WO2023165004A1 - 断路器、断路器异常诊断方法及锂电池系统 - Google Patents

断路器、断路器异常诊断方法及锂电池系统 Download PDF

Info

Publication number
WO2023165004A1
WO2023165004A1 PCT/CN2022/088805 CN2022088805W WO2023165004A1 WO 2023165004 A1 WO2023165004 A1 WO 2023165004A1 CN 2022088805 W CN2022088805 W CN 2022088805W WO 2023165004 A1 WO2023165004 A1 WO 2023165004A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage value
voltage
channels
switching
Prior art date
Application number
PCT/CN2022/088805
Other languages
English (en)
French (fr)
Inventor
李骏林
刘长来
夏诗忠
姜欢
陈念
刘彻
Original Assignee
骆驼集团武汉光谷研发中心有限公司
骆驼集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 骆驼集团武汉光谷研发中心有限公司, 骆驼集团股份有限公司 filed Critical 骆驼集团武汉光谷研发中心有限公司
Priority to DE112022002698.7T priority Critical patent/DE112022002698T5/de
Publication of WO2023165004A1 publication Critical patent/WO2023165004A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor

Definitions

  • the present application relates to the field of electrical technology, in particular to a circuit breaker, a method for diagnosing abnormality of the circuit breaker, and a lithium battery system.
  • the new energy vehicle industry is booming, and new energy vehicles using lithium batteries as energy storage devices are becoming more and more popular.
  • the relay is often selected as the first choice component of the main circuit breaker of the battery system.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • This application provides a circuit breaker that uses a semiconductor switching device as a circuit breaker, overcomes some of the defects of using a relay as a circuit breaker at present, and can detect and diagnose the fault in time when the circuit breaker is aging or has an uncontrolled fault. , Circuit breaker abnormal diagnosis method and lithium battery system.
  • the present application provides a circuit breaker, including:
  • a switch channel, N switch channels connected in parallel with each other are coupled between the battery module terminal and the battery pack system terminal, the switch channels are composed of semiconductor switching devices, and the switch channels are used to control the On-off of the loop between the battery module terminal and the battery pack system terminal, wherein N is a natural number greater than or equal to 2;
  • At least one of the N switch channels is in a closed state, so as to keep the circuit breaker in a conduction state.
  • the switch channel includes:
  • the first switch group is coupled to the battery module terminal
  • the second switch group is coupled to the first switch group and the battery pack system end;
  • a coupling point between the first switch group and the second switch group forms a channel potential point, an input potential point is formed between the first switch group and the battery module terminal, and the second switch group and the An output potential point is formed between the battery pack system terminals.
  • the circuit breaker includes a driving module, and the driving module includes a first driving pin and a second driving pin;
  • the first switch group includes a first switch tube, and the first switch tube includes a first control electrode coupled to the first drive pin;
  • the second switch group includes a second switch tube, and the second switch tube includes a second control electrode coupled to the second drive pin.
  • the channel potential point includes a first channel potential point
  • the input potential point includes a first input potential point
  • the output potential point includes a first output potential point
  • the first switching tube includes a first main voltage pole and a first secondary voltage pole
  • the second switching tube includes a second main voltage pole and a second secondary voltage pole
  • the first main voltage pole of the first switch tube is coupled to the second main voltage pole of the second switch tube, and between the first main voltage pole and the second main voltage pole forming the first channel potential point;
  • the first secondary voltage pole of the first switch tube is coupled to the battery module terminal, and a first input potential point is formed between the first secondary voltage pole and the battery module terminal;
  • the second secondary voltage pole of the second switch tube is coupled to the battery pack system terminal, and the first output potential point is formed between the second secondary voltage pole and the battery pack system terminal.
  • the driving module includes a third driving pin and a fourth driving pin;
  • the first switch group includes a plurality of third switch tubes, and each of the third switch tubes includes a third control electrode coupled to the third drive pin;
  • the second switch group includes a plurality of fourth switch transistors, and each of the fourth switch transistors includes a fourth control electrode coupled to the fourth drive pin.
  • the channel potential point includes a plurality of second channel potential points, the input potential point includes a second input potential point, and the output potential point includes a second output potential point;
  • the third switch tube includes a third main voltage pole and a third secondary voltage pole
  • the fourth switch tube includes a fourth main voltage pole and a fourth secondary voltage pole
  • the third main voltage electrodes of the plurality of third switching transistors are respectively coupled to the fourth main voltage electrodes of the plurality of fourth switching transistors, and the plurality of third main voltage electrodes are respectively connected to the plurality of
  • the multiple connection points formed between the four main voltage poles are all the second channel potential points, and the multiple connection points are all coupled by wires;
  • the third secondary voltage poles of the plurality of third switch tubes are all coupled to the battery module terminal, and the second input is formed between the third secondary voltage poles and the battery module terminal. Potential point;
  • the fourth secondary voltage poles of the plurality of fourth switch tubes are all coupled to the battery pack system end, and a second output potential point is formed between the fourth secondary voltage poles and the battery pack system end .
  • a sampling resistor is coupled between the battery module terminal and the battery pack system terminal.
  • the present application provides a circuit breaker abnormality diagnosis method, which is applied to the circuit breaker, and the circuit breaker abnormality diagnosis method includes:
  • the abnormality diagnosis result of the switching device is that all semiconductor switching devices in the N switching channels are abnormal
  • the abnormality diagnosis result of the switching device is that some semiconductor switching devices in the i-th switching channel are abnormal, where i is a natural number less than N;
  • the first switch channel of the jth switch channel among the N switch channels The switch group is set to an open state, and each of the remaining (N-1) switch channels is set to a closed state, wherein j is a natural number less than N;
  • the first voltage value, the second voltage value, and the N third voltage values diagnose the semiconductor switching devices in the N switching channels, and obtain abnormal diagnosis results of the switching devices, including:
  • the remaining (N-1) third voltage values and the second voltage value are all voltage drop voltage values of the input potential point , determining that the abnormality diagnosis result of the switching device is that all the first switch groups in the remaining (N-1) switching channels are abnormal;
  • the jth switching channel when the diagnosis result of the abnormality of the switching device is that all semiconductor switching devices of the remaining (N-1) switching channels have no abnormality, the jth switching channel The first switch group in is set to a closed state, and the first switch groups in the remaining (N-1) switch channels are all set to an open state;
  • the remaining (N-1) third voltage values and the second voltage value are all voltage drop voltage values of the input potential point , determining that the abnormality diagnosis result of the switching device is that the first switch group in the jth switching channel is abnormal;
  • the jth third voltage value is equal to the first voltage value, and the sum of the second voltage value and the remaining (N-1) third voltage values is the drop voltage of the input potential point value, determining that the abnormality diagnosis result of the switching device is that the second switch group in the jth switching channel is abnormal;
  • the abnormal diagnosis result of the switching device is: All semiconductor switching devices in the jth switching channel have no abnormality, that is, all semiconductor switching devices in the N switching channels have no abnormality.
  • the second The switch group is set to an open state, and each of the remaining (N-1) switch channels is set to a closed state, wherein k is a natural number less than N;
  • the first voltage value, the second voltage value, and the N third voltage values diagnose the semiconductor switching devices in the N switching channels, and obtain abnormal diagnosis results of the switching devices, including:
  • the second voltage value is the voltage drop voltage value of the input potential point determining that the abnormality diagnosis result of the switching device is that all the second switch groups in the remaining (N-1) switching channels are abnormal;
  • the abnormality diagnosis result of the switching device is the rest (N - 1) All the semiconductor switching devices of the switching channel have no abnormalities.
  • the kth switching channel when the diagnosis result of the abnormality of the switching device is that all semiconductor switching devices of the remaining (N-1) switching channels have no abnormalities, the kth switching channel The second switch group in is set to a closed state, and the second switch groups in the remaining (N-1) switch channels are all set to an open state;
  • the second voltage value is the voltage drop voltage value of the input potential point determining that the diagnosis result of the abnormality of the switching device is that the second switch group of the kth switching channel is abnormal;
  • the abnormality diagnosis result of the switching device is the k-th one
  • All the semiconductor switching devices of the switching channels have no abnormalities, that is, all the semiconductor switching devices in the N switching channels have no abnormalities.
  • the abnormal diagnosis result of the switching device includes a short-circuit abnormal diagnosis result, when the first switch group and the first switch group in the m-th switching channel among the N switching channels When the second switch group is set to an open state, and the remaining (N-1) switch channels are all set to a closed state;
  • the short-circuit abnormality diagnosis result is that there is no short-circuit abnormality in the mth switch channel;
  • the short circuit abnormality diagnosis result is the mth said Both the first switch group and the second switch group of the switch channel are abnormally short-circuited.
  • the present application also provides a lithium battery system, which adopts the above abnormal diagnosis method of a circuit breaker.
  • the semiconductor switching device is used as the switch channel, that is, the semiconductor switching device is used as the circuit breaker.
  • this application can effectively avoid the on-load disconnection of the relay, mechanical noise pollution and relay contacts. Easy to damage and other problems, it has the advantages of fast response speed, high integration, and small electrical volume.
  • the circuit breaker of the present application uses multiple parallel switch channels, that is, when a fault occurs when it is applied to a battery system or other equipment, at least one of the N switch channels can be in a closed state to make the circuit breaker The switch remains on, so that abnormal diagnosis is performed on other switching channels to diagnose semiconductor switches with abnormal aging or uncontrolled abnormalities in the switching channel, so that faults can be detected and diagnosed in time, and the safety is higher.
  • Fig. 1 is a schematic structural diagram of an embodiment of a circuit breaker provided by the embodiment of the present application
  • Fig. 2 is a schematic structural diagram of an embodiment of a circuit breaker provided by the embodiment of the present application
  • Fig. 3 is a schematic structural diagram of an embodiment of a circuit breaker provided by the embodiment of the present application.
  • Fig. 4 is a schematic flow chart of an embodiment of a circuit breaker abnormality diagnosis method provided by the embodiment of the present application.
  • Fig. 5 is a schematic flowchart of an embodiment of a method for diagnosing an abnormality of a circuit breaker provided in an embodiment of the present application.
  • first and second are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • Embodiments of the present application provide a circuit breaker, a method for diagnosing an abnormality of the circuit breaker, and a lithium battery system, which will be described in detail below.
  • Figure 1 it is a schematic structural diagram of an embodiment of a circuit breaker in the embodiment of the present application, and the circuit breaker includes:
  • N parallel switching channels are coupled between the battery module terminal and the battery pack system terminal, the switching channels are composed of semiconductor switching devices, and the switching channels are used to control the connection between the battery module terminal and the battery pack system terminal On-off of the loop, wherein, N is a natural number greater than or equal to 2.
  • At least one switch channel among the N switch channels is in a closed state, so as to keep the circuit breaker in a conduction state.
  • the semiconductor switching device is used as the switch channel, that is, the semiconductor switching device is used as the circuit breaker.
  • this application can effectively avoid the on-load disconnection of the relay, mechanical noise pollution and relay contacts. Easy to damage and other problems, it has the advantages of fast response speed, high integration, and small electrical volume.
  • the circuit breaker of the present application uses multiple parallel switch channels, that is, when a fault occurs when it is applied to a battery system or other equipment, at least one of the N switch channels can be in a closed state to maintain The circuit breaker is in the conduction state.
  • the circuit breaker When the circuit breaker is applied to the vehicle voltage power supply, it can ensure that the battery pack is always connected to the vehicle low-voltage power supply network, so as to perform abnormal diagnosis on other switch channels to diagnose aging in the switch channel Abnormal or uncontrolled abnormal semiconductor switches can detect and diagnose faults in time, and the safety is higher.
  • N is a natural number greater than or equal to 2
  • N can be 2, 3 or 4, etc., that is, as shown in Figure 2 and Figure 3
  • the circuit breaker of the present application can include 2 groups of switch channels, and also It can be 3 groups of switch channels, and the number of switch channels can be set according to the needs.
  • This application does not make more specific restrictions on the number of switch channels in the circuit breaker. All the solutions that are substantially the same as this application are under the protection of this application. within range.
  • the switch channel includes:
  • a first switch group, the first switch group is coupled to the battery module terminal;
  • a second switch group, the second switch group is coupled to the first switch group and the battery pack system end;
  • the coupling point between the first switch group and the second switch group forms the channel potential point
  • the input potential point is formed between the first switch group and the battery module terminal
  • the output potential point is formed between the second switch group and the battery pack system terminal .
  • the first switch group and the second switch group in the switch channel jointly control the on-off between the battery module terminal and the battery pack system terminal of the circuit breaker.
