WO2023165534A1 - 雾化装置 - Google Patents

雾化装置 Download PDF

Info

Publication number
WO2023165534A1
WO2023165534A1 PCT/CN2023/079104 CN2023079104W WO2023165534A1 WO 2023165534 A1 WO2023165534 A1 WO 2023165534A1 CN 2023079104 W CN2023079104 W CN 2023079104W WO 2023165534 A1 WO2023165534 A1 WO 2023165534A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
atomization
detection module
voltage
Prior art date
Application number
PCT/CN2023/079104
Other languages
English (en)
French (fr)
Inventor
罗英哲
谢国伟
邹紧跟
颜培力
Original Assignee
上海矽睿科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海矽睿科技股份有限公司 filed Critical 上海矽睿科技股份有限公司
Publication of WO2023165534A1 publication Critical patent/WO2023165534A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring

Definitions

  • the present application relates to the technical field of atomization, in particular, to an atomization device.
  • the purpose of the embodiments of the present application is to provide an atomization device, which is used to improve the problem that the generation of smoke volume in the existing atomization device is not intelligent enough.
  • An embodiment of the present application provides an atomization device, including:
  • the air pressure detection module is used to detect the air pressure change in the smoking chamber and generate the first detection signal
  • the air flow detection module is used to detect the intake air flow of the smoking cavity after starting to generate a second detection signal
  • a control module configured to control and start the air flow detection module when determining that the air pressure change value in the smoking chamber is greater than or equal to a preset air pressure change threshold according to the first detection signal, and to control and start the air flow detection module according to the second detection signal The amount of smoke atomized by the atomization module within a unit time is controlled.
  • the airflow detection module is controlled and started based on the detection result of the air pressure detection module, and then, according to the intake air flow in the smoking chamber detected by the airflow detection module, the amount of smoke atomized by the atomization module in a unit time is controlled , because the intake flow of the smoking cavity is related to the suction force, the atomization device provided by this application can automatically control the amount of smoke atomized by the atomization module in a unit time according to the suction force, which is more intelligent and improves the user experience. Satisfaction.
  • the control module controls and activates the airflow detection module when it is determined that the air pressure change value in the smoking chamber is greater than or equal to the preset air pressure change threshold. power consumption.
  • the air pressure detection module includes a differential pressure sensor for differential pressure detection based on pressure changes, and the air flow The detection module includes a flow sensor for gas flow detection based on thermal gas flow.
  • the differential pressure sensor that detects the differential pressure based on the pressure change has low power consumption, while the flow sensor that detects the air flow based on the thermal gas flow has a high detection accuracy. Therefore, the atomization device provided by this application is also It has the advantages of low power consumption, long-term standby and high-precision atomization volume control.
  • the differential pressure sensor includes:
  • a piezoresistive conversion unit configured to convert the detected pressure change signal in the smoking cavity into a first resistance change signal
  • the first resistance-voltage conversion unit is configured to convert the first resistance change signal into a first voltage signal.
  • the piezoresistive differential pressure sensor is used to convert the detected pressure change signal into the first resistance change signal, and then convert the first resistance change signal into the first voltage signal, which has high detection sensitivity and low power consumption. Low.
  • the air pressure detection module also includes:
  • a comparator configured to generate the first detection signal according to the first voltage signal and a preset fixed voltage signal
  • a first amplification unit and a first analog-to-digital conversion unit the first amplification unit is used to amplify the first voltage signal to obtain a first voltage amplification signal, and the first analog-to-digital conversion unit is used to amplify the first voltage signal
  • the first voltage amplified signal is subjected to an analog-to-digital conversion process to obtain the first detection signal.
  • the air pressure detection module generates the first detection signal for controlling the start-up of the airflow detection module according to the differential pressure sensor and the comparator, or the air pressure detection module generates the first detection signal according to the differential pressure sensor, the first amplification unit and the first analog-to-digital
  • a first detection signal for controlling the start of the airflow detection module is generated, and a control signal for controlling the start of the airflow detection module, that is, the first detection signal, is generated through a simple circuit structure.
  • the flow sensor includes:
  • a thermal resistance conversion unit configured to convert the detected heat flow temperature change signal in the smoking cavity into a second resistance change signal
  • the second resistance-voltage conversion unit is configured to convert the second resistance change signal into a second voltage signal.
  • the thermal resistance flow sensor is used to convert the detected heat flow temperature change signal into a second resistance change signal, and then convert the second resistance change signal into a second voltage signal, so the detection sensitivity and accuracy are high.
  • the airflow detection module also includes:
  • a second amplifying unit configured to amplify the second voltage signal to obtain a second amplified voltage signal
  • the second analog-to-digital conversion unit is configured to perform analog-to-digital conversion processing on the second voltage amplified signal to obtain the second detection signal.
  • the air flow detection module is based on the flow sensor, the second amplification unit and the second analog-to-digital conversion unit
  • the unit generates a second detection signal for controlling the atomization amount of the atomization module, and the circuit structure is simple and easy to build.
  • the atomization module includes a heating unit for heating the liquid to be atomized, and the control module is used for controlling the heating power of the heating unit according to the second detection signal.
  • the atomization amount per unit time is controlled by controlling the heating power of the heating unit, which is more convenient to control than controlling the liquid to be atomized.
  • control module is configured to control to turn off the airflow detection module and the The atomization function of the atomization module.
  • control module determines that the intake flow value in the smoking chamber is less than or equal to the preset intake flow threshold value according to the second detection signal, it controls to turn off the atomization function of the airflow detection module and the atomization module, which can reduce energy consumption. consumption.
  • the atomization device further includes a battery
  • the control module is further configured to control to turn off the battery if it is determined that the operating voltage of the battery is lower than a first preset operating voltage threshold after the air flow detection module is activated.
  • the airflow detection module and the atomization function of the atomization module are further configured to control to turn off the battery if it is determined that the operating voltage of the battery is lower than a first preset operating voltage threshold after the air flow detection module is activated.
  • the atomization function of the airflow detection module and the atomization module is controlled to be turned off, so as to prevent unnecessary waste of energy.
  • the atomization device further includes a charging module for charging the battery, and the control module is also used for controlling the The charging module performs trickle charging on the battery, and when the operating voltage of the battery is greater than or equal to the second preset operating voltage threshold and less than a third preset operating voltage threshold, the charging module is controlled to perform trickle charging on the battery Constant current charging, when the operating voltage of the battery is greater than or equal to the third preset operating voltage threshold, control disconnecting the connection between the charging module and the battery.
  • the control module is also used for controlling the The charging module performs trickle charging on the battery, and when the operating voltage of the battery is greater than or equal to the second preset operating voltage threshold and less than a third preset operating voltage threshold, the charging module is controlled to perform trickle charging on the battery Constant current charging, when the operating voltage of the battery is greater than or equal to the third preset operating voltage threshold, control disconnecting the connection between the charging module and the battery.
