WO2023163181A1 - Liquid detection method and liquid discharge device - Google Patents

Liquid detection method and liquid discharge device Download PDF

Info

Publication number
WO2023163181A1
WO2023163181A1 PCT/JP2023/007115 JP2023007115W WO2023163181A1 WO 2023163181 A1 WO2023163181 A1 WO 2023163181A1 JP 2023007115 W JP2023007115 W JP 2023007115W WO 2023163181 A1 WO2023163181 A1 WO 2023163181A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
ejection surface
observation
head
ejection
Prior art date
Application number
PCT/JP2023/007115
Other languages
French (fr)
Japanese (ja)
Inventor
喜裕 由宇
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023163181A1 publication Critical patent/WO2023163181A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet

Definitions

  • the disclosed embodiments relate to a liquid detection method and a liquid ejection device.
  • liquid ejection devices Inkjet printers and inkjet plotters using an inkjet recording method are known as liquid ejection devices.
  • a liquid ejection head for ejecting liquid is mounted in such an inkjet type liquid ejection apparatus.
  • the liquid ejection head has an ejection surface through which a plurality of ejection holes for ejecting liquid are opened.
  • a liquid detection method includes an irradiation process, an observation process, and a detection process.
  • a light source obliquely irradiates an ejection surface of a head having an ejection surface in which a plurality of ejection holes for ejecting liquid are opened.
  • the observation step observes the irradiated ejection surface with an observation device.
  • the detecting step the presence or absence of leakage of liquid from the ejection surface is detected based on the observation result of the observation device.
  • FIG. 1 is a plan view schematically showing the configuration of the liquid ejection device according to the embodiment.
  • FIG. 2 is a side view of the liquid ejection device shown in FIG. 1 as seen from the Y-axis negative direction.
  • FIG. 3 is a side view of the liquid ejection device shown in FIG. 1 as seen from the positive direction of the X-axis.
  • FIG. 4 is a perspective view schematically showing the external configuration of the head according to the embodiment.
  • FIG. 5 is a plan view of the head according to the embodiment.
  • FIG. 6 is a diagram schematically showing flow paths inside the head according to the embodiment.
  • FIG. 7 is a flow chart showing a processing procedure of liquid detection processing using the liquid ejection device according to the embodiment.
  • FIG. 8 is a diagram showing a specific example of the detection process according to the embodiment.
  • FIG. 9 is a diagram showing an example of experimental results showing the relationship between the irradiation angle of light with which the ejection surface is irradiated and the visibility of the ejection surface.
  • Each drawing referred to below shows an orthogonal coordinate system in which the X-axis direction, the Y-axis direction, and the Z-axis direction are defined to be orthogonal to each other, and the Z-axis positive direction is the vertically upward direction, in order to make the explanation easier to understand.
  • FIG. 1 is a plan view schematically showing the configuration of the liquid ejection device according to the embodiment.
  • FIG. 2 is a side view of the liquid ejection device shown in FIG. 1 as seen from the Y-axis negative direction.
  • FIG. 3 is a side view of the liquid ejection device shown in FIG. 1 as seen from the positive direction of the X-axis.
  • the liquid ejecting apparatus 1 ejects liquid onto the recording medium M by an inkjet method, thereby printing images, characters, and the like on the recording medium M.
  • the recording medium M is, for example, cloth or paper.
  • the liquid ejection device 1 has a transport section 2 , a carriage 3 and a head 4 .
  • the transport unit 2 transports the recording medium M in the transport direction (here, the positive direction of the X axis).
  • the transport unit 2 may include a delivery roller that delivers the recording medium M before printing and a take-up roller that takes up the recording medium M after printing.
  • the take-up roller is provided with a motor that rotates the take-up roller about its axis and causes the recording medium M to be taken up.
  • the transport unit 2 may include a tension roller that applies tension to the recording medium M and a transport roller that generates a transport force to intermittently feed the recording medium M, etc., on the transport path between the delivery roller and the take-up roller. .
  • the carriage 3 is mounted on a pair of guide rails (not shown) extending along a scanning direction (here, the positive direction of the Y axis) that intersects (perpendicularly in the embodiment) the conveying direction of the recording medium M (the positive direction of the X axis). Supported.
  • a pair of guide rails is provided, for example, so as to extend laterally (here, in the Y-axis negative direction) with respect to the conveying path of the recording medium M.
  • a position between a pair of guide rails on the side of the transport path of the recording medium M is a maintenance position where maintenance processing of the head 4 is performed.
  • the carriage 3 is movable along the pair of guide rails.
  • the head 4 positioned inside the carriage 3 can move together with the carriage 3 between an ejection position for ejecting liquid onto the recording medium M and a maintenance position.
  • the carriage 3 and head 4 positioned at the ejection position are indicated by two-dot chain lines, and the carriage 3 and head 4 positioned at the maintenance position are indicated by solid lines.