  • the input potential can be detected Points, channel potential points, and output potential points to diagnose abnormal conditions of semiconductor switches in circuit breakers.
  • both the first switch group and the second switch group may include at least one switch tube, the number of switch tubes in the first switch group corresponds to the number in the second switch group, for example
  • the second switch group also includes two switch tubes that correspond one-to-one to the two switch tubes in the first switch group.
  • the switch tubes in the first switch group and the second switch group can all use triodes, MOS tubes, thyristors or other devices that can realize switching functions.
  • the first switch group and the second switch group are all made of metal Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).
  • MOSFET metal Metal-Oxide-Semiconductor Field-Effect Transistor
  • the circuit breaker includes two switch channels.
  • the circuit breaker includes a driving module, and the driving module includes a first drive pin and a second drive pin;
  • the first switch group includes a first switch tube, and the first switch tube includes a first control electrode coupled to the first drive pin;
  • the second switch group includes a second switch tube, and the second switch tube includes a second control electrode coupled to the second drive pin.
  • one of the switch channels includes a first switch group S1 and a second switch group S2, the first switch group S1 is a charge enable MOSFET group, the second switch group S2 is a discharge enable MOSFET group, and the first switch group S1 includes The first switching tube Q1, the first gate electrode of the first switching tube Q1, the second switch group S2 includes the second switching tube Q2, the second control pole of the second switching tube Q2 is the gate, that is, the first switching tube Q1 The gate of Q2 is coupled to the first driving pin GS1 of the driving module, and the gate of the second switching transistor Q2 is coupled to the second driving pin GS2 of the driving module.
  • the first switch tube Q1 is controlled to be turned on or off by the level change of the first drive pin GS1 of the drive module
  • the second switch tube is controlled by the level change of the second drive pin GS2 of the drive module.
  • Q2 is turned on or off, so as to realize the on-off of the switch channel.
  • this embodiment can be understood as: the first switch group S3 and the second switch group S4 form another switch channel, wherein the first switch group S3 has the same function as the first switch group S1, and the second switch group S4 has the same function as the first switch group S4.
  • the functions of the two switch groups S2 are the same, that is, the first switch group S3 is a charge enable MOSFET group, the second switch group S4 is a discharge enable MOSFET group, the first switch group S3 includes the first switch tube Q3, and the first switch tube Q3
  • the first control pole is the gate
  • the second switch group S4 includes the second switch tube Q4
  • the first control pole of the second switch tube Q4 is the gate
  • the gate of the first switch tube Q3 is connected to the first drive pin GS3 of the drive module
  • the gate of the second switching transistor Q4 is coupled to the second driving pin GS4 of the driving module.
  • the first switch tube Q3 is controlled to be turned on or off by the level change of the first drive pin GS3 of the drive module, and the second switch tube is controlled by the level change of the second drive pin GS4 of the drive module.
  • Q4 is turned on or off, so as to realize the on-off of the switch channel.
  • the circuit breaker includes two switch channels.
  • the channel potential points include the first channel potential point
  • the input potential point includes the first input potential point
  • the output potential point includes the first output potential point
  • the first switch tube includes a first main voltage pole and a first secondary voltage pole
  • the second switch tube includes a second main voltage pole and a second secondary voltage pole
  • the first main voltage pole of the first switch tube is coupled to the second main voltage pole of the second switch tube, and a first channel potential point is formed between the first main voltage pole and the second main voltage pole;
  • the first secondary voltage pole of the first switch tube is coupled to the battery module terminal, and a first input potential point is formed between the first secondary voltage pole and the battery module terminal;
  • the second secondary voltage pole of the second switch tube is coupled to the battery pack system end, and a first output potential point is formed between the second secondary voltage pole and the battery pack system end.
  • the first switching tube includes a first main voltage pole and a first secondary voltage pole, both of which may be the source or drain of the first switching tube.
  • first main voltage of the first switching tube is the source
  • first secondary voltage of the first switching tube is the drain
  • first main voltage of the first switching tube is the drain
  • the secondary voltage pole is the source pole
  • the second switching tube includes a second main voltage pole and a second secondary voltage pole, both of which can be the source or drain of the second switching tube, when the second switching tube When the second main voltage of the second switching tube is the source, the second secondary voltage of the second switching tube is the drain, and when the second main voltage of the second switching tube is the drain, the second secondary voltage of the second switching tube is the drain. is the source.
  • the first main voltage pole of the first switching tube is set as the source, and the first secondary voltage pole of the first switching tube is set as the drain, and the second voltage pole of the second switching tube is set as the drain.
  • the main voltage pole is set as a source, and the second auxiliary voltage pole of the second switching tube is set as a drain.
  • the first switch group S1 includes the first switch tube Q1
  • the second switch group S2 includes the second switch tube Q2, specifically:
  • the source of the first switching tube Q1 is coupled to the source of the second switching tube Q2 to form a first channel potential point VS1, and the drain of the first switching tube Q1 is coupled to the anode of the battery module terminal to form a first channel potential point VS1.
  • the input potential point BAT+, the drain of the second switch tube Q2 is coupled to the positive electrode of the battery pack system end, and forms the first output potential point KL30.
  • the first switch group S1 includes the first switch tube Q3 and the second switch group S2 includes the second switch tube Q4, specifically: the source of the first switch Q3 is coupled to the source of the second switch Q4 connected to form the first channel potential point VS2, the drain of the first switching tube Q3 is coupled to the positive pole of the battery module terminal, and forms the first input potential point BAT+, the drain of the second switching tube Q4 is connected to the positive pole of the battery pack system terminal The positive poles are coupled to form the first output potential point KL30.
  • the number of MOSFET devices in the first switch group S1 and the second switch group S2 can be increased according to actual needs. That is, increase the number of MOSFETs in the MOSFET groups S1, S2, S3, and S4 in Figure 2 to form a circuit breaker as shown in Figure 3.
  • the MOSFET groups S1, S2, S3, and S4 all contain two MOSFET devices, so that Under the condition that the over-current capacity of a single MOSFET remains unchanged, the over-current capacity of the circuit breaker shown in FIG. 3 is stronger than that of the circuit breaker shown in FIG. 2 .
  • each switch channel includes a plurality of switch tubes for specific description.
  • the circuit breaker includes two switch channels, and when the first switch group and the second switch group both include a plurality of switch tubes, the drive module includes a third drive pin and the fourth drive pin;
  • the first switch group includes a plurality of third switch tubes, each of which includes a third control electrode coupled to the third drive pin; the second switch group includes a plurality of fourth switch tubes, each of which Each of the switch tubes includes a fourth control electrode coupled to the fourth drive pin.
  • one of the switch channels includes a first switch group S5 and a second switch group S6 , the first switch group S5 is a charge enable MOSFET group, and the second switch group S6 is a discharge enable MOSFET group.
  • the first switch group S5 includes a plurality of third switch tubes, that is, the third switch tube Q5 and the third switch tube Q6, the third control poles of the third switch tube Q5 and the third switch tube Q6 are both gates, and the third switch tube Both the gate of the transistor Q5 and the gate of the third switching transistor Q6 are coupled to the third drive pin GS5 of the drive module;
  • the second switch group S6 includes a plurality of fourth switch tubes, that is, the fourth switch tube Q7 and the fourth switch tube Q8, the fourth control poles of the fourth switch tube Q7 and the fourth switch tube Q8 are gates, and the fourth switch tube The gate of the transistor Q7 and the gates of the fourth switching transistor Q8 are both coupled to the fourth driving pin GS6 of the driving module.
  • the level change of the third driving pin GS5 of the driving module simultaneously controls the on or off of the third switching tube Q5 and the third switching tube Q6, and the voltage of the fourth driving pin GS6 of the driving module
  • the level change controls the turn-on or turn-off of the fourth switch tube Q7 and the fourth switch tube Q8 at the same time, so as to realize the switch channel.
  • this embodiment can be understood as: the first switch group S7 and the second switch group S8 form another switch channel, wherein the first switch group S7 has the same function as the first switch group S5, and the second switch group S8 has the same function as the first switch group S8.
  • the functions of the two switch groups S6 are the same, that is, the first switch group S7 is a charge enable MOSFET group, and the second switch group S8 is a discharge enable MOSFET group.
  • the first switch group S7 includes a plurality of third switch tubes, that is, the third switch tube Q9 and the third switch tube Q10, the third control electrodes of the third switch tube Q9 and the third switch tube Q10 are both gates, and the third switch tube Both the gate of the transistor Q9 and the gate of the third switching transistor Q10 are coupled to the third drive pin GS7 of the drive module;
  • the second switch group S6 includes a plurality of fourth switch tubes, that is, the fourth switch tube Q11 and the fourth switch tube Q12, the fourth control poles of the fourth switch tube Q11 and the fourth switch tube Q12 are both gates, and the fourth switch The gate of the transistor Q11 and the gates of the fourth switching transistor Q12 are both coupled to the fourth driving pin GS8 of the driving module.
  • the level change of the third driving pin GS7 of the driving module simultaneously controls the on or off of the third switching tube Q9 and the third switching tube Q10, and the voltage of the fourth driving pin GS8 of the driving module
  • the level change controls the turn-on or turn-off of the fourth switching tube Q11 and the fourth switching tube Q12 at the same time, so as to realize the switching of the switching channel.
  • gate electrodes of all MOSFETs in the first switch group S5 are connected to the same third driving pin GS5 of the same driving module, so that all MOSFETs in the first switch group S5 are controlled synchronously.
  • the second switch group S6, and the first switch group S7 and the second switch group S8 of another switch channel are the same, so as to increase the overcurrent capacity of the circuit breaker proposed in this application.
  • the channel potential point includes a plurality of second channel potential points, the input potential point includes a second input potential point, and the output potential point includes a second output potential point;
  • the third switch tube includes a third main voltage pole and a third secondary voltage pole
  • the fourth switch tube includes a fourth main voltage pole and a fourth secondary voltage pole
  • the third main voltage poles of the plurality of third switching transistors are respectively coupled to the fourth main voltage poles of the plurality of fourth switching transistors, and the plurality of third main voltage poles are respectively connected to the plurality of fourth main voltage poles.
  • the multiple connection points are potential points of the second channel, and the multiple connection points are all coupled through wires;
  • the third secondary voltage poles of the plurality of third switch tubes are all coupled to the battery module terminal, and a second input potential point is formed between the third secondary voltage poles and the battery module terminal;
  • the fourth secondary voltage poles of the plurality of fourth switch tubes are all coupled to the battery pack system end, and a second output potential point is formed between the fourth secondary voltage poles and the battery pack system end.
  • the third switching tube includes a third main voltage pole and a third secondary voltage pole, both of which may be the source or drain of the third switching tube.
  • the third main voltage of the three switching tubes is the source
  • the third secondary voltage of the third switching tube is the drain
  • the third switching tube of the third switching tube is the drain.
  • the secondary voltage pole is the source pole;
  • the fourth switching tube includes a fourth main voltage pole and a fourth secondary voltage pole, both of which can be the source or drain of the fourth switching tube, when the fourth switching tube When the fourth main voltage pole of the fourth switching tube is the source, the fourth secondary voltage pole of the fourth switching tube is the drain, and when the fourth main voltage pole of the fourth switching tube is the drain, the fourth secondary voltage pole of the fourth switching tube is is the source.
  • the third primary voltage pole of the third switching tube is set as the source, and the third secondary voltage pole of the third switching tube is set as the drain, and the fourth switching tube of the fourth switching tube is set as the drain.
  • the main voltage pole is set as a source, and the fourth secondary voltage pole of the fourth switching tube is set as a drain.
  • the first switch group S5 includes the third switch tube Q5 and the third switch tube Q6, and the second switch group S6 includes the fourth switch tube Q7 and the fourth switch tube Q8, specifically:
  • the source of the third switching tube Q5 is coupled to the source of the fourth switching tube Q7, the source of the third switching tube Q6 is coupled to the source of the fourth switching tube Q8, and the third switching tube Q5 is connected to the fourth switching tube Q5.
  • a connection point is formed between the switch tubes Q7, a connection point is formed between the third switch tube Q6 and the fourth switch tube Q8, the two connection points are coupled by wires, and any one of the two connection points is It can be used as the second channel potential point VS3, the drains of the third switching tube Q5 and the third switching tube Q6 are both coupled to the positive pole of the battery module terminal, and form the second input potential point BAT+, the fourth switching tube Q7
  • the drain of the fourth switch tube Q8 and the drain of the fourth switch tube Q8 are both coupled to the positive pole of the battery pack system terminal, and form a second output potential point KL30.
  • first switch group S7 includes the third switch tube Q9 and the third switch tube Q10
  • second switch group S8 includes the fourth switch tube Q11 and the fourth switch tube Q12, specifically:
