WO2023164981A1 - Led显示传输系统 - Google Patents

Led显示传输系统 Download PDF

Info

Publication number
WO2023164981A1
WO2023164981A1 PCT/CN2022/081485 CN2022081485W WO2023164981A1 WO 2023164981 A1 WO2023164981 A1 WO 2023164981A1 CN 2022081485 W CN2022081485 W CN 2022081485W WO 2023164981 A1 WO2023164981 A1 WO 2023164981A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
led display
value
display transmission
switch
Prior art date
Application number
PCT/CN2022/081485
Other languages
English (en)
French (fr)
Inventor
李家栋
刘明剑
黄建东
张青松
朱更生
Original Assignee
深圳市绿源半导体技术有限公司
东莞市欧思科光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绿源半导体技术有限公司, 东莞市欧思科光电科技有限公司 filed Critical 深圳市绿源半导体技术有限公司
Publication of WO2023164981A1 publication Critical patent/WO2023164981A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the technical field of LED display transmission, in particular to an LED display transmission system.
  • LED displays are widely used in leisure and cultural squares, bustling business centers, commercial streets, railway stations, subways, shopping malls, and other places, due to the diversity and complexity of their application fields, the stability, reliability, and Fluency also puts forward higher requirements.
  • the multi-level transmission system formed by multiple LED display transmission devices will make the LED display transmission devices adopt parallel connection instead of serial connection, so There is no mutual influence, but using the parallel connection mode requires writing different characteristic values into each LED display transmission device in advance, and each LED display transmission device can receive corresponding data according to the written characteristic value.
  • the existing method of writing characteristic values to the LED display transmission device is relatively cumbersome, and additional input ports and output ports need to be added to each LED display transmission device, so that each LED display transmission device forms a series connection, and each LED display transmission device is connected in series.
  • the display transmission device writes characteristic values, adding input ports and output ports to the LED display transmission device will increase the production time of the LED display transmission device, and also increase the complexity of the connection between the various LED display transmission devices in the multi-stage transmission system More seriously, once the input and output ports are added to the LED display transmission device, once these two ports fail, the reliability of the LED display transmission device will be seriously affected.
  • the present application provides an LED display transmission system.
  • the present application provides an LED display transmission system
  • the LED display transmission system includes a controller, a first switch, a second switch, a resistor group and a plurality of LED display transmission devices, the controller passes the first switch,
  • the resistor cluster is electrically connected to the second switch, the resistor cluster includes a plurality of serially connected resistors, and each of the LEDs indicates that the communication port of the transmission device is electrically connected to a different resistor terminal in the resistor cluster. connect;
  • the controller is used to transmit the control voltage to each of the LED display transmission devices when the switching states of the first switch and the second switch are both closed; when the switching state of the first switch is closed , and when the switch state of the second switch is off, transmit the control data to each of the LED display transmission devices;
  • Each of the LED display transmission devices is used to determine the number value corresponding to each of the LED display transmission devices according to the control voltage when receiving the control voltage; when receiving the control data, the control data
  • the sub-data corresponding to each of the numerical values in the number is stored as a corresponding feature value of each of the LED display transmission devices.
  • the LED display transmission device includes:
  • a signal conversion module electrically connected to the communication port of the LED display transmission device, for converting the control voltage received by the communication port of the LED display transmission device into the serial number;
  • a data latch module electrically connected to the signal conversion module, for receiving and storing the serial number sent by the signal conversion module;
  • the data receiving module is electrically connected to the communication port of the LED display transmission device and the data latch module, and is used to receive the control data and the data lock sent by the communication port of the LED display transmission device.
  • the data receiving module When storing the numbered value sent by the module, store the sub-data corresponding to the numbered value in the control data as the corresponding characteristic value of the LED display transmission device;
  • the power-on reset module is electrically connected to each functional module in the LED display transmission device, and is used to send a power-on reset signal to each of the LED display transmission devices when the LED display transmission device is in the power-on state. functional module.
  • the signal conversion module is specifically configured to detect the Control the analog voltage value at the communication port of the LED display transmission device, and use the preset value corresponding to the preset value range where the analog voltage value is located as the numbered value, generate a conversion completion signal, and send the conversion The completion signal and the serial number value are sent to the data latch module.
  • the data receiving module is specifically configured to: when the switch state of the first switch is closed, the switch state of the second switch is open, and the received control data is a characteristic value When storing data, the sub-data in the characteristic value data that matches the numerical value of the serial number is stored as the characteristic value corresponding to the LED display transmission device.
  • the feature value data includes first frame header subdata, first end subdata, and a plurality of first intermediate subdata between the first frame header subdata and the first end subdata data;
  • the data receiving module is specifically configured to count the plurality of first intermediate sub-data received after receiving the first frame header sub-data, to obtain a first count value, and to correspond to the number value
  • the first intermediate sub-data corresponding to the first counter values with equal values are stored as the feature value corresponding to the LED display transmission device.
  • the first intermediate sub-data includes multi-bit characters
  • the data receiving module includes a first counter and a second counter electrically connected
  • the first counter is used to count the characters in the first intermediate sub-data after receiving the first frame header sub-data to obtain a second count value, and when the second count value reaches the first Reset to zero after the preset value; wherein, the first preset value is used to indicate the number of characters in the first intermediate sub-data;
  • the second counter is used for accumulatively counting once when the second count value reaches the first preset value to obtain the first count value.
  • the LED display transmission device further includes:
  • a driving module electrically connected to the data receiving module, for receiving the control data and the characteristic value sent by the data receiving module, and when the control data is display data, according to the display data
  • the sub-data matching the feature value generates the corresponding pulse modulation signal.
  • the display data includes second frame header sub-data, second end sub-data, and a plurality of second intermediate sub-data located between the second frame header sub-data and the second end sub-data ;
  • the driving module is specifically configured to, after receiving the second frame header sub-data, count the plurality of received second intermediate sub-data to obtain a third count value, and compare the third count value with the When the characteristic values are equal, the corresponding second intermediate sub-data is counted according to the third count value to generate the corresponding pulse modulation signal; wherein, the third count value includes a multi-bit character, and the third count value The number of characters of the count value is the same as that of the feature value.
  • the second intermediate sub-data includes multi-bit characters
  • the driving module includes a third counter and a fourth counter electrically connected
  • the third counter is used to count the characters in the second intermediate sub-data after receiving the second frame header sub-data to obtain a fourth count value, and when the fourth count value reaches the second Reset to zero after the preset value; wherein, the second preset value is used to indicate the number of characters in the second intermediate sub-data;
  • the fourth counter is used to accumulate and count once when the fourth count value reaches the second preset value to obtain the third count value.
  • the controller is also electrically connected to the first switch, each of the LED display transmission devices, and the second switch, so as to provide power for each of the LED display transmission devices, And it is used to control the switching states of the first switch and the second switch.
  • the controller when the first switch and the second switch are in the closed state, the controller sends a control voltage to each LED display transmission device through the first switch, so that each LED display transmission device determines according to the received control voltage Each corresponding serial number value; the controller sends control data to each LED display transmission device through the first switch when the first switch is in the closed state and the second switch is in the open state, and each LED display transmission device receives the control data.
  • data, the sub-data corresponding to the corresponding serial numbers of each LED display transmission device in the control data is stored as the corresponding characteristic value of each LED display transmission device, and the characteristics of each LED display transmission device are completed in this way.
  • Fig. 1 is a schematic structural diagram of an LED display transmission system in an embodiment
  • Fig. 2 is a timing diagram for writing characteristic values of the LED display transmission system in one embodiment
  • Fig. 3 is a schematic structural diagram of an LED display transmission system in an embodiment
  • Fig. 4 is a structural block diagram of an LED display transmission device in an embodiment
  • FIG. 5 is a timing diagram for writing characteristic values of the LED display transmission device in an embodiment
  • Fig. 6 is a structural block diagram of eigenvalue data in an embodiment
  • Fig. 7 is a sequence diagram of writing characteristic values of the data receiving module in one embodiment
  • Fig. 8 is a structural block diagram of an LED display transmission device in an embodiment
  • Fig. 9 is a structural block diagram showing data in an embodiment
  • FIG. 10 is a schematic diagram showing a data sampling process in an embodiment
  • FIG. 11 is a timing diagram of display data sampling of the driving module in one embodiment.
  • Fig. 1 is a schematic structural diagram of an LED display transmission system in an embodiment.
  • an LED display transmission system specifically includes a controller 100, a first switch (switch 1), a second switch (Switch 2), a resistor group and a plurality of LED display transmission devices 110, the controller 100 is electrically connected to the second switch through the first switch, the resistor group, the resistor group includes a plurality of resistors connected in series, each communication port of the LED display transmission device 110 is electrically connected to a different resistor terminal node in the resistor cluster;
  • the controller 100 is used to transmit the control voltage to each of the LED display transmission devices 110 when the switching states of the first switch and the second switch are both closed; When the state is closed and the switch state of the second switch is off, transmit control data to each of the LED display transmission devices 110;
  • Each of the LED display transmission devices 110 is used to determine the number value corresponding to each of the LED display transmission devices 110 according to the control voltage when receiving the control voltage; In the control data, the sub-data corresponding to each serial number is stored as a corresponding characteristic value of each LED display transmission device 110 .
  • the resistor cluster includes multiple resistors such as R1, R2, ..., RN, the resistor end node refers to the connection node at both ends of any resistor in the resistor cluster, and the LED displays the communication port mark of the transmission device 110.
  • each LED display transmission device 110 is electrically connected to different resistor terminal nodes in the resistor cluster, for example, as shown in Figure 1, the LED display transmission device 1 is electrically connected to the first end of the resistor R1, and The LED display transmission device 2 is electrically connected to the second end of the resistor R1, that is, the connection node at one end of a resistor is only electrically connected to one LED display transmission device 110, and it is only shown in FIG. 1 that one end of each resistor is only connected to one The LED display transmission device 110 is electrically connected, and the number of resistors between any two LED display transmission devices 110 can also be set according to actual needs.
  • resistor RX can be added in series with the resistor R1 and then connected in series with the resistor R2.
  • the number and resistance value of the resistors are not specifically limited here.
  • the controller 100 transmits a control voltage to each LED display transmission device 110 through the first switch, and the control voltage is denoted as VA,
