WO2023164893A1 - 无人机及无人机的控制方法 - Google Patents

无人机及无人机的控制方法 Download PDF

Info

Publication number
WO2023164893A1
WO2023164893A1 PCT/CN2022/079080 CN2022079080W WO2023164893A1 WO 2023164893 A1 WO2023164893 A1 WO 2023164893A1 CN 2022079080 W CN2022079080 W CN 2022079080W WO 2023164893 A1 WO2023164893 A1 WO 2023164893A1
Authority
WO
WIPO (PCT)
Prior art keywords
spreading
control method
drone
sowing
uav
Prior art date
Application number
PCT/CN2022/079080
Other languages
English (en)
French (fr)
Inventor
彭阳
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2022/079080 priority Critical patent/WO2023164893A1/zh
Publication of WO2023164893A1 publication Critical patent/WO2023164893A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting

Definitions

  • the embodiments of the present invention relate to the technical field of unmanned aerial vehicles, and in particular to an unmanned aerial vehicle and a control method for the unmanned aerial vehicle applied in fishery.
  • drones have been widely used in many fields.
  • the current application of drones in fishery is not very common.
  • the application in fishery is limited to the use of drones' aerial photography function to realize fishery supervision and damage inspection after disasters.
  • Embodiments of the present invention provide a drone and a control method for the drone applied to fishery.
  • a drone includes a frame, a material box and a spreading mechanism.
  • the feed box is detachably mounted on the frame for loading solid particles.
  • the side wall of the material box has a pair of rotatable arc-shaped walls, and the pair of arc-shaped walls can rotate between an open position and a closed position, wherein, in the open position, the pair of arc-shaped walls The walls form a funnel to facilitate feeding, and in said closed position said pair of arcuate walls form part of the side walls of said bin.
  • the spreading mechanism is installed at the bottom of the material box, wherein the spreading mechanism includes a spreading box, a spreading impeller located in the spreading box, and a driving device for driving the spreading impeller to rotate.
  • the box body has a feeding port and a spreading opening communicated with the material box, and the spreading impeller is used to spread the solid particles from the spreading opening.
  • a method for controlling a UAV is provided, which is applied to fishery.
  • the drone includes a frame, a material box installed on the frame for loading solid particles, and a spreading mechanism installed at the bottom of the material box.
  • the control method includes: controlling the UAV to perform a sowing operation above the water surface; and controlling the sowing mechanism of the UAV to sow the solid particles forward to the water surface during sowing.
  • Fig. 1 is a top view of an unmanned aerial vehicle in an unfolded state according to an embodiment of the present invention
  • Fig. 2 is a bottom view of the unmanned aerial vehicle in an unfolded state according to an embodiment of the present invention
  • Fig. 3 is a top view of the UAV in a retracted state according to an embodiment of the present invention
  • Fig. 4 is a schematic diagram of the spreading mechanism of an embodiment of the present invention when the movable baffle is opened;
  • Fig. 5 is a schematic diagram of the spreading mechanism of an embodiment of the present invention when the movable baffle is closed;
  • Fig. 6 is the schematic diagram of the magazine replacement of an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a blade mounted on the end of the arm in an unfolded state according to an embodiment of the present invention
  • Fig. 8 is a schematic diagram of a blade installed on the end of the arm in a folded state according to an embodiment of the present invention
  • FIG. 9 is a flow chart of a method for controlling an unmanned aerial vehicle according to an embodiment of the present invention.
  • Fig. 10 is the specific steps of determining the preset operating point in the fixed-point sowing operation of the drone according to an embodiment of the present invention
  • Fig. 11 is a schematic diagram of the cage culture on the river and sea surface where the take-off and landing zero point of the drone is set on the ground according to an embodiment of the present invention
  • Fig. 12 is a schematic diagram of the cage culture on the river and sea surface where the take-off and landing zero point of the drone is set on the floating fishing raft in one embodiment of the present invention
  • Fig. 13 is the specific steps of performing fixed-point sowing operation according to one embodiment of the present invention.
  • Fig. 14 is the specific steps of determining the preset operating point in the fixed-track sowing operation of the drone according to an embodiment of the present invention
  • Fig. 15 is the schematic diagram of the water area change of the reservoir pond of an embodiment of the present invention.
  • Fig. 16 shows the specific steps of adjusting the preset operation trajectory according to an embodiment of the present invention
  • Fig. 17 is a schematic diagram of the current effective sowing area detection of solid particles according to an embodiment of the present invention.
  • Fig. 18 is a specific step of detecting the current effective spreading area of solid particles according to an embodiment of the present invention.
  • Fig. 19 is a schematic diagram of the time difference between the sowing object trajectory and the actual flight trajectory of the drone according to an embodiment of the present invention.
  • Fig. 20 is a schematic diagram of real-time trajectory planning of an unmanned aerial vehicle according to an embodiment of the present invention.
  • Fig. 21 is a schematic diagram of automatic loading and unloading of unmanned aerial vehicles and battery replacement according to an embodiment of the present invention.
  • the embodiment of the present invention provides an unmanned aerial vehicle, which is particularly suitable for use in fisheries, including but not limited to application of medicines, feeding, and inspection of fish ponds in fisheries.
  • the unmanned aerial vehicle applicable to fishery in the embodiment of the present invention may include but not limited to the comprehensive farming application of fish, shrimp, crab, shellfish, etc. that are used in cages in reservoirs, ponds, rivers, lakes and seas.
  • Figures 1 to 3 disclose a schematic diagram of a drone 100 according to an embodiment of the present invention, wherein Figure 1 discloses a top view of the drone 100 in an unfolded state, and Figure 2 discloses a view of the drone 100 in an unfolded state Bottom view, FIG. 3 reveals a top view of the UAV 100 in a retracted state.
  • a drone 100 according to an embodiment of the present invention is applied to fishery, and includes a frame 1 , a bin 2 for loading solid particles, and a spreading mechanism 3 for spreading solid particles.
  • the material box 2 is detachably installed on the frame 1, so that the material box 2 can be easily lifted out of the frame 1 for loading, or the material box 2 can be directly replaced by being equipped with multiple material boxes 2, Thereby, work efficiency can be improved.
  • the spreading mechanism 3 is installed on the bottom of the feed box 2 .
  • the drone 100 in one embodiment of the present invention also includes a pressure sensor 4 .
  • the pressure sensor 4 is arranged on the frame 1 and can be used to detect the weight of the material box 2 in real time.
  • the UAV 100 of an embodiment of the present invention can be used to detect the real-time weight of the material box 2 by setting the pressure sensor 4, and then can plan a reasonable and optimal path through information such as the current battery power, wind speed and direction, and meet the requirements of the effective route to the greatest extent. Under the premise of operating, improve operating efficiency.
  • Fig. 4 and Fig. 5 disclose the schematic diagram of spreading mechanism 3 of an embodiment of the present invention, wherein, Fig. 4 reveals the schematic diagram of spreading mechanism 3 when movable baffle 38 is opened, Fig. 5 discloses sowing mechanism 3 when movable baffle 38 Schematic diagram when closed.
  • the spreading mechanism 3 includes a spreading box 30 , a spreading impeller 35 located in the spreading box 30 , and a driving device 34 for driving the spreading impeller 35 to rotate.
  • the spreading box body 30 has a material inlet 39 and a spreading opening 33 which communicate with the material box 2 , and the spreading impeller 35 can be used to spread the solid particles in the material box 2 out from the spreading opening 33 .
  • the sowing box 30 includes an upper cover 31 and a lower cover 32, and the upper cover 31 and the lower cover 32 cooperate to form the sowing box 30, wherein the sowing opening 33 is located at the side of the sowing box 30 facing the drone 100 One side of the flying direction, so that when spreading, the spreading mechanism 3 can spread the solid particles forward to the water surface.
  • the spreading box 30 is generally a flat cylinder, and the lower cover 32 is provided with a plurality of diversion grooves 321.
  • the special design of the diversion grooves 321 can be used to improve the force of the spreading impeller 35 during spreading, and meet the requirements of the machine for large solid particles. sowing needs.
  • the design of the guide groove 321 is related to the curvature of the spreading impeller 35 , the diameter of the bottom surface of the cylinder and the size of the spreading opening 33 .
  • the driving device 34 is located in the spreading box 30 , and the spreading impeller 35 is directly arranged on the driving device 34 , so that the driving device 34 can directly drive the spreading impeller 35 to spread the solid particles through the spreading opening 33 of the spreading box 30 .
  • the spreading mechanism 3 may further include a spreading amount adjusting device, and the spreading amount adjusting device is respectively connected to the material box 2 and the spreading box body 30 .
  • the spreading amount adjusting device can be used to adjust the feeding amount of solid particles entering the spreading box body 30 from the feed box 2 .
  • the spreading rate adjusting device may include a stationary baffle 37 , a movable baffle 38 and a steering gear 36 .
  • the static baffle 37 is arranged at the feed inlet 39 of the spreading box 30 .
  • the movable baffle 38 can be used to cooperate with the stationary baffle 37 to close the feed opening 39 of the spreading box 30 .
  • the steering gear 36 can be used to control the rotation of the movable baffle 38 so as to open or close the feeding port 39 of the spreading box 30 . Moreover, the steering gear 36 can be used to control the opening range of the movable baffle 38, and then the size of the feed port 39 can be adjusted through the control of the steering gear 36 to the opening range of the movable baffle 38, thereby adjusting the spreading of solid particles flow.
  • the drone 100 may further include a controller (not shown), and the controller may obtain the actual spreading flow rate of the spreading mechanism 3 based on the real-time detected weight change of the material box 2 .
  • the actual spreading flow rate of the spreading mechanism 3 can be calculated by the following formula:
  • f a is the actual spreading flow rate of the spreading mechanism 3
  • G is the real-time weight of the material box 2 detected by the pressure sensor 4
  • G k is the empty weight of the material box 2
  • ⁇ t is the unit time.
  • the controller can also be based on the obtained actual broadcast flow f a and preset broadcast flow f c , for example, the difference between the actual broadcast flow f a and the preset broadcast flow f c can be obtained to obtain the steering gear 36
  • the opening range adjustment amount K of the movable baffle 38 is controlled.
  • the driving device 34 at the bottom of the spreading mechanism 3 adopts a semi-closed-loop constant-speed drive, and by monitoring the current of the driving device 34 during the spreading process, the rotational torque of the spreading impeller 35 can be fed back, and the solid particles that are about to be spread can be predicted in advance
  • the weight of the feed-forward compensation of the opening range adjustment K of the movable baffle 38 controlled by the steering gear 36 can improve the response speed and stability of the broadcasting flow correction, and effectively solve the problem of the size difference of solid particles and the The problem of uneven spreading that is easily caused by factors such as the viscosity and water content of fixed particles.
  • the material box 2 includes a box body 21 and an upper end cover 22 connected to the box body 21 , and the upper end cover 22 protrudes from the box body 21 .
  • the frame 1 is provided with a first storage space 11, the box body 21 is located in the first storage space 11 of the frame 1, and the upper end cover 22 is supported on the upper surface of the frame 1, wherein the pressure sensor 4 is arranged on the frame 1 Between the upper end cover 22 of the material box 2.
  • a handle 23 is provided on the upper end cover 22, so that it can be used to lift and release the material box 2 conveniently.
  • a material box opening 20 and a material box cover 24 for sealing the material box opening 20 are arranged on the upper end cover 22 . Through the material box opening 20, the remaining amount of solid particles in the box body 21 can be conveniently observed.
  • Fig. 6 discloses a schematic diagram of the replacement of the magazine 2 according to an embodiment of the present invention.
  • the material box 2 can adopt a side-opening structure design, as shown in Figure 6, the side wall of the material box 2 has a pair of rotatable arc walls 26, and the pair of arc walls 26 can rotate between the open position and the closed position .
