WO2023163221A1 - プラスチック基材、およびプラスチック眼鏡レンズ - Google Patents

プラスチック基材、およびプラスチック眼鏡レンズ Download PDF

Info

Publication number
WO2023163221A1
WO2023163221A1 PCT/JP2023/007365 JP2023007365W WO2023163221A1 WO 2023163221 A1 WO2023163221 A1 WO 2023163221A1 JP 2023007365 W JP2023007365 W JP 2023007365W WO 2023163221 A1 WO2023163221 A1 WO 2023163221A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
transmittance
plastic substrate
plastic
wavelength
Prior art date
Application number
PCT/JP2023/007365
Other languages
English (en)
French (fr)
Inventor
晃義 冨山
Original Assignee
株式会社ホプニック研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ホプニック研究所 filed Critical 株式会社ホプニック研究所
Publication of WO2023163221A1 publication Critical patent/WO2023163221A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • the present invention relates to a plastic substrate and a plastic spectacle lens, and more particularly to a plastic substrate and a plastic spectacle lens having an antiglare function.
  • Patent Literature 1 discloses a lens containing a resin and an ultraviolet absorber (an indole compound), and describes that the effect of blue light with a wavelength of 420 nm on the eyes can be reduced.
  • Patent Document 2 discloses a lens containing a resin and an absorbing dye (tetraazaporphyrin-based compound) having a main absorption peak between 565 nm and 605 nm in wavelength. It is described that it can reduce light, impart anti-glare properties, and enhance contrast.
  • an absorbing dye tetraazaporphyrin-based compound
  • the lens described in Patent Document 2 can provide antiglare properties and high contrast, it has a problem that the lens itself is colored (looks bluish and dark) due to the influence of the absorbing dye, and is fashionable. From the point of view and the need for everyday use regardless of whether it is indoors or outdoors, there was a demand for a bright lens with high transparency (that is, it looks colorless and transparent). In addition, since the lens described in Patent Document 2 does not have ultraviolet-cutting and blue-light-cutting functions, the market has demanded lenses with further ultraviolet-cutting and blue-light-cutting functions.
  • the present invention has been made in view of such circumstances, and its object is to provide a plastic substrate having high transparency while having UV cut, blue light cut, and antiglare functions, and an object of the present invention is to provide a plastic spectacle lens containing such a plastic base material.
  • the present inventors conducted intensive studies and found that a combination of a plurality of absorbing dyes has a half-value wavelength of 410 to 430 nm on the short wavelength side at which the transmittance is 50% in the spectral transmittance curve.
  • the present invention has been made based on such findings.
  • the plastic substrate of the present invention is a translucent plastic substrate containing a resin and an absorbing dye, and in the spectral transmittance curve, the half-value wavelength on the short wavelength side at which the transmittance is 50% is 410 to 430 nm, the average transmittance of 440 to 480 nm is 60 to 90%, the average transmittance of 500 to 530 nm is 75 to 95%, and the average transmittance of 630 to 700 nm is 80 to 98. % and has a minimum value between 550 and 600 nm.
  • the spectral transmittance curve has a predetermined balance, and a highly transparent plastic base material can be obtained while having UV cut, blue light cut, and anti-glare functions.
  • the minimum value is 35 to 75%.
  • T1 is the average transmittance of 440 to 480 nm
  • T2 is the average transmittance of 500 to 530 nm
  • T3 is the average transmittance of 630 to 700 nm.
  • the resin is preferably at least one selected from the group consisting of urethane-based thermosetting resins, (meth)acrylic-based thermosetting resins, polycarbonate resins, and polyamide resins.
  • the absorption dyes include a first dye having a maximum absorption wavelength in the range of 350 to 425 nm, a second dye having a maximum absorption wavelength in the range of 460 to 480 nm, and a dye having a maximum absorption wavelength of 490 to 510 nm. a third dye located in the range, a fourth dye having a maximum absorption wavelength in the range of 565 to 605 nm, and a fifth dye having a maximum absorption wavelength in the range of 590 to 650 nm. desirable.
  • the first dye is a benzotriazole dye
  • the second dye is a merocyanine dye
  • the third dye is an anthraquinone dye
  • the fourth dye is a tetraaza
  • the dye is a porphyrin dye
  • the fifth dye is an anthraquinone dye.
  • the concentration of the first dye is 0.2 to 0.8%
  • the concentration of the second dye is 0.5 to 2.0 ppm
  • the concentration of the third dye is 1.0 to 6.0 ppm
  • the concentration of the fourth dye is preferably 1.0 to 7.0 ppm
  • the concentration of the fifth dye is preferably 0.2 to 3.0 ppm.
  • the color temperature of the light after passing through the plastic substrate is within ⁇ 7% of the color temperature of the light before passing through the plastic substrate.
  • a multi-coat layer functioning as an antireflection film on at least one of the outer surface and the inner surface of the plastic substrate.
  • the plastic spectacle lens of the present invention is characterized by including any one of the plastic substrates described above. Moreover, in this case, it is desirable that the plastic substrate is formed by laminating it to the base substrate. Further, in this case, a functional layer is provided on at least one of the outer surface and the inner surface of the plastic spectacle lens, and the functional layer consists of a primer layer, a hard coat layer, an antireflection layer, and a water- and oil-repellent layer. One or more layers selected from the group are desirable.
  • FIG. 1 is a diagram illustrating the configuration of a plastic base material according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the absorbance of each absorbing dye in the plastic base material according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing spectral transmittance curves of a plastic substrate according to the first embodiment (Example 1) of the present invention.
  • FIG. 4 is a diagram showing spectral transmittance curves of a plastic substrate according to the first embodiment (Example 2) of the present invention.
  • FIG. 5 is a diagram showing spectral transmittance curves of a plastic substrate according to the first embodiment (Example 3) of the present invention.
  • FIG. 3 is a diagram illustrating the configuration of a plastic base material according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the absorbance of each absorbing dye in the plastic base material according to the first embodiment of the present invention.
  • FIG. 3 is a diagram
  • FIG. 6 is a diagram showing spectral transmittance curves of a plastic substrate according to the first embodiment (Example 4) of the present invention.
  • FIG. 7 is a diagram showing spectral transmittance curves of a plastic substrate according to the first embodiment (Example 5) of the present invention.
  • FIG. 8 is a diagram showing spectral transmittance curves of a plastic substrate according to the first embodiment (Example 6) of the present invention.
  • FIG. 9 is a diagram showing spectral transmittance curves of a plastic substrate according to the first embodiment (Example 7) of the present invention.
  • FIG. 10 is a diagram showing spectral transmittance curves of a plastic substrate according to the first embodiment (Example 8) of the present invention.
  • FIG. 11 is a diagram showing spectral transmittance curves of a plastic substrate according to the first embodiment (Example 9) of the present invention.
  • FIG. 12 is a diagram showing spectral transmittance curves of a plastic base material according to the first embodiment (Example 10) of the present invention.
  • FIG. 13 is a diagram showing a spectral transmittance curve of a plastic base material according to a comparative example (comparative example 1) of the first embodiment of the present invention.
  • FIG. 14 is a diagram showing a spectral transmittance curve of a plastic base material according to a comparative example (comparative example 2) of the first embodiment of the present invention.
  • FIG. 15 is a diagram showing a spectral transmittance curve of a plastic base material according to a comparative example (comparative example 3) of the first embodiment of the present invention.
  • FIG. 16 is a diagram showing an experimental model for confirming the effect of the plastic base material according to the first embodiment of the present invention.
  • FIG. 17 is a diagram for explaining the configuration of a plastic base material according to the second embodiment of the present invention.
  • FIG. 18 is a diagram for explaining the configuration of a plastic base material according to the third embodiment of the present invention.
  • FIG. 19 is a diagram showing spectral transmittance curves of a plastic substrate according to the third embodiment (Example 11) of the present invention.
  • FIG. 20 is a diagram showing spectral transmittance curves of a plastic substrate according to the third embodiment (Example 12) of the present invention.
  • FIG. 21 is a diagram showing spectral transmittance curves of a plastic substrate according to the third embodiment (Example 13) of the present invention.
  • FIG. 22 is a diagram showing spectral transmittance curves of a plastic substrate according to the third embodiment (Example 14) of the present invention.
  • FIG. 23 is a diagram showing spectral transmittance curves of a plastic substrate according to the third embodiment (Example 15) of the present invention.
  • FIG. 24 is a diagram showing spectral transmittance curves of a plastic substrate according to the third embodiment (Example 16) of the present invention.
  • FIG. 25 is a diagram showing spectral transmittance curves of a plastic base material according to the third embodiment (Example 17) of the present invention.
  • FIG. 26 is a diagram showing spectral transmittance curves of a plastic base material according to the third embodiment (Example 18) of the present invention.
  • FIG. 27 is a diagram showing spectral transmittance curves of a plastic base material according to the third embodiment (Example 19) of the present invention.
  • FIG. 28 is a diagram showing spectral transmittance curves of a plastic substrate according to the third embodiment (Example 20) of the present invention.
  • FIG. 1 is a diagram for explaining the configuration of a plastic substrate 1 according to the first embodiment of the present invention
  • FIG. 1(a) is a plan view
  • FIG. 1(b) is a longitudinal sectional view
  • FIG.1(c) is an enlarged view of the A part of FIG.1(b).
  • the plastic base material 1 of the present embodiment is a translucent plate-like optical member that is used by being placed in front of the eye, such as a spectacle lens or a face shield, as shown in FIG. 1(c). 2, a resin material 10 and a plurality of types (five types in FIG. 1(c)) of absorption dyes 21 to 25 contained in the resin material 10.
  • FIG. 1 shows the plastic base material 1 as a circular spectacle lens, it may have any shape (for example, flat plate, film shape, etc.) depending on the application.
  • the resin material 10 (resin) of the present embodiment is a transparent resin material, and specifically includes, for example, urethane-based thermosetting resin, (meth)acrylic-based thermosetting resin, polycarbonate resin, polyamide resin, ADC It is preferably at least one selected from the group consisting of (allyl diglycol carbonate) resins and UV curable resins.
  • the plastic base material 1 of this embodiment is obtained by molding a resin material 10 containing absorbing dyes 21 to 25 into a predetermined shape (for example, the shape of a spectacle lens).
  • the absorbing pigments 21 to 25 are pigments that absorb light of specific wavelengths and are uniformly dissolved or dispersed in the resin material 10 .
  • FIG. 2 is a diagram showing an example of the absorbance of the absorbing dyes 21 to 25 of this embodiment.
  • the horizontal axis indicates wavelength (nm), and the vertical axis indicates absorbance.
  • the absorption dye 21 is, for example, a dye that has an absorption peak in the range of 350 to 425 nm and a half width of the peak of 20 to 70 nm.
  • Specific examples of the absorption dye 21 include benzotriazole dyes, benzophenone dyes, triazine dyes, styryl dyes, benzoxazinone dyes, cyanoacrylate dyes, oxanilide dyes, salicylate dyes, and formamidine dyes. dyes, indole dyes, azomethine dyes, and the like;
  • the concentration of the absorbing dye 21 is preferably 0.2 to 0.8%, more preferably 0.3 to 0.7%, relative to the resin (monomer) forming the resin material 10. .
  • the absorbing dye 22 is, for example, a dye that has an absorption peak (maximum absorption wavelength) in the range of 460 to 480 nm and a peak half width of 50 to 100 nm.
  • Specific examples of the absorption dye 22 include merocyanine dyes, oxazole dyes, cyanine dyes, naphthalimide dyes, oxadiazole dyes, oxazine dyes, oxazolidine dyes, naphthalate dyes, and styryl dyes. , anthracene dyes, cyclic carbonyl dyes, and triazole dyes.
  • the concentration of the absorbing dye 22 is preferably 0.5 to 2.0 ppm, more preferably 0.75 to 1.5 ppm, with respect to the resin (monomer) forming the resin material .
  • the absorbing dye 23 is, for example, a dye that has an absorption peak (maximum absorption wavelength) in the range of 490 to 510 nm and a peak half width of 80 to 120 nm.
  • Specific examples of the absorbing dye 22 include anthraquinone-based dyes, squarylium-based dyes, phthalocyanine-based dyes, cyanine-based dyes, azo-based dyes, perinone-based dyes, perylene-based dyes, methine-based dyes, quinoline-based dyes, and azine-based dyes.
  • the concentration of the absorbing dye 22 is preferably 1.0 to 6.0 ppm, more preferably 1.65 to 5.65 ppm, with respect to the resin (monomer) forming the resin material .
  • the absorbing dye 24 (fourth dye) is, for example, a dye that has an absorption peak (maximum absorption wavelength) in the range of 565 to 605 nm and a peak half width of 20 to 40 nm.
  • Specific examples of the absorbing dye 22 include, for example, tetraazaporphyrin-based dyes.
  • the concentration of the absorbing dye 22 is preferably 1.0 to 7.0 ppm, more preferably 2.0 to 6.0 ppm, relative to the resin (monomer) forming the resin material .
  • the absorbing dye 25 is, for example, a dye that has an absorption peak (maximum absorption wavelength) in the range of 590 to 650 nm and a half width of the peak of 100 to 130 nm.
  • Specific examples of the absorbing dye 22 include anthraquinone-based dyes, squarylium-based dyes, phthalocyanine-based dyes, cyanine-based dyes, azo-based dyes, perinone-based dyes, perylene-based dyes, methine-based dyes, quinoline-based dyes, and azine-based dyes.
  • the concentration of the absorbing dye 22 is preferably 0.2 to 3.0 ppm, more preferably 0.3 to 2.5 ppm, with respect to the resin (monomer) forming the resin material .
  • the plastic base material 1 of the present embodiment includes five kinds of absorption dyes 21 to 25 in the resin material 10, thereby absorbing light of specific wavelengths.
  • the content (concentration) of each of the absorbing dyes 21 to 25 so that the spectral transmittance curve of the plastic substrate 1 has a predetermined balance, antiglare is achieved while cutting ultraviolet rays and blue light.
