WO2023165132A1 - 一种空中运输车转向控制方法及系统 - Google Patents

一种空中运输车转向控制方法及系统 Download PDF

Info

Publication number
WO2023165132A1
WO2023165132A1 PCT/CN2022/123430 CN2022123430W WO2023165132A1 WO 2023165132 A1 WO2023165132 A1 WO 2023165132A1 CN 2022123430 W CN2022123430 W CN 2022123430W WO 2023165132 A1 WO2023165132 A1 WO 2023165132A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving voltage
electromagnet
voltage
guide wheel
slide rail
Prior art date
Application number
PCT/CN2022/123430
Other languages
English (en)
French (fr)
Inventor
杜宝宝
缪峰
Original Assignee
弥费科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 弥费科技(上海)股份有限公司 filed Critical 弥费科技(上海)股份有限公司
Publication of WO2023165132A1 publication Critical patent/WO2023165132A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/02Suspension of the load; Guiding means, e.g. wheels; Attaching traction cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/10Cable traction drives

Definitions

  • the present application relates to the technical field of semiconductor wafer manufacturing equipment, in particular to a steering control method and system for an aerial transport vehicle in an automatic material handling system.
  • the aerial transport vehicle in the automatic material handling system needs to transport the target object from one place to the designated position as required. If the position of the round box) and the target delivery position are not on the same track, the transport vehicle needs to change the track to walk. At this time, the rotating electromagnet in the steering drive mechanism on the transport vehicle moves the guide wheel on the slide rail to the designated position and Under the interference of the upper guide rail, the walking track of the transport vehicle is changed.
  • the present application provides a steering control method for an air transport vehicle, including:
  • a first drive voltage is applied to the electromagnet, wherein the first drive voltage is used to drive the electromagnet to toggle the guide wheel to move on the slide rail, and the first drive voltage is the same as the target voltage The difference between them satisfies the first threshold, and the target voltage is the driving voltage used to drive the electromagnet to toggle the guide wheel to overcome the maximum static friction force when moving on the slide rail;
  • the second driving voltage is a driving voltage for driving the electromagnet to move the guide wheel to move on the slide rail, and the second driving voltage is not equal to the first driving voltage
  • the present application also provides a steering control system for an air transport vehicle, including: a starting module and a switching module;
  • the starting module is configured to: when receiving the steering control signal, apply a first driving voltage to the electromagnet, wherein the first driving voltage is used to drive the electromagnet to toggle the guide wheel to move on the slide rail , the difference between the first driving voltage and the target voltage satisfies the first threshold, and the target voltage is the driving voltage used to drive the electromagnet to toggle the guide wheel to overcome the maximum static friction force when moving on the slide rail;
  • the switching module is configured to:
  • the second designated position is the preset stop position where the electromagnet toggles the guide wheel on the slide rail, and the third driving voltage is greater than the target voltage;
  • Fig. 1 is a structural schematic diagram of the steering guidance of the air transport vehicle
  • Fig. 2 is a schematic diagram of the driving voltage application in the steering guidance of the aerial transport vehicle
  • Fig. 3 is a schematic diagram of the moving position of the guide wheel in the steering guide of the aerial transport vehicle
  • Fig. 4 is a schematic diagram of driving voltage application in the steering control method of the aerial transport vehicle provided by the present application
  • FIG. 5 is a schematic diagram of the position of the guide wheel after the driving voltage is applied in the steering control method of the aerial transport vehicle provided by the present application;
  • Fig. 6 is a flow chart of the steering control method of the air transport vehicle provided by the present application.
  • Fig. 7 is a structural schematic diagram of producing driving voltage in the steering control method of the air transport vehicle provided by the present application.
  • Fig. 8 is a schematic structural diagram of the steering control system of the aerial transport vehicle provided by the present application.
  • the aerial transport vehicle 1 is guided by the aerial track 2 , that is, the steering wheel 11 in the aerial transport vehicle 1 cooperates with the aerial track 2 to realize the steering guidance.
  • the rotating electromagnet 13 in the aerial transport vehicle 1 drives the toggle lever 14, and the toggle lever 14 toggles the guide wheel 11 to slide on the slide rail 17, so that the guide wheel 11 cooperates with the aerial track 2 to realize Steering boot.
  • the rotating electromagnet is driven by the energized voltage, can no longer rotate after outputting to a fixed angle (such as 90°), and can be reset by its own recovery device after power failure. Therefore, the characteristics of the rotating electromagnet can be utilized to realize the cornering steering control of the aerial transport vehicle.
  • the rotation range of the rotating electromagnet can be detected by the sensor 15 and the sensor 16, so as to prevent the rotation angle of the rotating electromagnet from exceeding the design range.
  • the action result of the rotating electromagnet is as shown in Figure 3. That is, if the rotating electromagnet reaches the designated position (ie, the stop position B) and immediately cuts off the power, the rotating electromagnet loses power due to power failure.
  • the reaction force of inertia causes the rotating electromagnet to rebound, that is, the rotating electromagnet cannot stop at the stop position B due to the rebound phenomenon, but stays at the final position B′ after rebounding from the stop position B.
  • the rotating electromagnet drives the guide wheel to move back, causing the guide wheel of the transport vehicle to collide with the air guide rail or even get stuck, which seriously affects the air transportation.
  • the normal operation of the vehicle reduces the handling efficiency of the semiconductor factory air transport vehicle.
  • the first driving voltage U 1 is applied to the rotating electromagnet
  • the second driving voltage is applied.
  • Two drive voltage U 2 and after reaching the stop position B, continue to apply the third drive voltage U 3 and then cut off the power, so that the rotating electromagnet can overcome the power failure at the stop position B under the action of the third drive voltage U 3
  • the inertial reaction force that occurs that is, the rotating electromagnet virtualizes an anti-rebound position D (as shown in Figure 5, the dotted line shadow between B to D in the figure is the rotating electromagnet under the effect of the third drive voltage U3
  • the virtual action distance generated by the iron after applying U3) to overcome the rebound due to the inertia reaction of power failure through the third driving voltage U3 , so that the rotating electromagnet can still stay on the stop position B after power failure.
  • the relationship between the first driving voltage U 1 , the second driving voltage U 2 and the third driving voltage U 3 can be set according to the actual situation, for example, U 1 is less than U 2 , for example, U 2 is greater than U 2 3 , such as U 1 is greater than U 2 , such as U 2 is equal to U 3 and so on.
  • this specification provides an embodiment of a steering control method for an air transport vehicle, which may include:
  • step S202 the steering control signal is received in real time while the aerial transport vehicle is moving along the track.
  • the steering control system receives the steering control signal in real time.
  • the steering control signal may be a steering control instruction issued to the steering control system when the aerial transport vehicle is traveling along the aerial track and detecting the traveling position in real time when it is detected that a steering operation is required.
  • the aerial transport vehicle triggers and produces a steering control command in real time through the detection mark set on the track, so that the steering control system performs steering control under the trigger of the command.
