WO2023165866A1 - Füllstandsmessanordnung - Google Patents

Füllstandsmessanordnung Download PDF

Info

Publication number
WO2023165866A1
WO2023165866A1 PCT/EP2023/054408 EP2023054408W WO2023165866A1 WO 2023165866 A1 WO2023165866 A1 WO 2023165866A1 EP 2023054408 W EP2023054408 W EP 2023054408W WO 2023165866 A1 WO2023165866 A1 WO 2023165866A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
sensor element
fill level
reservoir
level measuring
Prior art date
Application number
PCT/EP2023/054408
Other languages
English (en)
French (fr)
Inventor
Jörg Schwartz
Peter Hoppe
Original Assignee
Skf Lubrication Systems Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skf Lubrication Systems Germany Gmbh filed Critical Skf Lubrication Systems Germany Gmbh
Publication of WO2023165866A1 publication Critical patent/WO2023165866A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Definitions

  • the present invention relates to a fill level measuring arrangement for measuring the fill level in a reservoir according to the preamble of patent claim 1.
  • Reservoirs can be used to hold a fluid or other material and are commonly associated with systems to transfer the contents of the reservoir to other devices or devices.
  • the reservoir can be, for example, a lubricant reservoir in which oil or grease is stored, the lubricant being delivered to lubricating systems for bearings or the like.
  • the level of the reservoir can be monitored by various monitoring devices, such as optical or acoustic sensors that measure a distance between the surface of the contents of the reservoir and the sensor element.
  • the sensor elements are arranged in such a way that they point in the direction of the reservoir in order to be able to carry out their respective function.
  • maintenance processes or other movements within the reservoir e.g. by stirring the content
  • the content of the reservoir such as fat or oil
  • the sensor element can get into the area of such a sensor element. There is therefore a risk that the sensor element will become heavily soiled and the sensor will no longer function.
  • the filling level measuring arrangement for measuring the filling level in a reservoir can be arranged over a surface of a substance present in the reservoir.
  • the reservoir can be, for example, a lubricating aggregate with a lubricant, such as grease or oil, or can be any other type of reservoir, such as a fuel tank.
  • the fill level measuring arrangement is arranged over a surface of the reservoir.
  • the fill level measuring arrangement has a sensor housing with a base plate, the sensor housing defining an interior space with the base plate, a sensor arrangement with evaluation electronics and a sensor element being arranged in the interior space of the sensor housing.
  • the sensor element is arranged in the base plate and is set up to send a measurement signal in the direction of the surface and to receive a reflection signal reflected from the surface in response to the measurement signal.
  • the evaluation electronics can then use the time between the transmission of the measurement signal and the reception of the reflection signal for a transit time measurement in order to determine a fill level of the substance present in the reservoir.
  • the sensor element according to the filling level measuring arrangement proposed here in the base plate is in relation to the underside of the base plate, which faces the surface of the substance, in the direction of the interior of the sensor housing set back. This means that the sensor element is not aligned flush with the underside of the base plate, but is sunk in relation to this underside and can therefore be better protected against dirt.
  • the base plate has a cylindrical bore in which the sensor element is arranged.
  • a cylindrical sinking of the sensor element in the base plate has the advantage that on the one hand the sensor element can be protected from direct contact, in particular with grease in the reservoir, while at the same time the sensor element is easily accessible, so that cleaning the sensor element, if necessary, is simple and can be carried out without special tools.
  • the bottom plate has a conical bore, the sensor element being arranged in the tip of the conical bore and the opening of the cone facing towards the surface. Such a configuration is particularly advantageous in the case of oil or other fluids in the reservoir since, depending on the application, the fluid can spray into the area of the sensor element.
  • the sensor element By sinking the sensor element in relation to the underside of the base plate, the sensor element is protected from direct contact with such a fluid, and splashes that get into the area of the sensor element can run off and drip off in a defined manner on the funnel wall of the conical bore .
  • the filling level measuring arrangement is arranged centrally above the reservoir. Such a central arrangement is advantageous because in this way the transmission and reception of signals from the sensor element can be ensured. If the filling level measuring arrangement is arranged too far at the edge of the reservoir, it may be possible that signals emitted by the sensor element are not reflected by the surface of the content of the reservoir but by a wall surface of the reservoir. This would falsify the determination of the filling level.