  • a plastic substrate 1 that has functions and is highly transparent (that is, looks colorless and transparent) is realized. Specifically, in the spectral transmittance curve, the plastic substrate 1 has a half-value wavelength of 410 to 430 nm on the short wavelength side where the transmittance is 50%, and an average transmittance of 60 to 90% at 440 to 480 nm.
  • T1 is the average transmittance of 440 to 480 nm
  • T2 is the average transmittance of 500 to 530 nm
  • T3 is the average transmittance of 630 to 700 nm.
  • the minimum value between 550 and 600 nm is set to be 35 to 75%.
  • the plastic substrate 1 of this embodiment is manufactured by the following process.
  • Preparation of Dye Solution A predetermined amount of MEK (Methyl Ethyl Ketone) is placed in a beaker, and a predetermined amount of each absorption dye 21 to 25 is added in order to prepare a dye solution.
  • MEK Metal Ethyl Ketone
  • a predetermined amount of each absorption dye 21 to 25 is added in order to prepare a dye solution.
  • Mixing with liquid A and degassing A predetermined amount of a dye solution is added to a predetermined amount of monomer (liquid A), and the mixture is stirred under vacuum and degassed. 3.
  • Mixing with monomer (creation of mixed solution) The degassed dye solution is added to a predetermined amount of monomer (liquid B), and the mixture is stirred and degassed to prepare a mixed liquid. 4.
  • the prepared liquid is defoamed, filtered through a PTFE (polytetrafluoroethylene) filter, and poured into a mold. Then, the temperature of the mold into which the prepared liquid is injected is gradually raised from 25° C. to 130° C., kept at 130° C. for 2 hours, and then cooled to room temperature. By heating and cooling the mold in this manner, the monomer is polymerized in the mold, and a molded body of the plastic substrate 1 is molded. After the polymerization is completed, the molded product is released from the mold and left in an environment of 130° C. for 2 hours for annealing.
  • PTFE polytetrafluoroethylene
  • plastic substrate 1 of the present embodiment will be further described below with reference to Examples 1 to 10 and Comparative Examples 1 to 3.
  • the present invention is not limited to the following examples.
  • Tables 1 and 2 show the material (resin material 10, absorption dyes 21 to 25) and outer shape (diameter, thickness) of each plastic substrate 1 in Examples 1 to 10 and each plastic substrate in Comparative Examples 1 to 3. , luminous transmittance, half-value wavelength (half-value wavelength on the short wavelength side where transmittance is 50%), average transmittance at wavelength 440 to 480 nm, average transmittance at wavelength 500 to 530 nm, average transmittance at 630 to 700 nm, 550
  • Fig. 10 is a table showing the minima of ⁇ 600 nm and their wavelengths;
  • 3 to 15 are diagrams showing spectral transmittance curves of the plastic substrates 1 of Examples 1 to 10 and the plastic substrates of Comparative Examples 1 to 3, respectively. 3 to 15, the horizontal axis indicates wavelength (nm) and the vertical axis indicates transmittance (%).
  • a thiourethane resin (1.6 MR-8) manufactured by Mitsui Chemicals, Inc. was selected as the resin material 10.
  • a benzotriazole dye (UV absorber for UV+420) manufactured by Mitsui Chemicals, Inc. is selected as the absorbing dye 21, and a merocyanine dye (FDB-006) manufactured by Yamada Chemical Industry Co., Ltd. is selected as the absorbing dye 22.
  • the plastic substrates 1 of Examples 1 to 10 were produced with the concentrations of the absorption dyes 21 to 25 shown in Tables 1 and 2. Further, in each of the plastic substrates of Comparative Examples 1 to 3, a thiourethane resin (1.6 MR-8) manufactured by Mitsui Chemicals, Inc.
  • the plastic substrate 1 samples of Examples 1 to 10 and the plastic substrate samples of Comparative Examples 1 to 3 are spectacle lenses having a diameter of 70 mm and a thickness of 2 mm.
  • Example 1 In the plastic substrate 1 of Example 1, the concentrations of the absorbing dyes 21 to 25 were 0.53%, 1.5 ppm, 3.65 ppm, 6.0 ppm and 0.95 ppm, respectively.
  • Table 1 the luminous transmittance: 73.3%, the half-value wavelength on the short wavelength side at which the transmittance is 50% is 423 nm, the average transmittance from 440 to 480 nm is 76.1%, and the average transmittance from 500 to 530 nm is 76.1%.
  • a plastic substrate 1 was obtained with an average transmittance of 81.6%, an average transmittance of 88.0% between 630 and 700 nm, and a minimum between 550 and 600 nm: 40.9% (@587 nm). From the results (Table 1, Figure 3), the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is kept low (e.g., 82% or less), so ultraviolet rays and blue light can be effectively transmitted. I know it's been cut. In addition, since the transmittance in the vicinity of the wavelength of 587 nm is kept low (for example, 75% or less), it can be seen that the antiglare property is imparted and the contrast is enhanced.
  • Example 2 In the plastic substrate 1 of Example 2, the concentrations of the absorbing dyes 21 to 25 were 0.53%, 1.5 ppm, 3.65 ppm, 2.0 ppm and 0.95 ppm, respectively.
  • Table 1 the luminous transmittance: 81.8%, the half-value wavelength on the short wavelength side at which the transmittance is 50% is 422 nm, the average transmittance from 440 to 480 nm is 76.5%, and the average transmittance from 500 to 530 nm is 76.5%.
  • a plastic substrate 1 was obtained with an average transmittance of 83.5%, an average transmittance of 88.1% between 630 and 700 nm, and a minimum between 550 and 600 nm: 68.2% (@588 nm). From the results (Table 1, Figure 4), the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is kept low (e.g., 82% or less), so ultraviolet rays and blue light can be effectively transmitted. I know it's been cut. In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), it can be seen that the antiglare property is imparted and the contrast is enhanced.
  • Example 3 In the plastic substrate 1 of Example 3, the concentrations of the absorbing dyes 21 to 25 were 0.53%, 4.0 ppm, 3.65 ppm, 3.45 ppm and 0.95 ppm, respectively.
  • Table 1 the luminous transmittance: 78.2%, the half-value wavelength on the short wavelength side at which the transmittance is 50% is 423 nm, the average transmittance from 440 to 480 nm is 62.2%, and the average transmittance from 500 to 530 nm is 423 nm.
  • a plastic substrate 1 was obtained with an average transmittance of 81.8%, an average transmittance of 88.0% between 630 and 700 nm, and a minimum between 550 and 600 nm: 57.0% (@587 nm). From the results (Table 1, Fig. 5), the transmittance in the ultraviolet / blue light region (wavelength 380 to 500 nm) is suppressed to low (e.g., 82% or less), so ultraviolet rays and blue light are effective. I know it's been cut. In addition, since the transmittance in the vicinity of the wavelength of 587 nm is kept low (for example, 75% or less), it can be seen that the antiglare property is imparted and the contrast is enhanced.
  • Example 4 In the plastic substrate 1 of Example 4, the concentrations of the absorbing dyes 21 to 25 were 0.53%, 0.75 ppm, 3.65 ppm, 3.45 ppm and 0.95 ppm, respectively.
  • Table 1 the luminous transmittance: 78.7%, the half-value wavelength on the short wavelength side at which the transmittance is 50% is 422 nm, the average transmittance from 440 to 480 nm is 81.0%, and the average transmittance from 500 to 530 nm is 81.0%.
  • a plastic substrate 1 was obtained with an average transmittance of 83.0%, an average transmittance of 87.8% between 630 and 700 nm, and a minimum between 550 and 600 nm: 56.9% (@588 nm). From the results (Table 1, FIG. 6), the transmittance in the ultraviolet / blue light region (wavelength 380 to 500 nm) is suppressed to low (e.g., 82% or less), so ultraviolet rays and blue light are effective. I know it's been cut. In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), it can be seen that the antiglare property is imparted and the contrast is enhanced.
  • Example 5 In the plastic substrate 1 of Example 5, the concentrations of the absorbing dyes 21 to 25 were 0.70%, 1.5 ppm, 3.65 ppm, 3.45 ppm and 0.95 ppm, respectively.
  • Table 1 the luminous transmittance: 75.8%, the half-value wavelength on the short wavelength side at which the transmittance is 50% is 425 nm, the average transmittance from 440 to 480 nm is 75.8%, and the average transmittance from 500 to 530 nm
  • a plastic substrate 1 was obtained with an average transmittance of 82.6%, an average transmittance of 88.0% between 630 and 700 nm, and a minimum between 550 and 600 nm: 55.9% (@588 nm).
  • the transmittance in the ultraviolet / blue light region (wavelength 380 to 500 nm) is suppressed to a low level (e.g., 82% or less), so ultraviolet rays and blue light are effective. I know it's been cut.
  • the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), it can be seen that the antiglare property is imparted and the contrast is enhanced.
  • Example 6 In the plastic substrate 1 of Example 6, the concentrations of the absorbing dyes 21 to 25 were 0.30%, 1.5 ppm, 3.65 ppm, 3.45 ppm and 0.95 ppm, respectively.
  • Table 1 the luminous transmittance: 78.5%, the half-value wavelength on the short wavelength side at which the transmittance is 50% is 420 nm, the average transmittance from 440 to 480 nm is 76.5%, and the average transmittance from 500 to 530 nm is 76.5%.
  • a plastic substrate 1 was obtained with an average transmittance of 82.8%, an average transmittance of 88.1% between 630 and 700 nm, and a minimum between 550 and 600 nm: 56.9% (@587 nm). From the results (Table 1, Fig. 8), the transmittance in the ultraviolet / blue light region (wavelength 380 to 500 nm) is suppressed to a low level (e.g., 82% or less), so ultraviolet rays and blue light can be effectively transmitted. I know it's been cut. In addition, since the transmittance in the vicinity of the wavelength of 587 nm is kept low (for example, 75% or less), it can be seen that the antiglare property is imparted and the contrast is enhanced.
  • Example 7 In the plastic substrate 1 of Example 7, the concentrations of the absorbing dyes 21 to 25 were 0.53%, 1.5 ppm, 5.65 ppm, 3.45 ppm and 0.95 ppm, respectively.
  • Table 1 the luminous transmittance: 77.7%, the half-value wavelength on the short wavelength side at which the transmittance is 50% is 422 nm, the average transmittance from 440 to 480 nm is 75.9%, and the average transmittance from 500 to 530 nm is 75.9%.
  • a plastic substrate 1 was obtained with an average transmittance of 81.1%, an average transmittance of 88.0% between 630 and 700 nm, and a minimum between 550 and 600 nm: 57.5% (@587 nm). From the results (Table 1, FIG. 9), the transmittance in the ultraviolet and blue light region (wavelength 380 to 500 nm) is kept low (for example, 82% or less), so ultraviolet rays and blue light can be effectively transmitted. I know it's been cut. In addition, since the transmittance in the vicinity of the wavelength of 587 nm is kept low (for example, 75% or less), it can be seen that the antiglare property is imparted and the contrast is enhanced.
  • Example 8 In the plastic substrate 1 of Example 8, the concentrations of the absorbing dyes 21 to 25 were 0.53%, 1.5 ppm, 1.65 ppm, 3.45 ppm and 0.95 ppm, respectively.
  • Table 2 the luminous transmittance: 80.0%, the half-value wavelength on the short wavelength side at which the transmittance is 50% is 422 nm, the average transmittance from 440 to 480 nm is 77.9%, and the average transmittance from 500 to 530 nm
  • a plastic substrate 1 was obtained with an average transmittance of 85.3%, an average transmittance of 88.2% between 630 and 700 nm, and a minimum between 550 and 600 nm: 58.4% (@587 nm).
  • the transmittance in the ultraviolet / blue light region (wavelength 380 to 500 nm) is suppressed to a low level (e.g., 82% or less), so ultraviolet rays and blue light are effective. I know it's been cut.
  • the transmittance in the vicinity of the wavelength of 587 nm is kept low (for example, 75% or less), it can be seen that the antiglare property is imparted and the contrast is enhanced.
  • Example 9 In the plastic substrate 1 of Example 9, the concentrations of the absorbing dyes 21 to 25 were 0.53%, 1.5 ppm, 3.65 ppm, 3.45 ppm and 2.5 ppm, respectively.
  • the luminous transmittance 78.4%
  • the half-value wavelength on the short wavelength side at which the transmittance is 50% is 422 nm
  • the average transmittance from 440 to 480 nm is 76.2%
  • a plastic substrate 1 was obtained with an average transmittance of 82.6%, an average transmittance of 87.2% between 630 and 700 nm, and a minimum between 550 and 600 nm: 56.7% (@587 nm).
  • the transmittance in the ultraviolet / blue light region (wavelength 380 to 500 nm) is suppressed to low (e.g., 82% or less), so ultraviolet rays and blue light are effective. I know it's been cut.
  • the transmittance in the vicinity of the wavelength of 587 nm is kept low (for example, 75% or less), it can be seen that the antiglare property is imparted and the contrast is enhanced.
  • Example 10 In the plastic substrate 1 of Example 10, the concentrations of the absorbing dyes 21 to 25 were 0.53%, 1.5 ppm, 3.65 ppm, 3.45 ppm and 0.3 ppm, respectively.
  • Table 2 the luminous transmittance: 79.5%, the half-value wavelength on the short wavelength side at which the transmittance is 50% is 422 nm, the average transmittance from 440 to 480 nm is 77.1%, and the average transmittance from 500 to 530 nm is 77.1%.
  • a plastic substrate 1 was obtained with an average transmittance of 83.3%, an average transmittance of 89.5% between 630 and 700 nm, and a minimum between 550 and 600 nm: 58.2% (@587 nm). From the results (Table 2, FIG. 12), the transmittance in the ultraviolet / blue light region (wavelength 380 to 500 nm) is suppressed to low (e.g., 82% or less), so ultraviolet rays and blue light are effective. I know it's been cut. In addition, since the transmittance in the vicinity of the wavelength of 587 nm is kept low (for example, 75% or less), it can be seen that the antiglare property is imparted and the contrast is enhanced.
  • the transmittance around the wavelength of 588 nm is kept low (for example, 75% or less), so that the anti-glare property is imparted and the contrast is enhanced.
  • the transmittance in the blue light region (wavelength 380 to 500 nm) is higher than that of Examples 1 to 10, and is greater than 95%, so it can be seen that ultraviolet rays and blue light are hardly cut. .
  • a plastic substrate was obtained with an average transmittance of 93.6%, an average transmittance of 97.2% between 630 and 700 nm, and a minimum between 550 and 600 nm: 53.6% (@588 nm). From the results (Table 2, FIG. 14), the transmittance near the wavelength of 588 nm is kept low (for example, 75% or less), so that the anti-glare property is imparted and the contrast is enhanced. ⁇ The transmittance in the blue light region (wavelength 380 to 500 nm) is higher than that of Examples 1 to 10, and is greater than 95%, so it can be seen that ultraviolet rays and blue light are hardly cut. .
  • the transmittance near the wavelength of 588 nm is kept low (for example, 75% or less), so that the anti-glare property is imparted and the contrast is enhanced.
  • the transmittance in the blue light region (wavelength 380 to 500 nm) is higher than that of Examples 1 to 10, and is greater than 95%, so it can be seen that ultraviolet rays and blue light are hardly cut. .