  • the battery is charged by using a suitable charging method, so as to prolong the service life of the battery as much as possible.
  • FIG. 1 is a schematic structural diagram of an atomization device provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of the arrangement of the detection module in the atomization device provided by the embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of an air pressure detection module provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another air pressure detection module provided in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an air flow detection module provided in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the smoke emission control flow of the atomization device provided by the embodiment of the present application.
  • an embodiment of the present application provides an atomization device.
  • the atomizing device may be an electronic cigarette.
  • the atomization device may include an air pressure detection module 11 , an airflow detection module 12 an atomization module 13 and a control module 14 .
  • the control module 14 is respectively connected with the air pressure detection module 11 , the airflow detection module 12 and the atomization module 13 .
  • the air pressure detection module 11 is configured to detect changes in the air pressure in the smoking cavity and generate a first detection signal. It should be noted that the air pressure change in this embodiment refers to the change of the air pressure in the smoking cavity relative to the preset ambient air pressure, where the ambient air pressure can be atmospheric pressure or the air pressure in a preset vacuum environment. By detecting the change of the air pressure in the smoking chamber relative to the ambient air pressure, it is determined whether to activate the air flow detection module.
  • the air flow detection module 12 is configured to detect the intake air flow of the smoking cavity and generate a second detection signal after starting.
  • the air flow detection module 12 and the air pressure detection module 11 are two independent modules, that is, the two detection modules are set separately, so that when a single detection module fails, , to disassemble and maintain the fault detection module without disassembling the whole, thereby reducing the difficulty of maintenance.
  • the so-called "independent” in this embodiment means that the detection functions of these two detection modules are realized by their corresponding structures respectively, and these two detection modules can be integrated on one chip with MEMS technology, or can be respectively arranged on two chips On the other hand, whether they are integrated on one chip or arranged on two chips respectively, the two detection modules independently realize their respective detection functions.
  • the atomization module 13 is used for generating smoke through atomization.
  • the control module 14 is configured to control and activate the air flow detection module 12 when it is determined that the air pressure change value in the smoking chamber is greater than or equal to a preset air pressure change threshold according to the first detection signal, and is used to control and start the air flow detection module 12 according to the second detection signal. detection signal The amount of smoke atomized by the atomization module 13 per unit time is controlled.
  • the airflow detection module 12 is controlled and activated by the detection result of the air pressure detection module 11, and then the atomization module 13 is controlled to atomize the airflow in a unit time according to the air intake flow rate of the smoking cavity detected by the airflow detection module 12. Because the intake flow of the smoking cavity is related to the suction force, the atomization device provided in the embodiment of the present application can automatically control the amount of smoke atomized by the atomization module 13 in a unit time according to the suction force, which is more intelligent , improving user experience satisfaction.
  • control module only controls to activate the airflow detection module when it is determined that the air pressure change in the smoking cavity is greater than or equal to the preset air pressure change threshold, that is, the airflow detection module does not need to be in the working state for a long time, which reduces the overall power consumption of the atomization device .
  • the atomization device provided by this application has the advantages of low power consumption, long-term standby and high-precision atomization volume control.
  • the air flow detection module 12 and the air pressure detection module 11 in the embodiment of the present application can be arranged at any position in the smoking cavity, as long as the intake air flow and air pressure changes in the smoking cavity can be detected.
  • the airflow detection module 12 and the air pressure detection module 11 are arranged at the air inlet of the smoking chamber, so that the airflow detection module 12 can more accurately detect the intake air flow at the air inlet.
  • the air pressure detection module 11 can more accurately detect the air pressure change at the air inlet.
  • the atomization module 13 in the embodiment of the present application is arranged at one end close to the suction port, and the smoke atomized by the atomization module 13 enters the smoking cavity, mixes with the gas in the smoking cavity, and then outputs it through the gas outlet of the smoking cavity .
  • the types of sensors that realize the detection function in the air pressure detection module 11 and the airflow detection module 12 can be selected arbitrarily by developers.
  • the air pressure detection module 11 uses the flow sensor based on thermal gas flow to detect air pressure changes
  • the air flow detection module 12 uses a pressure difference sensor based on pressure changes to detect intake air flow.
  • the air pressure detection module 11 in the embodiment of the present application includes a differential pressure sensor for differential pressure detection based on pressure changes
  • the gas flow detection module 12 includes a flow sensor for gas flow detection based on thermal gas flow.
  • the differential pressure sensor that detects the differential pressure based on the pressure change has low power consumption, while the flow sensor that detects the air flow based on the thermal gas flow has a high detection accuracy. It has the advantages of long-term standby and high-precision atomization volume control.
  • the differential pressure sensor in the embodiment of the present application may include a piezoresistive conversion unit and a first resistance-voltage conversion unit, wherein the piezoresistive conversion unit is used to convert the detected pressure change signal in the smoking chamber into For the first resistance change signal, the first resistance-voltage conversion unit is used to convert the first resistance change signal into a first voltage signal.
  • the measuring end of the piezoresistive conversion unit in the embodiment of the present application may be connected to the air inlet of the smoking chamber, so as to convert the pressure change signal at the air inlet in the smoking chamber into a first resistance change signal.
  • the piezoresistive conversion unit can be realized by a piezoresistive switch mechanical structure, which can reduce power consumption.
  • the piezoresistive differential pressure sensor is used to convert the detected pressure change signal into the first resistance change signal, and then convert the first resistance change signal into the first voltage signal, which has high detection sensitivity and low power consumption. Low.
  • other types of differential pressure transmission can also be used sensilla.
  • the air pressure detection module 11 includes a differential pressure sensor 111 and a comparator 112, wherein the differential pressure sensor 111 may include the piezoresistive conversion unit and the first resistance-voltage
  • the conversion unit may also include other types of conversion units.
  • the comparator 112 is used for generating a first detection signal according to the first voltage signal and a preset fixed voltage signal.
  • the fixed voltage signal here is a signal determined according to a preset air pressure change threshold.
  • the signal output by the comparator 112 is also the first detection signal mentioned above, and the control module 14 can determine whether the air pressure change in the smoking chamber is greater than or equal to a preset air pressure change threshold according to the first detection signal.
  • the control module 14 can determine according to the high-level signal that the air pressure change value in the smoking cavity is greater than or equal to the preset air pressure change threshold, when the comparator 112 outputs When the first detection signal is a low-level signal, the control module 14 can determine that the change in air pressure in the smoking cavity is less than a preset air pressure change threshold according to the low-level signal.