  • VA the control voltage
  • the control voltage is grounded through the second switch after passing through multiple resistors in series. Since the pull-down current of the PI ports of all LED display transmission devices 110 is small, which is much smaller than the current flowing through the resistor cluster, the resistor cluster can be regarded as an ideal In the series voltage division structure, each resistor in the resistor cluster is an independent resistor, and the resistance values of each resistor can be set to be the same or different. In this embodiment, the resistance values of each resistor in the resistor cluster are the same.
  • each LED display transmission device 110 is connected with a resistor, and the resistance value is the same. Therefore, as shown in FIG.
  • the corresponding series resistance is also increased by one, that is, there are N resistors between the LED display transmission device 1 and the ground GND. Due to the voltage division of the series resistors, the control voltages corresponding to the PI ports of each LED display transmission device 110 are different, and the distance from the controller 100 is greater. The proportion of the control voltage received by the LED display transmission device 110 that is closer to the controller 100 is larger, and the proportion of the control voltage received by the LED display transmission device 110 that is farther away from the controller 100 is getting smaller and smaller.
  • the proportion of the control voltage received by the transmission device 110 is used to determine the number value corresponding to each LED display transmission device 110.
  • the number value is used to indicate the connection position of each LED display transmission device 110 between the first switch and the second switch. Values consist of at least one digit.
  • the controller 100 sends control data to each LED display transmission device 110 through the first switch, so the connection between the resistor set and the ground It is disconnected, so that the resistors in the resistor set are no longer a series voltage divider structure, and the link formed by the resistor set is equivalent to a wire, so that a parallel structure is formed between each LED display transmission device 110, so that each LED display transmission
  • the PI port of the device 110 receives the same control data at the same time, the control data includes characteristic value data and display data, the characteristic value data is used to write characteristic values to each LED display transmission device 110, and the display data is used to make each LED display transmission device 110 obtains the corresponding display instruction, and uses the sub-data corresponding to the numbered value in the feature value data as the feature value corresponding to the LED display transmission device 110, so as to complete the process of writing the feature value.
  • LED display transmission device 110 Compared with the prior art, there is no need to add input and output ports on the LED display transmission device 110, that is, there is no need to change the hardware structure of the LED display transmission device 110, which reduces the time-consuming production of the LED display transmission device 110 and saves LED display transmission.
  • the production cost of the device 110, and all the LED display transmission devices 110 in the LED display transmission system do not need to write the corresponding characteristic values one by one, but each LED display transmission device 110 reads and writes the corresponding characteristic values at the same time, which speeds up the characteristic value. Value write efficiency.
  • the controller 100 is also electrically connected to the first switch, each of the LED display transmission devices 110 , and the second switch, for providing each of the LED display transmission devices 110
  • the power supply is used to control the switching states of the first switch and the second switch.
  • the power port VDD of the controller 100 is electrically connected to the power ports of each LED display transmission device 110, and the first switch port K1 of the controller 100 is electrically connected to the first port of the first switch.
  • the second switch port K2 of the controller 100 is electrically connected to the first port of the second switch, the signal port A of the controller 100 is electrically connected to the second port of the first switch, and the ground port of the controller 100 is connected to each LED
  • the ground port of the transmission device 110 is shown to be electrically connected.
  • the LED display transmission device 110 includes:
  • a signal conversion module 111 electrically connected to the communication port of the LED display transmission device 110, for converting the control voltage received by the communication port of the LED display transmission device 110 into the serial number;
  • a data latch module 112 electrically connected to the signal conversion module 111, for receiving and storing the serial number sent by the signal conversion module 111;
  • the data receiving module 113 is electrically connected to the communication port of the LED display transmission device 110 and the data latch module 112, and is used to receive the control data sent by the communication port of the LED display transmission device 110 and When the serial number sent by the data latch module 112 is stored, the sub-data corresponding to the serial number in the control data is stored as the characteristic value corresponding to the LED display transmission device 110;
  • the power-on reset module 114 is electrically connected to each functional module in the LED display transmission device 110, and is used to send a power-on reset signal to the LED display transmission device when the LED display transmission device 110 is in a power-on state Each functional module in 110.
  • the signal conversion module 111 performs analog-to-digital conversion on the control voltage detected by the PI port of the LED display transmission device 110, that is, converts the voltage analog signal into a digital signal, and obtains the number value corresponding to the control voltage.
  • the data latch module 112 latches the serial number value sent by the signal conversion module 111 according to time sequence, and usually sends the latest received serial number value to the data receiving module 113, and when the data receiving module 113 receives the control data, the characteristic value data The sub-data corresponding to the numerical value of the serial number is used as the feature value corresponding to the LED display transmission device 110 .
  • the power-on reset module 114 is electrically connected to each functional module in the LED display transmission device 110.
  • the functional modules include the above-mentioned signal conversion module 111, data latch module 112, data receiving module 113 and other modules in the LED display transmission device 110.
  • a power-on reset signal is sent to each functional module in the LED display transmission device 110, so that each functional module performs a power-on reset initialization operation, so as to erase the previous operation traces of each functional module, To avoid adverse effects on the operation after power-on this time, and stop sending the power-on reset signal after power-on, so that the LED display and each functional module in the transmission device 110 are in a normal working state.
  • the power-on reset module 114 releases the power-on reset signal until each functional module in the LED display transmission device 110 enters the initialization state.
  • the power-on reset module 114 stops releasing the power-on reset signal;
  • the signal conversion module 111 starts to convert the received control voltage, and generates a conversion completion signal after the conversion is completed and sends it to Data latching module 112;
  • data latching module 112 carries out latching to the serial number numerical value that receives and enters latching state, generates a latch completion signal and sends to data receiving module 113 after latching finishes;
  • Data receiving module 113 according to The received serial number value is extracted from the feature value data and written as a feature value, that is, the data receiving module 113 enters the feature value sampling state.
  • the signal conversion module 111 is specifically configured to detect the switching state of the first switch and the second switch when both the switching states of the first switch and the second switch are closed and the control voltage sent by the controller 100 is received.
  • the analog voltage value of the control voltage at the communication port of the LED display transmission device 110, and the preset value corresponding to the preset value range where the analog voltage value is located is used as the number value, and a conversion completion signal is generated, and the The conversion complete signal and the number value are sent to the data latch module 112.
  • each resistor in the resistor cluster forms a series voltage divider structure, so when the controller 100 sends the control voltage to each LED display transmission device 110 through the first switch, The analog voltage values detected at the PI ports of each LED display transmission device 110 are different.
  • the resistance values of each resistor in the limited resistor cluster are the same, refer to FIG.
  • the analog voltage value detected by the PI port of device N is the entire path 1/N of the voltage, namely VA(1/N), similarly, there are two series resistors between the PI port of device N-1 and the GND after the second switch, then the PI port of device N-1 detects
  • the analog voltage value is 2/N of the entire path voltage, namely VA(2/N).
  • the analog voltage values detected by the PI ports of each device are VA(1/N), VA(2/N), VA(3/N),..., VA (N-2/N), VA(N-1/N), VA(N/N), that is, the analog voltage value detected by the PI port of the device is the number Z of the series resistance between the device and GND and the total resistance
  • the ratio of the number N is multiplied by the channel voltage, that is, the analog voltage value corresponding to each device is VA (M/N), and the closer the device is to GND, the smaller the analog voltage value detected by the PI port.
  • Each preset value interval corresponds to a preset value, and the analog voltage value is located
  • the preset value corresponding to the preset value range of the analog voltage value is used as the number value after the conversion of the analog voltage value, and the preset value range is determined by the reference analog quantity, which is recorded as Vc, and the preset value range can be specifically And correspondingly
  • the corresponding default value is 0,
  • the corresponding default value is The corresponding default value is 2, and so on, The corresponding default value is N.
  • the numbers corresponding to each device are 1, 2, 3, . . . , N-2, N-1, N, respectively.
  • the signal conversion module 111 in each device generates a conversion completion signal after converting the corresponding serial number value, and sends the conversion completion signal and the serial number value to the data latch module 112, and informs the data latch module 112 that the control voltage has been changed through the conversion completion signal. After the conversion is completed, the serial number value of the position information of the pointing device is sent to the data latch module 112 for latching.
  • the data receiving module 113 is specifically configured to: when the switch state of the first switch is closed, the switch state of the second switch is open, and the received control data is a characteristic value data, store the sub-data that matches the serial number in the feature value data as the feature value corresponding to the LED display transmission device 110 .
  • the characteristic value data includes a plurality of sub-data arranged in sequence, each sub-data indicates a characteristic value, and each sub-data corresponds to a position number according to the sorting, and each LED indicates that the PI port of the transmission device 110 receives the characteristic value
  • the sub-data with the same position number and number value are stored as the feature value of the LED display transmission device 110.
  • the feature value data includes five sub-data, and the position numbers corresponding to these five sub-data are 1 and 2 in sequence.
  • 3, 4, 5, and the number values corresponding to the five devices are 1, 2, 3, 4, 5 after voltage conversion according to the above embodiment, and the sub-data corresponding to the position number 1 is stored in the number value of 1 In the device, it is used as the corresponding characteristic value of the device with the number value 1; the sub-data corresponding to the position number 2 is stored in the device with the number value 2, and used as the corresponding feature value of the device with the number value 1, and so on.
  • the device pulls the corresponding sub-data from the feature value data according to the serial number value as its corresponding feature value.
  • the feature value data includes first frame header subdata, first end subdata, and a plurality of first intermediate subdata located between the first frame header subdata and the first end subdata ;
  • the data receiving module 113 is specifically configured to count the plurality of first intermediate sub-data received after receiving the first frame header sub-data, to obtain a first count value, and compare it with the serial number value
  • the first intermediate sub-data corresponding to the first count value corresponding to the same numerical value is stored as the characteristic value corresponding to the LED display transmission device 110 .
  • the feature value data includes a plurality of sub-data arranged in sequence, the feature value frame header is located at the start position, that is, the first frame header sub-data, and the end position is the first end sub-data
  • the data contains a plurality of first intermediate sub-data between the start bit and the end bit, and each first intermediate sub-data corresponds to a field, such as the first field, the second field, ..., the N-1th in Fig.