  • the steering control system can learn the steering control command, and then can Steering operations are performed according to steering control commands.
  • the electromagnet can be made to work in the corresponding current state, that is, by making the electromagnet work in the corresponding current state, the corresponding torque can be obtained, and then the torque can be used to toggle Under the toggle of the lever, the guide wheel slides on the slide rail according to the preset moving speed under the toggle of the toggle lever, and then the guide wheel can cooperate with the aerial guide track to perform cornering guidance.
  • Step S204 determines whether steering control is required, and if so, executes step S206.
  • the steering control system After receiving the trigger of the steering control command, the steering control system can detect in real time whether steering control is required, and control the steering control guide wheels in real time.
  • Step S206 applies a first driving voltage to the electromagnet, wherein the first driving voltage is used to drive the electromagnet to move the guide wheel on the slide rail, and the difference between the first driving voltage and the target voltage satisfies the first A threshold value, the target voltage is the driving voltage used to drive the electromagnet to toggle the guide wheel to overcome the maximum static friction force when moving on the slide rail.
  • the guide wheel is moved on the slide rail through the toggle lever, so that the guide wheel cooperates with the guide rail in the air for cornering guidance.
  • the aerial transport vehicle follows the track and travels through the curve. And, during the cornering, the aerial transport vehicle (or the steering control system) still detects the traveling process in real time, such as the position of the cornering in real time, so as to determine the next application node of the driving voltage.
  • Step S208 determines whether the electromagnet is driven by the first drive voltage to move the guide wheel to the first specified position on the slide rail, if so, execute step S210, otherwise continue to execute step S206 ( That is, the first driving voltage is continuously maintained).
  • Step S210 applies a second driving voltage to the electromagnet, wherein the second driving voltage is a driving voltage for driving the electromagnet to move the guide wheel to move on the slide rail, and the second driving voltage is The voltage is not equal to the first driving voltage.
  • the rotating electromagnet is driven by a second driving voltage different from the first driving voltage, so that the operating voltage of the rotating electromagnet can be adjusted, and the possibility of excessive temperature rise caused by applying the same driving voltage for a long time is reduced.
  • the aerial transport vehicle still performs real-time detection of the traveling process, such as real-time detection of the position of cornering, and continues to determine Application node of the next driving voltage.
  • Step S212 determines whether the electromagnet is driven by the second drive voltage to move the guide wheel to the second specified position on the slide rail, if so, execute step S214, otherwise continue to execute step S210 ( That is, the second driving voltage is continuously maintained).
  • the second specified position may be a preset stop position reached by the electromagnet when the guide wheel reaches on the slide rail.
  • the stop position can be a short stay position.
  • the reversing point can be used as a short stay. It can be specified according to the actual application, and is not limited here.
  • Step S214 applies a third driving voltage to the electromagnet, wherein the third driving voltage is greater than the target voltage.
  • step S216 is executed.
  • Step S216 determines whether the application of the third driving voltage meets a preset condition, and if so, executes step S218.
  • the preset condition can be the duration of applying the third driving voltage, or the real-time position condition of the aerial transport vehicle when it is turning and traveling.
  • Step S218 cuts off the power control for controlling the electromagnet.
  • the second driving voltage and the third driving voltage may be set to the same or different voltages.
  • the second driving voltage can be set to be lower than the first driving voltage, which can reduce the high power state of the rotating electromagnet for a long time, and can reduce the temperature rise and the temperature rise speed.
  • the third driving voltage can be set to be equal to the second driving voltage, which can simplify the overall design of the driving voltage.
  • the corresponding driving voltage can be provided to the rotating electromagnet through a voltage conversion circuit, an output control circuit, and the like.
  • a voltage regulator can be used to regulate and stabilize the system voltage to obtain at least one of the following driving voltages: the first driving voltage, the second driving voltage, the third driving voltage Voltage.
  • the drive voltage may be applied by first rotating the electromagnet through a relay.
  • applying the first driving voltage to the electromagnet includes: applying the first driving voltage to the electromagnet through the first solid state relay; and/or applying the second driving voltage to the electromagnet includes: applying the first driving voltage to the electromagnet through the second solid state relay.
  • Applying a second driving voltage to the electromagnet; and/or, applying a third driving voltage to the electromagnet includes: applying a third driving voltage to the electromagnet through a third solid state relay.
  • the relay can be a relay with a single set of contacts, or a relay with multiple sets of contacts.
  • the set power supply voltage is used, and the corresponding first driving voltage, the second driving voltage and the third driving voltage are output after being respectively stabilized by the voltage regulator.
  • the driving voltage can be applied to the rotating electromagnet after passing through the relay.
  • the relay corresponding to the driving voltage can be controlled to be switched on and off, and the driving voltage can be applied to the rotating electromagnet.
  • the first driving voltage is applied to the rotating electromagnet after passing through the solid state relay 1
  • the second driving voltage is applied to the rotating electromagnet after passing through the solid state relay 2.
  • the first drive voltage is used from A to C to make the guide wheel move on the large slide rail against the static friction force, that is, when the aerial transport vehicle arrives at the position of changing the path, the PLC (programmable logic controller) sends an instruction to make the The solid-state relay 1 is turned on, and the electromagnet rotates under the first driving voltage; then when it reaches C, the PLC sends an instruction to make the solid-state relay 1 turn off, and the solid-state relay 2 turns on, and the second driving voltage is used to make the guide wheel on the slide rail After moving to the designated position B at a constant speed, keep it for a period of time and then turn off the power (for example, keep it to D), to prevent the electromagnet from rebounding due to the reaction force, causing the transport vehicle to run unstable or even malfunction and affect the handling operation.
  • the PLC programmable logic controller
  • determining whether to move to a specified location it can be determined quickly and accurately by counting the duration of the timer.
  • determining whether the electromagnet is driven by the first drive voltage to move the guide wheel to the first specified position on the slide rail may include: obtaining the corresponding position of the first drive voltage the first application duration, and determine whether the first application duration reaches the first preset duration, so as to determine whether the electromagnet is driven by the first driving voltage to move the guide wheel on the slide rail Move to the first specified position.
  • the first application duration can be determined according to on-site commissioning data in actual applications, and can be subsequently adjusted according to actual operating experience data.
  • determining whether the electromagnet is driven by the second drive voltage to move the guide wheel to the second designated position on the slide rail may include: obtaining the corresponding position of the second drive voltage. second application duration, and determine whether the second application duration reaches a second preset duration, so as to determine whether the electromagnet is driven by the second driving voltage to move the guide wheel on the slide rail Move to the second specified location.
