WO2023165010A1 - 一种光伏太阳能组件及其开关方法 - Google Patents

一种光伏太阳能组件及其开关方法 Download PDF

Info

Publication number
WO2023165010A1
WO2023165010A1 PCT/CN2022/090286 CN2022090286W WO2023165010A1 WO 2023165010 A1 WO2023165010 A1 WO 2023165010A1 CN 2022090286 W CN2022090286 W CN 2022090286W WO 2023165010 A1 WO2023165010 A1 WO 2023165010A1
Authority
WO
WIPO (PCT)
Prior art keywords
junction box
photovoltaic solar
control
solar module
photovoltaic
Prior art date
Application number
PCT/CN2022/090286
Other languages
English (en)
French (fr)
Inventor
周懂明
罗宇浩
Original Assignee
浙江英达威芯电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江英达威芯电子有限公司 filed Critical 浙江英达威芯电子有限公司
Publication of WO2023165010A1 publication Critical patent/WO2023165010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of photovoltaic power generation, in particular to a photovoltaic solar module and a switching method thereof.
  • photovoltaic grid-connected power generation technology Due to the renewable and clean nature of solar energy, photovoltaic grid-connected power generation technology has developed rapidly.
  • multiple photovoltaic modules are connected in series to form a string, and then connected to an inverter to convert direct current into alternating current and connect to the grid.
  • An early module used a junction box with all the bypass diodes in the module built in, and each bypass diode short-circuited a group of solar cell strings, as shown in Figure 1.
  • split-type junction boxes have begun to appear. Compared with the old-fashioned junction box in Figure 1, the split-type junction box greatly reduces the shielding of the solar cells below by the junction box, greatly increases the light-receiving area of the cells, and reduces Resistive loss, reducing the amount of cables, etc., as shown in Figure 2, however, if you want to further add a shutdown function to the junction box, that is, control whether the corresponding solar battery string is connected to the main power circuit through the junction box, now The practice in the art is usually to add a controller in each junction box, and realize the control of different solar battery strings by issuing instructions to each controller individually. However, this also increases the volume of the junction box and affects the solar energy. The shading area becomes larger correspondingly, which reduces the effective light-receiving area of the photovoltaic module and reduces the photoelectric conversion efficiency.
  • the purpose of the present invention is to provide a photovoltaic solar module and its switching method, so as to solve the problem in the prior art that the projected area of the junction box is too large and the photovoltaic module is blocked.
  • the present invention provides a photovoltaic solar module, including an executive junction box, a single main control junction box and a plurality of serially connected solar battery strings;
  • the execution junction box includes corresponding bypass diodes;
  • the main control junction box includes corresponding bypass diodes and control components, and the control components are only arranged in the main control junction box;
  • the solar battery strings are connected in series through the bypass diodes corresponding to the execution junction box or the bypass diodes corresponding to the main control junction box;
  • the control component is used to control the connection between the solar battery string and the main power circuit.
  • the main control junction box and the execution junction box include corresponding sub-breakers
  • the control component is signal-connected with the sub-breaker, and is used to control the on-off of the sub-breaker, so that the solar battery string corresponding to the sub-breaker is connected to or disconnected from the main power circuit.
  • the two power terminals of the control module are respectively connected to the first end and the rear end of the series connection of the photovoltaic solar module.
  • the two power terminals of the control module are respectively connected to the two ends of a single solar battery string.
  • the main junction box further includes a main switch
  • the photovoltaic solar module is serially connected to the main power circuit through the main switch.
  • the two power terminals of the control module are respectively connected to the positive terminal of any solar cell string and the negative terminal of any solar cell string in the photovoltaic solar module .
  • the main switch is a MOS tube
  • the sub-switch is a MOS tube.
  • control module includes a sampling circuit
  • the sampling circuit is used to collect the electrical signal data of the main power circuit or the preset position of the photovoltaic solar module.
  • a switching method of a photovoltaic solar module using any one of the above photovoltaic solar modules, including:
  • the solar battery strings in the photovoltaic solar module are started or shut down one by one; wherein, the one-by-one startup or shutdown refers to starting or shutting down the solar battery strings according to a preset order After receiving the start-up completion feedback information or shut-down completion feedback information of the last solar cell string, start or shut down the next solar cell string.
  • the starting or shutting down of the solar cell strings in the photovoltaic solar module one by one according to the startup instruction or shutdown instruction includes:
  • the solar cell strings in the photovoltaic solar module are shut down one by one.
  • a photovoltaic solar module provided by the present invention includes an executive junction box, a single main control junction box and a plurality of solar cell strings connected in series;
  • the executive junction box includes corresponding bypass diodes;
  • the main control junction box includes Corresponding bypass diodes and control components, and the control components are only set in the main control junction box;
  • the solar battery strings pass through the corresponding bypass diodes of the execution junction box or the corresponding The bypass diodes are connected in series; the control component is used to control the on-off between the solar battery string and the main power circuit.