  • the air pressure change threshold in this embodiment can be flexibly set by the developer.
  • the airflow detection module 12 is turned on. If the change value is less than the preset air pressure change threshold, the air pressure detection module 11 will be kept closed, which can prevent the false start of the air flow detection module 12 and reduce unnecessary waste of energy.
  • the air pressure detection module 11 includes a pressure difference sensor 111, a first amplification unit 113 and a first analog-to-digital conversion unit 114, wherein the first amplification unit 113 is used to amplifying the first voltage signal to obtain a first voltage amplified signal, the first analog-to-digital conversion unit 114 is configured to perform analog-to-digital conversion processing on the first voltage amplified signal to obtain the first detection signal,
  • the first detection signal represents the change in air pressure in the smoking chamber, so the control module 14 can directly determine whether the air pressure change in the smoking chamber is greater than or equal to the preset air pressure according to the first detection signal and the preset air pressure change threshold. change threshold.
  • the flow sensor in the embodiment of the present application may include a thermal resistance conversion unit and a second resistance-voltage conversion unit, wherein the thermal resistance conversion unit is used to convert the detected heat flow temperature change signal in the smoking chamber into a second Two resistance change signals, the second resistance-voltage conversion unit is used to convert the second resistance change signal into a second voltage signal.
  • the measuring end of the thermal resistance conversion unit in the embodiment of the present application can be connected to the air inlet of the smoking chamber, so as to convert the heat flow temperature change signal at the air inlet of the smoking chamber into a first resistance change signal.
  • other types of flow sensors can also be used.
  • the air flow detection module 12 includes a flow sensor 121, a second amplification unit 122 and a second analog-to-digital conversion unit 123, wherein the flow sensor 121 may include the thermal resistance conversion unit and the second resistor- Of course, the voltage conversion unit may also include other types of conversion units.
  • the second amplifying unit 122 is configured to amplify the second voltage signal to obtain a second amplified voltage signal
  • the second analog-to-digital conversion unit 123 is configured to perform analog-to-digital conversion processing on the amplified voltage signal to obtain the amplified voltage signal. Second detection signal.
  • the second analog-to-digital conversion unit 123 can output Generate a second detection signal of N bits, and send the second detection signal to the control module 14 .
  • control module 14 can control the atomization module 13 according to the second detection signal.
  • the amount of smoke atomized per unit time is proportional to the intake flow of the smoking cavity, which is more in line with user needs and improves user experience. satisfaction.
  • the atomization module 13 in this embodiment of the present application includes a heating unit for heating the liquid to be atomized.
  • the control module 14 is used to control the The heating power of the heating unit for heating the liquid to be atomized is used to control the amount of smoke atomized per unit time.
  • the control module 14 can control the liquid to be atomized for atomization per unit time.
  • the control module 14 can also control and close the airflow detection module 12 when it determines that the intake air flow value in the smoking chamber is less than or equal to the preset intake air flow threshold according to the second detection signal. and the atomization function of the atomization module 13, or can control the airflow detection module 12 and the atomization module 13 to enter a low-power sleep state, so as to reduce energy consumption.
  • the air pressure detection module 11 detects that the air pressure change in the smoking cavity is greater than or equal to a preset air pressure change threshold, the air flow detection module 12 can be awakened again.
  • the atomizing device provided in the embodiment of the present application may also include a battery, and the control module 14 is used to control and turn off the airflow detection module 12 if it is determined that the operating voltage of the battery is lower than the first preset operating voltage threshold after controlling the start of the airflow detection module 12. And the atomization function of the atomization module 13.
  • the first preset operating voltage threshold may be the operating voltage of the battery when the airflow detection module 12 and the atomizing module 13 of the atomizing device can work normally.
  • the first preset operating voltage threshold may be set to 3V.
  • the atomization device may further include a charging module for charging the battery, and the control module 14 is also used for controlling The charging module trickle charges the battery, and controls the charging module to charge the battery when the operating voltage of the battery is greater than or equal to the second preset operating voltage threshold and less than a third preset operating voltage threshold.
  • the battery is charged with a constant current, and when the operating voltage of the battery is greater than or equal to the third preset operating voltage threshold, the control disconnects the connection between the charging module and the battery.
  • charging with a trickle current is used first to protect the battery and avoid damage to the internal structure of the battery due to the impact of large currents.
  • the voltage of the battery reaches a safe range, then use constant current charging.
  • the charging is controlled to be disconnected to avoid damage to the battery caused by overcharging.
  • Both the above-mentioned second preset working voltage threshold and the third preset working voltage threshold can be flexibly set by developers, for example, the second preset working voltage threshold can be set to 2.8V, and the third preset working voltage threshold can be set to 4.2V V.
  • control flow of the control module of the atomization device provided in the embodiment of the present application can be seen in Figure 6, including the following steps:
  • S602 Determine whether the internal circuit is short-circuited or whether there is a large current, if not, go to S603, if yes, go to S609.
  • S603 Determine whether it is in a charging state, if not, go to S604, if yes, go to S610.
  • S604 Determine whether the change in air pressure in the smoking chamber is greater than a preset air pressure change threshold, if yes, go to S605, if not, go to S609.
  • S605 Determine whether the working voltage of the battery is lower than the first preset working voltage threshold, if not, go to S606, if yes, go to S609.
  • S607 Determine whether the intake flow of the smoking chamber is less than or equal to the preset intake flow threshold, if not, go to S608, if yes, go to S609.
  • S608 Turn on the heating unit, and control the heating power of the heating unit according to the intake air flow of the smoking cavity.
  • S609 Keep the air flow detection module and the heating unit in a closed state or a dormant state.
  • S610 Determine whether the working voltage of the battery is lower than the second preset working voltage threshold, if yes, go to S611, if not, go to S612.
  • S612 Determine whether the working voltage of the battery is greater than or equal to the second preset working voltage threshold and less than the third preset working voltage threshold, if yes, go to S613, if not, go to S614.
  • the application provides an atomization device, which controls and starts the airflow detection module based on the detection result of the air pressure detection module, and then controls the atomization module to atomize the airflow in a unit time according to the air intake flow rate of the smoking chamber detected by the airflow detection module. Because the intake flow of the smoking cavity is related to the suction force, the atomization device provided by this application can automatically control the amount of smoke atomized by the atomization module in a unit time according to the suction force, which is more intelligent and improves the Satisfaction with the user experience. In addition, the control module controls the activation of the airflow detection module when it is determined that the air pressure change in the smoking chamber is greater than or equal to the preset air pressure change threshold.
  • the airflow detection module does not need to be in the working state for a long time, reducing the atomization
  • the overall power consumption of the device makes the atomization device provided by this application have the advantages of low power consumption, long-term standby and high-precision atomization volume control. point.
  • the atomizing device of the present application is reproducible and can be used in a variety of industrial applications.
  • the atomization device of the present application can be used in the technical field of atomization.

