WO2023163222A1 - 回転アクチュエータユニットおよびそれを備えたロボット用または重機用関節ユニット - Google Patents
回転アクチュエータユニットおよびそれを備えたロボット用または重機用関節ユニット Download PDFInfo
- Publication number
- WO2023163222A1 WO2023163222A1 PCT/JP2023/007369 JP2023007369W WO2023163222A1 WO 2023163222 A1 WO2023163222 A1 WO 2023163222A1 JP 2023007369 W JP2023007369 W JP 2023007369W WO 2023163222 A1 WO2023163222 A1 WO 2023163222A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- input
- link member
- support shaft
- output
- actuator
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 92
- 230000005540 biological transmission Effects 0.000 claims description 34
- 230000005484 gravity Effects 0.000 claims description 34
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 9
- 230000033001 locomotion Effects 0.000 description 41
- 230000000694 effects Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 8
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 5
- 238000010276 construction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H21/00—Gearings comprising primarily only links or levers, with or without slides
- F16H21/10—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H25/00—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
- F16H25/18—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
- F16H25/20—Screw mechanisms
- F16H25/22—Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
Definitions
- the present invention relates to a rotary actuator unit and a joint unit for robots or heavy machinery equipped with the same.
- robot arms are used in various fields, and often transport heavy objects.
- a continuously variable transmission as a joint of a robot arm or the like that operates under such a load. Since the continuously variable transmission can change the speed reduction ratio steplessly, continuous and smooth robot arm motion is possible both when a large force is required and when a large speed is required.
- Patent Document 1 discloses a crank pivotally supported on a fixed pivot shaft, a fulcrum slidably supported on the crank, and a drive unit for moving the fulcrum.
- a continuously variable transmission is disclosed.
- the crank can be rotated by moving the fulcrum about the pivot axis of the crank by the driving portion.
- the reduction ratio can be varied. Since this continuously variable transmission does not separate the driving actuator and the reduction ratio changing actuator like a general continuously variable transmission, the same two actuators can be used, and the driving force of each actuator can be can be distributed efficiently.
- the friction type CVT Continuous Variable Transmission
- used in automobiles relies on friction to transmit driving force, but the mechanism of Patent Document 1 can transmit driving force without relying on friction. The transmission efficiency is good and the durability of the mechanism is also high.
- JP 2012-67809 A Hiroya Yamada, Development of star-shaped crank type continuously variable transmission with torque measurement function and application to quadruped walking robot, Robotics and Mechatronics Lecture Abstracts, 2012, 2A2-V05
- Non-Patent Document 1 In particular, in the continuously variable transmission of Non-Patent Document 1, a force sensor (spring) is attached to an extendable link member to measure torque. cannot be ruled out. Furthermore, in the continuously variable transmission of Patent Document 1, since it is necessary to slide while constraining the fulcrum on the crank, and furthermore, it is necessary to transmit the drive torque for rotating the crank. The mechanism is inevitably relatively complicated. The present invention has been researched and developed in view of such circumstances, and aims to provide a rotary actuator unit using a simple link structure and a joint unit for robots and heavy machinery using the same.
- the rotary actuator unit of the present invention comprises: a first input section with a first actuator; a second input section with a second actuator; an output link member; an intermediate link member; A link mechanism having a shaft, an intermediate shaft that is not fixed to the base, and an input-side support shaft that is not fixed to the base, and the first input section and the second input section have two or more degrees of freedom.
- the tip of the output link member is rotatably supported around the output side support shaft, and the base end of the output link member and the tip of the intermediate link member is rotatably supported around the intermediate shaft, the base end of the intermediate link member and the tip of the link mechanism are rotatably supported around the input side support shaft, and the first actuator and by controlling the second actuator to drive the link mechanism, freely manipulating the two-dimensional position of the input side support shaft, and extracting the rotation of the output link member about the output side support shaft as an output.
- “fixed to the base” means fixed to a substrate such as a pedestal or base member of the rotary actuator unit, so that the two-dimensional position does not change even if each actuator is driven. It means that it is fixed.
- the two-dimensional position of the input-side support shaft can be freely manipulated by controlling the first actuator and the second actuator to move the link mechanism
- the two-dimensional position of the input-side support shaft can be fixed. say.
- the first input section includes a first linear actuator as the first actuator, a first spindle fixed to a mover of the first linear actuator, a first 1 input link member, wherein the first direct acting actuator is fixed to the base portion, and the base end portion of the first input link member is rotatably supported around the first support shaft;
- the input unit includes a second linear motion actuator as the second actuator, a second support shaft fixed to the mover of the second linear motion actuator, and a second input link member.
- the actuator is fixed to the base, and the base end of the second input link member is rotatably supported around the second support shaft; controls the first linear actuator and the second linear actuator. Therefore, the rotary actuator according to the first aspect is preferable, in which the two-dimensional position of the input-side support shaft can be freely manipulated.
- the tip of the first input link member and the second input link are supported such that the tip of the link mechanism is rotatable about the input shaft.
- the tip end portion of the link mechanism is constituted by the tip end portion of the first input link member and the tip end portion of the second input link member, and the first input link member is , a first proximal side link element and a first distal side link element, wherein the first proximal side link element is a first proximal side counterweight whose center of gravity is on the first support shaft.
- first distal link element includes a first distal counterweight portion whose center of gravity is on the input shaft
- second input link member includes a second proximal link and a second distal side link element, wherein the second proximal side link element has a second proximal side counterweight portion whose center of gravity is on the second support shaft
- the tip side link element includes a second tip side counterweight portion whose center of gravity is on the input side support shaft
- the intermediate link member includes the first tip side link element and the second tip side link element.
- the output link member comprises the first distal link element, the second distal link element, and the intermediate It is preferable that an output side counterweight portion is provided such that the composite center of gravity of the link member and the output link member is on the output side support shaft.
- a rotary actuator unit comprising a third linear actuator, a third support shaft fixed to a mover of the third linear actuator, and a third input link member. It is preferable to further have a third input section, and the third input section constitutes at least part of the link mechanism.
- each of the first input link member and the second input link member is provided with a force sensor for measuring a translational force acting on the member, and each of the force sensors It is preferable to calculate the torque around the output side support shaft from the measured value.
- the first input section includes a first support shaft fixed to the base and a first straight line supported rotatably around the first support shaft as the first actuator.
- a dynamic actuator the second input unit includes a second spindle fixed to the base, and a second linear actuator supported rotatably about the second spindle as the second actuator.
- the rotary actuator of the second aspect is capable of freely manipulating the two-dimensional position of the input-side support shaft by controlling the first linear actuator and the second linear actuator.
- the first input section includes a first rotary motor as the first actuator, a first input first link member, and a first support shaft that is not fixed to the base section. , and a first input second link member, wherein the first rotary motor is fixed to the base, and the base end of the first input first link member is fixed to the movable shaft of the first rotary motor.
- a second rotary motor that is the second actuator, a second input first link member, a second support shaft that is not fixed to the base, and a second input second link member;
- the motor is fixed to the base, the base end of the second input first link member is fixed to the movable shaft of the second rotary motor, and the tip end of the second input first link member and the A base end portion of a second input second link member is rotatably supported around the second support shaft; by controlling the first rotary motor and the second rotary motor, the input side support shaft A rotary actuator according to the third aspect, which can freely manipulate the two-dimensional position of the is preferred.
- the distal end portion of the link mechanism is rotatably supported around the input side support shaft.
- the distal end portion of the link mechanism is rotatably supported around the input side support shaft.
- it is the tip of the first input section and the tip of the second input section.
- the rotary actuator of the present invention further includes a driving force transmission mechanism that transmits rotation of the output link member, and a hollow shaft member that rotates in conjunction with the output link member by the driving force transmission mechanism.
- the rotary actuator unit of the present invention further includes a driving force conversion mechanism that converts the rotation of the output link member into a rectilinear motion.
- a rotary actuator includes a first linear motion actuator, and a first input link member having a base end connected to the first linear motion actuator so as to be rotatable about a first support shaft. a first input section; a second linear motion actuator; and a second input section including a second input link member having a base end connected to the second linear motion actuator so as to be rotatable about a second spindle.
- an output link member whose distal end portion is rotatably supported around an output side support shaft; an intermediate portion that connects the first input link member and the output link member, and the second input link member and the output link member; a link member, wherein the distal end portion of the intermediate link member and the proximal end portion of the output link member are connected rotatably about an intermediate shaft, and the first linear actuator and the second linear actuator
- the tip of the first input link member and the tip of the second input link member are connected to each other so as to be rotatable around the input side support shaft, and It is preferable that the proximal end portion of the intermediate link member is rotatably connected around the input side support shaft.
- the first input link member comprises a first proximal side link element and a first distal side link element, and the center of gravity of the first proximal side link element is positioned on the first support shaft.
- a first base end side counterweight section having a center of gravity of the first tip side link element on the input side support shaft; It comprises an end-side link element and a second distal-side link element, and has a second proximal-side counterweight portion so that the center of gravity of the second proximal-side link element is on the second support shaft.
- a second tip side counterweight portion having the center of gravity of two tip side link elements on the input side support shaft is provided, and the intermediate link member includes the first tip side link element, the second tip side link element and the intermediate link element.
- a rotary actuator includes a third linear motion actuator and a third input link member having a base end connected to the third linear motion actuator so as to be rotatable about a third spindle. It is preferable to further have a third input section.
- the movable element of the first linear motion actuator is connected to the tip of the first input link member, and the movable element of the second linear motion actuator is connected to the distal end of the second input link member. It is preferable that a force sensor for measuring the translational force applied to the member is provided on each of the members to .
- a joint unit for a robot or heavy equipment according to the present invention is characterized by comprising the rotary actuator unit according to the present invention.
- INDUSTRIAL APPLICABILITY The robot joint unit of the present invention is used, for example, in robot arms of industrial robots, humanoid robots, and the like.
- the joint unit for heavy machinery of the present invention is used for heavy machinery such as cranes and excavators used for civil engineering and construction work, working arms of aerial work platforms, and the like.
- the rotary actuator unit of the present invention has the following effects.
- the rotary actuator unit of the present invention comprises a first actuator (e.g. a first linear actuator or a first rotary motor) at a first input and a second actuator (e.g. a second linear actuator or a second actuator) at a second input.
- a first actuator e.g. a first linear actuator or a first rotary motor
- a second actuator e.g. a second linear actuator or a second actuator
- the output link member can be infinitely rotated 360 degrees or more around the output shaft side support shaft, and the reduction ratio can be changed steplessly (first effect).
- the rotary actuator unit of the present invention does not use friction as a driving force transmission means, a large torque can be transmitted, and since the friction loss is small, the driving force transmission efficiency is good (second effect).
- a first actuator for example, a first linear actuator or a first rotary motor
- a second actuator for example, a second linear actuator or a first rotary motor
- the driving force of the two actuators can be efficiently distributed to the rotational force around the output side support shaft of the output link member. (Fourth effect). In particular, efficiency can be further improved by using the same two actuators.
- the tip of the input-side link mechanism having two or more degrees of freedom including the first input section and the second input section and the output shaft have a plurality of and a link mechanism on the output side consisting of a plurality of links (output link member and intermediate link member).
- the structure can be made resistant to contamination and contamination (fifth effect).
- the distal end of the first input section especially the distal end of the first input link member
- the distal end of the second input section especially the distal end of the second input link member
- the proximal end of the intermediate link member By rotatably supporting the input-side support shaft, it is possible to further simplify the components.
- the rotary actuator unit of the present invention can measure the torque of the output-side support shaft using a force sensor (such as a load cell) that measures the translational force (sixth effect).
- a force sensor such as a load cell
- the wiring of the force sensors can be made independent of the infinite rotational motion of the output link member.
- the rotary actuator unit of the present invention facilitates the counterweight design because, as mentioned above, except for the first or second actuator that it drives, it consists only of linkages that pivot rather than slide. (seventh effect). And with proper counterweight design, eccentricity of each link can be completely prevented.
- each actuator is operated to determine the two-dimensional position of the input point (input side support shaft) and the output shaft (output side support shaft).
- input side support shaft and the output side support shaft are separated, and the complete output shaft (output link member around the output side support shaft) A free rotation state can be realized (eighth effect).
- the force sensor is appropriately provided, and the distal end portion of the first input portion (especially the distal end portion of the first input link member), the distal end portion of the second input portion (especially the second input link member) tip) and the base end of the intermediate link member are rotatably connected around the input side support shaft, and a counterweight design is applied, and then each actuator is operated to input the input point (input side support shaft) and the output shaft (output-side support shaft), and by fixing each actuator at that position, a completely unloaded state of the force sensor can be created (ninth effect).
- torque sensors and force sensors have steady-state deviations in measured values due to temperature changes and residual stress, so it is necessary to periodically reset the zero point (zero reset).
- the rotary actuator unit when the rotary actuator unit is incorporated in an external device (for example, a robot), it has been necessary to separate or disassemble and reset to zero in order to bring the torque sensor and force sensor into an unloaded state.
- this rotary actuator unit can create a completely unloaded state of the force sensor just by operating each actuator without separating or disassembling from external equipment, and the force sensor can be easily reset to zero. . Therefore, even if drift or the like occurs in the force sensor, it is possible to periodically perform zero reset with little effort, and more accurate measurement becomes possible.
- FIG. 1 is a schematic diagram showing a first embodiment of a rotary actuator unit of the present invention
- FIG. 2a to 2c are schematic diagrams showing the driving state of the rotary actuator unit of FIG. 1, respectively.
- FIG. 3a is a schematic diagram showing a second embodiment of the rotary actuator unit of the present invention
- FIG. 3b is a schematic diagram showing its driving state.
- Figures 4a and 4b are schematic diagrams showing third and fourth embodiments, respectively, of the rotary actuator unit of the present invention.
- Figures 5a to 5c are schematic diagrams showing fifth to seventh embodiments, respectively, of the rotary actuator unit of the present invention.
- 6a-6c are bottom, top and side views, respectively, showing the structure of a first prototype of the rotary actuator unit of the present invention.
- Figure 6b is a perspective view showing the structure of the first prototype of Figure 6a; 8a to 8c are bottom, plan and side views respectively showing the structure of a second prototype of the rotary actuator unit of the present invention, and FIG. 8d is a third prototype of the rotary actuator unit of the present invention. It is a top view showing the structure of the machine.
- Figure 9a is a perspective view showing the structure of the second prototype of Figure 8a
- Figure 9b is a perspective view showing the structure of the third prototype of Figure 8d
- Figures 9c and 9d are respectively It is a perspective view which shows the modification of the 2nd, 3rd prototype.
- Figures 10a to 10c are schematic diagrams showing eighth to tenth embodiments, respectively, of the rotary actuator unit of the present invention.
- Figures 11a to 11c are schematic diagrams showing eleventh to thirteenth embodiments of the rotary actuator unit of the present invention, respectively.
- the first to thirteenth embodiments of the rotary actuator unit of the present invention and the first to third prototypes based on the embodiments will be introduced.
- the first to seventh embodiments are embodiments of the rotary actuator unit of the first aspect of the invention, and the eighth to tenth embodiments (FIGS. 10a-10a).
- FIG. 10c) is an embodiment of the rotary actuator unit of the second aspect of the invention, and the eleventh to thirteenth embodiments (FIGS. 11a-11c) are the rotary actuator units of the third aspect of the invention.
- 4 is an embodiment of a unit; However, the present invention is not limited to these embodiments.
- the rotary actuator unit 1 shown in FIG. 1 includes a first input portion 10, a second input portion 20, an output link member 30, an intermediate link member 40, an output side support shaft OP fixed to the base, and a shaft OP fixed to the base. It has an intermediate shaft MP that is not fixed and an input side support shaft IP that is not fixed to the base.
- the first input portion 10 and the second input portion 20 constitute an input-side link mechanism L1 with two degrees of freedom
- the intermediate link member 40 and the output link member 30 constitute an output-side link mechanism L2. ing.
- the tip of the link mechanism L1 on the input side (the tip 12a of the first input link member and the tip 22a of the second input link member) and the base of the link mechanism L2 on the output side (the tip of the intermediate link member 40).
- the base end portion 40b) is rotatably supported around the input side support shaft IP.
- the tip of the output-side link mechanism L2 (the tip 30a of the output link member 30) is rotatably supported around the output-side support shaft OP.
- This rotary actuator unit 1 receives the rectilinear motion of the first linear motion actuator 11 of the first input section 10 and the second linear motion actuator 21 of the second input section 20 as input, and rotates the base end portion 40b of the intermediate link member 40.
- the two-dimensional position of the freely supported input side support shaft IP is freely manipulated, the rotation of the output link member 30 around the output side support shaft OP is controlled via the intermediate link member 40, and the rotational motion of the output link member 30 is controlled. It is used as an output.
- the first spindle P1, the second spindle P2, the output side spindle OP, the input side spindle IP, and the intermediate shaft MP are parallel to each other. It is vertical.
- the first input section 10 includes a first direct acting actuator 11 , a first spindle P ⁇ b>1 , and a first input link member 12 .
- the first linear motion actuator 11 is fixed to a base portion B such as a pedestal or a base member of the rotary actuator unit 1 .
- the first linear motion actuator 11 is, for example, an existing actuator that includes a ball screw, a nut, and a motor that rotates the ball screw.
- the structure is not particularly limited as long as it can be reciprocated. For example, by using a shaft motor, it is possible to further simplify the mechanism, reduce the number of sliding parts, and improve the impact resistance.
- the first spindle P ⁇ b>1 is fixed to the mover of the first linear actuator 11 .
- the base end portion 12b of the first input link member 12 is rotatably supported around the first spindle P1. Because of this configuration, the distal end portion 12a of the first input link member 12 can be positioned between the position of the mover (or the proximal end portion 12b) of the first linear motion actuator, the position of the first linear motion actuator 11, and the first input. Depending on the angle of the link member 12, it can freely move within a predetermined range within a two-dimensional plane.
- the second input section 20 has a second direct acting actuator 21 , a second support shaft P ⁇ b>2 and a second input link member 22 .
- the second linear actuator 21 is fixed to a base portion B such as a pedestal or a base member of the rotary actuator unit 1 so as to be parallel to the first linear actuator 11 (in parallel and at the same position in the linear motion direction).
- the positions of the first linear actuator 11 and the second linear actuator 21 are not particularly limited, and may be appropriately arranged based on the application of the rotary actuator unit.
- both actuators may be arranged in parallel so as to be offset in the direction of linear movement, or arranged in a V-shape so that the distance decreases toward the tip, or conversely so that the distance widens toward the tip. , or may be arranged radially around the output-side support shaft OP.