  • the present invention integrates the control components into a single junction box (that is, the main control junction box), avoids the problem in the prior art that each junction box needs to include a controller, and greatly reduces the volume of the execution junction box , leaving only a larger main control junction box, which can be placed in an area that does not block the solar cell strings by wiring it separately, which reduces the projected area of each junction box on the solar cell's light-facing surface , which increases the light-receiving area of the photovoltaic module and improves the photoelectric conversion rate of the photovoltaic module.
  • the present invention also provides a photovoltaic solar module switching method with the above beneficial effects.
  • Fig. 1, Fig. 2 are the structural representations of photovoltaic solar modules in the prior art
  • 3 to 10 are structural schematic diagrams of the first category of specific implementations of photovoltaic solar modules provided by the present invention.
  • Fig. 11 to Fig. 18 are structural schematic diagrams of the second largest category of specific implementations of photovoltaic solar modules provided by the present invention.
  • Fig. 19 is a schematic flow chart of a specific embodiment of the switching method of the photovoltaic solar module provided by the present invention.
  • Fig. 20 is a control flow diagram of a specific embodiment of the photovoltaic solar module provided by the present invention.
  • the core of the present invention is to provide a photovoltaic solar module.
  • the schematic diagrams and related descriptions of several specific implementations thereof are shown below, including an executive junction box 30, a single main control junction box 20 and a plurality of solar battery strings 10 connected in series;
  • the execution junction box 30 includes a corresponding bypass diode;
  • the main control junction box 20 includes a corresponding bypass diode and a control component 40, and the control component 40 is only arranged in the main control junction box 20;
  • the solar battery strings 10 are connected in series with each other through the bypass diodes corresponding to the execution junction box 30 or the bypass diodes corresponding to the main control junction box 20;
  • the control component 40 is used to control the on-off between the solar battery string 10 and the main power circuit;
  • the main control junction box 20 and the execution junction box 30 include corresponding sub-switches 50;
  • the control component 40 is connected with the sub-switch 50 for signal connection, and is used to control the on-off of the sub-switch 50, so that the solar battery string 10 corresponding to the sub-switch 50 is connected to or disconnected from all solar cell strings 10. Describe the main power circuit.
  • each junction box includes a sub-breaker 50, and the sub-breaker 50 is controlled by the control assembly 40, and can individually cut off the corresponding solar battery string 10 and the assisting rate.
  • the connection of the circuit greatly improves the flexibility of the photovoltaic solar module, and when a single solar battery string 10 fails, the faulty battery string can be cut separately, reducing the interference of the failure on the whole module and improving the stability of the photovoltaic solar module sex.
  • the two power terminals of the control component 40 are respectively connected to the series-connected head end and the series-connected tail end of the photovoltaic solar module.
  • the main control junction box 20 is respectively located in the edge battery string and the middle battery string of the photovoltaic solar cell.
  • the two short dotted lines L3 and L4 in the figure represent the signal connections between the control assembly 40 and other execution junction boxes 30, which is the same hereinafter.
  • the long dotted line in the figure represents the power supply circuit of the control assembly 40, that is, the control The connecting wire of the power terminal of the assembly 40.
  • the first end of the series connection and the tail end of the series connection respectively refer to the input end and the output end of a plurality of the solar cell strings 10 connected in series as a whole, that is, the so-called The two ends of the photovoltaic solar module can obtain the maximum voltage when it is working (PV-1 and PV+3 in the figure).
  • Fig. 5 is a block diagram of the internal control circuit of Fig. 3, it is not difficult to find that the sub-circuit breakers M1, M2, and M3 in the figure are selected from MOS tubes, and g1 and s1 of the control component 40 are formed to control the MOS tube M1.
  • Control circuit similarly g2, s2 and g3, s3 will not be repeated here
  • Vin+ and Vin- are the two power supply terminals of the control component 40, and the same is true for other figures below, and will not be repeated here.
  • the MOS tube occupies a small space and is simple to control on-off, which is suitable for use as the sub-circuit breaker. The same is true for the main circuit breaker below.
  • other components can also be selected as the sub-circuit breaker as required, as shown in Figure 5.
  • D1, D2, and D3 are three bypass diodes.
  • control assembly 40 includes a plurality of drive modules corresponding to the MOS transistors
  • the control component 40 controls the MOS transistor through the drive module.
  • the control component 40 includes a power supply module, a central control unit, and multiple drive modules. In some cases, it can also include a sampling module.
  • the sampling circuit in this paper is connected, and the transceiver module is connected with the communication module 70 for information exchange with the external network.
  • the power module is connected to the external circuit through two power terminals (see FIG. 5 ).
  • the drive module is an isolated power supply, a charge pump, a buck-boost circuit or other implementations that can realize variable voltage drive control.
  • control assembly 40 includes a sampling circuit
  • the sampling circuit is used to collect the electrical signal data of the main power circuit or the preset position of the photovoltaic solar module.
  • the monitoring of the photovoltaic solar module can be realized by adding a sampling resistor R to the photovoltaic solar module and collecting the current value Is at one end of R.