  • Tables 3 and 4 show the transparency, brightness, and color rendering properties of each plastic substrate 1 of Examples 1 to 10 and each plastic substrate of Comparative Examples 1 to 3, which were evaluated by the present inventor. It is a table
  • FIG. 16 is a diagram for explaining the experimental model for the effect confirmation experiment shown in Tables 3 and 4. In FIG.
  • a white chart 200 (for example, white paper) was placed on a desk (not shown), and an LED illumination 100 with a color temperature of about 4800 K was placed at a position about 150 cm above it.
  • the chart 200 is illuminated with the illumination light L1 from the LED illumination 100, and the reflected light L2 scattered and reflected by the chart 200 is applied to each of the plastic substrates 1 of Examples 1 to 10 and the plastic substrates of Comparative Examples 1 to 3.
  • Transmitted light L3 was measured through any one of the plastic substrates at an oblique position of 45° above the chart 200 using a spectroscope 300 (MK350S manufactured by UPRtek).
  • each plastic substrate 1 of Examples 1 to 10 is 70% or more with respect to “Reference”. (243 or more), each of the plastic substrates 1 of Examples 1 to 10 was bright as a whole (that is, there was little decrease in illuminance).
  • the contents (concentrations) of the absorption dyes 21 to 25 are adjusted so that the spectral transmittance curve has a predetermined balance.
  • the plastic base material 1 that cuts ultraviolet rays and blue light has an antiglare function, and is highly transparent (that is, looks colorless and transparent) is realized. Therefore, if the plastic substrate 1 is applied to, for example, a spectacle lens, it is possible to provide a bright lens that is excellent in fashionability and suitable for everyday use.
  • the plastic substrate 1 has been described as being usable for spectacle lenses, face shields, etc., but it is not necessarily limited to such applications.
  • it can be applied to various uses such as contact lenses, goggles (swimming, skiing, riders, and other sports in general), helmet shields, windshields, and window glasses.
  • a functional layer for example, a primer layer, a hard coat layer, a reflective
  • a functional layer for example, a primer layer, a hard coat layer, a reflective
  • a functional layer for example, a primer layer, a hard coat layer, a reflective
  • a functional layer for example, a primer layer, a hard coat layer, a reflective
  • a prevention layer and a water- and oil-repellent layer can also be provided.
  • FIG. 17 is a vertical cross-sectional view for explaining the configuration of the plastic substrate 2 according to the second embodiment of the invention.
  • the plastic substrate 2 of this embodiment includes the plastic substrate 1 on the upper surface of the base substrate 50, and has a bonding structure via an ultraviolet curing adhesive (not shown) or the like. It is different from the plastic substrate 1 of the first embodiment in this point. In this way, by forming the plastic base material 1 of the first embodiment thinly and bonding it to other members, the same effects as those of the plastic base material 1 can be obtained.
  • the relationship between the thickness of the plastic substrate 1, the concentrations of the absorbing dyes 21 to 25, and the transmittance is determined according to the so-called Beer-Lambert law.
  • the plastic substrate 2 is provided with the plastic substrate 1 on the upper surface of the base substrate 50, but the plastic substrate 1 may be provided on the lower surface of the base substrate 50, or on both sides. There may be.
  • the plastic substrate 2 of the present embodiment does not necessarily have to have a laminated structure.
  • the plastic substrate 1 can also be formed on the base substrate 50 .
  • FIG. 18 is a vertical cross-sectional view for explaining the configuration of the plastic base material 3 according to the third embodiment of the invention.
  • the plastic substrate 3 of the present embodiment has a multi-coat layer 60 functioning as an antireflection film on the front (outer) and back (inner) surfaces of the plastic substrate 1 of the first embodiment. It is different from the plastic substrate 1 of the first embodiment in that it is provided. In this manner, multi-coating (that is, forming the multi-coating layer 60) on the plastic substrate 1 of the first embodiment can improve the spectral transmittance (details will be described later).
  • the plastic base material 3 of this embodiment is manufactured, for example, by the following processes. 1. Preparation of Plastic Base Material 1 The plastic base material 1 is manufactured according to the above-described [Manufacturing method of the plastic base material 1]. 2. Formation of Multicoat Layer 60 Next, an antireflection film (multicoat layer 60) made of an inorganic compound such as silicon oxide or titanium oxide is formed on the front (outer) and back (inner) surfaces of the plastic substrate 1 . As a specific method for forming the multi-coat layer 60, a generally used dry method such as a vacuum deposition method, a sputtering method, an ion plating method, an ion beam assist method, or a CVD method can be used. can.
  • the multi-coat layer 60 may have either a single-layer structure or a multi-layer structure.
  • a multilayer film it is preferable to have a multilayer structure in which a low refractive index antireflection film and a high refractive index antireflection film are alternately laminated.
  • the high refractive index film used in the multilayer structure include ZnO, TiO 2 , CeO 2 , Sb 2 O 5 , SnO 2 , ZrO 2 , Al 2 O 3 , Ta 2 O 5 and the like.
  • dielectric films include SiO 2 and the like.
  • the plastic substrate 3 of the present embodiment is described as having the multi-coat layer 60 on the surface (outer surface) and the back surface (inner surface) of the plastic substrate 1, it is not necessarily limited to such a configuration. Instead, the multi-coat layer 60 may be formed on at least one of the outer surface (the object-side surface) and the inner surface (the eyeball-side surface) of the plastic substrate 1 .
  • the plastic substrate 3 of this embodiment will be described below with reference to Examples 11 to 20.
  • the present invention is not limited to the following examples.
  • Each of the plastic substrates 3 of Examples 11 to 20 has a multi-coat layer 60 formed on the surface (outer surface) and the back surface (internal surface) of each of the plastic substrates 1 of Examples 1 to 10 according to the above-described manufacturing method. It is.
  • Tables 5 and 6 show the material (resin material 10, absorption dyes 21 to 25), outer shape (diameter, thickness), luminous transmittance, half-value wavelength (transmittance is 50% half-value wavelength on the short wavelength side), average transmittance at wavelength 440 to 480 nm, average transmittance at 500 to 530 nm, average transmittance at 630 to 700 nm, minimum value at 550 to 600 nm, and the wavelength be.
  • FIGS. 19 to 28 are diagrams showing spectral transmittance curves of the respective plastic substrates 3 of Examples 11 to 20.
  • Example 11 In the plastic substrate 3 of Example 11, since the multi-coat layer 60 was formed on the plastic substrate 1 of Example 1, the transmittance increased, and the luminous transmittance was 79.4%, an average of 440 to 480 nm. Transmission: 83.3%, average transmission from 500-530nm: 88.5%, average transmission from 630-700nm: 95.9%, minimum between 550-600nm: 44.8% (@588nm ) was obtained (Table 5, FIG. 19). Thus, even in the present embodiment, since the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is suppressed (for example, 90% or less), ultraviolet light and blue light are effective. is cut into In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), the antiglare property is imparted and the contrast is enhanced.
  • the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less),
  • Example 12 In the plastic substrate 3 of Example 12, since the multi-coat layer 60 was formed on the plastic substrate 1 of Example 2, the transmittance increased, and the luminous transmittance was 88.8%, the average of 440 to 480 nm Transmission: 84.0%, average transmission from 500-530nm: 90.8%, average transmission from 630-700nm: 96.4%, minimum between 550-600nm: 75.0% (@588nm ) was obtained (Table 5, FIG. 20). Thus, even in the present embodiment, since the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is suppressed (for example, 90% or less), ultraviolet light and blue light are effective. is cut into In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), the antiglare property is imparted and the contrast is enhanced.
  • Example 13 In the plastic substrate 3 of Example 13, since the multi-coat layer 60 was formed on the plastic substrate 1 of Example 3, the transmittance increased, and the luminous transmittance was 84.9%, average of 440 to 480 nm. Transmission: 68.6%, average transmission from 500-530nm: 88.8%, average transmission from 630-700nm: 95.9%, minimum between 550-600nm: 62.6% (@588nm ) was obtained (Table 5, FIG. 21). Thus, even in the present embodiment, since the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is suppressed (for example, 90% or less), ultraviolet light and blue light are effective. is cut into In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), the antiglare property is imparted and the contrast is enhanced.
  • Example 14 In the plastic substrate 3 of Example 14, the transmittance was increased by forming the multi-coat layer 60 on the plastic substrate 1 of Example 4. Transmission: 88.8%, average transmission from 500-530nm: 90.3%, average transmission from 630-700nm: 96.2%, minimum between 550-600nm: 62.6% (@588nm ) was obtained (Table 5, FIG. 22). Thus, even in the present embodiment, since the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is suppressed (for example, 90% or less), ultraviolet light and blue light are effective. is cut into In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), the antiglare property is imparted and the contrast is enhanced.
  • Example 15 In the plastic substrate 3 of Example 15, since the multi-coat layer 60 was formed on the plastic substrate 1 of Example 5, the transmittance increased, and the luminous transmittance was 84.6%, the average of 440 to 480 nm Transmission: 83.1%, average transmission from 500-530nm: 89.6%, average transmission from 630-700nm: 96.0%, minimum between 550-600nm: 61.5% (@588nm ) was obtained (Table 5, FIG. 23). Thus, even in the present embodiment, since the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is suppressed (for example, 90% or less), ultraviolet light and blue light are effective. is cut into In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), the antiglare property is imparted and the contrast is enhanced.
  • the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less
  • Example 16 In the plastic substrate 3 of Example 16, the transmittance was increased by forming the multi-coat layer 60 on the plastic substrate 1 of Example 6. Transmission: 84.1%, average transmission from 500-530nm: 89.9%, average transmission from 630-700nm: 96.5%, minimum between 550-600nm: 62.5% (@588nm ) was obtained (Table 6, FIG. 24). Thus, even in the present embodiment, since the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is suppressed (for example, 90% or less), ultraviolet light and blue light are effective. is cut into In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), the antiglare property is imparted and the contrast is enhanced.
  • Example 17 In the plastic substrate 3 of Example 17, since the multi-coat layer 60 was formed on the plastic substrate 1 of Example 7, the transmittance increased, and the luminous transmittance was 84.3%, the average of 440 to 480 nm. Transmission: 83.0%, average transmission from 500-530nm: 87.7%, average transmission from 630-700nm: 96.2%, minimum between 550-600nm: 63.3% (@588nm ) was obtained (Table 6, FIG. 25). Thus, even in the present embodiment, since the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is suppressed (for example, 90% or less), ultraviolet light and blue light are effective. is cut into In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), the antiglare property is imparted and the contrast is enhanced.
  • the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or
  • Example 18 In the plastic substrate 3 of Example 18, the transmittance was increased by forming the multi-coat layer 60 on the plastic substrate 1 of Example 8. Transmission: 85.2%, average transmission from 500-530nm: 92.5%, average transmission from 630-700nm: 96.3%, minimum between 550-600nm: 64.0% (@588nm ) was obtained (Table 6, FIG. 26). Thus, even in the present embodiment, since the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is suppressed (for example, 90% or less), ultraviolet light and blue light are effective. is cut into In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), the antiglare property is imparted and the contrast is enhanced.
  • Example 19 In the plastic substrate 3 of Example 19, the transmittance was increased by forming the multi-coat layer 60 on the plastic substrate 1 of Example 9. Transmission: 83.7%, average transmission from 500-530nm: 89.9%, average transmission from 630-700nm: 95.7%, minimum between 550-600nm: 62.4% (@588nm ) was obtained (Table 6, FIG. 27). Thus, even in the present embodiment, since the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is suppressed (for example, 90% or less), ultraviolet light and blue light are effective. is cut into In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), the antiglare property is imparted and the contrast is enhanced.
  • Example 20 In the plastic substrate 3 of Example 20, since the multi-coat layer 60 was formed on the plastic substrate 1 of Example 10, the transmittance increased, and the luminous transmittance was 86.1%, the average of 440 to 480 nm. Transmission: 84.5%, average transmission from 500-530nm: 90.5%, average transmission from 630-700nm: 97.9%, minimum between 550-600nm: 63.9% (@588nm ) was obtained (Table 6, FIG. 28). Thus, even in the present embodiment, since the transmittance in the ultraviolet/blue light region (wavelength 380 to 500 nm) is suppressed (for example, 90% or less), ultraviolet light and blue light are effective. is cut into In addition, since the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less), the antiglare property is imparted and the contrast is enhanced.
  • the transmittance in the vicinity of the wavelength of 588 nm is kept low (for example, 75% or less
  • Tables 7 and 8 are tables showing the results of experiments conducted by the present inventor to evaluate the transparency, brightness, and color rendering properties of the plastic substrates 3 of Examples 11 to 20. This effect confirmation experiment is the same as that conducted for each of the plastic substrates 1 of Examples 1-10.
  • the plastic substrate 3 of the present embodiment (Examples 11 to 20) is also adjusted so that the spectral transmittance curve has a predetermined balance, similar to the plastic substrate 1 of the first embodiment. And while cutting blue light, it has an anti-glare function and is highly transparent (that is, looks colorless and transparent).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Optical Filters (AREA)