  • the head 4 is a so-called circulation type liquid ejection head that ejects liquid while circulating the liquid inside.
  • the head 4 has an ejection surface 4s (see FIGS. 2 and 3) through which a plurality of ejection holes for ejecting liquid are opened.
  • a liquid such as ink is supplied to the head 4 from a circulation device (not shown).
  • This circulation device supplies the liquid to the head 4 while controlling the circulation pressure of the liquid circulating between the heads 4 .
  • the head 4 and circulation device are arranged inside the carriage 3 .
  • a part of the circulation device (for example, a tank or the like) may be arranged outside the carriage 3 .
  • the head 4 is formed, for example, in a substantially rectangular parallelepiped shape.
  • the head 4 is positioned such that its longitudinal direction is orthogonal to the transport direction of the recording medium M (X-axis positive direction).
  • the liquid ejecting apparatus 1 includes a light source 5, an observation device 6, a first rail 7, a second rail 8, a first moving member 9, a second moving member 10, a first supporting member 11, and a second support member 12 .
  • a light source 5 an observation device 6, a first rail 7, a second rail 8, a first moving member 9, a second moving member 10, a first supporting member 11, and a second support member 12 .
  • the carriage 3 and head 4 are positioned at the maintenance position.
  • the light source 5 is mounted on the first moving member 9 while being supported by the first supporting member 11 .
  • the light source 5 is positioned to the side of the head 4 in plan view.
  • the light source 5 irradiates the ejection surface 4s of the head 4 with light from an oblique direction.
  • the light source 5 emits light along the lateral direction (X-axis direction) of the head 4 in plan view.
  • the light source 5 irradiates the ejection surface 4s with light having a wavelength within the range of 460 nm or more and 620 nm or less, which maximizes the light intensity.
  • a Polarion light can be used as the light source 5.
  • the observation device 6 is supported by the second support member 12 and mounted on the second moving member 10 .
  • the observation device 6 is positioned below the ejection surface 4s of the head 4, as shown in FIGS.
  • the observation device 6 can observe the ejection surface 4s irradiated with light.
  • the observation device 6 is a reflecting mirror that reflects the ejection surface 4s.
  • a mirror image (an example of the first observation result) of the ejection surface 4s reflected on the observation device 6, which is a reflecting mirror, is provided to the observer O as the observation result. Accordingly, the observer O can detect the presence or absence of liquid leakage from the ejection surface 4s based on the result of observation of the ejection surface 4s by the observation device 6, that is, the mirror image of the ejection surface 4s.
  • the light source 5 irradiates the ejection surface 4 s with light from an oblique direction
  • the observation device 6 observes the ejection surface 4 s irradiated with the light. Visibility of the ejection surface 4s can be improved. Accordingly, the observer O can detect the presence or absence of leakage of liquid from the ejection surface 4s according to the presence or absence of the shadow of the liquid that has leaked from the ejection surface 4s. It can be easily distinguished from the mist-like deposits adhering to the surface 4s. Therefore, according to the liquid ejecting apparatus 1 according to the embodiment, it is possible to accurately detect whether or not the liquid leaks from the ejection surface 4s.
  • the mirror image of the ejection surface 4s reflected on the observation device 6, which is a reflector is an observation position that does not overlap the path of the light applied to the ejection surface 4s and the path of the reflected light from the ejection surface 4s in plan view. provided towards.
  • the light source 5 emits light along the lateral direction (X-axis direction) of the head 4 in plan view
  • the mirror image of the ejection surface 4s is the longitudinal direction (X-axis direction) of the head 4 in plan view.
  • Y-axis direction) is provided toward the observation position (the position of the observer O in FIG. 3).
  • the observer O at the observation position can view the ejection surface without being blocked by the light irradiated on the ejection surface 4s and the reflected light from the ejection surface 4s. A mirror image of 4s can be seen.
  • the first rail 7 and the second rail 8 are arranged in the lateral direction (X-axis direction) of the head 4 and extend along the longitudinal direction (Y-axis direction) of the head 4, as shown in FIG. do.
  • the first rail 7 and the second rail 8 are located at positions sandwiching the maintenance position (that is, the head 4 positioned at the maintenance position) in the lateral direction (X-axis direction) of the head 4 in plan view.
  • the first rail 7 is positioned on the X-axis negative direction side of the head 4 positioned at the maintenance position
  • the second rail 8 is positioned on the X-axis positive direction side of the head 4 positioned at the maintenance position.
  • the first moving member 9 is positioned on the first rail 7 and moves along the first rail 7 .
  • the second moving member 10 is positioned on the second rail 8 and moves along the second rail 8 .
  • the first moving member 9 and the second moving member 10 may be moved along the first rail 7 and the second rail 8 by driving devices such as motors.
  • the first moving member 9 and the second moving member 10 may move independently or integrally.
  • a light source 5 is mounted on the first moving member 9 via a first supporting member 11 .