  • R a sampling resistor
  • Is current value
  • the two power terminals of the control assembly 40 are respectively connected to the two ends of a single solar cell string 10, refer to Fig. 6, Fig. 7 and Fig. 8, Fig. 6, Fig. 7 and Fig. 8 respectively represent the system circuit diagrams when the main control junction box 20 is in the first junction box, the second junction box and the third junction box in the photovoltaic solar module composed of three solar cell strings 10, and the figure 9 is a partial circuit schematic diagram of FIG. 8 .
  • Both ends of the single solar cell string 10 can be combinations of PV-1 and PV+1, PV-2 and PV+2, PV-3 and PV+3 in the figure.
  • control assembly 40 is powered by a single solar battery string 10, which greatly simplifies the wiring of the circuit, improves production efficiency and system reliability, and reduces the current and voltage requirements of the control assembly 40. , which reduces the power of the control assembly 40 .
  • a photovoltaic solar module provided by the present invention includes an executive junction box 30, a single main control junction box 20 and a plurality of solar cell strings 10 connected in series; the executive junction box 30 includes corresponding bypass diodes; the main The control junction box 20 includes a corresponding bypass diode and a control component 40, and the control component 40 is only arranged in the main control junction box 20; Diodes or bypass diodes corresponding to the main control junction box 20 are connected in series; the control assembly 40 is used to control the on-off connection between the solar battery string 10 and the main power circuit.
  • the present invention integrates the control assembly 40 into a single junction box (that is, the main control junction box 20), avoiding the problem in the prior art that each junction box needs to include a controller, and greatly reducing the execution junction box. 30, leaving only a larger main control junction box 20, which can be placed in an area where the solar battery string 10 is not shielded by wiring it separately, thereby reducing the size of each junction box when the solar battery receives light.
  • the projected area on the surface increases the light-receiving area of the photovoltaic module and improves the photoelectric conversion rate of the photovoltaic module.
  • the execution junction box 30 includes a corresponding bypass diode;
  • the main control junction box 20 includes a corresponding bypass diode and a control component 40, and the control component 40 is only arranged in the main control junction box 20;
  • the solar battery strings 10 are connected in series with each other through the bypass diodes corresponding to the execution junction box 30 or the bypass diodes corresponding to the main control junction box 20;
  • the control component 40 is used to control the on-off between the solar battery string 10 and the main power circuit;
  • the main junction box also includes a main switch 60;
  • the photovoltaic solar modules are connected in series to the main power circuit through the main switch 60 .
  • the series-connected head end and the series-connected tail end of the photovoltaic solar modules are respectively connected to the two ends of the main power circuit (that is, PV+ and PV- in the figure).
  • the main switch 60 Directly controlling whether the photovoltaic solar module as a whole is connected to the main power circuit expands the usage scenarios of the photovoltaic solar module and enhances its versatility.
  • the two power terminals of the control component 40 are respectively connected to the positive terminal of any solar cell string 10 and the negative terminal of any solar cell string 10 in the photovoltaic solar module.
  • the two power terminals of the control component 40 are respectively connected to the positive terminal of any solar cell string 10 and the negative terminal of any solar cell string 10 in the photovoltaic solar module.
  • FIG. 14 is a schematic diagram of the connection relationship between the control component 40 and the main power circuit.
  • FIG. 15 is that after the sampling circuit collects information, it feeds back to the control component 40, and then sends it to the external network through the communication module 70.
  • D2 is side
  • the circuit diode has the same function as that in the prior art, so it will not be repeated here.
  • Fig. 16 shows that the control assembly 40 is powered by two sub-strings (i.e. two solar battery strings 10), and the output cable (PV-) is drawn from the outermost side of the split junction box, as shown in Fig.
  • Component 40 is taken as an example in the third junction box.
  • the control component 40 of this scheme is powered by PV-2 and PV+3.
  • a similar power supply can also be a power supply mode of one substring, such as the PV-3 and PV+3 power supply methods shown in Figure 18, and the implementation method is similar to the power supply method of two substrings.
  • chip power supply can be designed according to different sub-string power supply modes.
  • an RLC circuit can be added in the junction box to obtain a suitable impedance.
  • the present invention also provides a switching method for a photovoltaic solar module, and a schematic flow chart of a specific implementation thereof is shown in Figure 19, including:
  • S101 Receive a startup instruction or a shutdown instruction.
  • S102 Start or shut down the solar cell strings 10 in the photovoltaic solar module one by one according to the startup command or shutdown command; Start or shut down, and start or shut down the next solar battery string 10 after receiving the startup completion feedback information or shutdown completion feedback information of the previous solar battery string 10 .
  • the switching method provided in the present invention starts or shuts down each solar battery string in the photovoltaic solar module one by one, reduces the peak value of the power supply at the moment the system is turned on, and reduces the design cost of the drive system by means of hierarchical startup, such as the switching tube , inductors, capacitors, etc., reduce the sudden impact of device drivers in the system through hierarchical shutdown, thereby improving the flexible shutdown of the system and increasing system stability.
  • the starting or shutting down of the solar cell strings 10 in the photovoltaic solar module one by one according to the startup instruction or shutdown instruction includes:
  • A1 Start the solar cell strings 10 in the photovoltaic solar module one by one according to the start instruction.