  • the base plate is an injection molded element.
  • Such an injection-molded element in particular made of plastic, is advantageous because it enables the base plate and the depression formed in the base plate for the sensor element to be manufactured simply and inexpensively.
  • the base plate can be easily inserted into the sensor housing and replaced if necessary.
  • the base plate can therefore be exchanged and/or the base plate has an exchangeable insert in which the sensor element is fastened.
  • the fill level measuring arrangement can be used for different reservoirs and substances in the reservoir, since the base plate can be adapted to the content of the reservoir, in particular with regard to the type and design of the depression in which the sensor element is arranged.
  • FIG. 1 shows a schematic sectional view of a fill level measuring arrangement
  • FIG. 2 shows a perspective view of an embodiment of a base plate for the filling level measuring arrangement from FIG. 1;
  • FIG. 3 a perspective view of a further embodiment of a base plate for the filling level measuring arrangement from FIG. 1 ;
  • Fig. 4 a perspective sectional view of the base plate of Fig. 3.
  • the fill level measuring arrangement 1 shows a fill level measuring arrangement 1 which is designed to measure a fill level of a substance in a reservoir.
  • the fill level measuring arrangement 1 has a sensor housing 4 with a base plate 6 , the base plate 6 being able to be connected to the sensor housing 4 via fastening means 28 .
  • the sensor housing 4 defines with its base plate 6 an interior space 10 in which a sensor element 8 and evaluation electronics 12 are arranged.
  • the sensor housing 4 includes a connection 16 via which the fill level measuring system can be connected to external devices, such as computing devices etc.
  • the filling level measuring system can be connected to the reservoir (not shown) via fastening means 18 .
  • the sensor element 8 In order to measure the filling level 2, the sensor element 8 is set up to emit a signal which is reflected by a surface 2 of the content of the reservoir and is then received again by the sensor element 8.
  • the sensor element 8 can be designed to transmit and/or receive the signal within a measurement lobe 20 .
  • the evaluation electronics 12 can then carry out a transit time measurement via the emitted and reflected signal in order to determine a distance 22 between the sensor element 8 and the surface 2 .
  • impellers can be provided to stir the contents of the reservoir.
  • the sensor element 8 In order to protect the sensor element 8 from contamination by the content of the reservoir, for example due to a movement of the content by such agitator blades that spray the content, such as 01, against the sensor element 8, the sensor element 8 is arranged sunk in the base plate 6, as described below with reference to Figures 2-4.
  • FIG. 2 shows a first embodiment of a base plate 6 which can be connected to the sensor housing 4 shown in FIG.
  • the bottom plate 6 is shown in the figures as a square bottom plate 6 with chamfers, the bottom plate can also be round or rectangular or have other shapes.
  • the base plate 6 shown here has a cylindrical bore 24 .
  • the sensor element 8 is arranged at the bottom of this cylindrical bore 24 and is thus set back in relation to the underside 14 of the bottom plate. In this way the sensor element 8 is further away from the surface 2 of the content of the reservoir and on the other hand the opening formed by the cylindrical bore 24 is small, which reduces the probability that the content of the reservoir reaches the sensor element 8 is lower.
  • the base plate 6 also has attachment openings 26 into which attachment means 28 can be inserted (see FIG. 1) in order to connect the base plate 6 to the sensor housing 4 .
  • the base plate 6 can be exchanged in order to enable the fill level measuring arrangement 1 to be adapted to different fluids or solids in the reservoir, ie to adapt the base plate and in particular the opening 24 in which the sensor element 8 is arranged to the conditions of the reservoir.
  • FIGS. A further embodiment of the base plate 6 is shown in FIGS. In this case, the base plate 6 has a conical bore 30 instead of a cylindrical bore 24 as shown in FIG.
  • Such a conical bore 30 is particularly suitable for fluids in the reservoir, since the conical configuration means that a liquid which reaches the sensor element 8 is guided away from the sensor element 8 through the funnel configuration of the conical bore 30 and can run off.
  • the sensor element 8 is arranged in the tip of the cone and is therefore also set back from the underside 14 of the base plate 6 .
  • the filling level measuring arrangement proposed here thus makes it possible to arrange a sensor element over a reservoir, with the sensor element being protected from contamination by the contents of the reservoir.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