  • the length of each field can be the same or different, in this embodiment the length of each field is the same, and the length of the field can be customized according to different scene requirements Specifically, the length of the field can be 24 bits, 36 bits, 48 bits, etc., that is, the length of the field is M bits.
  • the data receiving module 113 After receiving the first frame header subdata, the data receiving module 113 starts counting the first intermediate subdata after the first frame header subdata, that is, every time a field is read, a cumulative count will be performed to obtain the first count Value, for example, when the first field in Figure 4 is read, the first count value is updated from the initial value 0 to 1, and when the second field in Figure 4 is read, the first count value is changed from 1 to Perform a count update to 2, and so on, if the serial number of the LED display transmission device 110 is 3, then when the first count value is equal to 3, store the field corresponding to the first count value count update as the LED display transmission
  • the feature value of the device 110 that is, the first count value is updated to 3 when the third field is read, and the third field is stored as the feature value of the LED display transmission device 110.
  • each LED display The transmission device 110 extracts the corresponding first intermediate sub-data from the eigenvalue data according to their respective serial numbers, and writes them as their corresponding eigenvalues.
  • the eigenvalues are composed of M-bit positive integers, and M is greater than or equal to 1.
  • the first intermediate sub-data includes multi-bit characters
  • the data receiving module 113 includes a first counter and a second counter electrically connected
  • the first counter is used to count the characters in the first intermediate sub-data after receiving the first frame header sub-data to obtain a second count value, and when the second count value reaches the first Reset to zero after the preset value; wherein, the first preset value is used to indicate the number of characters in the first intermediate sub-data;
  • the second counter is used to accumulate and count once when the second count value reaches the first preset value to obtain the first count value.
  • the first counter is the counter A in FIG. 5, and the second counter is the counter B in FIG. 7.
  • the first counter is used to count the characters in the first intermediate sub-data to obtain the first Two counting values
  • the first preset value is M-1, because the first counter starts counting from 0, and the number of characters of the first intermediate sub-data is M, that is, each field includes M characters, so the first counter
  • the second count value of is counted from 0 to M-1, it means that the data of one field has been read, and then the value of the second counter is counted up by one, that is, the second counter is used for the first intermediate sub-data counting, and then the first counter is reset to start counting the characters in the next first intermediate sub-data again.
  • the first counter counts each character in the first field until the second count value reaches M-1, the count value on the second counter is increased by one, that is, the first count value is updated from 0 to 1, and the first The counter starts to count the characters in the second field after being cleared, and when the second count value reaches M-1 again, the count value on the second counter is increased by one, that is, the first count value is updated from 1 to 2, so that
  • the first counter reads the first end sub-data, it is cleared and stops counting, and the second counter also stops counting as the counting of the first counter stops.
  • the first count value will store the count value after each update in time sequence. If the first count value is updated from 0 to N, the value The correspondence between 0 to N and each field will be recorded and saved.
  • the first count value is updated from the initial value 0 to 1, so the count value 1 corresponds to the first field when counting ;
  • the second field is read, the first count value is updated from 1 to 2, and the count value 2 corresponds to the second field, and so on, the first count value is updated from 0 to N, and each first count value is Corresponding to a field (the first intermediate sub-data), the corresponding relationship between each first count value and the field is stored, so that the LED display transmission device 110 can match each first count value according to its corresponding number value, and will be matched with each first count value.
  • the field corresponding to the first count value with the same serial number is stored and written as the characteristic value of the LED display transmission device 110 .
  • the LED display transmission device 110 further includes:
  • the driving module 115 is electrically connected with the data receiving module 113, and is used for receiving the control data and the characteristic value sent by the data receiving module 113, and when the control data is display data, according to the and displaying the sub-data matching the feature value in the data, and generating the corresponding pulse modulation signal.
  • the display data includes a plurality of sub-data
  • each LED display transmission device 110 extracts the sub-data corresponding to the characteristic value in the display data as target data, and generates a corresponding pulse modulation signal according to the target data, and the pulse modulation signal is recorded as PWM Signal used to control the brightness level of the RGB three-color channels.
  • the display data includes second frame header subdata, second end subdata, and a plurality of second intermediate subdata located between the second frame header subdata and the second end subdata;
  • the driving module 115 is specifically configured to, after receiving the second frame header sub-data, count the plurality of received second intermediate sub-data to obtain a third count value, and count the third count value When equal to the characteristic value, generate the corresponding pulse modulation signal according to the second intermediate sub-data corresponding to the third count value count; wherein, the third count value includes a multi-bit character, and the first The number of characters of the three-count value is the same as that of the feature value.
  • the display data includes a plurality of sub-data arranged in sequence, the display frame header is located at the start position, that is, the second frame header sub-data, and the second end sub-data is located at the end position.
  • a plurality of second intermediate sub-data are included between the start bit and the end bit, and each second intermediate sub-data corresponds to a field, such as the first field, the second field, ..., the N-1th field, as shown in Figure 9
  • the Nth field corresponds to a second intermediate sub-data respectively, and the length of each field can be the same or different. In this embodiment, the length of each field is the same, and the length of the field can be customized according to different scene requirements.
  • the length of the field can specifically be 24 bits, 36 bits, 48 bits, etc., that is, the length of the field is L bits, wherein the number of characters in the second intermediate sub-data can be the same as the number of characters in the first intermediate sub-data Can be different.
  • the driver module 115 After the driver module 115 receives the second frame header sub-data, it starts to count the second intermediate sub-data after the second frame header sub-data, that is, every time a field is read, it will carry out a cumulative count, and then obtain the third count value , for example, when the first field in Figure 9 is read, the third count value is updated from the initial value 0 to 1, and when the second field in Figure 9 is read, the first count value is again changed to 1 Once the count is updated to 2, and so on, if the characteristic value of the LED display transmission device 110 is 3, then when the third count value is equal to 3, the field corresponding to the third count value count update is stored as the LED display transmission device 110 target data, that is, the third count value is updated to 3 when the third field is read, then the third field is stored as the target data of the LED display transmission device 110, it can be seen that each LED display transmission
  • the device 110 extracts the corresponding second intermediate sub-data from the display data according to the respective eigenvalues as the corresponding target data to
  • the number of counting digits of the third count value is the same as the number of characters in the feature value, that is to say, the carry rule of the third count value and the feature value is the same. If the feature value adopts the eight-character binary carry rule, the first The third count value also adopts the eight-character binary carry rule; if the characteristic value adopts the four-character decimal carry rule, then the third count value also adopts the four-character decimal carry rule.
  • the eigenvalue adopts the eight-digit character binary carry rule, assuming that the eigenvalue is 00000101, then the initial value of the third count value is 00000000, until the count of the third count value is updated to 00000101, then the field corresponding to the count value is used as the target data , used to generate the corresponding pulse modulation signal.
  • the characteristic value adopts the two-character decimal decimal rule. Assuming that the characteristic value is 05, the initial value of the third count value is 00. When the count value of the third count value is updated to 05, the field corresponding to the count value is used as the target data .
  • Each LED display transmission device 110 grabs the corresponding field in the display data according to its characteristic value, as shown in Figure 10, assuming that the system includes three LED display transmission devices 110, the characteristic value adopts the decimal system, and the value written by device 1
  • the feature value is 3, the feature value written by device 2 is 1, and the feature value written by device 3 is 2, each device receives the display data at the same time, and device 1 captures the third field in the display data according to the feature value as the target data, device 2 captures the first field in the display data as the target data, and device 3 captures the second field in the display data as the target data, that is, each device can capture the corresponding target data according to the characteristic value, and can write Different feature values are added to each device, so that each device can flexibly capture the corresponding data according to the setting, which improves the flexibility of the device for receiving data.
  • the second intermediate sub-data includes a multi-bit character
  • the driving module 115 includes a third counter and a fourth counter electrically connected
  • the third counter is used to count the characters in the second intermediate sub-data after receiving the second frame header sub-data to obtain a fourth count value, and when the fourth count value reaches the second Reset to zero after the preset value; wherein, the second preset value is used to indicate the number of characters in the second intermediate sub-data;
  • the fourth counter is used to accumulate and count once when the fourth count value reaches the second preset value to obtain the third count value.
  • the third counter is the counter C in FIG. 11
  • the fourth counter is the counter D in FIG. 11
  • the third counter is used to count the characters in the second intermediate sub-data to obtain the first Four counting values
  • the second preset value is L-1
  • the third counter starts counting from 0, and the number of characters of the second intermediate sub-data is L, that is, each field includes L-bit characters, so the third counter
  • the fourth count value of is counted from 0 to L-1, it means that the data of one field has been read, and then the value of the fourth counter is counted up by one, that is, the fourth counter is used for the first intermediate sub-data counting, and then the third counter is reset to start counting the characters in the next second intermediate sub-data again.
  • the third counter counts each character in the first field in Figure 11, until the fourth count value reaches L-1, the count value on the fourth counter is increased by one, that is, the third count value is updated from 0 to 1 , the third counter starts counting the characters in the second field after being cleared, and when the fourth count value reaches L-1 again, the count value on the fourth counter is increased by one, that is, the third count value is updated from 1 to 2.
  • the third counter reads the second end sub-data, it is cleared and stops counting, and the fourth counter also stops counting as the counting of the third counter stops.
  • Each LED display transmission device 110 in the LED display transmission system receives the same display data or characteristic value data at the same time, and the characteristic value data can be arranged in different ways according to different requirements, so that each LED display transmission device 110 can write the specified characteristic value at the same time Or to obtain the corresponding display sub-data, without changing the hardware structure of the LED display transmission device 110, omitting the increase in the manufacturing cost and manufacturing time of the interface, and each LED display transmission device 110 performs feature value writing and data reading synchronously, improving the LEDs show the reliability and working efficiency of the transmission system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种LED显示传输系统,包括:控制器(100)在第一开关和第二开关处于闭合状态下,通过第一开关向各个LED显示传输装置(110)发送控制电压,以使各个LED显示传输装置(110)根据接收到的控制电压确定各自对应的编号数值;控制器(100)在第一开关处于闭合状态下、且第二开关处于断开状态下,通过第一开关向各个LED显示传输装置(110)发送控制数据,各个LED显示传输装置(110)在接收到控制数据时,将控制数据中与各个LED显示传输装置(110)相应编号数值所对应的子数据,作为各个LED显示传输装置(110)相应的特征值进行存储,无需改变LED显示传输装置(110)的硬件结构,缩减了LED显示传输装置(110)的生产耗时,并节约了LED显示传输装置(110)的生产成本。