  • Fig. 20 is a control flow chart of the photovoltaic solar module provided by the present invention, which can be understood in conjunction with the specific embodiment of the lighting method of the photovoltaic solar module mentioned above, which embodies the above-mentioned "performing the solar cell strings 10 in the photovoltaic solar module".
  • the process of starting or shutting down one by one, the opening and closing sequence of the drive modules 1, 2, and 3 in the figure is only a specific implementation method, which can be adjusted according to the actual situation.
  • FIG. 20 also includes the execution of the data acquisition instruction, which can be understood in conjunction with the description of the sampling circuit above, and will not be repeated here.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same or similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for relevant details, please refer to the description of the method part.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种光伏太阳能组件及其开关方法,包括执行接线盒、单个主控接线盒及多个串接的太阳能电池串;所述执行接线盒包括对应的旁路二极管;所述主控接线盒包括对应的旁路二极管及控制组件,且所述控制组件仅设置于所述主控接线盒中;所述太阳能电池串通过所述执行接线盒对应的旁路二极管或所述主控接线盒对应的旁路二极管相互串接;所述控制组件用于控制所述太阳能电池串与主功率电路之间的通断。本发明将控制组件整合进单个接线盒中,缩小所述执行接线盒的体积,仅留下体积较大的主控接线盒,通过单独对其进行布线,安放于对太阳能电池串无遮挡的区域,也就缩小了各个接线盒在太阳能电池迎光面上的投影面积,提升了光伏组件的光电转化率。

Description

一种光伏太阳能组件及其开关方法
本申请要求于2022年03月03日提交中国专利局、申请号为202210208924.5、发明名称为“一种光伏太阳能组件及其开关方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光伏发电领域,特别是涉及一种光伏太阳能组件及其开关方法。
背景技术
由于太阳能的可再生性及清洁性,光伏并网发电技术得以迅猛发展。通常的光伏系统是多个光伏组件串联形成组串,然后接入逆变器实现直流转换为交流而并网。早期一个组件使用一个接线盒,内置该组件中全部的旁路二极管,每颗旁路二极管短路一组太阳能电池串,如图1所示。
这几年,分体式接线盒开始出现,分体式接线盒相比于图1的老式接线盒,大大降低了接线盒对于下方太阳能电池片的遮挡,使电池片的受光面积大幅增加,同时减小电阻损耗,减少电缆用量等,如图2所示,然而,如果想更进一步地为接线盒增加关断功能,也即通过所述接线盒控制对应的太阳能电池串是否接入主功率电路,现有技术中的做法通常是在每一个接线盒中都增设控制器,通过单独向每个控制器下达指令实现对不同太阳能电池串的控制,然而,这也使得接线盒的体积增加,对太阳能的遮挡面积相应变大,缩小了光伏组件的有效受光面积,降低了光电转化效率。
因此,如何在实现关断功能的同时,兼顾较小的接线盒体积,减小接线盒对光伏组件的遮挡,提高光电转化效率,是现有技术中亟待解决的问题。
发明内容
本发明的目的是提供一种光伏太阳能组件及其开关方法,以解决现有技术中接线盒投影面积过大导致光伏组件被遮挡的问题。
为解决上述技术问题,本发明提供一种光伏太阳能组件,包括执行接 线盒、单个主控接线盒及多个串接的太阳能电池串;
所述执行接线盒包括对应的旁路二极管;所述主控接线盒包括对应的旁路二极管及控制组件,且所述控制组件仅设置于所述主控接线盒中;
所述太阳能电池串通过所述执行接线盒对应的旁路二极管或所述主控接线盒对应的旁路二极管相互串接;
所述控制组件用于控制所述太阳能电池串与主功率电路之间的通断。
可选地,在所述的光伏太阳能组件中,所述主控接线盒及所述执行接线盒包括对应的子通断器;
所述控制组件与所述子通断器信号连接,用于控制所述子通断器的通断,使所述子通断器对应的太阳能电池串接入或断出所述主功率电路。
可选地,在所述的光伏太阳能组件中,所述控制组件的两个电源端分别连接于所述光伏太阳能组件的串接首端及串接尾端。
可选地,在所述的光伏太阳能组件中,所述控制组件的两个电源端分别连接于单个所述太阳能电池串的两端。
可选地,在所述的光伏太阳能组件中,所述主接线盒还包括主通断器;
