WO2023165032A1 - 一种在线淬火易挤压的超高强铝合金及其制造方法和应用 - Google Patents

一种在线淬火易挤压的超高强铝合金及其制造方法和应用 Download PDF

Info

Publication number
WO2023165032A1
WO2023165032A1 PCT/CN2022/094906 CN2022094906W WO2023165032A1 WO 2023165032 A1 WO2023165032 A1 WO 2023165032A1 CN 2022094906 W CN2022094906 W CN 2022094906W WO 2023165032 A1 WO2023165032 A1 WO 2023165032A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
manufacturing
stage
temperature
strength
Prior art date
Application number
PCT/CN2022/094906
Other languages
English (en)
French (fr)
Inventor
王呈刚
房涛
Original Assignee
山东裕航特种合金装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东裕航特种合金装备有限公司 filed Critical 山东裕航特种合金装备有限公司
Publication of WO2023165032A1 publication Critical patent/WO2023165032A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the invention relates to the technical field of aluminum alloy profile manufacture, in particular to an online quenching and easy-to-extrude ultra-high-strength aluminum alloy and its manufacturing method and application.
  • the density of aluminum alloy is about one-third of the density of stainless steel, and it is easier to be colored, so it can better meet the requirements of thinner and more personalized development of smart phones and tablet computers. Therefore, the development of smart products is of great significance in driving the demand for aluminum structural parts.
  • 1013 aluminum alloy is currently widely used in the manufacture of smartphone appearance parts due to its good anodized appearance effect.
  • the strength of 1013 aluminum alloy is low, and the yield strength is about 220MPa, which is not conducive to the improvement of the pressure resistance or drop performance of mobile phones, thus limiting the demand for thin and light design of smart phones using 1013 aluminum alloy as appearance parts.
  • the 7-series aluminum alloy has high strength and can be applied to the manufacture of structural parts with high strength requirements.
  • the conventional off-line quenching process of 7-series aluminum alloys is cumbersome, and its corrosion resistance is poor.
  • the present invention provides an ultra-high-strength aluminum alloy that is easy to be extruded by on-line quenching and its manufacturing method and application.
  • the manufacturing method of the present invention adopts on-line quenching to produce 7-series aluminum alloys , the product production cycle is shortened, the tensile strength is high, and it can be widely used in the manufacture of 3C product appearance parts.
  • the present invention provides a method for manufacturing an ultra-high-strength aluminum alloy that is easy to extrude through online quenching, comprising the following steps:
  • the aging treatment includes the first stage and the second stage.
  • the heating temperature of the first stage is 110-120°C, and the holding time is 12h.
  • the second stage is heated to 140-110°C.
  • the holding time is 8h, out of the oven after aging treatment and air-cooled.
  • the element composition of the 7 series aluminum alloy is Si ⁇ 0.24%, Fe ⁇ 0.3%, Cu: 0.14%-0.44%, Mn ⁇ 0.3%, Mg: 1.4%-2.4%, Cr ⁇ 0.1 %, Zn: 4%-1.4%, Ti ⁇ 0.1%, other elements individually ⁇ 0.04%, sum ⁇ 0.14%, and the balance is Al.
  • the element composition of the 7 series aluminum alloy is Si: 0.11%, Fe: 0.20%, Cu: 0.37%, Mn: 0.18%, Mg: 1.47%, Cr: 0.04%, Zn: 4.81% , Ti: 0.02%, other elements individually ⁇ 0.04%, total ⁇ 0.14%, and the balance is Al.
  • step (2) the ingot is heated to 410-430°C.
  • step (2) the ingot is heated to 424°C, the ingot speed is 2.4m/min, the temperature of the extrusion cylinder is 444°C, the mold temperature is 444°C, and the mold holding time is 10h.
  • step (4) the heating temperature in the first stage is 120°C, and the heating temperature in the second stage is 110°C.
  • the present invention provides an ultra-high-strength aluminum alloy prepared by the above-mentioned manufacturing method.