Description

LED显示传输系统 技术领域
本申请涉及LED显示传输技术领域,尤其涉及一种LED显示传输系统。
背景技术
随着LED显示屏广泛应用在休闲文化广场、繁华商贸中心、商业街、火车站、地铁、商场、等场所,由于其应用领域的多样性和复杂性,对于信号传输的稳定性、可靠性、流畅性也提出了更高的要求。
在现有的LED显示传输技术领域,多个LED显示传输装置形成的多级传输系统为了提高信号传输的可靠性,会使各个LED显示传输装置之间采用并联连接方式而不是串联连接方式,所以不存在相互影响,但是采用并联连接模式则需要提前写入不同的特征值至各个LED显示传输装置中,每个LED显示传输装置可根据写入的特征值来接收相应的数据。而现有的对LED显示传输装置写入特征值的方式比较繁琐,需要对每个LED显示传输装置额外增设输入端口和输出端口,使得各个LED显示传输装置形成串联连接,按照串联方式对各个LED显示传输装置写入特征值,对LED显示传输装置增设输入端口和输出端口将会增加LED显示传输装置的生产耗时,并且还增加了多级传输系统中各个LED显示传输装置之间的连接复杂程度,更严重的是,LED显示传输装置增加了输入和输出端口以后,一旦这两个端口出现故障,就会严重影响LED显示传输装置的可靠性。
技术问题
为了解决上述技术问题,本申请提供了一种LED显示传输系统。
技术解决方案
本申请提供了一种LED显示传输系统,所述LED显示传输系统包括控制器、第一开关、第二开关、电阻集群以及多个LED显示传输装置,所述控制器通过所述第一开关、所述电阻集群与所述第二开关电性连接,所述电阻集群包括多个依次串联的电阻,每个所述LED显示传输装置的通信端口与所述电阻集群中的不同电阻端节点电性连接;
其中:所述控制器用于在所述第一开关和所述第二开关的开关状态均为闭合时,传输控制电压至各个所述LED显示传输装置;在所述第一开关的开关状态为闭合、且所述第二开关的开关状态为断开时,传输控制数据至各个所述LED显示传输装置;
各个所述LED显示传输装置用于在接收到所述控制电压时,根据所述控制电压确定各个所述LED显示传输装置对应的编号数值;在接收到所述控制数据时,将所述控制数据中与各个所述编号数值对应的子数据,作为各个所述LED显示传输装置相应的特征值进行存储。
在其中一个实施例中,所述LED显示传输装置包括:
信号转换模块,与所述LED显示传输装置的通信端口电性连接,用于将所述LED显示传输装置的通信端口接收到的所述控制电压转换为所述编号数值;
数据锁存模块,与所述信号转换模块电性连接,用于接收并存储所述信号转换模块发送的所述编号数值;
数据接收模块,与所述LED显示传输装置的通信端口以及所述数据锁存模块电性连接,用于在接收到所述LED显示传输装置的通信端口发送的所述控制数据以及所述数据锁存模块发送的所述编号数值时,将所述控制数据中与所述编号数值对应的子数据,存储作为所述LED显示传输装置相应的所述特征值;
上电复位模块,与所述LED显示传输装置中的各个功能模块电性 连接,用于在所述LED显示传输装置处于上电状态时发送上电复位信号至所述LED显示传输装置中的各个功能模块。
在其中一个实施例中,所述信号转换模块具体用于在所述第一开关和第二开关的开关状态均为闭合、且接收到所述控制器发送的所述控制电压时,检测所述控制电压在所述LED显示传输装置通信端口处的模拟电压值,并将所述模拟电压值所在预设数值区间对应的预设数值作为所述编号数值后,生成转换完成信号,发送所述转换完成信号和所述编号数值至所述数据锁存模块。
在其中一个实施例中,所述数据接收模块具体用于在所述第一开关的开关状态为闭合、所述第二开关的开关状态为断开、且接收到的所述控制数据为特征值数据时,将所述特征值数据中与所述编号数值相匹配的子数据,存储作为所述LED显示传输装置对应的所述特征值。
在其中一个实施例中,所述特征值数据包括第一帧头子数据、第一结束子数据以及位于所述第一帧头子数据与所述第一结束子数据之间的多个第一中间子数据;
所述数据接收模块具体用于在接收到所述第一帧头子数据后,对接收到的所述多个第一中间子数据进行计数,得到第一计数值,并将与所述编号数值对应数值相等的所述第一计数值对应的所述第一中间子数据,存储作为所述LED显示传输装置对应的所述特征值。
在其中一个实施例中,所述第一中间子数据包括多位字符,所述数据接收模块包括电性连接的第一计数器和第二计数器;
所述第一计数器用于在接收到所述第一帧头子数据后,对所述第一中间子数据中的字符进行计数,得到第二计数值,并在所述第二计数值达到第一预设数值后清零;其中,所述第一预设数值用于指示所述第一中间子数据中的字符位数;
所述第二计数器用于在所述第二计数值达到所述第一预设数值 时累计计数一次,得到所述第一计数值。
在其中一个实施例中,所述LED显示传输装置还包括:
驱动模块,与所述数据接收模块电性连接,用于接收所述数据接收模块发送的所述控制数据和所述特征值,并在所述控制数据为显示数据时,根据所述显示数据中与所述特征值相匹配的子数据,生成对应的所述脉冲调制信号。
在其中一个实施例中,所述显示数据包括第二帧头子数据、第二结束子数据以及位于所述第二帧头子数据与所述第二结束子数据之间的多个第二中间子数据;
所述驱动模块具体用于在接收到所述第二帧头子数据后,对接收到的所述多个第二中间子数据进行计数,得到第三计数值,并在所述第三计数值与所述特征值相等时,根据所述第三计数值计数对应的所述第二中间子数据生成对应的所述脉冲调制信号;其中,所述第三计数值包括多位字符,所述第三计数值的字符位数与所述特征值的字符位数相同。
在其中一个实施例中,所述第二中间子数据包括多位字符,所述驱动模块包括电性连接的第三计数器和第四计数器;
所述第三计数器用于在接收到所述第二帧头子数据后,对所述第二中间子数据中的字符进行计数,得到第四计数值,并在所述第四计数值达到第二预设数值后清零;其中,所述第二预设数值用于指示所述第二中间子数据中的字符位数;
所述第四计数器用于在所述第四计数值达到所述第二预设数值时累计计数一次,得到所述第三计数值。
在其中一个实施例中,所述控制器还分别与所述第一开关、各个所述LED显示传输装置、所述第二开关电性连接,用于为各个所述LED显示传输装置提供电源,且用于控制所述第一开关和所述第二开 关的开关状态。
有益效果
基于上述LED显示传输系统,控制器在第一开关和第二开关处于闭合状态下,通过第一开关向各个LED显示传输装置发送控制电压,以使各个LED显示传输装置根据接收到的控制电压确定各自对应的编号数值;控制器在第一开关处于闭合状态下、且第二开关处于断开状态下,通过第一开关向各个LED显示传输装置发送控制数据,各个LED显示传输装置在接收到控制数据时,将所述控制数据中与各个LED显示传输装置相应编号数值所对应的子数据,作为各个所述LED显示传输装置相应的特征值进行存储,以此方式完成各个LED显示传输装置的特征值写入过程,相较于现有技术,无需在LED显示传输装置上增设输入输出端口,即无需改变LED显示传输装置的硬件结构,缩减了LED显示传输装置的生产耗时,并节约了LED显示传输装置的生产成本,并且LED显示传输系统中的全部LED显示传输装置无需逐个依次写入相应的特征值,而是各个LED显示传输装置同时读取写入相应的特征值,加快了特征值的写入效率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中LED显示传输系统的结构示意图;
图2为一个实施例中LED显示传输系统的特征值写入时序图;
图3为一个实施例中LED显示传输系统的结构示意图;
图4为一个实施例中LED显示传输装置的结构框图;
图5为一个实施例中LED显示传输装置的特征值写入时序图;
图6为一个实施例中特征值数据的结构框图;
图7为一个实施例中数据接收模块的特征值写入时序图;
图8为一个实施例中LED显示传输装置的结构框图;
图9为一个实施例中显示数据的结构框图;
图10为一个实施例中显示数据采样流程示意图;
图11为一个实施例中驱动模块的显示数据采样时序图。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为一个实施例中LED显示传输系统的结构示意图,参照图1,提供了一种LED显示传输系统,该LED显示传输系统具体包括控制器100、第一开关(开关1)、第二开关(开关2)、电阻集群以及多个LED显示传输装置110,所述控制器100通过所述第一开关、所述电阻集群与所述第二开关电性连接,所述电阻集群包括多个依次串联的电阻,每个所述LED显示传输装置110的通信端口与所述电阻集群中的不同电阻端节点电性连接;
其中:所述控制器100用于在所述第一开关和所述第二开关的开关状态均为闭合时,传输控制电压至各个所述LED显示传输装置110; 在所述第一开关的开关状态为闭合、且所述第二开关的开关状态为断开时,传输控制数据至各个所述LED显示传输装置110;
各个所述LED显示传输装置110用于在接收到所述控制电压时,根据所述控制电压确定各个所述LED显示传输装置110对应的编号数值;在接收到所述控制数据时,将所述控制数据中与各个所述编号数值对应的子数据,作为各个所述LED显示传输装置110相应的特征值进行存储。