所述光伏太阳能组件通过所述主通断器串接入所述主功率电路。
可选地,在所述的光伏太阳能组件中,所述控制组件的两个电源端分别连接于所述光伏太阳能组件中任一太阳能电池串的正向端及任一太阳能电池串的负向端。
可选地,在所述的光伏太阳能组件中,当所述光伏太阳能组件包括所述主通断器时,所述主通断器为MOS管;
当所述光伏太阳能组件包括所述子通断器时,所述子通断器为MOS管。
可选地,在所述的光伏太阳能组件中,所述控制组件包括采样电路;
所述采样电路用于采集所述主功率电路或所述光伏太阳能组件预设位置的电信号数据。
一种光伏太阳能组件的开关方法,使用上述任一种的光伏太阳能组件,包括:
接收启动指令或关断指令;
根据所述启动指令或关断指令,对光伏太阳能组件中的太阳能电池串 进行逐个启动或关断;其中,所述逐个启动或关断指按照预设顺序对所述太阳能电池串进行启动或关断,且当接收到上一个太阳能电池串的启动完成反馈信息或关断完成反馈信息后,再进行下一个太阳能电池串的启动或关断。
可选地,在光伏太阳能组件的开关方法中,所述根据所述启动指令或关断指令,对光伏太阳能组件中的太阳能电池串进行逐个启动或关断包括:
根据所述启动指令对光伏太阳能组件中的太阳能电池串进行逐个启动;
或当在连续的第一预设时间段内没有接收到所述启动指令时,对光伏太阳能组件中的太阳能电池串进行逐个关断。
本发明所提供的一种光伏太阳能组件,包括执行接线盒、单个主控接线盒及多个串接的太阳能电池串;所述执行接线盒包括对应的旁路二极管;所述主控接线盒包括对应的旁路二极管及控制组件,且所述控制组件仅设置于所述主控接线盒中;所述太阳能电池串通过所述执行接线盒对应的旁路二极管或所述主控接线盒对应的旁路二极管相互串接;所述控制组件用于控制所述太阳能电池串与主功率电路之间的通断。本发明将控制组件整合进单个接线盒中(也即所述主控接线盒),避免了现有技术中每一个接线盒都需要包括控制器的问题,大大缩小了所述执行接线盒的体积,仅留下一个体积较大的主控接线盒,可通过单独对其进行布线,安放于对太阳能电池串无遮挡的区域,也就缩小了各个接线盒在太阳能电池迎光面上的投影面积,提升了光伏组件的受光面积,提升了光伏组件的光电转化率。本发明同时还提供了一种具有上述有益效果的光伏太阳能组件开关方法。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1、图2为现有技术中光伏太阳能组件的结构示意图;
图3至图10为本发明提供的光伏太阳能组件的第一大类具体实施方式的结构示意图;
图11至图18为本发明提供的光伏太阳能组件的第二大类具体实施方式的结构示意图;
图19为本发明提供的光伏太阳能组件的开关方法的一种具体实施方式的流程示意图;
图20为本发明提供的光伏太阳能组件的一种具体实施方式的控制流程图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的核心是提供一种光伏太阳能组件,其几种具体实施方式的示意图及相关说明见下文,包括执行接线盒30、单个主控接线盒20及多个串接的太阳能电池串10;
所述执行接线盒30包括对应的旁路二极管;所述主控接线盒20包括对应的旁路二极管及控制组件40,且所述控制组件40仅设置于所述主控接线盒20中;
所述太阳能电池串10通过所述执行接线盒30对应的旁路二极管或所述主控接线盒20对应的旁路二极管相互串接;
所述控制组件40用于控制所述太阳能电池串10与主功率电路之间的通断;
所述主控接线盒20及所述执行接线盒30包括对应的子通断器50;
所述控制组件40与所述子通断器50信号连接,用于控制所述子通断器50的通断,使所述子通断器50对应的太阳能电池串10接入或断出所述主功率电路。
在本具体实施方式中,每一个接线盒中都包括一个子通断器50,所述子通断器50受所述控制组件40控制,可单独切断对应的太阳能电池串10与所述助攻率电路的连接,大大提升了所述光伏太阳能组件的灵活性,且在单路太阳能电池串10发生故障时,可针对故障电池串单独切割,减少故 障对组件整体的干扰,提升光伏太阳能组件的稳定性。
作为一种优选实施方式,所述控制组件40的两个电源端分别连接于所述光伏太阳能组件的串接首端及串接尾端,其结构示意图请见图3及图4,图3图4为主控接线盒20分别位于所述光伏太阳能电池的边缘电池串及中间电池串的情况,当然,虽然图中的光伏太阳能组件中共包含3个太阳能电池串10,但实际生产中太阳能电池串10数量可根据实际需求做变动,而所述主控接线盒20的连接关系不会有太大变化。图中的L3和L4两条短虚线代表所述控制组件40与其他执行接线盒30的信号连接,下文中也相同,图中的长虚线表示所述控制组件40的供电线路也即所述控制组件40的电源端的连接线。
结合附图3图4可以看出,所述串接首端及所述串接尾端分别指将多个所述太阳能电池串10串接后看作一个整体的输入端和输出端,也即所述光伏太阳能组件工作时能获得最大电压的两端(图中的PV-1与PV+3)。将所述控制组件40的两个电源端分别连接于所述光伏太阳能组件的串接首端及串接尾端,意味着通过整个所述光伏太阳能组件对所述控制组件40供电,这样即便所述光伏太阳能组件中的个别太阳能电池串10失效,剩下的太阳能电池串10依旧能对所述控制组件40供电,大大提升了控制组件40的工作稳定性与系统容错率。
图5为图3的内部控制电路框图,不难发现,图中的所述子通断路器M1、M2、M3选用的是MOS管,所述控制组件40的g1、s1组成控制MOS管M1的控制电路,同理g2、s2及g3、s3在此不再赘述,Vin+及Vin-为所述控制组件40的两个电源端,下文中其他图也相同,后文中不再赘述。MOS管占用空间小,控制通断简单,适合作为所述子通断路器使用,下文中的主通断路器同理,当然,也可根据需要选择其他元件作为所述子通断路器,图5中D1、D2、D3为三个旁路二极管。