  • the source of the third switch Q9 is coupled to the source of the fourth switch Q11, the source of the third switch Q10 is coupled to the source of the fourth switch Q12, and the third switch Q9 and the fourth A connection point is formed between the switch tubes Q11, a connection point is formed between the third switch tube Q10 and the fourth switch tube Q12, the two connection points are coupled by wires, and any one of the two connection points is It can be used as the second channel potential point VS4, the drains of the third switching tube Q9 and the third switching tube Q10 are both coupled to the positive pole of the battery module terminal, and form the second input potential point BAT+, the fourth switching tube Q11 The drain of the fourth switch tube Q12 and the drain of the fourth switch tube Q12 are both coupled to the positive pole of the battery pack system terminal, and form a second output potential point KL30.
  • a sampling resistor is coupled between the battery module terminal and the battery pack system terminal, and a third output potential point is formed between the sampling resistor and the battery pack system terminal.
  • the sampling resistor can be shown as shunt in FIG. 2 and FIG. 3
  • the third output potential point can be the third output potential point KL30 as shown in FIG. 2 and FIG. 3 .
  • the potential of the battery module terminal and the battery pack system terminal can be collected through the sampling resistor, which is convenient for diagnosing the abnormality of the MOSFET device in the circuit breaker.
  • the sampling resistor coupled between the battery module terminal and the battery pack system terminal can also be replaced with other loads that play the same role, such as wires, etc., which are not specifically limited here.
  • MOSFET abnormal scenarios include: 1. The internal short circuit of the MOSFET cannot be controlled to open; 2. The internal circuit of the MOSFET cannot be controlled to close; 3. If the MOSFET is aging, it will show a large on-resistance after the controlled closure.
  • the abnormal phenomenon is similar to the fault phenomenon that the internal open circuit of the MOSFET cannot be closed under control, so it can be classified into one category for treatment.
  • the embodiment of the present application also provides a method for diagnosing the abnormality of the circuit breaker.
  • the abnormal diagnosis method for the circuit breaker is applied to the circuit breaker, as shown in the figure As shown in 4, it is a schematic flowchart of an embodiment of a circuit breaker abnormality diagnosis method in the embodiment of the present application.
  • the circuit breaker abnormality diagnosis method includes steps 401-403:
  • the other N-1 groups of switch channels should be able to maintain the normally closed mode, so as to maintain the circuit breaker when performing abnormal diagnosis on other switch channels. It is in the conducting state, avoiding the frequent switching of the circuit breaker to the disconnecting state due to the diagnostic work of the circuit breaker, so as to maintain the long-term normal use of the circuit breaker.
  • the circuit breaker Since the circuit breaker is always in the conduction state, during the diagnosis process, by obtaining the voltage values of the input potential point, the output potential point and the N channel potential points corresponding to the N switching channels at the current moment, Based on the voltage values of the above-mentioned several potential points, it is determined which specific group or specific semiconductor device in the N channels is abnormal.
  • the switch tubes used in the switch channel are all MOSFET tubes
  • the switch can be identified by obtaining the voltage values of the circuit breaker input potential point, the source and two drains of the MOSFET tube, and the output potential point
  • the control state of each MOSFET in the channel can be used to determine the abnormal MOSFET.
  • the semiconductor switching devices in the N switching channels are diagnosed, and abnormal diagnosis results of the switching devices are obtained, including:
  • the device abnormality diagnosis result is that some semiconductor switching devices in the i-th switching channel are abnormal, where i is a natural number less than N;
  • any one or more switch channels in the N switch channels is zero, it means that the semiconductor device in any one or more switch channels in the N switch channels is turned on, then it can be determined that any Some semiconductor devices in one or more switching channels have controlled closure abnormalities or obvious aging;
  • the N third voltage values corresponding to the N switch channels are all equal to the first voltage value, it may be that all semiconductor devices in the N switch channels have no abnormality, or all or part of the semiconductor devices in the N switch channels There is a short circuit abnormality, so it is impossible to determine the specific abnormality of the semiconductor devices in the N switching channels, and further inspection is required.
  • the first switch group in the jth switching channel among the N switching channels is set to the off state, and the remaining Each of the (N-1) switch channels is set to a closed state, where j is a natural number less than N;
  • the semiconductor switching devices in the N switching channels are diagnosed, and abnormal diagnosis results of the switching devices are obtained, including:
  • the remaining (N-1) third voltage values, and the second voltage value are all voltage drop voltage values of the input potential point, determine the abnormal diagnosis result of the switching device Abnormalities exist in the first switch group in the remaining (N-1) switch channels;
  • both the jth third voltage value and the second voltage value are voltage drop voltage values at the input potential point, and the remaining (N-1) third voltage values are all equal to the first voltage value, determine the abnormal diagnosis result of the switching device Abnormalities exist in the second switch group in the remaining (N-1) switch channels;
  • the diagnosis result of the abnormality of the switching device is that all the semiconductor switching devices of the remaining (N-1) switching channels have no abnormality.
  • the N switching channels can be The first switch group in the jth switch channel in is set to an open state, and the other switch channels are set to a closed state, where j can be any natural number less than N, and the jth switch channel
  • the third voltage value is used as a judgment reference, and it can be judged whether the first switch group and the second switch group in the N switch channels have abnormal conditions.
  • the voltage value of VS3 is the voltage drop voltage value of BAT+
  • the voltage value of VS4 is the voltage value of BAT+
  • the potentials of BAT+ and KL30 are not the same, that is, the second switch group of the switch channel where VS4 is located is not conducting, then It can be concluded that the second switch group (Q11 and Q12) of the switch channel where VS4 is located has abnormal controlled closure or obvious aging;
  • the switch where VS4 is located can be judged All semiconductor switching devices of the channel are normal.
  • the diagnosis result of the abnormality of the switching device is that all the semiconductor switching devices of the remaining (N-1) switching channels have no abnormalities
  • the first switch group in the jth switching channel is set to is in a closed state, and the first switch group in the remaining (N-1) switch channels are all set to an open state;
  • the semiconductor switching devices in the N switching channels are diagnosed, and abnormal diagnosis results of the switching devices are obtained, including:
  • the switching device abnormal diagnosis result is all semiconductor switches in the jth switching channel There is no abnormality in any device, that is, there is no abnormality in all semiconductor switching devices in the N switching channels.
  • the abnormality diagnosis result of the switching device is that there is no abnormality in the remaining (N-1) switch channels
  • the voltage value of VS3 is the voltage value of BAT+, and the voltage value of VS4 and the voltage value of KL30 are both the voltage drop voltage value of BAT+, it means that the potentials of BAT+ and KL30 are different, that is, the second switch of the switch channel where VS3 is located group is not conducting, it can be concluded that the second switch group (Q7 and Q8) of the switch channel where VS3 is located has controlled closure abnormality or obvious aging;
  • the voltage values of VS3, VS4 and KL30 are all BAT+ voltage values, combined with the above diagnostic scheme, it means that the semiconductor switching devices in the switching channel where VS3 is located are not abnormally controlled.
  • the second switch group in the kth switching channel among the N switching channels is set to the off state, and the remaining Each of the (N-1) switch channels is set to a closed state, where k is a natural number less than N;
  • the semiconductor switching devices in the N switching channels are diagnosed, and abnormal diagnosis results of the switching devices are obtained, including:
  • the abnormal diagnosis result of the switching device is Abnormalities exist in the second switch group in the remaining (N-1) switch channels;
  • the kth third voltage value, the remaining (N-1) third voltage values, and the second voltage value are equal to the first voltage value, determine that the abnormal diagnosis result of the switching device is part of the remaining (N-1) switching channels There is no controlled abnormality in semiconductor switching devices.
  • the N switch channels are all in the closed state, that is, the circuit breaker is in the closed state, and the specific abnormality of the semiconductor device in the N switch channels cannot be determined
  • another way can be used to judge the abnormality, and the N
  • the second switch group in the kth switch channel in the switch channel is set to an open state, and the rest of the switch channels are set to a closed state, where k can be any natural number less than N, and the kth switch channel
  • the third voltage value is used as a judgment reference, and it can be judged whether the first switch group and the second switch group in the N switch channels have abnormal conditions.
  • the above judgment method is the same as setting the first switch group in the jth switch channel in the N switch channels to the off state, and setting the other switch channels to the closed state, and judging the abnormal situation of the N switch channels
  • the method and principle are the same, and no additional examples are given here.
  • the diagnosis result of the abnormality of the switching device is that there is no abnormality in some semiconductor switching devices of the remaining (N-1) switching channels
  • the second switch group in the kth switching channel is set to is in a closed state
  • the second switch group in the remaining (N-1) switch channels is set to an open state
  • the semiconductor switching devices in the N switching channels are diagnosed, and abnormal diagnosis results of the switching devices are obtained, including:
  • the abnormal diagnosis result of the switching device is There is an abnormality in the second switch group of the kth switch channel; when the kth third voltage value, the remaining (N-1) third voltage values, and the second voltage value are equal to the first voltage value, it is determined that the switching device is abnormally diagnosed
  • the result is that there is no abnormality in all the semiconductor switching devices of the kth switching channel, that is, there is no abnormality in all the semiconductor switching devices in the N switching channels.
  • the result of the abnormal diagnosis of the switching device is that there is no abnormality in some semiconductor switching devices in the remaining (N-1) switching channels situation, it is necessary to further diagnose the kth switch channel.
  • the abnormal diagnosis result of the switching device includes the abnormal short circuit diagnosis result, when the first switch group and the second switch group in the m-th switching channel among the N switching channels are both set to the off state , and when the remaining (N-1) switch channels are all set to the closed state;
  • the semiconductor switching devices in the N switching channels are diagnosed, and abnormal diagnosis results of the switching devices are obtained, including:
  • the mth third voltage value determines that the abnormal short circuit diagnosis result is the first switch group and the first switch group of the mth switch channel There is a short circuit abnormality in the two switch groups.
  • both the first switch group and the second switch group in the m-th switch channel among the N switch channels can be set to be in an open state, and the remaining switch channels can be set to be in a closed state.
  • the third voltage value of the m-th switching channel is used as a judging reference to determine whether the first switch group and the second switch group in the N switching channels have an abnormal short circuit.
  • the mth third voltage value corresponding to the mth switch channel is zero, and the remaining (N-1) third voltage values and second voltage values are equal to the first voltage value, it can be determined that There is no short-circuit abnormality in the first switch group and the second switch group in the mth switch channel; when the mth third voltage value corresponding to the mth switch channel and the remaining (N-1) third voltage values and the second voltage value are both equal to the first voltage value, then it can be determined that there is a short circuit abnormality in the mth switch channel.
  • m can be any natural number smaller than N, so it can be cyclically judged whether there is a short circuit abnormality in each of the N switch channels through the above judgment method.
  • Figure 3 and Figure 5 specifically introduces the diagnosis of the MOSFET when the battery pack is charged without an external charging device and the battery pack is in the discharge condition logic.
  • this working condition represents the working condition that after the car is powered off, the 12V power network charger stops charging the battery pack, and the load on the 12V power network is completely powered by the battery pack.
  • Step 1 The controller sets all MOSFETs to be closed, that is, GS5, GS6, GS7, and GS8 are all pulled to high level.
  • Step 2 Confirm whether the KL30 voltage is greater than 0V and the battery pack discharge current is greater than 0A. If yes, go to step 3. If not, it means that the MOSFET cannot be closed in a controlled manner or is obviously aged, showing a high impedance state. Fault alarm, exit diagnosis.
  • Step 3 Measure the voltage values of VS3 and VS4, and measure the battery module voltage BAT+.
  • Step 4 Make the following judgments:
  • Step 5 Disconnect S5, that is, input low level to GS5, and collect KL30, VS3, VS4 voltage
  • Step 7 Measure KL30, VS3, VS4.
  • Step 9 Exit the step of diagnosing the uncontrollable closing state of the MOSFET, and enter the diagnosing step of short-circuit inside the MOSFET (unable to open under control).
  • Step 10 Disconnect S5 and S6, keep S7 and S8 closed, that is, input low level to GS5 and GS6, and input high level to GS7 and GS8.
  • Step 11 Close S5 and S6, open S7 and S8, that is, input high level to GS5 and GS6, and input low level to GS7 and GS8.
  • the present application checks the controlled abnormality and short-circuit abnormality in the switch channel, at least one switch channel in the N switch channels is in the closed state, and the circuit breaker can be kept in the conduction state.
  • the circuit breaker is applied to the vehicle voltage power supply In the middle, it can ensure that the battery pack is always connected to the vehicle low-voltage power supply network, so as to perform abnormal diagnosis on other switch channels to diagnose semiconductor switches with abnormal aging or uncontrolled abnormalities in the switch channel, so as to detect in time And diagnose the fault, the safety is higher.
  • the present application also provides a lithium battery system, and the lithium battery system adopts the circuit breaker abnormal diagnosis method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Protection Of Static Devices (AREA)