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种雾化装置,包括气压检测模块(11)、气流检测模块(12)、雾化模块(13)及控制模块(14),控制模块(14)基于气压检测模块(11)的检测结果确定吸烟腔体内的气压变化值大于等于预设气压变化阈值时,控制启动气流检测模块(12),并根据气流检测模块(12)检测到的吸烟腔体的进气流量,控制雾化模块(13)在单位时间内雾化出的烟雾量。雾化装置低功耗可长期待机及高精度控制雾化量。

Description

雾化装置
相关申请的交叉引用
本申请要求于2022年03月01日提交中国国家知识产权局的申请号为202210192494.2、名称为“一种雾化装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及雾化技术领域,具体而言,涉及一种雾化装置。
背景技术
随着电子技术的迅速发展,电子烟应运而生,电子烟在出厂之前,厂商会为该电子烟的雾化模块设置固定的工作功率,电子烟在被用户使用时,其内部的雾化模块将按照该功率工作,雾化产生对应体积的烟雾,由于雾化模块的工作功率恒定,导致电子烟在单位时间内雾化出的烟雾量基本是恒定的,当用户的吸力发生变化时,在用户吸入的气体中,雾化出的烟雾的浓度可能过低或者过高,用户体验满意度较低。
发明内容
本申请实施例的目的在于提供一种雾化装置,用以改善现有的雾化装置中烟雾量的产生不够智能化的问题。
本申请实施例提供一种雾化装置,包括:
气压检测模块,用于对吸烟腔体内的气压变化进行检测,生成第一检测信号;
气流检测模块,用于在启动后,对所述吸烟腔体的进气流量进行检测,生成第二检测信号;
雾化模块,用于通过雾化产生烟雾;
控制模块,用于在根据所述第一检测信号,确定所述吸烟腔体内的气压变化值大于等于预设气压变化阈值时,控制启动所述气流检测模块,并用于根据所述第二检测信号对所述雾化模块在单位时间内雾化出的烟雾量进行控制。
在上述实现过程中,基于气压检测模块的检测结果控制启动气流检测模块,然后,根据气流检测模块检测到的吸烟腔体内的进气流量,控制雾化模块在单位时间内雾化出的烟雾量,由于吸烟腔体的进气流量与吸力相关,因此本申请提供的雾化装置可以根据吸力大小自动控制雾化模块在单位时间内雾化出的烟雾量,更加智能化,提升了用户体验的满意度,另外,控制模块在确定吸烟腔体内的气压变化值大于等于预设气压变化阈值时才控制启动气流检测模块,也即,气流检测模块不用长期处于工作状态,降低了雾化装置的整体耗电量。
可选地,所述气压检测模块包括基于压力变化进行压差检测的压差传感器,所述气流 检测模块包括基于热式气体流量进行气流检测的流量传感器。
在上述实现过程中,基于压力变化进行压差检测的压差传感器功耗较低,而基于热式气体流量进行气流检测的流量传感器的检测精度较高,因此,本申请提供的雾化装置兼具低功耗可长期待机及高精度雾化量控制的优点。
可选地,所述压差传感器包括:
压阻转换单元,用于将检测到的所述吸烟腔体内的压力变化信号转换成第一电阻变化信号;
第一电阻-电压转换单元,用于将所述第一电阻变化信号转换成第一电压信号。
在上述实现过程中,采用压阻式压差传感器将检测到的压力变化信号转化成第一电阻变化信号,然后将第一电阻变化信号转换成第一电压信号,检测灵敏度较高、功耗较低。
可选地,所述气压检测模块还包括:
比较器,用于根据所述第一电压信号和预设的固定电压信号生成所述第一检测信号;
或,
第一放大单元和第一模数转换单元,所述第一放大单元用于对所述第一电压信号进行放大处理得到第一电压放大信号,所述第一模数转换单元用于对所述第一电压放大信号进行模数转换处理,得到所述第一检测信号。
在上述实现过程中,气压检测模块根据压差传感器和比较器生成用于控制气流检测模块启动的第一检测信号,或者气压检测模块根据压差传感器、第一放大单元和第一模数转换单元生成用于控制气流检测模块启动的第一检测信号,通过简单的电路结构生成用于控制气流检测模块启动的控制信号,也即,第一检测信号。
可选地,所述流量传感器包括:
热阻转换单元,用于将检测到的所述吸烟腔体内的热流温度变化信号转换成第二电阻变化信号;
第二电阻-电压转换单元,用于将所述第二电阻变化信号转换成第二电压信号。
在上述实现过程中,采用热阻式流量传感器将检测到的热流温度变化信号转化成第二电阻变化信号,然后将第二电阻变化信号转换成第二电压信号,检测灵敏度以及准确性较高。
可选地,所述气流检测模块还包括:
第二放大单元,用于对所述第二电压信号进行放大处理得到第二电压放大信号;
第二模数转换单元,用于对所述第二电压放大信号进行模数转换处理,得到所述第二检测信号。
在上述实现过程中,气流检测模块根据流量传感器、第二放大单元和第二模数转换单 元生成用于控制雾化模块雾化量的第二检测信号,电路结构简单、便于搭建。
可选地,所述雾化模块包括用于对待雾化液体加热的加热单元,所述控制模块用于根据所述第二检测信号控制所述加热单元的加热功率大小。
在上述实现过程中,通过控制加热单元的加热功率对单位时间内的雾化量进行控制,相对于对待雾化液体进行控制而言,更加便于控制。
可选地,所述控制模块用于在根据所述第二检测信号,确定所述吸烟腔体内的进气流量值小于等于预设进气流量阈值时,控制关闭所述气流检测模块和所述雾化模块的雾化功能。
在上述实现过程中,控制模块根据第二检测信号,确定吸烟腔体内的进气流量值小于等于预设进气流量阈值时,控制关闭气流检测模块和雾化模块的雾化功能,可以降低能耗。
可选地,所述雾化装置还包括电池,所述控制模块还用于在控制启动所述气流检测模块之后,若确定所述电池的工作电压小于第一预设工作电压阈值,控制关闭所述气流检测模块和所述雾化模块的雾化功能。
在上述实现过程中,当电池的工作电压较低的时候,控制关闭气流检测模块和雾化模块的雾化功能,以防止不必要的能源浪费。
可选地,所述雾化装置还包括用于对所述电池进行充电的充电模块,所述控制模块还用于在所述电池的工作电压小于第二预设工作电压阈值时,控制所述充电模块对所述电池进行涓流充电,在所述电池的工作电压大于等于所述第二预设工作电压阈值且小于第三预设工作电压阈值时,控制所述充电模块对所述电池进行恒流充电,在所述电池的工作电压大于等于所述第三预设工作电压阈值时,控制断开所述充电模块与所述电池之间的连接。