  • determining whether the application of the third driving voltage reaches a preset condition may include: acquiring a third application duration corresponding to the third driving voltage, and determining whether the third application duration reaches a third preset duration, to determining whether the application of the third driving voltage meets a preset condition.
  • first application duration and/or the second application duration and/or the third application duration may be specifically determined according to preset values, or may be set according to empirical data summed up during debugging in practical applications.
  • the first application duration may account for 20% of the total time, that is, the duration of the first driving voltage may account for approximately 20% of the total time.
  • the second application duration may account for 70% of the total time, that is, the duration of the second driving voltage may account for approximately 70% of the total time.
  • the third application duration may account for 10% of the total time, that is, the duration of the third driving voltage may account for approximately 10% of the total time.
  • the duration corresponding to different driving voltages can be set to make the duration distribution of different driving voltages more reasonable, which can well improve the temperature rise of the rotating electromagnet and improve the performance of the rotating electromagnet in steering control. work stability, safety and reliability.
  • a sensor when determining whether to move to a specified position, a sensor may be used for detection and determination.
  • determining whether the electromagnet is driven by the first driving voltage to move the guide wheel to the first designated position on the slide rail may include: acquiring a first sensor The first sensing signal, and according to the first sensing signal, it is determined whether the electromagnet is driven by the first driving voltage to move the guide wheel to the first specified position on the slide rail .
  • the first sensor is used to detect the moving position of the guide wheel on the slide rail.
  • the first sensor may be installed at different locations for detection according to actual application needs, and the installation locations are not limited here.
  • the first sensor is installed on the side of the slide rail, and when the guide wheel passes by the position of the sensor, the first sensor is triggered to output a detection result.
  • the first sensor is installed around the toggle lever to detect the moving position of the toggle lever, and then the first sensor can be triggered to output a detection result by detecting the moving position of the toggle lever.
  • the first sensor can be selected according to actual application needs, and the selection of the sensor is not limited here.
  • the first sensor can be a photoelectric sensor, such as a sensor integrated with infrared light transceiver.
  • the detected object such as a guide wheel, a toggle lever, etc.
  • the sensor outputs a detection result.
  • the first sensor can be a reader for identification reading, such as a barcode reader.
  • a barcode reader When the detected object (such as a guide wheel, a toggle lever, etc.) The barcode identification, at this time the reader outputs the detection result.
  • determining whether the electromagnet is driven by the second driving voltage to move the guide wheel to the second designated position on the slide rail may include: acquiring a second sensor The second sensing signal, and according to the second sensing signal, it is determined whether the electromagnet is driven by the second driving voltage to move the guide wheel to the second specified position on the slide rail .
  • the second sensor is used to detect the moving position of the guide wheel on the slide rail.
  • the installation method, type selection, etc. of the second sensor can be set according to actual application needs, and will not be described here.
  • the present application also provides a steering control system for an aerial transport vehicle, which is applied to an aerial transport vehicle in an automatic semiconductor production factory, and the steering control method as described in any one of the foregoing embodiments is executed by the steering control system, so that When steering control is required, the aerial transport vehicle completes turns efficiently and orderly.
  • the air transport vehicle steering control system 2000 may include: an activation module 2020 and a switching module 2040 .
  • the starting module 2020 is configured to: when receiving the steering control signal, apply a first driving voltage to the electromagnet, wherein the first driving voltage is used to drive the electromagnet to toggle the guide wheel to move on the slide rail , the difference between the first driving voltage and the target voltage satisfies the first threshold, and the target voltage is the driving voltage used to drive the electromagnet to toggle the guide wheel to overcome the maximum static friction force when moving on the slide rail;
  • the switching module 2040 is configured to:
  • the work of the rotating electromagnet can be controlled quickly and accurately, and then the electromagnet drives the movement of the toggle lever, and the toggle lever drives the guide wheel to slide It moves on the rail, so that the guide wheel cooperates with the air steering track to guide the air transport vehicle in the corner, and by applying different driving voltages to the electromagnet, it can avoid the electromagnet applying voltage too long and the temperature rise too fast. If it is too high, it can avoid the rebound after the electromagnet is powered off, which will cause the guide wheel to collide with the steering guide rail or even get stuck, which improves the working stability, safety and reliability of the aerial transport vehicle's cornering and reversing, and improves the stability of the wafer.
  • the handling efficiency of the box improves the efficiency of semiconductor automation production.
  • the steering control system of the aerial transport vehicle may further include: a voltage regulating regulator (not shown in the figure), and the voltage regulating regulator is used to regulate and stabilize the system voltage, so as to At least one of the following driving voltages is obtained: the first driving voltage, the second driving voltage, and the third driving voltage.
  • a voltage regulating regulator (not shown in the figure)
  • the voltage regulating regulator is used to regulate and stabilize the system voltage, so as to At least one of the following driving voltages is obtained: the first driving voltage, the second driving voltage, and the third driving voltage.
  • the steering control system of the aerial transport vehicle may further include: a solid state relay (not shown in the figure), the solid state relay is used to adjust and stabilize the voltage of the system voltage by the voltage regulator Press the drive voltage switch applied to the electromagnet.
  • a solid state relay (not shown in the figure)
  • the solid state relay is used to adjust and stabilize the voltage of the system voltage by the voltage regulator Press the drive voltage switch applied to the electromagnet.
  • the steering control system of the aerial transport vehicle further includes: a timer (not shown in the figure), and the timer is used to obtain at least one of the following durations: a first preset duration, a second preset duration Duration, the third preset duration; wherein, the first preset duration is the duration of applying the first driving voltage; the second preset duration is the duration of applying the second driving voltage; the third preset duration is the duration of applying the third driving voltage duration.
  • the steering control system of the aerial vehicle further includes: a first sensor and/or a second sensor; wherein the first sensor is used to detect the moving position of the guide wheel on the slide rail ; The second sensor is used to detect the moving position of the guide wheel on the slide rail.
  • the switching module includes a PLC controller (not shown in the figure).
  • the PLC can be a PLC controller in the air transport vehicle, which can simplify the overall system structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Carriers, Traveling Bodies, And Overhead Traveling Cranes (AREA)

