WO2023165029A1 - 一种热熔型光纤快速连接器 - Google Patents

一种热熔型光纤快速连接器 Download PDF

Info

Publication number
WO2023165029A1
WO2023165029A1 PCT/CN2022/094095 CN2022094095W WO2023165029A1 WO 2023165029 A1 WO2023165029 A1 WO 2023165029A1 CN 2022094095 W CN2022094095 W CN 2022094095W WO 2023165029 A1 WO2023165029 A1 WO 2023165029A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
ferrule
heat
hot
block
Prior art date
Application number
PCT/CN2022/094095
Other languages
English (en)
French (fr)
Inventor
刘红宇
Original Assignee
东莞市庆赢实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220484829.3U external-priority patent/CN216848251U/zh
Priority claimed from CN202220472974.XU external-priority patent/CN216848250U/zh
Priority claimed from CN202220485801.1U external-priority patent/CN216848252U/zh
Application filed by 东莞市庆赢实业有限公司 filed Critical 东莞市庆赢实业有限公司
Publication of WO2023165029A1 publication Critical patent/WO2023165029A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Definitions

  • the utility model relates to the technical field of optical fiber connectors, in particular to a hot-melt optical fiber fast connector.
  • Optical fiber fast connection has cold splicing type (the cutting surface of the optical fiber is mechanically connected with the cutting surface through the refractive index matching paste) and hot melting type (the connection head has a section of optical fiber and the on-site optical fiber is fused by the optical fiber fusion splicer).
  • SC structure optical fiber connectors Due to low production cost and convenient use, SC structure optical fiber connectors have been used in the largest proportion of fiber-to-the-home and optical connections. At present, most of the common SC-type optical fiber hot-melt quick connectors on the market are made by partially covering the ferrule. The upper heat-shrinkable tube is then extended into the heat-shrinkable chamber of the optical fiber fusion splicer for thermal fusion. When melting, the ferrule part and the heat shrinkable tube cannot all extend into the heat shrinkable chamber of the fusion splicer, and the temperature at the edge of the heat shrinkable chamber is often low, so that the heat shrinkable tube near the edge of the heat shrinkable chamber cannot be completely shrunk, and the shrinkage is good. The rate cannot reach 100%, which will affect the quality of fiber splicing.
  • the utility model provides a hot-melt optical fiber quick connector, including a ferrule assembly inserted with embedded optical fibers, a tail shell assembly, and a second connector clamped on the outer periphery of the ferrule assembly and the first connecting piece sleeved on the outer periphery of the second connecting piece, the ferrule end of the ferrule assembly is covered with a heat shrinkable tube, the ferrule end of the ferrule assembly is inserted into the tail shell assembly, and The second connecting piece is threadedly connected with the tail shell assembly.
  • the ferrule assembly includes a first ferrule block inserted with a pre-embedded optical fiber, a second ferrule block, and a nail tube pierced through the second ferrule block; one end of the first ferrule block inserted into the second ferrule block, and the pre-embedded optical fiber passes through the nail tube.
  • one end surface of the first ferrule block is formed with a groove into which the pre-embedded optical fiber is clamped.
  • one end of the heat-shrinkable tube is sheathed on the outer periphery of the nail tube.
  • the second connecting piece is formed with a boss that is snapped into the inner side of the first connecting piece.
  • the tail case assembly includes a hollow tail case, an elastic member disposed in the tail case, a top pressure block against the elastic member, and a locking member buckled at the end of the tail case piece; the second connecting piece is threadedly connected to the locking piece, so that the second ferrule block is tightly pressed against the top pressure block.
  • one end of the locking member is formed with an external thread
  • the other end of the locking member is formed with a card holder
  • the tail shell is provided with a through hole for the card holder to be inserted into.
  • the tail case assembly includes a hollow tail case, an elastic member arranged in the tail case, a top pressure block against the elastic member, and a locking member buckled at the end of the tail case;
  • the second connecting piece is fastened to the locking piece, so that the second ferrule block is tightly pressed against the pressing block.
  • the two ends of the locking member respectively form a first clamping platform and a second clamping platform
  • the tail shell is provided with a first through hole for the first clamping platform to be embedded in
  • the second connecting piece is provided with a hole for the The second through hole where the second card platform is embedded.
  • an annular connection block is formed in the middle of the tail shell, and the material of the connection block is transparent plastic.
  • the application of the utility model can obtain the following beneficial effects: by setting the ferrule assembly and the tail shell assembly inserted with the pre-embedded optical fiber, a second connector is clamped on the outer periphery of the ferrule assembly.
  • the outer circumference of the connector is covered with a first connector, and after the end of the ferrule assembly where the pre-embedded optical fiber is inserted is covered with a heat shrinkable tube, the ferrule assembly is inserted into the heat shrinkable chamber for thermal melting to ensure that the heat shrink The tube is completely thermally fused.
  • the ferrule assembly is inserted into the tail shell assembly, and the second connector is screwed to the tail shell assembly through the rotation of the first connector, thereby realizing the rapid docking of the optical fiber connector.
  • the pre-embedded optical fiber on the ferrule assembly can be fused with the on-site optical fiber and then inserted into the heat-shrinkable tube, and then the ferrule assembly and the heat-shrinkable tube are put into the heat-shrinkable chamber as a whole Internal heat shrinking avoids the problem that the heat-shrinkable tube near the edge of the heat-shrinkable chamber cannot be completely shrunk due to the low temperature at the edge of the heat-shrinkable chamber, ensuring the quality of optical fiber fusion and docking.
  • Fig. 1 is a split diagram of the hot-melt optical fiber quick connector of Embodiment 1 of the present utility model
  • Fig. 2 is a cross-sectional view of the ferrule assembly of Embodiment 1 of the present utility model
  • Fig. 3 is an exploded view of the hot-melt optical fiber quick connector of Embodiment 1 of the present utility model
  • Fig. 4 is a cross-sectional view of the hot-melt optical fiber quick connector according to Embodiment 1 of the present utility model.
  • Fig. 5 is a disassembled view of the hot-melt optical fiber quick connector of Embodiment 2 of the present utility model.
  • Fig. 6 is an exploded view of the hot-melt optical fiber quick connector of Embodiment 2 of the present utility model.
  • Fig. 7 is a cross-sectional view of the hot-melt optical fiber quick connector of Embodiment 2 of the present utility model.
  • Fig. 8 is a cross-sectional view of the hot-melt optical fiber quick connector of Embodiment 3 of the present utility model.
  • Fig. 9 is a disassembled view of the hot-melt optical fiber quick connector of Embodiment 3 of the present utility model.
