WO2023164987A1 - 一种双尺度增韧水泥基复合材料及其应用 - Google Patents

一种双尺度增韧水泥基复合材料及其应用 Download PDF

Info

Publication number
WO2023164987A1
WO2023164987A1 PCT/CN2022/084951 CN2022084951W WO2023164987A1 WO 2023164987 A1 WO2023164987 A1 WO 2023164987A1 CN 2022084951 W CN2022084951 W CN 2022084951W WO 2023164987 A1 WO2023164987 A1 WO 2023164987A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
scale
composite material
based composite
dual
Prior art date
Application number
PCT/CN2022/084951
Other languages
English (en)
French (fr)
Inventor
侯东帅
尹兵
华先乐
徐华凤
范方玉
韩凯璐
王攀
王鑫鹏
金祖权
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2023164987A1 publication Critical patent/WO2023164987A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the technical field of building materials, in particular to a double-scale toughened cement-based composite material and its application.
  • cement-based materials are the most widely used building materials, but cement-based materials are porous heterogeneous materials with low flexural strength and poor toughness.
  • Polymer modification and fiber modification are two widely used methods to improve the flexural strength and toughness of cement-based materials.
  • Reinforcement materials of different scales have different effects on cement-based materials, and reinforcement materials of a single scale are slightly insufficient for the comprehensive improvement of its performance. Therefore, in order to improve the toughness of cement-based materials, it is necessary to use reinforcing materials of different scales for composite reinforcement to achieve a synergistic and complementary effect.
  • Polymers can form interlinked and penetrating networks with cement hydration products in concrete, which can disperse and transfer stress, and prevent or weaken the expansion of cracks.
  • the polymer can also improve the interface structure and properties of the cementitious material-aggregate, enhance the cohesion between the components, increase the strength of the transition zone, and greatly improve the performance of the material.
  • some polymers can chemically interact with cement hydration products or metal ions due to their special functional groups, forming special bridge bonds, enhancing the bonding force between materials, and improving the performance of concrete.
  • polymer-modified concrete has the problem of uneven distribution of polymers, poor compatibility and combination of polymers and hydration products, resulting in unsatisfactory modification effect of polymer-modified cement-based materials on toughness (Sun Guipeng. Polymerization Development and application of polymer-modified concrete [J]. Building Materials Technology and Application, 2016 (01): 9-12+15. And Zhang Erqin, Huang Zhiqiang. Development and application of polymer concrete [J]. Sichuan Building Materials, 2014,40 (03):39-40+43). Fibers in fiber-modified concrete mainly improve the internal structure of concrete through physical action, which can refine the microstructure of concrete and reduce internal initial defects.
  • the fibers can also effectively limit the expansion of cracks, thereby improving the brittleness of concrete.
  • the fiber and the cement matrix form a weak bonding interface, causing the fiber to debond from the matrix prematurely and pull out from the matrix during the load transfer process, and the toughening effect of the fiber cannot be fully exerted (Dai Chao, Liu Weichao. A review of the research progress on the interface bonding performance of steel fiber-cement matrix[J].Highway Traffic Technology, 2014(05):16-22. Machinery and Construction Mechanization, 2018, 35(07):75-78.).
  • the object of the present invention is to provide a dual-scale toughened cement-based composite material, which has the characteristics of high toughness.
  • the invention provides a dual-scale toughened cement-based composite material, including cementitious materials, polymer monomers, initiators, crosslinking agents and fibers;
  • the functional groups of the polymer monomers include carbon-carbon double bonds and carboxyl groups
  • the fibers include steel fibers and/or synthetic fibers; the synthetic fibers include one or more of polyvinyl alcohol fibers, polypropylene fibers, glass fibers and carbon fibers.
  • the carboxyl group is replaced by a group that can be hydrolyzed into a carboxyl group.
  • the polymer monomers include acrylamide monomers, acrylic polymer monomers, butyl methacrylate monomers, ethylene glycol dimethacrylate monomers and hydroxyethyl methacrylate monomers one or more of.
  • the mass ratio of the cementitious material to the polymer monomer is 100:(0.1-10); the fiber content in the dual-scale toughened cement-based composite material is 0.5-3 vol.%.
  • the steel fiber has a diameter of 300-1200 ⁇ m and a length of 20-120 mm; the synthetic fiber has a diameter of 5-100 ⁇ m and a length of 3-40 mm.
  • the initiator includes one or more of persulfate, sulfite, organic peroxide-ferrous salt system, multi-electron transfer high-valence compound-sulfite system and non-peroxide initiator various;
  • the mass ratio of the polymer monomer to the initiator is 100:(0.5-5).
  • the crosslinking agent is a polyamino crosslinking agent
  • the mass ratio of the polymer monomer to the crosslinking agent is 100:(0.3-5).
  • the crosslinking agent includes N,N'-methylenebisacrylamide, hexamethylenetetramine-hydroquinone, polyethyleneimine, p-phenylenediamine and dimethylaminoethyl methacrylate one or more of esters.
  • the cementitious material includes cement.
  • the dual-scale toughened cement-based composite material further includes aggregates and/or admixtures.
  • the aggregate comprises sand and/or stones.
  • the mass ratio of the cement to the aggregate is 1: (1-3).
  • the admixture includes silica fume and/or fly ash.
  • the mass ratio of the admixture to cement is ⁇ 1.
  • the persulfate includes one or more of ammonium persulfate, potassium persulfate and sodium persulfate.
  • the sulfite includes sodium sulfite and/or sodium bisulfite.
  • the organic peroxide-ferrous salt system includes t-butyl hydroperoxide-ferrous sulfate.
  • the multi-electron transfer high-valence compound-sulfite system includes sodium chlorate-sodium sulfite.
  • the non-peroxide initiator includes ceric ammonium nitrate-thiourea.
  • the present invention also provides the application of the dual-scale toughened cement-based composite material described in the above technical solution in building materials.
  • the application includes the following steps:
  • the in-situ polymerization-modified cement-based slurry is mixed with fibers to obtain a dual-scale toughened cement-based composite material slurry, and the obtained dual-scale toughened cement-based composite material slurry is cast and maintained.
  • the preparation temperature of the dual-scale toughened cement-based composite material slurry is 0-60°C.
  • the mass ratio of the gelling material to water is 1:(0.35-0.4).
  • the mixing method of the gelling material and the in-situ polymerization solution is stirring; the stirring includes first stirring and second stirring; the speed of rotation in the first stirring is 135-145rpm, and the speed of revolution is 57-67rpm; stirring time is 1-3min; the speed of rotation in the second stirring is 275-295rpm, the speed of revolution is 115-135rpm; the stirring time is 60-120s.
  • the mixing of the in-situ polymerization-modified cement-based slurry and fibers is stirring; the rotation rate during the stirring is 135-145rpm, and the revolution rate is 57-67rpm; the stirring time is 1-5min .
  • the invention provides a dual-scale toughened cement-based composite material, including cementitious materials, polymer monomers, initiators, crosslinking agents and fibers; the functional groups of the polymer monomers include carbon-carbon double bonds and carboxyl groups;
  • the fibers include steel fibers and/or synthetic fibers; the synthetic fibers include one or more of polyvinyl alcohol fibers, polypropylene fibers, glass fibers and carbon fibers.
  • the in-situ polymerization of polymer monomers can overcome some defects of conventional polymer modification, and form a uniformly distributed polymer network, and because of the presence of carboxyl functional groups, there is chemical bonding between the hydration products, forming a compact
  • the combined organic-inorganic network can significantly improve the flexural strength of cement-based materials; the addition of fibers can bear loads, suppress cracks, and interweave the fiber network structure, which can also increase its flexural strength.
  • the polymer monomers are polymerized in situ to form a polymer network, the surface of the fiber is modified in situ, and synergistically interacts with the fiber to form a polymer-fiber-matrix network structure. cement-based material.