Abstract

一种空中运输车转向控制方法及系统,应用于半导体晶圆制造设备技术领域,其中空中运输车转向控制方法包括:在需要转向控制时,先向用于转向控制引导的旋转电磁铁(13)施加第一驱动电压(U 1),通过旋转电磁铁(13)驱动导向轮(11)在滑轨(17)上移动,以配合空中轨道(2)进行转向引导;在导向轮(11)在滑轨(17)上移动到第一指定位置时,切换为向旋转电磁铁(13)施加第二驱动电压(U 2),以及在导向轮(11)在滑轨(17)上移动到第二指定位置后,继续向旋转电磁铁(13)施加第三驱动电压(U 3)后再断电。通过向旋转电磁铁(13)施加不同驱动电压,使得旋转电磁铁(13)在转向控制中处于不同工作状态。

Description

一种空中运输车转向控制方法及系统
本申请基于申请号为“202210188919.2”、申请日为2022年03月01日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及半导体晶圆制造设备技术领域,具体涉及一种自动物料搬送系统中空中运输车转向控制方法及系统。
背景技术
在半导体自动化工厂应用中,自动物料搬送系统(AMHS,AutomaticMaterialHandlingSystem,也称天车系统)中的空中运输车需要将目标夹取物按要求从一个地方搬送到指定位置,当所夹取物(如晶圆盒)的位置和目标搬送位置不在同一条轨道上,则运输车需要变换轨道行走,此时运输车上的转向驱动机构中的旋转电磁铁拨动滑轨上的导向轮移动到指定位置并在上方导轨的干涉下改变运输车行步轨迹。
鉴于电磁铁通电时间越长,温升越大,功率越小,力量会变小,因而现有方案中通常是给旋转电磁铁一段固定不变的电压,并在旋转电磁铁转到所需位置后断电,避免电磁铁通电时间长而温升过高。但是,旋转电磁铁在到达指定角度位置后,由于断电失去动力而受到惯性的反作用力出现回弹现象,导致运输车的导向轮与空中导轨相撞、甚至卡死的情况,严重影响了空中运输车的正常运行,降低了半导体工厂的生产效率。
因此,亟需一种新的转向控制方案。
发明内容
本申请提供一种空中运输车转向控制方法,包括:
当接收到转向控制信号时,向电磁铁施加第一驱动电压,其中所述第一驱动电压用于驱动所述电磁铁拨动导向轮在滑轨上移动,所述第一驱动电压与目标电压之间的差值满足第一阈值,所述目标电压为用于驱动电磁铁拨动导向轮在滑轨上移动时克服最大静摩擦力的驱动电压;
确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置,若是,则向所述电磁铁施加第二驱动电压,其中所述第二驱动电压为用于驱动所述电磁铁拨动所述导向轮在所述滑轨上移动的驱动电压,所述第二驱动电压与所述第一驱动电压不相等;
确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置,若是,则向所述电磁铁施加第三驱动电压,其中所述第二指定位置为所述电磁铁拨动所述导向轮在所述滑轨上预设的停留位置,所述第三驱动电压大于所述目标电压;
确定施加所述第三驱动电压是否达到预设条件,若是,则切断控制所述电磁铁的电源。
本申请还提供一种空中运输车转向控制系统,包括:启动模块和切换模块;
其中,所述启动模块被配置为:当接收到转向控制信号时,向电磁铁施加第一驱动电压,其中所述第一驱动电压用于驱动所述电磁铁拨动导向轮在滑轨上移动,所述第一驱动电压与目标电压之间的差值满足第一阈值,所述目标电压为用于驱动电磁铁拨动导向轮在滑轨上移动时克服最大静摩擦力的驱动电压;
所述切换模块被配置为:
确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置,若是,则向所述电磁铁施加第二驱动电压,其中所述第二驱动电压为用于驱动所述电磁铁拨动所述导向轮按第一预设速度在所述滑轨上移动的驱动电压,所述第二驱动电压与所述第一驱动电压不相等;
确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置,若是,则向所述电磁铁施加第三驱动电压,其中所述第二指定位置为所述电磁铁拨动所述导向轮在所述滑轨上预设的停留位置, 所述第三驱动电压大于所述目标电压;
确定施加所述第三驱动电压是否达到预设条件,若是,则控制切断控制所述电磁铁的电源。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是空中运输车转向引导的结构示意图;
图2是空中运输车转向引导中驱动电压施加的示意图;
图3是空中运输车转向引导中引导轮移动位置的示意图;
图4是本申请提供的空中运输车转向控制方法中驱动电压施加的示意图;
图5是本申请提供的空中运输车转向控制方法中驱动电压施加后导向轮位置的示意图;
图6是本申请提供的空中运输车转向控制方法的流程图;
图7是本申请提供的空中运输车转向控制方法中生产驱动电压的结构示意图;
图8是本申请提供的空中运输车转向控制系统的结构示意图。
具体实施方式
下面结合附图对本申请实施例进行详细描述。
以下通过特定的具体实例说明本申请的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本申请的其他优点与功效。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本申请的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本申请 中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本申请,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目和方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
还需要说明的是,以下实施例中所提供的图示仅以示意方式说明本申请的基本构想,图式中仅显示与本申请中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所述方面。术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等描述的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1所示,空中运输车1在空中轨道2的转向引导下,即通过空中运输车1中的导向轮11与空中轨道2配合实现转向引导。其中在需要转向引导时,空中运输车1中的旋转电磁铁13带动拨动杆14,由拨动杆14拨动导向轮11在滑轨17上滑动,以使导向轮11配合空中轨道2实现转向引导。
需要说明的是,旋转电磁铁是在通电电压驱动下,可在输出到固定角度(比如90°)后不再转动,以及可在断电后依靠自身恢复装置复位的机构。因此,可利用旋转电磁铁的自身特征,实现空中运输车的过弯转向控制。
需要说明的是,旋转电磁铁的旋转范围可通过传感器15和传感器16进行 检测,避免旋转电磁铁旋转角度超出设计范围。
如图2所示,在控制旋转电磁铁中,为避免电磁铁通电时间过长而温升过高,通常在旋转电磁铁从起始位置A到停留位置B之间,对其施加一个固定驱动电压U 0,并在旋转电磁铁转到停留位置B时,立即将切断驱动电压U 0
但在实际应用中发现,旋转电磁铁的动作结果如图3所示,即若在旋转电磁铁到达指定位置(即停留位置B)后立即断电,此时旋转电磁铁因断电失去动力,而惯性的反作用力使得旋转电磁铁发生回弹现象,即旋转电磁铁因发生回弹现象并不能停止在停留位置B上,而是从停留位置B回弹后停留在最终位置B′处。
因此,当旋转电磁铁发生回弹而停留在最终位置B′处时,即旋转电磁铁带动导向轮回移,导致运输车的导向轮与空中导轨相撞甚至出现卡死情况,严重影响了空中运输车的正常运行,降低了半导体工厂空中运输车搬运效率。