Offenbart wird eine Füllstandsmessanordnung (1) zum Messen des Füllstands in einem Reservoir, wobei die Füllstandsmessanordnung (1) über einer Oberfläche (2) eines in dem Reservoir vorhandenen Stoffs anordenbar ist, und ein Sensorgehäuse (4) mit einer Bodenplatte (6) aufweist, das einen Innenraum (10) definiert, wobei im Innenraum (10) des Sensorgehäuses (4) eine Sensoranordnung mit einer Auswerteelektronik (12) und einem Sensorelement (8) angeordnet ist, wobei das Sensorelement (8) in der Bodenplatte (6) angeordnet ist und dazu eingerichtet ist, ein Messsignal in Richtung der Oberfläche (2) zu senden und ein in Antwort auf das Messsignal von der Oberfläche (2) reflektiertes Reflektionssignal zu empfangen, wobei das Sensorelement (8) in der Bodenplatte (6) in Bezug auf die Unterseite (14) der Bodenplatte (6), die der Oberfläche (2) des Stoffs zugewandt ist, in Richtung des Innenraums (10) des Sensorgehäuses (4) rückversetzt ist.

Description

B e s c h r e i b u n g
Füllstandsmessanordnung
Vorliegende Erfindung betrifft eine Füllstandsmessanordnung zum Messen des Füllstands in einem Reservoir gemäß dem Oberbegriff von Patentanspruch 1.
Reservoirs können dazu verwendet werden, ein Fluid oder einen sonstigen Stoff aufzubewahren, und sind üblicherweise mit Systemen verbunden, um den Inhalt des Reservoirs an andere Vorrichtungen oder Geräte weiterzuleiten. Das Reservoir kann beispielsweise ein Schmierstoffreservoir sein, in dem Öl oder Fett aufbewahrt wird, wobei der Schmierstoff an Schmiersysteme für Lager oder ähnliches abgegeben wird. Hierbei ist es häufig nötig, die Füllstandshöhe des Reservoirs zu überwachen. Der Füllstand des Reservoirs kann durch verschiedene Überwachungsvorrichtungen überwacht werden, wie beispielsweise optische oder akustische Sensoren, die einen Abstand zwischen der Oberfläche des Inhalts des Reservoirs und dem Sensorelement messen. Die Sensorelemente sind dabei so angeordnet, dass sie in Richtung des Reservoirs zeigen, um ihre jeweilige Funktion durchführen zu können. Bei Servicetätigkeiten, Wartungsvorgängen oder sonstigen Bewegungen innerhalb des Reservoirs, z.B. durch Rühren des Inhalts, kann jedoch der Inhalt des Reservoirs, wie beispielsweise Fett oder Öl, in den Bereich eines solchen Sensorelements gelangen. Es besteht daher die Gefahr, dass das Sensorelement stark verschmutzt wird und die Sensorfunktion nicht mehr gegeben ist.
Es ist deshalb Aufgabe vorliegender Erfindung, eine Füllstandsmessanordnung mit einem Sensorelement bereitzustellen, bei der das Sensorelement vor Verschmutzungen geschützt ist. Diese Aufgabe wird durch eine Füllstandsmessanordnung zum Messen des Füllstands in einem Reservoir gemäß Patentanspruch 1 gelöst.
Die Füllstandsmessanordnung zum Messen des Füllstands in einem Reservoir ist über einer Oberfläche eines in dem Reservoir vorhandenen Stoffs anordenbar. Das Reservoir kann beispielsweise ein Schmierstoffaggregat mit einem Schmierstoff, wie Schmierfett oder Öl, sein, oder kann irgendeine andere Art von Reservoir, wie beispielsweise ein Brennstofftank, sein. In jedem Fall wird die Füllstandsmessanordnung über einer Oberfläche des Reservoirs angeordnet. Die Füllstandsmessanordnung weist ein Sensorgehäuse mit einer Bodenplatte