Abstract

紫外線カット、ブルーライトカット、および防眩機能を有しつつも、透明性の高いプラスチック基材、およびそのようなプラスチック基材を含むプラスチック眼鏡レンズを提供する。 樹脂と吸収色素とを含む透光性のプラスチック基材が、分光透過率曲線において、透過率が50%となる短波長側の半値波長が410~430nmであり、440~480nmの平均透過率が60~90%であり、500~530nmの平均透過率が75~95%であり、630~700nmの平均透過率が80~98%であり、550~600nmの間に極小値を有する。

Description

プラスチック基材、およびプラスチック眼鏡レンズ
 本発明は、プラスチック基材、およびプラスチック眼鏡レンズに関し、特に防眩機能を有するプラスチック基材、およびプラスチック眼鏡レンズに関する。
 従来から、紫外線による角膜炎や白内障を誘発する可能性が指摘されており、有害な紫外線から眼を保護するために、紫外線カット機能を有する眼鏡レンズが実用に供されている。
 また、近年、液晶ディスプレイやスマートフォン等のディスプレイから照射される青色光(ブルーライト)により、眼の疲れや痛みを感じるなど、眼への影響が問題となってきており、紫外線から420nm程度の青色光を低減させる、紫外線・ブルーライトカット機能を有する眼鏡レンズも提案されている(例えば、特許文献1)。
 例えば、特許文献1には、樹脂と、紫外線吸収剤(インドール系化合物)と、を含むレンズが開示されており、これによって、波長420nmの青色光の眼への影響を軽減できることが記載されている。
 また、近年、可視光に対する眩しさと関連した不快感やコントラストの不鮮明感、視覚疲労、などを軽減するために、防眩性機能を有する眼鏡レンズも提案されている(例えば、特許文献2)。
 例えば、特許文献2には、樹脂と、波長565nm~605nmの間に主吸収ピークを有する吸収色素(テトラアザポルフィリン系化合物)と、を含むレンズが開示されており、これによって、波長585nm付近の光を低減し、防眩性を付与したり、コントラストを増強できることが記載されている。
特開2021-43231号公報 特許第5778109号公報
 しかしながら、特許文献2に記載のレンズは、防眩性や高いコントラストが得られるものの、吸収色素の影響によってレンズ自体が着色してしまう(青っぽく見える、暗く見える)、といった問題があり、ファッション性の観点や、屋内外を問わずに普段使いしたいとのニーズから、透明性の高い(つまり、無色透明に見える)明るいレンズが求められていた。
 また、特許文献2に記載のレンズは、紫外線カット、ブルーライトカット機能を有するものではないため、市場からは、さらに紫外線カット、ブルーライトカット機能を有するものが求められていた。
 本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、紫外線カット、ブルーライトカット、および防眩機能を有しつつも、透明性の高いプラスチック基材、およびそのようなプラスチック基材を含むプラスチック眼鏡レンズを提供することである。
 そして、上記目的を達成するために本発明者が鋭意検討したところ、複数の吸収色素を組み合わせて、分光透過率曲線において、透過率が50%となる短波長側の半値波長が410~430nm、440~480nmの平均透過率が60~90%、500~530nmの平均透過率が75~95%、630~700nmの平均透過率が80~98%、550~600nmの間に極小値を有する構成とすると(つまり、分光透過率曲線が所定のバランスとなるように構成すると)、紫外線カット、ブルーライトカット、および防眩機能を有しつつも、透明性の高いプラスチック基材が得られることを見出した。本発明は、かかる知見に基づいてなされたものである。
 すなわち、本発明のプラッスチック基材は、樹脂と吸収色素とを含む、透光性のプラスチック基材であって、分光透過率曲線において、透過率が50%となる短波長側の半値波長が、410~430nmであり、440~480nmの平均透過率が、60~90%であり、500~530nmの平均透過率が、75~95%であり、630~700nmの平均透過率が、80~98%であり、550~600nmの間に極小値を有する、ことを特徴とする。
 このような構成によれば、分光透過率曲線が所定のバランスとなり、紫外線カット、ブルーライトカット、および防眩機能を有しつつも、透明性の高いプラスチック基材が得られる。
 また、極小値が、35~75%であることが望ましい。
 また、440~480nmの平均透過率をT1、500~530nmの平均透過率をT2、630~700nmの平均透過率をT3としたときに、T1<T2<T3を満たすことが望ましい。
 また、樹脂は、ウレタン系熱硬化性樹脂、(メタ)アクリル系熱硬化性樹脂、ポリカーボネート樹脂、ポリアミド樹脂からなる群から選択される少なくとも1種であることが望ましい。
 また、吸収色素は、極大吸収波長が350~425nmの範囲に位置する第1の色素と、極大吸収波長が460~480nmの範囲に位置する第2の色素と、極大吸収波長が490~510nmの範囲に位置する第3の色素と、極大吸収波長が565~605nmの範囲に位置する第4の色素と、極大吸収波長が590~650nmの範囲に位置する第5の色素と、を含むことが望ましい。また、この場合、第1の色素が、ベンゾトリアゾール系色素であり、第2の色素が、メロシアニン系色素であり、第3の色素が、アントラキノン系色素であり、第4の色素が、テトラアザポルフィリン系色素であり、第5の色素が、アントラキノン系色素であることが望ましい。また、この場合、第1の色素の濃度が、0.2~0.8%であり、第2の色素の濃度が、0.5~2.0ppmであり、第3の色素の濃度が、1.0~6.0ppmであり、第4の色素の濃度が、1.0~7.0ppmであり、第5の色素の濃度が、0.2~3.0ppmであることが望ましい。
 また、プラスチック基材を透過した後の光の色温度が、プラスチック基材を透過する前の光の色温度の±7%の範囲内であることが望ましい。
 また、プラスチック基材の外面または内面の少なくともいずれか一方の面上に、反射防止膜として機能するマルチコート層を備えていることが望ましい。
 また、別の観点からは、本発明のプラッスチック眼鏡レンズは、上述のいずれかのプラスチック基材を含むことを特徴とする。また、この場合、プラスチック基材が、ベース基材に貼り合わせて形成されていることが望ましい。また、この場合、プラスチック眼鏡レンズの外面または内面の少なくともいずれか一方の面上に機能層を有し、機能層は、プライマー層、ハードコート層、反射防止層、および、撥水撥油層からなる群から選択される1種以上の層であることが望ましい。
 以上のように、本発明によれば、紫外線カット、ブルーライトカット、および防眩機能を有しつつも、透明性の高いプラスチック基材が実現される。また、そのようなプラスチック基材を含むプラスチック眼鏡レンズが実現される。
図1は、本発明の第1の実施形態に係るプラスチック基材の構成を説明する図である。 図2は、本発明の第1の実施形態に係るプラスチック基材の、各吸収色素の吸光度の一例を示す図である。 図3は、本発明の第1の実施形態(実施例1)に係るプラスチック基材の分光透過率曲線を示す図である。 図4は、本発明の第1の実施形態(実施例2)に係るプラスチック基材の分光透過率曲線を示す図である。 図5は、本発明の第1の実施形態(実施例3)に係るプラスチック基材の分光透過率曲線を示す図である。 図6は、本発明の第1の実施形態(実施例4)に係るプラスチック基材の分光透過率曲線を示す図である。 図7は、本発明の第1の実施形態(実施例5)に係るプラスチック基材の分光透過率曲線を示す図である。 図8は、本発明の第1の実施形態(実施例6)に係るプラスチック基材の分光透過率曲線を示す図である。 図9は、本発明の第1の実施形態(実施例7)に係るプラスチック基材の分光透過率曲線を示す図である。 図10は、本発明の第1の実施形態(実施例8)に係るプラスチック基材の分光透過率曲線を示す図である。 図11は、本発明の第1の実施形態(実施例9)に係るプラスチック基材の分光透過率曲線を示す図である。 図12は、本発明の第1の実施形態(実施例10)に係るプラスチック基材の分光透過率曲線を示す図である。 図13は、本発明の第1の実施形態の比較例(比較例1)に係るプラスチック基材の分光透過率曲線を示す図である。 図14は、本発明の第1の実施形態の比較例(比較例2)に係るプラスチック基材の分光透過率曲線を示す図である。 図15は、本発明の第1の実施形態の比較例(比較例3)に係るプラスチック基材の分光透過率曲線を示す図である。 図16は、本発明の第1の実施形態に係るプラスチック基材の、効果確認実験の実験モデルを示す図である。 図17は、本発明の第2の実施形態に係るプラスチック基材の構成を説明する図である。 図18は、本発明の第3の実施形態に係るプラスチック基材の構成を説明する図である。 図19は、本発明の第3の実施形態(実施例11)に係るプラスチック基材の分光透過率曲線を示す図である。 図20は、本発明の第3の実施形態(実施例12)に係るプラスチック基材の分光透過率曲線を示す図である。 図21は、本発明の第3の実施形態(実施例13)に係るプラスチック基材の分光透過率曲線を示す図である。 図22は、本発明の第3の実施形態(実施例14)に係るプラスチック基材の分光透過率曲線を示す図である。 図23は、本発明の第3の実施形態(実施例15)に係るプラスチック基材の分光透過率曲線を示す図である。 図24は、本発明の第3の実施形態(実施例16)に係るプラスチック基材の分光透過率曲線を示す図である。 図25は、本発明の第3の実施形態(実施例17)に係るプラスチック基材の分光透過率曲線を示す図である。 図26は、本発明の第3の実施形態(実施例18)に係るプラスチック基材の分光透過率曲線を示す図である。 図27は、本発明の第3の実施形態(実施例19)に係るプラスチック基材の分光透過率曲線を示す図である。 図28は、本発明の第3の実施形態(実施例20)に係るプラスチック基材の分光透過率曲線を示す図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中同一又は相当部分には同一の符号を付してその説明は繰り返さない。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係るプラスチック基材1の構成を説明する図であり、図1(a)は平面図であり、図1(b)は縦断面図であり、図1(c)は図1(b)のA部拡大図である。本実施形態のプラスチック基材1は、例えば眼鏡レンズやフェースシールド等、眼の前方に配置されて利用される、透光性を有する板状の光学部材であり、図1(c)に示すように、樹脂材10と、樹脂材10に含まれる複数種類(図1(c)においては5種類)の吸収色素21~25と、から構成されている。
 なお、図1においては、プラスチック基材1を、円形の眼鏡用レンズとして示すが、用途に応じていかなる形状(例えば、平板、フィルム状等)を呈していてもよい。
[樹脂材]
 本実施形態の樹脂材10(樹脂)は、透明な樹脂材料であり、具体的には、例えば、ウレタン系熱硬化性樹脂、(メタ)アクリル系熱硬化性樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ADC(アリルジグリコールカーボネート)樹脂、紫外線硬化樹脂からなる群から選択される少なくとも1種であることが好ましい。
 本実施形態のプラスチック基材1は、吸収色素21~25が含まれる樹脂材10を所定の形状(例えば、眼鏡レンズの形状)に成形することによって得られる。
[吸収色素]
 吸収色素21~25は、特定の波長の光を吸収する色素であり、樹脂材10中に均一に溶解または分散されている。図2は、本実施形態の吸収色素21~25の吸光度の一例を示す図である。図2において、横軸は波長(nm)であり、縦軸は吸光度を示している。
 吸収色素21(第1の色素)は、例えば、350~425nmの範囲に吸収のピークを有し、かつ、ピークの半値幅が20~70nmである色素である。吸収色素21の具体例としては、例えば、ベンゾトリアゾール系色素、ベンゾフェノン系色素、トリアジン系色素、スチリル系色素、ベンゾオキサジノン系色素、シアノアクリレート系色素、オキザニリド系色素、サリシレート系色素、ホルムアミジン系色素、インドール系色素、アゾメチン系色素等が挙げられる。なお、吸収色素21の濃度は、樹脂材10を形成する樹脂(モノマー)に対して0.2~0.8%であることが好ましく、0.3~0.7%であることがより好ましい。
 吸収色素22(第2の色素)は、例えば、460~480nmの範囲に吸収のピーク(極大吸収波長)を有し、かつ、ピークの半値幅が50~100nmである色素である。吸収色素22の具体例としては、例えば、メロシアニン系色素、オキサゾール系色素、シアニン系色素、ナフタルイミド系色素、オキサジアゾール系色素、オキサジン系色素、オキサゾリジン系色素、ナフタル酸系色素、スチリル系色素、アントラセン系色素、環状カルボニル系色素、およびトリアゾール系色素等が挙げられる。なお、吸収色素22の濃度は、樹脂材10を形成する樹脂(モノマー)に対して0.5~2.0ppmであることが好ましく、0.75~1.5ppmであることがより好ましい。