进一步地,所述控制组件40包括多个与所述MOS管对应的驱动模块;
所述控制组件40通过所述驱动模块控制所述MOS管,可参考图10,所述控制组件40包括电源模块、中央控制单元及多个驱动模块,个别情况下还可包括采样模块,与下文中的采样电路相连,以及收发模块与通信模块70相连,用于与外界网络实现信息交换,电源模块通过两个电源端连接 外部电路(可对照图5)。
再进一步地,所述驱动模块为隔离电源、充电泵或升降压电路或其他可以实现变压驱动控制的实现方式。
优选地,所述控制组件40包括采样电路;
所述采样电路用于采集所述主功率电路或所述光伏太阳能组件预设位置的电信号数据。可参考图5,图5中通过为所述光伏太阳能组件增设采样电阻R,并采集R一端的电流值Is实现对所述光伏太阳能组件的监控,当然,也可采用其他手段实现监控,比如测量R的电压等等,在此不作限定。
作为另一种优选实施方式,所述控制组件40的两个电源端分别连接于单个所述太阳能电池串10的两端,可参考图6、图7及图8,图6、图7及图8分别代表了所述主控接线盒20在三个太阳能电池串10组成的光伏太阳能组件中处于第一个接线盒、第二个接线盒及第三个接线盒时的系统电路示意图,而图9为图8的局部电路示意图。所述单个太阳能电池串10的两端可为图中的PV-1及PV+1组合、PV-2及PV+2组合、PV-3及PV+3组合。
在本优选实施方式中,通过单路太阳能电池串10对所述控制组件40进行供电,大大简化了电路的走线,提高了生产效率与系统可靠性,降低了控制组件40中的电流电压要求,也就降低了所述控制组件40的功率。
本发明所提供的一种光伏太阳能组件,包括执行接线盒30、单个主控接线盒20及多个串接的太阳能电池串10;所述执行接线盒30包括对应的旁路二极管;所述主控接线盒20包括对应的旁路二极管及控制组件40,且所述控制组件40仅设置于所述主控接线盒20中;所述太阳能电池串10通过所述执行接线盒30对应的旁路二极管或所述主控接线盒20对应的旁路二极管相互串接;所述控制组件40用于控制所述太阳能电池串10与主功率电路之间的通断。本发明将控制组件40整合进单个接线盒中(也即所述主控接线盒20),避免了现有技术中每一个接线盒都需要包括控制器的问题,大大缩小了所述执行接线盒30的体积,仅留下一个体积较大的主控接线盒20,可通过单独对其进行布线,安放于对太阳能电池串10无遮挡的区域,也就缩小了各个接线盒在太阳能电池迎光面上的投影面积,提升 了光伏组件的受光面积,提升了光伏组件的光电转化率。
除上述具体实施方式之外,还有另一种具体实施方式,其结构示意图请见图11至图18,包括执行接线盒30、单个主控接线盒20及多个串接的太阳能电池串10;
所述执行接线盒30包括对应的旁路二极管;所述主控接线盒20包括对应的旁路二极管及控制组件40,且所述控制组件40仅设置于所述主控接线盒20中;
所述太阳能电池串10通过所述执行接线盒30对应的旁路二极管或所述主控接线盒20对应的旁路二极管相互串接;
所述控制组件40用于控制所述太阳能电池串10与主功率电路之间的通断;
所述主接线盒还包括主通断器60;
所述光伏太阳能组件通过所述主通断器60串接入所述主功率电路。
换言之,所述光伏太阳能组件的串接首端及串接尾端分别连接于主功率电路的两端(即图中的PV+及PV-),在本具体实施方式中,所述主通断器60直接控制所述光伏太阳能组件整体是否接入所述主功率电路中,拓展了所述光伏太阳能组件的使用场景,增强了泛用性。
作为一种优选实施方式,所述控制组件40的两个电源端分别连接于所述光伏太阳能组件中任一太阳能电池串10的正向端及任一太阳能电池串10的负向端。具体可参考前文中的关于控制组件40的两个电源端的不同连接方式。
首先看图11、图12及图13,上述三图为所述控制组件40的两个电源端分别连接于所述光伏太阳能组件的串接首端及串接尾端,通过整个光伏太阳能组件供电的情况,唯一不同点为所述控制组件40置于不同位置的接线盒中,如前文对这种控制组件40的供电方式的说明,这样即便所述光伏太阳能组件中的个别太阳能电池串10失效,剩下的太阳能电池串10依旧能对所述控制组件40供电,大大提升了控制组件40的工作稳定性与系统容错率。上述三图中出现的L1、L2代表所述控制组件40的供电线路,且每个接线盒中都包括一个旁路二极管,其作用与现有技术中一致,在此不 再赘述
图14为所述控制组件40与所述主功率电路的连接关系示意图土15为采样电路采集信息后,反馈到所述控制组件40,再通过通信模块70发送至外部网络,图中D2为旁路二极管,作用与现有技术中相同,在此不再赘述。
图16是所述控制组件40由2个子串(即两个所述太阳能电池串10)供电,输出电缆(PV-)从分体接线盒的最外侧引出,如图16所示以所述控制组件40在第三个接线盒中为例,该方案的控制组件40由PV-2和PV+3供电,图17是这个实例内部关断和供电图,类似也可以将所述控制组件40移至第一个接线盒或第二个接线盒中。类似的供电也可以是1个子串的供电方式,如图18所示的PV-3和PV+3供电的方式,实现方法类似2个子串供电。这个实例可以根据不同子串供电方式实现对芯片电源的设计,其中为保证控制信号通过所有接线盒到达所述控制组件40,可以在接线盒中加入RLC电路以获得合适的阻抗。
本发明同时还提供了一种光伏太阳能组件的开关方法,其一种具体实施方式的流程示意图如图19所示,包括:
S101:接收启动指令或关断指令。
S102:根据所述启动指令或关断指令,对光伏太阳能组件中的太阳能电池串10进行逐个启动或关断;其中,所述逐个启动或关断指按照预设顺序对所述太阳能电池串10进行启动或关断,且当接收到上一个太阳能电池串10的启动完成反馈信息或关断完成反馈信息后,再进行下一个太阳能电池串10的启动或关断。