auf, wobei das Sensorgehäuse mit der Bodenplatte einen Innenraum definiert, wobei im Innenraum des Sensorgehäuses eine Sensoranordnung mit einer Auswerteelektronik und einem Sensorelement angeordnet ist. Das Sensorelement ist in der Bodenplatte angeordnet und ist dazu eingerichtet, ein Messsignal in Richtung der Oberfläche zu senden und ein in Antwort auf das Messsignal von der Oberfläche reflektiertes Reflektionssignal zu empfangen. Die Auswerteelektronik kann dann die Zeit zwischen dem Aussenden des Messsignals und dem Empfangen des Reflektionssignals für eine Laufzeitmessung verwenden, um eine Füllstandshöhe des in dem Reservoir vorhandenen Stoffs zu bestimmen.
Um nun im Vergleich zu bisherigen Systemen das Sensorelement in der Bodenplatte vor Verschmutzung zu schützen, ist das Sensorelement gemäß der hier vorgeschlagenen Füllstandsmessanordnung in der Bodenplatte in Bezug auf die Unterseite der Bodenplatte, die der Oberfläche des Stoffs zugewandt ist, in Richtung des Innenraums des Sensorgehäuses rückversetzt. Das bedeutet, dass das Sensorelement nicht bündig mit der Unterseite der Bodenplatte ausgerichtet ist, sondern in Bezug auf diese Unterseite versenkt ist und somit vor Verschmutzung besser geschützt werden kann.
Gemäß einer Ausführungsform weist die Bodenplatte eine zylindrische Bohrung auf, in der das Sensorelement angeordnet ist. Eine solche zylindrische Versenkung des Sensorelements in der Bodenplatte hat den Vorteil, dass zum einen das Sensorelement vor direktem Kontakt insbesondere mit Fett in dem Reservoir geschützt werden kann, wobei gleichzeitig das Sensorelement leicht zugänglich ist, sodass eine Reinigung des Sensorelements, falls erforderlich, einfach und ohne Spezialwerkzeug durchgeführt werden kann. Gemäß einer anderen Ausführungsform weist die Bodenplatte eine kegelförmige Bohrung auf, wobei das Sensorelement in der Spitze der kegelförmigen Bohrung angeordnet ist und die Öffnung des Kegels in Richtung der Oberfläche gewandt ist. Eine solche Ausgestaltung ist insbesondere bei Öl oder anderen Fluiden in dem Reservoir vorteilhaft, da es, in Abhängigkeit vom Einsatzfall dazu kommen kann, dass das Fluid in den Bereich des Sensorelements spritzt. Durch die Versenkung des Sensorelements in Bezug auf die Unterseite der Bodenplatte wird das Sensorelement zum einen vor direktem Kontakt mit einem solchen Fluid geschützt, und zum anderen können Spritzer, die in den Bereich des Sensorelements gelangen, an der Trichterwand der kegelförmigen Bohrung definiert ablaufen und abtropfen.
Gemäß einer weiteren Ausführungsform ist die Füllstandsmessanordnung mittig über dem Reservoir angeordnet. Eine solche mittige Anordnung ist vorteilhaft, da auf diese Weise die Aussendung und das Empfangen von Signalen von dem Sensorelement sichergestellt werden kann. Wird die Füllstandsmessanordnung zu weit am Rand des Reservoirs angeordnet, kann es möglich sein, dass Signale, die von dem Sensorelement ausgesendet werden, nicht von der Oberfläche des Inhalts des Reservoirs, sondern von einer Wandfläche des Reservoirs reflektiert werden. Dies würde zu einer Verfälschung der Bestimmung der Füllstandshöhe führen.