- the structure of the second linear actuator 21 is not particularly limited as long as the mover of the second linear actuator 21 can reciprocate on one linear axis. However, by making the first direct-acting actuator 11 and the second direct-acting actuator 21 have substantially the same structure, they can be efficiently driven as a whole.
- the second support shaft P2 is fixed to the mover of the second direct acting actuator 21 .
- a base end portion 22b of the second input link member 22 is rotatably supported around a second spindle P2. Because of this configuration, similarly to the first input link member 12, the distal end portion 22a of the second input link member 22 is located at the position of the mover (or the proximal end portion 22b) of the second linear motion actuator, Depending on the angle between the second direct acting actuator 21 and the second input link member 22, it can move freely within a predetermined range within a two-dimensional plane.
- the distal end portion 12a of the first input link member 12 and the distal end portion 22a of the second input link member 22 are connected so as to be rotatable on the same axis around the input side support shaft IP.
- the IP can move in two degrees of freedom on a plane parallel to the plane of the paper. That is, the input-side link mechanism L1 constituted by the first input portion 10, the second input portion 20, and the input-side support shaft IP is a fixed direct acting five-bar link mechanism.
- the tip 12a of the first input link member 12 and the tip 22a of the second input link member 22 form the tip of the link mechanism L1 on the input side.
- the two-dimensional position of the input point (input-side support shaft IP) can be freely manipulated by appropriately controlling the first linear actuator 11 and the second linear actuator 21 .
- the degree of freedom is zero when the first linear actuator 11 and the second linear actuator 21 are stopped. That is, by fixing the first linear actuator 11 and the second linear actuator 21, the position of the input point (input-side support shaft IP) can be completely fixed so as not to move.
- the first input section 10 and the second input section 20 are configured so that the two-dimensional position of the input point (input-side support shaft IP) can be freely manipulated.
- the two input units 20 constitute a fixed direct acting five-bar link mechanism. is not limited to the five-bar linkage mechanism.
- a linear five-bar link mechanism for example, FIG. 10a
- a rotary five-bar link mechanism for example, FIG. 11a
- Output link member 30 A distal end portion 30a of the output link member 30 is rotatably supported around an output side spindle OP fixed to a base portion B such as a pedestal or a base member of the rotary actuator unit 1. As shown in FIG. A proximal end portion 30b of the output link member 30 is rotatably supported around an intermediate shaft MP and a distal end portion 40a of the intermediate link member. In FIG. 1, the base end portion 30b of the output link member 30 and the tip end portion 40a of the intermediate link member 40 are aligned with the intermediate shaft MP and overlap each other.
- the intermediate link member 40 connects the first input link member 12 and the output link member 30 and connects the second input link member 22 and the output link member 30 .
- the distal end portion 40a of the intermediate link member 40 is rotatably supported around the intermediate shaft MP together with the proximal end portion 30b of the output link member 30, as described above.
- the base end portion 40b of the intermediate link member 40 is rotatably supported around the input side support shaft IP together with the tip portion 12a of the first input link member and the tip portion 22a of the second input link member.
- the link length of the intermediate link member 40 (the distance between the input side support shaft IP and the intermediate shaft MP) and the link length of the output link member 30 (the distance between the output side support shaft OP and the intermediate shaft MP) are the same length. It is
- this rotary actuator unit 1 drives the first linear actuator 11 and the second linear actuator 21 to move the two-dimensional position of the input point (input-side support shaft IP) and output
- the link member 30 is rotated around the output-side support shaft OP.
- the output link member 30 is rotated around the output side support shaft OP by rotating the input side support shaft IP around the output side support shaft OP.
- this rotary actuator unit 1 can vary the speed reduction ratio with respect to the output link member 30 by controlling the distance X between the input-side support shaft IP and the output-side support shaft OP in the plane of rotation. For example, as shown in FIG.
- the distance X between the input-side support shaft IP and the output-side support shaft OP is generally inversely proportional to the rotational speed of the output link member 30 . Furthermore, by aligning the rotation axes of the input side support shaft IP and the output side support shaft OP as shown in FIG. 2c, the output link member 30 and the intermediate link member 40 can be separated from the two actuators. Thereby, a free state in which the output link member 30 and the intermediate link member 40 freely rotate around the output side support shaft OP can be realized.
- the rotary actuator unit 1 has the following effects.
- the rotary actuator unit 1 appropriately controls the first linear actuator 11 of the first input section 10 and the second linear actuator 21 of the second input section 20 to rotate the output link member 30 around the output side spindle OP. 360 degrees or more can be infinitely rotated, and the reduction ratio can be changed steplessly. Since the rotary actuator unit 1 does not use friction as a driving force transmission means, it can transmit a large torque. Moreover, since there is no need to use a gear as a reduction means between the input point (input-side support shaft IP) and the output shaft (output-side support shaft OP), the mechanism is excellent in shock resistance.
- the first linear actuator 11 and the second linear actuator 21 of the rotary actuator unit 1 are not separated for driving and gear shifting, and both are responsible for driving and gear shifting (changing the reduction ratio).
- the force can be efficiently distributed to the rotation of the output link member 30 around the output side support shaft.
- the efficiency can be further improved by using the same two actuators.
- the rotary actuator unit 1 has three pivot shafts (input side support shaft IP , intermediate shaft MP, and output-side support shaft OP), and the link mechanism L2 on the output side of two links (the output link member 30 and the intermediate link member 40). Axes can be eliminated and parts can be simplified. Furthermore, since the link mechanism on the output side is composed only of the pivot shaft, the counterweight can be easily designed.
- the rotary actuator unit 1 By aligning the input point (input-side support shaft IP) and the output shaft (output-side support shaft OP), the rotary actuator unit 1 includes the linear motion actuators 11 and 21, the output link member 30, and the intermediate link member 40. , and the free state in which the output link member 30 and the intermediate link member 40 freely rotate around the output shaft (output side support shaft OP) can be easily achieved.
- the rotary actuator unit 2 shown in FIG. 3a is obtained by adding a force sensor 50 to the rotary actuator unit 1 shown in FIG.
- the counterweight is designed so that the center of gravity is aligned with the support shaft. That is, the rotary actuator unit 2 includes a first input portion 10, a second input portion 20, an output link member 30, an intermediate link member 40, an output side support shaft OP, an intermediate shaft MP, and an input side support shaft IP. 1, with the exception of the force sensor 50 and counterweight design. Further, each reference numeral and structure of the rotary actuator unit 1 in FIG. 1 are common.
- the force sensor 50 is a force sensor that measures translational force. For example, a load cell etc. are mentioned.
- the force sensor 50 is a uniaxial load cell that measures the translational force of tension and compression of each link member. is preferred.
- the force sensor 50 is installed between the mover (first spindle P1) of the first linear motion actuator 11 and the input side support shaft IP, and the mover of the second linear actuator 21 (second It is not particularly limited as long as it is between the support shaft P2) and the input side support shaft IP, but in particular, it is located as close as possible to the input side support shaft IP of each of the first input link member 12 and the second input link member 22.
- the first input link member 12 includes a first proximal link element 16 from the proximal end 12b to the measurement reference plane of the force sensor 50, and a first distal link element 17 from the measurement reference plane to the distal end 12a. consists of The first proximal side link element 16 and the first distal side link element 17 move together.
- the first base end link element 16 of the first input link member 12 has a first base end counterweight portion 18 at the base end portion 12b so that the center of gravity of the first base end side link element 16 is on the first support shaft P1.
- the first tip side link element 17 of the first input link member 12 has a first tip side counterweight 19 at the tip portion 12a so that the center of gravity of the first tip side link element 17 is on the input side support shaft IP.
- the second input link member 22 includes a second proximal link element 26 from the proximal end 22b to the measurement reference plane of the force sensor 50, and a second distal link element 27 from the measurement reference plane to the distal end 22a. consists of The second proximal link element 26 and the second distal link element 27 move together.
- the second base end link element 26 of the second input link member 22 has a second base end counterweight portion 28 at the base end portion 22b so that the center of gravity of the second base end side link element 26 is on the second support shaft P2.
- the second tip side link element 27 of the second input link member 22 has a second tip side counterweight 29 at the tip portion 22a so that the center of gravity of the second tip side link element 27 is on the input side support shaft IP.
- the intermediate link member 40 has an intermediate counterweight portion 45 so that the combined center of gravity of the first tip end side link element 17, the second tip end side link element 27, the input side support shaft IP, and the intermediate link member 40 is on the intermediate shaft MP. is provided at the distal end portion 40a.
- the output link member 30 the combined center of gravity of the first tip end side link element 17, the second tip end side link element 27, the input side support shaft IP, the intermediate link member 40, and the output link member 30 is on the output side support shaft OP.
- the output side counterweight portion 35 is provided at the distal end portion 30a.
- This rotary actuator unit 2 has the same effects as the rotary actuator unit 1 in FIG. 1, and can rotate the output link member 30 infinitely over 360 degrees around the output side support shaft OP without using friction as a driving force transmission means. It can be rotated and its speed reduction ratio can be changed steplessly.
- the rotary actuator unit 2 is designed with a counterweight so that the center of gravity of each link and the rotation axis are aligned and the gravity of each link member is not applied to the force sensor 50, the eccentricity of the links does not occur. That is, vibration due to link eccentricity can be minimized.
- the force sensors 50 provided on the first input link member 11 and the second input link member 12 can completely eliminate the influence of the gravity of each link and measure the torque around the output side support shaft OP. can.
- each linear actuator is operated so that the input side support shaft IP and the output side support shaft OP of the rotary actuator unit 2 overlap each other, and each linear motion actuator is fixed at that position.
- a completely unloaded condition of the force sensor 50 can be created. That is, the rotary actuator unit 2 can easily reset the zero point of the force sensor 50 without disassembling it even when it is incorporated in a robot arm or the like.
- the rotary actuator unit 3 of FIG. 4a further has a third input section 60 having a third linear actuator 61, a third pivot P3, and a third input link member 62.
- the third direct acting actuator 61 is fixed to a base B such as a pedestal or a base member of the rotary actuator unit 3 .
- the third spindle P3 is fixed to the mover of the third direct acting actuator 61 .
- the base end portion 62b of the third input link member 62 is rotatably supported around the third spindle P3, and the tip end portion 62a is rotatably supported around the input side spindle IP.
- the third input section 60 constitutes an input-side link mechanism together with the first input section 10 and the second input section 20 . Then, by operating the first linear actuator 11 of the first input unit 10, the second linear actuator 21 of the second input unit 20, and the third linear actuator 61 of the third input unit 60, the input side support shaft IP is manipulated to rotate the output link member 30 around the output-side support shaft OP.
- three input units are shown in FIG. 4a, there may be four or more. By increasing the number of inputs, the maximum output can be improved.
- the three direct-acting actuators are arranged in parallel here, the arrangement is not particularly limited. For example, they may be arranged radially around the third spindle P3.
- This rotary actuator unit 3 also has the same effects as the rotary actuator unit 1 of FIG. Also, by appropriately designing the counterweight as in the rotary actuator unit 2 of FIG. 2, the same effect as that of the rotary actuator unit 2 can be obtained.
- the third input section 60 includes a third linear actuator 61 fixed to the base, a third spindle P3 fixed to the mover of the third linear actuator 61, and a base end 62b of the third spindle. and a third input link member 62 rotatably supported around P3.
- the third input unit 60 has a third actuator (rotary motor or linear actuator) and can control one degree of freedom at the tip of the third input unit 60 with the third actuator,
- the second intermediate link member 41 has a base end portion 47 that intersects with the link body 46 at a predetermined angle (here, perpendicularly), and has a substantially T-shape as a whole.
- a distal end portion 46a of the link body 46 and a proximal end portion 40b of the intermediate link member 40 are rotatably supported around the input side support shaft IP.
- a seventh spindle P7 rotatably supports the distal end portion 12a of the first input link member
- a seventh support shaft P7 rotatably supports the distal end portion 22a of the second input link member.
- the tip of the link mechanism on the input side of the rotary actuator unit 4 is the tip 46 a of the link body 46 of the second intermediate link member 41 .
- the rotary actuator unit 4 configured in this way determines the positional relationship between the first spindle P1 and the second spindle P2 by appropriately controlling the first linear actuator 11 and the second linear actuator 21, Further, by appropriately controlling the third direct acting actuator 61, the attitude (angle) of the second intermediate link member 41 is determined, the two-dimensional position of the input side support shaft IP is manipulated, and the output link member 30 is adjusted to the output side support shaft. It can be properly rotated around OP.
- This rotary actuator unit 4 has one more link than the rotary actuator unit 1 of FIG. Control calculations for the actuator 21 and the third direct-acting actuator 61 are complicated. However, other than that, substantially the same effects as those of the rotary actuator unit 1 of FIG. 1 are obtained.
- this rotary actuator unit 4 is composed entirely of link mechanisms that pivot rather than slide, except for the linear motion actuator that drives it, the first input link member 12, the second input link member 22 and the By attaching force sensors to each of the three input link members 62 and appropriately designing the counterweight so that the gravity of each link member is not applied to the force sensors, the same effect as the rotary actuator unit 2 in FIG. 2 can be obtained.
- a T-shaped one is introduced here as the second intermediate link member 41, the shape is not particularly limited. For example, a cross-shaped one may be used.
- the rotary actuator units 1A, 1B of FIGS. 5a, 5b are fifth and sixth embodiments of the rotary actuator unit of the present invention.
- the rotary actuator unit 1A shown in FIG. 5A is a driving force that transmits the rotation of the output link member 30 around the output side support shaft to the output shaft (output side support shaft OP) of the output link member 30 of the rotary actuator unit 1 shown in FIG.
- a force transmission mechanism 70 and a hollow shaft member 80 that rotates in conjunction with the output link member 30 by the driving force transmission mechanism 70 are further provided.
- the driving force transmission mechanism 70 includes a first pulley 70a that transmits the rotation of the output link member 30, a second pulley 70b, and a belt 70c that transmits the rotation of the first pulley 70a to the second pulley 70b. be.
- the driving force transmission mechanism 71 of the rotary actuator unit 1B shown in FIG. 5B includes a first gear 71a that transmits the rotation of the output link member 30 and a second gear 71b that meshes with the first gear 71a.
- the rotary actuator unit 1C of FIG. 5c is a seventh embodiment of the rotary actuator unit of the invention.
- the rotary actuator unit 1C of FIG. 5C converts the rotation of the output link member 30 of the output link member 30 of the actuator unit 1 of FIG. It is provided with a driving force conversion mechanism 72 for driving.
- the driving force conversion mechanism 72 includes a pinion 72a that transmits the rotation of the output link member 30, and a rack 72b that converts the rotation of the pinion 72a into rectilinear motion.
- the rotary actuator unit 1C of FIG. 5C uses a driving force conversion mechanism 72 consisting of a pinion and a rack. can be applied. In the rotary actuator units 1A to 1C shown in FIGS.
- the driving force transmission mechanisms 70 and 71 and the driving force conversion mechanism 72 are attached to the rotary actuator unit 1 shown in FIG.
- Other rotary actuator units 2, 3, 4 or rotary actuators 8a-8c, 9a-9c shown in FIGS. 10 and 11 may be attached, respectively.
- the rotary actuator unit 5 in FIGS. 6 and 7 shows a first prototype example in which the final output shaft is offset to the hollow shaft member 80 via the driving force transmission mechanism 71 of the rotary actuator unit 2 in FIG. That is, the first input portion 10, the second input portion 20, the output link member 30, the intermediate link member 40, the force sensor 50, the output side spindle OP, the intermediate shaft MP, and the input side spindle IP , a driving force transmission mechanism 71, and a hollow shaft member 80, and has a counterweight design.
- Reference numeral 90 denotes an encoder for measuring the displacement angle of the output shaft (output-side support shaft OP). Other reference numerals are common to the structure of the rotary actuator unit 2 in FIG.
- the rotation status of the output shaft can be monitored by the actuator of the input section. Even if the shaft is separated from the linear motion actuator and the output shaft (output-side support shaft OP) is idled in a free state, the rotation status of the output shaft can be continuously monitored.
- the structures of the first linear actuator 11 and the second linear actuator 21 are not particularly limited, and an existing example including a ball screw, a nut, and a motor for rotating the ball screw is given.
- a ball screw with low friction and good transmission efficiency instead of a ball screw with low friction and good transmission efficiency, a slide screw with high friction and low transmission efficiency may be selected.
- the linear actuator will have a so-called self-locking function, and the rotary actuator unit will not reversely drive unless the driving force is actively applied (however, the input point (input side support shaft IP) and the output shaft ( The complete output shaft (except when the output side support shaft OP) is in a free rotation state by matching the output side support shaft OP).
- the locked state of the output shaft can be realized in a state other than the free rotation state of the output shaft.
- a similar locking function can of course also be realized by attaching a braking mechanism such as an (electromagnetic) brake to the output shaft (output side support shaft OP), a direct acting actuator such as a ball screw, or a motor that rotates the ball screw or the like. be done. In this case, it is necessary to install an extra brake or the like, but it is possible to acquire the locking function of the output shaft while using, for example, a ball screw with good transmission efficiency.
- the rotary actuator unit 6 of FIGS. 8a to 8c and 9a shows a second prototype example in which the driving force conversion mechanism 72 is attached to the rotary actuator unit 2 of FIG. In other words, it converts the rotation of the output shaft of the rotary actuator unit 2 into rectilinear motion.
- the rotary actuator unit 6 also includes the brake mechanism 95 that brakes the rotation of the output shaft (output-side support shaft OP), as described above.
- Other reference numerals have the same structure as the rotary actuator unit 2 in FIG. By providing the output shaft with the brake mechanism 95, it is possible to impart a locking function to the output shaft regardless of the state of the output shaft.
- the output shaft can be provided with a locking function.
- the output shaft (output side support shaft OP) and the input point (input side support shaft IP) are made to coincide with each other, thereby moving the output shaft to the first actuator 11 and the second actuator. 21
- the force sensor can be completely unloaded and the force sensor can be reset to zero.
- the force sensor zero reset can be performed while the external mechanism coupled to mechanism 72 is fixed.
- the brake mechanism 95 of the rotary actuator unit 6 is not particularly limited, for example, an electromagnetic brake is preferable.
- the brake mechanism 95 may be attached to other rotary actuator units.
- the brake mechanism 95 of the rotary actuator unit 6 is provided on the output shaft (output-side support shaft OP), but may be provided outside the output shaft, such as the driving force conversion mechanism 72 .