  • a funnel is formed between the pair of arc-shaped walls 26 to facilitate feeding. Since the upper end of the funnel has a larger opening, it can avoid the splashing of solid particles when feeding, solve the problem of easy blockage of the feeding port when feeding solid particles, and further improve the feeding efficiency.
  • the pair of arc-shaped walls 26 are in the closed position, the pair of arc-shaped walls 26 can constitute a part of the side wall of the material box 2 , thereby forming a closed box body 21 .
  • the side wall of the material box 2 may also have a section of flat surface 25 , and the flat surface 25 is opposite to a pair of arc-shaped walls 26 on the side wall of the material box 2 .
  • the side wall of the material box 2 is provided with a section of flat surface 25, so that the side of the material box 2 can be placed flat on the ground, and it is convenient to place the material box 2 on the ground for loading.
  • the material box 2 when the material box 2 needs to be replaced to load the material box 2, the material box 2 can be lifted from the first storage space 11 of the frame 1 of the drone 100 through the handle 23 of the material box 2, and the The flat surface 25 of the feed box 2 is placed on the ground, so that the feed box 2 is laterally placed on the ground.
  • a pair of arc-shaped walls 26 on the side walls of the feed box 2 are opened to allow the pair of arc-shaped walls 26 to Be in the open position, to form the structure of funnel, then, can carry out fast feeding through the funnel of material box 2, after feeding is finished, close a pair of arc-shaped walls 26, let a pair of arc-shaped walls 26 be in closing position, thereby The box body 21 is closed.
  • the replacement of the magazine 2 is completed.
  • the material box 2 of one or more embodiments of the present invention effectively solves the problem of the traditional top loading material box.
  • the spreading mechanism at the bottom of the material box makes it impossible to place the material vertically after the material box is removed, and can only be installed in the frame.
  • the problem of feeding materials has been improved, and the working efficiency has been improved.
  • Fig. 7 and Fig. 8 disclose the schematic view of the blade 6 installed on the end of the machine arm 5 according to an embodiment of the present invention, wherein, Fig. 7 shows that the blade 6 installed on the end of the machine arm 5 is in a deployed state 8 is a schematic diagram of the blade 6 installed on the end of the arm 5 in a folded state.
  • the drone 100 in the embodiment of the present invention further includes an arm 5 and a blade 6 .
  • the machine arm 5 is mounted on the frame 1
  • the paddle 6 is rotatably mounted on the end of the machine arm 5 .
  • the end of the machine arm 5 comprises a second driving device 51 for driving the blade 6 to rotate.
  • the end of the arm 5 also includes a flywheel 52 and a driving force disc 53 .
  • the flywheel 52 is sleeved on the outside of the second driving device 51, and can rotate around the rotating shaft of the second driving device 51 independently.
  • the driving force disc 53 is fixedly connected with the rotating shaft of the second driving device 51 , and the paddle 6 is fixed on the flywheel 52 .
  • the second driving device 51 can drive the paddle 6 to rotate through the driving force disc 53 .
  • the paddle 6 can be a foldable paddle, and the paddle 6 can rotate around the flywheel 52 , so that the paddle 6 can be unfolded or folded on both sides of the flywheel 52 .
  • a locking slot 61 is provided on the paddle 6 , and a buckle 531 is provided at the end of the driving force disc 53 . As shown in FIG. 7 , when the paddle 6 is unfolded, the buckle 531 of the driving force plate 53 can be snapped into the slot 61 of the paddle 6 . Therefore, the rotational moment of the second driving device 51 can be directly transmitted to the blade 6 through the driving force disc 53 .
  • the locking slot 61 is disposed near the middle of the paddle 6 .
  • the rotation of the second driving device 51 of the embodiment of the present invention can respectively drive the rotation of the flywheel 52, because the paddle 6 is fixed on the flywheel 52, so that the rotation of the flywheel 52 can drive the paddle 6 to rotate together; It is fixedly connected with the rotating shaft of the second driving device 51, therefore, the rotation of the second driving device 51 simultaneously drives the rotation of the driving force disk 53, and because the paddle 6 is fixed on the driving force disk 53, therefore, the rotation of the driving force disk 53 And then also drive the paddle 6 to rotate together, adopt this parallel driving mode, can effectively improve the rotating shaft force of the second driving device 51 when the paddle 6 rotates at a high speed, a large amount of vibrations are transmitted through the flywheel 52;
  • the output torque of the driving device 51 is applied to the middle of the blade 6 through the driving force disc 53 , which can reduce the vibration of the end of the blade 6 compared with the traditional paddle heel driving method.
  • the machine arm 5 may be a telescopic machine arm, and the machine arm 5 is telescopically arranged on the frame 1 .
  • a jumper (not shown) is arranged at the root of the machine arm 5 , and when the machine arm 5 is stretched out, the jumper can be used to lock the machine arm 5 .
  • a threaded sleeve (not shown) is also arranged on the machine arm 5. When the snap ring locks the machine arm 5, the machine arm 5 can be tightened by the threaded sleeve, so that it can be used to fix the machine arm 5 and prevent the machine arm from 5 loose.
  • the frame 1 is generally in the shape of a cuboid, and the machine arms 5 include four, and the four arms 5 are telescopically arranged on four horizontal sides of the frame 1 respectively.
  • the UAV 100 may further include a telescoping tripod 7 , and the telescoping tripod 7 is telescopically arranged on the frame 1 .
  • the legs 7 are telescopically arranged on four vertical sides of the rectangular parallelepiped frame 1 .
  • a snap spring (not shown) is provided at the root of the tripod 7 , and the snap spring can be used to lock the tripod 7 when the tripod 7 is extended.
  • the tripod 7 is also provided with a threaded sleeve (not shown), and when the jumper locks the tripod 7, the tripod 7 is tightened by the threaded sleeve, so that it can be used to fix the tripod 7 and prevent the tripod 7 from loose.
  • the drone 100 may further include a battery 8 .
  • a second storage space 12 is provided on the frame 1 , and the battery 8 is detachably installed in the second storage space 12 of the frame 1 , and the battery 8 can be used to power the drone 100 .
  • One or more embodiments of the present invention adopt the storage scheme of the tripod 7 and the arm 5 that can be received inside the frame 1, so as to reduce the volume occupied by the drone 100 during the handling and transfer process, the material box 2 and the battery 8 It adopts a detachable design, which is convenient for one person to carry. According to calculations, with this type of folding scheme, the volume occupied by the folded body can be reduced by 70%. Therefore, it is beneficial to the handling and transition of the UAV 100 .
  • the UAV 100 can also include a laser or millimeter-wave radar 91, the laser or millimeter-wave radar 91 is arranged at the bottom of the UAV 100, and can be used to scan images of the waters below the horizon .
  • UAV 100 can also comprise pan-tilt camera 92, and pan-tilt camera 92 is arranged on frame 1, can be used for taking the image of water surface to detect the situation of water surface .
  • the UAV 100 may also include a side-view binocular camera 93 arranged on the side of the frame 1 and a down-view binocular camera 94 arranged at the bottom of the frame 1 .
  • the side-view binocular camera 93 and the down-view binocular camera 94 can be used to monitor the surrounding conditions of the UAV 100 during flight.
  • the UAV 100 in one or more embodiments of the present invention can replace manual work, has a large coverage area, can realize fishery automation, has the advantages of high efficiency and safety, and has the characteristics of high degree of freedom, flexibility and controllability, especially It is suitable for transition between different fish ponds or for fixed-point, directional, and timing applications.
  • the embodiment of the present invention also provides a method for controlling the UAV 100 .
  • the control method of the UAV 100 can be applied to fishery.
  • the drone 100 includes a frame 1 , a material box 2 installed on the frame 1 for loading solid particles, and a spreading mechanism 3 installed at the bottom of the material box 2 .
  • FIG. 9 discloses a flow chart of a control method of the drone 100 according to an embodiment of the present invention. As shown in FIG. 9 , the control method of the drone 100 in one embodiment of the present invention may include step S11 and step S12 .
  • step S11 the UAV 100 is controlled to carry out sowing operations over the water surface.
  • step S12 during sowing, control the sowing mechanism 3 of the UAV 100 to sow the solid particles forward to the water surface.
  • the spreading mechanism 3 includes a spreading impeller 35 and a driving device 34 for driving the spreading impeller 35 to rotate.
  • the control method may further include: controlling the driving device 34 to drive the spreading impeller 35 to control the spreading mechanism 3 to spread solid particles at a predetermined spreading initial velocity Vc (as shown in FIG. 17 ).
  • the spreading mechanism 3 has a feed opening 39 .
  • the control method may further include: controlling the spreading mechanism 3 to spread the solid particles at a predetermined spreading flow rate by adjusting the feeding amount of the solid particles from the material box 2 into the feeding port 39 of the spreading mechanism 3 .
  • the spreading mechanism 3 also includes a stationary baffle 37 arranged at the feed inlet 39, a movable baffle 38 for cooperating with the static baffle 37 to close the feed inlet 39, and a steering gear for controlling the rotation of the movable baffle 38. 36.
  • the control method may further include: adjusting the size of the feed port 39 by controlling the opening range of the movable baffle 38 by the steering gear 36 to adjust the feed amount.
  • control method may also include: detecting the weight G of the material box 2 in real time; and obtaining the actual spreading flow f a of the spreading mechanism 3 based on the real-time detected weight change of the material box 2, as shown in the above formula ( 1) as shown.
  • Pressure sensor 4 can be set on frame 1, and pressure sensor 4 contacts with the upper surface of frame 1 and upper end cover 22 respectively.
  • the weight of the material box 2 can be detected in real time through the pressure sensor 4 arranged between the frame 1 and the upper end cover 22 of the material box 2 .
  • control method may further include: obtaining the adjustment amount K of the opening width of the movable damper 38 controlled by the steering gear 36 based on the obtained actual spreading flow f a and the preset spreading flow f c .
  • control method may also include: controlling the driving device 34 to drive at a constant speed; monitoring the current of the driving device 34 during spreading; predicting the weight of the solid particles that are about to be broadcast based on the current of the driving device 34; and The predicted weight of the solid particles that are about to be broadcast is used to feed forward and compensate the opening range adjustment K of the movable baffle 38 .
  • control of the UAV 100 in step S11 to perform the sowing operation above the water may include: controlling the UAV 100 to carry out the operation according to the preset operation point above the water. Fixed-point sowing operations.
  • determining the preset operation point in the fixed-point sowing operation of the UAV 100 may include step S21 and step S22.
  • step S21 the drone 100 is manually controlled in advance to perform flight teaching.
  • step S22 the preset operating points in the fixed-point sowing operation of the UAV 100 may be planned based on the taught fixed points.
  • the step S22 of planning the preset operation point in the fixed-point sowing operation of the UAV 100 based on the taught fixed point may further include step S221 and step S222.
  • step S221 the GPS coordinates of the take-off and landing zero point of the UAV 100 and the taught fixed point are recorded.
  • step S222 a preset operating point in the fixed-point sowing operation may be formed based on the take-off and landing zero point and the taught GPS coordinates of the fixed point.
  • control method of the embodiment of the present invention provides the following two operation modes.
  • Fig. 11 discloses a schematic diagram of cage culture in rivers and seas in which the take-off and landing zero point of the UAV 100 is set on the ground according to an embodiment of the present invention.
  • the control method may also include: controlling the UAV 100 to take off from the take-off and landing zero point to the floating fishing raft The reference point, wherein, the fixed GPS base station of the floating fishing raft can be used as the reference point of the floating fishing raft, and the UAV 100 always maintains communication with the fixed GPS base station of the fishing raft after taking off; The operating zero point of the man-machine 100; using the operating zero point to control the UAV 100 to perform fixed-point sowing operations according to the preset operating point; and controlling the UAV 100 to return to the take-off and landing zero point after the sowing operation is completed.
  • Fig. 12 discloses a schematic diagram of cage culture on the river and sea surface in which the take-off and landing zero point of the UAV 100 is set on the floating fishing raft according to an embodiment of the present invention.