  • polymers and fibers are modified substances at different scales.
  • the in-situ polymerization of polymer monomers improves the concrete structure from the micro scale, and the fibers improve the concrete structure from the macro scale (millimeter scale). Together, the flexural strength of the material is improved;
  • the in-situ polymerization of the polymer monomer on the fiber can in-situ modify the fiber surface, improve the bonding performance and interface structure between the fiber and the matrix, and give full play to the modification of the fiber.
  • the polymer network formed in situ by the polymer monomer and the fiber network formed by the interweaving of fibers together constitute a polymer-fiber-cement matrix structure, stably improving the toughness of cement-based composites.
  • Example test results show that the 7d flexural strength of the dual-scale toughened cement-based composite material provided by the invention is 7.2 ⁇ 12.2MPa, and the 28d flexural strength is 8.3 ⁇ 14.3MPa, which is better than that without adding modified substances (polymer single Body, fiber) cement-based materials increased by 50 to 150%, the flexural strength is greatly improved, and the toughness is excellent.
  • Fig. 1 is the SEM figure of comparative example 2 gained test piece
  • Fig. 2 is the SEM figure of embodiment 4 gained test piece
  • Fig. 3 is the SEM figure of embodiment 4 gained test piece
  • Fig. 4 is the SEM figure after soaking 60s in 1wt.% hydrochloric acid of the test piece gained in embodiment 4;
  • Fig. 5 is the SEM figure after soaking 60s in the test block obtained in embodiment 4 in 1wt.% hydrochloric acid;
  • Fig. 6 is the SEM image of the test block obtained in Example 4 after soaking in 1wt.% hydrochloric acid for 60s.
  • the invention provides a dual-scale toughened cement-based composite material, including cementitious material, polymer monomer, initiator, crosslinking agent and fiber;
  • the functional groups of the polymer monomers include carbon-carbon double bonds and carboxyl groups
  • the fibers include steel fibers and/or synthetic fibers; the synthetic fibers include one or more of polyvinyl alcohol fibers, polypropylene fibers, glass fibers and carbon fibers.
  • each component is a commercially available product well known to those skilled in the art.
  • the dual-scale toughened cement-based composite material provided by the invention includes cementitious materials.
  • the cementitious material preferably includes cement.
  • the cement is preferably ordinary Portland cement.
  • the grade of the ordinary Portland cement is preferably grade 32.5, grade 42.5 or grade 52.5.
  • the dual-scale toughened cement-based composite material preferably further includes aggregates and/or admixtures.
  • the aggregate preferably includes sand and/or stones.
  • the present invention has no special limitation on the sand, and the sand well known to those skilled in the art can be used; the present invention has no special limitation on the stone, and the stone well known to those skilled in the art can be used.
  • the mass ratio of the cement to the aggregate is preferably 1:(1-3), more preferably 1:(1.5-2.5).
  • the admixture preferably includes silica fume and/or fly ash.
  • the mass ratio of the admixture to cement is preferably ⁇ 1.
  • the dual-scale toughened cement-based composite material provided by the invention includes polymer monomers.
  • the functional groups of the polymer monomers include carbon-carbon double bonds and carboxyl groups.
  • the functional group of the polymer monomer includes a carbon-carbon double bond and a group that can be hydrolyzed into a carboxyl group.
  • the polymer monomers preferably include acrylamide monomers, acrylic polymer monomers, butyl methacrylate monomers, ethylene glycol dimethacrylate monomers and hydroxyethyl methacrylate monomers.
  • the acrylamide monomer preferably includes one or more of acrylamide, methylolacrylamide and N-isopropylacrylamide.
  • the acrylic polymer monomer preferably includes sodium acrylate.
  • the mass ratio of the gelling material to the polymer monomer is preferably 100:(0.1-10), more preferably 100:(1-7), and still more preferably 100:(3-5).
  • the dual-scale toughened cement-based composite material provided by the invention includes an initiator.
  • the initiator preferably includes persulfate, sulfite, organic peroxide-ferrous salt system, multi-electron transfer high-valence compound-sulfite system and non-peroxide initiators one or more.
  • the persulfate preferably includes one or more of ammonium persulfate, potassium persulfate and sodium persulfate.
  • the sulfite preferably includes sodium sulfite and/or sodium bisulfite.
  • the organic peroxide-ferrous salt system preferably includes tert-butyl hydroperoxide-ferrous sulfate.
  • the multi-electron transfer high-valence compound-sulfite system preferably includes sodium chlorate-sodium sulfite.
  • the non-peroxide initiator preferably includes ceric ammonium nitrate-thiourea.
  • the mass ratio of the polymer monomer to the initiator is preferably 100:(0.5-5), more preferably 100:(0.8-3), and still more preferably 100:(1-2).
  • the dual-scale toughened cement-based composite material provided by the invention includes a crosslinking agent.
  • the crosslinking agent is preferably a polyamino crosslinking agent.
  • the crosslinking agent preferably includes N,N'-methylenebisacrylamide, hexamethylenetetramine-hydroquinone, polyethyleneimine, p-phenylenediamine and methacrylic acid dimethicone One or more of methylaminoethyl esters.
  • the mass ratio of the polymer monomer to the crosslinking agent is preferably 100:(0.3-5), more preferably 100:(0.4-3), and still more preferably 100:(0.5-2).
  • the dual-scale toughened cement-based composite material provided by the present invention includes fibers.
  • the fibers include steel fibers and/or synthetic fibers; the synthetic fibers include one or more of polyvinyl alcohol fibers, polypropylene fibers, glass fibers and carbon fibers.
  • the diameter of the steel fiber is preferably 300-1200 ⁇ m, and the length is preferably 20-120 mm.
  • the diameter of the synthetic fiber is preferably 5-100 ⁇ m, and the length is preferably 3-40 mm.
  • the fiber content in the dual-scale toughened cement-based composite material is preferably 0.5-3 vol.%, more preferably 1-2.5 vol.%, and even more preferably 1.5-2 vol.%.
  • the present invention also provides the application of the dual-scale toughened cement-based composite material described in the above technical solution in building materials.
  • the application preferably includes the following steps:
  • the in-situ polymerization-modified cement-based slurry is mixed with fibers to obtain a dual-scale toughened cement-based composite material slurry, and the obtained dual-scale toughened cement-based composite material slurry is cast and maintained.
  • the invention mixes polymer monomers, initiators, crosslinking agents and water to obtain an in-situ polymerization solution.
  • the preparation temperature of the dual-scale toughened cement-based composite material slurry in the application is preferably 0-60°C, more preferably 0-40°C.
  • the mixing of the polymer monomer, initiator, cross-linking agent and water is preferably after the polymer monomer and water are mixed, and then the resulting polymer monomer solution, initiator and cross-linking agent mix.
  • the stirring is preferably magnetic stirring; the stirring time is preferably 5-10 min.
  • the present invention mixes the cementitious material with the in-situ polymerization solution to obtain the in-situ polymerization modified cement-based slurry.
  • the mass ratio of the gelling material to water is preferably 1:(0.35-0.4), more preferably 1:(0.38-0.4), most preferably 1:0.4.
  • the mixing method of the gelling material and the in-situ polymerization solution is preferably stirring; the stirring preferably includes first stirring and second stirring.
  • the rotation rate in the first stirring is preferably 135-145 rpm, and the revolution rate is preferably 57-67 rpm; the stirring time is preferably 1-3 minutes, more preferably 1.5-2.5 minutes.
  • the rotation rate in the second stirring is preferably 275-295 rpm, and the revolution rate is preferably 115-135 rpm; the stirring time is preferably 60-120 s, more preferably 90-100 s.
  • the dual-scale toughened cement-based composite material preferably further includes aggregates and/or admixtures
  • the aggregates and/or admixtures are preferably used at the same timing as the cementitious material.