Abstract

本申请提供一种断路器、断路器异常诊断方法及锂电池系统,包括:电池模组端和电池包系统端;电池模组端和电池包系统端之间耦接有N个相互并联的开关通道,异常诊断时,N个开关通道中至少一个开关通道处于闭合状态。本申请克服了继电器作为断路器的缺陷,在断路器出现故障情况下,能够及时检测并诊断出故障。

Description

断路器、断路器异常诊断方法及锂电池系统 技术领域
本申请涉及电学技术领域,具体涉及一种断路器、断路器异常诊断方法及锂电池系统。
背景技术
新能源汽车行业蓬勃发展,采用锂电池作为储能装置的新能源汽车越来越普及。在传统的锂电池系统设计当中,继电器往往被选作电池系统主回路断路器的首选元器件。
然而受制于继电器动作切换响应较慢(大于10ms)不利于实现短路保护,且触点寿命在出现拉弧的情况下会大大缩短,同时继电器在开闭瞬间,由于机械状态的切换产生的机械噪声会造成不良的用户体验,使得在高端锂电池系统应用领域,尤其是在12V、24V、48V等车载低压锂电池系统的应用中,半导体开关器件作为主回路断路器的设计越来越流行。
技术问题
由于功率金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)具备低成本、体积小、重量轻、导通阻抗低、布局简单等诸多优点,因此,现有技术中,通常将MOSFET作为优选的半导体开关断路器。但由于采用半导体开关作为电池断路器的技术尚未广泛使用,技术尚未成熟,将半导体开关作为锂电池系统中的断路器时,若断路器出现异常,无法快速且准确地诊断出半导体开关器件的异常状态,且不便于日常对断路器的老化程度进行检查。
技术解决方案
本申请提供一种将半导体开关器件作为断路器,克服了目前采用继电器作为断路器的部分缺陷,并且在断路器出现老化或者不受控的故障情况下,能够及时检测并诊断出故障的断路器、断路器异常诊断方法及锂电池系统。
一方面,本申请提供一种断路器,包括:
电池模组端和电池包系统端;
开关通道,所述电池模组端和所述电池包系统端之间耦接有N个相互并联的所述开关通道,所述开关通道由半导体开关器件构成,所述开关通道用于控制所述电池模组端和所述电池包系统端之间的回路的通断,其中,N为大于或者等于2的自然数;
在对所述N个开关通道进行异常诊断时,所述N个开关通道中至少一个所述开关通道处于闭合状态,以保持所述断路器处于导通状态。
在本申请一种可能的实现方式中,所述开关通道包括:
第一开关组,所述第一开关组与所述电池模组端耦接;
第二开关组,所述第二开关组与所述第一开关组和所述电池包系统端耦接;
所述第一开关组和所述第二开关组之间的耦接点形成通道电位点,所述第一开关组与所述电池模组端之间形成输入电位点,第二开关组与所述电池包系统端之间形成输出电位点。
在本申请一种可能的实现方式中,所述断路器包括驱动模块,所述驱动模块包括第一驱动引脚和第二驱动引脚;
所述第一开关组包括第一开关管,所述第一开关管包括与所述第一驱动引脚耦接的第一控制极;
所述第二开关组包括第二开关管,所述第二开关管包括与所述第二驱动引脚耦接的第二控制极。
在本申请一种可能的实现方式中,所述通道电位点包括第一通道电位点,所述输入电位点包括第一输入电位点,所述输出电位点包括第一输出电位点;
所述第一开关管包括第一主电压极和第一副电压极,所述第二开关管包括第二主电压极和第二副电压极;
所述第一开关管的所述第一主电压极与所述第二开关管的所述第二主电压极耦接,且所述第一主电压极与所述第二主电压极之间形成所述第一通道电位点;
所述第一开关管的所述第一副电压极与所述电池模组端耦接,所述第一副电压极与所述电池模组端之间形成第一输入电位点;
所述第二开关管的所述第二副电压极与所述电池包系统端耦接,所述第二副电压极与所述电池包系统端之间形成所述第一输出电位点。
在本申请一种可能的实现方式中,所述驱动模块包括第三驱动引脚和第四驱动引脚;
所述第一开关组包括多个第三开关管,每个所述第三开关管均包括与所述第三驱动引脚耦接的第三控制极;
所述第二开关组包括多个第四开关管,每个所述第四开关管均包括与所述第四驱动引脚耦接的第四控制极。
在本申请一种可能的实现方式中,所述通道电位点包括多个第二通道电位点,所述输入电位点包括第二输入电位点,所述输出电位点包括第二输出电位点;
所述第三开关管包括第三主电压极和第三副电压极,所述第四开关管包括第四主电压极和第四副电压极;
多个所述第三开关管的所述第三主电压极分别与多个所述第四开关管的所述第四主电压极耦接,且多个所述第三主电压极分别与多个所述第四主电压极之间形成的多个连接点均为所述第二通道电位点,且多个所述连接点均通过导线耦接;
多个所述第三开关管的所述第三副电压极均与所述电池模组端耦接,所述第三副电压极均与所述电池模组端之间形成所述第二输入电位点;
多个所述第四开关管的所述第四副电压极均与所述电池包系统端耦接,所述第四副电压极均与所述电池包系统端之间形成第二输出电位点。
在本申请一种可能的实现方式中,所述电池模组端和所述电池包系统端之间耦接有采样电阻。另一方面,本申请提供一种断路器异常诊断方法,所述断路器异常诊断方法应用于如所述断路器中,所述断路器异常诊断方法包括:
将N个所述开关通道中至少一个所述开关通道设置为闭合状态;
获取当前时刻的所述输入电位点的第一电压值、所述输出电位点的第二电压值以及N个所述开关通道对应的N个通道电位点的第三电压值;
根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对所述N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果。
在本申请一种可能的实现方式中,当N个所述开关通道中每个所述开关通道均设置为闭合状态时;
所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当所述第二电压值未出现电压变化时,确定所述开关器件异常诊断结果为所述N个所述开关通道内的所有半导体开关器件均存在异常;
当第i个所述开关通道对应的第i个所述第三电压值为零,且其余所述(N-1)个所述开关通道对应的(N-1)个所述第三电压值均等于所述第一电压值时,确定所述开关器件异常诊断结果为第i个所述开关通道内的部分半导体开关器件均存在异常,其中,i为小于N的自然数;
当所述N个所述开关通道对应的N个所述第三电压值均等于所述第一电压值时,确定所述 开关器件异常诊断结果为暂无诊断结果。
在本申请一种可能的实现方式中,当所述开关器件异常诊断结果为暂无诊断结果时,将所述N个所述开关通道中的第j个所述开关通道中的所述第一开关组设置为断开状态,且将其余(N-1)个所述开关通道中每个所述开关通道均设置为闭合状态,其中,j为小于N的自然数;所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第j个所述开关通道对应的第j个所述第三电压值、其余(N-1)个所述第三电压值以及第二电压值均为所述输入电位点的压降电压值时,确定所述开关器件异常诊断结果为其余(N-1)个所述开关通道中的所述第一开关组均存在异常;
当第j个所述第三电压值和第二电压值均为所述输入电位点的压降电压值,且其余(N-1)个所述第三电压值均等于所述第一电压值时,确定所述开关器件异常诊断结果为其余(N-1)个所述开关通道中的所述第二开关组均存在异常;
当第j个所述第三电压值大于所述输入电位点的压降电压值并小于所述第一电压值,且其余(N-1)个所述第三电压值和所述第二电压值均等于所述第一电压值时,确定所述开关器件异常诊断结果为其余(N-1)个所述开关通道的所有半导体开关器件均不存在异常。
在本申请一种可能的实现方式中,当所述开关器件异常诊断结果为其余(N-1)个所述开关通道的所有半导体开关器件均不存在异常时,将第j个所述开关通道中的第一开关组设置为闭合状态,以及其余(N-1)个所述开关通道中的所述第一开关组均设置为断开状态;
所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第j个所述开关通道对应的第j个所述第三电压值、其余(N-1)个所述第三电压值以及第二电压值均为所述输入电位点的压降电压值时,确定所述开关器件异常诊断结果为第j个所述开关通道中的所述第一开关组存在异常;
当第j个所述第三电压值为等于所述第一电压值,且第二电压值和其余(N-1)个所述第三电压值和均为所述输入电位点的压降电压值时,确定所述开关器件异常诊断结果为第j个所述开关通道中的所述第二开关组存在异常;
当第j个所述第三电压值、其余(N-1)个所述第三电压值和所述第二电压值均等于所述第一电压值时,确定所述开关器件异常诊断结果为第j个所述开关通道中的所有半导体开关器件均不存在异常,即N个所述开关通道中的所有半导体开关器件均不存在异常。
在本申请一种可能的实现方式中,当所述开关器件异常诊断结果为暂无诊断结果时,将所述N个所述开关通道中的第k个所述开关通道中的所述第二开关组设置为断开状态,且将其余(N-1)个所述开关通道中每个所述开关通道均设置为闭合状态,其中,k为小于N的自然数;所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第k个所述开关通道对应的第k个所述第三电压值等于第一电压值,且所述第二电压值和其余(N-1)个所述第三电压值均为所述输入电位点的压降电压值时,确定所述开关器件异常诊断结果为其余(N-1)个所述开关通道中的所述第一开关组均存在异常;
当第k个所述第三电压值和其余(N-1)个所述第三电压值均等于第一电压值,且所述第二电压值为所述输入电位点的压降电压值时,确定所述开关器件异常诊断结果为其余(N-1)个所述开关通道中的所述第二开关组均存在异常;
当第k个所述第三电压值、其余(N-1)个所述第三电压值以及第二电压值均等所述第一电压值时,确定所述开关器件异常诊断结果为其余(N-1)个所述开关通道的所有半导体开关器件均不存在异常。
在本申请一种可能的实现方式中,当所述开关器件异常诊断结果为其余(N-1)个所述开关通 道的所有半导体开关器件均不存在异常时,将第k个所述开关通道中的第二开关组设置为闭合状态,以及其余(N-1)个所述开关通道中的第二开关组均设置为断开状态;
所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第k个所述开关通道对应的第k个所述第三电压值和所述第二电压值均为所述输入电位点的压降电压值,且其余(N-1)个所述第三电压值等于第一电压值时,确定所述开关器件异常诊断结果为第k个所述开关通道的所述第一开关组存在异常;
当第k个所述第三电压值和其余(N-1)个所述第三电压值均等于第一电压值,且所述第二电压值为所述输入电位点的压降电压值时,确定所述开关器件异常诊断结果为第k个所述开关通道的所述第二开关组存在异常;
当第k个所述第三电压值、其余(N-1)个所述第三电压值以及第二电压值均等所述第一电压值时,确定所述开关器件异常诊断结果为第k个所述开关通道的所有半导体开关器件均不存在异常,即N个所述开关通道中的所有半导体开关器件均不存在异常。
在本申请一种可能的实现方式中,所述开关器件异常诊断结果包括短路异常诊断结果,当N个所述开关通道中的第m个所述开关通道中的所述第一开关组和所述第二开关组均设置为断开状态,以及其余(N-1)个所述开关通道中均设置为闭合状态时;
所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第m个所述开关通道对应的第m个所述第三电压值为零,且其余(N-1)个所述第三电压值和第二电压值均等于第一电压值时,确定所述短路异常诊断结果为第m个所述开关通道的不存在短路异常;
当第m个所述第三电压值、其余(N-1)个所述第三电压值和第二电压值均等于第一电压值时,确定所述短路异常诊断结果为第m个所述开关通道所述第一开关组和所述第二开关组的均存在短路异常。
另一方面,本申请还提供一种锂电池系统,所述锂电池系统采用的是所述的断路器异常诊断方法。
有益效果
本申请中将半导体开关器件作为开关通道,即采用半导体开关器件作为断路器,相对于将继电器作为断路器的传统方式,本申请能够有效避免继电器存在的带载断路、机械噪声污染以及继电器触点容易损坏等问题,具有动作相应速度快、集成度高、电气体积占用小优势。同时本申请的断路器采用的是多路并联的开关通道,即在应用于电池系统或者其他设备中时出现故障情况时,可以通过将N个开关通道中至少一个开关通道处于闭合状态,使断路器保持导通状态,从而在对其他的开关通道进行异常诊断,以诊断出开关通道中出现老化异常或者不受控异常的半导体开关器,从而能够及时检测并诊断出故障,安全性更高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的断路器一个实施例结构示意图;
图2是本申请实施例提供的断路器一个实施例结构示意图;
图3是本申请实施例提供的断路器一个实施例结构示意图;
图4是本申请实施例提供的断路器异常诊断方法的一个实施例流程示意图;
图5是本申请实施例提供的断路器异常诊断方法的一个实施例流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本发明,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本发明。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本发明的描述变得晦涩。因此,本发明并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
本申请实施例提供一种断路器、断路器异常诊断方法及锂电池系统,以下分别进行详细说明。如图1所示,为本申请实施例中断路器的一个实施例结构示意图,该断路器包括:
电池模组端和电池包系统端。
开关通道,电池模组端和电池包系统端之间耦接有N个相互并联的开关通道,开关通道由半导体开关器件构成,开关通道用于控制电池模组端和电池包系统端之间的回路的通断,其中,N为大于或者等于2的自然数。
在对N个开关通道进行异常诊断时,N个开关通道中至少一个开关通道处于闭合状态,以保持断路器处于导通状态。
本申请中将半导体开关器件作为开关通道,即采用半导体开关器件作为断路器,相对于将继电器作为断路器的传统方式,本申请能够有效避免继电器存在的带载断路、机械噪声污染以及继电器触点容易损坏等问题,具有动作相应速度快、集成度高、电气体积占用小优势。同时本申请的断路器采用的是多路并联的开关通道,即在应用于电池系统或者其他设备中时出现故障情况时,可以通过将N个开关通道中至少一个开关通道处于闭合状态,能够保持断路器处于导通状态,当断路器应用于车载电压电源中时,能够确保电池组始终连接到车载低压电源网络上,从而在对其他的开关通道进行异常诊断,以诊断出开关通道中出现老化异常或者不受控异常的半导体开关器,从而能够及时检测并诊断出故障,安全性更高。
在本实施例中,N为大于或者等于2的自然数,N可以是2、3或者4等等,即如图2和图3所示,本申请的断路器可以包括2组开关通道,也另外可以是3组开关通道,可以根据需要设定开关通道的数量,本申请对于断路器中的开关通道的数量不做更加具体的限定,所有与本申请实质性相同的方案均在本申请的保护范围之内。
另外在本实施例中,若断路器应用于电池系统内时,每个电池系统里采用多个断路器并联,从而实现过流能力的增强的方案,也应纳入到本专利的保护范围。
在本申请的另一个实施例中,开关通道包括:
第一开关组,第一开关组与电池模组端耦接;
第二开关组,第二开关组与第一开关组和电池包系统端耦接;
第一开关组和第二开关组之间的耦接点形成通道电位点,第一开关组与电池模组端之间形成 输入电位点,第二开关组与电池包系统端之间形成输出电位点。
应用过程中,通过开关通道中的第一开关组和第二开关组共同控制断路器的电池模组端和电池包系统端之间的通断,在断路器运行过程中,可以通过检测输入电位点、通道电位点以及输出电位点的电压情况,以诊断断路器内半导体开关的异常情况。
如图2和图3所示,第一开关组和第二开关组内均可以包括至少一个开关管,第一开关组内开关管的数量与第二开关组内的数量一一对应,例如第一开关组内包括两个开关管时,第二开关组内同样包括与第一开关组内的两个开关管一一对应的两个开关管。第一开关组和第二开关组内的开关管均可以采用三极管、MOS管、晶闸管或者其他可以实现开关功能的器件,在本申请中,第一开关组和第二开关组均采用的是金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。
以下对第一开关组和第二开关组内均包括一个开关管和两个开关管的情况进行具体说明。在本申请的另一个实施例中,如图2所示,断路器包括两个开关通道,当第一开关组和第二开关组均包括一个开关管时,断路器包括驱动模块,驱动模块包括第一驱动引脚和第二驱动引脚;
第一开关组包括第一开关管,第一开关管包括与第一驱动引脚耦接的第一控制极;
第二开关组包括第二开关管,第二开关管包括与第二驱动引脚耦接的第二控制极。
具体的,其中一个开关通道包括第一开关组S1和第二开关组S2,第一开关组S1为充电使能MOSFET组,第二开关组S2为放电使能MOSFET组,第一开关组S1包括第一开关管Q1,第一开关管Q1的第一控制极为栅极,第二开关组S2包括第二开关管Q2,第二开关管Q2的第二控制极为栅极,即第一开关管Q1的栅极与驱动模块的第一驱动引脚GS1耦接,第二开关管Q2的栅极与驱动模块的第二驱动引脚GS2耦接。
应用过程中,通过驱动模块的第一驱动引脚GS1的电平变化控制第一开关管Q1的导通或关断,通过驱动模块的第二驱动引脚GS2的电平变化控制第二开关管Q2的导通或关断,从而实现该开关通道的通断。
同理,可以将本实施例理解为:第一开关组S3和第二开关组S4构成另外一路开关通道,其中第一开关组S3与第一开关组S1功能相同,第二开关组S4与第二开关组S2功能相同,即第一开关组S3为充电使能MOSFET组,第二开关组S4为放电使能MOSFET组,第一开关组S3包括第一开关管Q3,第一开关管Q3的第一控制极为栅极,第二开关组S4包括第二开关管Q4,第二开关管Q4的第一控制极为栅极,第一开关管Q3的栅极与驱动模块的第一驱动引脚GS3耦接,第二开关管Q4的栅极与驱动模块的第二驱动引脚GS4耦接。
应用过程中,通过驱动模块的第一驱动引脚GS3的电平变化控制第一开关管Q3的导通或关断,通过驱动模块的第二驱动引脚GS4的电平变化控制第二开关管Q4的导通或关断,从而实现该开关通道的通断。
在本申请的另一个实施例中,如图2所示,断路器包括两个开关通道,当第一开关组和第二开关组均包括一个开关管时,通道电位点包括第一通道电位点,输入电位点包括第一输入电位点,输出电位点包括第一输出电位点;
第一开关管包括第一主电压极和第一副电压极,第二开关管包括第二主电压极和第二副电压极;
第一开关管的第一主电压极与第二开关管的第二主电压极耦接,且第一主电压极与第二主电压极之间形成第一通道电位点;
第一开关管的第一副电压极与电池模组端耦接,第一副电压极与电池模组端之间形成第一输入电位点;
第二开关管的第二副电压极与电池包系统端耦接,第二副电压极与电池包系统端之间形成第一输出电位点。
在本实施例中,第一开关管包括第一主电压极和第一副电压极,第一主电压极和第一副电压极均可以是第一开关管的源极或者漏极,当第一开关管的第一主电压极为源极时,第一开关管的第一副电压极则为漏极,当第一开关管的第一主电压极为漏极时,第一开关管的第一副电压极则为源极;
同理,第二开关管包括第二主电压极和第二副电压极,第二主电压极和第二副电压极均可以是第二开关管的源极或者漏极,当第二开关管的第二主电压极为源极时,第二开关管的第二副电压极则为漏极,当第二开关管的第二主电压极为漏极时,第二开关管的第二副电压极则为源极。
示例性的,如图2所示,将第一开关管的第一主电压极设置为源极,且第一开关管的第一副电压极设置为漏极,将第二开关管的第二主电压极设置为源极,且第二开关管的第二副电压极设置为漏极。
即在本实施例中,当第一开关组S1包括第一开关管Q1,第二开关组S2包括第二开关管Q2时,具体的:
第一开关管Q1的源极和第二开关管Q2的源极耦接,并形成第一通道电位点VS1,第一开关管Q1的漏极与电池模组端的正极耦接,并形成第一输入电位点BAT+,第二开关管Q2的漏极与电池包系统端的正极耦接,并形成第一输出电位点KL30。通过诊断第一通道电位点VS1、第一输入电位点BAT+以及第一输出电位点KL30的电位,即能够实现对断路器内该开关通道的异常诊断。
同理,当第一开关组S1包括第一开关管Q3,第二开关组S2包括第二开关管Q4时,具体的:第一开关管Q3的源极和第二开关管Q4的源极耦接,并形成第一通道电位点VS2,第一开关管Q3的漏极与电池模组端的正极耦接,并形成第一输入电位点BAT+,第二开关管Q4的漏极与电池包系统端的正极耦接,并形成第一输出电位点KL30。通过诊断第一通道电位点VS2、第一输入电位点BAT+以及第一输出电位点KL30的电位,即能够实现对断路器内该开关通道的异常诊断。
为增强断路器的过流能力,可根据实际需要,增加第一开关组S1和第二开关组S2内MOSFET器件的数量。即增加图2中MOSFET组S1,S2,S3,S4中MOSFET的数量,形成如图3所示的断路器,具体的,MOSFET组S1,S2,S3,S4均含有两颗MOSFET器件,从而使得在单颗MOSFET过流能力不变的情况下,图3示出的断路器过流能力要强于图2示出的断路器。下面对每个开关通道包括多个开关管进行具体说明。
在本申请的另一个实施例中,如图3所示,断路器包括两个开关通道,当第一开关组和第二开关组均包括多个开关管时,驱动模块包括第三驱动引脚和第四驱动引脚;
第一开关组包括多个第三开关管,每个第三开关管均包括与第三驱动引脚耦接的第三控制极;第二开关组包括多个第四开关管,每个第四开关管均包括与第四驱动引脚耦接的第四控制极。具体的,如图3所示,其中一个开关通道包括第一开关组S5和第二开关组S6,第一开关组S5为充电使能MOSFET组,第二开关组S6为放电使能MOSFET组。
第一开关组S5包括多个第三开关管,即第三开关管Q5和第三开关管Q6,第三开关管Q5和第三开关管Q6的第三控制极均为栅极,第三开关管Q5的栅极和第三开关管Q6的栅极均与驱动模块的第三驱动引脚GS5耦接;
第二开关组S6包括多个第四开关管,即第四开关管Q7和第四开关管Q8,第四开关管Q7和第四开关管Q8的第四控制极均为栅极,第四开关管Q7的栅极第四开关管Q8的栅极均与驱动模块的第四驱动引脚GS6耦接。
应用过程中,通过驱动模块的第三驱动引脚GS5的电平变化同时控制第三开关管Q5和第三开关管Q6的导通或关断,通过驱动模块的第四驱动引脚GS6的电平变化同时控制第四开关管Q7和第四开关管Q8的导通或关断,从而实现该开关通道的通断。
同理,可以将本实施例理解为:第一开关组S7和第二开关组S8构成另外一路开关通道,其中第一开关组S7与第一开关组S5功能相同,第二开关组S8与第二开关组S6功能相同,即第一开关组S7为充电使能MOSFET组,第二开关组S8为放电使能MOSFET组。
第一开关组S7包括多个第三开关管,即第三开关管Q9和第三开关管Q10,第三开关管Q9和第三开关管Q10的第三控制极均为栅极,第三开关管Q9的栅极和第三开关管Q10的栅极均与驱动模块的第三驱动引脚GS7耦接;
第二开关组S6包括多个第四开关管,即第四开关管Q11和第四开关管Q12,第四开关管Q11和第四开关管Q12的第四控制极均为栅极,第四开关管Q11的栅极第四开关管Q12的栅极均与驱动模块的第四驱动引脚GS8耦接。
应用过程中,通过驱动模块的第三驱动引脚GS7的电平变化同时控制第三开关管Q9和第三开关管Q10的导通或关断,通过驱动模块的第四驱动引脚GS8的电平变化同时控制第四开关管Q11和第四开关管Q12的导通或关断,从而实现该开关通道的通断。
即在本实施例中,第一开关组S5内的所有MOSFET的删极被连接到同一驱动模块的同一个第三驱动引脚GS5,从而实现第一开关组S5内的所有MOSFET被同步控制。第二开关组S6、以及另一开关通道的第一开关组S7和第二开关组S8同理,从而增加本申请提出的断路器的过流能力。
在本申请的另一个实施例中,通道电位点包括多个第二通道电位点,输入电位点包括第二输入电位点,输出电位点包括第二输出电位点;
第三开关管包括第三主电压极和第三副电压极,第四开关管包括第四主电压极和第四副电压极;
多个第三开关管的第三主电压极分别与多个第四开关管的第四主电压极耦接,且多个第三主电压极分别与多个第四主电压极之间形成的多个连接点均为第二通道电位点,且多个连接点均通过导线耦接;
多个第三开关管的第三副电压极均与电池模组端耦接,第三副电压极均与电池模组端之间形成第二输入电位点;
多个第四开关管的第四副电压极均与电池包系统端耦接,第四副电压极均与电池包系统端之间形成第二输出电位点。
在本实施例中,第三开关管包括第三主电压极和第三副电压极,第三主电压极和第三副电压极均可以是第三开关管的源极或者漏极,当第三开关管的第三主电压极为源极时,第三开关管的第三副电压极则为漏极,当第三开关管的第三主电压极为漏极时,第三开关管的第三副电压极则为源极;
同理,第四开关管包括第四主电压极和第四副电压极,第四主电压极和第四副电压极均可以是第四开关管的源极或者漏极,当第四开关管的第四主电压极为源极时,第四开关管的第四副电压极则为漏极,当第四开关管的第四主电压极为漏极时,第四开关管的第四副电压极则为源极。
示例性的,如图3所示,将第三开关管的第三主电压极设置为源极,且第三开关管的第三副电压极设置为漏极,将第四开关管的第四主电压极设置为源极,且第四开关管的第四副电压极设置为漏极。
即在本实施例中,当第一开关组S5包括第三开关管Q5和第三开关管Q6,第二开关组S6包括第四开关管Q7和第四开关管Q8时,具体的:
第三开关管Q5的源极和第四开关管Q7的源极耦接,第三开关管Q6的源极和第四开关管Q8的源极耦接,并且在第三开关管Q5与第四开关管Q7之间形成一个连接点,在第三开关管Q6与第四开关管Q8之间形成一个连接点,该两个连接点通过导线耦接,且该两个连接点中的任意一个均可以作为第二通道电位点VS3,第三开关管Q5的漏极和第三开关管Q6 的漏极均与电池模组端的正极耦接,并形成第二输入电位点BAT+,第四开关管Q7的漏极和第四开关管Q8的漏极均与电池包系统端的正极耦接,并形成第二输出电位点KL30。通过诊断第二通道电位点VS3、第二输入电位点BAT+以及第二输出电位点KL30的电位,即能够实现对断路器内该开关通道的异常诊断。
同理,当第一开关组S7包括第三开关管Q9和第三开关管Q10,第二开关组S8包括第四开关管Q11和第四开关管Q12时,具体的:
第三开关管Q9的源极和第四开关管Q11的源极耦接,第三开关管Q10的源极和第四开关管Q12的源极耦接,并且在第三开关管Q9与第四开关管Q11之间形成一个连接点,在第三开关管Q10与第四开关管Q12之间形成一个连接点,该两个连接点通过导线耦接,且该两个连接点中的任意一个均可以作为第二通道电位点VS4,第三开关管Q9的漏极和第三开关管Q10的漏极均与电池模组端的正极耦接,并形成第二输入电位点BAT+,第四开关管Q11的漏极和第四开关管Q12的漏极均与电池包系统端的正极耦接,并形成第二输出电位点KL30。通过诊断第二通道电位点VS4、第二输入电位点BAT+以及第二输出电位点KL30的电位,即能够实现对断路器内该开关通道的异常诊断。
在本申请的另一个实施例中,电池模组端和电池包系统端之间耦接有采样电阻,采样电阻与电池包系统端之间形成第三输出电位点。采样电阻可以如图2和图3中的shunt所示,第三输出电位点可以是如图2和图3中示出的第三输出电位点KL30。通过采样电阻可以采集电池模组端与电池包系统端的电位,便于对断路器内MOSFET器件的异常进行诊断。在本实施例中,电池模组端和电池包系统端之间耦接的采样电阻也可以替换为其他起到相同作用的负载,例如导线等,这里不做具体的限定。
为实现对MOSFET是否受控或老化的诊断,可以通过采集断路器开关通道的源极、和两个漏极相对电池包负极的电压实现MOSFET的异常诊断。MOSFET异常场景包括:1.MOSFET内部短路,无法受控断开;2.MOSFET内部断路,无法受控闭合;3.如MOSFET出现老化,在受控闭合后,会呈现较大的导通阻抗,异常现象与MOSFET内部断路无法受控闭合呈现类似故障现象,所以可划归一类处理。
因此,为了更好实施本申请实施例中断路器,在断路器基础之上,本申请实施例中还提供一种断路器异常诊断方法,断路器异常诊断方法应用于如断路器中,如图4所示,为本申请实施例中断路器异常诊断方法的一个实施例流程示意图,所述断路器异常诊断方法包括步骤401~403:
401、将N个开关通道中至少一个开关通道设置为闭合状态。
在诊断过程中,当断路器中的一组开关通道处于被诊断期间,另外的N-1组开关通道应该可以保持常闭模式,从而在对其他的开关通道进行异常诊断时,以保持断路器处于导通状态,避免因断路器的诊断工作导致断路器必须要频繁切换为断开状态,从而保持断路器的长期正常使用。
402、获取当前时刻的输入电位点的第一电压值、输出电位点的第二电压值以及N个开关通道对应的N个通道电位点的第三电压值。403、根据当前时刻获取的第一电压值、第二电压值以及N个第三电压值,对N个开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果。
由于断路器始终是处于导通状态,从而可以在诊断过程中,通过获取当前时刻的输入电位点、输出电位点以及N个开关通道对应的N个通道电位点这几个电位点的电压值,基于上述几个电位点的电压值来判断N个通道中具体哪组或者具体哪个半导体器件出现异常。
在本申请中,由于开关通道内使用的开关管均为MOSFET管,因此,可以通过获取断路器输入电位点、MOSFET管的源极和两个漏极以及输出电位点的电压值,来识别开关通道内每个MOSFET管的控制状态,从而判断出存在异常的MOSFET管。接下来对N个开关通道存在异 常的多个不同情况进行具体阐述。
在本申请的另一个实施例中,当N个开关通道中每个开关通道均设置为闭合状态时;
根据当前时刻获取的第一电压值、第二电压值以及N个第三电压值,对N个开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第二电压值未出现电压变化时,确定开关器件异常诊断结果为N个开关通道内的所有半导体开关器件均存在异常;
当第i个开关通道对应的第i个第三电压值为零,且其余(N-1)个开关通道对应的(N-1)个第三电压值均等于第一电压值时,确定开关器件异常诊断结果为第i个开关通道内的部分半导体开关器件均存在异常,其中,i为小于N的自然数;
当N个开关通道对应的N个第三电压值均等于第一电压值时,确定开关器件异常诊断结果为暂无诊断结果。