另外,若在旋转电磁铁到达停留位置B处后仍继续施加驱动电压U 0,以使旋转电磁铁停留在停留位置B处,但在实际中改进探索中发现,此时旋转电磁铁因长时间施加驱动电压U 0而导致温升过高,影响了旋转电磁铁工作稳定性、安全性、可靠性等。
有鉴于此,通过对旋转电磁铁和转向控制过程进行深入研究及改进探索后,提出了一种新的转向控制方案:如图4所示,在旋转电磁铁从起始位置至预定的停留位置之间进行工作中,施加不同的驱动电压,以及在旋转电磁铁达到预定的停留位置时,并不马上断电,而是继续施加一个驻停驱动电压后再断电,以避免长时间施加电压导致温升过高,同时可通过继续施加的驻停驱动电压来克服断电后惯性的反作用力,避免旋转电磁铁发生回弹而不能准确停留在设定位置上。
例如,如图4和图5所示,在起始位置A至途径位置C之间,对旋转电磁铁施加第一驱动电压U 1,在途径位置C至预定的停留位置B之间,施加第二驱动电压U 2,以及在到达停留位置B后,继续施加第三驱动电压U 3后再断电,以使旋转电磁铁在第三驱动电压U 3作用下,克服因在停留位置B断电而出现的惯 性反作用力,即旋转电磁铁在第三驱动电压U 3的作用下,虚拟出一个防回弹位置D(如图5所示,图中B至D之间的虚线阴影为旋转电磁铁在施加U3后虚拟产生的动作距离),以通过第三驱动电压U 3克服因断电的惯性反作用出现的回弹,使得旋转电磁铁在断电后仍能够停留在停留位置B上。
需要说明的是,第一驱动电压U 1、第二驱动电压U 2和第三驱动电压U 3,三者中两两关系可根据实际进行设置,比如U 1小于U 2,比如U 2大于U 3,比如U 1大于U 2,比如U 2等于U 3等等。
需要说明的是,前述说明是以移动位置来示意说明电磁铁旋转角度,下面说明中不加以区分。
以下结合附图,说明本说明书中各实施例提供的技术方案。
如图6所示,本说明书提供了一种空中运输车转向控制方法的实施例,可包括:
步骤S202在空中运输车沿着轨道行进中,实时接收转向控制信号。
实施中,转向控制系统实时接收转向控制信号。其中,转向控制信号可为空中运输车在沿着空中轨道行进中,实时对行进位置进行检测中当检测到需要进行转向操作时,向转向控制系统下发的转向控制指令。比如空中运输车通过设置于轨道处的检测标识,实时触发并生产转向控制指令,使得转向控制系统在该指令的触发下进行转向控制。
例如,当空中运输车因所夹取物的位置和目标搬送位置不在同一条轨道上时,运输车则需要变换行走轨道,因而在轨道变换处时,转向控制系统可获知转向控制指令,进而可根据转向控制指令执行转向操作。
实施中,为了不因驱动电压过小导致导向轮在滑轨上移动较慢,也为了不因驱动电压过大影响电磁铁的力量,可通过计算获取一个能使导向轮按设定速度在滑轨上移动所需力,并据此确定出所需的驱动电压。
例如,鉴于推力大于最大静摩擦力时才能推动物体移动,简单分析可知,在旋转电磁铁启动工作中,导向轮移动中所需的力是变化的,物体移动后匀速运动时所需的力可设为F=μmg(m代表导向轮组件的质量,μ为摩擦系数,g 为重力加速度),进而可得出电磁铁输出的力要大于F,导向轮才能移动。又因
Figure PCTCN2022123430-appb-000001
且P=FV,所以FV=UI=μmgV,从而得出
Figure PCTCN2022123430-appb-000002
其中V代表导向轮组件移动的速度,I为旋转电磁铁的电流,U为驱动电压。
因此,可根据移动速度的需要,通过设定驱动电压,可使得电磁铁工作在相应的电流状态下,即通过让电磁铁工作在相应电流状态下,获得相应的力矩,再通过力矩对拨动杆的拨动下,使得导向轮在拨动杆的拨动下,按预设的移动速度在滑轨上进行滑动,进而导向轮可以与空中导向轨道进行配合抵接后进行过弯导向。
步骤S204确定是否需要进行转向控制,若是则执行步骤S206。
在接收到转向控制指令的触发后,转向控制系统可实时检测是否需要进行转向控制,并对转向控制导向轮进行实时控制。
步骤S206向电磁铁施加第一驱动电压,其中,所述第一驱动电压用于驱动电磁铁拨动导向轮在滑轨上移动,所述第一驱动电压与目标电压之间的差值满足第一阈值,目标电压为用于驱动电磁铁拨动导向轮在滑轨上移动时克服最大静摩擦力的驱动电压。
实施中,通过向旋转电磁铁施加第一驱动电压,旋转电磁铁在通电后,通过拨动杆使导向轮在滑轨上移动,使得导向轮配合空中导向轨道进行过弯引导,其中在导向轨道和导向轮的配合引导下,空中运输车跟随轨道进行过弯行进。以及,在过弯行进中,空中运输车(或者转向控制系统)仍对行进过程进行实时检测,比如对过弯行进的位置进行实时检测,以确定下一个驱动电压的施加节点。
步骤S208确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置,若是则执行步骤S210,若否则继续执行步骤S206(即持续保持第一驱动电压)。
步骤S210向所述电磁铁施加第二驱动电压,其中所述第二驱动电压为用于驱动所述电磁铁拨动所述导向轮在所述滑轨上移动的驱动电压,所述第二驱动 电压与所述第一驱动电压不相等。
实施中,采用不同于第一驱动电压的第二驱动电压驱动旋转电磁铁,可调整旋转电磁铁的工作电压,降低长时间施加同一个驱动电压而温升过快的可能。
相应地,在施加第二驱动电压的过程中,即在过弯行进中,空中运输车(或者转向控制系统)仍对行进过程进行实时检测,比如对过弯行进的位置进行实时检测,继续确定下一个驱动电压的施加节点。
步骤S212确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置,若是则执行步骤S214,若否则继续执行步骤S210(即持续保持第二驱动电压)。
实施中,所述第二指定位置可为电磁铁拨动所述导向轮在所述滑轨上到达的预设停留位置。需要说明的是,停留位置可为短暂停留的位置,比如在轨道换向中,换向点可作为短暂停留处,又比如半圆形的弯道中,弯道中点可作为停留位置等等,具体可根据实际应用进行指定,这里不作限定。
步骤S214向所述电磁铁施加第三驱动电压,其中所述第三驱动电压大于所述目标电压。
实施中,通过施加第三驱动电压,克服旋转电磁铁因断电后的惯性反作用力,使得旋转电磁铁可以在第三驱动电压的驱动下,仍能够较准确地在指定的停留位置处。相应地,在施加第三驱动电压中,仍可实时地检测断电时机,即执行步骤S216。
步骤S216确定施加所述第三驱动电压是否达到预设条件,若是,则执行步骤S218。需要说明的是,预设条件可为施加第三驱动电压的时长,也可为空中运输车在过弯行进中的实时位置条件等。
步骤S218切断控制所述电磁铁的电源控制。通过在导向轮与导向轨道配合导向到指定位置后进行断电,仍可以依靠电磁铁内的恢复机构对拨动杆的牵引下,导向轮与导向轨道之间配合过弯导向引导。
通过上述步骤S202至步骤S218,在过弯控制中对旋转电磁铁施加不同驱动电压,使得旋转电磁铁在工作中处于不同驱动电压,以及在旋转电磁铁到达指 定转动角度后继续施加一段驱动电压,既可以避免长时间处于较高驱动电压而温升过快,又可以避免旋转电磁铁因断电后惯性的反作用力导致不能准确达到指定位置,因而可提高电磁铁的工作稳定性、安全性和可靠性,提高空中运输车转向稳定性、可靠性,提高过弯效率,有利于提高半导体工厂中晶圆盒的搬运效率,进而提高半导体工厂的生产效率。
在一些实施方式中,第二驱动电压和第三驱动电压可设置为相同或不同的电压。
在一种实施方式中,可将第二驱动电压设置为小于第一驱动电压,可降低旋转电磁铁长时间处于较高功率状态,可减小温升和降低温升速度。
在一种实施方式中,可将第三驱动电压设置为与第二驱动电压相等,可简化驱动电压的整体设计方案。
在一些实施方式中,可通过电压变换电路、输出控制电路等将相应的驱动电压向旋转电磁铁提供。
在一种实施中,可采用调压稳压器对系统电压进行调压稳压,以得到以下至少一种驱动电压:所述第一驱动电压、所述第二驱动电压、所述第三驱动电压。
在一种实施中,可通过继电器先旋转电磁铁施加驱动电压。例如,向电磁铁施加第一驱动电压,包括:通过第一固态继电器向电磁铁施加第一驱动电压;和/或,向所述电磁铁施加第二驱动电压,包括:通过第二固态继电器向所述电磁铁施加第二驱动电压;和/或,向所述电磁铁施加第三驱动电压,包括:通过第三固态继电器向所述电磁铁施加第三驱动电压。