  • the present invention mixes the in-situ polymerized modified cement-based slurry with fibers to obtain a dual-scale toughened cement-based composite material slurry, and the obtained dual-scale toughened cement-based The composite slurry is poured and cured.
  • the mixing of the in-situ polymerized modified cement-based slurry and fibers is preferably adding fibers into the in-situ polymerized modified cement-based slurry.
  • the mixing of the in-situ polymerization-modified cement-based slurry and fibers is preferably stirring; the rotation rate during the stirring is preferably 135-145 rpm, and the revolution rate is preferably 57-67 rpm; the stirring The time is preferably 1 to 5 minutes, more preferably 2 to 3 minutes.
  • the fibers adhered to the stirring equipment are preferably scraped off and brought together in the in-situ polymerization modified cement-based slurry.
  • the present invention has no special limitation on the pouring, and the pouring well-known to those skilled in the art can be used. Specifically, such as sequentially loading the double-scale toughened cement-based composite material slurry into molds, vibrating, smoothing, coating and demoulding.
  • the number of vibrations is preferably 30-90 times, more preferably 50-70 times, and most preferably 60 times.
  • the film material for coating is preferably a plastic wrap.
  • the film covering time is preferably 24 hours.
  • the curing is preferably standard curing; the temperature of the standard curing is preferably 18-22° C., and the humidity is preferably ⁇ 95%.
  • the fiber content in the dual-scale toughened cement-based composite material is 0.5vol.%, and the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100: 3.
  • the mass ratio of polymer monomer (acrylamide monomer) to initiator (ammonium persulfate) is 100:1.33, polymer monomer (acrylamide monomer) and crosslinking agent (N,N'-methylene
  • the mass ratio of base bisacrylamide is 100:0.67.
  • the fiber content in the dual-scale toughened cement-based composite material is 1vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:3
  • the mass ratio of polymer monomer (acrylamide monomer) to initiator (ammonium persulfate) is 100:1.33, polymer monomer (acrylamide monomer) and crosslinking agent (N,N'-methylenebis acrylamide) in a mass ratio of 100:0.67.
  • the fiber content in the dual-scale toughened cement-based composite material is 1.5vol.%, and the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100: 3.
  • the mass ratio of polymer monomer (acrylamide monomer) to initiator (ammonium persulfate) is 100:1.33, polymer monomer (acrylamide monomer) and crosslinking agent (N,N'-methylene
  • the mass ratio of base bisacrylamide is 100:0.67.
  • the fiber content in the dual-scale toughened cement-based composite material is 2vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:3
  • the mass ratio of polymer monomer (acrylamide monomer) to initiator (ammonium persulfate) is 100:1.3
  • polymer monomer (acrylamide monomer) and crosslinking agent (N,N'-methylene Bisacrylamide) has a mass ratio of 100:0.67.
  • the amount of acrylamide monomer is 60g, the amount of ammonium persulfate is 1g, the amount of N,N'-methylene bisacrylamide is 0.5g, the amount of polyvinyl alcohol fiber is 28.8g, and the remaining technical means and examples 1 consistent, obtain embodiment 5;
  • the fiber content in the toughened cement-based composite material is 1.7vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:4
  • the mass ratio of polymer monomer (acrylamide monomer) to initiator (ammonium persulfate) is 100:1.33
  • ammonium persulfate 0.225g, and all the other technical means are consistent with embodiment 2, obtain embodiment 6;
  • the fiber content in the dual-scale toughened cement-based composite material is 1vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:3
  • the mass ratio of the polymer monomer to the crosslinking agent is 100:0.5
  • the mass ratio of the polymer monomer (acrylamide monomer) to the initiator is 100:0.5
  • the polymer monomer (acrylamide monomer) to crosslinker (N,N'-methylenebisacrylamide) mass ratio is 100:0.67.
  • ammonium persulfate 0.45g, and all the other technical means are consistent with embodiment 2, obtain embodiment 7;
  • the fiber content in the dual-scale toughened cement-based composite material is 1vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:3
  • the mass ratio of the polymer monomer to the crosslinking agent is 100:1
  • the mass ratio of the polymer monomer (acrylamide monomer) to the initiator is 100:1
  • the polymer monomer (acrylamide monomer) to crosslinker (N,N'-methylenebisacrylamide) mass ratio is 100:0.67.
  • the fiber content in the dual-scale toughened cement-based composite material is 1vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:3
  • the mass ratio of the polymer monomer to the crosslinking agent is 100:1.5
  • the mass ratio of the polymer monomer (acrylamide monomer) to the initiator is 100:1.5
  • the polymer monomer (acrylamide monomer) to crosslinker (N,N'-methylenebisacrylamide) mass ratio is 100:0.67.
  • the fiber content in the dual-scale toughened cement-based composite material is 1vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:3
  • the mass ratio of the polymer monomer to the crosslinking agent is 100:2
  • the mass ratio of the polymer monomer (acrylamide monomer) to the initiator is 100:2
  • the polymer monomer (acrylamide monomer) to crosslinker (N,N'-methylenebisacrylamide) mass ratio is 100:0.67.
  • the diameter of polyvinyl alcohol fiber is 15 ⁇ m, all the other technical means are consistent with embodiment 2, obtain embodiment 10;
  • the fiber content in the dual-scale toughened cement-based composite material is 1vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:3
  • the mass ratio of polymer monomer (acrylamide monomer) to initiator (ammonium persulfate) is 100:1.3
  • polymer monomer (acrylamide monomer) and crosslinking agent (N,N'-methylene Bisacrylamide) has a mass ratio of 100:0.67.
  • Example 2 The acrylamide monomer in Example 2 was replaced by a methylolacrylamide monomer, and the rest of the technical means were the same as in Example 2, and Example 11 was obtained.
  • the mass ratio of cementitious material (ordinary Portland cement) and polymer monomer is 100:3, and the ratio of polymer monomer (acrylamide monomer) to initiator (ammonium persulfate)
  • the mass ratio is 100:1.33
  • the mass ratio of the polymer monomer (acrylamide monomer) to the crosslinking agent (N,N'-methylenebisacrylamide) is 100:0.67.
  • the fiber content in the dual-scale toughened cement-based composite material is 1vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer (polyacrylamide) is 100:3
  • the polymer In situ polymerization of polyacrylamide rather than monomers is 1vol.%
  • the fiber content in the dual-scale toughened cement-based composite material is 1vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:3
  • the fiber content in the toughened cement-based composite material is 1vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:3
  • the polymerization The mass ratio of polymer monomer (acrylamide monomer) to initiator (ammonium persulfate) is 100:1.33, and the mass ratio of polymer monomer (acrylamide monomer) to crosslinking agent (tetramethylethylenediamine) For 100: 0.248.
  • the fiber content in the toughened cement-based composite material is 1.5vol.%
  • the mass ratio of the cementitious material (ordinary Portland cement) to the polymer monomer (acrylamide monomer) is 100:3
  • the mass ratio of polymer monomer (acrylamide monomer) to initiator is 100:2.5
  • the mass ratio of polymer monomer (acrylamide monomer) to initiator is 100:2.5
  • the mass ratio of polymer monomer (acrylamide monomer) to crosslinking agent (N,N'-methylenebisacrylamide) is 100:0.1.
  • Example 10 7.4 8.7
  • Example 11 8.9 10.8 Comparative example 1 4.8 5.6 Comparative example 2 7.1 8 Comparative example 3 7.5 8.5 Comparative example 4 5.6 6.8 Comparative example 5 6.6 7.5 Comparative example 6 7.7 8.6 Comparative example 7 6.8 7.9 Comparative example 8 7.3 8.4
  • the 7d flexural strength of the dual-scale toughened cement-based composite material provided by the present invention is 7.2 ⁇ 12.2MPa, and the 28d flexural strength is 8.3 ⁇ 14.3MPa, compared with the cement-based material without adding modified substances ( Comparative example 1) is increased by 50-150%, the flexural strength is greatly improved, and the toughness is excellent.
  • Fig. 1 is the SEM figure of the test block obtained in comparative example 2
  • Fig. 2 and Fig. 3 are embodiment 4 SEM images of the obtained test block
  • Figures 4 to 6 are SEM images of the test block obtained in Example 4 after soaking in 1 wt.% hydrochloric acid for 60 s.