具体的,如图1所示,电阻集群包括如R1、R2、…、RN的多个电阻,电阻端节点是指电阻集群中任意一个电阻两端的连接节点,LED显示传输装置110的通信端口记为PI端口,每个LED显示传输装置110的通信端口与电阻集群中的不同电阻端节点电性连接,例如,如图1中LED显示传输装置1与电阻R1的第一端电性连接,而LED显示传输装置2则与电阻R1的第二端电性连接,即一个电阻一端的连接节点仅与一个LED显示传输装置110电性连接,而图1中仅展示出每个电阻一端仅与一个LED显示传输装置110电性连接,亦可根据实际需求设置任意两个LED显示传输装置110之间的电阻个数,例如LED显示传输装置1与LED显示传输装置2之间除了电阻R1外,还可增设电阻RX与电阻R1串联后再与电阻R2串联,在此不具体限定电阻的个数以及阻值大小。
如图2所示,第一节段中第一开关和第二开关的开关状态均处于闭合时,控制器100通过第一开关向各个LED显示传输装置110传输控制电压,控制电压记为VA,控制电压经过多个串联的电阻后经过第二开关接地,由于所有LED显示传输装置110的PI端口的下拉电流较小,远小于流过电阻集群的电流,那么此时电阻集群可视为理想的串联分压结构,电阻集群中的各个电阻均为独立电阻,各个电阻的阻值可以设定为一样也可设定为不一样,在本实施例中令电阻集群中 各个电阻的阻值相同。
每个LED显示传输装置110的PI端口均接有一个电阻,并且阻值相同,因此,如图1所示,LED显示传输装置N至LED显示传输装置1的方向上每增加一个LED显示传输装置相应串联的电阻也增加一个,即LED显示传输装置1与接地GND之间有N个电阻,由于串联电阻分压使得各个LED显示传输装置110的PI端口对应的控制电压不同,距离控制器100越近的LED显示传输装置110所接收到的控制电压占比越大,而距离控制器100越远的LED显示传输装置110所接收到的控制电压占比越来越小,因此可根据各个LED显示传输装置110所接收到的控制电压占比来确定各个LED显示传输装置110对应的编号数值,编号数值用于指示各个LED显示传输装置110在第一开关与第二开关之间的连接位置,编号数值至少由一位数字组成。
在第二阶段中第一开关的开关状态为闭合而第二开关的开关状态为断开时,控制器100通过第一开关向各个LED显示传输装置110发送控制数据,因此电阻集合与地的连接就断开了,使得电阻集合中的各个电阻之间不再是串联分压结构,电阻集合形成的链路相当于导线,使得各个LED显示传输装置110之间形成并联结构,使各个LED显示传输装置110的PI端口同时接收相同的控制数据,控制数据包括特征值数据和显示数据,特征值数据用于对各个LED显示传输装置110写入特征值,而显示数据用于令各个LED显示传输装置110获取相应的显示指令,将特征值数据中与编号数值相对应的子数据作为LED显示传输装置110对应的特征值,以此完成特征值的写入过程。
相较于现有技术,无需在LED显示传输装置110上增设输入输出端口,即无需改变LED显示传输装置110的硬件结构,缩减了LED显示传输装置110的生产耗时,并节约了LED显示传输装置110的生产成本,并且LED显示传输系统中的全部LED显示传输装置110无需逐 个依次写入相应的特征值,而是各个LED显示传输装置110同时读取写入相应的特征值,加快了特征值的写入效率。
在一个实施例中,所述控制器100还分别与所述第一开关、各个所述LED显示传输装置110、所述第二开关电性连接,用于为各个所述LED显示传输装置110提供电源,且用于控制所述第一开关和所述第二开关的开关状态。
具体的,如图3所示,控制器100的电源端口VDD与各个LED显示传输装置110的电源端口电性连接,控制器100的第一开关端口K1与第一开关的第一端口电性连接,控制器100的第二开关端口K2与第二开关的第一端口电性连接,控制器100的信号端口A与第一开关的第二端口电性连接,控制器100的接地端口与各个LED显示传输装置110的接地端口电性连接。
在一个实施例中,如4所示,所述LED显示传输装置110包括:
信号转换模块111,与所述LED显示传输装置110的通信端口电性连接,用于将所述LED显示传输装置110的通信端口接收到的所述控制电压转换为所述编号数值;
数据锁存模块112,与所述信号转换模块111电性连接,用于接收并存储所述信号转换模块111发送的所述编号数值;
数据接收模块113,与所述LED显示传输装置110的通信端口以及所述数据锁存模块112电性连接,用于在接收到所述LED显示传输装置110的通信端口发送的所述控制数据以及所述数据锁存模块112发送的所述编号数值时,将所述控制数据中与所述编号数值对应的子数据,存储作为所述LED显示传输装置110相应的所述特征值;
上电复位模块114,与所述LED显示传输装置110中的各个功能模块电性连接,用于在所述LED显示传输装置110处于上电状态时发送上电复位信号至所述LED显示传输装置110中的各个功能模块。
具体的,信号转换模块111将LED显示传输装置110PI端口检测到的控制电压进行模数转换,即将电压模拟信号转换为数字信号,得到控制电压相应的编号数值。数据锁存模块112将信号转换模块111发送的编号数值按照时序进行锁存,通常将最新接收到的编号数值发送至数据接收模块113,数据接收模块113在接收到控制数据时,将特征值数据中与编号数值相对应的子数据作为LED显示传输装置110对应的特征值。
上电复位模块114与LED显示传输装置110中各个功能模块电性连接,功能模块包括上述信号转换模块111、数据锁存模块112、数据接收模块113以及LED显示传输装置110中的其他模块,在LED显示传输装置110上电过程中向LED显示传输装置110中的各个功能模块发送上电复位信号,令各个功能模块进行上电复位初始化操作,以擦去各个功能模块在前一次的操作痕迹,避免对本次上电后的操作造成不良影响,并在上电结束后停止发送上电复位信号,使LED显示传输装置110中各个功能模块进行正常工作状态。
如图5所示,控制器100为LED显示传输装置110提供电源进行上电时,上电复位模块114释放上电复位信号至LED显示传输装置110中的各个功能模块进入初始化状态,在初始化结束后上电复位模块114停止释放上电复位信号;上电复位模块114停止释放上电复位信号时信号转换模块111开始将接收到的控制电压进行转换操作,转换结束后生成一个转换完成信号发送至数据锁存模块112;然后数据锁存模块112对接收到的编号数值进行锁存进入锁存状态,在锁存结束后生成一个锁存完成信号并发送至数据接收模块113;数据接收模块113根据接收到的编号数值在特征值数据中提取相应的子数据作为特征值进行写入,即数据接收模块113进入特征值采样状态。
在一个实施例中,所述信号转换模块111具体用于在所述第一开 关和第二开关的开关状态均为闭合、且接收到所述控制器100发送的所述控制电压时,检测所述控制电压在所述LED显示传输装置110通信端口处的模拟电压值,并将所述模拟电压值所在预设数值区间对应的预设数值作为所述编号数值后,生成转换完成信号,发送所述转换完成信号和所述编号数值至所述数据锁存模块112。
具体的,由于第一开关和第二开关均处于闭合状态时,电阻集群中的多个电阻形成串联分压结构,因此控制器100通过第一开关向各个LED显示传输装置110发送控制电压时,而各个LED显示传输装置110PI端口处检测到的模拟电压值各不相同,在限定电阻集群中各个电阻的阻值相同的情况下,参照图1,以下LED显示传输装置110均参照图1中简称装置,装置N的PI端口与第二开关后的GND之间只有一个电阻,整条通路电压为控制器100发送的控制电压VA,则装置N的PI端口检测到的模拟电压值为整条通路电压的1/N,即VA(1/N),同理,装置N-1的PI端口与第二开关后的GND之间存在两个串联电阻,则装置N-1的PI端口检测到的模拟电压值为整条通路电压的2/N,即VA(2/N)。
以此类推,从装置N至装置1的方向,各个装置的PI端口检测到的模拟电压值分别为VA(1/N)、VA(2/N)、VA(3/N)、…、VA(N-2/N)、VA(N-1/N)、VA(N/N),即装置PI端口检测到的模拟电压值为装置至GND之间串联电阻的个数Z与总电阻个数N的比值乘以通路电压,即各个装置对应的模拟电压值为VA(M/N),距离GND越近的装置其PI端口检测到的模拟电压值越小。
再将各个装置检测得到的模拟电压值与多个预设数值区间进行比对,从而确定模拟电压值所在的预设数值区间,每个预设数值区间对应一个预设数值,将模拟电压值所在的预设数值区间对应的预设数值作为该模拟电压值转换后的编号数值,而预设数值区间是由参考模 拟量所决定的,参考模拟量记为Vc,则预设数值区间具体可以为
Figure PCTCN2022081485-appb-000001
Figure PCTCN2022081485-appb-000002
而相应
Figure PCTCN2022081485-appb-000003
对应的预设数值为0,
Figure PCTCN2022081485-appb-000004
对应的预设数值为
Figure PCTCN2022081485-appb-000005
对应的预设数值为2,由此类推,
Figure PCTCN2022081485-appb-000006
对应的预设数值为N。
参考模拟量Vc与控制电压和装置数量有关,具体为Vc=VA/N,即参考模拟量也为最小单位变量,即参考模拟量可根据实际需求进行调节。