本发明中提供的开关方法,对所述光伏太阳能组件中的各个太阳电池串进行逐个启动或关断,降低系统开启瞬间供电的峰值,通过分级启动的方式,减少驱动系统设计成本,如开关管、电感、电容等,通过分级关断的方式降低系统中器件驱动的突变影响,从而提升系统的柔性关断,增加系统稳定性。
作为一种优选实施方式,所述根据所述启动指令或关断指令,对光伏太阳能组件中的太阳能电池串10进行逐个启动或关断包括:
A1:根据所述启动指令对光伏太阳能组件中的太阳能电池串10进行逐个启动.
A2:或当在连续的第一预设时间段内没有接收到所述启动指令时,对光伏太阳能组件中的太阳能电池串10进行逐个关断。
更进一步地,本优选实施方式中提供了另一种识别系统关断的方法,也即在系统工作时,是有长期持续的启动指令的,当启动指令连续消失一段时间(即所述第一预设时间)后,判定此时需要关闭系统,本优选实施方式进一步拓展了本发明提供的技术方案的泛用性,使其能适应更多系统信号类型。
图20为本发明提供的光伏太阳能组件的控制流程图,可结合前文中关于所述光伏太阳能组件的开光方法的具体实施例理解,体现了前文中“对光伏太阳能组件中的太阳能电池串10进行逐个启动或关断”的过程,图中对驱动模块1、2、3的开启、关闭顺序仅为一种具体实施方式,实际使用时可根据情况作相应调整。图20中还包括对数据采集指令的执行,可结合前文中对所述采样电路的描述理解,在此不再赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明所提供的光伏太阳能组件及其开关方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上 实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种光伏太阳能组件,其特征在于,包括执行接线盒、单个主控接线盒及多个串接的太阳能电池串;
    所述执行接线盒包括对应的旁路二极管;所述主控接线盒包括对应的旁路二极管及控制组件,且所述控制组件仅设置于所述主控接线盒中;
    所述太阳能电池串通过所述执行接线盒对应的旁路二极管或所述主控接线盒对应的旁路二极管相互串接;
    所述控制组件用于控制所述太阳能电池串与主功率电路之间的通断。
  2. 如权利要求1所述的光伏太阳能组件,其特征在于,所述主控接线盒及所述执行接线盒包括对应的子通断器;
    所述控制组件与所述子通断器信号连接,用于控制所述子通断器的通断,使所述子通断器对应的太阳能电池串接入或断出所述主功率电路。
  3. 如权利要求2所述的光伏太阳能组件,其特征在于,所述控制组件的两个电源端分别连接于所述光伏太阳能组件的串接首端及串接尾端。
  4. 如权利要求2所述的光伏太阳能组件,其特征在于,所述控制组件的两个电源端分别连接于单个所述太阳能电池串的两端。
  5. 如权利要求1所述的光伏太阳能组件,其特征在于,所述主接线盒还包括主通断器;
    所述光伏太阳能组件通过所述主通断器串接入所述主功率电路。
  6. 如权利要求5所述的光伏太阳能组件,其特征在于,所述控制组件的两个电源端分别连接于所述光伏太阳能组件中任一太阳能电池串的正向端及任一太阳能电池串的负向端。
  7. 如权利要求2至6所述的光伏太阳能组件,其特征在于,当所述光伏太阳能组件包括所述主通断器时,所述主通断器为MOS管;
    当所述光伏太阳能组件包括所述子通断器时,所述子通断器为MOS管。
  8. 如权利要求1所述的光伏太阳能组件,其特征在于,所述控制组件包括采样电路;
    所述采样电路用于采集所述主功率电路或所述光伏太阳能组件预设位置的电信号数据。
  9. 一种光伏太阳能组件的开关方法,其特征在于,使用如权利要求2至4所述的光伏太阳能组件,包括:
    接收启动指令或关断指令;
    根据所述启动指令或关断指令,对光伏太阳能组件中的太阳能电池串进行逐个启动或关断;其中,所述逐个启动或关断指按照预设顺序对所述太阳能电池串进行启动或关断,且当接收到上一个太阳能电池串的启动完成反馈信息或关断完成反馈信息后,再进行下一个太阳能电池串的启动或关断。
  10. 如权利要求9所述的光伏太阳能组件的开关方法,其特征在于,所述根据所述启动指令或关断指令,对光伏太阳能组件中的太阳能电池串进行逐个启动或关断包括:
    根据所述启动指令对光伏太阳能组件中的太阳能电池串进行逐个启动;
    或当在连续的第一预设时间段内没有接收到所述启动指令时,对光伏太阳能组件中的太阳能电池串进行逐个关断。
PCT/CN2022/090286 2022-03-03 2022-04-29 一种光伏太阳能组件及其开关方法 WO2023165010A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210208924.5A CN114421884A (zh) 2022-03-03 2022-03-03 一种光伏太阳能组件及其开关方法
CN202210208924.5 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023165010A1 true WO2023165010A1 (zh) 2023-09-07

Family

ID=81263889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090286 WO2023165010A1 (zh) 2022-03-03 2022-04-29 一种光伏太阳能组件及其开关方法