采用上述技术方案,当N个开关通道均处于闭合状态,即断路器处于闭合状态时,若在当前时刻输出电位点没有产生电位变化,则表示N个开关通道的所有MOSFET管均未正常导通,即N个开关通道的所有MOSFET管均未存在异常;
但若N个开关通道中的任意一个或者多个开关通道的第三电压值为零,表示N个开关通道中的任意一个或者多个开关通道中的半导体器件为导通,则可以确定该任意一个或者多个开关通道中的部分半导体器件存在受控闭合异常或明显老化;
若N个开关通道对应的N个第三电压值均等于第一电压值时,则可能是N个开关通道中的所有半导体器件均不存在异常,或者N个开关通道中的所有或者部分半导体器件存在短路异常,因此无法确定N个开关通道中的半导体器件具体的异常情况,需要经过后续进一步检验。示例性的,如图3和图5所示,当N=2时,若2个开关通道均处于闭合状态,VS3和VS4均没有产生电位变化,则可以直接判断出2个开关通道均存在故障;若VS3和VS4中的任意一个的电压值为零,则可以确定对应的2个开关通道中的任意一个开关通道中的部分MOSFET管存在异常;但若VS3和VS4的电压值均与BAT+处的电压值相等时,则无法判断出2个开关通道是否存在异常。
在本申请的另一个实施例中,当开关器件异常诊断结果为暂无诊断结果时,将N个开关通道中的第j个开关通道中的第一开关组设置为断开状态,且将其余(N-1)个开关通道中每个开关通道均设置为闭合状态,其中,j为小于N的自然数;
根据当前时刻获取的第一电压值、第二电压值以及N个第三电压值,对N个开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第j个开关通道对应的第j个第三电压值、其余(N-1)个第三电压值以及第二电压值均为输入电位点的压降电压值时,确定开关器件异常诊断结果为其余(N-1)个开关通道中的第一开关组均存在异常;
当第j个第三电压值和第二电压值均为输入电位点的压降电压值,且其余(N-1)个第三电压值均等于第一电压值时,确定开关器件异常诊断结果为其余(N-1)个开关通道中的第二开关组均存在异常;
当第j个第三电压值大于输入电位点的压降电压值并小于第一电压值,且其余(N-1)个第三电压值和第二电压值均等于第一电压值时,确定开关器件异常诊断结果为其余(N-1)个开关通道的所有半导体开关器件均不存在异常。
针对上述若N个开关通道对应的N个第三电压值均等于第一电压值,无法确定N个开关通道中的半导体器件具体异常的情况,需要进一步地异常判断,具体可以将N个开关通道中的第j个开关通道中的第一开关组设置为断开状态,并将其他的开关通道均设置为闭合状态,这里的j可以是任何一个小于N的自然数,将第j个开关通道的第三电压值作为判断基准,即可判断出N个开关通道中的第一开关组和第二开关组是否具有异常情况。
具体的,示例性的,如图3和图5所示,当N=2时,若2个开关通道均处于闭合状态,VS3和VS4的电压值均与BAT+处的电压值相等,无法判断出2个开关通道是否存在异常时,将VS3所在的开关通道的第一开关组(Q5和Q6)设置为断开状态,VS4所在的开关通道设置为闭合状态;
若VS3、VS4以及KL30的电压值均为BAT+的压降电压值时,由于VS3所在的开关通道的第一开关组为断开状态,VS4与KL30的电位相同,则可以得出VS4所在的开关通道的第一开关组(Q9和Q10)存在受控闭合异常或明显老化;
若VS3的电压值为BAT+的压降电压值,且VS4的电压值为BAT+的电压值时,表示BAT+与KL30的电位不相同,即VS4所在的开关通道的第二开关组不导通,则可以得出VS4所在的开关通道的第二开关组(Q11和Q12)存在受控闭合异常或明显老化;
若VS3的电压值大于BAT+的压降电压值并小于BAT+的电压值,且VS4的电压值和KL30的电压值均小于BAT+的电压值时,基于上述的判断步骤,则可以判断VS4所在的开关通道的所有半导体开关器件均不存在异常。在本申请的另一个实施例中,当开关器件异常诊断结果为其余(N-1)个开关通道的所有半导体开关器件均不存在异常时,将第j个开关通道中的第一开关组设置为闭合状态,以及其余(N-1)个开关通道中的第一开关组均设置为断开状态;
根据当前时刻获取的第一电压值、第二电压值以及N个第三电压值,对N个开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第j个开关通道对应的第j个第三电压值、其余(N-1)个第三电压值以及第二电压值均为输入电位点的压降电压值时,确定开关器件异常诊断结果为第j个开关通道中的第一开关组存在异常;
当第j个第三电压值为等于第一电压值,且第二电压值和其余(N-1)个第三电压值和均为输入电位点的压降电压值时,确定开关器件异常诊断结果为第j个开关通道中的第二开关组存在异常;
当第j个第三电压值、其余(N-1)个第三电压值和第二电压值均等于第一电压值时,确定开关器件异常诊断结果为第j个开关通道中的所有半导体开关器件均不存在异常,即N个开关通道中的所有半导体开关器件均不存在异常。
针对上述将第j个开关通道中的第一开关组设置为断开状态,开关器件异常诊断结果为其余(N-1)个开关通道均不存在异常的情况,需要进一步对第j个开关通道进行诊断,此时基于上述情况的基础上,将第j个开关通道中的第一开关组设置为闭合状态,并将其余(N-1)个开关通道中的第一开关组均设置为断开状态。
具体的,示例性的,如图3和图5所示,当N=2时,若VS3所在的开关通道的第一开关组(Q5和Q6)设置为断开状态,VS4所在的开关通道设置为闭合状态时,无法确定VS4所在的开关通道是否存在异常时,此时,将VS3所在的开关通道的第一开关组(Q5和Q6)设置为闭合状态,即VS3所在的开关通道闭合,并将VS4所在的开关通道的第一开关组(Q9和Q10)设置为断开状态;
若VS3的电压值、VS4的电压值以及与KL30均为BAT+的压降电压值时,由于VS4所在的开关通道的第一开关组为断开状态,VS3与KL30的电位相同,则可以得出VS3所在的开关通道中的第一开关组(Q5和Q6)存在受控闭合异常或明显老化;
若VS3的电压值为BAT+的电压值,且VS4的电压值和KL30的电压值均为BAT+的压降电压值时,表示BAT+与KL30的电位不相同,即VS3所在的开关通道的第二开关组不导通,则可以得出VS3所在的开关通道的第二开关组(Q7和Q8)存在受控闭合异常或明显老化;
若VS3的电压值、VS4的电压值和KL30的电压值均为BAT+的电压值时,结合上述的诊断方案,则表示VS3所在的开关通道中的半导体开关器件均不存在受控异常。在本申请的另一个实施例中,当开关器件异常诊断结果为暂无诊断结果时,将N个开关通道中的第k个开关 通道中的第二开关组设置为断开状态,且将其余(N-1)个开关通道中每个开关通道均设置为闭合状态,其中,k为小于N的自然数;
根据当前时刻获取的第一电压值、第二电压值以及N个第三电压值,对N个开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第k个开关通道对应的第k个第三电压值等于第一电压值,且第二电压值和其余(N-1)个第三电压值均为输入电位点的压降电压值时,确定开关器件异常诊断结果为其余(N-1)个开关通道中的第一开关组均存在异常;
当第k个第三电压值和其余(N-1)个第三电压值均等于第一电压值,且第二电压值为输入电位点的压降电压值时,确定开关器件异常诊断结果为其余(N-1)个开关通道中的第二开关组均存在异常;
当第k个第三电压值、其余(N-1)个第三电压值以及第二电压值均等第一电压值时,确定开关器件异常诊断结果为其余(N-1)个开关通道的部分半导体开关器件均不存在受控异常。
针对上述当N个开关通道均处于闭合状态,即断路器处于闭合状态,无法确定N个开关通道中的半导体器件具体异常的情况,还可以通过另一种方式来进行异常判断,可以将N个开关通道中第k个开关通道中的第二开关组设置为断开状态,并将其余开关通道均设置为闭合状态,这里的k可以是任何一个小于N的自然数,将第k个开关通道的第三电压值作为判断基准,即可判断出N个开关通道中的第一开关组和第二开关组是否具有异常情况。
上述判断方式与将N个开关通道中的第j个开关通道中的第一开关组设置为断开状态,并将其他的开关通道均设置为闭合状态,对N个开关通道的异常情况进行判断的方式原理相同,这里不再额外举例。在本申请的另一个实施例中,当开关器件异常诊断结果为其余(N-1)个开关通道的部分半导体开关器件均不存在异常时,将第k个开关通道中的第二开关组设置为闭合状态,以及其余(N-1)个开关通道中的第二开关组均设置为断开状态;
根据当前时刻获取的第一电压值、第二电压值以及N个第三电压值,对N个开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第k个开关通道对应的第k个第三电压值和第二电压值均为输入电位点的压降电压值,且其余(N-1)个第三电压值等于第一电压值时,确定开关器件异常诊断结果为第k个开关通道的第一开关组存在异常;
当第k个第三电压值和其余(N-1)个第三电压值均等于第一电压值,且第二电压值为输入电位点的压降电压值时,确定开关器件异常诊断结果为第k个开关通道的第二开关组存在异常;当第k个第三电压值、其余(N-1)个第三电压值以及第二电压值均等第一电压值时,确定开关器件异常诊断结果为第k个开关通道的所有半导体开关器件均不存在异常,即N个开关通道中的所有半导体开关器件均不存在异常。
针对上述将N个开关通道中第k个开关通道中的第二开关组设置为断开状态,开关器件异常诊断结果为其余(N-1)个开关通道中部分半导体开关器件均不存在异常的情况,需要进一步对第k个开关通道进行诊断,此时基于上述情况的基础上,将第k个开关通道中的第二开关组设置为闭合状态,并将其余(N-1)个开关通道中的第二开关组均设置为断开状态。
上述判断方式与将N个开关通道中的第j个开关通道中的第一开关组设置为闭合状态,并将其他的开关通道均设置为断开状态,对N个开关通道的异常情况进行判断的方式原理相同,这里不再额外举例。在本申请的另一个实施例中,开关器件异常诊断结果包括短路异常诊断结果,当N个开关通道中的第m个开关通道中的第一开关组和第二开关组均设置为断开状态,以及其余(N-1)个开关通道中均设置为闭合状态时;
根据当前时刻获取的第一电压值、第二电压值以及N个第三电压值,对N个开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
当第m个开关通道对应的第m个第三电压值为零,且其余(N-1)个第三电压值和第二电压值 均等于第一电压值时,确定短路异常诊断结果为第m个开关通道的不存在短路异常;
当第m个第三电压值、其余(N-1)个第三电压值和第二电压值均等于第一电压值时,确定短路异常诊断结果为第m个开关通道第一开关组和第二开关组的均存在短路异常。
针对上述当N个开关通道均处于闭合状态,即断路器处于闭合状态,无法确定N个开关通道中的半导体器件具体异常的情况,还可以通过另一种方式来进行异常判断开关通道内是否存在短路异常,具体的,可以将N个开关通道中第m个开关通道中的第一开关组和第二开关组设置均为断开状态,并将其余开关通道均设置为闭合状态。判断过程中,将第m个开关通道的第三电压值作为判断基准,即可判断出N个开关通道中的第一开关组和第二开关组是否具有短路异常情况。
具体的,当第m个开关通道中对应的第m个第三电压值为零,其余(N-1)个第三电压值和第二电压值均等于第一电压值时,则可以判断出第m个开关通道中的第一开关组和第二开关组均不存在短路异常;当第m个开关通道中对应的第m个第三电压值、其余(N-1)个第三电压值和第二电压值均等于第一电压值,则可以确定第m个开关通道中存在短路异常。
在本实例中,m可以是任何一个小于N的自然数,因此可以通过上述判断方式循环判断N个开关通道中的每个开关通道是否存在短路异常。下面通过一个具体的实施例对上述内容进行总结说明,如图3和图5所示,具体介绍电池包在无外部充电设备对电池包进行充电且电池包处在放电工况下,MOSFET的诊断逻辑。以车用12V电池包为例,这种工况代表了汽车在下电后,12V电源网络充电机停止给电池包充电,12V电源网络上负载完全由电池包供电的工况。
步骤1:控制器设置所有MOSFET处于闭合状态,即GS5,GS6,GS7,GS8均被拉到高电平。
步骤2:确认KL30电压是否大于0V且电池包放电电流为大于0A。如是,进入步骤3。如否,则说明存在MOSFET无法受控闭合或明显老化,呈现高阻抗状态。故障报警,退出诊断。
步骤3:测量VS3和VS4的电压值,测量电池模组电压BAT+。
步骤4:进行以下判断:
如果VS3=BAT+且VS4=0V,则说明S7&S8无法受控闭合或老化明显,呈现高阻抗状态。故障报警,退出诊断。
如果VS3=0V且VS4=BAT+,则说明S5&S6无法受控闭合或老化明显,呈现高阻抗状态,故障报警,退出诊断。
如果VS3=BAT+&VS4=BAT+,则进入步骤5。
步骤5:断开S5,即给GS5输入低电平,采集KL30,VS3,VS4电压
步骤6:判断:
如果KL30=VS3=VS4=BAT+–0.7V,则S7无法受控闭合,或老化明显,呈现高阻抗状态。故障报警,退出诊断。
如果KL30=VS3=BAT+-0.7V,且VS4=BAT+,则S8无法受控闭合,或老化明显,呈现高阻抗状态。故障报价,退出诊断。
如果KL30=VS4=BAT+,且BAT+-0.7<VS3<BAT+,闭合S5,断开S7,进入步骤7。
步骤7:测量KL30,VS3,VS4。
步骤8:判断:
如果VS3=VS4=KL30=BAT+-0.7V,则S5无法受控闭合,或老化明显,呈现高阻抗状态。故障报警,退出诊断。
如果KL30=VS4=BAT+-0.7V,且VS3=BAT+,则S6无法受控闭合,或老化明显,呈现高阻状态。故障报警,退出诊断。
如果KL30=VS3=VS4=BAT+,则S5,S6,S7,S8均不存在无法受控闭合的情况。
步骤9:退出MOSFET无法受控闭合状态诊断工步,进入MOSFET内短路诊断工步(无法受 控断开)。
步骤10:断开S5和S6,保持S7和S8闭合,即给GS5和GS6输入低电平,GS7和GS8输入高电平。采集VS3,VS4,BAT+和KL30电压。
判断:
如果VS3=0V,BAT+=KL30=VS4,则S5和S6可受控断开;
如果VS3=BAT+=KL30=VS4,则说明S5或S6或两者同时存在内短,无法受控断开。故障报警,退出诊断。
步骤11:闭合S5和S6,断开S7和S8,即给GS5和GS6输入高电平,GS7和GS8输入低电平。采集VS3,VS4,BAT+和KL30电压。判断:
如果VS4=0V,BAT+=KL30=VS3,则S7和S8可受控断开;
如果VS4=BAT+=KL30=VS3,则说明S7或S8或两者同时存在内部短路,无法受控断开。故障报警,退出诊断。
因此,本申请在检查开关通道内的受控异常和短路异常时,通过将N个开关通道中至少一个开关通道处于闭合状态,能够保持断路器处于导通状态,当断路器应用于车载电压电源中时,能够确保电池组始终连接到车载低压电源网络上,从而在对其他的开关通道进行异常诊断,以诊断出开关通道中出现老化异常或者不受控异常的半导体开关器,从而能够及时检测并诊断出故障,安全性更高。
在本申请的另一个实施例中,本申请还提供一种锂电池系统,锂电池系统采用的是的断路器异常诊断方法。
以上对本申请实施例所提供的一种断路器、断路器异常诊断方法及锂电池系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (15)