在上述实现过程中,采用合适的充电方式对电池进行充电,尽可能延长电池的使用寿命。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的雾化装置的结构示意图;
图2为本申请实施例提供的雾化装置内检测模块的设置示意图;
图3为本申请实施例提供的一种气压检测模块的结构示意图;
图4为本申请实施例提供的另一种气压检测模块的结构示意图;
图5为本申请实施例提供的气流检测模块的结构示意图;
图6为本申请实施例提供的雾化装置的出烟控制流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在本申请实施例中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
下面将提供具体的实施例,来介绍雾化装置。
为解决现有的雾化装置中因气流传感器长期处于工作状态,导致雾化装置整体耗电量较高的问题,本申请实施例提供一种雾化装置。示例性地,该雾化装置可以为电子烟。
请参见图1所示,该雾化装置可以包括气压检测模块11,气流检测模块12雾化模块13及控制模块14。其中,控制模块14分别与气压检测模块11、气流检测模块12以及雾化模块13连接。
气压检测模块11,用于对吸烟腔体内的气压变化进行检测,生成第一检测信号。应当说明的是,本实施例中的气压变化是指吸烟腔体内的气压相对于预设的环境气压的变化,这里的环境气压可以是大气压,也可以是一个预设的真空环境内的气压,通过检测吸烟腔体内的气压相对于这个环境气压的变化情况,确定是否启动气流检测模块。
气流检测模块12,用于在启动后,对吸烟腔体的进气流量进行检测,生成第二检测信号。应当说明的是,本实施例中,所述气流检测模块12与所述气压检测模块11是两个各自独立的模块,也即两检测模块分离设置,由此,可实现在单一检测模块故障时,对故障检测模块进行拆卸维修,而无需对整体进行拆卸,进而降低维修难度。本实施例中所谓的“独立”是指这两个检测模块的检测功能分别由各自对应的结构实现,这两个检测模块可以以MEMS工艺集成在一个芯片上,也可以分别设置在两个芯片上,无论是集成在一个芯片上还是分别设置在两个芯片上,这两个检测模块独立实现各自的检测功能。
雾化模块13,用于通过雾化产生烟雾。
控制模块14,用于在根据所述第一检测信号,确定所述吸烟腔体内的气压变化值大于等于预设气压变化阈值时,控制启动所述气流检测模块12,并用于根据所述第二检测信号 对所述雾化模块13在单位时间内雾化出的烟雾量进行控制。
在上述实现过程中,通过气压检测模块11的检测结果控制启动气流检测模块12,然后根据气流检测模块12检测到的吸烟腔体的进气流量,控制雾化模块13在单位时间内雾化出的烟雾量,由于吸烟腔体的进气流量与吸力相关,因此本申请实施例提供的雾化装置可以根据吸力大小自动控制雾化模块13在单位时间内雾化出的烟雾量,更加智能化,提升了用户体验的满意度。另外,控制模块在确定吸烟腔体内的气压变化值大于等于预设气压变化阈值时才控制启动气流检测模块,也即,气流检测模块不用长期处于工作状态,降低了雾化装置的整体耗电量,本申请提供的雾化装置兼具低功耗可长期待机及高精度雾化量控制的优点。
应当说明的是,本申请实施例中的气流检测模块12和气压检测模块11可以设置在吸烟腔体内的任意位置上,只要能对吸烟腔体内的进气流量和气压变化进行检测即可。优选的,请参见图2所示,气流检测模块12和气压检测模块11设置在吸烟腔体的进气口处,这样,气流检测模块12可以更精确地检测到进气口处的进气流量,气压检测模块11可以更加精确地检测到进气口处的气压变化。优选的,本申请实施例中的雾化模块13设置在靠近吸口的一端,雾化模块13雾化出的烟雾进入吸烟腔体,与吸烟腔体内的气体混合后通过吸烟腔体的出气口输出。
本申请实施例中,气压检测模块11和气流检测模块12中实现检测功能的传感器种类可以由开发人员任意选取。比如,气压检测模块11使用所述基于热式气体流量的流量传感器进行气压变化值检测,气流检测模块12使用基于压力变化的压差传感器进行进气流量检测。优选的,本申请实施例中的气压检测模块11包括基于压力变化进行压差检测的压差传感器,所述气流检测模块12包括基于热式气体流量进行气流检测的流量传感器。基于压力变化进行压差检测的压差传感器功耗较低,而基于热式气体流量进行气流检测的流量传感器的检测精度较高,由此,本申请实施例提供的雾化装置兼具低功耗可长期待机及高精度雾化量控制的优点。
可以理解的是,本申请实施例中的压差传感器可以包括压阻转换单元和第一电阻-电压转换单元,其中,压阻转换单元用于将检测到的吸烟腔体内的压力变化信号转换成第一电阻变化信号,第一电阻-电压转换单元用于将所述第一电阻变化信号转换成第一电压信号。本申请实施例中的压阻转换单元的测量端可以连接吸烟腔体的进气口处,以将吸烟腔体内进气口处的压力变化信号转换成第一电阻变化信号。可选的,压阻转换单元可以通过压阻开关机械结构实现,可以降低功耗。在上述实现过程中,采用压阻式压差传感器将检测到的压力变化信号转化成第一电阻变化信号,然后将第一电阻变化信号转换成第一电压信号,检测灵敏度较高、功耗较低。当然了,在其他的实施例中,也可以采用其他类型的压差传 感器。
请参见图3所示,在一种实施方式中,气压检测模块11包括压差传感器111和比较器112,其中,压差传感器111可以包括前述内容介绍的压阻转换单元及第一电阻-电压转换单元,当然也可以包括其他类型的转换单元。
比较器112用于根据第一电压信号和预设的固定电压信号生成第一检测信号。这里的固定电压信号是根据预设气压变化阈值确定的信号。本实施方式中,比较器112输出的信号也即上述内容提及的第一检测信号,控制模块14根据该第一检测信号可以确定吸烟腔体内的气压变化值是否大于等于预设气压变化阈值。比如,当比较器112输出的第一检测信号为高电平信号时,控制模块14根据该高电平信号可以确定吸烟腔体内的气压变化值大于等于预设气压变化阈值,当比较器112输出的第一检测信号为低电平信号时,控制模块14根据该低电平信号可以确定吸烟腔体内的气压变化值小于预设气压变化阈值。应当说明的是,本实施例中的气压变化阈值可以由开发人员灵活设置,当确定吸烟腔体内的气压变化值大于等于预设气压变化阈值时打开气流检测模块12,当确定吸烟腔体内的气压变化值小于预设气压变化阈值,则保持气压检测模块11关闭,可以防止气流检测模块12的误启动,减少不必要的能源浪费。