  • the control method may also include: controlling the UAV 100 to take off from the takeoff and landing zero point, and the UAV After the 100 takes off, the communication with the fixed GPS base station of the fishing raft is always maintained; after take-off, the zero point of take-off and landing is used as the operation zero point of the UAV 100 to control the UAV 100 to carry out fixed-point sowing operations according to the preset operation point; After the operation is over, the UAV 100 is controlled to return to the zero point of takeoff and landing. According to the coordinates of the home point constantly refreshed by the GPS base station, the UAV 100 can be controlled to automatically return to the zero point of takeoff and landing.
  • the fixed-point sowing operation may further include steps S31 to S33.
  • step S31 the preset operating points are numbered.
  • step S32 the total amount of solid particles broadcasted on each number is configured.
  • step S33 the spreading mechanism 3 of the UAV 100 is controlled to spread according to the total amount of solid particles on each number.
  • control of the UAV 100 in step S11 to perform the sowing operation above the water may include: controlling the UAV 100 to operate according to the preset operation over the water track for fixed track sowing operations.
  • determining the preset operating point in the trajectory-fixed sowing operation of the UAV 100 may include step S41 and step S42.
  • step S41 the UAV 100 is manually controlled in advance to perform flight teaching.
  • a preset operation trajectory in the trajectory-fixed sowing operation of the UAV 100 may be planned based on the taught fixed-area trajectory.
  • the step S42 of planning a preset operation trajectory in the trajectory-fixed sowing operation based on the taught region-specific trajectory may further include steps S421 to S423.
  • step S421 the GPS coordinates of the take-off and landing zero point of the UAV 100 and multiple teaching points are recorded.
  • the GPS coordinates of multiple teaching points are connected to form a work area.
  • step S423 the trajectory interval covering the operation area is set to automatically plan the preset operation trajectory in the fixed trajectory sowing operation.
  • control method of the embodiment of the present invention also provides the following two operation modes.
  • the control method may further include: controlling the UAV 100 to take off from the take-off and landing zero point to the floating fishing raft
  • the reference point wherein, the fixed GPS base station of the floating fishing raft can be used as the reference point of the floating fishing raft; the reference point of the floating fishing raft is used as the operating zero point of the UAV 100; the operating zero point is used to control the UAV 100 according to the preset
  • the operation trajectory is to perform fixed-track sowing operations; and after the sowing operation is completed, the UAV 100 is controlled to return to the zero point of take-off and landing.
  • control method may further include: controlling the UAV 100 to take off from the take-off and landing zero point;
  • the zero point is used as the operation zero point of the UAV 100 to control the UAV 100 to carry out fixed-track sowing operations according to the preset operation trajectory; and control the UAV 100 to return to the take-off and landing zero point after the sowing operation is completed.
  • control method may also include: The spreading flow rate of the spreading mechanism 3 is adjusted in real time.
  • Figure 15 reveals a schematic diagram of the change in water area of the reservoir pond.
  • the area of water areas such as reservoirs and ponds will be affected by seasonality. Therefore, considering the seasonal influence on the area of water areas such as reservoirs and ponds in fish farming, the control method in some embodiments of the present invention can also adjust the preset operation trajectory appropriately on the basis of the preset operation trajectory.
  • adjusting the preset operation trajectory may include steps S51 to S53.
  • step S51 the water area below the horizon is scanned by the laser or the millimeter-wave radar 91 arranged at the bottom of the UAV 100 .
  • step S52 the boundary of the water area is captured.
  • step S53 the preset operation trajectory may be adjusted based on the boundary of the water area. For example, preset operational trajectories may be inwardly compensated based on changes in the boundaries of a body of water.
  • a certain distance boundary margin can be given at the same time, and the area after removing the distance boundary margin from the boundary of the water area inward can be used to correct the original preset operation trajectory.
  • the trajectory is adjusted to the inside, so that the accuracy of the operation can be improved in the case of changing water areas, to meet the operation requirements under different water level conditions, to reduce invalid sowing, and to avoid waste.
  • control method may further include: detecting the current effective spreading area R of the solid particles.
  • the UAV 100 can be controlled based on the monitored current effective sowing area R of the solid particles.
  • the current effective sowing area R of the solid particles will actually be affected by the UAV 100's flight height h, flight speed Vf, initial sowing velocity Vc, and uncertain air resistance. It is difficult to directly estimate the current effective spreading area R of solid particles due to the comprehensive influence of f and the wind speed Vw of uncertain direction.
  • FIG. 18 discloses the specific steps of detecting the current effective spreading area R of solid particles according to an embodiment of the present invention.
  • the detection of the current effective spreading area R of solid particles in one embodiment of the present invention may include steps S61 and S62.
  • step S61 the laser or millimeter wave radar 91 arranged at the bottom of the UAV 100 may be used to scan the image of the water area below the horizon.
  • step S62 Since solid particles enter the water to cause ripples on the water surface, which is different from the movement of waves on the water surface, in step S62, the center of the laser or millimeter-wave radar 91 is used as the zero point to scan through the laser or millimeter-wave radar 91 during the spreading operation.
  • the image of the water area below the horizon can obtain water surface noise different from the water surface ripples, and the current effective sowing area R can be extracted from the image of the water area, and the stray ripples of the water surface can be filtered out by the algorithm to obtain more Accurate effective spreading area.
  • control method may further include: obtaining the current effective sowing region based on the detected current effective sowing region R, the flying height h of the UAV 100, the flying speed Vf, and the initial sowing velocity Vc of the sowing mechanism 3 Area: Based on the current effective sowing area, the initial sowing speed and feeding amount of the sowing mechanism 3 can be controlled, so that the area of the sowing area and the uniformity of sowing can be optimally adjusted to meet the operation coverage rate.
  • the control method in some embodiments of the present invention may further include: continuously detecting the effective sowing area R of solid particles to form a sowing trajectory, wherein the UAV 100 may be controlled based on the sowing trajectory.
  • the spatial difference between the sowing trajectory and the flight trajectory of the UAV 100 can be constructed by assuming that the time is absolute; on the preset flight trajectory of the UAV 100 with the UAV 100 as zero point Compensation is performed to form an actual effective flight trajectory for each flight of the UAV 100 . Then, the UAV 100 is controlled according to the actual effective flight trajectory, so as to improve the operation accuracy and avoid waste.
  • the control method in some embodiments of the present invention may further include: adjusting the spreading mechanism 3 of the UAV 100 based on the time difference between the trajectory of the sown object and the flight trajectory of the UAV 100 .
  • the spreading mechanism 3 can be controlled to stop spreading when it is detected that the edge of the preset operation trajectory is close to. Thereby, it can be avoided that when it is detected that the track reaches the preset operation edge and then the spreading is stopped, some of the solid particles that have been spread in the air continue to fly and fall out of the area.
  • the barometer can make the UAV 100 hover stably, but it cannot obtain accurate flight height information, and the accuracy of the barometer is easily affected by wind speed, temperature Humidity and other influences, therefore, there is a huge error in the water entry time of the sown material estimated by the flight height h.
  • the sowing mode adopted by the control method of the embodiment of the present invention is forward sowing, therefore, there is a forward sowing initial velocity Vc and a flying speed Vf of the UAV at the same time during the sowing process of solid particles, therefore, The effective area R is ahead of the current UAV position.
  • the trajectory time difference in the control method of one or more embodiments of the present invention is especially suitable for boundary or narrow areas, so as to respond in advance and stop spreading in advance, effectively avoiding waste of spreading, and effectively improving operation accuracy.
  • the control method in some embodiments of the present invention may also include: based on the sun on the water surface corresponding to the coordinate position of the UAV 100 flight At least one of the angle and exposure rate of the gimbal camera 92 mounted on the UAV 100 is adjusted according to the reflection angle. Therefore, reflection on the water surface can be minimized, and relatively good image quality can be obtained, so as to strengthen the detection of fish schools on the water surface and the inspection of abnormal water surface.
  • the current sun altitude and sun azimuth information can be deduced based on the current GPS coordinates and real-time clock of the UAV 100; The solar reflection angle of the water surface corresponding to the current coordinate position of the HMI 100.
  • the control method of some embodiments of the present invention may also include: detecting the electric quantity of the battery 8 used to supply power to the UAV 100;
  • the pressure sensor 4 between the upper end cover 22 of material box 2 detects the real-time weight of material box 2, and wherein, pressure sensor 4 contacts with the upper surface of frame 1 and upper end cover 22 respectively;
  • the real-time weight of the bin 2 and the flight speed of the UAV 100 are used to plan the effective flight trajectory and return trajectory of the UAV 100 in real time.
  • FIG. 20 discloses a schematic diagram of real-time trajectory planning of the UAV 100 according to an embodiment of the present invention.
  • the take-off weight of the unmanned aerial vehicle 100 is determined according to the initial value of the pressure sensor 4 , that is, the initial weight of the material box 2 filled with solid particles.
  • real-time detection pressure sensor 4 outputs to detect the real-time weight of hopper 2, determines the spreading flow rate of solid particles based on the initial weight and real-time weight of hopper 2, then, can be based on the real-time weight of hopper 2
  • the remaining broadcasting time of the remaining solid particles in the material box 2 is determined by the weight and the spreading flow rate of the solid particles.
  • the battery power supplied to the unmanned aerial vehicle 100 is detected in real time, the battery power consumption rate is determined based on the battery power, and then the unmanned aerial vehicle is determined based on the remaining power of the battery 8 and the battery power consumption rate. Theoretical battery life. Then determine the current flight speed of the UAV 100. Finally, the effective flight trajectory and return trajectory of the UAV 100 can be planned in real time according to the remaining sowing time, the theoretical endurance time of the UAV and the current flight speed of the UAV 100. Thereby, operation efficiency and flight safety are improved.
  • Fig. 21 discloses a schematic diagram of automatic loading and unloading of the material box 2 and replacement of the battery 8 of the drone 100 according to an embodiment of the present invention. As shown in FIG.
  • control method of the UAV 100 may also include: fixing the take-off and landing zero point of the UAV 100; Position the bin mouth 20 of the bin 2 of the UAV 100; use the mechanical arm to clamp the feeding pipe of the bin to the bin mouth 20; guide the bin to automatically load the bin 2 of the UAV 100 .
  • control method of the UAV 100 may also include: fixing the take-off and landing zero point of the UAV 100; positioning the battery 8 of the UAV 100 at the take-off and landing zero point with a camera at the end of the mechanical arm ; The battery 8 of the drone 100 is automatically replaced by the mechanical arm clamping the battery 8 . Clip the empty battery 8 from the second storage space 12 of the drone 100 and place it in the empty battery compartment, and clip the fully charged battery 8 from the fully charged battery compartment and put it back into the second storage space 12 of the drone 100. Two storage spaces 12, thereby completing the replacement of the battery 8.
  • the control method of the UAV 100 in one or more embodiments of the present invention controls the take-off and landing of the UAV 100 at a fixed point, uses a mechanical arm to load materials and replaces the battery 8, to maximize the automation of operations and reduce manpower input.