  • the present invention provides an application of the above-mentioned ultra-high-strength aluminum alloy in the field of manufacturing exterior parts of 3C products.
  • step (2) of the present invention in the extrusion molding process are conducive to the development of subsequent work on the product, and the difficult problem of extrusion molding is not easy to occur;
  • the online quenching process defined in step (3) of the present invention is simple, which ensures the formed
  • the cooling speed ensures the flatness of the profile and avoids the occurrence of defects such as bending;
  • the aging of the profile and the air-cooling process of the furnace as defined in the step (4) of the present invention can effectively enhance the tensile strength of the aluminum alloy.
  • the element composition is Si: 0.12%, Fe: 0.14%, Cu: 0.24%, Mn: 0.20%, Mg: 1.41%, Cr: 0.07% by mass percentage , Zn: 4.43%, Ti: 0.02%, other elements individually ⁇ 0.04%, total ⁇ 0.14%, and the balance is Al;
  • the preparation method of the ultra-high-strength aluminum alloy comprises the following steps:
  • the aging treatment includes the first stage and the second stage.
  • the heating temperature of the first stage is 110°C, and the holding time is 12h.
  • the temperature is raised to 140°C, and the holding time is 8h. After it is out of the oven, it is air-cooled.
  • the elemental composition is Si: 0.11%, Fe: 0.20%, Cu: 0.31%, Mn: 0.18%, Mg: 1.74%, Cr: 0.07% by mass percentage , Zn: 4.34%, Ti: 0.02%, other elements individually ⁇ 0.04%, sum ⁇ 0.14%, and the balance is Al;
  • the preparation method of the ultra-high-strength aluminum alloy comprises the following steps:
  • the aging treatment includes the first stage and the second stage.
  • the heating temperature of the first stage is 112°C, and the holding time is 12h.
  • the temperature is raised to 142°C, and the holding time is 8h. After it is out of the oven, it is air-cooled.
  • the elemental composition is Si: 0.11%, Fe: 0.20%, Cu: 0.31%, Mn: 0.18%, Mg: 1.43%, Cr: 0.04% by mass percentage , Zn: 4.73%, Ti: 0.02%, other elements individually ⁇ 0.04%, total ⁇ 0.14%, and the balance is Al;
  • the preparation method of the ultra-high-strength aluminum alloy comprises the following steps:
  • the aging treatment includes the first stage and the second stage.
  • the heating temperature of the first stage is 114°C, and the holding time is 12h.
  • the temperature is raised to 144°C, and the holding time is 8h. After it is out of the oven, it is air-cooled.
  • the elemental composition is Si: 0.11%, Fe: 0.20%, Cu: 0.37%, Mn: 0.18%, Mg: 1.47%, Cr: 0.04% by mass percentage , Zn: 4.81%, Ti: 0.02%, other elements individually ⁇ 0.04%, sum ⁇ 0.14%, and the balance is Al;
  • the preparation method of the ultra-high-strength aluminum alloy comprises the following steps:
  • the aging treatment includes the first stage and the second stage.
  • the heating temperature of the first stage is 120°C, and the holding time is 12h.
  • the temperature is raised to 110°C, and the holding time is 8h. After it is out of the oven, it is air-cooled.
  • the elemental composition is Si: 0.11%, Fe: 0.20%, Cu: 0.37%, Mn: 0.18%, Mg: 1.47%, Cr: 0.04% by mass percentage , Zn: 4.81%, Ti: 0.02%, other elements individually ⁇ 0.04%, sum ⁇ 0.14%, and the balance is Al;
  • the preparation method of the ultra-high-strength aluminum alloy comprises the following steps:
  • the aging treatment includes the first stage and the second stage.
  • the heating temperature of the first stage is 120°C, and the holding time is 12h.
  • the temperature is raised to 110°C, and the holding time is 8h. After it is out of the oven, it is air-cooled.
  • the aluminum alloy prepared by the method of the present invention has high tensile strength, suitable elongation, and good flatness on the profile surface, and is suitable for use as an appearance part of 3C products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