  • Fig. 10 is an overall view of the hot-melt optical fiber quick connector of Embodiment 3 of the present utility model.
  • SC-type optical fiber hot-melt fast connectors that are common in the market at present are made by putting the ferrule part on the heat-shrinkable tube, and then extending it into the heat-shrinkable chamber of the optical fiber fusion splicer for thermal fusion.
  • the part is connected with the second connector of the frame, and the volume is relatively large, so that when it is inserted into the heat shrinkable chamber for heat fusion, the ferrule part and the heat shrinkable tube cannot all be inserted into the heat shrinkable chamber of the fusion splicer.
  • the present embodiment provides a hot-melt optical fiber quick connector, as shown in FIG.
  • the outer circumference of the card is provided with a second connector 32, the outer circumference of the second connector 32 is provided with a first connector 31, and one end of the ferrule assembly 10 where the pre-embedded optical fiber 14 is inserted is provided with a heat-shrinkable tube 40.
  • the pre-embedded optical fiber on the ferrule assembly can be inserted into After being fused with the on-site optical fiber, the heat-shrinkable tube is inserted, and then the ferrule assembly and the heat-shrinkable tube are put into the heat-shrinkable chamber as a whole for heat shrinkage, which avoids the edge of the heat-shrinkable chamber due to the low temperature at the edge of the heat-shrinkable chamber.
  • the problem that the heat shrinkable tube cannot be completely shrunk ensures the quality of optical fiber fusion and docking.
  • the nail tube 13 of the core block 12 is a hollow structure and is T-shaped, and a T-shaped hole for the nail tube 13 to penetrate is formed in the second ferrule block 12, and then the nail tube 13 can be inserted into the second ferrule
  • one end of the pre-embedded optical fiber 14 is inserted into the first ferrule block 11 , and the end surface of the first ferrule block 11 is formed with a groove 111 for the pre-embedded optical fiber 14 to snap into.
  • the installation process of the ferrule assembly 10 is as follows: snap the pre-embedded optical fiber 14 into one end of the first ferrule block 11, then insert the nail tube 13 into the first ferrule block 11, and then insert one end of the first ferrule block 11 into the second ferrule block. Inside the second ferrule block 12, the pre-embedded optical fiber 14 passes through the nail tube 13, and the other end of the first ferrule block 11 is inserted into the silicone tube 15.
  • one end of the heat-shrinkable tube 40 is sleeved on the outer periphery of the nail tube 13, so that the heat-shrinkable tube 40 is coated on the pre-embedded optical fiber 14 and the third ferrule.
  • the ferrule 25 can further put the ferrule assembly 10 and the heat-shrinkable tube 40 into a heat-shrinkable chamber for heat-shrinking, so as to ensure that the heat-shrinkable tube 40 is completely heat-shrinkable.
  • the nail tube 13 and the second ferrule block 12 are integrally formed, and the mold design of the integrally formed structure is difficult during the manufacturing process, resulting in high production costs. Therefore, in this solution By being separated into two parts, the nail tube 13 and the second ferrule block 12, the parts are easy to process and mass produced.
  • the surface of the first ferrule block 11 is ground with a UPC or APC curved surface to facilitate assembly.
  • the elastic piece 24 and the top pressure piece 23 are sequentially loaded into the inside of the tail shell 21, and one end of the elastic piece 24 is against the inside of the tail shell 21 , the other end leans against the top pressure block 23, the locking member 22 is fastened to the end of the tail case 21, and then the elastic member 24 and the top pressure block 23 are limited, wherein the top pressure block 23 is a hollow structure, and the ferrule assembly When 10 is inserted into the tail shell assembly 20 , the nail tube 13 and the pre-embedded optical fiber 14 are inserted into the top pressing block 23 , and the end face of the top pressing block 23 abuts against the end face of the second ferrule block 12 .
  • the second connecting piece 32 in this embodiment is a sleeve
  • the first connecting piece 31 is a knob nut
  • the second connecting piece 32 is formed with a boss 321 that is snapped into the inside of the first connecting piece 31.
  • the rotation of a connecting piece 31 drives the second connecting piece 32 to be threadedly connected with the locking piece 22, and at the same time, the second connecting piece 32 drives the second core block 12 to move toward the top pressing block 23, when the second core block 12 is pressed against the top
  • the top pressing block 23 compresses the elastic member 24, and then utilizes the elasticity of the elastic member 24 to act on the second core block 12, thereby realizing fixing the second core block 12, and simultaneously making the second core block 12 and the second core block 12
  • the top pressing block 23 can move elastically inside.
  • the first ferrule block 11 When the first ferrule block 11 is pressed, the first ferrule block 11 drives the second ferrule block 12 against the top pressing block 23, and compresses the elastic member 24, so that the embedded optical fiber 14 moves inside to reach the butt joint of the optical fiber. Purpose.
  • One end of the locking member 22 is formed with an external thread 222, thereby realizing the screw connection between the locking member 22 and the inner side wall of the second connecting member 32, the other end of the locking member 22 is formed with a clamping platform 221, and the tail shell 21 is provided with a clamping platform 221 Embedded vias.
  • the locking piece 22 is buckled on the end of the tail shell 21 , and then the top pressure block 23 and the elastic piece 24 are limited in the tail shell 21 .
  • a third ferrule 25 is inserted at the other end of the tail case 21 , and a ring-shaped connecting block 211 is formed in the middle of the tail case 21 .
  • the connection block 211 corresponds to the position where the optical fiber of the first ferrule block 11 is connected to the optical fiber of the third ferrule 25, and then after the fusion splicing assembly is completed, the fusion detection and observation can be carried out through the transparent connection block 211, and the fusion can be checked with a red laser pointer. fiber effect.
  • the specific detection process is: the laser red light pen is connected from the side of the ferrule, and if there is no light leakage or very low light leakage through the transparent connecting block 211, it means that the welding is good, and if there is obvious light leakage, it means that the welding is bad.
  • the existing detection method needs the light source and the instrument to judge through the insertion loss.
  • the red laser pointer and the transparent connection block 211 make the on-site detection easier and faster, and improve the production efficiency.
  • the installation process of the hot-melt optical fiber quick connector in this embodiment is as follows: first insert the ferrule assembly 10 inserted with the embedded optical fiber into the fusion splicing fixture, and put the fusion splicing fixture on one end of the optical fiber fusion splicer; then place the on-site optical cable ( Wherein the on-site optical cable is the third ferrule 25 in this embodiment) After one end is inserted into the heat-shrinkable tube 40, the on-site optical cable is stripped and cut and placed on the other end of the fusion splicer.