请参见图4所示,在另外一种实施方式中,气压检测模块11包括压差传感器111、第一放大单元113和第一模数转换单元114,其中,所述第一放大单元113用于对所述第一电压信号进行放大处理得到第一电压放大信号,所述第一模数转换单元114用于对所述第一电压放大信号进行模数转换处理,得到所述第一检测信号,此时,第一检测信号表征吸烟腔体内的气压变化大小,所以控制模块14根据该第一检测信号与预设气压变化阈值便可以直接确定吸烟腔体内的气压变化值是否大于等于该预设气压变化阈值。
可以理解的是,本申请实施例中的流量传感器可以包括热阻转换单元和第二电阻-电压转换单元,其中,热阻转换单元用于将检测到吸烟腔体内的热流温度变化信号转换成第二电阻变化信号,第二电阻-电压转换单元用于将所述第二电阻变化信号转换成第二电压信号。本申请实施例中的热阻转换单元的测量端可以通吸烟腔体的进气口处,以将吸烟腔体内进气口处的热流温度变化信号转换成第一电阻变化信号。当然了,在其他的实施例中,也可以采用其他类型的流量传感器。
请参见图5所示,气流检测模块12包括流量传感器121、第二放大单元122和第二模数转换单元123,其中,流量传感器121可以包括前述内容介绍的热阻转换单元及第二电阻-电压转换单元,当然也可以包括其他类型的转换单元。第二放大单元122用于对所述第二电压信号进行放大处理得到第二电压放大信号,第二模数转换单元123用于对所述第二电压放大信号进行模数转换处理,得到所述第二检测信号。第二模数转换单元123可以输 出N位元的第二检测信号,并将该第二检测信号发送给控制模块14。请参见图6所示,控制模块14根据该第二检测信号可以控制雾化模块13单位时间内雾化出的烟雾量正比于吸烟腔体的进气流量,更符合用户需求,提升了用户体验的满意度。
需要说明的是,本申请实施例中本实施例中的雾化模块13包括对待雾化液体加热的加热单元,在一种实施方式中,控制模块14用于根据所述第二检测信号控制所述加热单元对所述待雾化液体进行加热的加热功率大小,以此来控制单位时间内雾化出的烟雾量大小。在另外的一些实施方式中,控制模块14可以对单位时间内用于进行雾化的待雾化液体进行控制。
在一些实施例中,气流检测模块12在启动后,控制模块14还可以根据第二检测信号,确定吸烟腔体内的进气流量值小于等于预设进气流量阈值时,控制关闭气流检测模块12和雾化模块13的雾化功能,或者可以控制气流检测模块12和雾化模块13进入低功耗的休眠状态,以降低能耗。当气压检测模块11检测到吸烟腔体内的气压变化值大于等于预设气压变化阈值时,则可以再次唤醒气流检测模块12。
本申请实施例提供的雾化装置还可以包括电池,控制模块14用于在控制启动气流检测模块12之后,若确定电池的工作电压小于第一预设工作电压阈值,则控制关闭气流检测模块12和雾化模块13的雾化功能。第一预设工作电压阈值可以是雾化装置的气流检测模块12和雾化模块13能正常工作时,电池的工作电压,比如,第一预设工作电压阈值可以设置为3V。
还需要说明的是,雾化装置还可以包括用于对所述电池进行充电的充电模块,所述控制模块14还用于在所述电池的工作电压小于第二预设工作电压阈值时,控制所述充电模块对所述电池进行涓流充电,在所述电池的工作电压大于等于所述第二预设工作电压阈值且小于第三预设工作电压阈值时,控制所述充电模块对所述电池进行恒流充电,在所述电池的工作电压大于等于所述第三预设工作电压阈值时,控制断开所述充电模块与所述电池之间的连接。充电过程中,在电池的电压较低时先采用涓流小电流充电是为了保护电池,避免大电流冲击给电池内部结构带来损害,在电池的电压达到安全范围内时再采用恒流充电,提升充电效率,在达到正常工作电压时,控制断开充电,避免过充对电池造成损害。
上述第二预设工作电压阈值与第三预设工作电压阈值都可以由开发人员灵活设置,比如,第二预设工作电压阈值可以设置为2.8V,第三预设工作电压阈值可以设置为4.2V。
本申请实施例提供的雾化装置的控制模块的控制流程可以参见图6所示,包括如下步骤:
S601:上电。
S602:判断内部电路是否短路或是否存在大电流,如否,转至S603,如是,转至S609。
S603:判断是否处于充电状态,如否,转至S604,如是,转至S610。
S604:判断吸烟腔体内的气压变化值是否大于预设气压变化阈值,如是,转至S605,如否,转至S609。
S605:判断电池的工作电压是否小于第一预设工作电压阈值,如否,转至S606,如是,转至S609。
S606:打开气流检测模块。
S607:判断吸烟腔体的进气流量是否小于等于预设进气流量阈值,如否,转至S608,如是,转至S609。
S608:打开加热单元,并根据吸烟腔体的进气流量大小控制加热单元的加热功率。
S609:保持气流检测模块和加热单元处于关闭状态或休眠状态。
S610:判断电池的工作电压是否小于第二预设工作电压阈值,如是,转至S611,如否,转至S612。
S611:对电池进行涓流充电。
S612:判断电池的工作电压是否大于等于第二预设工作电压阈值且小于第三预设工作电压阈值,如是,转至S613,如否,转至S614。
S613:对电池进行恒流充电。
S614:停止充电。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请提供一种雾化装置,基于气压检测模块的检测结果控制启动气流检测模块,然后,根据气流检测模块检测到的吸烟腔体的进气流量,控制雾化模块在单位时间内雾化出的烟雾量,由于吸烟腔体的进气流量与吸力相关,因此本申请提供的雾化装置可以根据吸力大小自动控制雾化模块在单位时间内雾化出的烟雾量,更加智能化,提升了用户体验的满意度,另外,控制模块在确定吸烟腔体内的气压变化值大于等于预设气压变化阈值时才控制启动气流检测模块,也即,气流检测模块不用长期处于工作状态,降低了雾化装置的整体耗电量,使得本申请提供的雾化装置兼具低功耗可长期待机及高精度雾化量控制的优 点。
此外,可以理解的是,本申请的雾化装置是可以重现的,并且可以用在多种工业应用中。例如,本申请的雾化装置可以用于雾化技术领域。