Abstract

一种双尺度增韧水泥基复合材料及其应用。该水泥基复合材料,包括胶凝材料、聚合物单体、引发剂、交联剂和纤维;所述聚合物单体的官能团包括碳碳双键和羧基;所述纤维包括钢纤维和/或合成纤维;所述合成纤维包括聚乙烯醇纤维、聚丙烯纤维、玻璃纤维和碳纤维中的一种或多种。聚合物单体原位聚合与纤维在两种尺度作用,同时聚合物单体原位改性纤维表面,改善纤维与基体的黏结性能与界面结构,形成聚合物-纤维-水泥基体的复合结构。

Description

一种双尺度增韧水泥基复合材料及其应用
本申请要求于2022年03月02日提交中国专利局、申请号为202210206579.1、发明名称为“一种双尺度增韧水泥基复合材料及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于建材材料技术领域,特别涉及一种双尺度增韧水泥基复合材料及其应用。
背景技术
水泥基材料是应用最广泛的建筑材料,但水泥基材料属于多孔非均质材料,抗折强度低、韧性差。聚合物改性与纤维改性是两种广泛使用的提高水泥基材料抗折强度、增强韧性的方法。不同尺度的增强材料对水泥基材料的作用尺度各异,而且单一尺度的增强材料对于其性能的综合提高略有不足。因此,要改善水泥基材料的韧性,需要采用不同尺度的增强材料对其进行复合增强,以起到协同互补的效应。
聚合物在混凝土中可以与水泥水化产物形成相互交联、贯穿的网络,能分散和转移应力,阻止或减弱裂缝的扩展。同时,聚合物还能改善胶凝材料-集料的界面结构和性质,增强了各组分之间的黏结性,提高了过渡区的强度,大大改善材料的性能。除此之外,一些聚合物因其特殊的官能团能与水泥水化产物或金属离子发生化学作用,形成特殊的桥键作用,增强材料间的结合力,使混凝土的性能提高。但是聚合物改性混凝土存在聚合物分布不均匀的问题,聚合物与水化产物相容性、结合性不佳,导致聚合物改性水泥基材料对韧性的改性效果不理想(孙贵鹏.聚合物改性混凝土的发展及应用[J].建材技术与应用,2016(01):9-12+15.以及张二芹,黄志强.聚合物混凝土的发展及应用[J].四川建材,2014,40(03):39-40+43)。纤维改性混凝土中纤维主要通过物理作用改善混凝土内部结构,能够细化混凝土的微结构,减少内部初始缺陷,在混凝土承受荷载时,纤维还能够有效限制裂纹的扩展,从而改善混凝土的脆断性。但是,通常纤维与水泥基体形成弱结合界面,导致纤维在传递荷载的过程中过早的与基体脱粘而从基体中拔出,纤维的增韧效果无法得到充分的发挥(代超,刘伟超.钢纤维-水泥石基体界面粘结性能研究进展综述[J].公路交通技 术,2014(05):16-22.以及陈公增,马绪荣.纤维-水泥基材料的界面黏结性能[J].筑路机械与施工机械化,2018,35(07):75-78.)。
目前的聚合物改性和纤维改性均无法稳定地提高水泥基材料的韧性。
发明内容
有鉴于此,本发明的目的在于提供一种双尺度增韧水泥基复合材料,具有韧性高的特点。
为了实现上述发明的目的,本发明提供以下技术方案:
本发明提供了一种双尺度增韧水泥基复合材料,包括胶凝材料、聚合物单体、引发剂、交联剂和纤维;
所述聚合物单体的官能团包括碳碳双键和羧基;
所述纤维包括钢纤维和/或合成纤维;所述合成纤维包括聚乙烯醇纤维、聚丙烯纤维、玻璃纤维和碳纤维中的一种或多种。
优选的,所述羧基替换为可水解为羧基的基团。
优选的,所述聚合物单体包括丙烯酰胺类单体、丙烯酸类聚合物单体、甲基丙烯酸丁酯单体、乙二醇二甲基丙烯酸酯单体和甲基丙烯酸羟乙酯单体中的一种或多种。
优选的,所述胶凝材料与聚合物单体的质量比为100:(0.1~10);所述双尺度增韧水泥基复合材料中纤维的含量为0.5~3vol.%。
优选的,所述钢纤维的直径为300~1200μm,长度为20~120mm;所述合成纤维的直径为5~100μm,长度为3~40mm。
优选的,所述引发剂包括过硫酸盐、亚硫酸盐、有机过氧化物-亚铁盐体系、多电子转移高价态化合物-亚硫酸盐体系和非过氧化物类引发剂中的一种或多种;
所述聚合物单体与引发剂的质量比为100:(0.5~5)。
优选的,所述交联剂为多氨基交联剂;
所述聚合物单体与交联剂的质量比为100:(0.3~5)。
优选的,所述交联剂包括N,N'-亚甲基双丙烯酰胺、六亚甲基四胺-对苯二酚、聚乙烯亚胺、对苯二胺和甲基丙烯酸二甲氨基乙酯中的一种或多种。
优选的,所述胶凝材料包括水泥。
优选的,所述双尺度增韧水泥基复合材料还包括骨料和/或掺合料。
优选的,所述骨料包括砂和/或石子。
优选的,所述水泥与骨料的质量比为1:(1~3)。
优选的,所述掺合料包括硅灰和/或粉煤灰。
优选的,所述掺合料与水泥的质量比≤1。
优选的,所述过硫酸盐包括过硫酸铵、过硫酸钾和过硫酸钠中的一种或多种。
优选的,所述亚硫酸盐包括亚硫酸钠和/或亚硫酸氢钠。
优选的,所述有机过氧化物-亚铁盐体系包括过氧化氢叔丁基-硫酸亚铁。
优选的,所述多电子转移高价态化合物-亚硫酸盐体系包括氯酸钠-亚硫酸钠。
优选的,所述非过氧化物类引发剂包括硝酸铈铵-硫脲。
本发明还提供了上述技术方案所述双尺度增韧水泥基复合材料在建筑材料中的应用。
优选的,所述应用包括以下步骤:
将聚合物单体、引发剂、交联剂和水混合,得到原位聚合溶液;
将胶凝材料和原位聚合溶液混合,得到原位聚合改性水泥基浆体;
将所述原位聚合改性水泥基浆体和纤维混合,得到双尺度增韧水泥基复合材料浆体,将所得双尺度增韧水泥基复合材料浆体进行浇注和养护。
优选的,所述双尺度增韧水泥基复合材料浆体的制备温度为0~60℃。
优选的,所述胶凝材料和水的质量比为1:(0.35~0.4)。
优选的,所述胶凝材料和原位聚合溶液的混合的方法为搅拌;所述搅拌包括第一搅拌和第二搅拌;所述第一搅拌中自转的速率为135~145rpm,公转的速率为57~67rpm;搅拌时间为1~3min;所述第二搅拌中自转的速率为275~295rpm,公转的速率为115~135rpm;搅拌时间为60~120s。
优选的,所述原位聚合改性水泥基浆体和纤维的混合为搅拌;所述搅拌中自转的速率为135~145rpm,公转的速率为57~67rpm;所述搅拌的时间为1~5min。
本发明提供了一种双尺度增韧水泥基复合材料,包括胶凝材料、聚合 物单体、引发剂、交联剂和纤维;所述聚合物单体的官能团包括碳碳双键和羧基;所述纤维包括钢纤维和/或合成纤维;所述合成纤维包括聚乙烯醇纤维、聚丙烯纤维、玻璃纤维和碳纤维中的一种或多种。
在本发明中,聚合物单体原位聚合可以克服常规聚合物改性的一些缺陷,形成均匀分布的聚合物网络,又因存在羧基官能团,与水化产物间存在化学键合作用,形成了紧密结合的有机-无机网络,能够显著提高水泥基材料的抗折强度;掺加纤维可以承担荷载、抑制裂缝,相互交织形了纤维的网络结构,也能够提高其抗折强度。聚合物单体原位聚合形成聚合物网络的同时,原位改性纤维表面,与纤维协同作用,形成了聚合物-纤维-基体网络结构,通过双尺度改性得到一种高抗折强度的水泥基材料。具体来说,首先,聚合物与纤维是不同尺度的改性物质,聚合物单体原位聚合从微观尺度改善混凝土结构,纤维从宏观尺度(毫米尺度)改善混凝土结构,两者从两种尺度共同作用,提高了材料的抗折强度;其次,聚合物单体在纤维上原位聚合可以原位改性纤维表面,改善了纤维与基体的黏结性能与界面结构,充分发挥了纤维的改性潜力;最后,聚合物单体原位形成的聚合物网络与纤维交织形成的纤维网络共同组成了聚合物-纤维-水泥基体的结构,稳定提高水泥基复合材料的韧性。
实施例测试结果表明,本发明提供的双尺度增韧水泥基复合材料的7d抗折强度为7.2~12.2MPa,28d抗折强度为8.3~14.3MPa,较未掺加改性物质(聚合物单体、纤维)的水泥基材料提高了50~150%,抗折强度极大提升,韧性优异。
说明书附图
图1为对比例2所得试块的SEM图;
图2为实施例4所得试块的SEM图;
图3为实施例4所得试块的SEM图;
图4为实施例4所得试块在1wt.%盐酸中浸泡60s后的SEM图;
图5为实施例4所得试块在1wt.%盐酸中浸泡60s后的SEM图;
图6为实施例4所得试块在1wt.%盐酸中浸泡60s后的SEM图。
具体实施方式
本发明提供了一种双尺度增韧水泥基复合材料,包括胶凝材料、聚合 物单体、引发剂、交联剂和纤维;
所述聚合物单体的官能团包括碳碳双键和羧基;
所述纤维包括钢纤维和/或合成纤维;所述合成纤维包括聚乙烯醇纤维、聚丙烯纤维、玻璃纤维和碳纤维中的一种或多种。
在本发明中,若无特殊说明,所述各组分均为本领域技术人员熟知的市售商品。
本发明提供的双尺度增韧水泥基复合材料包括胶凝材料。在本发明中,所述胶凝材料优选包括水泥。在本发明中,所述水泥优选为普通硅酸盐水泥。在本发明中,所述普通硅酸盐水泥的级别优选为32.5级、42.5级或52.5级。
在本发明中,所述双尺度增韧水泥基复合材料优选还包括骨料和/或掺合料。
在本发明中,所述骨料优选包括砂和/或石子。本发明对所述砂没有特殊限定,采用本领域技术人员熟知的砂即可;本发明对所述石子没有特殊限定,采用本领域技术人员熟知的石子即可。在本发明中,所述水泥与骨料的质量比优选为1:(1~3),更优选为1:(1.5~2.5)。
在本发明中,所述掺合料优选包括硅灰和/或粉煤灰。在本发明中,所述掺合料与水泥的质量比优选≤1。
本发明提供的双尺度增韧水泥基复合材料包括聚合物单体。在本发明中,所述聚合物单体的官能团包括碳碳双键和羧基。作为本发明的并列技术方案,所述聚合物单体的官能团包括碳碳双键和可水解为羧基的基团。在本发明中,所述聚合物单体优选包括丙烯酰胺类单体、丙烯酸类聚合物单体、甲基丙烯酸丁酯单体、乙二醇二甲基丙烯酸酯单体和甲基丙烯酸羟乙酯单体中的一种或多种。在本发明中,所述丙烯酰胺类单体优选包括丙烯酰胺、羟甲基丙烯酰胺和N-异丙基丙烯酰胺中的一种或多种。在本发明中,所述丙烯酸类聚合物单体优选包括丙烯酸钠。