Gemäß einer weiteren Ausführungsform ist die Bodenplatte ein Spritzgusselement. Ein solches Spritzgusselement, insbesondere aus Kunststoff, ist vorteilhaft, da dies eine einfache und kostengünstige Herstellung der Bodenplatte sowie der Vertiefung, die in der Bodenplatte für das Sensorelement gebildet ist, ermöglicht. Die Bodenplatte kann einfach in das Sensorgehäuse eingesetzt werden und bei Bedarf ausgetauscht werden.
Gemäß einer weiteren Ausführungsform ist daher die Bodenplatte austauschbar und/oder die Bodenplatte weist einen austauschbaren Einsatz auf, in dem das Sensorelement befestigt ist. Auf diese Weise kann die Füllstandsmessanordnung für verschiedene Reservoirs und Stoffe in dem Reservoir verwendet werden, da die Bodenplatte entsprechend an den Inhalt des Reservoirs, insbesondere in Bezug auf die Art und Ausgestaltung der Vertiefung, in der das Sensorelement angeordnet ist, angepasst werden kann. Weitere Vorteile und vorteilhafte Ausführungsformen sind in der Beschreibung, den Zeichnungen und den Ansprüchen angegeben. Dabei sind insbesondere die in der Beschreibung und in den Zeichnungen angegebenen Kombinationen der Merkmale rein exemplarisch, so dass die Merkmale auch einzeln oder anders kombiniert vorliegen können.
Im Folgenden soll die Erfindung anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher beschrieben werden. Dabei sind die Ausführungsbeispiele und die in den Ausführungsbeispielen gezeigten Kombinationen rein exemplarisch und sollen nicht den Schutzbereich der Erfindung festlegen. Dieser wird allein durch die anhängigen Ansprüche definiert.
Es zeigen:
Fig. 1 : eine schematische Schnittansicht eine Füllstandsmessanordnung;
Fig. 2: eine perspektivische Ansicht einer Ausführungsform einer Bodenplatte für die Füllstandsmessanordnung von Fig. 1;
Fig. 3 : eine perspektivische Ansicht einer weiteren Ausführungsform einer Bodenplatte für die Füllstandsmessanordnung von Fig. 1; und
Fig. 4: eine perspektivische Schnittansicht der Bodenplatte von Fig. 3.
Im Folgenden werden gleiche oder funktionell gleichwirkende Elemente mit denselben Bezugszeichen gekennzeichnet.
Fig. 1 zeigt eine Füllstandsmessanordnung 1, die zum Messen einer Füllstandshöhe eines Stoffs in einem Reservoir ausgebildet ist. Die Füllstandsmessanordnung 1 weist ein Sensorgehäuse 4 mit einer Bodenplatte 6 auf, wobei die Bodenplatte 6 mit dem Sensorgehäuse 4 über Befestigungsmittel 28 verbunden werden kann. Das Sensorgehäuse 4 definiert mit seiner Bodenplatte 6 einen Innenraum 10, in dem ein Sensorelement 8 sowie eine Auswerteelektronik 12 angeordnet sind. Des Weiteren umfasst das Sensorgehäuse 4 einen Anschluss 16, über den das Füllstandsmesssystem mit externen Vorrichtungen, wie beispielsweise Rechenvorrichtungen etc., verbunden werden kann. Über Befestigungsmittel 18 kann das Füllstandsmesssystem mit dem Reservoir (nicht gezeigt) verbunden werden. Um die Füllstandshöhe 2 zu messen, ist das Sensorelement 8 dazu eingerichtet, ein Signal auszusenden, das von einer Oberfläche 2 des Inhalts des Reservoirs reflektiert wird und dann von dem Sensorelement 8 wieder empfangen wird. Das Sensorelement 8 kann dazu ausgebildet sein, das Signal innerhalb einer Messkeule 20 zu senden und/oder zu empfangen. Über das ausgesendete und reflektierte Signal kann dann die Auswerteelektronik 12 eine Laufzeitmessung durchführen, um einen Abstand 22 zwischen dem Sensorelement 8 und der Oberfläche 2 zu bestimmen.