  • One end is inserted into the end of the ferrule assembly 10 so that the heat-shrinkable tube 40 covers the optical fiber, and the ferrule assembly 10 and the heat-shrinkable tube 40 are put into the heat-shrinkable chamber as a whole for heat shrinking.
  • the ferrule assembly 10 Pass through the first connecting piece 31 and the second connecting piece 32, and insert the heat shrink tube 40 on the ferrule assembly 10 into the tail shell assembly 20, rotate the first connecting piece 31 on the outer periphery of the ferrule assembly 10, and the first connecting piece 31 drives the second connecting piece 32 to rotate and threadedly connect with the tail shell assembly 20 to achieve a fixed connection, insert one end of the ferrule assembly 10 into the laser output port of the detection red light pen and turn on the laser, and observe through the transparent connection block 211 of the tail shell assembly 20 Whether there is light leakage, if there is no light leakage, it can be judged that the fiber fusion is good.
  • the solution of this application sets the ferrule assembly and the tail shell assembly inserted with the pre-embedded optical fiber, and the second connector is clamped on the outer periphery of the ferrule assembly, and the second connector is provided on the outer periphery of the second connector.
  • a connector after the end of the ferrule assembly where the pre-embedded optical fiber is inserted is covered with a heat-shrinkable tube, the ferrule assembly is inserted into the heat-shrinkable chamber for thermal fusion to ensure that the heat-shrinkable tube is completely thermally fused, and the thermal fusion is completed Then the ferrule assembly is inserted into the tail shell assembly, and the second connector is threadedly connected to the tail shell assembly through the rotation of the first connector, so as to realize the rapid docking of the optical fiber connector, and the connector of the split structure is docked on site In the heat-melting operation, the pre-embedded optical fiber on the ferrule assembly and the on-site optical fiber can be fused and inserted into the heat shrinkable tube, and then the ferrule assembly and the heat
  • the low temperature at the edge of the heat-shrinkable chamber leads to the problem that the heat-shrinkable tube near the edge of the heat-shrinkable chamber cannot be completely shrunk, ensuring
  • This embodiment provides a hot-melt optical fiber quick connector, as shown in Figure 5, including a ferrule assembly 10 inserted with a pre-embedded optical fiber 14, and a tail shell assembly 20.
  • Two connecting pieces 32 the first connecting piece 31 is sheathed on the outer periphery of the second connecting piece 32, and after the heat-shrinkable tube 40 is set on one end of the ferrule assembly 10 inserted with the pre-embedded optical fiber 14, the ferrule assembly 10 is inserted into the heat-shrinkable chamber for heat-melting to ensure that the heat-shrinkable tube 40 is completely heat-melted.
  • the two connectors 32 are fastened and connected to the tail shell assembly 20, so that the ferrule assembly 10 and the tail shell assembly 20 are fixed, and then the fast docking of the optical fiber connector is realized.
  • the pre-embedded optical fiber on the ferrule assembly and the on-site optical fiber can be fused and inserted into the heat-shrinkable tube, and then the ferrule assembly and the heat-shrinkable tube are put into the heat-shrinkable chamber as a whole for heat shrinkage, avoiding the temperature caused by the edge of the heat-shrinkable chamber
  • the problem that the heat shrinkable tube near the edge of the heat shrinkable chamber cannot be completely shrunk due to low heat shrinkage can ensure the quality of optical fiber fusion and docking.
  • the installation is simple and fast, and the on-site optical fiber docking efficiency is high and the docking effect is good.
  • the first connector 31 in this embodiment is a square outer frame sleeve
  • the second connector 32 is a square inner frame sleeve.
  • a first card platform 224 and a second card platform 225 are respectively formed at both ends of the locking member 22.
  • the tail shell 21 is provided with a first through hole 212 for the first card platform 224 to be inserted into.
  • the second through hole 324 is inserted into the second card platform 225 .
  • the locking piece 22 is inserted into the end of the tail shell 21, and the first locking platform 224 of the locking piece 22 is inserted into the first through hole 212 of the tail shell 21, thereby realizing the fastening and fixing of the locking piece 22 and the tail shell 21 connected, and the elastic piece 24 and the top pressure block 23 are restricted inside the tail shell 21 by the locking piece 22, so as to prevent the elastic piece 24 and the top pressure piece 23 from falling off.
  • a positioning boss 223 is formed on the side of the locking member 22, and a positioning groove 322 for the positioning boss 223 to be embedded is opened on the side of the second connecting member 32, so that the locking member 22 and the second connecting member 32 can be aligned during assembly. Positioning is carried out to ensure that the locking part 22 and the second connecting part 32 are fastened accurately, and the assembly efficiency is improved.
  • a step 323 fitted on the inner wall of the first connecting piece 31 is formed on the outer wall of the second connecting piece 32, and after the second connecting piece 32 and the first connecting piece 31 are sequentially sleeved on the outer periphery of the ferrule assembly 10, by pushing The first connecting piece 31 makes the second connecting piece 32 move, and then drives the ferrule assembly 10 to move toward the top pressure block 23 in the tail shell 21 through the second connecting piece 32, and is fastened with the tail shell 21 through the second connecting piece 32
  • the connection realizes inserting the ferrule assembly 10 into the tail case 21 .
  • This embodiment provides a hot-melt optical fiber quick connector, as shown in Figures 8-10, including a ferrule assembly 10 inserted with a pre-embedded optical fiber 14, and a tail shell assembly 20.
  • the difference from Embodiment 2 is that in The outer periphery of the ferrule assembly 10 is clamped with a square connector 31, and the two ends of the locking member 22 also form a first clamping platform 224 and a second clamping platform 225.
  • the square connecting piece 31 is provided with a second through hole for the second card platform 225 to be inserted into, and the square connecting piece 31 is fastened with one end of the locking piece 22, and the locking piece 22 is buckled with the tail shell 21, so as to realize the
  • the locking member 22 confines the elastic member 24 and the top pressing block 23 inside the tail case 21 to prevent the elastic member 24 and the top pressing block 23 from falling off, so that the ferrule assembly 10 can be inserted into the tail case 21 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一种热熔型光纤快速连接器,属于光纤连接器技术领域,包括插芯组件(10)和尾壳组件(20),在插芯组件(10)的外周卡设有第二连接件(32)和第一连接件(31),在插芯组件(10)插置有预埋光纤(14)的一端套设有热缩管(40)后,通过将插芯组件(10)伸入热缩仓内进行热熔,保证热缩管(40)完全热熔,热熔完成后进而将插芯组件(10)穿插入尾壳组件(20),并且通过第一连接件(31)旋转使得第二连接件(32)与尾壳组件(20)螺纹连接或扣合连接,通过分体结构的连接器在现场对接和热熔操作时,可以将插芯组件(10)上的预埋光纤(14)与现场光纤熔接后套入热缩管(40),再将插芯组件(10)和热缩管(40)整体放入热缩仓内进行热缩,避免了因热缩仓边缘的温度低导致靠近热缩仓边缘一侧的热缩管(40)无法完全收缩的问题,保证光纤熔接和对接质量。