在本发明中,所述胶凝材料与聚合物单体的质量比优选为100:(0.1~10),更优选为100:(1~7),再优选为100:(3~5)。
本发明提供的双尺度增韧水泥基复合材料包括引发剂。在本发明中,所述引发剂优选包括过硫酸盐、亚硫酸盐、有机过氧化物-亚铁盐体系、 多电子转移高价态化合物-亚硫酸盐体系和非过氧化物类引发剂中的一种或多种。在本发明中,所述过硫酸盐优选包括过硫酸铵、过硫酸钾和过硫酸钠中的一种或多种。在本发明中,所述亚硫酸盐优选包括亚硫酸钠和/或亚硫酸氢钠。在本发明中,所述有机过氧化物-亚铁盐体系优选包括过氧化氢叔丁基-硫酸亚铁。在本发明中,所述多电子转移高价态化合物-亚硫酸盐体系优选包括氯酸钠-亚硫酸钠。在本发明中,所述非过氧化物类引发剂优选包括硝酸铈铵-硫脲。
在本发明中,所述聚合物单体与引发剂的质量比优选为100:(0.5~5),更优选为100:(0.8~3),再优选为100:(1~2)。
本发明提供的双尺度增韧水泥基复合材料包括交联剂。在本发明中,所述交联剂优选为多氨基交联剂。在本发明中,所述交联剂优选包括N,N'-亚甲基双丙烯酰胺、六亚甲基四胺-对苯二酚、聚乙烯亚胺、对苯二胺和甲基丙烯酸二甲氨基乙酯中的一种或多种。
在本发明中,所述聚合物单体与交联剂的质量比优选为100:(0.3~5),更优选为100:(0.4~3),再优选为100:(0.5~2)。
本发明提供的双尺度增韧水泥基复合材料包括纤维。在本发明中,所述纤维包括钢纤维和/或合成纤维;所述合成纤维包括聚乙烯醇纤维、聚丙烯纤维、玻璃纤维和碳纤维中的一种或多种。
在本发明中,所述钢纤维的直径优选为300~1200μm,长度优选为20~120mm。在本发明中,所述合成纤维的直径优选为5~100μm,长度优选为3~40mm。
在本发明中,所述双尺度增韧水泥基复合材料中纤维的含量优选为0.5~3vol.%,更优选为1~2.5vol.%,再优选为1.5~2vol.%。
本发明还提供了上述技术方案所述双尺度增韧水泥基复合材料在建筑材料中的应用。
在本发明中,所述应用优选包括以下步骤:
将聚合物单体、引发剂、交联剂和水混合,得到原位聚合溶液;
将胶凝材料和原位聚合溶液混合,得到原位聚合改性水泥基浆体;
将所述原位聚合改性水泥基浆体和纤维混合,得到双尺度增韧水泥基复合材料浆体,将所得双尺度增韧水泥基复合材料浆体进行浇注和养护。
本发明将聚合物单体、引发剂、交联剂和水混合,得到原位聚合溶液。
在本发明中,所述应用中双尺度增韧水泥基复合材料浆体的制备温度优选为0~60℃,更优选为0~40℃。
在本发明中,所述聚合物单体、引发剂、交联剂和水的混合优选为将聚合物单体和水混合后,再将所得的聚合物单体溶液、引发剂和交联剂混合。
本发明对所述聚合物单体、引发剂、交联剂和水的混合方式没有特殊限定,采用本领域技术人员熟知的混合即可,具体的,如搅拌。在本发明中,所述搅拌优选为磁力搅拌;所述搅拌的时间优选为5~10min。
得到原位聚合溶液后,本发明将胶凝材料和原位聚合溶液混合,得到原位聚合改性水泥基浆体。
在本发明中,所述胶凝材料和水的质量比优选为1:(0.35~0.4),更优选为1:(0.38~0.4),最优选为1:0.4。
在本发明中,所述胶凝材料和原位聚合溶液的混合的方法优选为搅拌;所述搅拌优选包括第一搅拌和第二搅拌。在本发明中,所述第一搅拌中自转的速率优选为135~145rpm,公转的速率优选为57~67rpm;搅拌时间优选为1~3min,更优选为1.5~2.5min。在本发明中,所述第二搅拌中自转的速率优选为275~295rpm,公转的速率优选为115~135rpm;搅拌时间优选为60~120s,更优选为90~100s。
在本发明中,当所述双尺度增韧水泥基复合材料优选还包括骨料和/或掺合料时,所述骨料和/或掺合料优选与胶凝材料的使用时机相同。
得到原位聚合改性水泥基浆体后,本发明将所述原位聚合改性水泥基浆体和纤维混合,得到双尺度增韧水泥基复合材料浆体,将所得双尺度增韧水泥基复合材料浆体进行浇注和养护。
在本发明中,所述原位聚合改性水泥基浆体和纤维的混合优选为将纤维加入所述原位聚合改性水泥基浆体中。在本发明中,所述原位聚合改性水泥基浆体和纤维的混合优选为搅拌;所述搅拌中自转的速率优选为135~145rpm,公转的速率优选为57~67rpm;所述搅拌的时间优选为1~5min,更优选为2~3min。本发明优选将搅拌设备上粘附的纤维刮下归拢于原位聚合改性水泥基浆体中。
本发明对所述浇注没有特殊限定,采用本领域技术人员熟知的浇注即可,具体的,如将所述双尺度增韧水泥基复合材料浆体依次装模、震荡、抹平、覆膜和拆模。在本发明中,所述震荡的次数优选为30~90次,更优选为50~70次,最优选为60次。在本发明中,所述覆膜用膜材料优选为保鲜膜。在本发明中,所述覆膜的时间优选为24h。
在本发明中,所述养护优选为标准养护;所述标准养护的温度优选为18~22℃,湿度优选≥95%。
为了进一步说明本发明,下面结合实施例对本发明提供的一种双尺度增韧水泥基复合材料及其应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将45g丙烯酰胺单体和600g水搅拌,得到聚合物单体溶液;将所得聚合物单体溶液、0.6g过硫酸铵和0.3g的N,N'-亚甲基双丙烯酰胺混合,磁力搅拌5min,得到原位聚合溶液;
将1500g普通硅酸盐水泥(P.O 42.5级)和原位聚合溶液在自转速率为135~145rpm、公转速率为57~67rpm下搅拌2min,然后在自转速率为275~295rpm、公转速率为115~135rpm下搅拌90s,得到原位聚合改性水泥基浆体;
将7.2g聚乙烯醇纤维(直径为40μm,长度为12mm)加入所得原位聚合改性水泥基浆体中,自转速率为135~145rpm、公转速率为57~67rpm搅拌2min后,将搅拌设备上粘住的纤维刮下归拢于双尺度增韧水泥基复合材料浆体中,继续搅拌1min后装模,震荡60次,抹平后覆膜24h,拆模,在18~22℃、湿度≥95%条件下进行标准养护。
本实施例中,双尺度增韧水泥基复合材料中纤维的含量为0.5vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:1.33,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯 酰胺)的质量比为100:0.67。
实施例2
聚乙烯醇纤维的用量为14.4g,其余技术手段与实施例1一致,得到实施例2;
本实施例中,双尺度增韧水泥基复合材料中纤维的含量为1vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3。聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:1.33,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.67。
实施例3
聚乙烯醇纤维的用量为21.6g,其余技术手段与实施例1一致,得到实施例3;
本实施例中,双尺度增韧水泥基复合材料中纤维的含量为1.5vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:1.33,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.67。
实施例4
聚乙烯醇纤维的用量为28.8g,其余技术手段与实施例1一致,得到实施例4;
本实施例中,双尺度增韧水泥基复合材料中纤维的含量为2vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:1.33,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.67。
实施例5
丙烯酰胺单体的用量为60g,过硫酸铵的用量为1g,N,N'-亚甲基双丙烯酰胺的用量为0.5g,聚乙烯醇纤维的用量为28.8g,其余技术手段与实施例1一致,得到实施例5;
本实施例中,增韧水泥基复合材料中纤维的含量为1.7vol.%,胶凝材 料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:4,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:1.33,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.67。
实施例6
过硫酸铵的用量是0.225g,其余技术手段与实施例2一致,得到实施例6;
本实施例中,双尺度增韧水泥基复合材料中纤维的含量为1vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,聚合物单体与交联剂的质量比为100:0.5,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:0.5,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.67。
实施例7
过硫酸铵的用量是0.45g,其余技术手段与实施例2一致,得到实施例7;
本实施例中,双尺度增韧水泥基复合材料中纤维的含量为1vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,聚合物单体与交联剂的质量比为100:1,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:1,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.67。
实施例8
过硫酸铵的用量是0.675g,其余技术手段与实施例2一致,得到实施例6;