Claims (12)

  1. 一种雾化装置,其中,包括:
    气压检测模块,用于对吸烟腔体内的气压变化进行检测,生成第一检测信号;
    气流检测模块,用于在启动后,对所述吸烟腔体的进气流量进行检测,生成第二检测信号;
    雾化模块,用于通过雾化产生烟雾;
    控制模块,用于在根据所述第一检测信号,确定所述吸烟腔体内的气压变化值大于等于预设气压变化阈值时,控制启动所述气流检测模块,并用于根据所述第二检测信号对所述雾化模块在单位时间内雾化出的烟雾量进行控制。
  2. 根据权利要求1所述的雾化装置,其中,所述气压检测模块包括基于压力变化进行压差检测的压差传感器,所述气流检测模块包括基于热式气体流量进行气流检测的流量传感器。
  3. 根据权利要求2所述的雾化装置,其中,所述压差传感器包括:
    压阻转换单元,用于将检测到的所述吸烟腔体内的压力变化信号转换成第一电阻变化信号;
    第一电阻-电压转换单元,用于将所述第一电阻变化信号转换成第一电压信号。
  4. 根据权利要求3所述的雾化装置,其中,所述气压检测模块还包括:
    比较器,用于根据所述第一电压信号和预设的固定电压信号生成所述第一检测信号;
    或,
    第一放大单元和第一模数转换单元,所述第一放大单元用于对所述第一电压信号进行放大处理得到第一电压放大信号,所述第一模数转换单元用于对所述第一电压放大信号进行模数转换处理,得到所述第一检测信号。
  5. 根据权利要求2所述的雾化装置,其中,所述流量传感器包括:
    热阻转换单元,用于将检测到的所述吸烟腔体内的热流温度变化信号转换成第二电阻变化信号;
    第二电阻-电压转换单元,用于将所述第二电阻变化信号转换成第二电压信号。
  6. 根据权利要求5所述的雾化装置,其中,所述气流检测模块还包括:
    第二放大单元,用于对所述第二电压信号进行放大处理得到第二电压放大信号;
    第二模数转换单元,用于对所述第二电压放大信号进行模数转换处理,得到所述第二检测信号。
  7. 根据权利要求1所述的雾化装置,其中,所述雾化模块包括用于对待雾化液体加热 的加热单元,所述控制模块用于根据所述第二检测信号控制所述加热单元的加热功率大小。
  8. 根据权利要求1-7任一项所述的雾化装置,其中,所述控制模块用于在根据所述第二检测信号,确定所述吸烟腔体内的进气流量值小于等于预设进气流量阈值时,控制关闭所述气流检测模块和所述雾化模块的雾化功能。
  9. 根据权利要求1-7任一项所述的雾化装置,其中,所述雾化装置还包括电池,所述控制模块还用于在控制启动所述气流检测模块之后,若确定所述电池的工作电压小于第一预设工作电压阈值,控制关闭所述气流检测模块和所述雾化模块的雾化功能。
  10. 根据权利要求9所述的雾化装置,其中,所述雾化装置还包括用于对所述电池进行充电的充电模块,所述控制模块还用于在所述电池的工作电压小于第二预设工作电压阈值时,控制所述充电模块对所述电池进行涓流充电,在所述电池的工作电压大于等于所述第二预设工作电压阈值且小于第三预设工作电压阈值时,控制所述充电模块对所述电池进行恒流充电,在所述电池的工作电压大于等于所述第三预设工作电压阈值时,控制断开所述充电模块与所述电池之间的连接。
  11. 根据权利要求1-7任一项所述的雾化装置,其中,所述气流检测模块和所述气压检测模块设置在吸烟腔体的进气口处。
  12. 根据权利要求1-7任一项所述的雾化装置,其中,所述雾化模块设置在靠近所述吸烟腔体的进气口的一端,所述雾化模块雾化出的烟雾进入所述吸烟腔体,与所述吸烟腔体内的气体混合后通过所述吸烟腔体的出气口输出。
PCT/CN2023/079104 2022-03-01 2023-03-01 雾化装置 WO2023165534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210192494.2A CN114343250A (zh) 2022-03-01 2022-03-01 一种雾化装置
CN202210192494.2 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023165534A1 true WO2023165534A1 (zh) 2023-09-07