结合上述模拟电压值可得,VA(1/N)=Vc,则VA(2/N)=2Vc,VA(3/N)=3Vc,…,VA(N-2/N)=(N-2)Vc,VA(N-1/N)=(N-1)Vc,VA(N/N)=NVc。由于
Figure PCTCN2022081485-appb-000007
则VA(1/N)经过转换后得到的编号数值为1;由于
Figure PCTCN2022081485-appb-000008
Figure PCTCN2022081485-appb-000009
则VA(2/N)经过转换后得到的编号数值为2,以此类推,
Figure PCTCN2022081485-appb-000010
则VA(N/N)经过转换后得到的编号数值为N。
综上所述,从装置N至装置1的方向顺序,各个装置对应的编号数值分别为1、2、3、…、N-2、N-1、N。每个装置中的信号转换模块111在转换得到相应编号数值后生成转换完成信号,并将转换完成信号和编号数值发送至数据锁存模块112,通过转换完成信号告知数据锁存模块112控制电压已转换完毕,将指示装置位置信息的编号数值发送至数据锁存模块112进行锁存。
在一个实施例中,所述数据接收模块113具体用于在所述第一开 关的开关状态为闭合、所述第二开关的开关状态为断开、且接收到的所述控制数据为特征值数据时,将所述特征值数据中与所述编号数值相匹配的子数据,存储作为所述LED显示传输装置110对应的所述特征值。
具体的,特征值数据包括依次排列的多个子数据,每个子数据指示一个特征值,且每个子数据按照排序也分别对应一个位置编号,每个LED显示传输装置110的PI端口在接收到特征值数据时,将位置编号与编号数值相同的子数据作为LED显示传输装置110的特征值进行存储,例如,特征值数据包括五个子数据,这五个子数据按照排序依次对应的位置编号为1、2、3、4、5,而五个装置对应的编号数值依照上述实施例经过电压转换后分别为1、2、3、4、5,将位置编号1对应的子数据存储至编号数值为1的装置中,作为编号数值为1的装置相应的特征值;将位置编号2对应的子数据存储至编号数值为2的装置中,作为编号数值为1的装置相应的特征值,后续依次类推,各个装置按照编号数值在特征值数据中拉取相应的子数据作为其对应的特征值。
在一个实施例中,所述特征值数据包括第一帧头子数据、第一结束子数据以及位于所述第一帧头子数据与所述第一结束子数据之间的多个第一中间子数据;
所述数据接收模块113具体用于在接收到所述第一帧头子数据后,对接收到的所述多个第一中间子数据进行计数,得到第一计数值,并将与所述编号数值对应数值相等的所述第一计数值对应的所述第一中间子数据,存储作为所述LED显示传输装置110对应的所述特征值。
具体的,如图6所示,特征值数据包括按照顺序依次排列的多个子数据,位于起始位的是特征值帧头,即上述第一帧头子数据,位于 结束位的是第一结束子数据,在起始位与结束位之间包含有多个第一中间子数据,每个第一中间子数据对应一个字段,如图6中第一字段、第二字段、…、第N-1字段、第N字段分别对应一个第一中间子数据,每个字段的长度可以相同也可以不同,在本实施例中令各个字段的长度相同,字段的长度可根据不同的场景需求进行自定义设定,字段的长度具体可以为24位、36位、48位等等,即字段的长度为M位。
数据接收模块113在接收到第一帧头子数据后,开始对第一帧头子数据后的第一中间子数据进行计数,即每读取完一个字段将会进行一次累计计数,进而得到第一计数值,例如,在读取完图4中第一字段时,第一计数值由初始值0进行一次计数更新为1,在读取完图4中第二字段时,第一计数值再由1进行一次计数更新为2,后续以此类推,若LED显示传输装置110的编号数值为3,则在第一计数值等于3时,将第一计数值计数更新对应的字段存储作为该LED显示传输装置110的特征值,也就是在读取完第三字段时第一计数值才更新为3,则将第三字段存储作为该LED显示传输装置110的特征值,由此可知,每个LED显示传输装置110都按照各自对应的编号数值在特征值数据中提取相应的第一中间子数据,作为各自对应的特征值进行写入,特征值由M位正整数组成,M大于等于1。
在一个实施例中,所述第一中间子数据包括多位字符,所述数据接收模块113包括电性连接的第一计数器和第二计数器;
所述第一计数器用于在接收到所述第一帧头子数据后,对所述第一中间子数据中的字符进行计数,得到第二计数值,并在所述第二计数值达到第一预设数值后清零;其中,所述第一预设数值用于指示所述第一中间子数据中的字符位数;
所述第二计数器用于在所述第二计数值达到所述第一预设数值时累计计数一次,得到所述第一计数值。
具体的,参照图7,第一计数器即为图5中的计数器A,第二计数器即为图7中的计数器B,第一计数器用于对第一中间子数据中的字符进行计数,得到第二计数值,第一预设数值为M-1,由于第一计数器是从0开始计数,而第一中间子数据的字符位数为M,即每个字段包括M位字符,因此第一计数器的第二计数值从0计数至M-1时,表示已经读取完一个字段的数据,则第二计数器的值就进行一次加一计数,即第二计数器用于对第一中间子数据进行计数,然后第一计数器进行清零后重新对下一个第一中间子数据中的字符开始进行计数。
例如,第一计数器对第一字段中的各个字符进行计数,直至第二计数值达到M-1时,第二计数器上的计数值加一,即第一计数值由0更新为1,第一计数器在清零后开始对第二字段中的字符进行计数,在第二计数值再次达到M-1时,第二计数器上的计数值加一,即第一计数值由1更新为2,以此类推,直至第一计数器读取到第一结束子数据则清零停止计数,而第二计数器随着第一计数器的计数停止也停止计数。
虽然第二计数值的计数值是随着第一计数器的计数更新而更新,但第一计数值会按照时序存储每次更新后的计数值,如第一计数值由0更新为N,则数值0至N与各个字段之间的对应关系都将被记录保存,例如,读取完第一字段时,第一计数值由初始值0更新为1时,因此计数值1计数时对应第一字段;读取完第二字段时,第一计数值由1更新为2,计数值2计数时对应第二字段,以此类推,第一计数值由0更新至N,每个第一计数值都对应一个字段(第一中间子数据),将各个第一计数值与字段之间的对应关系进行保存,便于LED显示传输装置110按照其对应的编号数值与各个第一计数值进行匹配,将与编号数值相等的第一计数值所对应的字段进行存储,作为该LED显示传输装置110的特征值进行写入。
在一个实施例中,如图8所示,所述LED显示传输装置110还包括:
驱动模块115,与所述数据接收模块113电性连接,用于接收所述数据接收模块113发送的所述控制数据和所述特征值,并在所述控制数据为显示数据时,根据所述显示数据中与所述特征值相匹配的子数据,生成对应的所述脉冲调制信号。
具体的,显示数据包括多个子数据,各个LED显示传输装置110将显示数据中与特征值对应的子数据提取出作为目标数据,并根据目标数据生成对应的脉冲调制信号,脉冲调制信号记为PWM信号,用于控制RGB三色通道的亮度等级。
在一个实施例中,所述显示数据包括第二帧头子数据、第二结束子数据以及位于所述第二帧头子数据与所述第二结束子数据之间的多个第二中间子数据;
所述驱动模块115具体用于在接收到所述第二帧头子数据后,对接收到的所述多个第二中间子数据进行计数,得到第三计数值,并在所述第三计数值与所述特征值相等时,根据所述第三计数值计数对应的所述第二中间子数据生成对应的所述脉冲调制信号;其中,所述第三计数值包括多位字符,所述第三计数值的字符位数与所述特征值的字符位数相同。
具体的,如图9所示,显示数据包括按照顺序依次排列的多个子数据,位于起始位的是显示帧头,即上述第二帧头子数据,位于结束位的是第二结束子数据,在起始位与结束位之间包含有多个第二中间子数据,每个第二中间子数据对应一个字段,如图9中第一字段、第二字段、…、第N-1字段、第N字段分别对应一个第二中间子数据,每个字段的长度可以相同也可以不同,在本实施例中令各个字段的长度相同,字段的长度可根据不同的场景需求进行自定义设定,字段的 长度具体可以为24位、36位、48位等等,即字段的长度为L位,其中第二中间子数据中的字符位数可以与第一中间子数据中的字符位数相同也可以不同。
驱动模块115在接收到第二帧头子数据后,开始对第二帧头子数据后的第二中间子数据进行计数,即每读取完一个字段将会进行一次累计计数,进而得到第三计数值,例如,在读取完图9中第一字段时,第三计数值由初始值0进行一次计数更新为1,在读取完图9中第二字段时,第一计数值再由1进行一次计数更新为2,后续以此类推,若LED显示传输装置110的特征值为3,则在第三计数值等于3时,将第三计数值计数更新对应的字段存储作为该LED显示传输装置110的目标数据,也就是在读取完第三字段时第三计数值才更新为3,则将第三字段存储作为该LED显示传输装置110的目标数据,由此可知,每个LED显示传输装置110都按照各自对应的特征值在显示数据中提取相应的第二中间子数据,作为各自对应的目标数据以生成相应的脉冲调制信号驱动RGB三色通道的显示输出。
需要注意的是第三计数值的计数位数与特征值中的字符位数相同,也就是说第三计数值和特征值的进位规则相同,若特征值采用八位字符二进制进位规则,则第三计数值也采用八位字符二进制进位规则;若特征值采用四位字符十进制进位规则,则第三计数值也采用四位字符十进制进位规则。例如,特征值采用八位字符二进制进位规则,假设特征值为00000101,则第三计数值的初始值为00000000,直至第三计数值计数更新至00000101,则将该计数值对应的字段作为目标数据,用于生成相应的脉冲调制信号。