Abstract

本发明实施例提供一种无人机及无人机的控制方法。该无人机包括机架、料箱及播撒机构。料箱可拆卸地安装于机架上,用于装载固体颗粒物。料箱的侧壁具有可转动的一对弧形壁,一对弧形壁能够在打开位置和合拢位置之间转动,在打开位置时,一对弧形壁形成一漏斗以便于上料,在合拢位置时,一对弧形壁构成料箱的侧壁的一部分。播撒机构安装于料箱的底部,并包括播撒盒体、位于播撒盒体中的播撒叶轮及用于驱动播撒叶轮转动的驱动装置,播撒盒体具有与料箱相连通的进料口和播撒开口,播撒叶轮用于将固体颗粒物从播撒开口播撒出去。该控制方法包括:控制无人机在水面上空进行播撒作业;及在播撒时,控制无人机的播撒机构前向播撒固体颗粒物至水面。

Description

无人机及无人机的控制方法 技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种应用于渔业上的无人机及无人机的控制方法。
背景技术
随着无人机技术的不断发展,无人机在很多领域得到了广泛应用。现在,大部分无人机应用于消费类、农业及林业等方面。无人机当前在渔业上的应用还不是很普遍,通常渔业上的应用限于利用无人机的航拍功能实现渔政监管和受灾后的受损情况巡查等。
鱼类由于品种、大小多样,统一管理比较困难,因此,鱼类一般需要分散养殖,以区分不同重量和品种,并减少传染病的传播机率。另外,对于一些有特殊喜好的鱼类或虾蟹等会固定喂食地点和喂食时间,这些都增加了养殖人员的负担。而且,渔业基本需全年作业,养殖人员的负担更大。此外,在早晚及午间,养殖人员需加强对鱼塘或网箱的巡视,观察鱼类等的生长及取食状况,包括对水面上的一些异常状况监测,如死鱼等。因此,目前渔业很多时候还是需要养殖人员参与,渔业自动化水平相对较低,人工参与度高,存在管理及养护成本大、难度高等问题。
发明内容
本发明实施例提供一种应用于渔业上的无人机及无人机的控制方法。
根据本发明实施例的一个方面,提供一种无人机。所述无人机包括机架、料箱及播撒机构。所述料箱可拆卸地安装于所述机架上,用于装载 固体颗粒物。所述料箱的侧壁具有可转动的一对弧形壁,所述一对弧形壁能够在打开位置和合拢位置之间转动,其中,在所述打开位置时,所述一对弧形壁形成一漏斗以便于上料,在所述合拢位置时,所述一对弧形壁构成所述料箱的侧壁的一部分。所述播撒机构安装于所述料箱的底部,其中,所述播撒机构包括播撒盒体、位于所述播撒盒体中的播撒叶轮及用于驱动所述播撒叶轮转动的驱动装置,所述播撒盒体具有与所述料箱相连通的进料口和播撒开口,所述播撒叶轮用于将所述固体颗粒物从所述播撒开口播撒出去。
根据本发明实施例的另一个方面,提供一种无人机的控制方法,其应用于渔业上。所述无人机包括机架、安装于所述机架上用于装载固体颗粒物的料箱、以及安装于所述料箱的底部的播撒机构。所述控制方法包括:控制所述无人机在水面上空进行播撒作业;及在播撒时,控制所述无人机的所述播撒机构前向播撒所述固体颗粒物至水面。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例的无人机处于展开状态下的俯视图;
图2为本发明一个实施例的无人机处于展开状态下的仰视图;
图3为本发明一个实施例的无人机处于收缩状态下的俯视图;
图4为本发明一个实施例的播撒机构在活动挡板打开时的示意图;
图5为本发明一个实施例的播撒机构在活动挡板闭合时的示意图;
图6为本发明一个实施例的料箱替换的示意图;
图7为本发明一个实施例的安装于机臂端部上的桨叶处于展开状态下的示意图;
图8为本发明一个实施例的安装于机臂端部上的桨叶处于折叠状态下的示意图;
图9为本发明一个实施例的无人机的控制方法的流程图;
图10为本发明一个实施例的确定无人机的定点播撒作业中的预设作业点的具体步骤;
图11为本发明一个实施例的将无人机的起降零点设在大地上的河流海面网箱养殖的示意图;
图12为本发明一个实施例的将无人机的起降零点设在浮动渔排上的河流海面网箱养殖的示意图;
图13为本发明一个实施例的进行定点播撒作业的具体步骤;
图14为本发明一个实施例的确定无人机的定轨迹播撒作业中的预设作业点的具体步骤;
图15为本发明一个实施例的水库池塘水域面积变化的示意图;
图16为本发明一个实施例的对预设作业轨迹进行调整的具体步骤;
图17为本发明一个实施例的固体颗粒物当前的有效播撒区域检测的示意图;
图18为本发明一个实施例的检测固体颗粒物当前的有效播撒区域的具体步骤;
图19为本发明一个实施例的播撒物轨迹与无人机实际飞行轨迹的时间差异的示意图;
图20为本发明一个实施例的无人机的实时轨迹规划的示意图;
图21为本发明一个实施例的无人机自动化料箱上下料及电池更换的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。在本发明中“能够”可以表示具有能力。
下面结合附图,对本发明的各个实施例进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
本发明实施例提供了一种无人机,其特别适合应用于渔业上,其包 括但不限于应用在渔业上的施药、喂食、鱼塘巡视等。另外,本发明实施例的可应用于渔业上的无人机可以包括但不限于应用在水库池塘、河流湖泊海面的网箱内养殖的鱼类、虾蟹、贝类等的综合养殖应用。
图1至图3揭示了本发明一个实施例的无人机100的示意图,其中,图1揭示了无人机100处于展开状态下的俯视图,图2揭示了无人机100处于展开状态下的仰视图,图3揭示了无人机100处于收缩状态下的俯视图。如图1至图3所示,本发明一个实施例的无人机100应用于渔业上,其包括机架1、用于装载固体颗粒物的料箱2及用于播撒固体颗粒物的播撒机构3。料箱2可拆卸地安装于机架1上,从而可以方便地将料箱2提出到机架1外进行上料,或者,可通过配备多个料箱2来对料箱2进行直接更换,从而可以提升作业效率。播撒机构3安装于料箱2的底部。
本发明一个实施例的无人机100还包括压力传感器4。压力传感器4设置在机架1上,可以用来实时检测料箱2的重量。
本发明一个实施例的无人机100通过设置压力传感器4,可以用来检测料箱2的实时重量,进而可以通过当前电池电量、风速风向等信息,规划合理最优路径,在最大程度满足有效作业的前提下,提升作业效率。
图4和图5揭示了本发明一个实施例的播撒机构3的示意图,其中,图4揭示了播撒机构3在活动挡板38打开时的示意图,图5揭示了播撒机构3在活动挡板38闭合时的示意图。如图4和图5所示,播撒机构3包括播撒盒体30、位于播撒盒体30中的播撒叶轮35及用于驱动播撒叶轮35转动的驱动装置34。播撒盒体30具有与料箱2相连通的进料口39和播撒开口33,播撒叶轮35可以用来将料箱2中的固体颗粒物从播撒开口33播撒出去。
在一些实施例中,播撒盒体30包括上盖31和下盖32,上盖31和下盖32配合围成播撒盒体30,其中,播撒开口33位于播撒盒体30朝向 无人机100的飞行方向的一侧面,从而在播撒时,播撒机构3可以将固体颗粒物前向播撒至水面。播撒盒体30大体呈扁圆柱体,下盖32上设置有多个导流槽321,导流槽321的特殊设计可以用来改善播撒时播撒叶轮35的受力,满足机器对大颗粒固体物的播撒需求。其中,导流槽321的设计与播撒叶轮35的曲率、圆柱体的底面直径及播撒开口33的大小相关。驱动装置34位于播撒盒体30中,播撒叶轮35直接设置于驱动装置34上,从而可以使驱动装置34能够直驱播撒叶轮35以将固体颗粒物通过播撒盒体30的播撒开口33播撒出去。
在一些实施例中,播撒机构3还可以包括播撒量调节装置,播撒量调节装置分别连接料箱2及播撒盒体30。其中,播撒量调节装置可以用来调整从料箱2进入到播撒盒体30中的固体颗粒物的进料量。继续参照图4和图5所示,在一个实施例中,播撒量调节装置可以包括静止挡板37、活动挡板38及舵机36。静止挡板37设置于播撒盒体30的进料口39处。活动挡板38可以用来与静止挡板37配合,可封闭播撒盒体30的进料口39。舵机36可以用来控制活动挡板38转动,从而可以用来打开或封闭播撒盒体30的进料口39。并且,通过舵机36可以用来控制活动挡板38的打开幅度,进而可以通过舵机36对活动挡板38的打开幅度的控制来调整进料口39的大小,从而来调整固体颗粒物的播撒流量。
在一些实施例中,无人机100还可以包括控制器(未图示),控制器可以基于实时检测出的料箱2的重量变化来得出播撒机构3的实际播撒流量。
播撒机构3的实际播撒流量可以通过如下公式计算得出:
f a=(G-G k)/Δt          (1)
其中,f a为播撒机构3的实际播撒流量,G为压力传感器4检测到的料箱2的实时重量,G k为料箱2的空重,Δt为单位时间。
在一些实施例中,控制器还可以基于得到的实际播撒流量f a及预设播撒流量f c,例如,可以将实际播撒流量f a及预设播撒流量f c作差,来获得舵机36控制的活动挡板38的打开幅度调整量K。
本发明实施例通过播撒机构3底部的驱动装置34采用半闭环恒速驱动,通过监测播撒过程中驱动装置34的电流,可反馈播撒叶轮35的转动力矩,进而可以超前预测即将撒播出去的固体颗粒物的重量,前馈补偿上述舵机36控制的活动挡板38的打开幅度调整量K,从而可以提高播撒流量修正的响应速度及稳定性,有效地解决了作业过程中因固体颗粒物的尺寸差异以及固定颗粒物的粘性及含水量等因素所极易导致的播撒不均的问题。
如图1并配合参照图6所示,在一些实施例中,料箱2包括箱体21及与箱体21连接的上端盖22,上端盖22凸出于箱体21。在机架1中设置有第一收容空间11,箱体21位于机架1的第一收容空间11内,上端盖22支撑在机架1的上表面,其中,压力传感器4设置在机架1与料箱2的上端盖22之间。
可选地,在上端盖22上设置有把手23,从而可以用来方便提放料箱2。在上端盖22上设置有料箱口20及用来对料箱口20进行密封的料箱盖24。通过料箱口20,可以方便观察箱体21内的固体颗粒物的剩余量。另外,也可以在不取下料箱2的情况下,在无人机100悬停时,通过料箱口20自动对无人机100的料箱2进行上料。
图6揭示了本发明一个实施例的料箱2替换的示意图。料箱2可以采用侧开的结构设计,如图6所示,料箱2的侧壁具有可转动的一对弧形壁26,一对弧形壁26能够在打开位置和合拢位置之间转动。其中,在一对弧形壁26处于打开位置时,该一对弧形壁26之间形成一漏斗以便于上料。由于漏斗的结构上端具有更大的开口,因此,可以避免上料时固体颗粒物溅出,解决了固体颗粒物上料时易堵塞上料口,同时可以进一步地提 高上料效率。在一对弧形壁26处于合拢位置时,一对弧形壁26可以构成料箱2的侧壁的一部分,从而形成封闭的箱体21。