- the rack 72b of the driving force conversion mechanism 72 is provided so as to advance straight parallel to the first linear actuator 11 of the first input section 10 and the second linear actuator 21 of the second input section 20.
- the rack 72b may be provided at an angle of 90 degrees with respect to the first linear actuator 11 and the second linear actuator 21, as in the rotary actuator unit 6A of FIG. 9c.
- the rotary actuator unit 7 in FIGS. 8d and 9b is provided with a driving force conversion mechanism 73.
- the driving force conversion mechanism 73 includes a pinion 73a, a first rack 73b, and a second rack 73c.
- the first rack 73b and the second rack 73c move straight in opposite directions.
- the first rack 73b and the second rack 73c may be overlapped, for example, in the axial direction. In this case, the two racks go in the same direction.
- the orientation of the driving force conversion mechanism 73 with respect to the rotary actuator unit may be changed as in the rotary actuator unit 7A of FIG. 9d.
- the rotary actuator unit 8 (eighth embodiment) of FIG. It has a shaft OP, an intermediate shaft MP that is not fixed to the base, and an input side support shaft IP that is not fixed to the base.
- the first input section 10 includes a first spindle P1 fixed to the base B, and a first direct acting actuator 11 rotatably supported around the first spindle P1.
- the second input section 20 includes a second spindle P2 fixed to the base B, and a second direct acting actuator 21 rotatably supported around the second spindle P2.
- the movable element 11a of the first linear actuator 11 and the movable element 21a of the second linear actuator 21 are rotatably supported together with the base end portion 40b of the intermediate link member 40 around the input side support shaft IP. That is, the first input section 10 and the second input section 20 constitute an input-side direct-acting five-bar link mechanism L1.
- the link mechanism L2 on the output side is substantially the same as the rotary actuator 1 in FIG.
- the mover 11a of the first linear motion actuator 11 (the tip of the first input section) and the mover 21a of the second linear motion actuator 21 (the tip of the second input section) are of the input side linear motion type. It is the tip of the five-bar link mechanism.
- the intermediate link member 40 connects the mover 11 a of the first linear motion actuator 11 and the output link member 30 , and connects the mover 21 a of the second linear motion actuator 21 and the output link member 30 . Therefore, by controlling the first linear motion actuator 11 and the second linear motion actuator 21, the two-dimensional position of the input side support shaft IP can be freely manipulated to rotate the output link member 30 around the output side support shaft OP. can be done. Further, the force sensor 50 is provided on the stems of the first linear actuator 11 and the second linear actuator 21, and although it is not particularly limited, it is preferably near the input side support shaft IP. This rotary actuator 8 does not have a counterweight design.
- each linear motion actuator the base end and tip end (movable element) of each linear motion actuator, the base end portion 40b and tip end portion 40a of the intermediate link member, and the base end portion 30b and tip end portion 30a of the output link member, respectively. It is theoretically possible, albeit complicated, to provide a counterweight that interlocks with the operation of the actuator. Proper counterweight design prevents eccentricity of each link.
- a rotary actuator unit 8a (ninth embodiment) of FIG. 10b is obtained by providing a third input section 60 to the rotary actuator unit 8 of FIG. 10a.
- the third input section 60 has a third direct acting actuator 61 rotatably supported around a third support shaft P3 fixed to the base section B.
- a movable element 61a of the third direct acting actuator 61 is rotatably supported around the input side support shaft IP together with the base end portion 40b of the intermediate link member.
- the rotary actuator unit 8b (tenth embodiment) of FIG. 10c is provided between the intermediate link member 40 of the rotary actuator unit 8 of FIG.
- An intermediate link member 41 is provided, and a third input section 60 for controlling the posture of the second intermediate link member 41 is provided.
- the third input section 60 includes a third spindle P3 fixed to the base B, and a third direct acting actuator 61 rotatably supported around the third spindle P3.
- the second intermediate link member 41 is substantially the same as the second intermediate link member 41 of the rotary actuator unit 4 of Figure 4b.
- the third input unit 60 includes a third actuator (rotary motor or linear actuator). Without limitation, for example, the third input section 60 of the rotary actuator 4 in FIG. 4b or the third input section 60 of the rotary actuator 9b in FIG. 11c may be used.
- the rotary actuator unit 9 (eleventh embodiment) of FIG. It has a shaft OP, an intermediate shaft MP that is not fixed to the base, and an input side support shaft IP that is not fixed to the base.
- the first input section 10 includes a first motor 111 , a first input first link member 112 , a first spindle P ⁇ b>1 that is not fixed to the base, and a first input second link member 113 .
- the first rotary motor 111 is fixed to the base B.
- the base end portion 112b of the first input first link member 112 is fixed to the movable shaft 111a of the first motor 111, and the tip end portion 112a of the first input first link member 112 and the first input second link member 113 are separated from each other.
- the base end portion 113b is rotatably supported around the first support shaft P1.
- the second input section 20 includes a second motor 211 , a second input first link member 212 , a second support shaft P ⁇ b>2 that is not fixed to the base, and a second input second link member 213 .
- the second rotary motor 211 is fixed to the base B.
- the base end portion 212b of the second input first link member 212 is fixed to the movable shaft 211a of the second motor 211, and the tip end portion 212a of the second input first link member 212 and the second input second link member 213 are connected to each other.
- the base end portion 213b of is rotatably supported around the second spindle P2.
- the distal end portion 113a of the first input second link member 113 and the distal end portion 213a of the second input second link member 213 are rotatably supported around the input side spindle IP together with the base end portion 40b of the intermediate link member 40. ing. That is, the first input section 10 and the second input section 20 constitute an input-side rotary five-bar link mechanism L1.
- the distal end portion 113a of the first input second link member 113 and the distal end portion 213a of the second input second link member 213 are the distal end portions of the rotary five-bar link mechanism on the input side.
- the intermediate link member 40 connects the first input/second link member 113 and the output link member 30 and the second input/second link member 213 and the output link member 30 .
- the link mechanism L2 on the output side is substantially the same as the link mechanism L2 of the rotary actuator unit 1 in FIG. Therefore, by controlling the first rotary motor 111 and the second rotary motor 211, the two-dimensional position of the input side support shaft IP can be freely manipulated, and the output link member 30 can be rotated around the output side support shaft OP. .
- the force sensor 50 is provided on the first input second link member 113 and the second input second link member 213, and is preferably near the input side support shaft IP, although not particularly limited.
- This rotary actuator 9 does not have a counterweight design. However, with proper counterweight design, eccentricity of each link can be avoided.
- a rotary actuator unit 9a (twelfth embodiment) of FIG. 11b is obtained by further providing a third input section 60 to the rotary actuator unit 9 of FIG. 11a.
- the third input section 60 includes a third motor 611 fixed to the base B, a third input first link member 612 having a base end 612b fixed to the support shaft of the third motor 611, and a base end of the third input first link member 612.
- a third input second link member 613 is rotatably connected to the tip of the 3 input first link member 612 around the third support shaft P3. Further, the tip portion 613a of the third input second link member 613 is rotatably supported around the input side support shaft IP.
- the third input section 60 includes a third motor 611 fixed to the base, a first input first link member 612, a third spindle P3 not fixed to the base, and a first input second link member 613. and The base end of the third input first link member 612 is fixed to the movable shaft of the third motor 611, and the tip of the third input first link member 612 and the base end of the third input second link member 613 are connected. and are rotatably supported around the third support shaft P3.
- the intermediate link member 41 is substantially the same as the second intermediate link member 41 and the third input 60 of the rotary actuator unit 4 of Figure 4b.
- a distal end portion 613a of the third input second link member 613 is rotatably supported around the ninth support shaft P9.
- the third input unit 60 includes a third actuator (rotary motor or linear actuator).