 吸収色素23(第3の色素)は、例えば、490~510nmの範囲に吸収のピーク(極大吸収波長)を有し、かつ、ピークの半値幅が80~120nmである色素である。吸収色素22の具体例としては、例えば、アントラキノン系色素、スクアリリウム系色素、フタロシアニン系色素、シアニン系色素、アゾ系色素、ペリノン系色素、ペリレン系色素、メチン系色素、キノリン系色素、アジン系色素、ジケトピロロピロール(DPP)系色素、クロコニウム系色素、金属錯体、ジインモニウム系色素等が挙げられる。なお、吸収色素22の濃度は、樹脂材10を形成する樹脂(モノマー)に対して1.0~6.0ppmであることが好ましく、1.65~5.65ppmであることがより好ましい。
 吸収色素24(第4の色素)は、例えば、565~605nmの範囲に吸収のピーク(極大吸収波長)を有し、かつ、ピークの半値幅が20~40nmである色素である。吸収色素22の具体例としては、例えば、テトラアザポルフィリン系色素が挙げられる。なお、吸収色素22の濃度は、樹脂材10を形成する樹脂(モノマー)に対して1.0~7.0ppmであることが好ましく、2.0~6.0ppmであることがより好ましい。
 吸収色素25(第5の色素)は、例えば、590~650nmの範囲に吸収のピーク(極大吸収波長)を有し、かつ、ピークの半値幅が100~130nmである色素である。吸収色素22の具体例としては、例えば、アントラキノン系色素、スクアリリウム系色素、フタロシアニン系色素、シアニン系色素、アゾ系色素、ペリノン系色素、ペリレン系色素、メチン系色素、キノリン系色素、アジン系色素、ジケトピロロピロール(DPP)系色素、クロコニウム系色素、金属錯体、ジインモニウム系色素等が挙げられる。なお、吸収色素22の濃度は、樹脂材10を形成する樹脂(モノマー)に対して0.2~3.0ppmであることが好ましく、0.3~2.5ppmであることがより好ましい。
 このように、本実施形態のプラスチック基材1は、樹脂材10内に5種類の吸収色素21~25を含み、これによって特定の波長の光を吸収するように構成されている。
 そして、プラスチック基材1の分光透過率曲線が、所定のバランスとなるように各吸収色素21~25の含有量(濃度)を調整することにより、紫外線およびブルーライトをカットしながらも、防眩機能を有し、かつ透明性の高い(つまり、無色透明に見える)プラスチック基材1を実現している。
 具体的には、プラスチック基材1は、分光透過率曲線において、透過率が50%となる短波長側の半値波長が410~430nm、440~480nmの平均透過率が60~90%、500~530nmの平均透過率が75~95%、630~700nmの平均透過率が80~98%、550~600nmの間に極小値を有する構成となっている。
 また、440~480nmの平均透過率をT1、500~530nmの平均透過率をT2、630~700nmの平均透過率をT3としたときに、T1<T2<T3を満たすように構成されている。
 また、550~600nmの間の極小値は、35~75%となるように設定されている。
[プラスチック基材1の製造方法]
 本実施形態のプラスチック基材1は、以下のプロセスによって製造される。
1.色素溶解液の作成
 ビーカーに所定量のMEK(メチルエチルケトン(Methyl Ethyl Ketone))を入れ、各吸収色素21~25を所定量ずつ順に投入し、色素溶解液を作成する。
2.A液と混合・脱気
 所定量のモノマー(A液)に、色素溶解液を所定量加え、真空攪拌脱気を行う。
3.モノマーと混合(調合液の作成)
 脱気が終了した色素溶解液を、所定量のモノマー(B液)に加え、攪拌脱気を行うことで調合液を作成する。
4.成形
 調合液を脱泡し、PTFE(ポリテトラフルオロエチレン)フィルタにより濾過し、モールド型に注入する。そして、調合液が注入されたモールド型を、25℃から130℃まで徐々に昇温し、130℃で2時間保温した後、室温まで冷却する。このようなモールド型の加熱及び冷却により、型内でモノマーが重合し、プラスチック基材1の成形体が成形される。重合終了後、成形体を離型し、130℃の環境に2時間放置しアニールする。
 以下、本実施形態のプラスチック基材1について、実施例1~10および比較例1~3を挙げて更に説明する。なお、本発明は以下の実施例に限定されるものではない。
 表1および表2は、実施例1~10の各プラスチック基材1、および比較例1~3の各プラスチック基材の材料(樹脂材10、吸収色素21~25)、外形(直径、厚み)、視感透過率、半値波長(透過率が50%となる短波長側の半値波長)、波長440~480nmの平均透過率、500~530nmの平均透過率、630~700nmの平均透過率、550~600nmの極小値とその波長、を示す表である。
 また、図3~図15は、実施例1~10の各プラスチック基材1、および比較例1~3の各プラスチック基材の分光透過率曲線を示す図である。なお、図3~図15において、横軸は波長(nm)であり、縦軸は透過率(%)を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように、実施例1~10の各プラスチック基材1においては、樹脂材10として、三井化学株式会社製のチオウレタン系樹脂(1.6 MR-8)を選定し、吸収色素21として、三井化学株式会社製のベンゾトリアゾール系色素(UV+420用UV吸収剤)を選定し、吸収色素22として、山田化学工業株式会社製のメロシアニン系色素(FDB-006)を選定し、吸収色素23として、紀和化学工業株式会社製のアントラキノン系色素(KP PLAST Red HB)を選定し、吸収色素24として、山本化成株式会社製のテトラアザポルフィリン系色素(PD-311S)を選定し、吸収色素25として、紀和化学工業株式会社製のアントラキノン系色素(KP PLAST Green G)を選定した。
 そして、上述の製造方法に従って、表1および表2に示す吸収色素21~25の濃度で、各実施例1~10のプラスチック基材1を作成した。
 また、比較例1~3の各プラスチック基材においては、樹脂材10として、三井化学株式会社製のチオウレタン系樹脂(1.6 MR-8)を選定し、吸収色素24として、山本化成株式会社製のテトラアザポルフィリン系色素(PD-311S)を選定し、吸収色素21、22、23、25は入れずに、各比較例1~3のプラスチック基材を作成した。
 なお、実施例1~10の各プラスチック基材1のサンプル、および比較例1~3の各プラスチック基材のサンプルは、直径70mm、厚み2mmの眼鏡レンズである。
(実施例1)
 実施例1のプラスチック基材1では、吸収色素21~25の濃度を、それぞれ、0.53%、1.5ppm、3.65ppm、6.0ppm、0.95ppmとした。
 その結果(表1)、視感透過率:73.3%、透過率が50%となる短波長側の半値波長が423nm、440~480nmの平均透過率が76.1%、500~530nmの平均透過率が81.6%、630~700nmの平均透過率が88.0%、550~600nmの間の極小値:40.9%(@587nm)のプラスチック基材1が得られた。
 この結果(表1、図3)から、紫外線・ブルーライト領域(波長380~500nm)の透過率が低く(例えば、82%以下に)抑えられていることから、紫外線およびブルーライトが効果的にカットされているのが分かる。
 また、波長587nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているのが分かる。
(実施例2)
 実施例2のプラスチック基材1では、吸収色素21~25の濃度を、それぞれ、0.53%、1.5ppm、3.65ppm、2.0ppm、0.95ppmとした。
 その結果(表1)、視感透過率:81.8%、透過率が50%となる短波長側の半値波長が422nm、440~480nmの平均透過率が76.5%、500~530nmの平均透過率が83.5%、630~700nmの平均透過率が88.1%、550~600nmの間の極小値:68.2%(@588nm)のプラスチック基材1が得られた。
 この結果(表1、図4)から、紫外線・ブルーライト領域(波長380~500nm)の透過率が低く(例えば、82%以下に)抑えられていることから、紫外線およびブルーライトが効果的にカットされているのが分かる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているのが分かる。
(実施例3)
 実施例3のプラスチック基材1では、吸収色素21~25の濃度を、それぞれ、0.53%、4.0ppm、3.65ppm、3.45ppm、0.95ppmとした。
 その結果(表1)、視感透過率:78.2%、透過率が50%となる短波長側の半値波長が423nm、440~480nmの平均透過率が62.2%、500~530nmの平均透過率が81.8%、630~700nmの平均透過率が88.0%、550~600nmの間の極小値:57.0%(@587nm)のプラスチック基材1が得られた。
 この結果(表1、図5)から、紫外線・ブルーライト領域(波長380~500nm)の透過率が低く(例えば、82%以下に)抑えられていることから、紫外線およびブルーライトが効果的にカットされているのが分かる。
 また、波長587nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているのが分かる。
(実施例4)
 実施例4のプラスチック基材1では、吸収色素21~25の濃度を、それぞれ、0.53%、0.75ppm、3.65ppm、3.45ppm、0.95ppmとした。
 その結果(表1)、視感透過率:78.7%、透過率が50%となる短波長側の半値波長が422nm、440~480nmの平均透過率が81.0%、500~530nmの平均透過率が83.0%、630~700nmの平均透過率が87.8%、550~600nmの間の極小値:56.9%(@588nm)のプラスチック基材1が得られた。
 この結果(表1、図6)から、紫外線・ブルーライト領域(波長380~500nm)の透過率が低く(例えば、82%以下に)抑えられていることから、紫外線およびブルーライトが効果的にカットされているのが分かる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているのが分かる。
(実施例5)
 実施例5のプラスチック基材1では、吸収色素21~25の濃度を、それぞれ、0.70%、1.5ppm、3.65ppm、3.45ppm、0.95ppmとした。
 その結果(表1)、視感透過率:75.8%、透過率が50%となる短波長側の半値波長が425nm、440~480nmの平均透過率が75.8%、500~530nmの平均透過率が82.6%、630~700nmの平均透過率が88.0%、550~600nmの間の極小値:55.9%(@588nm)のプラスチック基材1が得られた。
 この結果(表1、図7)から、紫外線・ブルーライト領域(波長380~500nm)の透過率が低く(例えば、82%以下に)抑えられていることから、紫外線およびブルーライトが効果的にカットされているのが分かる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているのが分かる。
(実施例6)
 実施例6のプラスチック基材1では、吸収色素21~25の濃度を、それぞれ、0.30%、1.5ppm、3.65ppm、3.45ppm、0.95ppmとした。
 その結果(表1)、視感透過率:78.5%、透過率が50%となる短波長側の半値波長が420nm、440~480nmの平均透過率が76.5%、500~530nmの平均透過率が82.8%、630~700nmの平均透過率が88.1%、550~600nmの間の極小値:56.9%(@587nm)のプラスチック基材1が得られた。
 この結果(表1、図8)から、紫外線・ブルーライト領域(波長380~500nm)の透過率が低く(例えば、82%以下に)抑えられていることから、紫外線およびブルーライトが効果的にカットされているのが分かる。
 また、波長587nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているのが分かる。
(実施例7)
 実施例7のプラスチック基材1では、吸収色素21~25の濃度を、それぞれ、0.53%、1.5ppm、5.65ppm、3.45ppm、0.95ppmとした。
 その結果(表1)、視感透過率:77.7%、透過率が50%となる短波長側の半値波長が422nm、440~480nmの平均透過率が75.9%、500~530nmの平均透過率が81.1%、630~700nmの平均透過率が88.0%、550~600nmの間の極小値:57.5%(@587nm)のプラスチック基材1が得られた。