在一些实施例中,料箱2的侧壁还可以具有一段平坦的表面25,平坦的表面25与一对弧形壁26在料箱2的侧壁上相对设置。料箱2的侧壁设置一段平坦的表面25,从而可以使料箱2可侧面平置于地面,方便将料箱2放置于地面进行上料。
参照图6,当需要更换料箱2以给料箱2上料时,可通过料箱2的把手23将料箱2从无人机100的机架1的第一收容空间11提出,并将料箱2的平坦的表面25置于地面上,从而将料箱2侧向平置于地面上,此时,打开料箱2侧壁上的一对弧形壁26,让一对弧形壁26处于打开位置,以形成漏斗的结构,然后,可以通过料箱2的漏斗进行快速的上料,上料完成之后,关闭一对弧形壁26,让一对弧形壁26处于合拢位置,从而箱体21封闭。最后,提起装好固体颗粒物的料箱2并重新放回到机架1的第一收容空间11中。从而,完成料箱2的更换。
本发明一个或多个实施例的料箱2有效地解决了传统的顶部上料料箱,料箱底部的播撒机构导致料箱取下后无法竖直放置上料,仅能装在机架内上料的问题,提高了作业效率。
图7和图8揭示了本发明一个实施例的安装于机臂5的端部上的桨叶6的示意图,其中,图7为安装于机臂5端部上的桨叶6处于展开状态下的示意图,图8为安装于机臂5端部上的桨叶6处于折叠状态下的示意图。如图7和图8并配合参照图1至图3所示,本发明实施例的无人机100还包括机臂5及桨叶6。机臂5安装于机架1上,桨叶6可旋转地安装于机臂5的端部上。
机臂5的端部包括用于驱动桨叶6旋转的第二驱动装置51。机臂5的端部还包括飞轮52及驱动力盘53。飞轮52套装在第二驱动装置51的 外侧,并可独立地绕第二驱动装置51的转轴旋转。驱动力盘53与第二驱动装置51的转轴固连,桨叶6固定于飞轮52上。其中,第二驱动装置51可以通过驱动力盘53驱动桨叶6旋转。
在一些实施例中,桨叶6可以为可折叠的桨叶,桨叶6可绕飞轮52转动,从而使桨叶6可在飞轮52两侧展开或折叠。在桨叶6上设置有卡槽61,在驱动力盘53的端部设置有卡扣531。如图7所示,在桨叶6展开时,驱动力盘53的卡扣531可以卡入到桨叶6的卡槽61中。从而,可以通过驱动力盘53将第二驱动装置51的旋转力矩直接传导至桨叶6上。可选地,卡槽61靠近桨叶6的中部设置。
本发明实施例的第二驱动装置51的转动可以分别带动飞轮52旋转,因桨叶6固定在飞轮52上,从而飞轮52的旋转可以带动桨叶6一并转动;另外,因驱动力盘53与第二驱动装置51的转轴固连,因此,第二驱动装置51的转动同时带动驱动力盘53旋转,又因桨叶6卡固在驱动力盘53上,因此,驱动力盘53的旋转进而也带动桨叶6一并旋转,采用这种并联驱动方式,在桨叶6高速旋转时可有效改善第二驱动装置51的转轴受力,将大量震动通过飞轮52传导;同时,将第二驱动装置51的输出力矩通过驱动力盘53作用至桨叶6的中部,相较于传统的桨跟驱动的方式,可减少桨叶6末端震颤。
如图1和图3所示,在一些实施例中,机臂5可以为可伸缩的机臂,机臂5可伸缩地设置在机架1上。在机臂5的根部设置有卡簧(未图示),在机臂5伸展开时,卡簧可用于锁住机臂5。在机臂5上还设置有螺纹套筒(未图示),在卡簧锁住机臂5时,可以通过螺纹套筒来拧紧机臂5,从而可以用来固定机臂5,防止机臂5松动。
在一个实施例中,机架1大体呈长方体,机臂5包括四个,四个机臂5分别可伸缩地设置在机架1的四个水平侧边。
如图1至图3所示,在一些实施例中,无人机100还可以包括可伸缩的脚架7,可伸缩的脚架7可伸缩地设置于机架1上。例如,脚架7可伸缩地设置在呈长方体的机架1的四个竖直侧边。类似地,在脚架7的根部设置有卡簧(未图示),在脚架7伸展开时,卡簧可用于锁住脚架7。在脚架7上还设置有螺纹套筒(未图示),在卡簧锁住脚架7时,通过螺纹套筒来拧紧脚架7,从而可以用来固定脚架7,防止脚架7松动。
如图1和图6所示,在一些实施例中,无人机100还可以包括电池8。在机架1上设置有第二收容空间12,电池8可拆卸地安装于机架1的第二收容空间12中,电池8可以用来给无人机100供电。
本发明一个或多个实施例采用可收入机架1内部的脚架7和机臂5的收纳方案,减小无人机100在搬运和转场过程中所占用的体积,料箱2和电池8采用可拆卸设计,方便实现单人搬运,经计算,采用该型折叠方案,折叠后机体占用的体积可缩小70%。从而,有利于无人机100的搬运和转场。
如图2所示,在一些实施例中,无人机100还可以包括激光或毫米波雷达91,激光或毫米波雷达91设置于无人机100的底部,可以用来扫描视界下方水域的图像。
如图1和图2所示,在一些实施例中,无人机100还可以包括云台相机92,云台相机92设置于机架1上,可以用来拍摄水面的图像以检测水面的状况。此外,无人机100还可以包括设置于机架1侧面的侧视双目相机93及设置于机架1底部的下视双目相机94。侧视双目相机93及下视双目相机94可以用来监测无人机100飞行时的周边状况。
本发明一个或多个实施例的无人机100可以替代人工完成作业,覆盖面积大,可以实现渔业自动化,具有效率高且安全等优势,并且,具有自由度高、灵活可控等特点,特别适合在不同的鱼塘间转场使用或定点、 定向、定时应用。
本发明实施例还提供了一种无人机100的控制方法。该无人机100的控制方法可以应用于渔业上。该无人机100包括机架1、安装于机架1上用于装载固体颗粒物的料箱2、以及安装于料箱2的底部的播撒机构3。图9揭示了本发明一个实施例的无人机100的控制方法的流程图。如图9所示,本发明一个实施例的无人机100的控制方法可以包括步骤S11和步骤S12。
在步骤S11中,控制无人机100在水面上空进行播撒作业。
在步骤S12中,在播撒时,控制无人机100的播撒机构3前向播撒固体颗粒物至水面。
播撒机构3包括播撒叶轮35及用于驱动播撒叶轮35转动的驱动装置34。在一些实施例中,控制方法还可以包括:通过控制驱动装置34驱动播撒叶轮35来控制播撒机构3以预定的播撒初速度Vc(如图17所示)来播撒固体颗粒物。
播撒机构3具有进料口39。在一些实施例中,控制方法还可以包括:通过调整料箱2进入到播撒机构3的进料口39中的固体颗粒物的进料量来控制播撒机构3以预定的播撒流量来播撒固体颗粒物。
播撒机构3还包括设置于进料口39处的静止挡板37、用于与静止挡板37配合可封闭进料口39的活动挡板38、以及用于控制活动挡板38转动的舵机36。在一些实施例中,控制方法还可以包括:通过控制舵机36对活动挡板38的打开幅度来调整进料口39的大小以调整进料量。
在一些实施例中,控制方法还可以包括:实时检测料箱2的重量G;及基于实时检测出的料箱2的重量变化来得出播撒机构3的实际播撒流量f a,如上面的公式(1)所示。
在机架1上可以设置压力传感器4,压力传感器4分别与机架1的 上表面及上端盖22接触。可以通过设置在机架1与料箱2的上端盖22之间的压力传感器4来实时检测料箱2的重量。
在一些实施例中,控制方法还可以包括:基于得出的实际播撒流量f a及预设播撒流量f c获得舵机36控制的活动挡板38的打开幅度调整量K。
在一些实施例中,控制方法还可以包括:控制驱动装置34恒速驱动;监测播撒过程中驱动装置34的电流;基于驱动装置34的电流超前预测出即将播撒出去的固体颗粒物的重量;及基于预测出的即将播撒出去的固体颗粒物的重量来前馈补偿活动挡板38的打开幅度调整量K。
在一些实施例中,根据渔业养殖时存在的“定点”作业特点,则步骤S11的控制无人机100在水面上空进行播撒作业可以包括:控制无人机100在水面上空按照预设作业点进行定点播撒作业。
下面结合图10来详细介绍如何来确定无人机100的定点播撒作业中的预设作业点。如图10所示,在一些实施例中,确定无人机100的定点播撒作业中的预设作业点可以包括步骤S21和步骤S22。
在步骤S21中,预先人工控制无人机100进行飞行示教。
在步骤S22中,可以基于示教的定点来规划无人机100的定点播撒作业中的预设作业点。
在一个实施例中,步骤S22的基于示教的定点来规划无人机100的定点播撒作业中的预设作业点可以进一步包括步骤S221和步骤S222。在步骤S221中,记录无人机100的起降零点和示教的定点的GPS坐标。在步骤S222中,可以基于起降零点和示教的定点的GPS坐标形成定点播撒作业中的预设作业点。
在“定点”作业的基础上,在河流海面等的网箱养殖中,受潮汐水位和水面波浪影响,渔排浮动,导致网箱的GPS绝对坐标动态变化。因此,本发明实施例的控制方法提供了如下两种作业方式。
图11揭示了本发明一个实施例的将无人机100的起降零点设在大地上的河流海面网箱养殖的示意图。如图11所示,在一些实施例中,当将无人机100的起降零点设在大地上时,则控制方法还可以包括:控制无人机100从起降零点起飞前往浮动渔排的基准点,其中,可以浮动渔排固定的GPS基站作为浮动渔排的基准点,无人机100起飞后始终保持与渔排固定的GPS基站之间的通讯;以浮动渔排的基准点作为无人机100的作业零点;以作业零点来控制无人机100按照预设作业点进行定点播撒作业;及在播撒作业结束后控制无人机100返航至起降零点。
图12揭示了本发明一个实施例的将无人机100的起降零点设在浮动渔排上的河流海面网箱养殖的示意图。如图12所示,在一些实施例中,当将无人机100的起降零点设在浮动渔排上时,控制方法还可以包括:控制无人机100从起降零点起飞,无人机100起飞后始终保持与渔排固定的GPS基站之间的通讯;起飞后以起降零点作为无人机100的作业零点来控制无人机100按照预设作业点进行定点播撒作业;及在播撒作业结束后控制无人机100返航至起降零点。根据GPS基站不断刷新的返航点坐标,可以控制无人机100自动返航至起降零点。
下面结合图13来介绍如何进行定点播撒作业。如图13所示,在一些实施例中,进行定点播撒作业可以进一步包括步骤S31至步骤S33。在步骤S31中,对预设作业点进行编号。在步骤S32中,配置每个编号上的固体颗粒物的播撒总量。在步骤S33中,控制无人机100的播撒机构3按照每个编号上的固体颗粒物的播撒总量来进行播撒。
在另一些实施例中,根据渔业养殖时存在的“定轨迹”作业特点,则步骤S11的控制无人机100在水面上空进行播撒作业可以包括:控制无人机100在水面上空按照预设作业轨迹进行定轨迹播撒作业。
下面结合图14来详细介绍如何来确定无人机100的定轨迹播撒作业中的预设作业点。如图14所示,在一些实施例中,确定无人机100的定轨 迹播撒作业中的预设作业点可以包括步骤S41和步骤S42。
在步骤S41中,预先人工控制无人机100进行飞行示教。