- the third input section 60 of the rotary actuator 4 in FIG. 4b or the third input section 60 of the rotary actuator 8b in FIG. 10c may be used.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Transmission Devices (AREA)
Abstract
簡易なリンク構造を用いた回転アクチュエータユニットおよびそれを用いたロボット用関節ユニットを提供する。第1入力部10と、第2入力部20と、出力リンク部材30と、中間リンク部材40と、出力側支軸OPと、中間軸MPと、入力側支軸IPとを有しており、第1入力部10と、第2入力部20とによって2自由度の入力側のリンク機構L1を構成し、中間リンク部材40と出力リンク部材30とによって出力側のリンク機構L2を構成し、入力側のリンク機構L1の先端部と、出力側のリンク機構L2の基端部とが入力側支持軸IP周りに回転自在に支持されている。第1入力部10の第1直動アクチュエータ11および第2入力部20の第2直動アクチュエータ21を制御して入力側のリンク機構L1を駆動することにより、入力側支軸IPの2次元位置を自在に操り、出力軸OP周りの出力リンク部材30の回転を出力として利用するものである。
Description
本発明は、回転アクチュエータユニットおよびそれを備えたロボット用または重機用関節ユニットに関する。
現在、ロボットアームは様々な分野で使われており、重量物を搬送することも多い。また、クレーンやショベル等の土木や建築の作業に使用される重機、高所作業車、特装車等においても、ロボットのような作業アームの関節を駆動することが必要になる。
このような、負荷を受けた状態で稼働させるロボットアーム等の関節として、無段変速機を用いると有利であることが知られている。無段変速機は、減速比を無段階に変更できるため、大きな力が必要な時と大きな速度が必要な時の両方に対応した、連続で滑らかなロボットアームの動作が可能となる。
このような、負荷を受けた状態で稼働させるロボットアーム等の関節として、無段変速機を用いると有利であることが知られている。無段変速機は、減速比を無段階に変更できるため、大きな力が必要な時と大きな速度が必要な時の両方に対応した、連続で滑らかなロボットアームの動作が可能となる。
例えば、特許文献1には、固定された枢動軸に枢動可能に支持されているクランクと、そのクランク上に滑動可能に支持されている支点と、その支点を移動させる駆動部とを備えた無段変速機が開示されている。つまり、駆動部によって支点をクランクの枢動軸周りに移動させることによりクランクを回転させることができる。そして支点をクランク上で滑動させ、枢動軸と支点との距離を変更させることにより減速比を可変にできる。この無段変速機は、一般的な無段変速機のように駆動用アクチュエータと減速比変更用アクチュエータとが分離していないため、2つの同じアクチュエータを使用でき、かつ、各アクチュエータの駆動力を効率良く配分することができる。さらに、自動車で使われる摩擦式CVT(Continuously Variable Transmission:連続可変変速機)では駆動力の伝達を摩擦力に頼っているが、特許文献1の機構では摩擦に頼ることなく駆動力を伝達できるため伝達効率が良く、機構の耐久性も高い。
しかし、特許文献1の無段変速機は、クランクの重心がクランクの枢動軸上になく偏心しているため、クランクを回転させる際の慣性力により振動が生じる。なお、クランクにカウンタウエイト設計を施すことも考えられるが、クランク上で支点を移動させることによりクランクの重心位置が変わり、枢動軸からの偏心距離も変動するため、完全にバランスするようなカウンタウエイト設計は困難である。
また特許文献1の無段変速機のクランクおよび各リンクは、上述のようにクランクのカウンタウエイト設計が困難であるため、枢動軸周りにクランクを回転させるとき、回転角度によってクランクおよび各リンクの重力がトルクとして作用する。つまり、枢動軸に意図しないトルクが出力され、クランクの回転運動に影響を及ぼす可能性がある。特に、非特許文献1の無段変速機では、伸縮可能なリンク部材に力センサ(バネ)を取り付けてトルクの計測を行っているが、その計測においてもクランクおよび各リンクの重力の影響を完全には排除できない。
さらに特許文献1の無段変速機では、支点をクランク上に拘束しつつ滑動させ、さらにクランクを回転させる駆動トルクを伝達する必要があるため、負荷がかかりながらも正確な滑動を実現するための機構が比較的複雑とならざるを得ない。
本発明はこのような事情を鑑みて研究・開発されたものであり、簡易なリンク構造を用いた回転アクチュエータユニットおよびそれを用いたロボット用・重機用関節ユニットを提供することを目的としている。
また特許文献1の無段変速機のクランクおよび各リンクは、上述のようにクランクのカウンタウエイト設計が困難であるため、枢動軸周りにクランクを回転させるとき、回転角度によってクランクおよび各リンクの重力がトルクとして作用する。つまり、枢動軸に意図しないトルクが出力され、クランクの回転運動に影響を及ぼす可能性がある。特に、非特許文献1の無段変速機では、伸縮可能なリンク部材に力センサ(バネ)を取り付けてトルクの計測を行っているが、その計測においてもクランクおよび各リンクの重力の影響を完全には排除できない。
さらに特許文献1の無段変速機では、支点をクランク上に拘束しつつ滑動させ、さらにクランクを回転させる駆動トルクを伝達する必要があるため、負荷がかかりながらも正確な滑動を実現するための機構が比較的複雑とならざるを得ない。
本発明はこのような事情を鑑みて研究・開発されたものであり、簡易なリンク構造を用いた回転アクチュエータユニットおよびそれを用いたロボット用・重機用関節ユニットを提供することを目的としている。
本発明の回転アクチュエータユニットは、第1アクチュエータを備えた第1入力部と、第2アクチュエータを備えた第2入力部と、出力リンク部材と、中間リンク部材と、基部に固定された出力側支軸と、前記基部に固定されていない中間軸と、前記基部に固定されていない入力側支軸とを有し、前記第1入力部と前記第2入力部は2自由度以上を有するリンク機構の少なくとも一部を構成しており、前記出力リンク部材の先端部は前記出力側支軸周りに回転自在に支持されており、前記出力リンク部材の基端部と前記中間リンク部材の先端部とは前記中間軸周りに回転自在に支持されており、前記中間リンク部材の基端部と前記リンク機構の先端部とは前記入力側支軸周りに回転自在に支持されており、前記第1アクチュエータおよび前記第2アクチュエータを制御して前記リンク機構を駆動することにより、前記入力側支軸の2次元位置を自在に操り、前記出力側支軸周りの前記出力リンク部材の回転を出力として取り出すことのできることを特徴としている。ここで「基部に固定されている」とは、回転アクチュエータユニットの台座またはベース部材等の基材に固定されていることをいい、各アクチュエータを駆動させてもその2次元位置が変化しないように固定されていることをいう。一方、「基部に固定されていない」とは各アクチュエータを駆動させることによって2次元位置が変化することをいう。そして、「第1アクチュエータおよび第2アクチュエータを制御してリンク機構を動かすことにより入力側支軸の2次元位置を自在に操ることができる」とは、第1アクチュエータおよび第2アクチュエータを操作することにより、所定の範囲内において入力側支軸の2次元位置を任意に操り、かつ、第1アクチュエータおよび第2アクチュエータを停止させることにより、入力側支軸の2次元位置を固定することができることをいう。
本発明の回転アクチュエータユニットであって、前記第1入力部は、前記第1アクチュエータとしての第1直動アクチュエータと、前記第1直動アクチュエータの可動子に固定された第1支軸と、第1入力リンク部材とを備え、前記第1直動アクチュエータは前記基部に固定され、前記第1入力リンク部材の基端部は前記第1支軸周りに回転自在に支持されており;前記第2入力部は、前記第2アクチュエータとしての第2直動アクチュエータと、前記第2直動アクチュエータの可動子に固定された第2支軸と、第2入力リンク部材とを備え、前記第2直動アクチュエータは前記基部に固定され、前記第2入力リンク部材の基端部は前記第2支軸周りに回転自在に支持されており;前記第1直動アクチュエータおよび前記第2直動アクチュエータを制御することにより、前記入力側支軸の2次元位置を自在に操ることができる第1の態様の回転アクチュエータが好ましい。
本発明の第1の態様の回転アクチュエータユニットであって、前記リンク機構の先端部が前記入力側軸周りに回転自在に支持されている前記第1入力リンク部材の先端部および前記第2入力リンク部材の先端部であるものが好ましい。
このように第1入力リンク部材の先端部および第2入力リンク部材の先端部によって前記リンク機構の先端部を構成している第1の態様の回転アクチュエータであって、前記第1入力リンク部材は、第1基端側リンク要素と、第1先端側リンク要素とからなり、前記第1基端側リンク要素は、その重心が前記第1支軸上となるような第1基端側カウンタウエイト部を備え、前記第1先端側リンク要素は、その重心が前記入力側支軸上となるような第1先端側カウンタウエイト部を備え;前記第2入力リンク部材は、第2基端側リンク要素と、第2先端側リンク要素とからなり、前記第2基端側リンク要素は、その重心が前記第2支軸上となるような第2基端側カウンタウエイト部を備え、前記第2先端側リンク要素は、その重心が前記入力側支軸上となるような第2先端側カウンタウエイト部を備え;前記中間リンク部材は、前記第1先端側リンク要素と前記第2先端側リンク要素と前記中間リンク部材との合成重心が、前記中間軸上となるような中間カウンタウエイト部を備え;前記出力リンク部材は、前記第1先端側リンク要素と前記第2先端側リンク要素と前記中間リンク部材と前記出力リンク部材との合成重心が、前記出力側支軸上となるような出力側カウンタウエイト部を備えているものが好ましい。
このように第1入力リンク部材の先端部および第2入力リンク部材の先端部によって前記リンク機構の先端部を構成している第1の態様の回転アクチュエータであって、前記第1入力リンク部材は、第1基端側リンク要素と、第1先端側リンク要素とからなり、前記第1基端側リンク要素は、その重心が前記第1支軸上となるような第1基端側カウンタウエイト部を備え、前記第1先端側リンク要素は、その重心が前記入力側支軸上となるような第1先端側カウンタウエイト部を備え;前記第2入力リンク部材は、第2基端側リンク要素と、第2先端側リンク要素とからなり、前記第2基端側リンク要素は、その重心が前記第2支軸上となるような第2基端側カウンタウエイト部を備え、前記第2先端側リンク要素は、その重心が前記入力側支軸上となるような第2先端側カウンタウエイト部を備え;前記中間リンク部材は、前記第1先端側リンク要素と前記第2先端側リンク要素と前記中間リンク部材との合成重心が、前記中間軸上となるような中間カウンタウエイト部を備え;前記出力リンク部材は、前記第1先端側リンク要素と前記第2先端側リンク要素と前記中間リンク部材と前記出力リンク部材との合成重心が、前記出力側支軸上となるような出力側カウンタウエイト部を備えているものが好ましい。
本発明の第1の態様の回転アクチュエータユニットであって、第3直動アクチュエータと、前記第3直動アクチュエータの可動子に固定された第3支軸と、第3入力リンク部材とを備えた第3入力部をさらに有し、前記第3入力部は、前記リンク機構の少なくとも一部を構成しているものが好ましい。
本発明の第1の態様の回転アクチュエータユニットであって、前記第1入力リンク部材および前記第2入力リンク部材に、当該部材にかかる並進力を計測する力センサをそれぞれ備え、当該力センサの各計測値から前記出力側支軸周りのトルクを算出するものが好ましい。
本発明の第1の態様の回転アクチュエータユニットであって、前記第1入力リンク部材および前記第2入力リンク部材に、当該部材にかかる並進力を計測する力センサをそれぞれ備え、当該力センサの各計測値から前記出力側支軸周りのトルクを算出するものが好ましい。
本発明の回転アクチュエータユニットであって、前記第1入力部は、前記基部に固定された第1支軸と、前記第1アクチュエータとして前記第1支軸周りに回転自在に支持された第1直動アクチュエータとを備え;前記第2入力部は、前記基部に固定された第2支軸と、前記第2アクチュエータとして前記第2支軸周りに回転自在に支持された第2直動アクチュエータとを備え;前記第1直動アクチュエータおよび前記第2直動アクチュエータを制御することにより、前記入力側支軸の2次元位置を自在に操ることができる第2の態様の回転アクチュエータが好ましい。
本発明の回転アクチュエータユニットであって、前記第1入力部は、前記第1アクチュエータとしての第1回転モータと、第1入力第1リンク部材と、前記基部に固定されていない第1支軸と、第1入力第2リンク部材とを備え、前記第1回転モータは前記基部に固定されており、前記第1入力第1リンク部材の基端部は前記第1回転モータの可動軸に固定されており、前記第1入力第1リンク部材の先端部と前記第1入力第2リンク部材の基端部とが前記第1支軸周りに回転自在に支持されており;前記第2入力部は、前記第2アクチュエータである第2回転モータと、第2入力第1リンク部材と、前記基部に固定されていない第2支軸と、第2入力第2リンク部材とを備え、前記第2回転モータは前記基部に固定されており、前記第2入力第1リンク部材の基端部は前記第2回転モータの可動軸に固定されており、前記第2入力第1リンク部材の先端部と前記第2入力第2リンク部材の基端部とが前記第2支軸周りに回転自在に支持されており;前記第1回転モータおよび前記第2回転モータを制御することにより、前記入力側支軸の2次元位置を自在に操ることができる第3の態様の回転アクチュエータが好ましい。
本発明の第2の態様の回転アクチュエータユニットまたは本発明の第3の態様の回転アクチュエータであって、前記リンク機構の先端部が、前記入力側支軸周りに回転自在に支持されている前記第1入力部の先端部および前記第2入力部の先端であるものが好ましい。
本発明の回転アクチュエータであって、前記出力リンク部材の回転を伝達する駆動力伝達機構と、前記駆動力伝達機構によって前記出力リンク部材と連動して回転する中空軸部材とをさらに有するものが好ましい。
本発明の回転アクチュエータユニットであって、前記出力リンク部材の回転を直進の動きに変換する駆動力変換機構をさらに有するものが好ましい。
本発明の回転アクチュエータユニットであって、前記出力リンク部材の回転を直進の動きに変換する駆動力変換機構をさらに有するものが好ましい。
本発明の他の態様の回転アクチュエータは、第1直動アクチュエータと、基端部が前記第1直動アクチュエータに第1支軸周りに回転自在に連結された第1入力リンク部材とを備えた第1入力部と;第2直動アクチュエータと、基端部が前記第2直動アクチュエータに第2支軸周りに回転自在に連結された第2入力リンク部材とを備えた第2入力部と;先端部が出力側支軸周りに回転自在に支持された出力リンク部材と;前記第1入力リンク部材と前記出力リンク部材、並びに、前記第2入力リンク部材と前記出力リンク部材を連結する中間リンク部材とを有し、前記中間リンク部材の先端部と前記出力リンク部材の基端部とは、中間軸周りに回転自在に連結されており、前記第1直動アクチュエータおよび第2直動アクチュエータを制御することにより、第1入力リンク部材の先端部、第2入力リンク部材の先端部および中間リンク部材の基端部の2次元位置を自在に操ることができることを特徴としている。
本発明の他の態様の回転アクチュエータであって、前記第1入力リンク部材の先端部と前記第2入力リンク部材の先端部とは、入力側支軸周りに回転自在に連結されており、前記中間リンク部材の基端部は、前記入力側支軸周りに回転自在に連結されているものが好ましい。特に、前記第1入力リンク部材は、第1基端側リンク要素と、第1先端側リンク要素とからなり、前記第1基端側リンク要素の重心が前記第1支軸上となるように第1基端側カウンタウエイト部を備え、前記第1先端側リンク要素の重心を前記入力側支軸上とする第1先端側カウンタウエイト部を備え、前記第2入力リンク部材は、第2基端側リンク要素と、第2先端側リンク要素とからなり、前記第2基端側リンク要素の重心が前記第2支軸上となるように第2基端側カウンタウエイト部を備え、前記第2先端側リンク要素の重心を前記入力側支軸上とする第2先端側カウンタウエイト部を備え、前記中間リンク部材は、前記第1先端側リンク要素と前記第2先端側リンク要素と前記中間リンク部材との合成重心を前記中間支軸上とする中間カウンタウエイト部を備え、前記出力リンク部材は、前記第1先端側リンク要素と前記第2先端側リンク要素と前記中間リンク部材と前記出力リンク部材との合成重心を前記出力側支軸上とする出力側カウンタウエイト部を備えているものが好ましい。
本発明の他の形態の回転アクチュエータであって、第3直動アクチュエータと、基端部が前記第3直動アクチュエータに第3支軸周りに回転自在に連結された第3入力リンク部材を備えた第3入力部をさらに有するものが好ましい。
本発明の他の形態の回転アクチュエータであって、前記第1直動アクチュエータの可動子から第1入力リンク部材の先端部および前記第2直動アクチュエータの可動子から第2入力リンク部材の先端部までの部材上に、当該部材にかかる並進力を計測する力センサをそれぞれ備え、当該力センサの各計測値から、前記出力リンク部材が前記出力側支軸周りに加えるトルクを算出するものが好ましい。
本発明の他の態様の回転アクチュエータであって、前記第1入力リンク部材の先端部と前記第2入力リンク部材の先端部とは、入力側支軸周りに回転自在に連結されており、前記中間リンク部材の基端部は、前記入力側支軸周りに回転自在に連結されているものが好ましい。特に、前記第1入力リンク部材は、第1基端側リンク要素と、第1先端側リンク要素とからなり、前記第1基端側リンク要素の重心が前記第1支軸上となるように第1基端側カウンタウエイト部を備え、前記第1先端側リンク要素の重心を前記入力側支軸上とする第1先端側カウンタウエイト部を備え、前記第2入力リンク部材は、第2基端側リンク要素と、第2先端側リンク要素とからなり、前記第2基端側リンク要素の重心が前記第2支軸上となるように第2基端側カウンタウエイト部を備え、前記第2先端側リンク要素の重心を前記入力側支軸上とする第2先端側カウンタウエイト部を備え、前記中間リンク部材は、前記第1先端側リンク要素と前記第2先端側リンク要素と前記中間リンク部材との合成重心を前記中間支軸上とする中間カウンタウエイト部を備え、前記出力リンク部材は、前記第1先端側リンク要素と前記第2先端側リンク要素と前記中間リンク部材と前記出力リンク部材との合成重心を前記出力側支軸上とする出力側カウンタウエイト部を備えているものが好ましい。
本発明の他の形態の回転アクチュエータであって、第3直動アクチュエータと、基端部が前記第3直動アクチュエータに第3支軸周りに回転自在に連結された第3入力リンク部材を備えた第3入力部をさらに有するものが好ましい。
本発明の他の形態の回転アクチュエータであって、前記第1直動アクチュエータの可動子から第1入力リンク部材の先端部および前記第2直動アクチュエータの可動子から第2入力リンク部材の先端部までの部材上に、当該部材にかかる並進力を計測する力センサをそれぞれ備え、当該力センサの各計測値から、前記出力リンク部材が前記出力側支軸周りに加えるトルクを算出するものが好ましい。
本発明のロボット用または重機用関節ユニットは、本発明の回転アクチュエータユニットを備えたことを特徴としている。本発明のロボット用関節ユニットは、例えば、産業用ロボットや人型ロボット等のロボットアーム等に使用される。一方、本発明の重機用関節ユニットは、クレーンやショベル等の土木や建築の作業に使用される重機、高所作業車の作業アーム等に使用される。
本発明の回転アクチュエータユニットは、次のような効果を奏する。
本発明の回転アクチュエータユニットは、第1入力部の第1アクチュエータ(例えば、第1直動アクチュエータまたは第1回転モータ)および第2入力部の第2アクチュエータ(例えば、第2直動アクチュエータまたは第2回転モータ)を適切に制御することにより、出力リンク部材を出力軸側支軸周りに360度以上、無限に回転させることができ、その減速比も無段階で変更することができる(第1の効果)。
本発明の回転アクチュエータユニットは、駆動力の伝達手段として摩擦を用いていないため大きなトルクを伝えることができ、また摩擦損失が少ないので駆動力の伝達効率が良い(第2の効果)。
本発明の回転アクチュエータユニットは、減速手段としてギヤを用いる必要がないため、機構の耐衝撃性を飛躍的に高めることができる(第3の効果)。
本発明の回転アクチュエータユニットは、入力源となる第1アクチュエータ(例えば、第1直動アクチュエータまたは第1回転モータ)および第2アクチュエータ(例えば第2直動アクチュエータまたは第1回転モータ)が駆動用と変速用とに分離しておらず、共に駆動と変速(減速比変更)を担うため、2つのアクチュエータの駆動力を効率良く出力リンク部材の出力側支軸周りの回転力に配分することができる(第4の効果)。特に、2つのアクチュエータを同じものとすることにより一層効率を向上させることができる。
本発明の回転アクチュエータユニットは、第1入力部と第2入力部とを含む2自由度以上を有する入力側のリンク機構の先端と、出力軸(出力軸側支軸)との間は、複数の枢動軸と、複数のリンク(出力リンク部材と中間リンク部材)からなる出力側のリンク機構によって構成されているため、特許文献1では必須であった滑動軸を排除することができ、部品を簡素化し、汚れや異物混入に強い構造とすることができる(第5の効果)。特に、第1入力部の先端部(特に、第1入力リンク部材の先端部)、第2入力部の先端部(特に、第2入力リンク部材の先端部)および中間リンク部材の基端部を入力側支軸周りに回転自在に支持させることにより、一層、部品の簡素化が可能となる。