 この結果(表1、図9)から、紫外線・ブルーライト領域(波長380~500nm)の透過率が低く(例えば、82%以下に)抑えられていることから、紫外線およびブルーライトが効果的にカットされているのが分かる。
 また、波長587nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているのが分かる。
(実施例8)
 実施例8のプラスチック基材1では、吸収色素21~25の濃度を、それぞれ、0.53%、1.5ppm、1.65ppm、3.45ppm、0.95ppmとした。
 その結果(表2)、視感透過率:80.0%、透過率が50%となる短波長側の半値波長が422nm、440~480nmの平均透過率が77.9%、500~530nmの平均透過率が85.3%、630~700nmの平均透過率が88.2%、550~600nmの間の極小値:58.4%(@587nm)のプラスチック基材1が得られた。
 この結果(表2、図10)から、紫外線・ブルーライト領域(波長380~500nm)の透過率が低く(例えば、82%以下に)抑えられていることから、紫外線およびブルーライトが効果的にカットされているのが分かる。
 また、波長587nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているのが分かる。
(実施例9)
 実施例9のプラスチック基材1では、吸収色素21~25の濃度を、それぞれ、0.53%、1.5ppm、3.65ppm、3.45ppm、2.5ppmとした。
 その結果(表2)、視感透過率:78.4%、透過率が50%となる短波長側の半値波長が422nm、440~480nmの平均透過率が76.2%、500~530nmの平均透過率が82.6%、630~700nmの平均透過率が87.2%、550~600nmの間の極小値:56.7%(@587nm)のプラスチック基材1が得られた。
 この結果(表2、図11)から、紫外線・ブルーライト領域(波長380~500nm)の透過率が低く(例えば、82%以下に)抑えられていることから、紫外線およびブルーライトが効果的にカットされているのが分かる。
 また、波長587nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているのが分かる。
(実施例10)
 実施例10のプラスチック基材1では、吸収色素21~25の濃度を、それぞれ、0.53%、1.5ppm、3.65ppm、3.45ppm、0.3ppmとした。
 その結果(表2)、視感透過率:79.5%、透過率が50%となる短波長側の半値波長が422nm、440~480nmの平均透過率が77.1%、500~530nmの平均透過率が83.3%、630~700nmの平均透過率が89.5%、550~600nmの間の極小値:58.2%(@587nm)のプラスチック基材1が得られた。
 この結果(表2、図12)から、紫外線・ブルーライト領域(波長380~500nm)の透過率が低く(例えば、82%以下に)抑えられていることから、紫外線およびブルーライトが効果的にカットされているのが分かる。
 また、波長587nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているのが分かる。
(比較例1)
 比較例1のプラスチック基材では、吸収色素21、22、23、25は入れずに、吸収色素24の濃度を、2.5ppmとした。
 その結果(表2)、視感透過率:90.1%、透過率が50%となる短波長側の半値波長が408nm、440~480nmの平均透過率が96.6%、500~530nmの平均透過率が95.1%、630~700nmの平均透過率が97.2%、550~600nmの間の極小値:73.1%(@588nm)のプラスチック基材が得られた。
 この結果(表2、図13)から、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているものの、紫外線・ブルーライト領域(波長380~500nm)の透過率が実施例1~10のものと比較して高く、95%より大きくなっていることから、紫外線およびブルーライトがほぼカットされていないのが分かる。
(比較例2)
 比較例2のプラスチック基材では、吸収色素21、22、23、25は入れずに、吸収色素24の濃度を、6.0ppmとした。
 その結果(表2)、視感透過率:83.8%、透過率が50%となる短波長側の半値波長が407nm、440~480nmの平均透過率が96.4%、500~530nmの平均透過率が93.6%、630~700nmの平均透過率が97.2%、550~600nmの間の極小値:53.6%(@588nm)のプラスチック基材が得られた。
 この結果(表2、図14)から、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているものの、紫外線・ブルーライト領域(波長380~500nm)の透過率が実施例1~10のものと比較して高く、95%より大きくなっていることから、紫外線およびブルーライトがほぼカットされていないのが分かる。
(比較例3)
 比較例3のプラスチック基材では、吸収色素21、22、23、25は入れずに、吸収色素24の濃度を、11.0ppmとした。
 その結果(表2)、視感透過率:75.7%、透過率が50%となる短波長側の半値波長が408nm、440~480nmの平均透過率が96.3%、500~530nmの平均透過率が91.7%、630~700nmの平均透過率が96.7%、550~600nmの間の極小値:32.5%(@588nm)のプラスチック基材が得られた。
 この結果(表2、図15)から、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強されているものの、紫外線・ブルーライト領域(波長380~500nm)の透過率が実施例1~10のものと比較して高く、95%より大きくなっていることから、紫外線およびブルーライトがほぼカットされていないのが分かる。
[効果確認実験]
 表3および表4は、本発明者が行った、実施例1~10の各プラスチック基材1、および比較例1~3の各プラスチック基材の透明性、明るさ、および演色性を評価した実験結果を示す表である。
 また、図16は、表3および表4に示す効果確認実験の実験モデルを説明する図である。
 図16に示すように、効果確認実験においては、不図示の机上に白色のチャート200(例えば、白色紙等)を配置し、その上方約150cmの位置に、色温度約4800KのLED照明100を配置し、LED照明100からの照明光L1によってチャート200を照明し、チャート200で散乱、反射された反射光L2を、実施例1~10の各プラスチック基材1、および比較例1~3の各プラスチック基材のいずれかを介して、その透過光L3を、チャート200の上方斜め45°の位置で、分光器300(UPRtek社製:MK350S)を用いて測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4の「CCT」は、色温度(Correlated Color Temperature)であり、「LUX」は、照度(ルクス)であり、「CRI」は、演色評価指数(Color Rendering Index)であり、「R1」~「R8」は、平均演色評価数(Ra)であり、「R9」~「R15」は、特殊演色評価数(Ri)である。
 また、表3および表4の「リファレンス」は、実施例1~10の各プラスチック基材1、および比較例1~3の各プラスチック基材を、分光器300の前に配置せずに、チャート200で散乱、反射された反射光L2を直接分光器300で測定した結果である。
[実験結果の考察]
 表3および表4の「CCT」について、「リファレンス」と実施例1~10、比較例1~3とを比較すると、実施例1~10の各プラスチック基材1の色温度は、「リファレンス」に対して±7%の範囲(4191~4822)内であるのに対し、比較例1~3の各プラスチック基材の色温度は、それぞれ、+7.4%、+13.7%、+23.7%変化しているのが分かる。
 これは、実施例1~10の各プラスチック基材1において、入射光(反射光L2)と透過光L3との間で色温度の変化が極めて少ないことを意味するから、実施例1~10の各プラスチック基材1は、透明性の高い(つまり、無色透明に見える)ものと判断できる。
 また、表3および表4の「LUX」について、「リファレンス」と実施例1~10とを比較すると、実施例1~10の各プラスチック基材1の照度が「リファレンス」に対して70%以上(243以上)となっていることから、実施例1~10の各プラスチック基材1は全体として明るい(つまり、照度の低下が少ない)ものとなった。
 また、表3および表4の「CRI」について、「リファレンス」と実施例1~10とを比較すると、実施例1~10の各プラスチック基材1の演色評価指数が「リファレンス」に対して高くなっていることから、実施例1~10の各プラスチック基材1によって演色性が向上していると判断できる。
 また、表3および表4の「R9」(赤色の特殊演色評価数)について、「リファレンス」と実施例1~10とを比較すると、実施例1~10の各プラスチック基材1の特殊演色評価数「R9」が「リファレンス」に対して格段に高くなっていることから、実施例1~10の各プラスチック基材1によって赤色の演色性が向上(つまり、色彩のバランスが向上)していると判断できる。
 このように、本実施形態(実施例1~10)のプラスチック基材1においては、分光透過率曲線が、所定のバランスとなるように各吸収色素21~25の含有量(濃度)を調整することにより、紫外線およびブルーライトをカットしながらも、防眩機能を有し、かつ透明性の高い(つまり、無色透明に見える)プラスチック基材1を実現している。
 このため、プラスチック基材1を、例えば眼鏡レンズに適用すれば、ファッション性に優れ、かつ普段使いに適した、明るいレンズを提供することができる。
 以上が本発明の実施形態の説明であるが、本発明は、上記の実施形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形が可能である。
 例えば、本実施形態(実施例1~10)においては、プラスチック基材1が眼鏡レンズやフェースシールド等に利用可能であるものとして説明したが、必ずしもこのような用途に限定されるものではなく、例えば、コンタクトレンズ、ゴーグル(水泳、スキー、ライダー用等、スポーツ全般)、ヘルメット用シールド、フロントガラス、窓ガラス等、様々な用途に適用することができる。 また、用途に応じて、プラスチック基材1の外面(物体側の面)または内面(眼球側の面)の少なくともいずれか一方の面上に、機能層(例えば、プライマー層、ハードコート層、反射防止層、および、撥水撥油層からなる群から選択される1種以上の層)を設けることもできる。
(第2の実施形態)
 図17は、本発明の第2の実施形態に係るプラスチック基材2の構成を説明する縦断面図である。図17に示すように、本実施形態のプラスチック基材2は、ベース基材50の上面にプラスチック基材1を備え、不図示の紫外線硬化接着剤等を介した、貼り合わせ構造となっている点で、第1の実施形態のプラスチック基材1とは異なる。
 このように、第1の実施形態のプラスチック基材1を薄く成形し、他の部材と貼り合わせることによっても、プラスチック基材1と同様の作用効果が得られる。なお、プラスチック基材1の厚み、吸収色素21~25の濃度および透過率の関係は、いわゆるランベルト・ベールの法則に従って定まる。
 なお、本実施形態のプラスチック基材2は、ベース基材50の上面にプラスチック基材1を備えるものとしたが、プラスチック基材1はベース基材50の下面にあってもよく、また両面にあってもよい。
 また、本実施形態のプラスチック基材2は、必ずしも貼り合わせ構造である必要はなく、浸漬コーティング法、キャストコーティング法、スプレーコーティング法、スピンコーティング法等から選ばれる一種以上のコーティング法を用いて、ベース基材50上にプラスチック基材1を形成することもできる。
(第3の実施形態)
 図18は、本発明の第3の実施形態に係るプラスチック基材3の構成を説明する縦断面図である。図18に示すように、本実施形態のプラスチック基材3は、第1の実施形態のプラスチック基材1の表面(外面)および裏面(内面)に、反射防止膜として機能するマルチコート層60を備えている点で、第1の実施形態のプラスチック基材1とは異なる。
 このように、第1の実施形態のプラスチック基材1にマルチコートを施す(つまり、マルチコート層60を形成する)ことにより、分光透過率を向上させることができる(詳細は後述)。
[プラスチック基材3の製造方法]
 本実施形態のプラスチック基材3は、例えば、以下のプロセスによって製造される。
1.プラスチック基材1の準備
 上述の[プラスチック基材1の製造方法]に従って、プラスチック基材1を製造する。
2.マルチコート層60の形成