In einem Reservoir, in dem beispielsweise Schmierfett aufbewahrt wird, können Rührflügel vorgesehen sein, um den Inhalt des Reservoirs umzurühren. Um das Sensorelement 8 vor Verschmutzung durch den Inhalt des Reservoirs, beispielsweise aufgrund einer Bewegung des Inhalts durch solche Rührflügel, die den Inhalt, wie z.B. 01, gegen das Sensorelement 8 spritzen, zu schützen, ist das Sensorelement 8 in der Bodenplatte 6 versenkt angeordnet, wie im Folgenden unter Bezugnahme auf Figuren 2-4 beschrieben wird.
Fig. 2 zeigt eine erste Ausführungsform einer Bodenplatte 6, die mit dem Sensorgehäuse 4, das in Fig. 1 dargestellt ist, verbunden werden kann. Obwohl die Bodenplatte 6 in den Figuren als quadratische Bodenplatte 6 mit Abschrägungen dargestellt ist, kann die Bodenplatte auch rund oder rechteckig oder in anderen Formen ausgeführt sein.
Um das Sensorelement 8 vor Verschmutzung zu schützen, weist die hier dargestellte Bodenplatte 6 eine zylindrische Bohrung 24 auf. Das Sensorelement 8 wird am Boden diese zylindrischen Bohrung 24 angeordnet und ist somit in Bezug auf die Unterseite 14 der Bodenplatte rückversetzt. Auf diese Weise ist das Sensorelement 8 weiter von der Oberfläche 2 des Inhalts des Reservoirs entfernt und zum anderen ist die Öffnung, die durch die zylindrische Bohrung 24 gebildet wird, klein, wodurch die Wahrscheinlichkeit, dass der Inhalt des Reservoirs an das Sensorelement 8 gelangt, geringer ist.
Die Bodenplatte 6 weist des Weiteren Befestigungsöffnungen 26 auf, in die Befestigungsmittel 28 eingeführt werden können (siehe Fig. 1), um die Bodenplatte 6 mit dem Sensorgehäuse 4 zu verbinden. Die Bodenplatte 6 kann ausgetauscht werden, um eine Anpassung der Füllstandsmessanordnung 1 an unterschiedliche Fluide oder Feststoffe in dem Reservoir zu ermöglichen, d. h. um die Bodenplatte und insbesondere die Öffnung 24, in der das Sensorelement 8 angeordnet ist, an die Gegebenheiten des Reservoirs anzupassen. Eine weitere Ausgestaltung der Bodenplatte 6 ist in Figuren 3 und 4 dargestellt. In diesem Fall weist die Bodenplatte 6 statt einer zylindrischen Bohrung 24, wie sie in Fig. 2 dargestellt ist, eine kegelförmige Bohrung 30 auf. Eine solche kegelförmige Bohrung 30 ist insbesondere geeignet für Fluide in dem Reservoir, da durch die kegelförmige Ausgestaltung eine Flüssigkeit, die an das Sensorelement 8 gelangt, durch die Trichterausgestaltung der kegelförmigen Bohrung 30 von dem Sensorelement 8 weggeleitet wird und ablaufen kann. Das Sensorelement 8 ist in der Spitze des Kegels angeordnet und somit ebenfalls von der Unterseite 14 der Bodenplatte 6 rückversetzt.
Durch die hier vorgeschlagene Füllstandsmessanordnung ist es somit möglich, ein Sensorelement über einem Reservoir anzuordnen, wobei das Sensorelement vor Verunreinigungen durch den Inhalt des Reservoirs geschützt ist.
Bezugszeichenliste
1 Füllstandsmesssystem
2 Oberfläche
4 Sensorgehäuse
6 Bodenplatte
8 Sensorelement
10 Innenelement
12 Auswerteelektronik
14 Unterseite
16 Anschluss
18 Befestigungsmittel
20 Messkeule
22 Ab stand
24 zylindrische Bohrung
26 Befestigungsöffnungen
28 Befestigungsmittel
30 kegelförmige Bohrung