本发明涉及铝合金型材制造技术领域,具体涉及一种在线淬火易挤压的超高强铝合金及其制造方法和应用。制造方法包括:(1)按照7系铝合金元素组成进行熔炼,得到铸锭;(2)加热铸锭并进行挤压;(3)对型材进行水冷在线淬火,上下各80%,强度100%;(4)对型材进行时效处理,时效处理后出炉风冷;上述制造方法采用在线淬火生产7系铝合金,产品生产周期缩短,抗拉强度高,可广泛应用于3C产品外观件的制造。

Description

一种在线淬火易挤压的超高强铝合金及其制造方法和应用 技术领域
本发明涉及铝合金型材制造技术领域,具体涉及一种在线淬火易挤压的超高强铝合金及其制造方法和应用。
背景技术
目前,随着平板电脑和笔记本电脑存量设备置换及创新所带来的对设备需求的刺激,平板电脑和笔记本电脑仍有较为可观的市场发展空间。铝合金的密度约为不锈钢密度的三分之一,且更容易进行着色处理,因此更能适应智能手机、平板电脑等轻薄化、个性化发展的要求。因此,智能产品的发展对于带动对铝制结构件的需求具有重要意义。
1013铝合金由于具有较好的阳极氧化外观效果,目前被广泛应用于智能手机外观件制造。但1013铝合金的强度较低,屈服强度约为220MPa,不利于手机耐压或跌落性能的提升,因而限制了采用1013铝合金作为外观件的智能手机的轻薄化设计需求。
7系铝合金具有较高的强度,可应用于有较高强度要求的结构件的制造。但是,7系铝合金常规的离线淬火工艺繁琐,且耐腐蚀性能较差,阳极氧化之后比1013合金更容易出现“料纹”缺陷,即一种沿挤压方向分布的纤维状缺陷,这就限制了7系铝合金在智能手机外观件制造方面的广泛应用。
基于此,有必要开发一种兼顾强度、延伸率及表面平整度的3C产品外观件用7系铝合金的制造工艺。
发明内容
针对7系铝合金离线淬火工艺繁琐、外观差的技术问题,本发明提供一种在线淬火易挤压的超高强铝合金及其制造方法和应用,本发明制造方法采用在线淬火生产7系铝合金,产品生产周期缩短,抗拉强度高,可广泛应用于3C产品外观件的制造。
第一方面,本发明提供一种在线淬火易挤压的超高强铝合金的制造方法,包括如下步骤:
(1)按照7系铝合金元素组成进行熔炼,得到铸锭;
(2)加热铸锭并进行挤压,其中铸锭速度为2-3m/min,挤压筒温度为430-440℃,模具温度为484-444℃,模具保温时间为8-12h,然后所得型材在低温炉中,于340℃下保温20-24h;
(3)对型材进行水冷在线淬火,上下各80%,强度100%;
(4)对型材进行时效处理,时效处理包括第一阶段和第二阶段,第一阶段的加热温度为110-120℃,保温时间为12h,第二阶段升温至140-110℃,保温时间为8h,时效处理后出炉风冷。
进一步的,按质量百分比计,7系铝合金的元素组成为Si≤0.24%,Fe≤0.3%,Cu:0.14%-0.44%,Mn≤0.3%,Mg:1.4%-2.4%,Cr≤0.1%,Zn:4%-1.4%,Ti≤0.1%,其它元素单个≤0.04%、总和≤0.14%,余量为Al。
进一步的,按质量百分比计,7系铝合金的元素组成为Si:0.11%,Fe:0.20%,Cu:0.37%,Mn:0.18%,Mg:1.47%,Cr:0.04%,Zn:4.81%,Ti:0.02%,其它元素单个≤0.04%、总和≤0.14%,余量为Al。
进一步的,步骤(2)中,加热铸锭至410-430℃。
进一步的,步骤(2)中,加热铸锭至424℃,铸锭速度为2.4m/min,挤压筒温度为444℃,模具温度为444℃,模具保温时间为10h。
进一步的,步骤(4)中,第一阶段的加热温度为120℃,第二阶段的加热温度为110℃。
第二方面,本发明提供一种由上述制造方法制得的超高强铝合金。
第三方面,本发明提供一种上述超高强铝合金在3C产品外观件制造领域的应用。
本发明的有益效果在于:
本发明步骤(2)挤压成型工序限定的温度和保温时间参数有利于产品后续工作开展,不易出现挤压成型困难问题;本发明步骤(3)限定的在线淬火工序简约,即保证了形成的冷却速度,又保证了型材的平面度,避免弯曲等缺陷的出现;本发明步骤(4)限定的型材时效及出炉风冷工序,可有效增强铝合金的抗拉强度。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例1
一种在线淬火易挤压的超高强铝合金,按质量百分比计,元素组成为Si:0.12%,Fe:0.14%,Cu:0.24%,Mn:0.20%,Mg:1.41%,Cr:0.07%,Zn:4.43%,Ti:0.02%,其它元素单个≤0.04%、总和≤0.14%,余量为Al;
该超高强铝合金的制备方法包括如下步骤:
(1)按照铝合金元素组成进行熔炼,得到铸锭;
(2)加热铸锭至410℃并进行挤压,其中铸锭速度为2.4m/min,挤压筒温度为430℃,模具温度为484℃,模具保温时间为10h,然后所得型材在低温炉中,于340℃下保温24h;