 次いで、プラスチック基材1の表面(外面)および裏面(内面)に、酸化ケイ素や酸化チタンなどの無機化合物からなる反射防止膜(マルチコート層60)を形成する。マルチコート層60の具体的な形成方法としては、一般的に用いられている、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法、CVD法などの乾式法を用いることができる。
 なお、マルチコート層60は、単層または多層の何れの構成であってもよい。多層膜とする場合には、低屈折率の反射防止膜と高屈折率の反射防止膜とを交互に積層した多層膜構造とすることが好ましい。多層膜構造で用いる高屈折率膜としては、例えば、ZnO、TiO、CeO、SbO5、SnO、ZrO、Al、Taなどを挙げることができ、低屈折率膜としては、例えば、SiOなどを挙げることができる。
 なお、本実施形態のプラスチック基材3は、プラスチック基材1の表面(外面)および裏面(内面)にマルチコート層60を備えるものとして説明するが、必ずしもこのような構成に限定されるものではなく、マルチコート層60は、プラスチック基材1の外面(物体側の面)または内面(眼球側の面)の少なくともいずれか一方の面上に形成されていればよい。
 以下、本実施形態のプラスチック基材3について、実施例11~20を挙げて説明する。なお、本発明は以下の実施例に限定されるものではない。
 本実施例11~20の各プラスチック基材3は、実施例1~10の各プラスチック基材1の表面(外面)および裏面(内面)に、上述の製造方法に従って、マルチコート層60を形成したものである。
 表5および表6は、実施例11~20の各プラスチック基材3の材料(樹脂材10、吸収色素21~25)、外形(直径、厚み)、視感透過率、半値波長(透過率が50%となる短波長側の半値波長)、波長440~480nmの平均透過率、500~530nmの平均透過率、630~700nmの平均透過率、550~600nmの極小値とその波長を示す表である。
 また、図19~図28は、実施例11~20の各プラスチック基材3の分光透過率曲線を示す図である。なお、図3~図15と同様、図19~図28において、横軸は波長(nm)であり、縦軸は透過率(%)を示している。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(実施例11)
 実施例11のプラスチック基材3では、実施例1のプラスチック基材1にマルチコート層60を形成したことにより、透過率が上昇し、視感透過率:79.4%、440~480nmの平均透過率:83.3%、500~530nmの平均透過率:88.5%、630~700nmの平均透過率:95.9%、550~600nmの間の極小値:44.8%(@588nm)のプラスチック基材3が得られた(表5、図19)。
 このように、本実施例においても、紫外線・ブルーライト領域(波長380~500nm)の透過率が抑えられている(例えば、90%以下になっている)ことから、紫外線およびブルーライトが効果的にカットされる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強される。
(実施例12)
 実施例12のプラスチック基材3では、実施例2のプラスチック基材1にマルチコート層60を形成したことにより、透過率が上昇し、視感透過率:88.8%、440~480nmの平均透過率:84.0%、500~530nmの平均透過率:90.8%、630~700nmの平均透過率:96.4%、550~600nmの間の極小値:75.0%(@588nm)のプラスチック基材3が得られた(表5、図20)。
 このように、本実施例においても、紫外線・ブルーライト領域(波長380~500nm)の透過率が抑えられている(例えば、90%以下になっている)ことから、紫外線およびブルーライトが効果的にカットされる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強される。
(実施例13)
 実施例13のプラスチック基材3では、実施例3のプラスチック基材1にマルチコート層60を形成したことにより、透過率が上昇し、視感透過率:84.9%、440~480nmの平均透過率:68.6%、500~530nmの平均透過率:88.8%、630~700nmの平均透過率:95.9%、550~600nmの間の極小値:62.6%(@588nm)のプラスチック基材3が得られた(表5、図21)。
 このように、本実施例においても、紫外線・ブルーライト領域(波長380~500nm)の透過率が抑えられている(例えば、90%以下になっている)ことから、紫外線およびブルーライトが効果的にカットされる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強される。
(実施例14)
 実施例14のプラスチック基材3では、実施例4のプラスチック基材1にマルチコート層60を形成したことにより、透過率が上昇し、視感透過率:85.3%、440~480nmの平均透過率:88.8%、500~530nmの平均透過率:90.3%、630~700nmの平均透過率:96.2%、550~600nmの間の極小値:62.6%(@588nm)のプラスチック基材3が得られた(表5、図22)。
 このように、本実施例においても、紫外線・ブルーライト領域(波長380~500nm)の透過率が抑えられている(例えば、90%以下になっている)ことから、紫外線およびブルーライトが効果的にカットされる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強される。
(実施例15)
 実施例15のプラスチック基材3では、実施例5のプラスチック基材1にマルチコート層60を形成したことにより、透過率が上昇し、視感透過率:84.6%、440~480nmの平均透過率:83.1%、500~530nmの平均透過率:89.6%、630~700nmの平均透過率:96.0%、550~600nmの間の極小値:61.5%(@588nm)のプラスチック基材3が得られた(表5、図23)。
 このように、本実施例においても、紫外線・ブルーライト領域(波長380~500nm)の透過率が抑えられている(例えば、90%以下になっている)ことから、紫外線およびブルーライトが効果的にカットされる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強される。
(実施例16)
 実施例16のプラスチック基材3では、実施例6のプラスチック基材1にマルチコート層60を形成したことにより、透過率が上昇し、視感透過率:85.1%、440~480nmの平均透過率:84.1%、500~530nmの平均透過率:89.9%、630~700nmの平均透過率:96.5%、550~600nmの間の極小値:62.5%(@588nm)のプラスチック基材3が得られた(表6、図24)。
 このように、本実施例においても、紫外線・ブルーライト領域(波長380~500nm)の透過率が抑えられている(例えば、90%以下になっている)ことから、紫外線およびブルーライトが効果的にカットされる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強される。
(実施例17)
 実施例17のプラスチック基材3では、実施例7のプラスチック基材1にマルチコート層60を形成したことにより、透過率が上昇し、視感透過率:84.3%、440~480nmの平均透過率:83.0%、500~530nmの平均透過率:87.7%、630~700nmの平均透過率:96.2%、550~600nmの間の極小値:63.3%(@588nm)のプラスチック基材3が得られた(表6、図25)。
 このように、本実施例においても、紫外線・ブルーライト領域(波長380~500nm)の透過率が抑えられている(例えば、90%以下になっている)ことから、紫外線およびブルーライトが効果的にカットされる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強される。
(実施例18)
 実施例18のプラスチック基材3では、実施例8のプラスチック基材1にマルチコート層60を形成したことにより、透過率が上昇し、視感透過率:86.9%、440~480nmの平均透過率:85.2%、500~530nmの平均透過率:92.5%、630~700nmの平均透過率:96.3%、550~600nmの間の極小値:64.0%(@588nm)のプラスチック基材3が得られた(表6、図26)。
 このように、本実施例においても、紫外線・ブルーライト領域(波長380~500nm)の透過率が抑えられている(例えば、90%以下になっている)ことから、紫外線およびブルーライトが効果的にカットされる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強される。
(実施例19)
 実施例19のプラスチック基材3では、実施例9のプラスチック基材1にマルチコート層60を形成したことにより、透過率が上昇し、視感透過率:85.0%、440~480nmの平均透過率:83.7%、500~530nmの平均透過率:89.9%、630~700nmの平均透過率:95.7%、550~600nmの間の極小値:62.4%(@588nm)のプラスチック基材3が得られた(表6、図27)。
 このように、本実施例においても、紫外線・ブルーライト領域(波長380~500nm)の透過率が抑えられている(例えば、90%以下になっている)ことから、紫外線およびブルーライトが効果的にカットされる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強される。
(実施例20)
 実施例20のプラスチック基材3では、実施例10のプラスチック基材1にマルチコート層60を形成したことにより、透過率が上昇し、視感透過率:86.1%、440~480nmの平均透過率:84.5%、500~530nmの平均透過率:90.5%、630~700nmの平均透過率:97.9%、550~600nmの間の極小値:63.9%(@588nm)のプラスチック基材3が得られた(表6、図28)。
 このように、本実施例においても、紫外線・ブルーライト領域(波長380~500nm)の透過率が抑えられている(例えば、90%以下になっている)ことから、紫外線およびブルーライトが効果的にカットされる。
 また、波長588nm付近の透過率が低く(例えば、75%以下に)抑えられていることから、防眩性が付与され、コントラストが増強される。
[効果確認実験]
 表7および表8は、本発明者が行った、実施例11~20の各プラスチック基材3の透明性、明るさ、および演色性を評価した実験結果を示す表である。なお、この効果確認実験は、実施例1~10の各プラスチック基材1に対して行ったものと同様である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
[実験結果の考察]
 表7および表8の「CCT」について、「リファレンス」と実施例11~20とを比較すると、実施例11~20の各プラスチック基材3の色温度は、「リファレンス」に対して±7%の範囲(4356~5012)内となり、実施例1~10の各プラスチック基材1と同様、透明性の高い(つまり、無色透明に見える)ものとなった。
 また、表7および表8の「LUX」について、「リファレンス」と実施例11~20とを比較すると、実施例11~20の各プラスチック基材3の照度は、「リファレンス」に対して70%以上(142以上)となり、実施例1~10の各プラスチック基材1と同様、全体として明るい(つまり、照度の低下が少ない)ものとなった。
 また、表7および表8の「CRI」について、「リファレンス」と実施例11~20とを比較すると、実施例11~20の各プラスチック基材3の演色評価指数は、「リファレンス」に対して高くなり、実施例1~10の各プラスチック基材1と同様、演色性が向上するものとなった。
 また、表7および表8の「R9」(赤色の特殊演色評価数)について、「リファレンス」と実施例11~20とを比較すると、実施例11~20の各プラスチック基材3の特殊演色評価数「R9」は、「リファレンス」に対して格段に高くなり、実施例1~10の各プラスチック基材1と同様、赤色の演色性が向上する(つまり、色彩のバランスが向上する)ものとなった。
 このように、本実施形態(実施例11~20)のプラスチック基材3も、第1の実施形態のプラスチック基材1と同様、分光透過率曲線が所定のバランスとなるように調整され、紫外線およびブルーライトをカットしながらも、防眩機能を有し、かつ透明性の高い(つまり、無色透明に見える)ものとなる。
 なお、今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1     :プラスチック基材
2     :プラスチック基材
3     :プラスチック基材
10    :樹脂材
21    :吸収色素
22    :吸収色素
23    :吸収色素
24    :吸収色素
25    :吸収色素
50    :ベース基材
60    :マルチコート層
100   :LED照明
200   :チャート
300   :分光器