本発明の回転アクチュエータユニットは、力センサを適切に配置することにより、出力側支軸のトルク計測を、並進力を計測する力センサ(ロードセル等)によって行うことができる(第6の効果)。例えば、第1入力リンク部材および第2入力リンク部材の部材上に各力センサを設けることにより、力センサの配線を出力リンク部材の無限回転運動から独立させることができる。
本発明の回転アクチュエータユニットは、上述したように、駆動する第1アクチュエータまたは第2アクチュエータを除けば全て、滑動ではなく枢動するリンク機構のみによって構成されているため、カウンタウエイト設計を容易に行うことができる(第7の効果)。そして、適切にカウンタウエイト設計を施した場合、各リンクの偏心を完全に防止できる。つまり、偏心した各リンクの回転による慣性力起因の振動を抑えることができる。同様に、枢動軸に意図しない重力起因のトルクが出力され、本発明の回転アクチュエータユニットの回転出力に影響を及ぼす可能性をも排除できる。さらに、適切に力センサを配置した場合、力センサの計測からも重力の影響を完全に排除することができる。
本発明の回転アクチュエータユニットであって、第1入力部の先端部(特に、第1入力リンク部材の先端部)、第2入力部の先端部(特に、第2入力リンク部材の先端部)および中間リンク部材の基端部を入力側支軸周りに回転自在に連結させた場合、各アクチュエータを操作して入力点(入力側支軸)と出力軸(出力側支軸)との2次元位置を一致させる、つまり、入力側支軸と出力側支軸を同一直線上に配置することにより、各アクチュエータと出力リンク部材とを切り離し、完全な出力軸(出力側支軸周りの出力リンク部材)フリー回転状態を実現することができる(第8の効果)。
本発明の回転アクチュエータユニットは、力センサを適切に設け、第1入力部の先端部(特に、第1入力リンク部材の先端部)、第2入力部の先端部(特に、第2入力リンク部材の先端部)および中間リンク部材の基端部を入力側支軸周りに回転自在に連結させ、かつ、カウンタウエイト設計を施し、その上で各アクチュエータを操作して入力点(入力側支軸)と出力軸(出力側支軸)とを一致させ、その位置で各アクチュエータを固定することにより、力センサの完全な無負荷状態を作ることができる(第9の効果)。一般的にトルクセンサや力センサは、温度変化や残留応力の影響で測定値に定常偏差が生じるため、定期的にゼロ点をリセット(ゼロリセット)する必要がある。そのため、回転アクチュエータユニットが外部の機器(例えば、ロボット)に組み込まれている場合、トルクセンサや力センサを無負荷状態にするために分離または分解してゼロリセットする必要があった。しかし、この回転アクチュエータユニットは、外部の機器からの分離または分解を行うことなく、各アクチュエータの操作だけで力センサの完全な無負荷状態を作ることができ、力センサのゼロリセットが簡単にできる。そのため、力センサにドリフト等が生じても少ない労力で定期的にゼロリセットを行うことができ、より正確な測定が可能となる。
本発明の回転アクチュエータユニットは、第1入力部の第1アクチュエータ(例えば、第1直動アクチュエータまたは第1回転モータ)および第2入力部の第2アクチュエータ(例えば、第2直動アクチュエータまたは第2回転モータ)を適切に制御することにより、出力リンク部材を出力軸側支軸周りに360度以上、無限に回転させることができ、その減速比も無段階で変更することができる(第1の効果)。
本発明の回転アクチュエータユニットは、駆動力の伝達手段として摩擦を用いていないため大きなトルクを伝えることができ、また摩擦損失が少ないので駆動力の伝達効率が良い(第2の効果)。
本発明の回転アクチュエータユニットは、減速手段としてギヤを用いる必要がないため、機構の耐衝撃性を飛躍的に高めることができる(第3の効果)。
本発明の回転アクチュエータユニットは、入力源となる第1アクチュエータ(例えば、第1直動アクチュエータまたは第1回転モータ)および第2アクチュエータ(例えば第2直動アクチュエータまたは第1回転モータ)が駆動用と変速用とに分離しておらず、共に駆動と変速(減速比変更)を担うため、2つのアクチュエータの駆動力を効率良く出力リンク部材の出力側支軸周りの回転力に配分することができる(第4の効果)。特に、2つのアクチュエータを同じものとすることにより一層効率を向上させることができる。
本発明の回転アクチュエータユニットは、第1入力部と第2入力部とを含む2自由度以上を有する入力側のリンク機構の先端と、出力軸(出力軸側支軸)との間は、複数の枢動軸と、複数のリンク(出力リンク部材と中間リンク部材)からなる出力側のリンク機構によって構成されているため、特許文献1では必須であった滑動軸を排除することができ、部品を簡素化し、汚れや異物混入に強い構造とすることができる(第5の効果)。特に、第1入力部の先端部(特に、第1入力リンク部材の先端部)、第2入力部の先端部(特に、第2入力リンク部材の先端部)および中間リンク部材の基端部を入力側支軸周りに回転自在に支持させることにより、一層、部品の簡素化が可能となる。
本発明の回転アクチュエータユニットは、力センサを適切に配置することにより、出力側支軸のトルク計測を、並進力を計測する力センサ(ロードセル等)によって行うことができる(第6の効果)。例えば、第1入力リンク部材および第2入力リンク部材の部材上に各力センサを設けることにより、力センサの配線を出力リンク部材の無限回転運動から独立させることができる。
本発明の回転アクチュエータユニットは、上述したように、駆動する第1アクチュエータまたは第2アクチュエータを除けば全て、滑動ではなく枢動するリンク機構のみによって構成されているため、カウンタウエイト設計を容易に行うことができる(第7の効果)。そして、適切にカウンタウエイト設計を施した場合、各リンクの偏心を完全に防止できる。つまり、偏心した各リンクの回転による慣性力起因の振動を抑えることができる。同様に、枢動軸に意図しない重力起因のトルクが出力され、本発明の回転アクチュエータユニットの回転出力に影響を及ぼす可能性をも排除できる。さらに、適切に力センサを配置した場合、力センサの計測からも重力の影響を完全に排除することができる。
本発明の回転アクチュエータユニットであって、第1入力部の先端部(特に、第1入力リンク部材の先端部)、第2入力部の先端部(特に、第2入力リンク部材の先端部)および中間リンク部材の基端部を入力側支軸周りに回転自在に連結させた場合、各アクチュエータを操作して入力点(入力側支軸)と出力軸(出力側支軸)との2次元位置を一致させる、つまり、入力側支軸と出力側支軸を同一直線上に配置することにより、各アクチュエータと出力リンク部材とを切り離し、完全な出力軸(出力側支軸周りの出力リンク部材)フリー回転状態を実現することができる(第8の効果)。
本発明の回転アクチュエータユニットは、力センサを適切に設け、第1入力部の先端部(特に、第1入力リンク部材の先端部)、第2入力部の先端部(特に、第2入力リンク部材の先端部)および中間リンク部材の基端部を入力側支軸周りに回転自在に連結させ、かつ、カウンタウエイト設計を施し、その上で各アクチュエータを操作して入力点(入力側支軸)と出力軸(出力側支軸)とを一致させ、その位置で各アクチュエータを固定することにより、力センサの完全な無負荷状態を作ることができる(第9の効果)。一般的にトルクセンサや力センサは、温度変化や残留応力の影響で測定値に定常偏差が生じるため、定期的にゼロ点をリセット(ゼロリセット)する必要がある。そのため、回転アクチュエータユニットが外部の機器(例えば、ロボット)に組み込まれている場合、トルクセンサや力センサを無負荷状態にするために分離または分解してゼロリセットする必要があった。しかし、この回転アクチュエータユニットは、外部の機器からの分離または分解を行うことなく、各アクチュエータの操作だけで力センサの完全な無負荷状態を作ることができ、力センサのゼロリセットが簡単にできる。そのため、力センサにドリフト等が生じても少ない労力で定期的にゼロリセットを行うことができ、より正確な測定が可能となる。
次に、本発明の回転アクチュエータユニットの第1の実施形態から第13の実施形態および実施形態に基づいた第1の試作機から第3の試作機について紹介する。第1の実施形態から第7の実施形態(図1~9)は本発明の第1の態様の回転アクチュエータユニットの実施形態であり、第8の実施形態から第10の実施形態(図10a~図10c)は本発明の第2の態様の回転アクチュエータユニットの実施形態であり、第11の実施形態から第13の実施形態(図11a~図11c)は本発明の第3の態様の回転アクチュエータユニットの実施形態である。なお、本発明は、これらの実施形態に限定されるものではない。
本発明の回転アクチュエータユニットの第1の実施形態について説明する。
図1の回転アクチュエータユニット1は、第1入力部10と、第2入力部20と、出力リンク部材30と、中間リンク部材40と、基部に固定された出力側支軸OPと、基部に固定されていない中間軸MPと、基部に固定されていない入力側支軸IPとを有している。第1入力部10と、第2入力部20とによって2自由度の入力側のリンク機構L1を構成しており、中間リンク部材40と出力リンク部材30とによって出力側のリンク機構L2を構成している。そして、入力側のリンク機構L1の先端部(第1入力リンク部材の先端部12aおよび第2入力リンク部材の先端部22a)と、出力側のリンク機構L2の基端部(中間リンク部材40の基端部40b)とが入力側支持軸IP周りに回転自在に支持されている。そして、出力側のリンク機構L2の先端部(出力リンク部材30の先端部30a)は出力側支軸OP周りに回転自在に支持されている。
この回転アクチュエータユニット1は、第1入力部10の第1直動アクチュエータ11および第2入力部20の第2直動アクチュエータ21の直進運動を入力とし、中間リンク部材40の基端部40bを回転自在に支持する入力側支軸IPの2次元位置を自在に操り、中間リンク部材40を介して出力リンク部材30の出力側支軸OP周りの回転を操作し、出力リンク部材30の回転運動を出力として利用するものである。
なお、図1の回転アクチュエータユニット1において、第1支軸P1、第2支軸P2、出力側支軸OP、入力側支軸IP、中間軸MPは平行であり、図1の紙面に対して垂直となっている。
図1の回転アクチュエータユニット1は、第1入力部10と、第2入力部20と、出力リンク部材30と、中間リンク部材40と、基部に固定された出力側支軸OPと、基部に固定されていない中間軸MPと、基部に固定されていない入力側支軸IPとを有している。第1入力部10と、第2入力部20とによって2自由度の入力側のリンク機構L1を構成しており、中間リンク部材40と出力リンク部材30とによって出力側のリンク機構L2を構成している。そして、入力側のリンク機構L1の先端部(第1入力リンク部材の先端部12aおよび第2入力リンク部材の先端部22a)と、出力側のリンク機構L2の基端部(中間リンク部材40の基端部40b)とが入力側支持軸IP周りに回転自在に支持されている。そして、出力側のリンク機構L2の先端部(出力リンク部材30の先端部30a)は出力側支軸OP周りに回転自在に支持されている。
この回転アクチュエータユニット1は、第1入力部10の第1直動アクチュエータ11および第2入力部20の第2直動アクチュエータ21の直進運動を入力とし、中間リンク部材40の基端部40bを回転自在に支持する入力側支軸IPの2次元位置を自在に操り、中間リンク部材40を介して出力リンク部材30の出力側支軸OP周りの回転を操作し、出力リンク部材30の回転運動を出力として利用するものである。
なお、図1の回転アクチュエータユニット1において、第1支軸P1、第2支軸P2、出力側支軸OP、入力側支軸IP、中間軸MPは平行であり、図1の紙面に対して垂直となっている。
[第1入力部10]
第1入力部10は、第1直動アクチュエータ11と、第1支軸P1と、第1入力リンク部材12とを備えている。
第1直動アクチュエータ11は、回転アクチュエータユニット1の台座またはベース部材等の基部Bに固定されている。第1直動アクチュエータ11は、例えば、ボールネジと、ナットと、ボールネジを回転駆動させるモータとを備えた既存のものが挙げられ、第1直動アクチュエータ11の可動子を一つの直動軸上で往復運動させることができれば、その構造は特に限定されるものではない。例えばシャフトモータを用いることによって、さらに機構を簡略化して摺動部分を減らし、耐衝撃性を高めることができる。
第1支軸P1は、第1直動アクチュエータ11の可動子に固定されている。
第1入力リンク部材12は、基端部12bが第1支軸P1周りに回転自在に支持されている。
このように構成されているため、第1入力リンク部材12の先端部12aは、第1直動アクチュエータの可動子(または基端部12b)の位置と、第1直動アクチュエータ11と第1入力リンク部材12の角度によって、2次元平面内の所定範囲を自由に移動できる。
第1入力部10は、第1直動アクチュエータ11と、第1支軸P1と、第1入力リンク部材12とを備えている。
第1直動アクチュエータ11は、回転アクチュエータユニット1の台座またはベース部材等の基部Bに固定されている。第1直動アクチュエータ11は、例えば、ボールネジと、ナットと、ボールネジを回転駆動させるモータとを備えた既存のものが挙げられ、第1直動アクチュエータ11の可動子を一つの直動軸上で往復運動させることができれば、その構造は特に限定されるものではない。例えばシャフトモータを用いることによって、さらに機構を簡略化して摺動部分を減らし、耐衝撃性を高めることができる。
第1支軸P1は、第1直動アクチュエータ11の可動子に固定されている。
第1入力リンク部材12は、基端部12bが第1支軸P1周りに回転自在に支持されている。
このように構成されているため、第1入力リンク部材12の先端部12aは、第1直動アクチュエータの可動子(または基端部12b)の位置と、第1直動アクチュエータ11と第1入力リンク部材12の角度によって、2次元平面内の所定範囲を自由に移動できる。
[第2入力部20]
第2入力部20は、第2直動アクチュエータ21と、第2支軸P2と、第2入力リンク部材22とを有する。
第2直動アクチュエータ21は、第1直動アクチュエータ11と並列(平行で、かつ、直動方向で同じ位置)するように回転アクチュエータユニット1の台座またはベース部材等の基部Bに固定されている。しかし、第1直動アクチュエータ11と第2直動アクチュエータ21の位置は、特に限定されるものではなく、回転アクチュエータユニットの用途に基づいて適宜配置させてよい。例えば、両アクチュエータは、平行で直動方向にずれるよう配置されてもよく、先端に向かって距離が縮まるように「ハ」字状に配置されても、逆に先端に向かって距離が広がるように逆「ハ」字状に配置されても、出力側支軸OPを中心に放射状に配置させてもよい。第2直動アクチュエータ21は、第2直動アクチュエータ21の可動子を一つの直動軸上で往復運動させることができれば、その構造は特に限定されるものではない。しかし、第1直動アクチュエータ11と第2直動アクチュエータ21とを実質的に同じ構造のものとすることにより、全体として効率良く駆動させることができる。
第2支軸P2は、第2直動アクチュエータ21の可動子に固定されている。
第2入力リンク部材22は、基端部22bが第2支軸P2周りに回転自在に支持されている。
このように構成されているため、第1入力リンク部材12と同様に、第2入力リンク部材22の先端部22aは、第2直動アクチュエータの可動子(または基端部22b)の位置と、第2直動アクチュエータ21と第2入力リンク部材22の角度によって、2次元平面内の所定範囲を自由に移動できる。
第2入力部20は、第2直動アクチュエータ21と、第2支軸P2と、第2入力リンク部材22とを有する。
第2直動アクチュエータ21は、第1直動アクチュエータ11と並列(平行で、かつ、直動方向で同じ位置)するように回転アクチュエータユニット1の台座またはベース部材等の基部Bに固定されている。しかし、第1直動アクチュエータ11と第2直動アクチュエータ21の位置は、特に限定されるものではなく、回転アクチュエータユニットの用途に基づいて適宜配置させてよい。例えば、両アクチュエータは、平行で直動方向にずれるよう配置されてもよく、先端に向かって距離が縮まるように「ハ」字状に配置されても、逆に先端に向かって距離が広がるように逆「ハ」字状に配置されても、出力側支軸OPを中心に放射状に配置させてもよい。第2直動アクチュエータ21は、第2直動アクチュエータ21の可動子を一つの直動軸上で往復運動させることができれば、その構造は特に限定されるものではない。しかし、第1直動アクチュエータ11と第2直動アクチュエータ21とを実質的に同じ構造のものとすることにより、全体として効率良く駆動させることができる。
第2支軸P2は、第2直動アクチュエータ21の可動子に固定されている。
第2入力リンク部材22は、基端部22bが第2支軸P2周りに回転自在に支持されている。
このように構成されているため、第1入力リンク部材12と同様に、第2入力リンク部材22の先端部22aは、第2直動アクチュエータの可動子(または基端部22b)の位置と、第2直動アクチュエータ21と第2入力リンク部材22の角度によって、2次元平面内の所定範囲を自由に移動できる。
なお、第1入力リンク部材12の先端部12aと第2入力リンク部材22の先端部22aとは、入力側支軸IP周りに同一軸上で回転自在に連結されているため、入力側支軸IPは紙面と平行な平面上で2自由度運動することができる。つまり、第1入力部10と、第2入力部20と、入力側支軸IPとによって構成される入力側のリンク機構L1は、固定直動型の五節リンク機構となっている。そして、第1入力リンク部材12の先端部12aと第2入力リンク部材22の先端部22aはその入力側のリンク機構L1の先端部となっている。
このように構成されているため、第1直動アクチュエータ11および第2直動アクチュエータ21を適切に制御することによって、入力点(入力側支軸IP)の2次元位置を自在に操ることができる。さらに第1直動アクチュエータ11および第2直動アクチュエータ21を停止させた状態においては、自由度は0となる。つまり、第1直動アクチュエータ11および第2直動アクチュエータ21を固定すれば、入力点(入力側支軸IP)の位置を動かないように完全に固定することもできる。
このように構成されているため、第1直動アクチュエータ11および第2直動アクチュエータ21を適切に制御することによって、入力点(入力側支軸IP)の2次元位置を自在に操ることができる。さらに第1直動アクチュエータ11および第2直動アクチュエータ21を停止させた状態においては、自由度は0となる。つまり、第1直動アクチュエータ11および第2直動アクチュエータ21を固定すれば、入力点(入力側支軸IP)の位置を動かないように完全に固定することもできる。
図1の回転アクチュエータユニット1では、第1入力部10および第2入力部20が入力点(入力側支軸IP)の2次元位置を自在に操ることができるよう、第1入力部10および第2入力部20によって固定直動型の五節リンク機構を構成しているが、入力点(入力側支軸IP)の2次元位置を自在に操ることができる機構であれば、固定直動型の五節リンク機構に限定されるものではない。例えば、後述するように直動型五節リンク機構(例えば、図10a)、回転型五節リンク機構(例えば、図11a)を採用してもよいし、本発明の回転アクチュエータユニットの第3および第4実施形態(図4a、b)や第9および第10実施形態(図10b、10c)や第12および第13実施形態(図11b、c)に例示するような、五節リンク機構以外の機構でもよい。
[出力リンク部材30]
出力リンク部材30の先端部30aは、回転アクチュエータユニット1の台座またはベース部材等の基部Bに固定された出力側支軸OP周りに回転自在に支持されている。出力リンク部材30の基端部30bは、中間リンク部材の先端部40aと中間軸MP周りに回転自在に支持されている。図1において、出力リンク部材30の基端部30bと、中間リンク部材40の先端部40aとは、支軸が中間軸MPに一致しており、重なっている。
出力リンク部材30の先端部30aは、回転アクチュエータユニット1の台座またはベース部材等の基部Bに固定された出力側支軸OP周りに回転自在に支持されている。出力リンク部材30の基端部30bは、中間リンク部材の先端部40aと中間軸MP周りに回転自在に支持されている。図1において、出力リンク部材30の基端部30bと、中間リンク部材40の先端部40aとは、支軸が中間軸MPに一致しており、重なっている。
[中間リンク部材40]
中間リンク部材40は、第1入力リンク部材12と出力リンク部材30を連結し、かつ、第2入力リンク部材22と出力リンク部材30を連結する。
中間リンク部材40の先端部40aは、上述したように中間軸MP周りに出力リンク部材30の基端部30bと共に回転自在に支持されている。一方、中間リンク部材40の基端部40bは、入力側支軸IP周りに第1入力リンク部材の先端部12aと第2入力リンク部材の先端部22aと共に回転自在に支持されている。
中間リンク部材40のリンクの長さ(入力側支軸IPと中間軸MPの距離)と出力リンク部材30のリンクの長さ(出力側支軸OPと中間軸MPの距離)とは、同じ長さとなっている。
中間リンク部材40は、第1入力リンク部材12と出力リンク部材30を連結し、かつ、第2入力リンク部材22と出力リンク部材30を連結する。
中間リンク部材40の先端部40aは、上述したように中間軸MP周りに出力リンク部材30の基端部30bと共に回転自在に支持されている。一方、中間リンク部材40の基端部40bは、入力側支軸IP周りに第1入力リンク部材の先端部12aと第2入力リンク部材の先端部22aと共に回転自在に支持されている。