  1. 一种断路器,其中,包括:
    电池模组端和电池包系统端;
    开关通道,所述电池模组端和所述电池包系统端之间耦接有N个相互并联的所述开关通道,所述开关通道由半导体开关器件构成,所述开关通道用于控制所述电池模组端和所述电池包系统端之间的回路的通断,其中,N为大于或者等于2的自然数;
    在对所述N个开关通道进行异常诊断时,所述N个开关通道中至少一个所述开关通道处于闭合状态,以保持所述断路器处于导通状态。
  2. 如权利要求1所述的断路器,其中,所述开关通道包括:
    第一开关组,所述第一开关组与所述电池模组端耦接;
    第二开关组,所述第二开关组与所述第一开关组和所述电池包系统端耦接;
    所述第一开关组和所述第二开关组之间的耦接点形成通道电位点,所述第一开关组与所述电池模组端之间形成输入电位点,第二开关组与所述电池包系统端之间形成输出电位点。
  3. 如权利要求2所述的断路器,其中,所述断路器包括驱动模块,所述驱动模块包括第一驱动引脚和第二驱动引脚;
    所述第一开关组包括第一开关管,所述第一开关管包括与所述第一驱动引脚耦接的第一控制极;
    所述第二开关组包括第二开关管,所述第二开关管包括与所述第二驱动引脚耦接的第二控制极。
  4. 如权利要求3所述的断路器,其中,所述通道电位点包括第一通道电位点,所述输入电位点包括第一输入电位点,所述输出电位点包括第一输出电位点;
    所述第一开关管包括第一主电压极和第一副电压极,所述第二开关管包括第二主电压极和第二副电压极;
    所述第一开关管的所述第一主电压极与所述第二开关管的所述第二主电压极耦接,且所述第一主电压极与所述第二主电压极之间形成所述第一通道电位点;
    所述第一开关管的所述第一副电压极与所述电池模组端耦接,所述第一副电压极与所述电池模组端之间形成第一输入电位点;
    所述第二开关管的所述第二副电压极与所述电池包系统端耦接,所述第二副电压极与所述电池包系统端之间形成所述第一输出电位点。
  5. 如权利要求3所述的断路器,其中,所述驱动模块包括第三驱动引脚和第四驱动引脚;
    所述第一开关组包括多个第三开关管,每个所述第三开关管均包括与所述第三驱动引脚耦接的第三控制极;
    所述第二开关组包括多个第四开关管,每个所述第四开关管均包括与所述第四驱动引脚耦接的第四控制极。
  6. 如权利要求5所述的断路器,其中,所述通道电位点包括多个第二通道电位点,所述输入电位点包括第二输入电位点,所述输出电位点包括第二输出电位点;
    所述第三开关管包括第三主电压极和第三副电压极,所述第四开关管包括第四主电压极和第四副电压极;
    多个所述第三开关管的所述第三主电压极分别与多个所述第四开关管的所述第四主电压极耦接,且多个所述第三主电压极分别与多个所述第四主电压极之间形成的多个连接点均为所述第二通道电位点,且多个所述连接点均通过导线耦接;
    多个所述第三开关管的所述第三副电压极均与所述电池模组端耦接,所述第三副电压极均与所述电池模组端之间形成所述第二输入电位点;
    多个所述第四开关管的所述第四副电压极均与所述电池包系统端耦接,所述第四副电压极均与所述电池包系统端之间形成第二输出电位点。
  7. 如权利要求1所述的断路器,其中,所述电池模组端和所述电源输出端之间耦接有采样电阻。
  8. 一种断路器异常诊断方法,其中,所述断路器异常诊断方法应用于如权利要求1至权利要求7中任意一项所述的断路器中,所述断路器异常诊断方法包括:
    将N个所述开关通道中至少一个所述开关通道设置为闭合状态;
    获取当前时刻的所述输入电位点的第一电压值、所述输出电位点的第二电压值以及N个所述开关通道对应的N个通道电位点的第三电压值;
    根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对所述N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果。
  9. 如权利要求8所述的断路器异常诊断方法,其中,所述开关器件异常诊断结果包括受控异常诊断结果,当N个所述开关通道中每个所述开关通道均设置为闭合状态时;
    所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
    当所述第二电压值未出现电压变化时,确定所述受控异常诊断结果为所述N个所述开关通道内的所有半导体开关器件均存在受控异常;
    当第i个所述开关通道对应的第i个所述第三电压值为零,且其余所述(N-1)个所述开关通道对应的(N-1)个所述第三电压值均等于所述第一电压值时,确定所述受控异常诊断结果为第i个所述开关通道内的部分半导体开关器件均存在受控异常,其中,i为小于N的自然数;
    当所述N个所述开关通道对应的N个所述第三电压值均等于所述第一电压值时,确定所述受控异常诊断结果为暂无诊断结果。
  10. 如权利要求9所述的断路器异常诊断方法,其中,当所述开关器件异常诊断结果为暂无诊断结果时,将所述N个所述开关通道中的第j个所述开关通道中的所述第一开关组设置为断开状态,且将其余(N-1)个所述开关通道中每个所述开关通道均设置为闭合状态,其中,j为小于N的自然数;
    所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
    当第j个所述开关通道对应的第j个所述第三电压值、其余(N-1)个所述第三电压值以及第二电压值均为所述输入电位点的压降电压值时,确定所述受控异常诊断结果为其余(N-1)个所述开关通道中的所述第一开关组均存在受控异常;
    当第j个所述第三电压值和第二电压值均为所述输入电位点的压降电压值,且其余(N-1)个所述第三电压值均等于所述第一电压值时,确定所述受控异常诊断结果为其余(N-1)个所述开关通道中的所述第二开关组均存在受控异常;
    当第j个所述第三电压值大于所述输入电位点的压降电压值并小于所述第一电压值,且其余(N-1)个所述第三电压值和所述第二电压值均等于所述第一电压值时,确定所述受控异常诊断结果为其余(N-1)个所述开关通道的所有半导体开关器件均不存在受控异常。
  11. 如权利要求10所述的断路器异常诊断方法,其中,当所述开关器件异常诊断结果为其余(N-1)个所述开关通道的所有半导体开关器件均不存在受控异常时,将第j个所述开关通道中的第一开关组设置为闭合状态,以及其余(N-1)个所述开关通道中的所述第一开关组均设置为断开状态;
    所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
    当第j个所述开关通道对应的第j个所述第三电压值、其余(N-1)个所述第三电压值以及第二 电压值均为所述输入电位点的压降电压值时,确定所述受控异常诊断结果为第j个所述开关通道中的所述第一开关组存在受控异常;
    当第j个所述第三电压值为等于所述第一电压值,且第二电压值和其余(N-1)个所述第三电压值和均为所述输入电位点的压降电压值时,确定所述受控异常诊断结果为第j个所述开关通道中的所述第二开关组存在受控异常;
    当第j个所述第三电压值、其余(N-1)个所述第三电压值和所述第二电压值均等于所述第一电压值时,确定所述受控异常诊断结果为第j个所述开关通道中的所有半导体开关器件均不存在受控异常,即N个所述开关通道中的所有半导体开关器件均不存在受控异常。
  12. 如权利要求9所述的断路器异常诊断方法,其中,当所述受控异常诊断结果为暂无诊断结果时,将所述N个所述开关通道中的第k个所述开关通道中的所述第二开关组设置为断开状态,且将其余(N-1)个所述开关通道中每个所述开关通道均设置为闭合状态,其中,k为小于N的自然数;
    所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
    当第k个所述开关通道对应的第k个所述第三电压值等于第一电压值,且所述第二电压值和其余(N-1)个所述第三电压值均为所述输入电位点的压降电压值时,确定所述受控异常诊断结果为其余(N-1)个所述开关通道中的所述第一开关组均存在受控异常;
    当第k个所述第三电压值和其余(N-1)个所述第三电压值均等于第一电压值,且所述第二电压值为所述输入电位点的压降电压值时,确定所述受控异常诊断结果为其余(N-1)个所述开关通道中的所述第二开关组均存在受控异常;
    当第k个所述第三电压值、其余(N-1)个所述第三电压值以及第二电压值均等所述第一电压值时,确定所述受控异常诊断结果为其余(N-1)个所述开关通道的部分半导体开关器件均不存在受控异常。
  13. 如权利要求12所述的断路器异常诊断方法,其中,当所述受控异常诊断结果为其余(N-1)个所述开关通道的部分半导体开关器件均不存在受控异常时,将第k个所述开关通道中的第二开关组设置为闭合状态,以及其余(N-1)个所述开关通道中的第二开关组均设置为断开状态;
    所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
    当第k个所述开关通道对应的第k个所述第三电压值和所述第二电压值均为所述输入电位点的压降电压值,且其余(N-1)个所述第三电压值等于第一电压值时,确定所述受控异常诊断结果为第k个所述开关通道的所述第一开关组存在受控异常;
    当第k个所述第三电压值和其余(N-1)个所述第三电压值均等于第一电压值,且所述第二电压值为所述输入电位点的压降电压值时,确定所述受控异常诊断结果为第k个所述开关通道的所述第二开关组存在受控异常;
    当第k个所述第三电压值、其余(N-1)个所述第三电压值以及第二电压值均等所述第一电压值时,确定所述受控异常诊断结果为第k个所述开关通道的所有半导体开关器件均不存在受控异常,即N个所述开关通道中的所有半导体开关器件均不存在受控异常。
  14. 如权利要求12所述的断路器异常诊断方法,其中,所述开关器件异常诊断结果包括短路异常诊断结果,当N个所述开关通道中的第m个所述开关通道中的所述第一开关组和所述第二开关组均设置为断开状态,以及其余(N-1)个所述开关通道中均设置为闭合状态时;
    所述根据当前时刻获取的所述第一电压值、所述第二电压值以及N个所述第三电压值,对N个所述开关通道内的半导体开关器件进行诊断,得到开关器件异常诊断结果,包括:
    当第m个所述开关通道对应的第m个所述第三电压值为零,且其余(N-1)个所述第三电压值 和第二电压值均等于第一电压值时,确定所述短路异常诊断结果为第m个所述开关通道的不存在短路异常;
    当第m个所述第三电压值、其余(N-1)个所述第三电压值和第二电压值均等于第一电压值时,确定所述短路异常诊断结果为第m个所述开关通道所述第一开关组和所述第二开关组的均存在短路异常。
  15. 一种锂电池系统,其中,所述锂电池系统采用的是如权利要求8至权利要求14中任意一项所述的断路器异常诊断方法。
PCT/CN2022/088805 2022-03-01 2022-04-24 断路器、断路器异常诊断方法及锂电池系统 WO2023165004A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022002698.7T DE112022002698T5 (de) 2022-03-01 2022-04-24 Schutzschalter, Diagnosenverfahren für die Anomalie eines Schutzschalters und Lithiumbatteriesystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210193625.9 2022-03-01
CN202210193625.9A CN114499482A (zh) 2022-03-01 2022-03-01 断路器、断路器异常诊断方法及锂电池系统

