heavy chain pairing and/or heavy light chain pairing.
- the host cells to be screened for expression of a correctly assembled multi-specific binding molecule according to the methods of the invention may be cultured in various suitable formats or devices known to the skilled artisan, including microplates or fluidic devices (e.g., in a microfluidic device or in a nanofluidic device).
- Selection of one or more cells expressing a multi-specific binding molecule based on a comparison of the levels of labelled reagents bound to their respective binding sites is generally facilitated by loading individual cells into compartments of a device used for culturing of the cells (e.g., individual well of a microplate or sequestration pen of a fluidic device), such that, after clonal expansion, each compartment comprises a population of cells resulting from clonal expansion of a single cell.
- the host cells are loaded into compartments of a device (e.g., a microplate or a fluidic device) used for culturing of the cells, such that a plurality of the compartments are each loaded with one host cell.
- a compartment may be a well of a microplate or a sequestration pen of a fluidic device.
- the host cells are clonally expanded to obtain a plurality of host cell populations, each of which is genetically homogenous.
- providing a population of host cells comprises clonally expanding the host cells to obtain a plurality of host cell populations, each of which is genetically homogenous.
- the host cells are loaded into compartments of a device (e.g., a microplate or a fluidic device) used for culturing of the cells, such that a plurality of the compartments are each loaded with one host cell, wherein the host cells are subsequently clonally expanded to obtain a plurality of host cell populations, each of which is genetically homogenous.
- the host cells are cultured in a microplate (also referred to as multiwell plate or microtiter plate), e.g., a 24-well plate, a 48-well plate, 96-well plate, a 384-well plate or a 1536-well plate.
- a microplate also referred to as multiwell plate or microtiter plate
- the host cells are cultured in a 96-well plate or a 384-well plate, more preferably in a 96-well plate.
- the host cells are cultured in a fluidic device (e.g., in a microfluidic device or in a nanofluidic device).
- a population of cells is introduced into a fluidic device (such as a microfluidic device or a nanofluidic device) which comprises a channel (such as a microchannel or a nanochannel) to which a plurality of sequestration pens are fluidically connected.
- the fluidic device comprises a substrate and the channel and pens are part of a fluidic structure which is disposed on a surface of the substrate. Cells suspended in a liquid medium can flow along the channel and pass the sequestration pens.
- the device is configured to enable individual cells to be loaded into a sequestration pen so that each sequestration pen contains only one cell, and also to enable the cells within a particular sequestration pen to be released into the channel and collected.
- the pens may be between about 0.3 nanoliters and about 500 microliters in volume, for example between about 0.3 and about 10 nL in volume for a microfluidic device.
- the sequestration pens may comprise a fluidic isolation structure comprising an isolation region having a single opening and a connection region fluidically connecting said isolation region to the channel, the connection region comprising a proximal opening into the channels.
- the substrate may be tilted at a small angle from the horizontal so that cells settle to the bottom of the sequestration pens and away from the narrow single opening into the channel.
- OEP OptoElectricPositioning
- Berkeley Lights Inc. Emeryville, CA Beacon system
- lacis Light-activated cell identification and sorting
- OEP is based on a microfluidic device which includes a transparent electrode on a silicon substrate with a fluidic chamber sandwiched between the two.
- the substrate is fabricated with an array of photosensitive transistors. When focused light hits the transistors and a voltage is applied, a non-uniform electric field is generated. This imparts a negative dielectrophoresis (DEP) force that repels particles (including cells) using light-induced OEP ( Figure 1a). In the absence of targeted light, no force is generated. When light is shined on the photoconductive material, DEP force is generated and cells trapped inside light “cages” can be moved across the chamber.
- DEP dielectrophoresis
- sequestration pens are integrated into the chip to isolate cells from each other, enabling on-chip culture of well-separated colonies emanating from single cells.
- selected clones can be exported off the microfluidic device for further processing.
- the export is the reverse of the import process, where desired cells are moved using OEP from single sequestration pens into the main channel and flushed, for example, into a target well of a 96-well plate positioned inside a CO2- and temperature-controlled incubator.
- the microfluidic device may, as per any manufacturer’s instructions, be pre-wetted with a suitable wetting solution that creates an environment compatible with the host cells and allows for good penning efficiency.