中間リンク部材40のリンクの長さ(入力側支軸IPと中間軸MPの距離)と出力リンク部材30のリンクの長さ(出力側支軸OPと中間軸MPの距離)とは、同じ長さとなっている。
次にこの回転アクチュエータユニット1の動作について説明する。
この回転アクチュエータユニット1は、図2aに示すように、第1直動アクチュエータ11および第2直動アクチュエータ21を駆動して入力点(入力側支軸IP)の2次元位置を移動させて、出力リンク部材30を出力側支軸OP周りに回転させるものである。つまり、入力側支軸IPを出力側支軸OP周りに回転させることにより、出力リンク部材30を出力側支軸OP周りに回転させるものである。
一方、この回転アクチュエータユニット1は、回転平面内における入力側支軸IPと出力側支軸OPの距離Xを制御することにより出力リンク部材30に対する減速比を可変にすることができる。例えば、図2bのように、入力側支軸IPと出力側支軸OPとの距離Xを図2aの状態より短くすることにより、図2aの状態より減速比を下げ、出力リンク部材30の回転速度を上げることができる。つまり、入力側支軸IPと出力側支軸OPの距離Xと、出力リンク部材30の回転速度は概ね反比例する。
さらに、図2cのように入力側支軸IPと出力側支軸OPとの回転軸を一致させることにより、出力リンク部材30および中間リンク部材40を2つのアクチュエータから分離させることができる。これにより出力リンク部材30および中間リンク部材40が出力側支軸OP周りに自由に回転するフリー状態を実現することができる。
この回転アクチュエータユニット1は、図2aに示すように、第1直動アクチュエータ11および第2直動アクチュエータ21を駆動して入力点(入力側支軸IP)の2次元位置を移動させて、出力リンク部材30を出力側支軸OP周りに回転させるものである。つまり、入力側支軸IPを出力側支軸OP周りに回転させることにより、出力リンク部材30を出力側支軸OP周りに回転させるものである。
一方、この回転アクチュエータユニット1は、回転平面内における入力側支軸IPと出力側支軸OPの距離Xを制御することにより出力リンク部材30に対する減速比を可変にすることができる。例えば、図2bのように、入力側支軸IPと出力側支軸OPとの距離Xを図2aの状態より短くすることにより、図2aの状態より減速比を下げ、出力リンク部材30の回転速度を上げることができる。つまり、入力側支軸IPと出力側支軸OPの距離Xと、出力リンク部材30の回転速度は概ね反比例する。
さらに、図2cのように入力側支軸IPと出力側支軸OPとの回転軸を一致させることにより、出力リンク部材30および中間リンク部材40を2つのアクチュエータから分離させることができる。これにより出力リンク部材30および中間リンク部材40が出力側支軸OP周りに自由に回転するフリー状態を実現することができる。
回転アクチュエータユニット1は、次のような効果を奏する。
回転アクチュエータユニット1は、第1入力部10の第1直動アクチュエータ11および第2入力部20の第2直動アクチュエータ21を適切に制御することにより、出力リンク部材30を出力側支軸OP周りに360度以上、無限に回転させることができ、その減速比も無段階で変更することができる。
回転アクチュエータユニット1は、駆動力の伝達手段として摩擦を用いていないため、大きなトルクを伝えることができる。また入力点(入力側支軸IP)と、出力軸(出力側支軸OP)との間に、減速手段としてギアを用いる必要がないため、機構としての耐衝撃性に優れている。
回転アクチュエータユニット1の第1直動アクチュエータ11および第2直動アクチュエータ21は駆動用と変速用とに分離しておらず、共に駆動と変速(減速比変更)を担うため、2つのアクチュエータの駆動力を効率良く出力リンク部材30の出力側支軸周りの回転に配分することができる。特に、2つのアクチュエータを同じものとすることにより、一層効率を高めることができる。
回転アクチュエータユニット1は、各直動アクチュエータによって操作される入力点(入力側支軸IP)と、出力軸(出力側支軸OP)との間は、3つの枢動軸(入力側支軸IP、中間軸MP、出力側支軸OP)と、2つのリンク(出力リンク部材30と中間リンク部材40)の出力側のリンク機構L2によって構成されているため、特許文献1では必須であった滑動軸を排除することができ、部品を簡素化できる。さらに出力側のリンク機構が枢動軸のみによって構成されているため、カウンタウエイト設計を容易に行うことができる。
回転アクチュエータユニット1は、入力点(入力側支軸IP)と出力軸(出力側支軸OP)とを一致させることにより、各直動アクチュエータ11、21と出力リンク部材30および中間リンク部材40とを切り離し、出力リンク部材30および中間リンク部材40が出力軸(出力側支軸OP)周りに自由に回転するフリー状態を簡単に実現することができる。
回転アクチュエータユニット1は、第1入力部10の第1直動アクチュエータ11および第2入力部20の第2直動アクチュエータ21を適切に制御することにより、出力リンク部材30を出力側支軸OP周りに360度以上、無限に回転させることができ、その減速比も無段階で変更することができる。
回転アクチュエータユニット1は、駆動力の伝達手段として摩擦を用いていないため、大きなトルクを伝えることができる。また入力点(入力側支軸IP)と、出力軸(出力側支軸OP)との間に、減速手段としてギアを用いる必要がないため、機構としての耐衝撃性に優れている。
回転アクチュエータユニット1の第1直動アクチュエータ11および第2直動アクチュエータ21は駆動用と変速用とに分離しておらず、共に駆動と変速(減速比変更)を担うため、2つのアクチュエータの駆動力を効率良く出力リンク部材30の出力側支軸周りの回転に配分することができる。特に、2つのアクチュエータを同じものとすることにより、一層効率を高めることができる。
回転アクチュエータユニット1は、各直動アクチュエータによって操作される入力点(入力側支軸IP)と、出力軸(出力側支軸OP)との間は、3つの枢動軸(入力側支軸IP、中間軸MP、出力側支軸OP)と、2つのリンク(出力リンク部材30と中間リンク部材40)の出力側のリンク機構L2によって構成されているため、特許文献1では必須であった滑動軸を排除することができ、部品を簡素化できる。さらに出力側のリンク機構が枢動軸のみによって構成されているため、カウンタウエイト設計を容易に行うことができる。
回転アクチュエータユニット1は、入力点(入力側支軸IP)と出力軸(出力側支軸OP)とを一致させることにより、各直動アクチュエータ11、21と出力リンク部材30および中間リンク部材40とを切り離し、出力リンク部材30および中間リンク部材40が出力軸(出力側支軸OP)周りに自由に回転するフリー状態を簡単に実現することができる。
次に、本発明の回転アクチュエータユニットの第2の実施形態について説明する。
図3aの回転アクチュエータユニット2は、図1の回転アクチュエータユニット1に力センサ50を設けたものであって、その力センサ50に各リンク部材の重力が加わらないように、かつ、各リンク部材の重心位置が支軸と一致するようにカウンタウエイト設計を施したものである。つまり、回転アクチュエータユニット2は、第1入力部10、第2入力部20、出力リンク部材30、中間リンク部材40と、出力側支軸OPと、中間軸MPと、入力側支軸IPとを有し、力センサ50およびカウンタウエイト設計以外は、図1の回転アクチュエータユニット1と実質的に同じである。そして、図1の回転アクチュエータユニット1の各符号と構造を共通している。
図3aの回転アクチュエータユニット2は、図1の回転アクチュエータユニット1に力センサ50を設けたものであって、その力センサ50に各リンク部材の重力が加わらないように、かつ、各リンク部材の重心位置が支軸と一致するようにカウンタウエイト設計を施したものである。つまり、回転アクチュエータユニット2は、第1入力部10、第2入力部20、出力リンク部材30、中間リンク部材40と、出力側支軸OPと、中間軸MPと、入力側支軸IPとを有し、力センサ50およびカウンタウエイト設計以外は、図1の回転アクチュエータユニット1と実質的に同じである。そして、図1の回転アクチュエータユニット1の各符号と構造を共通している。
力センサ50は、並進力を計測する力センサである。例えば、ロードセルなどが挙げられる。本実施形態のように力センサ50を第1入力リンク部材12および第2入力リンク部材22上にそれぞれ設ける場合、力センサ50は各リンク部材の引張圧縮の並進力を計測する一軸ロードセルとするのが好適である。なお、この力センサ50の設置場所は、第1直動アクチュエータ11の可動子(第1支軸P1)から入力側支軸IPまでの間、および第2直動アクチュエータ21の可動子(第2支軸P2)から入力側支軸IPまでの間であれば、それぞれ特に限定されないが、特に、第1入力リンク部材12および第2入力リンク部材22それぞれの入力側支軸IPにできるだけ近い場所に設けるのが好ましい。これにより出力リンク部材30を無限回転しても力センサ50の配線が邪魔にならず、かつ、そのトルクを比較的正確に計測することができ、さらにカウンタウエイト設計上も有利である。
このように設けられた力センサ50の各測定値から出力側支軸OP周りのトルクを算出するのが好ましい。
このように設けられた力センサ50の各測定値から出力側支軸OP周りのトルクを算出するのが好ましい。
第1入力リンク部材12は、基端部12bから力センサ50の測定基準面までの第1基端側リンク要素16と、当該測定基準面から先端部12aまでの第1先端側リンク要素17とからなる。第1基端側リンク要素16と第1先端側リンク要素17とは一体になって移動する。
そして、第1入力リンク部材12の第1基端側リンク要素16は、その重心が第1支軸P1上となるように第1基端側カウンタウエイト部18を基端部12bに備えている。また第1入力リンク部材12の第1先端側リンク要素17は、その重心が入力側支軸IP上となるように第1先端側カウンタウエイト19を先端部12aに備えている。
そして、第1入力リンク部材12の第1基端側リンク要素16は、その重心が第1支軸P1上となるように第1基端側カウンタウエイト部18を基端部12bに備えている。また第1入力リンク部材12の第1先端側リンク要素17は、その重心が入力側支軸IP上となるように第1先端側カウンタウエイト19を先端部12aに備えている。
第2入力リンク部材22は、基端部22bから力センサ50の測定基準面までの第2基端側リンク要素26と、当該測定基準面から先端部22aまでの第2先端側リンク要素27とからなる。第2基端側リンク要素26と第2先端側リンク要素27とは一体になって移動する。
そして、第2入力リンク部材22の第2基端側リンク要素26は、その重心が第2支軸P2上となるように第2基端側カウンタウエイト部28を基端部22bに備えている。また第2入力リンク部材22の第2先端側リンク要素27は、その重心が入力側支軸IP上となるように第2先端側カウンタウエイト29を先端部22aに備えている。
そして、第2入力リンク部材22の第2基端側リンク要素26は、その重心が第2支軸P2上となるように第2基端側カウンタウエイト部28を基端部22bに備えている。また第2入力リンク部材22の第2先端側リンク要素27は、その重心が入力側支軸IP上となるように第2先端側カウンタウエイト29を先端部22aに備えている。
中間リンク部材40は、第1先端側リンク要素17と第2先端側リンク要素27と入力側支軸IPと中間リンク部材40との合成重心が中間軸MP上となるように中間カウンタウエイト部45を先端部40aに備えている。
出力リンク部材30は、第1先端側リンク要素17と第2先端側リンク要素27と入力側支軸IPと中間リンク部材40と出力リンク部材30との合成重心が出力側支軸OP上となるように出力側カウンタウエイト部35を先端部30aに備えている。
出力リンク部材30は、第1先端側リンク要素17と第2先端側リンク要素27と入力側支軸IPと中間リンク部材40と出力リンク部材30との合成重心が出力側支軸OP上となるように出力側カウンタウエイト部35を先端部30aに備えている。
この回転アクチュエータユニット2は、図1の回転アクチュエータユニット1と同様の効果を奏し、駆動力伝達手段として摩擦を用いることなく、出力リンク部材30を出力側支軸OP周りに360度以上、無限に回転させることができ、その減速比も無段階に変更することができる。
特に、回転アクチュエータユニット2は、各リンクの重心と回転軸とが一致するように、かつ、力センサ50に各リンク部材の重力が加わらないようにカウンタウエイト設計を施しているため、リンクの偏心が生じない。つまり、リンク偏心による振動を最小限に抑えることができる。さらに、第1入力リンク部材11および第2入力リンク部材12に設けた力センサ50によって、各リンクの重力の影響を完全に排除した上で、出力側支軸OP周りのトルクを計測することができる。
また図3bに示すように、回転アクチュエータユニット2の入力側支軸IPと出力側支軸OPとが重なるように各直動アクチュエータを操作し、その位置で各直動アクチュエータを固定することによって、力センサ50の完全な無負荷状態を作ることができる。つまり、回転アクチュエータユニット2は、ロボットアーム等に組み込んだ状態でも、分解することなく力センサ50のゼロ点のリセットを簡単に行うことができる。
特に、回転アクチュエータユニット2は、各リンクの重心と回転軸とが一致するように、かつ、力センサ50に各リンク部材の重力が加わらないようにカウンタウエイト設計を施しているため、リンクの偏心が生じない。つまり、リンク偏心による振動を最小限に抑えることができる。さらに、第1入力リンク部材11および第2入力リンク部材12に設けた力センサ50によって、各リンクの重力の影響を完全に排除した上で、出力側支軸OP周りのトルクを計測することができる。
また図3bに示すように、回転アクチュエータユニット2の入力側支軸IPと出力側支軸OPとが重なるように各直動アクチュエータを操作し、その位置で各直動アクチュエータを固定することによって、力センサ50の完全な無負荷状態を作ることができる。つまり、回転アクチュエータユニット2は、ロボットアーム等に組み込んだ状態でも、分解することなく力センサ50のゼロ点のリセットを簡単に行うことができる。
次に本発明の回転アクチュエータユニットの第3の実施形態について説明する。
図4aの回転アクチュエータユニット3は、第3直動アクチュエータ61と、第3支軸P3と、第3入力リンク部材62とを備えた第3入力部60をさらに有するものである。第3直動アクチュエータ61は、回転アクチュエータユニット3の台座またはベース部材等の基部Bに固定されている。第3支軸P3は、第3直動アクチュエータ61の可動子に固定されている。第3入力リンク部材62の基端部62bは第3支軸P3周りに回転自在に支持され、先端部62aが入力側支軸IP回りに回転自在に支持されている。また第3入力部60は、第1入力部10および第2入力部20と共に入力側のリンク機構を構成している。そして、第1入力部10の第1直動アクチュエータ11、第2入力部20の第2直動アクチュエータ21および第3入力部60の第3直動アクチュエータ61を操作して、入力側支軸IPの2次元位置を操り、出力リンク部材30を出力側支軸OP周りに回転させる。
なお、図4aでは、3つの入力部を示しているが、4つ以上あってもよい。入力部の数を増やすことにより、最大出力を向上させることができる。またここでは、3つの直動アクチュエータを並列させているが、その配置は特に限定されない。例えば、第3支軸P3周りに放射状に配置させてもよい。
この回転アクチュエータユニット3も図1の回転アクチュエータユニット1と同様の効果を奏する。また、図2の回転アクチュエータユニット2のように適切にカウンタウエイト設計を行うことにより、回転アクチュエータユニット2と同様の効果を与えることができる。
図4aの回転アクチュエータユニット3は、第3直動アクチュエータ61と、第3支軸P3と、第3入力リンク部材62とを備えた第3入力部60をさらに有するものである。第3直動アクチュエータ61は、回転アクチュエータユニット3の台座またはベース部材等の基部Bに固定されている。第3支軸P3は、第3直動アクチュエータ61の可動子に固定されている。第3入力リンク部材62の基端部62bは第3支軸P3周りに回転自在に支持され、先端部62aが入力側支軸IP回りに回転自在に支持されている。また第3入力部60は、第1入力部10および第2入力部20と共に入力側のリンク機構を構成している。そして、第1入力部10の第1直動アクチュエータ11、第2入力部20の第2直動アクチュエータ21および第3入力部60の第3直動アクチュエータ61を操作して、入力側支軸IPの2次元位置を操り、出力リンク部材30を出力側支軸OP周りに回転させる。
なお、図4aでは、3つの入力部を示しているが、4つ以上あってもよい。入力部の数を増やすことにより、最大出力を向上させることができる。またここでは、3つの直動アクチュエータを並列させているが、その配置は特に限定されない。例えば、第3支軸P3周りに放射状に配置させてもよい。
この回転アクチュエータユニット3も図1の回転アクチュエータユニット1と同様の効果を奏する。また、図2の回転アクチュエータユニット2のように適切にカウンタウエイト設計を行うことにより、回転アクチュエータユニット2と同様の効果を与えることができる。
次に本発明の回転アクチュエータユニットの第4の実施形態について説明する。
図4bの回転アクチュエータユニット4は、中間リンク部材40と、第1入力部10の第1入力リンク部材12および第2入力部20の第2入力リンク部材22との間に、第2中間リンク部材41を設け、かつ、第2中間リンク部材41の姿勢を制御する第3入力部60を備えている。
第3入力部60は、基部に固定された第3直動アクチュエータ61と、その第3直動アクチュエータ61の可動子に固定された第3支軸P3と、基端部62bが第3支軸P3周りに回転自在に支持された第3入力リンク部材62とを備えている。しかし、第3入力部60は、第3アクチュエータ(回転モータまたは直動アクチュエータ)を備えており、第3入力部60の先端部の1自由度を第3アクチュエータで制御できるものであれば、特に限定されず、例えば、図10cの回転アクチュエータ8bの第3入力部60や図11cの回転アクチュエータ9bの第3入力部60などを用いてもよい。
第2中間リンク部材41は、リンク本体46に対して所定の角度(ここでは垂直)で交わる基端部47を備えており、全体として略T字状を呈している。リンク本体46の先端部46aは中間リンク部材40の基端部40bと共に入力側支軸IP周りに回転自在に支持されている。また中間リンク部材の基端部47には、第1入力リンク部材の先端部12aを回転自在に支持する第7支軸P7と、第2入力リンク部材の先端部22aを回転自在に支持する第8支軸P8と、第3入力リンク部材の先端部62aを回転自在に支持する第9支軸P9とを有している。そのため、回転アクチュエータユニット4の入力側のリンク機構の先端部は、第2中間リンク部材41のリンク本体46の先端部46aとなる。
このように構成された回転アクチュエータユニット4は、第1直動アクチュエータ11および第2直動アクチュエータ21を適切に制御することによって、第1支軸P1、第2支軸P2の位置関係を定め、かつ、第3直動アクチュエータ61を適切に制御することによって第2中間リンク部材41の姿勢(角度)を定め、入力側支軸IPの2次元位置を操り、出力リンク部材30を出力側支軸OP周りに適切に回転させることができる。特に、アクチュエータが増えるので出力を増加させることができ、さらに入力側支軸IPと第7支軸P7と第8支軸P8と第9支軸P9とをそれぞれ離間することができるため、機械設計に余裕を持たせることができる。
この回転アクチュエータユニット4は、図1の回転アクチュエータユニット1よりリンクが一つ多く、出力リンク部材30を出力側支軸OP周りに適切に回転させるための第1直動アクチュエータ11、第2直動アクチュエータ21および第3直動アクチュエータ61の制御演算が複雑となる。しかし、それ以外は、図1の回転アクチュエータユニット1と実質的に同様の効果を奏する。
さらに、この回転アクチュエータユニット4は、駆動する直動アクチュエータを除けば全て、滑動ではなく枢動するリンク機構のみによって構成されているため、第1入力リンク部材12、第2入力リンク部材22および第3入力リンク部材62に力センサをそれぞれ取り付け、かつ、それらの力センサに各リンク部材の重力が加わらないように適切にカウンタウエイト設計を行うことにより、図2の回転アクチュエータユニット2と同様の効果を与えることができる。
なお、ここでは、第2中間リンク部材41として、T字状のものを紹介しているが、その形状は特に限定されるものではない。例えば十字状のものを用いてもよい。
図4bの回転アクチュエータユニット4は、中間リンク部材40と、第1入力部10の第1入力リンク部材12および第2入力部20の第2入力リンク部材22との間に、第2中間リンク部材41を設け、かつ、第2中間リンク部材41の姿勢を制御する第3入力部60を備えている。
第3入力部60は、基部に固定された第3直動アクチュエータ61と、その第3直動アクチュエータ61の可動子に固定された第3支軸P3と、基端部62bが第3支軸P3周りに回転自在に支持された第3入力リンク部材62とを備えている。しかし、第3入力部60は、第3アクチュエータ(回転モータまたは直動アクチュエータ)を備えており、第3入力部60の先端部の1自由度を第3アクチュエータで制御できるものであれば、特に限定されず、例えば、図10cの回転アクチュエータ8bの第3入力部60や図11cの回転アクチュエータ9bの第3入力部60などを用いてもよい。