(3)对型材进行水冷在线淬火,上下各80%,强度100%;
(4)对型材进行时效处理,时效处理包括第一阶段和第二阶段,第一阶段的加热温度为110℃,保温时间为12h,第二阶段升温至140℃,保温时间为8h,时效处理后出炉风冷。
实施例2
一种在线淬火易挤压的超高强铝合金,按质量百分比计,元素组成为Si:0.11%,Fe: 0.20%,Cu:0.31%,Mn:0.18%,Mg:1.74%,Cr:0.07%,Zn:4.34%,Ti:0.02%,其它元素单个≤0.04%、总和≤0.14%,余量为Al;
该超高强铝合金的制备方法包括如下步骤:
(1)按照铝合金元素组成进行熔炼,得到铸锭;
(2)加热铸锭至414℃并进行挤压,其中铸锭速度为2.4m/min,挤压筒温度为434℃,模具温度为440℃,模具保温时间为12h,然后所得型材在低温炉中,于340℃下保温24h;
(3)对型材进行水冷在线淬火,上下各80%,强度100%;
(4)对型材进行时效处理,时效处理包括第一阶段和第二阶段,第一阶段的加热温度为112℃,保温时间为12h,第二阶段升温至142℃,保温时间为8h,时效处理后出炉风冷。
实施例3
一种在线淬火易挤压的超高强铝合金,按质量百分比计,元素组成为Si:0.11%,Fe:0.20%,Cu:0.31%,Mn:0.18%,Mg:1.43%,Cr:0.04%,Zn:4.73%,Ti:0.02%,其它元素单个≤0.04%、总和≤0.14%,余量为Al;
该超高强铝合金的制备方法包括如下步骤:
(1)按照铝合金元素组成进行熔炼,得到铸锭;
(2)加热铸锭至420℃并进行挤压,其中铸锭速度为2.4m/min,挤压筒温度为440℃,模具温度为440℃,模具保温时间为12h,然后所得型材在低温炉中,于340℃下保温24h;
(3)对型材进行水冷在线淬火,上下各80%,强度100%;
(4)对型材进行时效处理,时效处理包括第一阶段和第二阶段,第一阶段的加热温度为114℃,保温时间为12h,第二阶段升温至144℃,保温时间为8h,时效处理后出炉风冷。
实施例4
一种在线淬火易挤压的超高强铝合金,按质量百分比计,元素组成为Si:0.11%,Fe:0.20%,Cu:0.37%,Mn:0.18%,Mg:1.47%,Cr:0.04%,Zn:4.81%,Ti:0.02%,其它元素单个≤0.04%、总和≤0.14%,余量为Al;
该超高强铝合金的制备方法包括如下步骤:
(1)按照铝合金元素组成进行熔炼,得到铸锭;
(2)加热铸锭至424℃并进行挤压,其中铸锭速度为2.4m/min,挤压筒温度为444℃,模具温度为444℃,模具保温时间为10h,然后所得型材在低温炉中,于340℃下保温20h;
(3)对型材进行水冷在线淬火,上下各80%,强度100%;
(4)对型材进行时效处理,时效处理包括第一阶段和第二阶段,第一阶段的加热温度为120℃,保温时间为12h,第二阶段升温至110℃,保温时间为8h,时效处理后出炉风冷。
对比例1
一种在线淬火易挤压的超高强铝合金,按质量百分比计,元素组成为Si:0.11%,Fe:0.20%,Cu:0.37%,Mn:0.18%,Mg:1.47%,Cr:0.04%,Zn:4.81%,Ti:0.02%,其它元素单个≤0.04%、总和≤0.14%,余量为Al;
该超高强铝合金的制备方法包括如下步骤:
(1)按照铝合金元素组成进行熔炼,得到铸锭;
(2)加热铸锭至430℃并进行挤压,其中铸锭速度为2.4m/min,挤压筒温度为440℃,模具温度为444℃,模具保温时间为12h,然后所得型材在低温炉中,于340℃下保温20h;
(3)对型材进行水冷在线淬火,上下各100%,强度100%;
(4)对型材进行时效处理,时效处理包括第一阶段和第二阶段,第一阶段的加热温度为120℃,保温时间为12h,第二阶段升温至110℃,保温时间为8h,时效处理后出炉风冷。
对实施例1-4及对比例1的铝合金进行检测,结果如下表1所示。
表1检测结果
项目 抗拉强度/MPa 延伸率/% 型材情况(表面)
实施例1 422 412 表面平整
实施例2 434 414 表面平整
实施例3 440 480 表面平整
实施例4 444 484 表面平整
对比例1 442 478 表面略有弯曲
可以看出,采用本发明方法制备的铝合金抗拉强度高、延伸率适宜,且型材表面平整度好,适于用作3C产品的外观件。
尽管通过优选实施例的方式对本发明进行了详细描述,但本发明并不限于此。在不脱离本发明的精神和实质的前提下,本领域普通技术人员可以对本发明的实施例进行各种等效的修改或替换,而这些修改或替换都应在本发明的涵盖范围内/任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (8)