Description

一种热熔型光纤快速连接器 技术领域
本实用新型涉及光纤连接器技术领域,特别涉及一种热熔型光纤快速连接器。
背景技术
在飞速发展的光通讯领域中,人们对生活水准的提高,对网络的依赖,迫使各行各业加速光纤入户的效率。而在光纤入户的过程中,需要在现场通过连接器将光纤快速连接。光纤快速连接有冷接型(光纤切割面与切割面通过折射率匹配膏机械对接)和热熔型(连接头带一节光纤与现场光纤通过光纤熔接机进行熔接)。
SC结构光纤连接器因生产成本低,使用方便等原因,在光纤入户和光连接得到了最大比例的应用,目前市场上常见的SC型光纤热熔快速连接器,多数是通过将插芯部分套上热缩管,再伸入光纤熔接机的热缩仓内进行热熔,然而由于该连接器的插芯部分与框第二连接件连体,体积较大,导致在伸入热缩仓热熔时,插芯部分和热缩管不能全部伸入熔接机的热缩仓内,热缩仓边缘的温度往往偏低,导致靠近热缩仓边缘一侧的热缩管无法完全收缩,收 缩良率无法达到100%,影响光纤熔接质量。
实用新型内容
为了解决上述技术问题,本实用新型提供一种热熔型光纤快速连接器,包括插置有预埋光纤的插芯组件、尾壳组件、卡设于所述插芯组件外周的第二连接件和套设于所述第二连接件外周的第一连接件,所述插芯组件的插芯端套设有热缩管,所述插芯组件插芯端插入于所述尾壳组件,且所述第二连接件与所述尾壳组件螺纹连接。
优选的,所述插芯组件包括插置有预埋光纤的第一插芯块、第二插芯块和穿置于所述第二插芯块的钉子管;所述第一插芯块一端插入于所述第二插芯块内,且令所述预埋光纤穿过所述钉子管。
优选的,所述第一插芯块一端面形成有供所述预埋光纤卡入的凹槽。
优选的,所述热缩管一端套设于所述钉子管的外周。
优选的,所述第二连接件上形成有卡嵌于所述第一连接件内侧的凸台。
优选的,所述尾壳组件包括中空的尾壳、设置于所述尾壳内的弹性件、抵靠于所述弹性件的顶压块、以及卡扣于所述尾壳端部的锁紧件;所述第二连接件与所述锁紧件螺纹连接,以令所述第二插芯块顶紧于所述顶压块。
优选的,所述锁紧件一端形成有外螺纹,所述锁紧件另一端形成有卡台,所述尾壳开设有供所述卡台嵌入的通孔。
所述尾壳组件包括中空的尾壳、设置于所述尾壳内的弹性件、抵靠于所述弹性件的顶压块、以及卡扣于所述尾壳端部的锁紧件;所述第二连接件扣合于所述锁紧件,以令所述第二插芯块顶紧于所述顶压块。
所述锁紧件的两端分别形成第一卡台和第二卡台,所述尾壳开设有供所述第一卡台嵌入的第一通孔,所述第二连接件开设有供所述第二卡台嵌入的第二通孔。
优选的,所述尾壳中部形成有一段环形的连接块,所述连接块的材质为透明塑料。
由上可知,应用本实用新型提供的可以得到以下有益效果:通过设置插置有预埋光纤的插芯组件和尾壳组件,在插芯组件的外周卡设有第二连接件,在第二连接件的外周套设有第一连接件,在插芯组件插置有预埋光纤的一端套设有热缩管后,通过将插芯组件伸入热缩仓内进行热熔,保证热缩管完全热熔,热熔完成后进而将插芯组件穿插入尾壳组件,并且通过第一连接件旋转使得第二连接件与尾壳组件螺纹连接,进而实现光纤连接器快速对接,通过该分体结构的连接器在现场对接和热熔操作时,可以将插芯组件上的预埋 光纤与现场光纤熔接后套入热缩管,再将插芯组件和热缩管整体放入热缩仓内进行热缩,避免了因热缩仓边缘的温度低导致靠近热缩仓边缘一侧的热缩管无法完全收缩的问题,保证光纤熔接和对接质量。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对本实用新型实施例或现有技术的描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本实用新型的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型实施例1热熔型光纤快速连接器拆分图;
图2为本实用新型实施例1插芯组件剖视图;
图3为本实用新型实施例1热熔型光纤快速连接器分解图;
图4为本实用新型实施例1热熔型光纤快速连接器剖视图。
图5为本实用新型实施例2热熔型光纤快速连接器拆分图。
图6为本实用新型实施例2热熔型光纤快速连接器分解图。
图7为本实用新型实施例2热熔型光纤快速连接器剖视图。
图8为本实用新型实施例3热熔型光纤快速连接器剖视图。
图9为本实用新型实施例3热熔型光纤快速连接器拆分图。
图10为本实用新型实施例3热熔型光纤快速连接器整体图。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
实施例1