第2中間リンク部材41は、リンク本体46に対して所定の角度(ここでは垂直)で交わる基端部47を備えており、全体として略T字状を呈している。リンク本体46の先端部46aは中間リンク部材40の基端部40bと共に入力側支軸IP周りに回転自在に支持されている。また中間リンク部材の基端部47には、第1入力リンク部材の先端部12aを回転自在に支持する第7支軸P7と、第2入力リンク部材の先端部22aを回転自在に支持する第8支軸P8と、第3入力リンク部材の先端部62aを回転自在に支持する第9支軸P9とを有している。そのため、回転アクチュエータユニット4の入力側のリンク機構の先端部は、第2中間リンク部材41のリンク本体46の先端部46aとなる。
このように構成された回転アクチュエータユニット4は、第1直動アクチュエータ11および第2直動アクチュエータ21を適切に制御することによって、第1支軸P1、第2支軸P2の位置関係を定め、かつ、第3直動アクチュエータ61を適切に制御することによって第2中間リンク部材41の姿勢(角度)を定め、入力側支軸IPの2次元位置を操り、出力リンク部材30を出力側支軸OP周りに適切に回転させることができる。特に、アクチュエータが増えるので出力を増加させることができ、さらに入力側支軸IPと第7支軸P7と第8支軸P8と第9支軸P9とをそれぞれ離間することができるため、機械設計に余裕を持たせることができる。
この回転アクチュエータユニット4は、図1の回転アクチュエータユニット1よりリンクが一つ多く、出力リンク部材30を出力側支軸OP周りに適切に回転させるための第1直動アクチュエータ11、第2直動アクチュエータ21および第3直動アクチュエータ61の制御演算が複雑となる。しかし、それ以外は、図1の回転アクチュエータユニット1と実質的に同様の効果を奏する。
さらに、この回転アクチュエータユニット4は、駆動する直動アクチュエータを除けば全て、滑動ではなく枢動するリンク機構のみによって構成されているため、第1入力リンク部材12、第2入力リンク部材22および第3入力リンク部材62に力センサをそれぞれ取り付け、かつ、それらの力センサに各リンク部材の重力が加わらないように適切にカウンタウエイト設計を行うことにより、図2の回転アクチュエータユニット2と同様の効果を与えることができる。
なお、ここでは、第2中間リンク部材41として、T字状のものを紹介しているが、その形状は特に限定されるものではない。例えば十字状のものを用いてもよい。
図5a、図5bの回転アクチュエータユニット1A、1Bは、本発明の回転アクチュエータユニットの第5、第6の実施形態である。
図5aの回転アクチュエータユニット1Aは、図1の回転アクチュエータユニット1の出力リンク部材30の出力軸(出力側支軸OP)に、その出力リンク部材30の出力側支軸周りの回転を伝達する駆動力伝達機構70と、駆動力伝達機構70によって出力リンク部材30と連動して回転する中空軸部材80とをさらに設けたものである。
駆動力伝達機構70は、出力リンク部材30の回転を伝達する第1プーリ70aと、第2プーリ70bと、第1プーリ70aの回転を第2プーリ70bに伝達するベルト70cとを備えたものである。しかし、回転運動を伝達できるものであれば、特にプーリに限定されるものではなく公知の機構が挙げられる。例えば、図5bの回転アクチュエータユニット1Bの駆動力伝達機構71は、出力リンク部材30の回転を伝達する第1ギヤ71aと、第1ギヤ71aと噛み合う第2ギヤ71bとを備えたものである。
このように駆動力伝達機構70、71を用いて回転アクチュエータユニットの最終出力軸を、出力側支軸OPから中空軸部材80にオフセットすることにより、例えば、関節を跨いだ配線等をこの中空軸部材80内に通すことができる。
図5aの回転アクチュエータユニット1Aは、図1の回転アクチュエータユニット1の出力リンク部材30の出力軸(出力側支軸OP)に、その出力リンク部材30の出力側支軸周りの回転を伝達する駆動力伝達機構70と、駆動力伝達機構70によって出力リンク部材30と連動して回転する中空軸部材80とをさらに設けたものである。
駆動力伝達機構70は、出力リンク部材30の回転を伝達する第1プーリ70aと、第2プーリ70bと、第1プーリ70aの回転を第2プーリ70bに伝達するベルト70cとを備えたものである。しかし、回転運動を伝達できるものであれば、特にプーリに限定されるものではなく公知の機構が挙げられる。例えば、図5bの回転アクチュエータユニット1Bの駆動力伝達機構71は、出力リンク部材30の回転を伝達する第1ギヤ71aと、第1ギヤ71aと噛み合う第2ギヤ71bとを備えたものである。
このように駆動力伝達機構70、71を用いて回転アクチュエータユニットの最終出力軸を、出力側支軸OPから中空軸部材80にオフセットすることにより、例えば、関節を跨いだ配線等をこの中空軸部材80内に通すことができる。
図5cの回転アクチュエータユニット1Cは、本発明の回転アクチュエータユニットの第7の実施形態である。
図5cの回転アクチュエータユニット1Cは、図1のアクチュエータユニット1の出力リンク部材30の出力軸(出力側支軸OP)に、その出力リンク部材30の出力側支軸周りの回転を直進運動に変換する駆動力変換機構72を備えたものである。この駆動力変換機構72は、出力リンク部材30の回転を伝達するピニオン72aと、そのピニオン72aの回転を直進運動に変換するラック72bとを備えている。
図5cの回転アクチュエータユニット1Cでは、ピニオンとラックからなる駆動力変換機構72を用いているが、特にピニオンとラックに限定されるものではなく回転運動を直進運動に変換する公知の駆動力変換機構を適用することができる。
なお、図5a~図5cの回転アクチュエータユニット1A~1Cでは、図1の回転アクチュエータユニット1に駆動力伝達機構70、71および駆動力変換機構72を取り付けているが、図3および図4に示した他の回転アクチュエータユニット2、3、4あるいは図10および図11に示した回転アクチュエータ8a~8c、9a~9cにそれぞれを取り付けてもよい。
図5cの回転アクチュエータユニット1Cは、図1のアクチュエータユニット1の出力リンク部材30の出力軸(出力側支軸OP)に、その出力リンク部材30の出力側支軸周りの回転を直進運動に変換する駆動力変換機構72を備えたものである。この駆動力変換機構72は、出力リンク部材30の回転を伝達するピニオン72aと、そのピニオン72aの回転を直進運動に変換するラック72bとを備えている。
図5cの回転アクチュエータユニット1Cでは、ピニオンとラックからなる駆動力変換機構72を用いているが、特にピニオンとラックに限定されるものではなく回転運動を直進運動に変換する公知の駆動力変換機構を適用することができる。
なお、図5a~図5cの回転アクチュエータユニット1A~1Cでは、図1の回転アクチュエータユニット1に駆動力伝達機構70、71および駆動力変換機構72を取り付けているが、図3および図4に示した他の回転アクチュエータユニット2、3、4あるいは図10および図11に示した回転アクチュエータ8a~8c、9a~9cにそれぞれを取り付けてもよい。
図6および図7の回転アクチュエータユニット5は、図2の回転アクチュエータユニット2に駆動力伝達機構71を介して中空軸部材80に最終出力軸をオフセットさせた第1の試作例を示す。つまり、第1入力部10と、第2入力部20と、出力リンク部材30と、中間リンク部材40と、力センサ50と、出力側支軸OPと、中間軸MPと、入力側支軸IPと、駆動力伝達機構71と、中空軸部材80とを有し、カウンタウエイト設計が施されたものである。なお、符号90は、出力軸(出力側支軸OP)の変位角度を計測するためのエンコーダである。その他の符号は、図2の回転アクチュエータユニット2の構造と共通している。入力部のアクチュエータによって出力軸(出力リンク部材)の回転状況は監視できるが、出力軸にもエンコーダを設けることにより、出力側支軸OPと入力側支軸IPとを一致させて、つまり、出力軸を直動アクチュエータから切り離して出力軸(出力側支軸OP)をフリーな状態で空転させても、出力軸の回転状況の監視を続けることができる。
なお、第1直動アクチュエータ11および第2直動アクチュエータ21の構造は特に限定されるものではない旨を述べ、ボールネジと、ナットと、ボールネジを回転駆動させるモータとを備えた既存の例を挙げたが、摩擦が少なく伝達効率の良いボールネジでなく、あえて摩擦が大きく伝達効率の悪い滑りネジを選択することもあり得る。この場合、直動アクチュエータがいわゆるセルフロック機能を持つことになり、能動的に駆動力を加えない限り回転アクチュエータユニットが逆駆動しなくなる(ただし、入力点(入力側支軸IP)と出力軸(出力側支軸OP)とを一致させることによる完全な出力軸(出力側支軸OP)フリー回転状態にある場合を除く)。つまり滑りネジを用いた場合、出力軸のフリー回転状態以外で出力軸のロック状態を実現できることを意味する。
また、同様のロック機能は、もちろん出力軸(出力側支軸OP)、ボールネジ等の直動アクチュエータ、あるいはボールネジ等を回転駆動させるモータ等に(電磁)ブレーキ等の制動機構を取り付ける構成によっても実現される。この場合、ブレーキ等を余分に取り付ける必要があるが、例えば伝達効率の良いボールネジを使いつつ、出力軸のロック機能をも獲得できることになる。
また、同様のロック機能は、もちろん出力軸(出力側支軸OP)、ボールネジ等の直動アクチュエータ、あるいはボールネジ等を回転駆動させるモータ等に(電磁)ブレーキ等の制動機構を取り付ける構成によっても実現される。この場合、ブレーキ等を余分に取り付ける必要があるが、例えば伝達効率の良いボールネジを使いつつ、出力軸のロック機能をも獲得できることになる。
図8a~図8cおよび図9aの回転アクチュエータユニット6は、図2の回転アクチュエータユニット2に駆動力変換機構72を取り付けた第2の試作例を示す。つまり、回転アクチュエータユニット2の出力軸の回転を直進運動に変換するものである。また回転アクチュエータユニット6は、上述するように、出力軸(出力側支軸OP)の回転を制動するブレーキ機構95を備えている。その他の符号は、図2の回転アクチュエータユニット2と構造を共通している。
出力軸にブレーキ機構95を設けることにより、出力軸の状態に関係なく出力軸にロック機能を付与することができる。特に、出力側支軸OPと入力側支軸IPとを重ねた状態においても出力軸にロック機能を付与することができる。これにより、出力軸をロックさせた状態で、さらに出力軸(出力側支軸OP)と入力点(入力側支軸IP)とを一致させることにより、出力軸を第1アクチュエータ11および第2アクチュエータ21から切り離せば、力センサの完全な無負荷状態を作り力センサゼロリセットの作業を行うことができると共に、外力に対しては出力軸をフリーにせず、駆動力変換機構72、さらに駆動力変換機構72に連結された外部機構を固定した状態で力センサゼロリセットを行うことができて好ましい。
回転アクチュエータユニット6のブレーキ機構95は、特に限定するものではないが、例えば、電磁ブレーキが好ましく挙げられる。ブレーキ機構95は、他の回転アクチュエータユニットに取り付けてもよい。
回転アクチュエータユニット6のブレーキ機構95は、出力軸(出力側支軸OP)に設けられているが、駆動力変換機構72など出力軸より外部に設けてもよい。
出力軸にブレーキ機構95を設けることにより、出力軸の状態に関係なく出力軸にロック機能を付与することができる。特に、出力側支軸OPと入力側支軸IPとを重ねた状態においても出力軸にロック機能を付与することができる。これにより、出力軸をロックさせた状態で、さらに出力軸(出力側支軸OP)と入力点(入力側支軸IP)とを一致させることにより、出力軸を第1アクチュエータ11および第2アクチュエータ21から切り離せば、力センサの完全な無負荷状態を作り力センサゼロリセットの作業を行うことができると共に、外力に対しては出力軸をフリーにせず、駆動力変換機構72、さらに駆動力変換機構72に連結された外部機構を固定した状態で力センサゼロリセットを行うことができて好ましい。
回転アクチュエータユニット6のブレーキ機構95は、特に限定するものではないが、例えば、電磁ブレーキが好ましく挙げられる。ブレーキ機構95は、他の回転アクチュエータユニットに取り付けてもよい。
回転アクチュエータユニット6のブレーキ機構95は、出力軸(出力側支軸OP)に設けられているが、駆動力変換機構72など出力軸より外部に設けてもよい。
回転アクチュエータユニット6は、駆動力変換機構72のラック72bを第1入力部10の第1直動アクチュエータ11および第2入力部20の第2直動アクチュエータ21と平行に直進するように設けているが、ラック72bをピニオン72a周りに任意な角度でピニオン72aと噛み合わせることにより、任意な方向に直進させることができる。例えば、図9cの回転アクチュエータユニット6Aのように、ラック72bを第1直動アクチュエータ11および第2直動アクチュエータ21に対して90度の角度で設けてもよい。
図8dおよび図9bの回転アクチュエータユニット7は、駆動力変換機構73を備えたものである。駆動力変換機構73は、ピニオン73aと、第1ラック73bと、第2ラック73cとを備えており、第1ラック73bと第2ラック73cとをピニオン73aを挟んで相対させたものである。この場合、ピニオン73aが一方向に回転することにより、第1ラック73bと、第2ラック73cとは逆方向に直進する。しかし、第1ラック73bと第2ラック73cとを、例えば、軸方向に重ねてもよい。この場合、2つのラックは同じ方向に進む。また図9dの回転アクチュエータユニット7Aのように、回転アクチュエータユニットに対する駆動力変換機構73の向きを変えてもよい。
次に、本発明の第2の態様の回転アクチュエータユニットの実施形態(第8の実施形態および第10の実施形態)について説明する。
図10aの回転アクチュエータユニット8(第8の実施形態)は、第1入力部10と、第2入力部20と、出力リンク部材30と、中間リンク部材40と、基部に固定された出力側支軸OPと、基部に固定されていない中間軸MPと、基部に固定されていない入力側支軸IPとを有している。第1入力部10は、基部Bに固定された第1支軸P1と、その第1支軸P1周りに回転自在に支持された第1直動アクチュエータ11とを備えている。第2入力部20は、基部Bに固定された第2支軸P2と、その第2支軸P2回りに回転自在に支持された第2直動アクチュエータ21を備えている。また第1直動アクチュエータ11の可動子11aと第2直動アクチュエータ21の可動子21aとは中間リンク部材40の基端部40bと共に入力側支軸IP周りに回転自在に支持されている。つまり、第1入力部10と、第2入力部20とによって入力側の直動型五節リンク機構L1を構成している。出力側のリンク機構L2は、図1の回転アクチュエータ1と実質的に同じである。そして、第1直動アクチュエータ11の可動子11a(第1入力部の先端部)と、第2直動アクチュエータ21の可動子21a(第2入力部の先端部)とが入力側の直動型五節リンク機構の先端部となっている。このように中間リンク部材40は、第1直動アクチュエータ11の可動子11aと出力リンク部材30を連結し、第2直動アクチュエータ21の可動子21aと出力リンク部材30を連結している。
そのため、第1直動アクチュエータ11および第2直動アクチュエータ21を制御することにより、入力側支軸IPの2次元位置を自在に操り、出力リンク部材30を出力側支軸OP周りに回転させることができる。
また力センサ50は、第1直動アクチュエータ11および第2直動アクチュエータ21のステムに設けており、特に限定するものではないが入力側支軸IPに近い方が好ましい。
この回転アクチュエータ8では、カウンタウエイト設計を行っていない。しかし、例えば、各直動アクチュエータの基端部および先端部(可動子)、中間リンク部材の基端部40bおよび先端部40aならびに出力リンク部材の基端部30bおよび先端部30aに、それぞれ直動アクチュエータの動作と連動するカウンタウエイトを設けることは、煩雑ではあるが理論上可能である。このように適切なカウンタウエイト設計を施すことにより、各リンクの偏心が生じないようにすることができる。
図10aの回転アクチュエータユニット8(第8の実施形態)は、第1入力部10と、第2入力部20と、出力リンク部材30と、中間リンク部材40と、基部に固定された出力側支軸OPと、基部に固定されていない中間軸MPと、基部に固定されていない入力側支軸IPとを有している。第1入力部10は、基部Bに固定された第1支軸P1と、その第1支軸P1周りに回転自在に支持された第1直動アクチュエータ11とを備えている。第2入力部20は、基部Bに固定された第2支軸P2と、その第2支軸P2回りに回転自在に支持された第2直動アクチュエータ21を備えている。また第1直動アクチュエータ11の可動子11aと第2直動アクチュエータ21の可動子21aとは中間リンク部材40の基端部40bと共に入力側支軸IP周りに回転自在に支持されている。つまり、第1入力部10と、第2入力部20とによって入力側の直動型五節リンク機構L1を構成している。出力側のリンク機構L2は、図1の回転アクチュエータ1と実質的に同じである。そして、第1直動アクチュエータ11の可動子11a(第1入力部の先端部)と、第2直動アクチュエータ21の可動子21a(第2入力部の先端部)とが入力側の直動型五節リンク機構の先端部となっている。このように中間リンク部材40は、第1直動アクチュエータ11の可動子11aと出力リンク部材30を連結し、第2直動アクチュエータ21の可動子21aと出力リンク部材30を連結している。
そのため、第1直動アクチュエータ11および第2直動アクチュエータ21を制御することにより、入力側支軸IPの2次元位置を自在に操り、出力リンク部材30を出力側支軸OP周りに回転させることができる。
また力センサ50は、第1直動アクチュエータ11および第2直動アクチュエータ21のステムに設けており、特に限定するものではないが入力側支軸IPに近い方が好ましい。
この回転アクチュエータ8では、カウンタウエイト設計を行っていない。しかし、例えば、各直動アクチュエータの基端部および先端部(可動子)、中間リンク部材の基端部40bおよび先端部40aならびに出力リンク部材の基端部30bおよび先端部30aに、それぞれ直動アクチュエータの動作と連動するカウンタウエイトを設けることは、煩雑ではあるが理論上可能である。このように適切なカウンタウエイト設計を施すことにより、各リンクの偏心が生じないようにすることができる。
図10bの回転アクチュエータユニット8a(第9の実施形態)は、図10aの回転アクチュエータユニット8に第3入力部60を設けたものである。第3入力部60は、基部Bに固定された第3支軸P3周りに回転自在に支持された第3直動アクチュエータ61を有する。そして、第3直動アクチュエータ61の可動子61aは、中間リンク部材の基端部40bと共に入力側支軸IP周りに回転自在に支持されている。
図10cの回転アクチュエータユニット8b(第10の実施形態)は、図10aの回転アクチュエータユニット8の中間リンク部材40と、第1直動アクチュエータ11および第2直動アクチュエータ21との間に、第2中間リンク部材41を設け、かつ、第2中間リンク部材41の姿勢を制御する第3入力部60を備えている。第3入力部60は、基部Bに固定された第3支軸P3と、その第3支軸P3周りに回転自在に支持された第3直動アクチュエータ61とを備えている。第2中間リンク部材41は、実質的に図4bの回転アクチュエータユニット4の第2中間リンク部材41と同じものである。なお、第3入力部60は、第3アクチュエータ(回転モータまたは直動アクチュエータ)を備えており、第3入力部60の先端部の2次元位置を第3アクチュエータで制御できるものであれば、特に限定されず、例えば、図4bの回転アクチュエータ4の第3入力部60や図11cの回転アクチュエータ9bの第3入力部60などを用いてもよい。
図10cの回転アクチュエータユニット8b(第10の実施形態)は、図10aの回転アクチュエータユニット8の中間リンク部材40と、第1直動アクチュエータ11および第2直動アクチュエータ21との間に、第2中間リンク部材41を設け、かつ、第2中間リンク部材41の姿勢を制御する第3入力部60を備えている。第3入力部60は、基部Bに固定された第3支軸P3と、その第3支軸P3周りに回転自在に支持された第3直動アクチュエータ61とを備えている。第2中間リンク部材41は、実質的に図4bの回転アクチュエータユニット4の第2中間リンク部材41と同じものである。なお、第3入力部60は、第3アクチュエータ(回転モータまたは直動アクチュエータ)を備えており、第3入力部60の先端部の2次元位置を第3アクチュエータで制御できるものであれば、特に限定されず、例えば、図4bの回転アクチュエータ4の第3入力部60や図11cの回転アクチュエータ9bの第3入力部60などを用いてもよい。
次に、本発明の第3の態様の回転アクチュエータユニットの実施形態(第11の実施形態から第13の実施形態)について説明する。
図11aの回転アクチュエータユニット9(第11の実施形態)は、第1入力部10と、第2入力部20と、出力リンク部材30と、中間リンク部材40と、基部に固定された出力側支軸OPと、基部に固定されていない中間軸MPと、基部に固定されていない入力側支軸IPとを有している。第1入力部10は、第1モータ111と、第1入力第1リンク部材112と、基部に固定されていない第1支軸P1と、第1入力第2リンク部材113とを備えている。第1回転モータ111は基部Bに固定されている。第1入力第1リンク部材112の基端部112bは第1モータ111の可動軸111aに固定されており、第1入力第1リンク部材112の先端部112aと第1入力第2リンク部材113の基端部113bとは第1支軸P1周りに回転自在に支持されている。第2入力部20は、第2モータ211と、第2入力第1リンク部材212と、基部に固定されていない第2支軸P2と、第2入力第2リンク部材213とを備えている。第2回転モータ211は基部Bに固定されている。第2入力第1リンク部材212の基端部212bは第2モータ211の可動軸211aに固定されており、第2入力第1リンク部材212の先端部212aと、第2入力第2リンク部材213の基端部213bとは第2支軸P2周りに回転自在に支持されている。第1入力第2リンク部材113の先端部113aと、第2入力第2リンク部材213の先端部213aとは中間リンク部材40の基端部40bと共に入力側支軸IP周りに回転自在に支持されている。つまり、第1入力部10と、第2入力部20とによって入力側の回転型五節リンク機構L1を構成している。そして、第1入力第2リンク部材113の先端部113aと、第2入力第2リンク部材213の先端部213aとが入力側の回転型五節リンク機構の先端部となっている。このように中間リンク部材40は、第1入力第2リンク部材113と出力リンク部材30、並びに、第2入力第2リンク部材213と出力リンク部材30を連結している。なお、出力側のリンク機構L2は、図1の回転アクチュエータユニット1のリンク機構L2と実質的に同じものである。