本实施例中,双尺度增韧水泥基复合材料中纤维的含量为1vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,聚合物单体与交联剂的质量比为100:1.5,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:1.5,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.67。
实施例9
过硫酸铵的用量是0.9g,其余技术手段与实施例2一致,得到实施例 6;
本实施例中,双尺度增韧水泥基复合材料中纤维的含量为1vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,聚合物单体与交联剂的质量比为100:2,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:2,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.67。
实施例10
聚乙烯醇纤维的直径为15μm,其余技术手段与实施例2一致,得到实施例10;
本实施例中,双尺度增韧水泥基复合材料中纤维的含量为1vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:1.33,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.67。
实施例11
以羟甲基丙烯酰胺单体代替实施例2中的丙烯酰胺单体,其余技术手段与实施例2一致,得到实施例11。
对比例1
将1500g普通硅酸盐水泥(P.O 42.5级)加入搅拌锅中,在砂浆搅拌机中在自转速率为135~145rpm、公转速率为57~67rpm下搅拌2min,加入600g水,在自转速率为135~145rpm、公转速率为57~67rpm下搅拌2min,在自转速率为275~295rpm、公转速率为115~135rpm下搅拌90s后装模,震荡60次,抹平后覆膜24h,拆模,在18~22℃、湿度≥95%条件下进行标准养护。
本对比例中,无聚合物单体、引发剂、交联剂和纤维。
对比例2
将1500g普通硅酸盐水泥(P.O 42.5级)和600g水在自转速率为135~145rpm、公转速率为57~67rpm下搅拌2min,然后在自转速率为275~295rpm、公转速率为115~135rpm下搅拌90s,得到水泥基浆体;
将28.8g聚乙烯醇纤维(直径为40μm,长度为12mm)加入所得水 泥基浆体中,自转速率为135~145rpm、公转速率为57~67rpm搅拌2min后,将搅拌设备上粘住的纤维刮下归拢于双尺度增韧水泥基复合材料浆体中,继续搅拌1min后装模,震荡60次,抹平后覆膜24h,拆模,在18~22℃、湿度≥95%条件下进行标准养护。
本对比例中,无聚合物单体、引发剂和交联剂,水泥基复合材料中纤维的含量为2vol.%。
对比例3
将45g丙烯酰胺单体和600g水搅拌,得到聚合物单体溶液;将所得聚合物单体溶液、0.6g过硫酸铵和0.3g的N,N'-亚甲基双丙烯酰胺混合,磁力搅拌5min,得到原位聚合溶液;
将1500g普通硅酸盐水泥(P.O 42.5级)和原位聚合溶液在自转速率为135~145rpm、公转速率为57~67rpm下搅拌2min,然后在自转速率为275~295rpm、公转速率为115~135rpm下搅拌90s,装模,震荡60次,抹平后覆膜24h,拆模,在18~22℃、湿度≥95%条件下进行标准养护。
本对比例中,无纤维,胶凝材料(普通硅酸盐水泥)和聚合物单体的质量比为100:3,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:1.33,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.67。
对比例4
将1500g普通硅酸盐水泥(P.O 42.5级)和600g水在自转速率为135~145rpm、公转速率为57~67rpm下搅拌2min,然后在自转速率为275~295rpm、公转速率为115~135rpm下搅拌90s,得到水泥基浆体;
将14.4g聚乙烯醇纤维(直径为40μm,长度为12mm)加入所得水泥基浆体中,自转速率为135~145rpm、公转速率为57~67rpm搅拌2min后,将搅拌设备上粘住的纤维刮下归拢于双尺度增韧水泥基复合材料浆体中,继续搅拌1min后装模,震荡60次,抹平后覆膜24h,拆模,在18~22℃、湿度≥95%条件下进行标准养护。
本对比例中,无聚合物单体、引发剂和交联剂,水泥基复合材料中纤维的含量为1vol.%。
对比例5
将45g聚丙烯酰胺、600g水和1500g普通硅酸盐水泥在自转速率为135~145rpm、公转速率为57~67rpm下搅拌2min,然后在自转速率为275~295rpm、公转速率为115~135rpm下搅拌90s,得到聚合物改性浆体;
将14.4g聚乙烯醇纤维(直径为40μm,长度为12mm)加入所得聚合物改性浆体中,自转速率为135~145rpm、公转速率为57~67rpm搅拌2min后,将搅拌设备上粘住的纤维刮下归拢于所得增韧水泥基复合材料浆体中,继续搅拌1min后装模,震荡60次,抹平后覆膜24h,拆模,在18~22℃、湿度≥95%条件下进行标准养护。
本对比例中,双尺度增韧水泥基复合材料中纤维的含量为1vol.%,胶凝材料(普通硅酸盐水泥)与聚合物(聚丙烯酰胺)的质量比为100:3,聚合物为聚丙烯酰胺而非单体原位聚合。
对比例6
将45g丙烯酰胺单体和600g水搅拌,得到聚合物单体溶液;将所得聚合物单体溶液、0.6g过硫酸铵和0.3g的N,N'-亚甲基双丙烯酰胺混合,磁力搅拌5min,得到原位聚合溶液;
将1500g普通硅酸盐水泥(P.O 42.5级)和14.4g聚乙烯醇纤维(直径为40μm,长度为12mm)在自转速率为135~145rpm、公转速率为57~67rpm搅拌3min,得到水泥基材料-纤维干料;将所的水泥基材料-纤维干料和原位聚合溶液在自转速率为135~145rpm、公转速率为57~67rpm下搅拌2min,然后在自转速率为275~295rpm、公转速率为115~135rpm下搅拌90s,得到双尺度增韧水泥基复合材料浆体,将搅拌设备上粘住的纤维刮下归拢于双尺度增韧水泥基复合材料浆体中,继续搅拌1min后装模,震荡60次,抹平后覆膜24h,拆模,在18~22℃、湿度≥95%条件下进行标准养护。
本对比例中,双尺度增韧水泥基复合材料中纤维的含量为1vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,先将水泥基材料和纤维混合,再将所得水泥基材料-纤维干料和原位聚合溶液混合。
对比例7
采用144μL四甲基乙二胺代替0.3g的N,N'-亚甲基双丙烯酰胺,其 余技术手段与实施例2一致,得到对比例7;
本对比例中,增韧水泥基复合材料中纤维的含量为1vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:1.33,聚合物单体(丙烯酰胺单体)与交联剂(四甲基乙二胺)的质量比为100:0.248。
对比例8
采用1.225g过硫酸铵和1.225g亚硫酸钠作为引发剂代替过硫酸铵单引发体系,交联剂N,N'-亚甲基双丙烯酰胺用量为0.045,其余技术手段与实施例3一致,得到对比例8;
本对比例中,增韧水泥基复合材料中纤维的含量为1.5vol.%,胶凝材料(普通硅酸盐水泥)与聚合物单体(丙烯酰胺单体)的质量比为100:3,聚合物单体(丙烯酰胺单体)与引发剂(过硫酸铵)的质量比为100:2.5,聚合物单体(丙烯酰胺单体)与引发剂(亚硫酸钠)的质量比为100:2.5,聚合物单体(丙烯酰胺单体)与交联剂(N,N'-亚甲基双丙烯酰胺)的质量比为100:0.1。
按照GB/T 17671-1999水泥胶砂强度检验方法(ISO法),对实施例1~11和对比例1~7的试块的抗折强度进行测试,测试结果见表1。
表1 实施例1~11和对比例1~7试块抗折强度测试结果(MPa)
  7d 28d
实施例1 7.2 8.3
实施例2 8.4 10.3
实施例3 9.4 11.1
实施例4 12.2 14.3
实施例5 10.7 12.4
实施例6 7.2 8.4
实施例7 8.8 10.2
实施例8 9.8 11.6
实施例9 9.2 10.7
实施例10 7.4 8.7
实施例11 8.9 10.8
对比例1 4.8 5.6
对比例2 7.1 8
对比例3 7.5 8.5
对比例4 5.6 6.8
对比例5 6.6 7.5
对比例6 7.7 8.6
对比例7 6.8 7.9
对比例8 7.3 8.4
根据表1可见,本发明提供的双尺度增韧水泥基复合材料的7d抗折强度为7.2~12.2MPa,28d抗折强度为8.3~14.3MPa,较未掺加改性物质的水泥基材料(对比例1)提高了50~150%,抗折强度极大提升,韧性优异。
对实施例4和对比例2所得试块进行扫描电子显微测试,所得SEM图见图1~6,其中,图1为对比例2所得试块的SEM图,图2和图3为实施例4所得试块的SEM图,图4~图6为实施例4所得试块在1wt.%盐酸中浸泡60s后的SEM图。
由图1可见,2%聚乙烯醇纤维单独改性时,纤维表面比较光滑,有少许的水化产物附着。
由图2和图3可见,丙烯酰胺原位聚合的聚合物与水化产物包覆在纤维表面,提高了纤维与水泥基材料间的黏结性能与界面强度,原位聚合与纤维相互作用极大地提高了双尺度增韧水泥基复合材料的性能,尤其是抗折强度。
由图4~6可见,原位聚合生成的聚合物附在纤维表面,可以清晰地观察到原位聚合生成的聚合物网络。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (25)