- the device can then be primed with cell culture media suitable for the growth of the host cells and protein expression.
- the cells Once cells have been loaded into a suitable device (e.g., microplate or fluidic device) and positioned into individual compartments (e.g., wells or sequestration pens), the cells are incubated to allow for cell growth and clonal expansion, as well as the production of the multispecific binding molecules. Monitoring of the different compartments can be used to ensure monoclonality in each compartment and also to ensure that the cells do not overfill the compartments prior to analysis of the multi-specific binding molecules.
- a suitable device e.g., microplate or fluidic device
- compartments e.g., wells or sequestration pens
- the reagents comprise the corresponding target antigen for the binding sites, e.g., the target molecule or a fragment thereof.
- the reagents are anti-idiotypic antibodies, including fragments thereof such as Fab, scFv molecules, specific to one of the correctly formed binding sites in the multi-specific molecule.
- Other reagents include aptamers - oligonucleotide or peptide molecules that have the requisite binding specificity.
- the binding molecules each need to be specific for the different binding sites so that binding can be distinguished.
- the reagents are typically labelled with a detectable label to enable binding of the reagent to its target to be measured in situ in the device.
- the label is a chemiluminescent label.
- the label is a fluorescent label, such as a fluorophore or a fluorescent protein.
- the detectable label is fluorescein or a derivative thereof (e.g., fluorescein isothiocyanate).
- Exemplary fluorescent proteins are blue fluorescent proteins such as BFP and mTagBFP, cyan fluorescent proteins such as ECFP and TagCFP, green fluorescent proteins such as EGFP and ZsGreen, yellow fluorescent proteins such as EYFP and ZsYellow, red fluorescent proteins such as mRFP and mCherry, far-red proteins such as E2-Crimson.
- blue fluorescent proteins such as BFP and mTagBFP
- cyan fluorescent proteins such as ECFP and TagCFP
- green fluorescent proteins such as EGFP and ZsGreen
- yellow fluorescent proteins such as EYFP and ZsYellow
- red fluorescent proteins such as mRFP and mCherry
- far-red proteins such as E2-Crimson.
- Each different reagent may be labelled with the same or a different detectable label.
- each different reagent is labelled with a different detectable label.
- Each reagent can be introduced into the device separately or at the same time, (which may depend on whether different labels are used as well as the ability of the imaging system to distinguish between different labels, such as different fluorescent (or chemiluminescent) signals, to enable simultaneous measurement).
- the first reagent is introduced into the device such that it is able to enter the compartments (e.g., wells or sequestration pens) and contact the multi-specific molecule produced by the host cells in the compartment.
- the reagent is present in the compartments for a period of time to provide sufficient binding to the multi-specific molecule (e.g., 45 to 60 minutes).
- a suitable washing step if required, the binding of the first reagent to the first binding site in the molecule is determined, e.g., by fluorescent imaging of the device.
- a wash step is then used to remove the first reagent and the process is repeated with the second reagent and so on.
- the extent of binding of the first and second reagents is determined, e.g., using image analysis algorithms or scripts. This can be used to determine an intensity score (e.g., a normalized signal intensity) for each compartment (e.g., well or sequestration pen) for each reagent, adjusted as necessary to actual binding amounts depending on the performance of the labels used so that an accurate comparison of the intensity score for the different reagents can be made.
- an intensity score e.g., a normalized signal intensity
- compartment e.g., well or sequestration pen
- the intensity score is determined by normalizing each level (e.g., signal intensity) of first labelled reagent and second labelled reagent to a standard.
- the standard is a titration curve for each labelled reagent across the relevant concentration range.
- the standard is a sample representative of a correctly assembled multi-specific binding molecule (e.g., a purified correctly assembled multi-specific binding molecule).
- an individual standard is used for each labelled reagent, wherein each standard is a sample representative of correct assembly of the binding site that is selectively bound by the respective labelled reagent.
- the level measured for the first labelled reagent is normalized using a standard which is a sample representative of correct assembly of the first binding site that is selectively bound by the first labelled reagent and the level measured for the second labelled reagent is normalized using a standard which is a sample representative of correct assembly of the second binding site that is selectively bound by the second labelled reagent.
- the intensity scores for each reagent are then compared to obtain a pairing score, e.g., a percentage obtained by dividing the lowest intensity score by the highest intensity score for each pen.