需要说明的是,继电器可为单组触点的继电器,也可为多组触点的继电器。
如图7所示,采用设定的电源电压,经过电压调压器分别稳压后输出相应的第一驱动电压、第二驱动电压和第三驱动电压。
实施中,驱动电压可通过继电器后再施加于旋转电磁铁,此时可通过控制驱动电压对应的继电器进行通断,可将驱动电压施加于旋转电磁铁。例如,第一驱动电压通过固态继电器1后再向旋转电磁铁施加,比如第二驱动电压通过 固态继电器2后再向旋转电磁铁施加。
例如,前述示例中,从A到C采用第一驱动电压使导向轮克服静摩擦力大滑轨上移动,即当空中运输车到达变换路径位置时,由PLC(可编程控制器)发出指令,使固态继电器1打开,这时电磁铁在第一驱动电压下旋转;然后到达C处时,PLC发出指令,使固态继电器1关闭,且固态继电器2打开,采用第二驱动电压让导向轮在滑轨上匀速移动到指定位置B后,继续保持一段时间后再断电(比如保持到D处),防止电磁铁受反作用力出现回弹导致运输车运行不稳甚至出现故障而影响搬运作业。
在一些实施方式中,在确定是否移动到指定位置中,可通过定时器计算时长来快速、准确地确定。
例如,在确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置,可包括:获取所述第一驱动电压对应的第一施加时长,并确定所述第一施加时长是否达到第一预设时长,以确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置。
需要说明的是,第一施加时长可根据实际应用中的现场调试数据加以确定,以及后续可根据实际运行经验数据进行调整等。
例如,在确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置,可包括:获取所述第二驱动电压对应的第二施加时长,以及确定所述第二施加时长是否达到第二预设时长,以确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置。
例如,确定施加所述第三驱动电压是否达到预设条件,可包括:获取所述第三驱动电压对应的第三施加时长,并确定所述第三施加时长是否达到第三预设时长,以确定施加所述第三驱动电压是否达到预设条件。
需要说明的是,第一施加时长和/或第二施加时长和/或第三施加时长,具体可根据预设值确定,也可根据实际应用中调试总结的经验数据进行设置。
例如,第一施加时长可为占总时间的20%,即第一驱动电压的持续时间可约占总时间的20%。
例如,第二施加时长可为占总时间的70%,即第二驱动电压的持续时间可约占总时间的70%。
例如,第三施加时长可为占总时间的10%,即第三驱动电压的持续时间可约占总时间的10%。
实施中,可根据转向控制需要,通过设置不同驱动电压对应的持续时长,使得不同驱动电压的持续时长分布更合理,可很好地改善了旋转电磁铁温升,提高旋转电磁铁在转向控制中的工作稳定性、安全性和可靠性。
在一些实施方式中,在确定是否移动到指定位置中,可通过传感器进行检测确定。
在一种实施方式中,在确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置,可包括:获取第一传感器的第一传感信号,以及根据所述第一传感信号确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置。其中,所述第一传感器用于检测所述导向轮在所述滑轨上的移动位置。
实施中,第一传感器可根据实际应用需要安装在不同位置进行检测,这里不对安装位置进行限定。
例如,第一传感器安装于滑轨侧面,当导向轮经传感器所在位置时,便触发第一传感器输出检测结果。
例如,第一传感器安装于拨动杆周围,用于检测拨动杆移动位置,进而可通过检测拨动杆移动位置来触发第一传感器输出检测结果。
实施中,第一传感器可根据实际应用需要进行选型,这里不对传感器的选型进行限定。
例如,第一传感器可为光电传感器,比如红外光收发一体的传感器,当被检测对象(如导向轮、拨动杆等)遮挡光电传感器的检测信号时,传感器输出检测结果。
例如,第一传感器可为标识读取的读取器,比如条码读取器,当被检测对象(如导向轮、拨动杆等)经过读取器所在位置时,读取器读取到相应的条码标识,这时读取器输出检测结果。
在一种实施方式中,在确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置,可包括:获取第二传感器的第二传感信号,以及根据所述第二传感信号确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置。其中,所述第二传感器用于检测所述导向轮在所述滑轨上的移动位置。
相应地,与前述第一传感器的示例说明相似,第二传感器的安装方式、选型等可根据实际应用需要进行设置,这里不展开说明。
基于相同发明构思,本申请还提供一种空中运输车转向控制系统,应用于半导体自动生产工厂中的空中运输车中,通过转向控制系统执行如前述任意一个实施例所述的转向控制方法,使得空中运输车在需要转向控制时,高效有序地完成转向。
如图8所示,空中运输车转向控制系统2000可包括:启动模块2020和切换模块2040。
实施中,启动模块2020被配置为:当接收到转向控制信号时,向电磁铁施加第一驱动电压,其中所述第一驱动电压用于驱动所述电磁铁拨动导向轮在滑轨上移动,所述第一驱动电压与目标电压之间的差值满足第一阈值,所述目标电压为用于驱动电磁铁拨动导向轮在滑轨上移动时克服最大静摩擦力的驱动电压;
以及,切换模块2040被配置为:
确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置,若是,则向所述电磁铁施加第二驱动电压,其中所述第二驱动电压为用于驱动所述电磁铁拨动所述导向轮按第一预设速度在所述滑轨上移动的驱动电压,所述第二驱动电压与所述第一驱动电压不相等;
确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨 上是否移动到第二指定位置,若是,则向所述电磁铁施加第三驱动电压,其中所述第二指定位置为所述电磁铁拨动所述导向轮在所述滑轨上预设的停留位置,所述第三驱动电压大于所述目标电压;
确定施加所述第三驱动电压是否达到预设条件,若是,则切断控制所述电磁铁的电源。
通过在控制系统中设置启动模块和切换模块,可以在需要进行转向控制时,快速、准确地通过控制旋转电磁铁的工作,进而电磁铁带动拨动杆运动,而拨动杆带动导向轮在滑轨上移动,使得导向轮配合空中转向轨道对空中运输车进行过弯中的转向引导,而且通过向电磁铁分段施加不同驱动电压,即可避免电磁铁施加电压过长而温升过快、过高,又可以避免电磁铁断电后发生回弹而导致导向轮与转向导轨碰撞甚至卡死现象,提高了空中运输车过弯换向的工作稳定性、安全性和可靠性,提高晶圆盒的搬运效率,提高半导体自动化生产效率。
在一种实施方式中,所述空中运输车转向控制系统还可包括:调压稳压器(图中未示出),所述调压稳压器用于对系统电压进行调压稳压,以得到以下至少一种驱动电压:所述第一驱动电压、所述第二驱动电压、所述第三驱动电压。
在一种实施方式中,所述空中运输车转向控制系统还可包括:固态继电器(图中未示出),所述固态继电器用于将所述调压稳压器对系统电压进行调压稳压的驱动电压切换施加到所述电磁铁。
在一种实施方式中,所述空中运输车转向控制系统还包括:定时器(图中未示出),所述定时器用于获取以下至少一种时长:第一预设时长,第二预设时长,第三预设时长;其中,第一预设时长为施加第一驱动电压的时长;第二预设时长为施加第二驱动电压的时长;第三预设时长为施加第三驱动电压的时长。
在一种实施方式中,所述空中运输车转向控制系统还包括:第一传感器和/或第二传感器;其中所述第一传感器用于检测所述导向轮在所述滑轨上的移动位置;所述第二传感器用于检测所述导向轮在所述滑轨上的移动位置。