そのため、第1回転モータ111および第2回転モータ211を制御することにより、入力側支軸IPの2次元位置を自在に操り、出力リンク部材30を出力側支軸OP周りに回転させることができる。
力センサ50は、第1入力第2リンク部材113および第2入力第2リンク部材213に設けており、特に限定するものではないが入力側支軸IPに近い方が好ましい。
この回転アクチュエータ9では、カウンタウエイト設計を行っていない。しかし、適切なカウンタウエイト設計を施すことにより、各リンクの偏心が生じないようにすることができる。
図11aの回転アクチュエータユニット9(第11の実施形態)は、第1入力部10と、第2入力部20と、出力リンク部材30と、中間リンク部材40と、基部に固定された出力側支軸OPと、基部に固定されていない中間軸MPと、基部に固定されていない入力側支軸IPとを有している。第1入力部10は、第1モータ111と、第1入力第1リンク部材112と、基部に固定されていない第1支軸P1と、第1入力第2リンク部材113とを備えている。第1回転モータ111は基部Bに固定されている。第1入力第1リンク部材112の基端部112bは第1モータ111の可動軸111aに固定されており、第1入力第1リンク部材112の先端部112aと第1入力第2リンク部材113の基端部113bとは第1支軸P1周りに回転自在に支持されている。第2入力部20は、第2モータ211と、第2入力第1リンク部材212と、基部に固定されていない第2支軸P2と、第2入力第2リンク部材213とを備えている。第2回転モータ211は基部Bに固定されている。第2入力第1リンク部材212の基端部212bは第2モータ211の可動軸211aに固定されており、第2入力第1リンク部材212の先端部212aと、第2入力第2リンク部材213の基端部213bとは第2支軸P2周りに回転自在に支持されている。第1入力第2リンク部材113の先端部113aと、第2入力第2リンク部材213の先端部213aとは中間リンク部材40の基端部40bと共に入力側支軸IP周りに回転自在に支持されている。つまり、第1入力部10と、第2入力部20とによって入力側の回転型五節リンク機構L1を構成している。そして、第1入力第2リンク部材113の先端部113aと、第2入力第2リンク部材213の先端部213aとが入力側の回転型五節リンク機構の先端部となっている。このように中間リンク部材40は、第1入力第2リンク部材113と出力リンク部材30、並びに、第2入力第2リンク部材213と出力リンク部材30を連結している。なお、出力側のリンク機構L2は、図1の回転アクチュエータユニット1のリンク機構L2と実質的に同じものである。
そのため、第1回転モータ111および第2回転モータ211を制御することにより、入力側支軸IPの2次元位置を自在に操り、出力リンク部材30を出力側支軸OP周りに回転させることができる。
力センサ50は、第1入力第2リンク部材113および第2入力第2リンク部材213に設けており、特に限定するものではないが入力側支軸IPに近い方が好ましい。
この回転アクチュエータ9では、カウンタウエイト設計を行っていない。しかし、適切なカウンタウエイト設計を施すことにより、各リンクの偏心が生じないようにすることができる。
図11bの回転アクチュエータユニット9a(第12の実施形態)は、図11aの回転アクチュエータユニット9に第3入力部60をさらに設けたものである。第3入力部60は、基部Bに固定された第3モータ611と、基端部612bが第3モータ611の支軸に固定された第3入力第1リンク部材612と、基端部が第3入力第1リンク部材612の先端部に第3支軸P3周りに回転自在に連結された第3入力第2リンク部材613とを有する。また第3入力第2リンク部材613の先端部613aは、入力側支軸IP周りに回転自在に支持されている。
図11cの回転アクチュエータユニット9b(第13の実施形態)は、図11aの回転アクチュエータユニット9の中間リンク部材40と、第1入力第2リンク部材113および第2入力第2リンク部材213との間に、第2中間リンク部材41を設け、かつ、第2中間リンク部材41の姿勢を制御する第3入力部60を備えている。第3入力部60は、基部に固定されている第3モータ611と、第1入力第1リンク部材612と、基部に固定されていない第3支軸P3と、第1入力第2リンク部材613とを備えている。第3入力第1リンク部材612の基端部は第3モータ611の可動軸に固定されており、第3入力第1リンク部材612の先端部と第3入力第2リンク部材613の基端部とは第3支軸P3周りに回転自在に支持されている。中間リンク部材41は、実質的に図4bの回転アクチュエータユニット4の第2中間リンク部材41および第3入力部60と同じものである。そして、第3入力第2リンク部材613の先端部613aが第9支軸P9周りに回転自在に支持されている。なお、第3入力部60は、第3アクチュエータ(回転モータまたは直動アクチュエータ)を備えており、第3入力部60の先端部の2次元位置を第3アクチュエータで制御できるものであれば、特に限定されず、例えば、図4bの回転アクチュエータ4の第3入力部60や図10cの回転アクチュエータ8bの第3入力部60などを用いてもよい。
図11cの回転アクチュエータユニット9b(第13の実施形態)は、図11aの回転アクチュエータユニット9の中間リンク部材40と、第1入力第2リンク部材113および第2入力第2リンク部材213との間に、第2中間リンク部材41を設け、かつ、第2中間リンク部材41の姿勢を制御する第3入力部60を備えている。第3入力部60は、基部に固定されている第3モータ611と、第1入力第1リンク部材612と、基部に固定されていない第3支軸P3と、第1入力第2リンク部材613とを備えている。第3入力第1リンク部材612の基端部は第3モータ611の可動軸に固定されており、第3入力第1リンク部材612の先端部と第3入力第2リンク部材613の基端部とは第3支軸P3周りに回転自在に支持されている。中間リンク部材41は、実質的に図4bの回転アクチュエータユニット4の第2中間リンク部材41および第3入力部60と同じものである。そして、第3入力第2リンク部材613の先端部613aが第9支軸P9周りに回転自在に支持されている。なお、第3入力部60は、第3アクチュエータ(回転モータまたは直動アクチュエータ)を備えており、第3入力部60の先端部の2次元位置を第3アクチュエータで制御できるものであれば、特に限定されず、例えば、図4bの回転アクチュエータ4の第3入力部60や図10cの回転アクチュエータ8bの第3入力部60などを用いてもよい。
1、1A、1B、1C 回転アクチュエータユニット;2、3、4、5 回転アクチュエータユニット;6、6A、7、7A、8a、8b、8c、9a、9b、9c 回転アクチュエータユニット;10 第1入力部;11 第1直動アクチュエータ;11a 可動子;12 第1入力リンク部材;12a 先端部;12b 基端部;16 第1基端側リンク要素;17 第1先端側リンク要素;18 第1基端側カウンタウエイト部;19 第1先端側カウンタウエイト部;20 第2入力部;21 第2直動アクチュエータ;21a 可動子;22 第2入力リンク部材;22a 先端部;22b 基端部;26 第2基端側リンク要素;27 第2先端側リンク要素;28 第2基端側カウンタウエイト部;29 第2先端側カウンタウエイト部;30 出力リンク部材;30a 先端部;30b 基端部;35 出力側カウンタウエイト部;40 中間リンク部材;40a 先端部;40b 基端部;41 第2中間リンク部材;45 中間カウンタウエイト部;46 リンク本体;46a 先端部;47 基端部;50 力センサ;60 第3入力部;61 第3直動アクチュエータ;62 第3入力リンク部材;62a 先端部;62b 基端部;70 駆動力伝達機構;70a 第1プーリ;70b 第2プーリ;70c ベルト;71 駆動力伝達機構;71a 第1ギヤ;71b 第2ギヤ;72 駆動力伝達機構;72a ピニオン;72b ラック;73 駆動力伝達機構;73a ピニオン;73b 第1ラック;73c 第2ラック;80 中空軸部材;90 エンコーダ;95 ブレーキ機構;111 第1回転モータ;111a 可動軸;112 第1入力第1リンク部材;112a 先端部;112b 基端部;113 第1入力第2リンク部材;113a 先端部;113b 基端部;211 第2回転モータ;211a 可動軸;212 第2入力第1リンク部材;212a 先端部;212b 基端部;213 第2入力第2リンク部材;213a 先端部;213b 基端部;611 第3回転モータ;612 第3入力第1リンク部材;613 第3入力第2リンク部材;113a 先端部;B 基部;L1 入力側のリンク機構;L2 出力側のリンク機構;OP 出力側支軸;IP 入力側支軸;MP 中間軸;P1 第1支軸;P2 第2支軸;P3 第3支軸;P7 第7支軸;P8 第8支軸;P9 第9支軸
Claims (12)
- 第1アクチュエータを備えた第1入力部と、
第2アクチュエータを備えた第2入力部と、
出力リンク部材と、
中間リンク部材と、
基部に固定された出力側支軸と、
前記基部に固定されていない中間軸と、
前記基部に固定されていない入力側支軸とを有し、
前記第1入力部と前記第2入力部は2自由度以上を有するリンク機構の少なくとも一部を構成しており、
前記出力リンク部材の先端部は前記出力側支軸周りに回転自在に支持されており、
前記出力リンク部材の基端部と前記中間リンク部材の先端部とは前記中間軸周りに回転自在に支持されており、
前記中間リンク部材の基端部と前記リンク機構の先端部とは前記入力側支軸周りに回転自在に支持されており、
前記第1アクチュエータおよび前記第2アクチュエータを制御して前記リンク機構を駆動することにより前記入力側支軸の2次元位置を自在に操り、前記出力側支軸周りの前記出力リンク部材の回転を出力として取り出すことのできる、
回転アクチュエータユニット。 - 前記第1入力部は、
前記第1アクチュエータとしての第1直動アクチュエータと、
前記第1直動アクチュエータの可動子に固定された第1支軸と、
第1入力リンク部材とを備え、
前記第1直動アクチュエータは前記基部に固定され、
前記第1入力リンク部材の基端部は前記第1支軸周りに回転自在に支持されており、
前記第2入力部は、
前記第2アクチュエータとしての第2直動アクチュエータと、
前記第2直動アクチュエータの可動子に固定された第2支軸と、
第2入力リンク部材とを備え、
前記第2直動アクチュエータは前記基部に固定され、
前記第2入力リンク部材の基端部は前記第2支軸周りに回転自在に支持されており、
前記第1直動アクチュエータおよび前記第2直動アクチュエータを制御することにより、前記入力側支軸の2次元位置を自在に操ることができる、
請求項1記載の回転アクチュエータユニット。 - 前記リンク機構の先端部が、前記入力側支軸周りに回転自在に支持されている前記第1入力リンク部材の先端部および前記第2入力リンク部材の先端部である、
請求項2記載の回転アクチュエータユニット。 - 前記第1入力リンク部材は、
第1基端側リンク要素と、
第1先端側リンク要素とからなり、
前記第1基端側リンク要素は、その重心が前記第1支軸上となるような第1基端側カウンタウエイト部を備え、
前記第1先端側リンク要素は、その重心が前記入力側支軸上となるような第1先端側カウンタウエイト部を備え、
前記第2入力リンク部材は、
第2基端側リンク要素と、
第2先端側リンク要素とからなり、
前記第2基端側リンク要素は、その重心が前記第2支軸上となるような第2基端側カウンタウエイト部を備え、
前記第2先端側リンク要素は、その重心が前記入力側支軸上となるような第2先端側カウンタウエイト部を備え、
前記中間リンク部材は、
前記第1先端側リンク要素と前記第2先端側リンク要素と前記入力側支軸と前記中間リンク部材との合成重心が、前記中間軸上となるような中間カウンタウエイト部を備え、
前記出力リンク部材は、
前記第1先端側リンク要素と前記第2先端側リンク要素と前記入力側支軸と前記中間リンク部材と前記中間軸と前記出力リンク部材との合成重心が、前記出力側支軸上となるような出力側カウンタウエイト部を備えている、
請求項3記載の回転アクチュエータユニット。 - 第3直動アクチュエータと、
前記第3直動アクチュエータの可動子に固定された第3支軸と、
第3入力リンク部材とを備えた第3入力部をさらに有し、
前記第3入力部は、前記リンク機構の少なくとも一部を構成している、
請求項2から4のいずれかに記載の回転アクチュエータユニット。 - 前記第1入力リンク部材および前記第2入力リンク部材に、
当該部材にかかる並進力を計測する力センサをそれぞれ備え、
当該力センサの各計測値から前記出力側支軸周りのトルクを算出する、
請求項2から5のいずれかに記載の回転アクチュエータユニット。 - 前記第1入力部は、
前記基部に固定された第1支軸と、
前記第1アクチュエータとして前記第1支軸周りに回転自在に支持された第1直動アクチュエータとを備え、
前記第2入力部は、
前記基部に固定された第2支軸と、
前記第2アクチュエータとして前記第2支軸周りに回転自在に支持された第2直動アクチュエータとを備え、
前記第1直動アクチュエータおよび前記第2直動アクチュエータを制御することにより、前記入力側支軸の2次元位置を自在に操ることができる、
請求項1記載の回転アクチュエータユニット。 - 前記第1入力部は、
前記第1アクチュエータとしての第1回転モータと、
第1入力第1リンク部材と、
前記基部に固定されていない第1支軸と、
第1入力第2リンク部材とを備え、
前記第1回転モータは前記基部に固定されており、
前記第1入力第1リンク部材の基端部は前記第1回転モータの可動軸に固定されており、
前記第1入力第1リンク部材の先端部と前記第1入力第2リンク部材の基端部とが前記第1支軸周りに回転自在に支持されており、
前記第2入力部は、
前記第2アクチュエータである第2回転モータと、
第2入力第1リンク部材と、
前記基部に固定されていない第2支軸と、
第2入力第2リンク部材とを備え、
前記第2回転モータは前記基部に固定されており、
前記第2入力第1リンク部材の基端部は前記第2回転モータの可動軸に固定されており、
前記第2入力第1リンク部材の先端部と前記第2入力第2リンク部材の基端部とが前記第2支軸周りに回転自在に支持されており、
前記第1回転モータおよび前記第2回転モータを制御することにより、前記入力側支軸の2次元位置を自在に操ることができる、
請求項1記載の回転アクチュエータユニット。 - 前記リンク機構の先端部が、前記入力側支軸周りに回転自在に支持されている前記第1入力部の先端部および前記第2入力部の先端部である、
請求項7または8記載の回転アクチュエータユニット。 - 前記出力リンク部材の回転を伝達する駆動力伝達機構と、
前記駆動力伝達機構によって前記出力リンク部材と連動して回転する中空軸部材とをさらに有する、
請求項1から9のいずれかに記載の回転アクチュエータユニット。 - 前記出力リンク部材の回転を並進に変換する駆動力変換機構をさらに有する、
請求項1から9のいずれかに記載の回転アクチュエータユニット。 - 請求項1から11のいずれかに記載の回転アクチュエータユニットを備えたロボット用または重機用関節ユニット。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-030250 | 2022-02-28 | ||
JP2022030250 | 2022-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023163222A1 true WO2023163222A1 (ja) | 2023-08-31 |
Family
ID=87766301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/007369 WO2023163222A1 (ja) | 2022-02-28 | 2023-02-28 | 回転アクチュエータユニットおよびそれを備えたロボット用または重機用関節ユニット |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023163222A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012067809A (ja) * | 2010-09-21 | 2012-04-05 | Tokyo Institute Of Technology | 無段変速機 |
JP2013124687A (ja) * | 2011-12-13 | 2013-06-24 | Denso Corp | スライダリンク機構を用いて変速比を調整した無段変速装置 |
-
2023
- 2023-02-28 WO PCT/JP2023/007369 patent/WO2023163222A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012067809A (ja) * | 2010-09-21 | 2012-04-05 | Tokyo Institute Of Technology | 無段変速機 |
JP2013124687A (ja) * | 2011-12-13 | 2013-06-24 | Denso Corp | スライダリンク機構を用いて変速比を調整した無段変速装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11465277B2 (en) | Cable-driven system with magnetorheological fluid clutch apparatuses | |
CN102229141B (zh) | 一种可实现四自由度运动的并联机构 | |
US5673595A (en) | Four degree-of-freedom manipulator | |
US8950967B2 (en) | Articulated joint | |
CN109476023B (zh) | 可变刚度串联式弹性致动器 | |
US8245595B2 (en) | Two-axis non-singular robotic wrist | |
CN111601685B (zh) | 工业机器人手臂 | |
US20130164107A1 (en) | Robot module and robot | |
EP2999572B1 (en) | Compact parallel kinematics robot | |
Fumagalli et al. | The mVSA-UT: A miniaturized differential mechanism for a continuous rotational variable stiffness actuator | |
US9676104B2 (en) | Variable spring constant torque coupler | |
WO2006101893A2 (en) | Parallel robot | |
KR20150047077A (ko) | 토크 프리 링키지 유니트 | |
KR101649108B1 (ko) | 관절 구조체 및 이를 구비한 로봇 | |
WO2023163222A1 (ja) | 回転アクチュエータユニットおよびそれを備えたロボット用または重機用関節ユニット | |
US10272562B2 (en) | Parallel kinematics robot with rotational degrees of freedom | |
JP6687928B2 (ja) | 関節駆動装置及び多軸マニュピレータ | |
WO2020184574A1 (ja) | ロボットの関節構造体 | |
EP3973109A1 (en) | A multi-backhoe linkage mechanism | |
JP4862974B2 (ja) | パラレルメカニズム | |
JP2020192625A (ja) | パラレルリンクロボット | |
JP5798005B2 (ja) | リンク作動装置 | |
KR20240112582A (ko) | 고중량을 다룰 수 있는 중력보상장치 | |
RU2297974C1 (ru) | Шарнирно-рычажный механизм | |
KR20240086143A (ko) | 웨어러블 로봇용 케이블 구동 회전 관절 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23760220 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024503320 Country of ref document: JP Kind code of ref document: A |