Country Status (2)

Country Link
CN (1) CN114421884A (zh)
WO (1) WO2023165010A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915260A (zh) * 2022-07-18 2022-08-16 常州九天新能源科技有限公司 智能关断接线盒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617523A (zh) * 2018-11-28 2019-04-12 无锡尚德太阳能电力有限公司 一种光伏电池快速通断系统、关断方法及启动方法
CN109672404A (zh) * 2019-03-05 2019-04-23 海宁昱能电子有限公司 一种智能光伏组件
CN110729964A (zh) * 2018-07-17 2020-01-24 浙江英达威芯电子有限公司 一种光伏系统及其光伏组件
CN113364414A (zh) * 2021-07-09 2021-09-07 上海数明半导体有限公司 光伏组件、光伏发电系统以及电子设备
CN113489052A (zh) * 2021-06-11 2021-10-08 浙江英达威芯电子有限公司 一种关断设备的控制方法、装置及关断设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729964A (zh) * 2018-07-17 2020-01-24 浙江英达威芯电子有限公司 一种光伏系统及其光伏组件
CN109617523A (zh) * 2018-11-28 2019-04-12 无锡尚德太阳能电力有限公司 一种光伏电池快速通断系统、关断方法及启动方法
CN109672404A (zh) * 2019-03-05 2019-04-23 海宁昱能电子有限公司 一种智能光伏组件
CN113489052A (zh) * 2021-06-11 2021-10-08 浙江英达威芯电子有限公司 一种关断设备的控制方法、装置及关断设备
CN113364414A (zh) * 2021-07-09 2021-09-07 上海数明半导体有限公司 光伏组件、光伏发电系统以及电子设备

Also Published As

Publication number Publication date
CN114421884A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
US20220094169A1 (en) Coordinated Converter Reactively Altering Disabling Photovoltaic Electrical Energy Power System
US9041252B2 (en) Advanced renewable energy harvesting
CN103166239B (zh) 集中-分布混合式新能源发电系统及最大功率点跟踪控制方法
US20210091571A1 (en) Photovoltaic power generation inverter system
CN102624022A (zh) 一种光伏并网发电系统及其直流母线电压控制方法
US20120187768A1 (en) Low filter capacitance power systems, structures, and processes for solar plants
CN110301081B (zh) 分布式/集中式优化器架构
WO2023165010A1 (zh) 一种光伏太阳能组件及其开关方法
CN104113073A (zh) 一种新能源发电系统以及分布式混合最大功率跟踪方法
CN110649658A (zh) 一种光伏直流变换器串联升压并网系统发电量提升控制方法
CN109638882A (zh) 光伏系统
CN109245712A (zh) 太阳能组件及其分体式功率优化接线盒
CN110138217B (zh) 一种三端口dc-dc变换器及其控制方法
US10014689B2 (en) Methods to form and operate multi-terminal power systems
WO2021208141A1 (zh) 一种电源系统
US20230163675A1 (en) Power supply system
CN103022171A (zh) 一种太阳能电池光伏组件
CN203135463U (zh) 直流到交流的并网电力转换系统
CN217216490U (zh) 一种光伏太阳能组件
CN101572512A (zh) 一种蚁群并联光伏发电系统
US20180083453A1 (en) Power converting module, power generating system, and control method thereof
CN212543400U (zh) 一种大功率12v无源自发电与蓄电电源
CN108521248B (zh) 一种实现分布式mppt的可移动柜式光伏水泵
CN209298969U (zh) 一种充电装置
CN218783582U (zh) 一种并网发电系统、逆变器及其辅助电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929448

Country of ref document: EP

Kind code of ref document: A1