或者,特征值采用两位字符十进制进位规则,假设特征值为05,则第三计数值的初始值为00,直至第三计数值计数更新至05时,将该计数值对应的字段作为目标数据。
各个LED显示传输装置110按照各自的特征值在显示数据中抓取相应的字段,如图10所示,假设系统包括三个LED显示传输装置110,特征值采用十进制进位规则,装置1写入的特征值为3,装置2写入的特征值为1,装置3写入的特征值为2,各个装置同时接收到显示数据,而装置1按照特征值抓取显示数据中的第三字段作为目标数据,装置2抓取显示数据中的第一字段作为目标数据,装置3抓取显示数据中的第二字段作为目标数据,即每个装置可按照特征值抓取对应的目标数据,可写入不同的特征值至各个装置中,令各个装置按照设定灵活的抓取相应的数据,提高了装置对于接收数据的灵活性。
在一个实施例中,所述第二中间子数据包括多位字符,所述驱动模块115包括电性连接的第三计数器和第四计数器;
所述第三计数器用于在接收到所述第二帧头子数据后,对所述第二中间子数据中的字符进行计数,得到第四计数值,并在所述第四计数值达到第二预设数值后清零;其中,所述第二预设数值用于指示所述第二中间子数据中的字符位数;
所述第四计数器用于在所述第四计数值达到所述第二预设数值时累计计数一次,得到所述第三计数值。
具体的,参照图11,第三计数器即为图11中的计数器C,第四计数器即为图11中的计数器D,第三计数器用于对第二中间子数据中的字符进行计数,得到第四计数值,第二预设数值为L-1,由于第三计数器是从0开始计数,而第二中间子数据的字符位数为L,即每个字段包括L位字符,因此第三计数器的第四计数值从0计数至L-1时,表示已经读取完一个字段的数据,则第四计数器的值就进行一次加一计数,即第四计数器用于对第一中间子数据进行计数,然后第三计数器进行清零后重新对下一个第二中间子数据中的字符开始进行计数。
例如,第三计数器对图11中第一字段中的各个字符进行计数,直至第四计数值达到L-1时,第四计数器上的计数值加一,即第三计数值由0更新为1,第三计数器在清零后开始对第二字段中的字符进行计数,在第四计数值再次达到L-1时,第四计数器上的计数值加一,即第三计数值由1更新为2,以此类推,直至第三计数器读取到第二结束子数据则清零停止计数,而第四计数器随着第三计数器的计数停止也停止计数。
LED显示传输系统中的各个LED显示传输装置110同时接收相同的显示数据或特征值数据,特征值数据可以根据不同的需求进行不同的排列,令各个LED显示传输装置110同时写入规定的特征值或获取相应的显示子数据,无需改变LED显示传输装置110的硬件结构,省略了增加接口的制造成本以及制造时间,且各个LED显示传输装置110同步进行特征值写入以及数据读取,提高了LED显示传输系统的可靠性以及工作效率。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、系统、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、系统、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、系统、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限 制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种LED显示传输系统,其特征在于,所述LED显示传输系统包括控制器、第一开关、第二开关、电阻集群以及多个LED显示传输装置,所述控制器通过所述第一开关、所述电阻集群与所述第二开关电性连接,所述电阻集群包括多个依次串联的电阻,每个所述LED显示传输装置的通信端口与所述电阻集群中的不同电阻端节点电性连接;
    其中:所述控制器用于在所述第一开关和所述第二开关的开关状态均为闭合时,传输控制电压至各个所述LED显示传输装置;在所述第一开关的开关状态为闭合、且所述第二开关的开关状态为断开时,传输控制数据至各个所述LED显示传输装置;
    各个所述LED显示传输装置用于在接收到所述控制电压时,根据所述控制电压确定各个所述LED显示传输装置对应的编号数值;在接收到所述控制数据时,将所述控制数据中与各个所述编号数值对应的子数据,作为各个所述LED显示传输装置相应的特征值进行存储。
  2. 根据权利要求1所述的系统,其特征在于,所述LED显示传输装置包括:
    信号转换模块,与所述LED显示传输装置的通信端口电性连接,用于将所述LED显示传输装置的通信端口接收到的所述控制电压转换为所述编号数值;
    数据锁存模块,与所述信号转换模块电性连接,用于接收并存储所述信号转换模块发送的所述编号数值;
    数据接收模块,与所述LED显示传输装置的通信端口以及所述数据锁存模块电性连接,用于在接收到所述LED显示传输装置的通信端口发送的所述控制数据以及所述数据锁存模块发送的所述编号数值时,将所述控制数据中与所述编号数值对应的子数据,存储作为所述 LED显示传输装置相应的所述特征值;
    上电复位模块,与所述LED显示传输装置中的各个功能模块电性连接,用于在所述LED显示传输装置处于上电状态时发送上电复位信号至所述LED显示传输装置中的各个功能模块。
  3. 根据权利要求2所述的系统,其特征在于,所述信号转换模块具体用于在所述第一开关和第二开关的开关状态均为闭合、且接收到所述控制器发送的所述控制电压时,检测所述控制电压在所述LED显示传输装置通信端口处的模拟电压值,并将所述模拟电压值所在预设数值区间对应的预设数值作为所述编号数值后,生成转换完成信号,发送所述转换完成信号和所述编号数值至所述数据锁存模块。
  4. 根据权利要求2所述的系统,其特征在于,所述数据接收模块具体用于在所述第一开关的开关状态为闭合、所述第二开关的开关状态为断开、且接收到的所述控制数据为特征值数据时,将所述特征值数据中与所述编号数值相匹配的子数据,存储作为所述LED显示传输装置对应的所述特征值。
  5. 根据权利要求4所述的系统,其特征在于,所述特征值数据包括第一帧头子数据、第一结束子数据以及位于所述第一帧头子数据与所述第一结束子数据之间的多个第一中间子数据;
    所述数据接收模块具体用于在接收到所述第一帧头子数据后,对接收到的所述多个第一中间子数据进行计数,得到第一计数值,并将与所述编号数值对应数值相等的所述第一计数值对应的所述第一中间子数据,存储作为所述LED显示传输装置对应的所述特征值。
  6. 根据权利要求5所述的系统,其特征在于,所述第一中间子数据包括多位字符,所述数据接收模块包括电性连接的第一计数器和第二计数器;
    所述第一计数器用于在接收到所述第一帧头子数据后,对所述第 一中间子数据中的字符进行计数,得到第二计数值,并在所述第二计数值达到第一预设数值后清零;其中,所述第一预设数值用于指示所述第一中间子数据中的字符位数;
    所述第二计数器用于在所述第二计数值达到所述第一预设数值时累计计数一次,得到所述第一计数值。
  7. 根据权利要求6所述的系统,其特征在于,所述LED显示传输装置还包括:
    驱动模块,与所述数据接收模块电性连接,用于接收所述数据接收模块发送的所述控制数据和所述特征值,并在所述控制数据为显示数据时,根据所述显示数据中与所述特征值相匹配的子数据,生成对应的脉冲调制信号。
  8. 根据权利要求7所述的系统,其特征在于,所述显示数据包括第二帧头子数据、第二结束子数据以及位于所述第二帧头子数据与所述第二结束子数据之间的多个第二中间子数据;
    所述驱动模块具体用于在接收到所述第二帧头子数据后,对接收到的所述多个第二中间子数据进行计数,得到第三计数值,并在所述第三计数值与所述特征值相等时,根据所述第三计数值计数对应的所述第二中间子数据生成对应的所述脉冲调制信号;其中,所述第三计数值包括多位字符,所述第三计数值的字符位数与所述特征值的字符位数相同。
  9. 根据权利要求8所述的系统,其特征在于,所述第二中间子数据包括多位字符,所述驱动模块包括电性连接的第三计数器和第四计数器;
    所述第三计数器用于在接收到所述第二帧头子数据后,对所述第二中间子数据中的字符进行计数,得到第四计数值,并在所述第四计数值达到第二预设数值后清零;其中,所述第二预设数值用于指示所 述第二中间子数据中的字符位数;
    所述第四计数器用于在所述第四计数值达到所述第二预设数值时累计计数一次,得到所述第三计数值。
  10. 根据权利要求1至9任一项所述的系统,其特征在于,所述控制器还分别与所述第一开关、各个所述LED显示传输装置、所述第二开关电性连接,用于为各个所述LED显示传输装置提供电源,且用于控制所述第一开关和所述第二开关的开关状态。
PCT/CN2022/081485 2022-03-02 2022-03-17 Led显示传输系统 WO2023164981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210202744.6 2022-03-02
CN202210202744.6A CN114495814B (zh) 2022-03-02 2022-03-02 Led显示传输系统