在步骤S42中,可以基于示教的定区域轨迹来规划无人机100的定轨迹播撒作业中的预设作业轨迹。
在一个实施例中,步骤S42的基于示教的定区域轨迹来规划定轨迹播撒作业中的预设作业轨迹可以进一步包括步骤S421至步骤S423。在步骤S421中,记录无人机100的起降零点和多个示教点的GPS坐标。在步骤S422中,将多个示教点的GPS坐标连接形成作业区域。在步骤S423中,设置覆盖作业区域的轨迹间隔以自动规划出定轨迹播撒作业中的预设作业轨迹。
针对定轨迹播撒作业,本发明实施例的控制方法也提供了如下两种作业方式。
结合参照图11所示,在一些实施例中,当将无人机100的起降零点设在大地上时,则控制方法还可以包括:控制无人机100从起降零点起飞前往浮动渔排的基准点,其中,可以浮动渔排固定的GPS基站作为浮动渔排的基准点;以浮动渔排的基准点作为无人机100的作业零点;以作业零点来控制无人机100按照预设作业轨迹进行定轨迹播撒作业;及在播撒作业结束后控制无人机100返航至起降零点。
结合参照图12所示,在一些实施例中,当无人机100的起降零点设在浮动渔排上,则控制方法还可以包括:控制无人机100从起降零点起飞;以起降零点作为无人机100的作业零点来控制无人机100按照预设作业轨迹进行定轨迹播撒作业;及在播撒作业结束后控制无人机100返航至起降零点。
在又一些实施例中,根据渔业养殖时存在的定量化作业特点,则控制方法还可以包括:基于料箱2中的固体颗粒物的总量、无人机100的飞 行速度、预设作业轨迹来实时调整播撒机构3的播撒流量。
图15揭示了水库池塘水域面积变化的示意图。如图15所示,水库池塘等水域面积会受到季节性影响。因此,考虑到在渔业养殖中水库池塘等水域面积受到的季节性影响,本发明一些实施例的控制方法还可以在预设作业轨迹的基础上来对预设作业轨迹进行适当的调整。
下面结合图16来详细介绍如何对预设作业轨迹进行调整。如图16所示,对预设作业轨迹进行调整可以包括步骤S51至步骤S53。在步骤S51中,通过设置在无人机100底部的激光或毫米波雷达91来扫描视界下方的水域。在步骤S52中,捕捉水域的边界。在步骤S53中,可以基于水域的边界来调整预设作业轨迹。例如,可以基于水域的边界的变化来向内补偿预设作业轨迹。也就是说,可以基于水域的边界,同时给与一定的距离边界余量,将水域的边界向内去掉该距离边界余量之后的面积来修正原来的预设作业轨迹,将原来的预设作业轨迹向内部调整一些,从而,可以提升水域变化情况下的作业精准度,满足不同水位条件下的作业需求,减少无效播撒,避免浪费。
在一些实施例中,控制方法还可以包括:检测固体颗粒物当前的有效播撒区域R。可以基于监测出的固体颗粒物当前的有效播撒区域R来控制无人机100。
如图17所示,在无人机100的播撒过程中,固体颗粒物当前的有效播撒区域R实际会受到无人机100的飞行高度h、飞行速度Vf、播撒初速度Vc、不确定的空气阻力f以及不确定方向的风速Vw等综合影响,难以直接预估固体颗粒物当前的有效撒播区域R。
本发明实施例提供了一种检测固体颗粒物当前的有效播撒区域R的方法。图18揭示了本发明一个实施例的检测固体颗粒物当前的有效播撒区域R的具体步骤。如图18所示,本发明一个实施例的检测固体颗粒物当 前的有效播撒区域R可以包括步骤S61和步骤S62。在步骤S61中,可以通过设置在无人机100底部的激光或毫米波雷达91来扫描视界下方水域的图像。由于固体颗粒物入水激起水面的涟漪,不同于水面波浪运动方式,因此,在步骤S62中,以激光或毫米波雷达91的中心为零点,在播撒作业时,通过激光或毫米波雷达91来扫描视界下方水域的图像,可获取到不同于水面涟漪的水面噪声,可以从水域的图像中将当前的有效播撒区域R提取出来,并且,可以通过对算法滤除水面杂散纹波,可获得更精确的有效播撒区域面积。
在一些实施例中,控制方法还可以包括:基于检测出的当前的有效播撒区域R、无人机100的飞行高度h、飞行速度Vf及播撒机构3的播撒初速度Vc获得当前的有效播撒区域面积;基于当前的有效播撒区域面积来控制播撒机构3的播撒初速度和进料量,从而可以优化调整播撒区域面积及播撒均匀度,满足作业覆盖率。
如图19所示,受风速Vw、飞行高度h、固体颗粒物大小和体积、以及播撒机构3的转速等因素,无人机100连续飞行播撒过程中,播撒物轨迹与无人机100实际飞行轨迹之间存在时间差异,如不考虑二者轨迹差异易导致饲料浪费,且由于无人机100固定轨迹作业的特点,浪费会持续发生在每一次作业过程中。因此,本发明一些实施例的控制方法还可以包括:对固体颗粒物的有效播撒区域R进行连续检测以形成播撒物轨迹,其中,可以基于播撒物轨迹来控制无人机100。在一个实施例中,可以通过假设时间绝对的方式,构建播撒物轨迹和无人机100的飞行轨迹之间的空间差异;以无人机100为零点在无人机100的预设飞行轨迹上进行补偿以形成无人机100每次飞行的实际有效飞行轨迹。然后,再根据实际有效飞行轨迹来控制无人机100,从而可以提高作业精准度,避免浪费。
另外,由于实际的播撒物轨迹和飞行轨迹存在时间差,即由于固体颗粒物存在入水时间,当前所检测到的入水颗粒物,实际为早前从播撒机 构3抛出的颗粒物,作业时必须考虑两个轨迹的时间差。因此,本发明一些实施例的控制方法还可以包括:基于播撒物轨迹和无人机100的飞行轨迹之间的时间差来调整无人机100的播撒机构3。例如,基于播撒物轨迹和无人机100的飞行轨迹之间的时间差,在检测到靠近预设作业轨迹的边缘时则可以控制播撒机构3停止播撒。从而,可以避免在检测到轨迹到达预设作业边缘再停止播撒时仍有部分在空中已播撒出去的固体颗粒物继续飞行而落入到区域外。
由于无人机100自身的气压计的绝对精度误差大于固定噪声值,因此气压计可以使无人机100稳定悬停,但却无法获得精准的飞行高度信息,且气压计精度易受风速、温湿度等影响,因此,通过飞行高度h来预估的播撒物入水时间存在极大误差。如图19所示,本发明实施例的控制方法采用的播撒方式为前向播撒,因此,在播撒过程中固体颗粒物同时存在一个向前的播撒初速度Vc和无人机飞行速度Vf,因此,有效区域面积R超前于当前无人机位置,为此,在一些实施例中,在无人机100起飞高度稳定后的短时间内,在第一时刻t0控制播撒机构3,通过微调整播撒叶轮35的转速,来改变固体颗粒物的播撒初速度;检测固体颗粒物的有效播撒区域R位置产生对应变化的第二时刻t1,其中,第二时刻与第一时刻之间的时间差Δt=t1-t0,即为播撒物轨迹与飞行轨迹的时间差;及基于播撒初速度以及第一时刻和第二时刻之间的时间差Δt可以反推导出无人机100当前的飞行高度h。从而,可以精确地推导出无人机100的飞行高度h。
本发明一个或多个实施例的控制方法中的轨迹时间差异特别适用于边界或狭窄区域时,提前响应,提前停止播撒,有效避免播撒浪费,同时有效提高作业精准度。
考虑到无人机100早晚作业,水域面积上发光强烈,直接成像质量差的问题,因此,本发明一些实施例的控制方法还可以包括:基于无人机100飞行的坐标位置对应的水面的太阳反射角来调整无人机100所搭载的 云台相机92的角度和曝光率中的至少一者。从而,可以最大程度地减少水面反光,可获得相对较好的图像质量,以加强对水面鱼群的检测和水面异常的巡查。
在一个实施例中,可以基于无人机100当前的GPS坐标、实时时钟推导出当前的太阳高度角及太阳方位信息;并基于当前的太阳高度角及太阳方位信息以及当前的作业轨迹方向获得无人机100当前坐标位置对应的水面的太阳反射角。
本发明一些实施例的控制方法还可以包括:检测用于给无人机100供电的电池8的电量;检测料箱2的实时重量,例如,可以通过设置在无人机100的机架1与料箱2的上端盖22之间的压力传感器4来检测料箱2的实时重量,其中,压力传感器4分别与机架1的上表面及上端盖22接触;基于检测到的电池8的电量、料箱2的实时重量及无人机100的飞行速度来实时规划无人机100的有效飞行轨迹和返航轨迹。
图20揭示了本发明一个实施例的无人机100的实时轨迹规划的示意图。如图20所示,在无人机100起飞前,根据压力传感器4初始值来确定无人机100的起飞重量,即装有固体颗粒物的料箱2的初始重量。在无人机100飞行中,实时检测压力传感器4输出以检测料箱2的实时重量,基于料箱2的初始重量和实时重量来确定固体颗粒物的播撒流量,然后,可以基于料箱2的实时重量及固体颗粒物的播撒流量来确定料箱2中剩余固体颗粒物的剩余播撒时间。同时,在无人机100飞行中,实时检测给无人机100供电的电池电量,基于电池电量来确定电池电量消耗速率,然后,基于电池8的剩余电量及电池电量消耗速率来确定无人机理论续航时间。再确定无人机100当前的飞行速度,最后,可以根据剩余播撒时间、无人机理论续航时间及无人机100的当前飞行速度来实时规划无人机100的有效飞行轨迹和返航轨迹。从而,提升作业效率及飞行安全。
基于无人机100定点、定轨迹的作业特点,本发明实施例还提供了 一种无人机100自动化料箱上下料和/或电池8更换的解决方案,从而可以进一步提高系统自动化水平。图21揭示了本发明一个实施例的无人机100自动化料箱2上下料及电池8更换的示意图。如图21所示,在一些实施例中,无人机100的控制方法还可以包括:固定无人机100的起降零点;以机械臂末端的相机(未图示)对位于起降零点处的无人机100的料箱2的料箱口20进行定位;通过机械臂夹取料仓的上料管至料箱口20;引导料仓自动对无人机100的料箱2进行上料。
在另一些实施例中,无人机100的控制方法还可以包括:固定无人机100的起降零点;以机械臂末端的相机对位于起降零点处的无人机100的电池8进行定位;通过机械臂夹取电池8来自动更换无人机100的电池8。将空电电池8从无人机100的第二收容空间12中夹取出放在空电电池仓中,并从满电电池仓中夹取出满电电池8重新放入到无人机100的第二收容空间12中,从而完成电池8的更换。
本发明一个或多个实施例的无人机100的控制方法通过对无人机100的定点起降控制,采用机械臂上料和更换电池8,最大程度地提高作业自动化程度,减少人力投入。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的无人机及无人机的控制方法进行了详 细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,本说明书内容不应理解为对本发明的限制。同时,对于本领域的一般技术人员,依据本发明的思想,可以在具体实施方式及应用范围上做出任何修改、等同替换或改进等,其均应包含在本发明的权利要求书的范围之内。