  1. 一种双尺度增韧水泥基复合材料,包括胶凝材料、聚合物单体、引发剂、交联剂和纤维;
    所述聚合物单体的官能团包括碳碳双键和羧基;
    所述纤维包括钢纤维和/或合成纤维;所述合成纤维包括聚乙烯醇纤维、聚丙烯纤维、玻璃纤维和碳纤维中的一种或多种。
  2. 根据权利要求1所述的双尺度增韧水泥基复合材料,其特征在于,所述羧基替换为可水解为羧基的基团。
  3. 根据权利要求1所述的双尺度增韧水泥基复合材料,其特征在于,所述聚合物单体包括丙烯酰胺类单体、丙烯酸类聚合物单体、甲基丙烯酸丁酯单体、乙二醇二甲基丙烯酸酯单体和甲基丙烯酸羟乙酯单体中的一种或多种。
  4. 根据权利要求1或2所述的双尺度增韧水泥基复合材料,其特征在于,所述胶凝材料与聚合物单体的质量比为100:(0.1~10);所述双尺度增韧水泥基复合材料中纤维的含量为0.5~3vol.%。
  5. 根据权利要求1所述的双尺度增韧水泥基复合材料,其特征在于,所述钢纤维的直径为300~1200μm,长度为20~120mm;所述合成纤维的直径为5~100μm,长度为3~40mm。
  6. 根据权利要求1或2所述的双尺度增韧水泥基复合材料,其特征在于,所述引发剂包括过硫酸盐、亚硫酸盐、有机过氧化物-亚铁盐体系、多电子转移高价态化合物-亚硫酸盐体系和非过氧化物类引发剂中的一种或多种;
    所述聚合物单体与引发剂的质量比为100:(0.5~5)。
  7. 根据权利要求1所述的双尺度增韧水泥基复合材料,其特征在于,所述交联剂为多氨基交联剂;
    所述聚合物单体与交联剂的质量比为100:(0.3~5)。
  8. 根据权利要求7所述的双尺度增韧水泥基复合材料,其特征在于,所述交联剂包括N,N'-亚甲基双丙烯酰胺、六亚甲基四胺-对苯二酚、聚乙烯亚胺、对苯二胺和甲基丙烯酸二甲氨基乙酯中的一种或多种。
  9. 根据权利要求1所述的双尺度增韧水泥基复合材料,其特征在于,所述胶凝材料包括水泥。
  10. 根据权利要求1所述的双尺度增韧水泥基复合材料,其特征在于,所述双尺度增韧水泥基复合材料还包括骨料和/或掺合料。
  11. 根据权利要求10所述的双尺度增韧水泥基复合材料,其特征在于,所述骨料包括砂和/或石子。
  12. 根据权利要求9或10或11所述的双尺度增韧水泥基复合材料,其特征在于,所述水泥与骨料的质量比为1:(1~3)。
  13. 根据权利要求10所述的双尺度增韧水泥基复合材料,其特征在于,所述掺合料包括硅灰和/或粉煤灰。
  14. 根据权利要求9或10或13所述的双尺度增韧水泥基复合材料,其特征在于,所述掺合料与水泥的质量比≤1。
  15. 根据权利要求6所述的双尺度增韧水泥基复合材料,其特征在于,所述过硫酸盐包括过硫酸铵、过硫酸钾和过硫酸钠中的一种或多种。
  16. 根据权利要求6所述的双尺度增韧水泥基复合材料,其特征在于,所述亚硫酸盐包括亚硫酸钠和/或亚硫酸氢钠。
  17. 根据权利要求6所述的双尺度增韧水泥基复合材料,其特征在于,所述有机过氧化物-亚铁盐体系包括过氧化氢叔丁基-硫酸亚铁。
  18. 根据权利要求6所述的双尺度增韧水泥基复合材料,其特征在于,所述多电子转移高价态化合物-亚硫酸盐体系包括氯酸钠-亚硫酸钠。
  19. 根据权利要求6所述的双尺度增韧水泥基复合材料,其特征在于,所述非过氧化物类引发剂包括硝酸铈铵-硫脲。
  20. 权利要求1~19任一项所述双尺度增韧水泥基复合材料在建筑材料中的应用。
  21. 根据权利要求20所述的应用,其特征在于,所述应用包括以下步骤:
    将聚合物单体、引发剂、交联剂和水混合,得到原位聚合溶液;
    将胶凝材料和原位聚合溶液混合,得到原位聚合改性水泥基浆体;
    将所述原位聚合改性水泥基浆体和纤维混合,得到双尺度增韧水泥基复合材料浆体,将所得双尺度增韧水泥基复合材料浆体进行浇注和养护。
  22. 根据权利要求21所述的应用,其特征在于,所述双尺度增韧水泥基复合材料浆体的制备温度为0~60℃。
  23. 根据权利要求21所述的应用,其特征在于,所述胶凝材料和水的质量比为1:(0.35~0.4)。
  24. 根据权利要求21所述的应用,其特征在于,所述胶凝材料和原位聚合溶液的混合的方法为搅拌;所述搅拌包括第一搅拌和第二搅拌;所述第一搅拌中自转的速率为135~145rpm,公转的速率为57~67rpm;搅拌时间为1~3min;所述第二搅拌中自转的速率为275~295rpm,公转的速率为115~135rpm;搅拌时间为60~120s。
  25. 根据权利要求21所述的应用,其特征在于,所述原位聚合改性水泥基浆体和纤维的混合为搅拌;所述搅拌中自转的速率为135~145rpm,公转的速率为57~67rpm;所述搅拌的时间为1~5min。
PCT/CN2022/084951 2022-03-02 2022-04-02 一种双尺度增韧水泥基复合材料及其应用 WO2023164987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210206579.1A CN114560656B (zh) 2022-03-02 2022-03-02 一种双尺度增韧水泥基复合材料及其应用
CN202210206579.1 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023164987A1 true WO2023164987A1 (zh) 2023-09-07