  1. 一种在线淬火易挤压的超高强铝合金的制造方法,其特征在于,包括如下步骤:
    (1)按照7系铝合金元素组成进行熔炼,得到铸锭;
    (2)加热铸锭并进行挤压,其中铸锭速度为2-3m/min,挤压筒温度为430-440℃,模具温度为484-444℃,模具保温时间为8-12h,然后所得型材在低温炉中,于340℃下保温20-24h;
    (3)对型材进行水冷在线淬火,上下各80%,强度100%;
    (4)对型材进行时效处理,时效处理包括第一阶段和第二阶段,第一阶段的加热温度为110-120℃,保温时间为12h,第二阶段升温至140-110℃,保温时间为8h,时效处理后出炉风冷。
  2. 如权利要求1所述的制造方法,其特征在于,按质量百分比计,7系铝合金的元素组成为Si≤0.24%,Fe≤0.3%,Cu:0.14%-0.44%,Mn≤0.3%,Mg:1.4%-2.4%,Cr≤0.1%,Zn:4%-1.4%,Ti≤0.1%,其它元素单个≤0.04%、总和≤0.14%,余量为Al。
  3. 如权利要求1所述的制造方法,其特征在于,按质量百分比计,7系铝合金的元素组成为Si:0.11%,Fe:0.20%,Cu:0.37%,Mn:0.18%,Mg:1.47%,Cr:0.04%,Zn:4.81%,Ti:0.02%,其它元素单个≤0.04%、总和≤0.14%,余量为Al。
  4. 如权利要求1所述的制造方法,其特征在于,步骤(2)中,加热铸锭至410-430℃。
  5. 如权利要求1所述的制造方法,其特征在于,步骤(2)中,加热铸锭至424℃,铸锭速度为2.4m/min,挤压筒温度为444℃,模具温度为444℃,模具保温时间为10h。
  6. 如权利要求1所述的制造方法,其特征在于,步骤(4)中,第一阶段的加热温度为120℃,第二阶段的加热温度为110℃。
  7. 一种由如权利要求1-1任一所述的制造方法制得的超高强铝合金。
  8. 一种如权利要求7所述的超高强铝合金在3C产品外观件制造领域的应用。
PCT/CN2022/094906 2022-03-02 2022-05-25 一种在线淬火易挤压的超高强铝合金及其制造方法和应用 WO2023165032A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210201896.4 2022-03-02
CN202210201896.4A CN114561576A (zh) 2022-03-02 2022-03-02 一种在线淬火易挤压的超高强铝合金及其制造方法和应用

Publications (1)

Publication Number Publication Date
WO2023165032A1 true WO2023165032A1 (zh) 2023-09-07

Family

ID=81717752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094906 WO2023165032A1 (zh) 2022-03-02 2022-05-25 一种在线淬火易挤压的超高强铝合金及其制造方法和应用

Country Status (2)