Claims (12)

  1.  樹脂と吸収色素とを含む、透光性のプラスチック基材であって、
     分光透過率曲線において、
      透過率が50%となる短波長側の半値波長が、410~430nmであり、
      440~480nmの平均透過率が、60~90%であり、
      500~530nmの平均透過率が、75~95%であり、
      630~700nmの平均透過率が、80~98%であり、
      550~600nmの間に極小値を有する、
    ことを特徴とするプラスチック基材。
  2.  前記極小値が、35~75%であることを特徴とする請求項1に記載のプラスチック基材。
  3.  前記440~480nmの平均透過率をT1、前記500~530nmの平均透過率をT2、前記630~700nmの平均透過率をT3としたときに、T1<T2<T3を満たすことを特徴とする請求項1に記載のプラスチック基材。
  4.  前記樹脂は、ウレタン系熱硬化性樹脂、(メタ)アクリル系熱硬化性樹脂、ポリカーボネート樹脂、ポリアミド樹脂からなる群から選択される少なくとも1種であることを特徴とする請求項1に記載のプラスチック基材。
  5.  前記吸収色素は、
      極大吸収波長が350~425nmの範囲に位置する第1の色素と、
      極大吸収波長が460~480nmの範囲に位置する第2の色素と、
      極大吸収波長が490~510nmの範囲に位置する第3の色素と、
      極大吸収波長が565~605nmの範囲に位置する第4の色素と、
      極大吸収波長が590~650nmの範囲に位置する第5の色素と、
    を含むことを特徴とする請求項1に記載のプラスチック基材。
  6.  前記第1の色素が、ベンゾトリアゾール系色素であり、
     前記第2の色素が、メロシアニン系色素であり、
     前記第3の色素が、アントラキノン系色素であり、
     前記第4の色素が、テトラアザポルフィリン系色素であり、
     前記第5の色素が、アントラキノン系色素である、
    ことを特徴とする請求項5に記載のプラスチック基材。
  7.  前記第1の色素の濃度が、0.2~0.8%であり、
     前記第2の色素の濃度が、0.5~2.0ppmであり、
     前記第3の色素の濃度が、1.0~6.0ppmであり、
     前記第4の色素の濃度が、1.0~7.0ppmであり、
     前記第5の色素の濃度が、0.2~3.0ppmである、
    ことを特徴とする請求項6に記載のプラスチック基材。
  8.  前記プラスチック基材を透過した後の光の色温度が、前記プラスチック基材を透過する前の光の色温度の±7%の範囲内であることを特徴とする請求項1に記載のプラスチック基材。
  9.  前記プラスチック基材の外面または内面の少なくともいずれか一方の面上に、反射防止膜として機能するマルチコート層を備えていることを特徴とする請求項1に記載のプラスチック基材。
  10.  請求項1から請求項9のいずれか一項に記載のプラスチック基材を含む、プラスチック眼鏡レンズ。
  11.  前記プラスチック基材が、ベース基材に貼り合わせて形成されている請求項10に記載のプラスチック眼鏡レンズ。
  12.  前記プラスチック眼鏡レンズの外面または内面の少なくともいずれか一方の面上に機能層を有し、
     前記機能層は、プライマー層、ハードコート層、反射防止層、および、撥水撥油層からなる群から選択される1種以上の層であることを特徴とする請求項9に記載のプラスチック眼鏡レンズ。
PCT/JP2023/007365 2022-02-28 2023-02-28 プラスチック基材、およびプラスチック眼鏡レンズ WO2023163221A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-030161 2022-02-28
JP2022030161 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163221A1 true WO2023163221A1 (ja) 2023-08-31

Family

ID=87766346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007365 WO2023163221A1 (ja) 2022-02-28 2023-02-28 プラスチック基材、およびプラスチック眼鏡レンズ

Country Status (1)

Country Link
WO (1) WO2023163221A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134618A (ja) * 2006-10-26 2008-06-12 Hopunikku Kenkyusho:Kk プラスチック眼鏡レンズ
JP2019095492A (ja) * 2017-11-17 2019-06-20 住友ベークライト株式会社 光学シートおよび光学部品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134618A (ja) * 2006-10-26 2008-06-12 Hopunikku Kenkyusho:Kk プラスチック眼鏡レンズ
JP2019095492A (ja) * 2017-11-17 2019-06-20 住友ベークライト株式会社 光学シートおよび光学部品

Similar Documents

Publication Publication Date Title
US10962806B2 (en) Blue edge filter optical lens
CN113504662B (zh) 具有无色外观的透明光学物品
US9017820B2 (en) Laminated glass lens for spectacles
US10054803B2 (en) Filters to enhance color discrimination for color vision deficient individuals
JP6530765B2 (ja) 眼鏡レンズおよび眼鏡
RU2684919C2 (ru) Оптическое изделие, содержащее просветляющее покрытие в видимой области, для условий низкой освещенности
US20180224575A1 (en) Ophthalmic lens and associate production method
JP6570452B2 (ja) 眼鏡用偏光レンズ
JP7449874B2 (ja) 低減された青色光透過率を示す、カラーバランスが調節されたレンズ
US11934046B2 (en) Laser protection eyewear lenses
KR20180088683A (ko) 안경 렌즈 및 안경
TW201806744A (zh) 眼用器具用光學膜,以及使用該光學膜之光學積層體及眼用器具
JP2020003646A (ja) 色覚補正フィルタ及び光学部品
WO2023163221A1 (ja) プラスチック基材、およびプラスチック眼鏡レンズ
US20200018993A1 (en) Spectacle lens
JPWO2020067407A1 (ja) 眼鏡レンズ
WO2021123858A1 (en) Screen friendly optical article
KR20210054576A (ko) 안경 렌즈
US20240094562A1 (en) Lens with color enhancement
EP4174532A1 (en) Transparent optical article with increased blue light cutting ability and superior aesthetics
KR20210054577A (ko) 안경 렌즈
EP3857297A1 (en) An ophthalmic lens for improving vision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760219

Country of ref document: EP

Kind code of ref document: A1