- a similar score e.g., greater than or equal to 90 or 95%, indicates high levels of correctly paired chains since similar amounts of correctly formed first and second binding sites in the multi-specific molecule are present in the compartment (e.g., well or sequestration pen). Expressed in another way, if the intensities are within +/- 20%, such as +/- 10% or +/- 5% of each other, then this would be considered a similar score.
- levels of first labelled reagent and second labelled reagent bound to their respective binding sites that are within +/- 20% of each other (i.e., have intensity scores within +/- 20% of each other), preferably within +/- 10% of each other and most preferably within +/- 5% of each other indicate correctly-paired multi-specific binding molecules (i.e., multi-specific binding molecules comprising both a first binding site for a target molecule, and a second binding site for a target molecule).
- selecting one or more host cells expressing a multi-specific binding molecule based on a comparison of the two levels (e.g., signal intensities) measured for the first labelled reagent and the second labelled reagent bound to their respective binding sites comprises selecting one or more host cells according to the level of correctly assembled multispecific binding molecule.
- selecting one or more host cells expressing a multispecific binding molecule involves ranking host cells according to the level (e.g., signal intensity) ratio of the first labelled reagent and second labelled reagent. Host cells with a level (e.g., signal intensity) ratio closer to 1 are generally preferred in this process.
- one or more host cells are selected according to their pairing score(s), e.g., one or more host cells are selected that have been determined to exhibit the highest pairing score(s).
- the pairing score is obtained by comparing the level (e.g., intensity scores) of the first labelled reagent and the second labelled reagent.
- cells in particular compartments are scored for productivity (total levels of multispecific molecule production) since it is advantageous for industrial production for the cells to be able to produce high titers of the product of interest.
- the scoring may be a relative score between the various clones.
- the Beacon system provides SpotlightTM Human Fc and kappa light chain assays. These are fluorophores that bind to the Fc and/or the kappa light chain constant region and give a fluorescence signal directly proportional to the amount of antibody expressed in that particular clone.
- a “score” value is created by measuring the change in fluorescence in the or close to the neck of the pen in the (what they call diffusion gradient assay). A higher slope value means higher titre.
- the maximum score is normalized to 100 and the minimum to 0. The values in between are the percent of the total and the score is calculated from these values.
- the rQp is the relative production per cell of the last DiGr assay, i.e., the score divided by the number of cells.
- the relative score may be normalized to a standard, e.g., normalized to the clone with the highest absolute productivity.
- the signal e.g., fluorescent signal
- the clone possessing the highest productivity is thus assigned a productivity of 100% and a clone possessing a lower productivity would be assigned a corresponding lower value (e.g., 90%, 70%, 50%, etc.).
- clones that meet the threshold for correct pairing, and typically the threshold for productivity can then be exported from the device, e.g., into 96-well plates, for further growth. Typically, selected clones are then further assessed to identify the highest producing clones (high Qp).
- Clones may optionally be subject to further analysis to confirm the high levels of correct pairing. For example, assessment of purified molecule by limited digestion (e.g., with Lys-C) and mass spectroscopy (LC-MS) can be used to check for quantitate in more detail the levels and configuration of non-correctly paired variants.
- assessment of purified molecule by limited digestion e.g., with Lys-C
- mass spectroscopy LC-MS
- Selected clones can then be used to establish stable cell lines for use in manufacturing recombinant multi-specific binding molecules of interest, for example at a scale of greater than 500 g per batch, e.g., in a bioreactor having a volume of at least 10 L such as at least about 100, 200, 500, 1000 or 2000 L.
- a bioreactor having a volume of at least 10 L such as at least about 100, 200, 500, 1000 or 2000 L.
- Example 1 Determination of heterogeneity of mAbs using a microfluidic Beacon system
- Fluorescence imaging of the chips is performed by the Beacon system, which can capture bright field and fluorescence images across multiple time points. Analysis of the image using a script results in assigning an “intensity score” to each NanoPenTM based on the gradient of intensity in a specific area of the NanoPen: the relative yield is measured this way. A script then compares the intensity scores for each NanoPen for fluorophore A and fluorophore B, and generates a “pairing score” based on similarity of the levels of bound fluorophore, the higher the score the more similar the levels of bound fluorophores A and B, and the higher percentage of correctly paired heterodimeric antibody that particular clone is producing. Software to analyse the fluorescence images also includes free software such as Imaged (available from the National Institutes of Health website), that measure intensity.