Country Link
CN (1) CN114561576A (zh)
WO (1) WO2023165032A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491556B (zh) * 2022-09-22 2023-05-09 四川福蓉科技股份公司 一种装甲铝型材及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120234440A1 (en) * 2011-03-16 2012-09-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing an extruded material of heat treatment type al-zn-mg series aluminum alloy
US20150059934A1 (en) * 2013-08-30 2015-03-05 Uacj Corporation High-strength aluminum alloy thin extruded shape and method for producing the same
CN104624684A (zh) * 2015-01-09 2015-05-20 广西南南铝加工有限公司 一种高铁车体用Al-Zn-Mg合金型材的挤压生产工艺
CN107326227A (zh) * 2017-08-14 2017-11-07 山东南山铝业股份有限公司 轨道交通车体裙板用铝合金型材及其制造方法
CN108220845A (zh) * 2017-12-29 2018-06-29 西南铝业(集团)有限责任公司 一种用于重载列车牵引杆的超高强7系铝合金材料的固溶时效工艺
CN109136689A (zh) * 2018-10-22 2019-01-04 广西平果百矿高新铝业有限公司 一种Al-Zn-Mg-Cu超高强铝合金及其快速挤压在线淬火生产方法
CN109554560A (zh) * 2018-12-05 2019-04-02 辽宁忠旺集团有限公司 一种航空航天用超高强度7系铝合金型材的生产方法
CN111020316A (zh) * 2019-12-20 2020-04-17 福建祥鑫股份有限公司 一种可在线淬火高性能7xxx铝合金及其制备方法
CN111218591A (zh) * 2020-02-28 2020-06-02 福建祥鑫股份有限公司 一种新能源汽车动力系统用高强韧7xxx铝合金型材的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120234440A1 (en) * 2011-03-16 2012-09-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing an extruded material of heat treatment type al-zn-mg series aluminum alloy
US20150059934A1 (en) * 2013-08-30 2015-03-05 Uacj Corporation High-strength aluminum alloy thin extruded shape and method for producing the same
CN104624684A (zh) * 2015-01-09 2015-05-20 广西南南铝加工有限公司 一种高铁车体用Al-Zn-Mg合金型材的挤压生产工艺
CN107326227A (zh) * 2017-08-14 2017-11-07 山东南山铝业股份有限公司 轨道交通车体裙板用铝合金型材及其制造方法
CN108220845A (zh) * 2017-12-29 2018-06-29 西南铝业(集团)有限责任公司 一种用于重载列车牵引杆的超高强7系铝合金材料的固溶时效工艺
CN109136689A (zh) * 2018-10-22 2019-01-04 广西平果百矿高新铝业有限公司 一种Al-Zn-Mg-Cu超高强铝合金及其快速挤压在线淬火生产方法
CN109554560A (zh) * 2018-12-05 2019-04-02 辽宁忠旺集团有限公司 一种航空航天用超高强度7系铝合金型材的生产方法
CN111020316A (zh) * 2019-12-20 2020-04-17 福建祥鑫股份有限公司 一种可在线淬火高性能7xxx铝合金及其制备方法
CN111218591A (zh) * 2020-02-28 2020-06-02 福建祥鑫股份有限公司 一种新能源汽车动力系统用高强韧7xxx铝合金型材的制备方法

Also Published As

Publication number Publication date
CN114561576A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
CN111118353A (zh) 一种铝合金及制造方法
CN104120373B (zh) 一种电力设备用6063t6铝合金大规格棒材制造方法
US20200362443A1 (en) Aluminum alloy and preparation method thereof
CN104377281B (zh) 一种led贴片支架用冷轧钢及生产方法
WO2017041203A1 (zh) 一种压铸铝合金及其制备方法
CN109652688A (zh) 一种6082铝合金型材的生产方法
CN109536794A (zh) 一种耐弯曲开裂高抗性电泳铝型材及其制备方法
CN105039808A (zh) 一种新型节能铝合金型材及其制造工艺
WO2017107511A1 (zh) 铝合金及其制备方法
CN109988952B (zh) 一种铝合金手机外壳的制备方法
WO2023165032A1 (zh) 一种在线淬火易挤压的超高强铝合金及其制造方法和应用
CN113774258A (zh) 一种低挤压变形抗力的铝合金型材热处理及挤压工艺
CN113913654A (zh) 一种电动汽车电池包下壳体用6系铝板材的制备方法
CN105506524A (zh) 一种铝铁镍青铜挤制棒材制备工艺
JP2008045157A (ja) 超高力アルミニウム粉末合金製メガネ部品及びその製造方法
CN111790864B (zh) 一种提高6系铝合金抗氧化及电击穿性能的锻造方法
CN103659181A (zh) 铝合金槽型件的制备工艺
CN102855955A (zh) 一种汇流铝排及其制备工艺
CN106244958B (zh) 一种导电铝排的热处理工艺
CN109554644B (zh) 一种铝合金锻件及其制备工艺
CN112725668A (zh) 一种消除粗晶环的6061铝合金棒材生产方法
CN104233006A (zh) 一种新型铝合金内槽圆管
WO2023103787A1 (zh) 一种铝合金材料及其制备方法和应用
CN112375941B (zh) 太阳能边框铝合金型材及其加工工艺
CN111961931B (zh) 一种高强耐腐蚀5系铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929469

Country of ref document: EP

Kind code of ref document: A1