Publications (1)

Publication Number Publication Date
WO2023164981A1 true WO2023164981A1 (zh) 2023-09-07

Family

ID=81484243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081485 WO2023164981A1 (zh) 2022-03-02 2022-03-17 Led显示传输系统

Country Status (2)

Country Link
CN (1) CN114495814B (zh)
WO (1) WO2023164981A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062685A1 (en) * 2003-06-09 2005-03-24 Masashi Nogawa Drive circuit and display system with said drive circuit
CN105489160A (zh) * 2016-01-12 2016-04-13 深圳市奥拓电子股份有限公司 一种led显示屏的数据传输装置、数据传输方法及系统
JP2019215964A (ja) * 2018-06-11 2019-12-19 株式会社デンソー 電池システム
CN111462682A (zh) * 2020-05-06 2020-07-28 利亚德光电股份有限公司 发光二极管led驱动电路、发光二极管led显示系统
CN112802427A (zh) * 2021-04-14 2021-05-14 杭州视芯科技有限公司 Led驱动电路、led显示系统和显示控制方法
CN213583061U (zh) * 2020-12-15 2021-06-29 东莞市华彩威科技有限公司 一种带地址可任意串并联数字led控制电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003076335A (ja) * 2002-08-07 2003-03-14 Nichia Chem Ind Ltd Led表示装置及びそれを用いたled表示装置の制御方法
TW201108186A (en) * 2009-08-20 2011-03-01 Ene Technology Inc LED display system and related control method
CN104332135B (zh) * 2014-10-30 2016-12-07 深圳市明微电子股份有限公司 一种并联显示电路及其显示装置
CN104517569B (zh) * 2014-12-15 2017-08-25 深圳市明微电子股份有限公司 串联显示系统及其数据传输方法
CN113223445A (zh) * 2020-01-19 2021-08-06 厦门凌阳华芯科技有限公司 一种应用于led芯片的数据传输方法、系统及相关组件
CN111586931A (zh) * 2020-06-29 2020-08-25 深圳匠明科技有限公司 Led驱动电路和led驱动系统
CN111540318B (zh) * 2020-07-10 2020-10-23 北京显芯科技有限公司 Led控制系统、设备、方法及存储介质
CN112652265B (zh) * 2020-12-24 2022-09-16 宗仁科技(平潭)股份有限公司 Led驱动装置
CN113242628A (zh) * 2021-06-17 2021-08-10 无锡德芯微电子有限公司 一种led控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062685A1 (en) * 2003-06-09 2005-03-24 Masashi Nogawa Drive circuit and display system with said drive circuit
CN105489160A (zh) * 2016-01-12 2016-04-13 深圳市奥拓电子股份有限公司 一种led显示屏的数据传输装置、数据传输方法及系统
JP2019215964A (ja) * 2018-06-11 2019-12-19 株式会社デンソー 電池システム
CN111462682A (zh) * 2020-05-06 2020-07-28 利亚德光电股份有限公司 发光二极管led驱动电路、发光二极管led显示系统
CN213583061U (zh) * 2020-12-15 2021-06-29 东莞市华彩威科技有限公司 一种带地址可任意串并联数字led控制电路
CN112802427A (zh) * 2021-04-14 2021-05-14 杭州视芯科技有限公司 Led驱动电路、led显示系统和显示控制方法

Also Published As

Publication number Publication date
CN114495814B (zh) 2023-05-05
CN114495814A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US6556628B1 (en) Methods and systems for transmitting and receiving differential signals over a plurality of conductors
TWI224300B (en) Data driver and related method used in a display device for saving space
CN101366181B (zh) 高速传输系统
CN1913507B (zh) 预加重装置、包含其的低压差分信令发射器和预加重方法
CN1713626B (zh) 电压电平编码系统和方法
US5160929A (en) System for parallel communication of binary data via trinary transmission lines
CN103165058B (zh) 多段数码管显示驱动电路结构
JP2011502401A (ja) タイミングマージンが改良された符号化技法および復号化技法
CN101667385A (zh) 显示器
CN103444144A (zh) 利用稀疏信令码进行噪声回弹、引脚效率且低功率的通信的方法和系统
JPH11500887A (ja) 遷移制御されたデジタルエンコード及び信号伝送システム
CN101471669A (zh) 数模转换器和数模转换方法
WO2023164981A1 (zh) Led显示传输系统
CN100495929C (zh) 同相移位方式的制约竞争计数码电路
WO2019214412A1 (zh) 数模转换电路、方法和显示装置
CN110910824A (zh) 一种提高OLED显示效果的非线性Gamma曲线产生系统及产生方法
CN201830377U (zh) 一种计算机模拟/数字视频相互转换的装置
CN100472969C (zh) 反相移位方式的制约竞争计数码电路
CN202352298U (zh) 多段数码管显示驱动电路结构
CN110085169A (zh) 一种用于平板显示的10-bit高速充放电驱动电路装置
Lim et al. A multi-lane MIPI CSI receiver for mobile camera applications
FI115864B (fi) Sarjamuotoinen rajapinta ja menetelmä digitaalisen datan siirtämiseksi sarjamuotoisen rajapinnan yli
Seidl On the finite degree of ambiguity of finite tree automata
TWI227594B (en) Impedance matching circuit
GB2052818A (en) Digital information transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929420

Country of ref document: EP

Kind code of ref document: A1