- Imaged available from the National Institutes of Health website
- This procedure can also be performed with a single fluorophore since measurements can be taken sequentially and the first reagent will then be washed out before the second reagent is introduced.
- Example 2 Determination of heterogeneity of varying ratios of mAbs ‘spiked’ in null CCS (cell culture supernatant)
- Table 2 Data show that the plate assay can be used to assess the degree of heterogeneity in various CCS samples.
- Example 3 Fluorescence-based 96-well plate assay to determine the heterogeneity of bispecific antibodies with different architectures.
- Single cells with the required nucleotide sequences to express a tri-specific molecule are loaded into individual pens, and they are allowed to grow over a period of 4 days by perfusing media into the chip.
- fluorescently labelled Antigen 1 , Antigen 2 and Antigen 3 antigens are prepared at a concentration >10x Ko of the interaction.
- Estimation of the clones expressing tri-specifics can be determined by two workflows:
- Antigens 1 , 2 and 3 labelled with 3 different fluorophores with minimal spectral overlap are prepared to a working concentration of >10x Ko of the interaction.
- the fluorescently labelled antigens are mixed in equimolar ratios and perfused into the chip. Fluorescence signal from each labelled antigen is collected and the data are used to estimate the ratios of antigen binding sites in molecules secreted by the clones.
- the multiplexed method can be used only in cases where the antigen binding sites are not within the FRET distance (0.2-0.9nm).
- Plate based assays can be used to assess the degree of multi-specificity binding using both the sequential as well as the multiplexed approach.
- the IgG tri-specific is immobilized on a Protein A coated 96-well plate, and the excess molecule washed off the plate using an appropriate buffer.
- the workflow is similar to the Beacon workflow described above, except that a fluorescence plate reader is used to measure the fluorescence intensity.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Virology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biophysics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
La divulgation concerne des procédés de criblage de cellules productrices pour des clones qui expriment une proportion élevée de molécules de liaison multispécifiques assemblées correctement.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22160066.1A EP4239333A1 (fr) | 2022-03-03 | 2022-03-03 | Procédé de sélection de cellules clonales exprimant des molécules de liaison multispécifiques assemblées correctement |
EP22160066.1 | 2022-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023166130A1 true WO2023166130A1 (fr) | 2023-09-07 |
Family
ID=80628978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/055345 WO2023166130A1 (fr) | 2022-03-03 | 2023-03-02 | Procédé de sélection de cellules clonales exprimant des molécules de liaison multispécifiques assemblées correctement |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4239333A1 (fr) |
WO (1) | WO2023166130A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050266425A1 (en) * | 2003-12-31 | 2005-12-01 | Vaccinex, Inc. | Methods for producing and identifying multispecific antibodies |
CN104818295A (zh) * | 2015-02-03 | 2015-08-05 | 武汉友芝友生物制药有限公司 | 制备和筛选表达双特异性抗体细胞株的方法 |
US9857333B2 (en) | 2012-10-31 | 2018-01-02 | Berkeley Lights, Inc. | Pens for biological micro-objects |
WO2018076024A2 (fr) * | 2016-10-23 | 2018-04-26 | Berkeley Lights, Inc. | Procédés de criblage de lymphocytes b |
-
2022
- 2022-03-03 EP EP22160066.1A patent/EP4239333A1/fr active Pending
-
2023
- 2023-03-02 WO PCT/EP2023/055345 patent/WO2023166130A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050266425A1 (en) * | 2003-12-31 | 2005-12-01 | Vaccinex, Inc. | Methods for producing and identifying multispecific antibodies |
US9857333B2 (en) | 2012-10-31 | 2018-01-02 | Berkeley Lights, Inc. | Pens for biological micro-objects |
CN104818295A (zh) * | 2015-02-03 | 2015-08-05 | 武汉友芝友生物制药有限公司 | 制备和筛选表达双特异性抗体细胞株的方法 |