目前市场上常见的SC型光纤热熔快速连接器,多数是通过将插芯部分套上热缩管,再伸入光纤熔接机的热缩仓内进行热熔,然而由于该连接器的插芯部分与框第二连接件连体,体积较大,导致在伸入热缩仓热熔时,插芯部分和热缩管不能全部伸入熔接机的热缩仓内。
为了解决上述技术问题,本实施例提供一种热熔型光纤快速连接器,如图1所示,包括插置有预埋光纤14的插芯组件10、尾壳组件20,在插芯组件10的外周卡设有第二连接件32,在第二连接件32的外周套设有第一连接件31,在插芯组件10插置有预埋光纤14的一端套设有热缩管40后,通过将 插芯组件10伸入热缩仓内进行热熔,保证热缩管40完全热熔,热熔完成后进而将插芯组件10穿插入尾壳组件20,并且通过第一连接件31旋转使得第二连接件32与尾壳组件20螺纹连接,进而实现光纤连接器快速对接,通过该分体结构的连接器在现场对接和热熔操作时,可以将插芯组件上的预埋光纤与现场光纤熔接后套入热缩管,再将插芯组件和热缩管整体放入热缩仓内进行热缩,避免了因热缩仓边缘的温度低导致靠近热缩仓边缘一侧的热缩管无法完全收缩的问题,保证光纤熔接和对接质量。
具体的,为了实现固定预埋光纤14,如图2所示,插芯组件10包括插置有预埋光纤14的第一插芯块11、第二插芯块12和穿置于第二插芯块12的钉子管13,钉子管13为中空结构且呈T字形,第二插芯块12内形成有供钉子管13穿入的T形孔,进而可将钉子管13插入第二插芯块12内,预埋光纤14一端插入在第一插芯块11内,第一插芯块11的端面形成有供预埋光纤14卡入的凹槽111。插芯组件10的安装过程为:将预埋光纤14卡入第一插芯块11一端,再钉子管13插入在第一插芯块11内,再将第一插芯块11一端插入于第二插芯块12内,并使得预埋光纤14穿过钉子管13,在第一插芯块11另一端套入硅胶管15内。进一步的,预埋光纤14在与第三插芯25(现场光纤)熔接后,热缩管40一端套设于钉子管13的外周,使得热缩管40包覆于预埋光纤14和第三插芯25,进而可以将插芯组件10和热缩管40整体放进热缩仓 中进行热缩,保证热缩管40完全热缩。
需要说明的是,现有的连接器中,钉子管13与第二插芯块12为一体成型,在制作过程中一体成型的结构的模具设计难度高,导致生产成本高,为此本方案中通过分离成钉子管13与第二插芯块12两个零件,零件加工方便,便于批量生产。其中,第一插芯块11的表面研磨UPC或APC曲面,达到方便组装的目的。
为了实现将插芯组件10与尾壳组件20进行固定连接,如图3-4所示,尾壳组件20包括中空的尾壳21、设置于尾壳21内的弹性件24、抵靠于弹性件24的顶压块23、以及卡扣于尾壳21端部的锁紧件22,弹性件24和顶压块23依次装入尾壳21内部,弹性件24一端抵靠在尾壳21内部,另一端抵靠于顶压块23,锁紧件22扣合在尾壳21端部,进而对弹性件24和顶压块23进行限位,其中顶压块23为中空结构,插芯组件10插入于尾壳组件20时,钉子管13和预埋光纤14插入于顶压块23,并且顶压块23的端面抵靠于第二插芯块12的端面。
进一步的,本实施例中的第二连接件32为套管,第一连接件31为旋钮螺母,第二连接件32上形成有卡嵌于第一连接件31内侧的凸台321,通过第一连接件31旋转带动第二连接件32与锁紧件22螺纹连接,同时第二连接件32带动第二插芯块12朝向顶压块23移动,当第二插芯块12顶紧于顶压块 23时,顶压块23压缩弹性件24,进而利用弹性件24的弹性反作用于第二插芯块12,实现对第二插芯块12进行固定,同时使得第二插芯块12与顶压块23可以在内部弹性活动。当第一插芯块11被按压时,第一插芯块11驱使第二插芯块12抵靠于顶压块23,并压缩弹性件24,使得预埋光纤14在内部移动达到光纤对接的目的。
锁紧件22一端形成有外螺纹222,进而实现锁紧件22与第二连接件32的内侧壁螺纹连接,锁紧件22另一端形成有卡台221,尾壳21开设有供卡台221嵌入的通孔。通过锁紧件22卡扣于尾壳21的端部,进而将顶压块23和弹性件24限位于尾壳21内。
在尾壳21另一头穿置有第三插芯25,尾壳21中部形成有一段环形的连接块211,连接块211的材质为透明塑料,连接块211可以与尾壳21一体成型。连接块211对应于第一插芯块11的光纤与第三插芯25光纤对接的位置,进而在熔接组装完成后,可以通过透明的连接块211进行熔接检测观察,可以采用红色激光笔检查熔纤效果。其中,具体的检测过程为:激光红光笔从插芯侧接上,透过透明的连接块211若发现无漏光或极低漏光则表示熔接良好,若有明显漏光代表熔接不良。现有的检测方式需要光源和仪表通过插入损耗的方式才能判定,相比于现有的检测方式,通过红色激光笔和透明的连接块211使得现场检测更加简单快捷,提高生产效率。