Claims

P a t e n t a n s p r ü c h e
Füllstandsmessanordnung Füllstandsmessanordnung (1) zum Messen des Füllstands in einem Reservoir, wobei die Füllstandsmessanordnung (1) über einer Oberfläche (2) eines in dem Reservoir vorhandenen Stoffs anordenbar ist, und ein Sensorgehäuse (4) mit einer Bodenplatte (6) aufweist, das einen Innenraum (10) definiert, wobei im Innenraum (10) des Sensorgehäuses (4) eine Sensoranordnung mit einer Auswerteelektronik (12) und einem Sensorelement (8) angeordnet ist, wobei das Sensorelement (8) in der Bodenplatte (6) angeordnet ist und dazu eingerichtet ist, ein Messsignal in Richtung der Oberfläche (2) zu senden und ein in Antwort auf das Messsignal von der Oberfläche (2) reflektiertes Reflektionssignal zu empfangen, dadurch gekennzeichnet, dass das Sensorelement (8) in der Bodenplatte (6) in Bezug auf die Unterseite (14) der Bodenplatte (6), die der Oberfläche (2) des Stoffs zugewandt ist, in Richtung des Innenraums (10) des Sensorgehäuses (4) rückversetzt ist. Füllstandsmessanordnung nach Anspruch 1, wobei die Bodenplatte (6) eine zylindrische Bohrung (24) aufweist, in der das Sensorelement (8) angeordnet ist. Füllstandsmessanordnung nach Anspruch 1, wobei die Bodenplatte eine kegelförmige Bohrung (30) aufweist, wobei das Sensorelement (8) in der Spitze der kegelförmigen Bohrung (30) angeordnet ist und die Öffnung des Kegels in Richtung der Oberfläche (2) gewandt ist. Füllstandsmessanordnung nach einem der vorhergehenden Ansprüche, wobei die Füllstandsmessanordnung (1) mittig über dem Reservoir angeordnet ist. Füllstandsmessanordnung nach einem der vorhergehenden Ansprüche, wobei die Bodenplatte (6) ein Spritzgusselement ist. Füllstandsmessanordnung nach einem der vorhergehenden Ansprüche, wobei die Bodenplatte (6) austauschbar ist und/oder wobei die Bodenplatte (6) einen austauschbaren Einsatz aufweist, in dem das Sensorelement (8) befestigt ist.
PCT/EP2023/054408 2022-03-02 2023-02-22 Füllstandsmessanordnung WO2023165866A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022202131.2A DE102022202131A1 (de) 2022-03-02 2022-03-02 Füllstandsmessanordnung
DE102022202131.2 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023165866A1 true WO2023165866A1 (de) 2023-09-07

Family

ID=85410326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/054408 WO2023165866A1 (de) 2022-03-02 2023-02-22 Füllstandsmessanordnung

Country Status (2)