在一种实施方式中,所述切换模块包括PLC控制器(图中未示出)。实施中,PLC可为空中运输车中的PLC控制器,可简化整体系统结构。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例侧重说明的都是与其他实施例的不同之处。尤其,对于后面说明的实施例而言,由于其与前面的实施例是对应的,描述比较简单,相关之处参见在前实施例的部分说明即可。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种空中运输车转向控制方法,其特征在于,包括:
    当接收到转向控制信号时,向电磁铁施加第一驱动电压,其中所述第一驱动电压用于驱动所述电磁铁拨动导向轮在滑轨上移动,所述第一驱动电压与目标电压之间的差值满足第一阈值,所述目标电压为用于驱动电磁铁拨动导向轮在滑轨上移动时克服最大静摩擦力的驱动电压;
    确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置,若是,则向所述电磁铁施加第二驱动电压,其中所述第二驱动电压为用于驱动所述电磁铁拨动所述导向轮在所述滑轨上移动的驱动电压,所述第二驱动电压与所述第一驱动电压不相等;
    确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置,若是,则向所述电磁铁施加第三驱动电压,其中所述第二指定位置为所述电磁铁拨动所述导向轮在所述滑轨上预设的停留位置,所述第三驱动电压大于所述目标电压;
    确定施加所述第三驱动电压是否达到预设条件,若是,则切断控制所述电磁铁的电源。
  2. 根据权利要求1所述的空中运输车转向控制方法,其特征在于,所述第二驱动电压小于所述第一驱动电压;
    和/或,所述第三驱动电压与所述第二驱动电压相等。
  3. 根据权利要求1所述的空中运输车转向控制方法,其特征在于,确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置,包括:
    获取所述第一驱动电压对应的第一施加时长;
    确定所述第一施加时长是否达到第一预设时长,进一步确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置。
  4. 根据权利要求1所述的空中运输车转向控制方法,其特征在于,确定所述 电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置,包括:
    获取所述第二驱动电压对应的第二施加时长;
    确定所述第二施加时长是否达到第二预设时长,进一步确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置。
  5. 根据权利要求1所述的空中运输车转向控制方法,其特征在于,确定施加所述第三驱动电压是否达到预设条件,包括:
    获取所述第三驱动电压对应的第三施加时长;
    确定所述第三施加时长是否达到第三预设时长,进一步确定施加所述第三驱动电压是否达到预设条件。
  6. 根据权利要求1所述的空中运输车转向控制方法,其特征在于,所述空中运输车转向控制方法还包括:
    采用调压稳压器对系统电压进行调压稳压,以得到所述第一驱动电压、所述第二驱动电压及所述第三驱动电压中的至少一种驱动电压。
  7. 根据权利要求1所述的空中运输车转向控制方法,其特征在于,确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置,包括:
    获取第一传感器的第一传感信号;
    根据所述第一传感信号确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置;
    其中,所述第一传感器用于检测所述导向轮在所述滑轨上的移动位置;
    和/或,确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置,包括:
    获取第二传感器的第二传感信号;
    根据所述第二传感信号确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置;
    其中,所述第二传感器用于检测所述导向轮在所述滑轨上的移动位置。
  8. 根据权利要求1-7中任意一项所述的空中运输车转向控制方法,其特征在于,向电磁铁施加第一驱动电压,包括:通过第一固态继电器向电磁铁施加第一驱动电压;
    和/或,向所述电磁铁施加第二驱动电压,包括:通过第二固态继电器向所述电磁铁施加第二驱动电压;
    和/或,向所述电磁铁施加第三驱动电压,包括:通过第三固态继电器向所述电磁铁施加第三驱动电压。
  9. 一种空中运输车转向控制系统,其特征在于,包括:启动模块和切换模块;
    其中,所述启动模块被配置为:当接收到转向控制信号时,向电磁铁施加第一驱动电压,其中所述第一驱动电压用于驱动所述电磁铁拨动导向轮在滑轨上移动,所述第一驱动电压与目标电压之间的差值满足第一阈值,所述目标电压为用于驱动电磁铁拨动导向轮在滑轨上移动时克服最大静摩擦力的驱动电压;
    所述切换模块被配置为:
    确定所述电磁铁在所述第一驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第一指定位置,若是,则向所述电磁铁施加第二驱动电压,其中所述第二驱动电压为用于驱动所述电磁铁拨动所述导向轮按第一预设速度在所述滑轨上移动的驱动电压,所述第二驱动电压与所述第一驱动电压不相等;
    确定所述电磁铁在所述第二驱动电压的驱动下拨动所述导向轮在所述滑轨上是否移动到第二指定位置,若是,则向所述电磁铁施加第三驱动电压,其中所述第二指定位置为所述电磁铁拨动所述导向轮在所述滑轨上预设的停留位置,所述第三驱动电压大于所述目标电压;
    确定施加所述第三驱动电压是否达到预设条件,若是,则切断控制所述电磁铁的电源。
  10. 根据权利要求9所述的空中运输车转向控制系统,其特征在于,所述空中运输车转向控制系统还包括:调压稳压器,所述调压稳压器用于对系统电压进行调压稳压,以得到以下至少一种驱动电压:所述第一驱动电压、所述第二 驱动电压、所述第三驱动电压。
  11. 根据权利要求10所述的空中运输车转向控制系统,其特征在于,所述空中运输车转向控制系统还包括:固态继电器,所述固态继电器用于将所述调压稳压器对系统电压进行调压稳压的驱动电压切换施加到所述电磁铁。
  12. 根据权利要求9所述的空中运输车转向控制系统,其特征在于,所述空中运输车转向控制系统还包括:定时器,所述定时器用于获取以下至少一种时长:第一预设时长,第二预设时长,第三预设时长;
    其中,第一预设时长为施加第一驱动电压的时长;第二预设时长为施加第二驱动电压的时长;第三预设时长为施加第三驱动电压的时长。
  13. 根据权利要求9所述的空中运输车转向控制系统,其特征在于,所述空中运输车转向控制系统还包括:第一传感器和/或第二传感器;
    其中,所述第一传感器用于检测所述导向轮在所述滑轨上的移动位置;所述第二传感器用于检测所述导向轮在所述滑轨上的移动位置。
  14. 根据权利要求9-13中任意一项所述的空中运输车转向控制系统,其特征在于,所述切换模块包括PLC控制器。
PCT/CN2022/123430 2022-03-01 2022-09-30 一种空中运输车转向控制方法及系统 WO2023165132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210188919.2 2022-03-01
CN202210188919.2A CN114261412B (zh) 2022-03-01 2022-03-01 一种空中运输车转向控制方法及系统