本实施例热熔型光纤快速连接器的安装过程为:先将插置有预埋光纤的插芯组件10置入熔接夹具中,并将熔接夹具放在光纤熔接机一端;再将现场光缆(其中现场光缆为本实施例中的第三插芯25)一端套入热缩管40后,将现场光缆剥纤切割并放上熔接机的另一端,熔接机对光纤进行熔接,将热缩管一端套入插芯组件10端部,使得热缩管40包覆光纤,并将插芯组件10和热缩管40整体放入热缩仓内进行热缩,热缩完成后将插芯组件10穿过第一连接件31和第二连接件32,并且使得插芯组件10上的热缩管40插入尾壳组件20内,旋转插芯组件10外周的第一连接件31,第一连接件31带动第二连接件32旋转并与尾壳组件20螺纹连接进而实现固定连接,将插芯组件10一端插入检测红光笔激光输出口并开启激光,通过尾壳组件20的透明连接块211观察是否漏光,若无漏光判定光纤熔接良好。
综上所述,本申请方案通过设置插置有预埋光纤的插芯组件和尾壳组件,在插芯组件的外周卡设有第二连接件,在第二连接件的外周套设有第一连接件,在插芯组件插置有预埋光纤的一端套设有热缩管后,通过将插芯组件伸入热缩仓内进行热熔,保证热缩管完全热熔,热熔完成后进而将插芯组件穿插入尾壳组件,并且通过第一连接件旋转使得第二连接件与尾壳组件螺纹连接,进而实现光纤连接器快速对接,通过该分体结构的连接器在现场对接和热熔操作时,可以将插芯组件上的预埋光纤与现场光纤熔接后套入热缩管, 再将插芯组件和热缩管整体放入热缩仓内进行热缩,避免了因热缩仓边缘的温度低导致靠近热缩仓边缘一侧的热缩管无法完全收缩的问题,保证光纤熔接和对接质量。
实施例2
本实施例提供一种热熔型光纤快速连接器,如图5所示,包括插置有预埋光纤14的插芯组件10、尾壳组件20,在插芯组件10的外周卡设有第二连接件32,在第二连接件32的外周套设有第一连接件31,在插芯组件10插置有预埋光纤14的一端套设有热缩管40后,通过将插芯组件10伸入热缩仓内进行热熔,保证热缩管40完全热熔,热熔完成后进而将插芯组件10套入第二连接件32,并且穿插入于尾壳组件20,进而通过第二连接件32与尾壳组件20扣合连接,使得插芯组件10和尾壳组件20固定,进而实现光纤连接器快速对接,通过该分体结构的连接器在现场对接和热熔操作时,可以将插芯组件上的预埋光纤与现场光纤熔接后套入热缩管,再将插芯组件和热缩管整体放入热缩仓内进行热缩,避免了因热缩仓边缘的温度低导致靠近热缩仓边缘一侧的热缩管无法完全收缩的问题,保证光纤熔接和对接质量,同时安装简单快捷,现场光纤对接效率高,对接效果好。
与实施例1不同的是,如图6-7所示,本实施例中的第一连接件31为方形的外框套,第二连接件32为方形的内框套。在锁紧件22的两端分别形成 第一卡台224和第二卡台225,尾壳21开设有供第一卡台224嵌入的第一通孔212,第二连接件32开设有供第二卡台225嵌入的第二通孔324。锁紧件22插入于尾壳21的端部,通过锁紧件22的第一卡台224卡嵌于尾壳21的第一通孔212,进而实现锁紧件22与尾壳21扣合固定连接,并且通过锁紧件22将弹性件24和顶压块23限制于尾壳21内部,防止弹性件24和顶压块23掉落。在锁紧件22侧面形成有定位凸台223,第二连接件32侧面开设有供所述定位凸台223嵌入的定位槽322,进而在组装时实现对锁紧件22和第二连接件32进行定位,确保锁紧件22和第二连接件32准确扣合,提高组装效率。
在第二连接件32的外侧壁形成有嵌合于第一连接件31内侧壁的台阶323,进而在插芯组件10外周依次套设第二连接件32和第一连接件31后,通过推动第一连接件31使得第二连接件32移动,进而再通过第二连接件32带动插芯组件10朝向尾壳21内的顶压块23移动,通过第二连接件32与尾壳21扣合连接,实现将插芯组件10插置于尾壳21内。
实施例3
本实施例提供一种热熔型光纤快速连接器,如图8-10所示,包括插置有预埋光纤14的插芯组件10、尾壳组件20,与实施例2不同的是,在插芯组件10的外周卡设有方形连接件31,锁紧件22的两端同样形成第一卡台224和第二卡台225,尾壳21同样开设有供第一卡台224嵌入的第一通孔,方形 连接件31开设有供第二卡台225嵌入的第二通孔,通过方形连接件31与锁紧件22一端扣合,锁紧件22与尾壳21扣合,实现通过锁紧件22将弹性件24和顶压块23限制于尾壳21内部,防止弹性件24和顶压块23掉落,实现将插芯组件10插置于尾壳21内。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (10)