Claims (70)

  1. 一种无人机,其特征在于,所述无人机包括:
    机架;
    料箱,其可拆卸地安装于所述机架上,用于装载固体颗粒物,所述料箱的侧壁具有可转动的一对弧形壁,所述一对弧形壁能够在打开位置和合拢位置之间转动,其中,在所述打开位置时,所述一对弧形壁形成一漏斗以便于上料,在所述合拢位置时,所述一对弧形壁构成所述料箱的侧壁的一部分;以及
    播撒机构,其安装于所述料箱的底部,其中,所述播撒机构包括播撒盒体、位于所述播撒盒体中的播撒叶轮及用于驱动所述播撒叶轮转动的驱动装置,所述播撒盒体具有与所述料箱相连通的进料口和播撒开口,所述播撒叶轮用于将所述固体颗粒物从所述播撒开口播撒出去。
  2. 如权利要求1所述的无人机,其特征在于,所述料箱的侧壁具有一段平坦的表面,以使所述料箱可侧面平置于地面。
  3. 如权利要求2所述的无人机,其特征在于,所述平坦的表面与所述一对弧形壁在所述料箱的侧壁上相对设置。
  4. 如权利要求1所述的无人机,其特征在于,其还包括:
    压力传感器,用于实时检测所述料箱的重量。
  5. 如权利要求4所述的无人机,其特征在于,所述料箱包括箱体及与所述箱体连接的上端盖,其中,所述上端盖凸出于所述箱体,所述箱体位于所述机架内,所述上端盖支撑在所述机架的上表面,所述压力传感器设置在所述机架与所述料箱的所述上端盖之间。
  6. 如权利要求5所述的无人机,其特征在于,在所述上端盖上设置有把手,以方便提放所述料箱。
  7. 如权利要求5所述的无人机,其特征在于,在所述上端盖上设置有料箱口及用于密封所述料箱口的料箱盖。
  8. 如权利要求1所述的无人机,其特征在于,所述播撒盒体包括上盖和下盖,所述上盖和所述下盖配合围成所述播撒盒体,所述播撒开口位于所述播撒盒体朝向所述无人机的飞行方向的一侧面。
  9. 如权利要求8所述的无人机,其特征在于,所述播撒盒体大体呈扁圆柱体,所述下盖上设置有多个导流槽,所述导流槽的设计与所述播撒叶轮的曲率、所述圆柱体的底面直径及所述播撒开口的大小相关。
  10. 如权利要求1所述的无人机,其特征在于,所述驱动装置位于所述播撒盒体中,所述播撒叶轮直接设置于所述驱动装置上,以使所述驱动装置能够直驱所述播撒叶轮。
  11. 如权利要求1所述的无人机,其特征在于,所述播撒机构还包括:
    播撒量调节装置,其分别连接所述料箱及所述播撒盒体,
    其中,所述播撒量调节装置用于调整从所述料箱进入到所述播撒盒体中的固体颗粒物的进料量。
  12. 如权利要求11所述的无人机,其特征在于,所述播撒量调节装置包括:
    静止挡板,其设置于所述进料口处;
    活动挡板,用于与所述静止挡板配合,可封闭所述进料口;以及
    舵机,用于控制所述活动挡板转动,
    其中,通过所述舵机对所述活动挡板的打开幅度的控制可调整所述进料口的大小以调整固体颗粒物的播撒流量。
  13. 如权利要求12所述的无人机,其特征在于,还包括:
    控制器,用于基于实时检测出的所述料箱的重量变化来得出所述播撒机构的实际播撒流量。
  14. 如权利要求13所述的无人机,其特征在于,所述控制器还用于基于得到的所述实际播撒流量及预设播撒流量来获得所述舵机控制的所述活动挡板的打开幅度调整量。
  15. 如权利要求1所述的无人机,其特征在于,其还包括:
    机臂,其安装于所述机架上;及
    桨叶,其可旋转地安装于所述机臂的端部上。
  16. 如权利要求15所述的无人机,其特征在于,所述机臂的端部包括用于驱动所述桨叶旋转的第二驱动装置。
  17. 如权利要求16所述的无人机,其特征在于,所述机臂的端部还包括:
    飞轮,其套装在所述第二驱动装置的外侧,并可独立地绕所述第二驱动装置的转轴旋转;及
    驱动力盘,其与所述第二驱动装置的转轴固连,所述桨叶固定于所述飞轮上,
    其中,所述第二驱动装置通过所述驱动力盘驱动所述桨叶旋转。
  18. 如权利要求17所述的无人机,其特征在于,所述桨叶为可折叠的桨叶,所述桨叶可绕所述飞轮转动以使所述桨叶可在所述飞轮两侧展开或折叠。
  19. 如权利要求18所述的无人机,其特征在于,在所述桨叶上设置有卡槽,在所述驱动力盘的端部设置有卡扣,在所述桨叶展开时,所述驱动力盘的所述卡扣卡入到所述卡槽中。
  20. 如权利要求19所述的无人机,其特征在于,所述卡槽靠近所述桨叶的中部设置。
  21. 如权利要求15所述的无人机,其特征在于,所述机臂为可伸缩的机臂,所述机臂可伸缩地设置在所述机架上。
  22. 如权利要求21所述的无人机,其特征在于,在所述机臂的根部设置有卡簧,在所述机臂伸展开时,所述卡簧可用于锁住所述机臂。
  23. 如权利要求22所述的无人机,其特征在于,在所述机臂上还设置有螺纹套筒,在所述卡簧锁住所述机臂时,通过所述螺纹套筒来拧紧所述机臂。
  24. 如权利要求21所述的无人机,其特征在于,所述机架呈长方体,所述机臂包括四个,四个所述机臂可伸缩地设置在所述机架的四个水平侧边。
  25. 如权利要求1所述的无人机,其特征在于,其还包括:
    可伸缩的脚架,其可伸缩地设置于所述机架上。
  26. 如权利要求25所述的无人机,其特征在于,所述机架呈长方体,所述脚架可伸缩地设置在所述机架的四个竖直侧边。
  27. 如权利要求25所述的无人机,其特征在于,在所述脚架的根部设置有卡簧,在所述脚架伸展开时,所述卡簧可用于锁住所述脚架。
  28. 如权利要求27所述的无人机,其特征在于,在所述脚架上还设置有螺纹套筒,在所述卡簧锁住所述脚架时,通过所述螺纹套筒来拧紧所述脚架。
  29. 如权利要求1所述的无人机,其特征在于,其还包括:
    电池,其可拆卸地安装于所述机架中,用于给所述无人机供电。
  30. 如权利要求1所述的无人机,其特征在于,其还包括:
    激光或毫米波雷达,其设置于所述无人机的底部,用于扫描视界下方水域的图像。
  31. 如权利要求1所述的无人机,其特征在于,其还包括:
    云台相机,其设置于所述机架上,用于拍摄水面的图像以检测水面的状况。
  32. 一种无人机的控制方法,其应用于渔业上,所述无人机包括机架、安装于所述机架上用于装载固体颗粒物的料箱、以及安装于所述料箱的底部的播撒机构,其特征在于,所述控制方法包括:
    控制所述无人机在水面上空进行播撒作业;及
    在播撒时,控制所述无人机的所述播撒机构前向播撒所述固体颗粒物至水面。
  33. 如权利要求32所述的控制方法,其特征在于,所述播撒机构包括播撒叶轮及用于驱动所述播撒叶轮转动的驱动装置,所述控制方法还包括:
    通过控制所述驱动装置驱动所述播撒叶轮来控制所述播撒机构以预定的播撒初速度来播撒所述固体颗粒物。
  34. 如权利要求33所述的控制方法,其特征在于,所述播撒机构具有进料口,所述控制方法还包括:
    通过调整所述料箱进入到所述播撒机构的所述进料口中的固体颗粒物的进料量来控制所述播撒机构以预定的播撒流量来播撒所述固体颗粒物。
  35. 如权利要求34所述的控制方法,其特征在于,所述播撒机构还包括设置于所述进料口处的静止挡板、用于与所述静止挡板配合可封闭所述进料口的活动挡板、以及用于控制所述活动挡板转动的舵机,所述控制方法还包括:
    通过控制所述舵机对所述活动挡板的打开幅度来调整所述进料口的大小以调整所述进料量。
  36. 如权利要求35所述的控制方法,其特征在于,还包括:
    实时检测所述料箱的重量;
    基于所述实时检测出的所述料箱的重量变化来得出所述播撒机构的实际播撒流量。
  37. 如权利要求36所述的控制方法,其特征在于,还包括:
    通过设置在所述机架与所述料箱的上端盖之间的压力传感器来实时检测所述料箱的重量,其中,所述压力传感器分别与所述机架的上表面及所述上端盖接触。
  38. 如权利要求36所述的控制方法,其特征在于,还包括:
    基于得出的所述实际播撒流量及预设播撒流量获得所述舵机控制的所述活动挡板的打开幅度调整量。
  39. 如权利要求38所述的控制方法,其特征在于,还包括:
    控制所述驱动装置恒速驱动;
    监测播撒过程中所述驱动装置的电流;
    基于所述驱动装置的电流超前预测出即将播撒出去的固体颗粒物的重量;及
    基于所述预测出的即将播撒出去的固体颗粒物的重量来前馈补偿所述活动挡板的打开幅度调整量。
  40. 如权利要求32所述的控制方法,其特征在于,控制所述无人机在水面上空进行播撒作业包括:
    控制所述无人机在水面上空按照预设作业点进行定点播撒作业。
  41. 如权利要求40所述的控制方法,其特征在于,还包括:
    预先人工控制所述无人机进行飞行示教;
    基于所述示教的定点来规划所述无人机的所述定点播撒作业中的所述预设作业点。
  42. 如权利要求41所述的控制方法,其特征在于,基于所述示教的定点来规划所述无人机的所述定点播撒作业中的所述预设作业点包括:
    记录所述无人机的起降零点和所述示教的定点的GPS坐标;
    基于所述起降零点和所述示教的定点的GPS坐标形成所述定点播撒作业中的所述预设作业点。
  43. 如权利要求42所述的控制方法,其特征在于,所述无人机的起降零点设在大地上,所述控制方法还包括:
    控制所述无人机从所述起降零点起飞前往浮动渔排的基准点;
    以所述浮动渔排的基准点作为所述无人机的作业零点;
    以所述作业零点来控制所述无人机按照所述预设作业点进行所述定点播撒作业;及
    在播撒作业结束后控制所述无人机返航至所述起降零点。
  44. 如权利要求43所述的控制方法,其特征在于,以所述浮动渔排固定的GPS基站作为所述浮动渔排的基准点。
  45. 如权利要求42所述的控制方法,其特征在于,所述无人机的起降零点设在浮动渔排上,所述控制方法还包括:
    控制所述无人机从所述起降零点起飞;
    以所述起降零点作为所述无人机的作业零点来控制所述无人机按照所述预设作业点进行所述定点播撒作业;及
    在播撒作业结束后控制所述无人机返航至所述起降零点。
  46. 如权利要求40所述的控制方法,其特征在于,还包括:
    对所述预设作业点进行编号;
    配置每个编号上的固体颗粒物的播撒总量;
    控制所述无人机的所述播撒机构按照所述每个编号上的固体颗粒物的播撒总量来进行播撒。
  47. 如权利要求32所述的控制方法,其特征在于,控制所述无人机在水面上空进行播撒作业包括:
    控制所述无人机在水面上空按照预设作业轨迹进行定轨迹播撒作业。
  48. 如权利要求47所述的控制方法,其特征在于,还包括:
    预先人工控制所述无人机进行飞行示教;
    基于所述示教的定区域轨迹来规划所述无人机的所述定轨迹播撒作业中的所述预设作业轨迹。
  49. 如权利要求48所述的控制方法,其特征在于,基于所述示教的定区域轨迹来规划所述定轨迹播撒作业中的所述预设作业轨迹包括:
    记录所述无人机的起降零点和多个示教点的GPS坐标;
    将所述多个示教点的GPS坐标连接形成作业区域;
    设置覆盖所述作业区域的轨迹间隔以自动规划出所述定轨迹播撒作业中的所述预设作业轨迹。
  50. 如权利要求49所述的控制方法,其特征在于,所述无人机的起降零点设在大地上,所述控制方法还包括:
    控制所述无人机从所述起降零点起飞前往浮动渔排的基准点;
    以所述浮动渔排的基准点作为所述无人机的作业零点;
    以所述作业零点来控制所述无人机按照所述预设作业轨迹进行所述定轨迹播撒作业;及
    在播撒作业结束后控制所述无人机返航至所述起降零点。
  51. 如权利要求50所述的控制方法,其特征在于,以所述浮动渔排固定的GPS基站作为所述浮动渔排的基准点。
  52. 如权利要求49所述的控制方法,其特征在于,所述无人机的起降零点设在浮动渔排上,所述控制方法还包括:
    控制所述无人机从所述起降零点起飞;
    以所述起降零点作为所述无人机的作业零点来控制所述无人机按照所述预设作业轨迹进行所述定轨迹播撒作业;及
    在播撒作业结束后控制所述无人机返航至所述起降零点。
  53. 如权利要求47所述的控制方法,其特征在于,还包括:
    基于所述料箱中的固体颗粒物的总量、所述无人机的飞行速度、所述预设作业轨迹来实时调整所述播撒机构的播撒流量。
  54. 如权利要求47所述的控制方法,其特征在于,还包括:
    通过设置在所述无人机底部的激光或毫米波雷达来扫描视界下方的水域;
    捕捉所述水域的边界;
    基于所述水域的边界来调整所述预设作业轨迹。
  55. 如权利要求54所述的控制方法,其特征在于,基于所述水域的边界来调整所述预设作业轨迹包括:
    基于所述水域的边界的变化来向内补偿所述预设作业轨迹。
  56. 如权利要求47所述的控制方法,其特征在于,还包括:
    检测所述固体颗粒物当前的有效播撒区域,
    其中,基于所述有效播撒区域来控制所述无人机。
  57. 如权利要求56所述的控制方法,其特征在于,检测所述固体颗粒物当前的有效播撒区域包括:
    通过设置在所述无人机底部的激光或毫米波雷达来扫描视界下方水域的图像;
    以所述激光或毫米波雷达的中心为零点,从所述水域的图像中将所述当前的有效播撒区域提取出来。
  58. 如权利要求56所述的控制方法,其特征在于,还包括:
    基于检测出的所述当前的有效播撒区域、所述无人机的飞行高度、飞行速度及所述播撒机构的播撒初速度获得当前的有效播撒区域面积;
    基于所述当前的有效播撒区域面积来控制所述播撒机构的播撒初速度和进料量以优化调整所述播撒区域面积及播撒均匀度。
  59. 如权利要求58所述的控制方法,其特征在于,还包括:
    在所述无人机起飞高度稳定后,在第一时刻控制所述播撒机构改变所述固体颗粒物的播撒初速度;
    检测所述固体颗粒物的有效播撒区域位置产生对应变化的第二时刻;
    基于所述播撒初速度、所述第一时刻和所述第二时刻推导出所述无人机当前的飞行高度。
  60. 如权利要求56所述的控制方法,其特征在于,还包括:
    对所述固体颗粒物的有效播撒区域进行连续检测以形成播撒物轨迹,
    其中,基于所述播撒物轨迹来控制所述无人机。
  61. 如权利要求60所述的控制方法,其特征在于,还包括:
    通过假设时间绝对的方式,构建所述播撒物轨迹和所述无人机的飞行轨迹之间的空间差异;
    以所述无人机为零点在所述无人机的预设飞行轨迹上进行补偿以形成所述无人机每次飞行的实际有效飞行轨迹。
  62. 如权利要求60所述的控制方法,其特征在于,还包括:
    基于所述播撒物轨迹和所述无人机的飞行轨迹之间的时间差来调整所述 无人机的所述播撒机构。
  63. 如权利要求62所述的控制方法,其特征在于,基于所述播撒物轨迹和所述无人机的飞行轨迹之间的时间差来调整所述无人机的所述播撒机构包括:
    基于所述播撒物轨迹和所述无人机的飞行轨迹之间的时间差,在检测到靠近所述预设作业轨迹的边缘时控制所述播撒机构停止播撒。
  64. 如权利要求61所述的控制方法,其特征在于,还包括:
    在所述无人机起飞高度稳定后,在第一时刻控制所述播撒机构改变所述固体颗粒物的播撒初速度;
    检测所述固体颗粒物的有效播撒区域产生对应变化的第二时刻;
    将所述第二时刻与所述第一时刻之间的时间差作为所述播撒物轨迹与所述飞行轨迹之间的时间差。
  65. 如权利要求32所述的控制方法,其特征在于,还包括:
    基于所述无人机飞行的坐标位置对应的水面的太阳反射角来调整所述无人机所搭载的云台相机的角度和曝光率中的至少一者。
  66. 如权利要求65所述的控制方法,其特征在于,还包括:
    基于所述无人机当前的GPS坐标、实时时钟推导出当前的太阳高度角及太阳方位信息;
    基于所述当前的太阳高度角及太阳方位信息以及当前的作业轨迹方向获得所述无人机当前坐标位置对应的水面的太阳反射角。
  67. 如权利要求32所述的控制方法,其特征在于,还包括:
    检测用于给所述无人机供电的电池的电量;
    检测所述料箱的实时重量;
    基于检测到的所述电池的电量、所述料箱的实时重量及所述无人机的飞行速度来实时规划所述无人机的有效飞行轨迹和返航轨迹。
  68. 如权利要求67所述的控制方法,其特征在于,检测所述料箱的实时重量包括:
    通过设置在所述机架与所述料箱的上端盖之间的压力传感器来检测所述料箱的实时重量,其中,所述压力传感器分别与所述机架的上表面及所述上端盖接触。
  69. 如权利要求32所述的控制方法,其特征在于,还包括:
    固定所述无人机的起降零点;
    以机械臂末端的相机对位于所述起降零点处的所述无人机的电池进行定位;
    通过所述机械臂夹取电池来自动更换所述无人机的电池。
  70. 如权利要求32所述的控制方法,其特征在于,还包括:
    固定所述无人机的起降零点;
    以机械臂末端的相机对位于所述起降零点处的所述无人机的所述料箱的料箱口进行定位;
    通过所述机械臂夹取料仓的上料管至所述料箱口;
    引导所述料仓自动对所述无人机的所述料箱进行上料。
PCT/CN2022/079080 2022-03-03 2022-03-03 无人机及无人机的控制方法 WO2023164893A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079080 WO2023164893A1 (zh) 2022-03-03 2022-03-03 无人机及无人机的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079080 WO2023164893A1 (zh) 2022-03-03 2022-03-03 无人机及无人机的控制方法