Country Link
DE (1) DE102022202131A1 (de)
WO (1) WO2023165866A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566321A (en) * 1985-01-18 1986-01-28 Transamerica Delaval Inc. Microwave tank-contents level measuring assembly with lens-obturated wall-opening
US8085187B2 (en) * 2009-01-27 2011-12-27 Magnetrol International, Incorporated Through air radar sensor
JP5368403B2 (ja) * 2010-09-27 2013-12-18 ムサシノ機器株式会社 液面測定装置
CN214407672U (zh) * 2020-11-19 2021-10-15 山东省神奇自动化设备有限公司 一种电磁波水位监测系统
WO2021227144A1 (zh) * 2020-05-15 2021-11-18 小水怪(深圳)智能科技有限公司 一种智能测量杯子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566321A (en) * 1985-01-18 1986-01-28 Transamerica Delaval Inc. Microwave tank-contents level measuring assembly with lens-obturated wall-opening
US8085187B2 (en) * 2009-01-27 2011-12-27 Magnetrol International, Incorporated Through air radar sensor
JP5368403B2 (ja) * 2010-09-27 2013-12-18 ムサシノ機器株式会社 液面測定装置
WO2021227144A1 (zh) * 2020-05-15 2021-11-18 小水怪(深圳)智能科技有限公司 一种智能测量杯子
CN214407672U (zh) * 2020-11-19 2021-10-15 山东省神奇自动化设备有限公司 一种电磁波水位监测系统

Also Published As

Publication number Publication date
DE102022202131A1 (de) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2008055758A1 (de) Messsonde für ein messgerät
EP3054271B1 (de) Grenzstandschalter mit integriertem Lagesensor
DE6949412U (de) Durchflussmesseinrichtung.
DE102009036888B4 (de) Dämpfungsbecher, Ölstandsmesseinrichtung mit einem solchen sowie Kraftfahrzeug mit einer solchen Ölstandsmesseinrichtung
EP2848902A1 (de) Verfahren zur Bestimmung eines Füllstandes eines Mediums und Vorrichtung zur Bestimmung eines Füllstandes eines Mediums
DE19809620C1 (de) Vorrichtung zur Inhaltskontrolle eines Behälters
WO2023165866A1 (de) Füllstandsmessanordnung
DE10119555B4 (de) Füllstandssensor zur Erfassung eines Füllstandes in einem Behälter
DE102016123489A1 (de) Füllstandssensor
EP1456612A2 (de) Verfahren zur bestimmung und/oder überwachung einer physikalischen oder chemischen prozessgrösse
EP1481300A1 (de) Vorrichtung und verfahren zum überwachen und regeln von prozesslösung
EP1967827B1 (de) Wirbelströmungsmesser zur Erfassung der Strömungsgeschwindigkeit in einer Leitung
DE102012002011A1 (de) Vorrichtung zur Messung eines Füllstands einer Flüssigkeit und ölgeschmierter Motor
EP3693712A1 (de) Sensor zum bestimmen einer prozessgrösse
DE202019003218U1 (de) Messrohr und Ultraschall-Durchflussmengenmesser
EP3273207B1 (de) Durchflusssensor mit einem sensoroberteil und einem sensorunterteil
DE10316299B4 (de) Messgerät zur Bestimmung und/oder Überwachung einer Prozessgröße
WO2018086888A1 (de) MESSANORDNUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG ZUMINDEST EINER PROZESSGRÖßE EINES MEDIUMS IN EINER ROHRLEITUNG
DE102008040334B4 (de) Verfahren zum Betreiben einer Geschirrspülmaschine, Überwachungseinrichtung für eine Spülflotte und Geschirrspülmaschine
DE102017121287A1 (de) Sensor mit Koppelstange
DE102015223868A1 (de) Anordnung und Verfahren zur kapazitiven Füllstandsbestimmung
DE102008014739B3 (de) Vorrichtung zur Leckageerkennung auf einem Schiff
DE102016223759B3 (de) Anordnung und Verfahren zur kapazitiven Füllstandsbestimmung
DE102015202448A1 (de) Auswerteverfahren für einen TDR-Grenzstandschalter
DE102022202133A1 (de) Füllstandsmesssystem und Verfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23707889

Country of ref document: EP

Kind code of ref document: A1