  1. 一种热熔型光纤快速连接器,其特征在于:包括插置有预埋光纤(14)的插芯组件(10)、尾壳组件(20)、卡设于所述插芯组件(10)外周的第二连接件(32)和套设于所述第二连接件(32)外周的第一连接件(31),所述插芯组件(10)的插芯端套设有热缩管(40),所述插芯组件(10)插芯端插入于所述尾壳组件(20),且所述第二连接件(32)与所述尾壳组件(20)螺纹连接或扣合连接,以令所述插芯组件(10)和尾壳组件(20)固定。
  2. 根据权利要求1所述的热熔型光纤快速连接器,其特征在于:所述插芯组件(10)包括插置有预埋光纤(14)的第一插芯块(11)、第二插芯块(12)和穿置于所述第二插芯块(12)的钉子管(13);所述第一插芯块(11)一端插入于所述第二插芯块(12)内,且令所述预埋光纤(14)穿过所述钉子管(13)。
  3. 根据权利要求2所述的热熔型光纤快速连接器,其特征在于:所述第一插芯块(11)一端面形成有供所述预埋光纤(14)卡入的凹槽(111)。
  4. 根据权利要求2所述的热熔型光纤快速连接器,其特征在于:所述热缩管(40)一端套设于所述钉子管(13)的外周。
  5. 根据权利要求1所述的热熔型光纤快速连接器,其特征在于:所述第 二连接件(32)上形成有卡嵌于所述第一连接件(31)内侧的凸台(321)。
  6. 根据权利要求2所述的热熔型光纤快速连接器,其特征在于:所述尾壳组件(20)包括中空的尾壳(21)、设置于所述尾壳(21)内的弹性件(24)、抵靠于所述弹性件(24)的顶压块(23)、以及卡扣于所述尾壳(21)端部的锁紧件(22);所述第二连接件(32)与所述锁紧件(22)螺纹连接,以令所述第二插芯块(12)顶紧于所述顶压块(23)。
  7. 根据权利要求6所述的热熔型光纤快速连接器,其特征在于:所述锁紧件(22)一端形成有外螺纹(222),所述锁紧件(22)另一端形成有卡台(221),所述尾壳(21)开设有供所述卡台(221)嵌入的通孔。
  8. 根据权利要求2所述的热熔型光纤快速连接器,其特征在于:所述尾壳组件(20)包括中空的尾壳(21)、设置于所述尾壳(21)内的弹性件(24)、抵靠于所述弹性件(24)的顶压块(23)、以及卡扣于所述尾壳(21)端部的锁紧件(22);所述第二连接件(32)扣合于所述锁紧件(22),以令所述第二插芯块(12)顶紧于所述顶压块(23)。
  9. 根据权利要求8所述的热熔型光纤快速连接器,其特征在于:所述锁紧件(22)的两端分别形成第一卡台(224)和第二卡台(225),所述尾壳(21)开设有供所述第一卡台(224)嵌入的第一通孔(212),所述第二连 接件(32)开设有供所述第二卡台(225)嵌入的第二通孔(324)。
  10. 根据权利要求6或8所述的热熔型光纤快速连接器,其特征在于:所述尾壳(21)中部形成有一段连接块(211),所述连接块(211)的材质为透明塑料。
PCT/CN2022/094095 2022-03-03 2022-05-20 一种热熔型光纤快速连接器 WO2023165029A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202220484829.3U CN216848251U (zh) 2022-03-03 2022-03-03 一种fc热熔型光纤快速连接器
CN202220472974.XU CN216848250U (zh) 2022-03-03 2022-03-03 一种lc热熔型光纤快速连接器
CN202220485801.1 2022-03-03
CN202220484829.3 2022-03-03
CN202220485801.1U CN216848252U (zh) 2022-03-03 2022-03-03 一种sc热熔型光纤快速连接器
CN202220472974.X 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023165029A1 true WO2023165029A1 (zh) 2023-09-07