Publications (1)

Publication Number Publication Date
WO2023165004A1 true WO2023165004A1 (zh) 2023-09-07

Family

ID=81485256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088805 WO2023165004A1 (zh) 2022-03-01 2022-04-24 断路器、断路器异常诊断方法及锂电池系统

Country Status (3)

Country Link
CN (1) CN114499482A (zh)
DE (1) DE112022002698T5 (zh)
WO (1) WO2023165004A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379253A (zh) * 2020-11-06 2021-02-19 欣旺达电动汽车电池有限公司 48v启停的断路器电路及其状态检测方法
US20210257676A1 (en) * 2020-02-17 2021-08-19 Toyota Jidosha Kabushiki Kaisha Battery control device, control method, computer-readable storage medium storing program, and vehicle
CN113555848A (zh) * 2021-08-18 2021-10-26 珠海冠宇动力电池有限公司 电池系统及电池系统中开关装置诊断方法
CN113659642A (zh) * 2020-05-12 2021-11-16 上汽通用汽车有限公司 一种车载12v锂电池的输出开关电路、电源系统以及汽车
CN114019360A (zh) * 2021-10-27 2022-02-08 智新控制系统有限公司 多路继电器诊断系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210257676A1 (en) * 2020-02-17 2021-08-19 Toyota Jidosha Kabushiki Kaisha Battery control device, control method, computer-readable storage medium storing program, and vehicle
CN113659642A (zh) * 2020-05-12 2021-11-16 上汽通用汽车有限公司 一种车载12v锂电池的输出开关电路、电源系统以及汽车
CN112379253A (zh) * 2020-11-06 2021-02-19 欣旺达电动汽车电池有限公司 48v启停的断路器电路及其状态检测方法
CN113555848A (zh) * 2021-08-18 2021-10-26 珠海冠宇动力电池有限公司 电池系统及电池系统中开关装置诊断方法
CN114019360A (zh) * 2021-10-27 2022-02-08 智新控制系统有限公司 多路继电器诊断系统及方法

Also Published As

Publication number Publication date
DE112022002698T5 (de) 2024-03-14
CN114499482A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2020147748A1 (zh) 绝缘检测电路及检测方法、电池管理系统
WO2020244465A1 (zh) 一种车辆的电池系统、充放电方法及车辆
CN104953684B (zh) 一种电池管理系统的动态均衡电路及其动态均衡方法
US8154253B2 (en) Cell voltage abnormality detector and cell voltage monitoring device for a multi-cell series battery
CN107422257B (zh) 继电器检测电路和单元
EP3779486B1 (en) Insulation detection circuit and detection method, and battery management system
CN106712226A (zh) 充电机、直流充电防反灌装置及控制方法
WO2018145397A1 (zh) 车辆直流充电继电器的诊断系统
WO2023035392A1 (zh) 一种锂动力电池化成分容的串联检测系统
WO2023115924A1 (zh) 光伏储能电路及其控制方法以及光伏空调系统和光伏空调
WO2023165004A1 (zh) 断路器、断路器异常诊断方法及锂电池系统
WO2022057194A1 (zh) 防反接保护电路、方法、电化学装置及储能系统
CN206894270U (zh) 电池管理系统
CN209525422U (zh) 一种测试电路
CN208445537U (zh) 用于控制电源供电的开关装置
CN112952924A (zh) 一种电池管理装置以及一种电器装置
CN109738829A (zh) 一种电池包绝缘检测系统及检测方法
CN220172890U (zh) 电源变换装置及包括其的电动汽车
CN117706349A (zh) 一种断路器故障诊断方法
CN110015143B (zh) 锂电池系统及锂电池系统管理方法和应用
KR102342290B1 (ko) 고효율 배터리 방전장치
CN116125315B (zh) 电池充放电测试设备线路错接的检测装置及检测方法
CN211239372U (zh) 一种电池管理装置以及一种电器装置
CN117674343A (zh) 一种mos单元控制电路、放电控制方法及充电控制方法
JP7160247B2 (ja) 回路診断装置及びそれを含むバッテリーパック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022002698

Country of ref document: DE