Family

ID=81094260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079104 WO2023165534A1 (zh) 2022-03-01 2023-03-01 雾化装置

Country Status (2)

Country Link
CN (1) CN114343250A (zh)
WO (1) WO2023165534A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114343250A (zh) * 2022-03-01 2022-04-15 上海矽睿科技股份有限公司 一种雾化装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117567A (zh) * 2011-11-17 2013-05-22 比亚迪股份有限公司 一种具有充放电及电量检测功能的芯片
CN104824851A (zh) * 2015-04-10 2015-08-12 矽翔微机电系统(上海)有限公司 电子雾化器及雾化控制方法及体征数据监测系统
CN108308720A (zh) * 2018-04-12 2018-07-24 深圳市新宜康科技股份有限公司 利用热场温差控制的雾化装置及其控制方法
CN108685179A (zh) * 2017-04-11 2018-10-23 研能科技股份有限公司 电子香烟
JP2018174928A (ja) * 2017-04-11 2018-11-15 研能科技股▲ふん▼有限公司 電子たばこ
US20180343924A1 (en) * 2017-05-31 2018-12-06 Microjet Technology Co., Ltd. Electronic cigarette
CN208242844U (zh) * 2018-04-02 2018-12-18 深圳市新宜康科技股份有限公司 低功耗即时式加热不燃烧装置
CN209331180U (zh) * 2018-08-24 2019-09-03 深圳市康泓威科技有限公司 具有模拟气压传感器的电子烟
CN114343250A (zh) * 2022-03-01 2022-04-15 上海矽睿科技股份有限公司 一种雾化装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108606366B (zh) * 2018-06-20 2021-07-27 深圳市合元科技有限公司 一种电子烟及控制电子烟的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117567A (zh) * 2011-11-17 2013-05-22 比亚迪股份有限公司 一种具有充放电及电量检测功能的芯片
CN104824851A (zh) * 2015-04-10 2015-08-12 矽翔微机电系统(上海)有限公司 电子雾化器及雾化控制方法及体征数据监测系统
CN108685179A (zh) * 2017-04-11 2018-10-23 研能科技股份有限公司 电子香烟
JP2018174928A (ja) * 2017-04-11 2018-11-15 研能科技股▲ふん▼有限公司 電子たばこ
US20180343924A1 (en) * 2017-05-31 2018-12-06 Microjet Technology Co., Ltd. Electronic cigarette
CN208242844U (zh) * 2018-04-02 2018-12-18 深圳市新宜康科技股份有限公司 低功耗即时式加热不燃烧装置
CN108308720A (zh) * 2018-04-12 2018-07-24 深圳市新宜康科技股份有限公司 利用热场温差控制的雾化装置及其控制方法
CN209331180U (zh) * 2018-08-24 2019-09-03 深圳市康泓威科技有限公司 具有模拟气压传感器的电子烟
CN114343250A (zh) * 2022-03-01 2022-04-15 上海矽睿科技股份有限公司 一种雾化装置

Also Published As

Publication number Publication date
CN114343250A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
US11864585B2 (en) Electronic cigarette equipped with double air pressure sensors and control method thereof
WO2023165534A1 (zh) 雾化装置
US9974117B2 (en) Electronic cigarette
CN107487201B (zh) 充电唤醒方法、电池管理系统及车辆
CN100356283C (zh) 用于与绝对温度成比例的偏压电路的起始加速电路
US9823280B2 (en) Current sensing with internal ADC capacitor
CN102940313A (zh) 电子烟的智能控制器及方法
US20070182366A1 (en) Detecting a battery within a battery charger
CN102297882A (zh) 一种半导体臭氧传感器温度补偿电路及其补偿方法
US10292435B2 (en) Electronic cigarette
JP6335861B2 (ja) 微粒子測定システム
JP2009229123A (ja) 無線温度センサ
EP3903288A1 (en) Leakage detection in a flame sense circuit
US7661305B2 (en) Airflow detection apparatus
CN216252225U (zh) 一种锂电池充放电管理电路
CN217446676U (zh) 电子雾化装置
JP2017090129A (ja) 空燃比センサの制御装置および制御方法
CN219474859U (zh) 压力传感器检测系统
CN215576173U (zh) 一种基于流式细胞仪的流速控制电路
CN218383180U (zh) 机车断路器检测电路
CN219657546U (zh) 一种气体检测装置和气体检测系统
CN210983647U (zh) 一种应用于气体制备工艺的温度压力报警装置
CN116296058A (zh) 多类型、宽量程压力传感器检测方法
JP2769911B2 (ja) 感圧回路
CN219284517U (zh) 一种体温检测电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762932

Country of ref document: EP

Kind code of ref document: A1