WO2018076024A2 (fr) * | 2016-10-23 | 2018-04-26 | Berkeley Lights, Inc. | Procédés de criblage de lymphocytes b |
Non-Patent Citations (5)
Title |
---|
BRATT ET AL., BIOPROCESS INTERNATIONAL, vol. 15, no. 11, 2017, pages 36 - 42 |
LE ET AL.: "A novel mammalian cell line development platform utilizing nanofluidics and optoelectro positioning technology", BIOTECHNOL PROG, vol. 34, 2018, pages 1438 - 46, XP055914993, DOI: 10.1002/btpr.2690 |
MOCCIARO ET AL.: "Light-activated cell identification and sorting (lacis) for selection of edited clones on a nanofluidic device", COMMUN BIOL, vol. 1, 2018, pages 41, XP055718236, DOI: 10.1038/s42003-018-0034-6 |
WINTERS AARON ET AL: "Rapid single B cell antibody discovery using nanopens and structured light", vol. 11, no. 6, 11 June 2019 (2019-06-11), US, pages 1025 - 1035, XP055920304, ISSN: 1942-0862, Retrieved from the Internet <URL:https://tandfonline.com/doi/pdf/10.1080/19420862.2019.1624126> DOI: 10.1080/19420862.2019.1624126 * |
XU LIMING ET AL: "Bi-specific antibodies with high antigen-binding affinity identified by flow cytometry", INTERNATIONAL IMMUNOPHARMACOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 24, no. 2, 16 December 2014 (2014-12-16), pages 463 - 473, XP029196224, ISSN: 1567-5769, DOI: 10.1016/J.INTIMP.2014.12.011 * |
Also Published As
Publication number | Publication date |
---|---|
EP4239333A1 (fr) | 2023-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Emanuel et al. | Recombinant antibodies: a new reagent for biological agent detection | |
CN106047857A (zh) | 一种发掘特异性功能抗体的方法 | |
US20170088611A1 (en) | Single-chain multivalent binding protein compositions and methods | |
US20230341381A1 (en) | Methods and reagents for determining immunoglobulin gamma (IgG) antibody isotype concentration from biological samples | |
CN107064092B (zh) | 一种双特异性抗体生物学活性与滴度检测方法及其应用 | |
Ayoubi et al. | A consensus platform for antibody characterization | |
JP5380303B2 (ja) | 高分子アディポネクチン測定法 | |
EP4239333A1 (fr) | Procédé de sélection de cellules clonales exprimant des molécules de liaison multispécifiques assemblées correctement | |
Sakaguchi et al. | Rapid, simple, and effective strategy to produce monoclonal antibodies targeting protein structures using hybridoma technology | |
CA2977436C (fr) | Procede et systeme de detection d'anticorps | |
KR20240155231A (ko) | 정확하게 조립된 다중특이적 결합 분자를 발현하는 클론성 세포를 선택하는 방법 | |
Miller et al. | Epitope binning of murine monoclonal antibodies by a multiplexed pairing assay | |
CN118829880A (zh) | 选择表达正确组装的多特异性结合分子的克隆细胞的方法 | |
CN107924164A (zh) | 定量的基于fret的相互作用测定 | |
Campbell et al. | Chimeric Protein Switch Biosensors | |
US11913951B2 (en) | High throughput method for measuring the protease activity of complement C3 convertase | |
US20190369095A1 (en) | Novel antibody for determination of adamts-13 activity | |
Anaya | Modernization of monoclonal antibody screening and protein-interaction assays | |
Sádio et al. | Yeast surface display and cell sorting of antigen-binding Fc fragments | |
US20160349270A1 (en) | Flip (fluorescence immunoprecipitation) for high-throughput immunoprecipitation | |
US20050208586A1 (en) | Using complement component C1q derived molecules as tracers for fluorescence polarization assays | |
Bahadır | Developing selection strategy for CHO-K1 cell line that secretes scfv-Fc fusion antibodies using ClonePix2 | |
Sakaguchi et al. | Rapid, simple, and effective strategy to produce monoclonal antibodies targeting native protein structures using hybridoma technology | |
Omidfar et al. | A mini review on recent progress of microfluidic systems for antibody development | |
Challa et al. | Function-first discovery of high affinity monoclonal antibodies using Nanovial-based plasma B cell screening |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23707421 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 315422 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023707421 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023707421 Country of ref document: EP Effective date: 20241004 |