Publications (1)

Publication Number Publication Date
WO2023164893A1 true WO2023164893A1 (zh) 2023-09-07

Family

ID=87882846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079080 WO2023164893A1 (zh) 2022-03-03 2022-03-03 无人机及无人机的控制方法

Country Status (1)

Country Link
WO (1) WO2023164893A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105836129A (zh) * 2016-03-21 2016-08-10 中国农业大学 一种农用播撒无人机
CN106809390A (zh) * 2017-03-10 2017-06-09 佛山市神风航空科技有限公司 一种渔业养殖多功能无人机
KR101755199B1 (ko) * 2017-03-24 2017-07-11 김빛누리 연근해 양식장 관리용 드론
CN108170164A (zh) * 2018-01-04 2018-06-15 广东容祺智能科技有限公司 一种基于无人机自动喷洒鱼料的方法
CN108477047A (zh) * 2018-05-22 2018-09-04 高建锐 一种基于物联网的用于池塘鱼饵料投放的无人机
CN109071021A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 播撒装置及其控制方法、以及植保无人机
CN109153452A (zh) * 2017-12-18 2019-01-04 深圳市大疆创新科技有限公司 播撒装置及其控制方法、以及植保无人机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105836129A (zh) * 2016-03-21 2016-08-10 中国农业大学 一种农用播撒无人机
CN106809390A (zh) * 2017-03-10 2017-06-09 佛山市神风航空科技有限公司 一种渔业养殖多功能无人机
KR101755199B1 (ko) * 2017-03-24 2017-07-11 김빛누리 연근해 양식장 관리용 드론
CN109071021A (zh) * 2017-12-18 2018-12-21 深圳市大疆创新科技有限公司 播撒装置及其控制方法、以及植保无人机
CN109153452A (zh) * 2017-12-18 2019-01-04 深圳市大疆创新科技有限公司 播撒装置及其控制方法、以及植保无人机
CN108170164A (zh) * 2018-01-04 2018-06-15 广东容祺智能科技有限公司 一种基于无人机自动喷洒鱼料的方法
CN108477047A (zh) * 2018-05-22 2018-09-04 高建锐 一种基于物联网的用于池塘鱼饵料投放的无人机

Similar Documents

Publication Publication Date Title
KR101755199B1 (ko) 연근해 양식장 관리용 드론
CN103988801B (zh) 一种风力驱动自动投饵系统的均匀投饵方法
CN110146675B (zh) 一种水文信息监测系统
CN110250069B (zh) 一种河蟹养殖自动精细投饵的实现方法
CN110235837A (zh) 一种智能投饵无人船装置及其智能投饵方法
CN206776544U (zh) 一种海产品捕捞装置
CN110089474A (zh) 一种全自动多功能水产养殖机及其工作方法
CN113100142B (zh) 一种抗风浪且方便清理的海洋牧场养殖装置
WO2023164893A1 (zh) 无人机及无人机的控制方法
JP3212937U (ja) 釣り用ドローン
CN111972337A (zh) 一种基于北斗定位的自动补充饲料的养殖投饵系统
US20220080478A1 (en) Management station of multi-point time-sharing water quality monitoring system
CN102440212A (zh) 一种可自动巡塘的虾料投放装置及虾料投放方法
CN110235833A (zh) 一种智能投饵机及投饵机智能控制系统
CN210900947U (zh) 一种智能投饵机及投饵机智能控制系统
CN208021748U (zh) 一种自动播撒物料的无人机以及移动控制端
CN113022796B (zh) 一种基于水产养殖无人艇的智能料仓装置及系统
CN115868443A (zh) 一种基于无人机的精准投喂装置及方法
CN202276731U (zh) 一种可自动巡塘的虾料投放装置
CN212260166U (zh) 一种基于北斗定位的自动补充饲料的养殖投饵系统
CN108901995A (zh) 一种可定时投料的鱼缸
US20220082546A1 (en) Multi-location time-division water quality monitoring system
CN113287556A (zh) 一种漂浮式鱼虾养殖用自动投料设备
CN212877212U (zh) 一种渔业养殖用投料装置
CN108040946A (zh) 一种基于gps的鱼塘精准抛料机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929342

Country of ref document: EP

Kind code of ref document: A1