Family

ID=87882781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094095 WO2023165029A1 (zh) 2022-03-03 2022-05-20 一种热熔型光纤快速连接器

Country Status (1)

Country Link
WO (1) WO2023165029A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202210167U (zh) * 2011-07-18 2012-05-02 陆大水 热熔型现场组装光纤活动连接器
CN202720360U (zh) * 2012-08-17 2013-02-06 慈溪市慧众通信科技有限公司 热熔式光纤现场连接器
CN203149152U (zh) * 2013-01-08 2013-08-21 南京普住光网络有限公司 带有特殊定位装置的现场组装式光纤活动连接器
CN203191583U (zh) * 2013-03-27 2013-09-11 宁波博创光通信科技有限公司 一种sc热熔型光纤快速连接器
JP2014013410A (ja) * 2013-09-10 2014-01-23 Fujikura Ltd コネクタ付き光ファイバケーブル、コネクタ付き光ファイバケーブルの組立方法
CN204374477U (zh) * 2015-02-04 2015-06-03 宁波北仑国铭光电通信设备有限公司 Sc热熔快速连接器
CN204855878U (zh) * 2015-09-07 2015-12-09 四川天邑康和通信股份有限公司 一种热熔式现场组装光纤活动连接器
CN205301625U (zh) * 2015-12-18 2016-06-08 华兴新锐通信科技集团有限公司 热熔型快速连接器
CN206339684U (zh) * 2016-12-28 2017-07-18 深圳市雍邑科技有限公司 热熔型光纤快速连接器
CN206601504U (zh) * 2017-01-22 2017-10-31 杭州中凯通信设备有限公司 一种热熔型现场组装式光纤活动连接器
CN206975267U (zh) * 2017-05-22 2018-02-06 苏州苏驼通信科技股份有限公司 一种旋拧式热熔型sc型现场组装光纤活动连接器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202210167U (zh) * 2011-07-18 2012-05-02 陆大水 热熔型现场组装光纤活动连接器
CN202720360U (zh) * 2012-08-17 2013-02-06 慈溪市慧众通信科技有限公司 热熔式光纤现场连接器
CN203149152U (zh) * 2013-01-08 2013-08-21 南京普住光网络有限公司 带有特殊定位装置的现场组装式光纤活动连接器
CN203191583U (zh) * 2013-03-27 2013-09-11 宁波博创光通信科技有限公司 一种sc热熔型光纤快速连接器
JP2014013410A (ja) * 2013-09-10 2014-01-23 Fujikura Ltd コネクタ付き光ファイバケーブル、コネクタ付き光ファイバケーブルの組立方法
CN204374477U (zh) * 2015-02-04 2015-06-03 宁波北仑国铭光电通信设备有限公司 Sc热熔快速连接器
CN204855878U (zh) * 2015-09-07 2015-12-09 四川天邑康和通信股份有限公司 一种热熔式现场组装光纤活动连接器
CN205301625U (zh) * 2015-12-18 2016-06-08 华兴新锐通信科技集团有限公司 热熔型快速连接器
CN206339684U (zh) * 2016-12-28 2017-07-18 深圳市雍邑科技有限公司 热熔型光纤快速连接器
CN206601504U (zh) * 2017-01-22 2017-10-31 杭州中凯通信设备有限公司 一种热熔型现场组装式光纤活动连接器
CN206975267U (zh) * 2017-05-22 2018-02-06 苏州苏驼通信科技股份有限公司 一种旋拧式热熔型sc型现场组装光纤活动连接器

Similar Documents

Publication Publication Date Title
US4325607A (en) Apparatus for connecting optical fibers
US4158477A (en) Optical fiber splice
CA2046564A1 (en) Polymer spring fiber optic splicer, tool for operating same and panel incorporating same
RU2009122333A (ru) Держатель, устройство для сращивания сплавлением и способ сборки оптического коннектора
JPH0772349A (ja) 現場にて取り付けが容易な光ファイバコネクタ
ATE431569T1 (de) Faseroptische splicekomponente mit internen elektroden
CA1083866A (en) Optical fiber coupler for interfacing with light sources and detection
KR100288445B1 (ko) 클래드외경이서로다른두광섬유를결합하는방법
US4946249A (en) Fiber optic splice assembly
US4183737A (en) Method of joining optical fibers with a link piece
US5392373A (en) Apparatus for optically coupling an optical fiber to an electro-optic device
US9897770B2 (en) Fibre stub device and method using butt coupling for receptacled photonic devices
CN109283628B (zh) 一种具有故障可视功能的预埋式光纤快速连接器及故障检测方法
WO2023165029A1 (zh) 一种热熔型光纤快速连接器
CN206339684U (zh) 热熔型光纤快速连接器
GB2022859A (en) Fibre Optic Splice
CN216848251U (zh) 一种fc热熔型光纤快速连接器
CN216848252U (zh) 一种sc热熔型光纤快速连接器
KR101096495B1 (ko) 접속기 홀더장치 및 이를 포함하는 융착 접속기
JPH02197807A (ja) 光ファイバ終端結合用フェルール部材及びその製造方法
GB2038016A (en) Optical fibre splices and terminations
KR20100095283A (ko) 광섬유 접속구 및 이를 포함하는 광 컨넥터
JP7201276B2 (ja) 光ファイバベンディングを防止する現場組み立て型光コネクター
CN203178516U (zh) 热熔式光纤连接器保护套及包含该保护套的光纤连接器
KR20130140538A (ko) 고성능 광섬유 신속 접합장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929466

Country of ref document: EP

Kind code of ref document: A1