Family

ID=81717145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084951 WO2023164987A1 (zh) 2022-03-02 2022-04-02 一种双尺度增韧水泥基复合材料及其应用

Country Status (2)

Country Link
CN (1) CN114560656B (zh)
WO (1) WO2023164987A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093182B (zh) * 2022-07-27 2023-08-01 青岛理工大学 一种原位有机-无机聚合改性水泥基复合材料及其制备方法
CN116177936A (zh) * 2023-02-08 2023-05-30 北京建筑材料科学研究总院有限公司 一种原位聚合无机协同改性水泥基复合材料及其制备方法
CN116947391B (zh) * 2023-07-28 2024-02-13 湖北工业大学 一种夹层结构多功能地质聚合物复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570204A (ja) * 1991-09-18 1993-03-23 Toray Ind Inc 繊維補強無機質体の製造方法
JPH05105497A (ja) * 1991-10-14 1993-04-27 Toray Ind Inc 繊維補強無機質体の製造方法
JP2012153554A (ja) * 2011-01-25 2012-08-16 Teijin Techno Products Ltd ポリマーセメント組成物
CN104609759A (zh) * 2014-11-25 2015-05-13 江苏苏博特新材料股份有限公司 一种可提高水泥基材料抗折和抗拉强度的外加剂及其制备方法
WO2017114375A1 (zh) * 2015-12-31 2017-07-06 江苏苏博特新材料股份有限公司 一种水泥基材料增强剂及其制备方法和应用
CN111363077A (zh) * 2020-04-09 2020-07-03 澳门大学 一种聚合物水泥基材料及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122554A (en) * 1989-12-29 1992-06-16 Union Oil Company Of California Enhanced polymer concrete composition
US7105587B2 (en) * 2001-03-07 2006-09-12 Innovative Construction And Building Materials Method and composition for polymer-reinforced composite cementitious construction material
US6955844B2 (en) * 2002-05-24 2005-10-18 Innovative Construction And Building Materials Construction materials containing surface modified fibers
CN106348667B (zh) * 2016-08-24 2018-11-20 济南大学 一种多巴胺修饰玻璃纤维提升水泥基胶凝材料性能的方法
EP3844121A4 (en) * 2018-08-29 2022-05-18 GCP Applied Technologies Inc. NON-HYDRATING STRENGTH IN CEMENTARY COMPOSITIONS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570204A (ja) * 1991-09-18 1993-03-23 Toray Ind Inc 繊維補強無機質体の製造方法
JPH05105497A (ja) * 1991-10-14 1993-04-27 Toray Ind Inc 繊維補強無機質体の製造方法
JP2012153554A (ja) * 2011-01-25 2012-08-16 Teijin Techno Products Ltd ポリマーセメント組成物
CN104609759A (zh) * 2014-11-25 2015-05-13 江苏苏博特新材料股份有限公司 一种可提高水泥基材料抗折和抗拉强度的外加剂及其制备方法
WO2017114375A1 (zh) * 2015-12-31 2017-07-06 江苏苏博特新材料股份有限公司 一种水泥基材料增强剂及其制备方法和应用
CN111363077A (zh) * 2020-04-09 2020-07-03 澳门大学 一种聚合物水泥基材料及其制备方法与应用

Also Published As

Publication number Publication date
CN114560656B (zh) 2023-04-14
CN114560656A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2023164987A1 (zh) 一种双尺度增韧水泥基复合材料及其应用
Liu et al. Multiscale investigation on tensile properties of ultra-high performance concrete with silane coupling agent modified steel fibers
WO2023164988A1 (zh) 一种原位协同改性增强水泥基复合材料及其应用
CN110467407A (zh) 一种c70大体积混凝土及其制备工艺
CN110357545B (zh) 混凝土基层局部破损快速修补砂浆及其制备方法
US4772328A (en) Hydraulic cementitious compositions reinforced with fibers containing polyacrylonitrile
CN105060791B (zh) 一种适于钢锚梁索塔锚固结构的c60自密实补偿收缩抗裂混凝土及其制备方法
CN112079596B (zh) 一种适用于墙体裂缝的补强修复方法
JP2002137948A (ja) 無機質建築材料のための混和剤としてのアンモニアを含まないポリマー分散液、ポリマー粉末およびポリマー顆粒の使用、このような建築材料およびその機械的強度の改善のための方法
CN109095862A (zh) 一种高强韧性混凝土
CN112408880A (zh) 一种玄武岩纤维透水混凝土及其制备方法
CN113816690A (zh) 混凝土修复材料及其制备方法
Zhu et al. Effects of different mixing ratio parameters on mechanical properties of cost-effective green engineered cementitious composites (ECC)
CN113816643A (zh) 海绵城市建设用混凝土增强剂及其制备方法、透水混凝土
CN114956748A (zh) 修补用聚丙烯酸乳液改性碱激发矿渣材料及制备方法
Shi et al. Interfacial bonding properties of styrene-butadiene rubber and ethylene vinyl acetate emulsion-modified OPC–CAC–G repair mortar
Kan et al. Effects of thickener on macro-and meso-mechanical properties of ECC
CN115521118B (zh) 一种用于道路快速修复的抗冲击耐磨混凝土及其制备工艺
JPH05345652A (ja) コンクリート断面補修用グラウト材
JP2012140265A (ja) ポリマーセメントモルタル
KR101665486B1 (ko) 콘크리트 혼화용 아크릴계 합성라텍스 개질 콘크리트에 의한 교면포장 및 보수공법
JP2003055018A (ja) ポリマーセメント組成物
CA2617163C (en) Cement-containing composition for use with alkali-resistant fiberglass and poles made therefrom
JP2007270470A (ja) コンクリート構造体の補修・補強工法
CN111675518A (zh) 一种半刚性混凝土路面基层材料及其制备方法和施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929426

Country of ref document: EP

Kind code of ref document: A1