Publications (1)

Publication Number Publication Date
WO2023165132A1 true WO2023165132A1 (zh) 2023-09-07

Family

ID=80833740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123430 WO2023165132A1 (zh) 2022-03-01 2022-09-30 一种空中运输车转向控制方法及系统

Country Status (3)

Country Link
CN (1) CN114261412B (zh)
TW (1) TW202335896A (zh)
WO (1) WO2023165132A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114261412B (zh) * 2022-03-01 2022-05-24 弥费实业(上海)有限公司 一种空中运输车转向控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5794535A (en) * 1997-04-10 1998-08-18 Pardes; Herman I. Switching mechanism for transit modules
CN107139941A (zh) * 2017-05-16 2017-09-08 佛山市梦真营机电有限公司 一种轨道电车的驱动装置
CN110682925A (zh) * 2019-11-24 2020-01-14 山西中海威轨道交通工程有限公司 一种直线驱动及电磁导向的悬挂式列车
CN110682924A (zh) * 2019-11-24 2020-01-14 山西中海威轨道交通工程有限公司 一种直线电机驱动及混合电磁减重的悬挂式列车
CN114261412A (zh) * 2022-03-01 2022-04-01 弥费实业(上海)有限公司 一种空中运输车转向控制方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7530317B1 (en) * 2004-04-28 2009-05-12 Belanger, Inc. Car wash conveyor
FR2928124B1 (fr) * 2008-02-29 2012-02-10 Pomagalski Sa Procede de controle d'un organe de freinage ou de mise en mouvement auxiliaire d'une installation de transport par cable.
CN105774822B (zh) * 2016-03-10 2018-03-13 长安大学 一种矿用架空乘人索道的调速装置及方法
CN206088896U (zh) * 2016-08-31 2017-04-12 中冶华天工程技术有限公司 一种升降台电磁铁电磁力控制系统
CN110091889B (zh) * 2018-01-29 2020-08-04 中车唐山机车车辆有限公司 一种磁轨制动控制系统、方法及磁悬浮列车
US20190241202A1 (en) * 2018-02-08 2019-08-08 Alex Thomas System and method for managing transportation using a self-propelled cab
CN113816087A (zh) * 2021-09-30 2021-12-21 弥费实业(上海)有限公司 行走装置及空中运输车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5794535A (en) * 1997-04-10 1998-08-18 Pardes; Herman I. Switching mechanism for transit modules
CN107139941A (zh) * 2017-05-16 2017-09-08 佛山市梦真营机电有限公司 一种轨道电车的驱动装置
CN110682925A (zh) * 2019-11-24 2020-01-14 山西中海威轨道交通工程有限公司 一种直线驱动及电磁导向的悬挂式列车
CN110682924A (zh) * 2019-11-24 2020-01-14 山西中海威轨道交通工程有限公司 一种直线电机驱动及混合电磁减重的悬挂式列车
CN114261412A (zh) * 2022-03-01 2022-04-01 弥费实业(上海)有限公司 一种空中运输车转向控制方法及系统

Also Published As

Publication number Publication date
TW202335896A (zh) 2023-09-16
CN114261412B (zh) 2022-05-24
CN114261412A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2023165132A1 (zh) 一种空中运输车转向控制方法及系统
JP6599420B2 (ja) 自動搬送車
CN103264948A (zh) 电梯门机控制系统和方法
CN101437742A (zh) 电梯的末端层速度控制系统
EP3253703A1 (en) Ropeless elevator control system
WO2018149404A1 (zh) 自动工作系统,自移动设备及其控制方法
CN104520223B (zh) 电梯的控制装置及电梯的控制方法
US9889867B2 (en) Railroad switch machine
US9919410B2 (en) Method for controlling an electrical tool
CN101689824B (zh) 通过驱动分段的行程来校准步进电动机
CA2518062C (en) Method and device for controlling a door drive
CN205367158U (zh) 分拣机器人
CN103663304A (zh) 一种臂架防碰撞控制设备、方法、系统及工程机械
US10946518B2 (en) Spatiotemporal controller for controlling robot operation
CN111779733B (zh) 一种基于液压调速的重型天线运动曲线自整定方法
US3050610A (en) Control apparatus
KR101884855B1 (ko) 이송 로봇 및 이송 로봇 모니터링 방법
JP7299099B2 (ja) ロボットの停止方法及びロボットシステム
WO2023053343A9 (ja) 制御装置
CN212846402U (zh) 一种雾炮机控制装置
JPS623444B2 (zh)
KR102194964B1 (ko) 가변속 엘리베이터 시스템
CN115817291A (zh) 一种落锁方法、电子设备及可读存储介质
JP2008027246A (ja) 位置決め制御装置とその位置決め制御方法
SU1330066A1 (ru) Устройство управлени электроприводом рудничной подъемной установки

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929562

Country of ref document: EP

Kind code of ref document: A1