  • the light source 5 can be moved along the first rail 7 in the longitudinal direction (Y-axis direction) of the head 4 together with the first moving member 9 . This makes it possible to freely change the position where the ejection surface 4s of the head 4 is irradiated with light.
  • the observation device 6 is attached to the second moving member 10 via the second supporting member 12 .
  • the observation device 6 By mounting the observation device 6 on the second moving member 10 , the observation device 6 can be moved along the second rail 8 in the longitudinal direction (Y-axis direction) of the head 4 together with the second moving member 10 . Thereby, the observed position of the ejection surface 4s can be freely changed. Note that the light source 5 and the observation device 6 may be moved together.
  • the first support member 11 is positioned on the first moving member 9 .
  • the first supporting member 11 rotatably supports the light source 5 via a first rotating shaft 11a, as shown in FIG.
  • the irradiation angle ⁇ of the light applied to the ejection surface 4s of the head 4 is changed. This makes it possible to freely adjust the irradiation angle ⁇ of light with which the ejection surface 4s of the head 4 is irradiated.
  • the first support member 11 may be configured to be expandable and contractable along the vertical direction (Z-axis direction).
  • the second support member 12 is positioned on the second moving member 10 . As shown in FIGS. 2 and 3, the second support member 12 rotatably supports the observation device 6 via a second rotation shaft 12a. By rotating the observation device 6 around the second rotation shaft 12a, the angle of the observation device 6 with respect to the ejection surface 4s of the head 4 is changed. Thereby, the angle of the observation device 6 with respect to the ejection surface 4s of the head 4 can be freely adjusted.
  • the second support member 12 may be configured to be expandable and contractable along the vertical direction (Z-axis direction).
  • the liquid ejection device 1 also has a control section 13 .
  • the control unit 13 is, for example, a CPU (Central Processing Unit), and controls the entire liquid ejecting apparatus 1 by reading and executing a program (not shown) stored in a storage unit (not shown).
  • a program not shown
  • a storage unit not shown
  • FIG. 4 is a perspective view schematically showing the external configuration of the head 4 according to the embodiment.
  • FIG. 5 is a plan view of the head 4 according to the embodiment.
  • FIG. 6 is a diagram schematically showing flow paths inside the head 4 according to the embodiment.
  • the head 4 has a housing including a box-shaped member 410 and a plate-shaped member 420 .
  • the housing of the head 4 has a first flow path RT1 for supplying liquid from an external circulation device to the inside of the head, and a second flow path for returning the liquid recovered inside the head to the circulation device.
  • RT 2 is installed.
  • the member 420 of the head 4 includes a supply port P in through which the liquid is supplied to the inside of the head through the first flow path RT- 1 , and a supply port Pin through which the liquid is supplied to the inside of the head through the second flow path RT- 2 . and an outlet P out through which the liquid is discharged.
  • the head 4 has a supply reservoir 401, a supply manifold 402, a recovery manifold 403, a recovery reservoir 404, and an element 405.
  • the supply reservoir 401 has an elongated shape extending in the longitudinal direction (Y-axis direction) of the head 4 and is connected to the supply manifold 402 .
  • Supply reservoir 401 has a channel therein. As shown in FIG. 5 or 6, the liquid is supplied to the supply reservoir 401 through the first flow path RT1 and the supply port P in , and stored in the flow path of the supply reservoir 401 is delivered to the supply manifold 402. .
  • the supply manifold 402 has an elongated shape extending to the front of the recovery reservoir 404 in the lateral direction (X-axis direction) of the head 4 .
  • the supply manifold 402 internally has a channel communicating with the channel of the supply reservoir 401 and the element 405 . As shown in FIG. 5 or 6 , liquid delivered from supply reservoir 401 to supply manifold 402 is delivered from supply manifold 402 to element 405 .
  • the collection manifold 403 has an elongated shape extending in the short direction (X-axis direction) of the head 4 to the front of the supply reservoir 401 .
  • the recovery manifold 403 internally has a channel that communicates with the channel of the recovery reservoir 404 and the element 405 . As shown in FIG. 5 or 6, the liquid that has not been discharged from the element 405 (discharge hole 405h) is sent to the recovery manifold 403. As shown in FIG.
  • the recovery reservoir 404 has an elongated shape extending in the longitudinal direction (Y-axis direction) of the head 4 and is connected to the recovery manifold 403 .
  • the collection reservoir 404 has a channel therein. As shown in FIG. 5 or 6, the liquid sent from the recovery manifold 403 to the recovery reservoir 404 and stored in the channel of the recovery reservoir 404 is discharged from the outside through the outlet Pout and the second channel RT2 . sent back to the circulator.
  • the element 405 has a discharge hole 405h.
  • the element 405 sucks the liquid from the supply manifold 402 by, for example, a negative pressure generated in a pressure chamber (not shown), and pushes the sucked liquid toward the recording medium M from the discharge hole 405h by a positive pressure generated in the pressure chamber (not shown). to dispense.
  • FIG. 7 is a flow chart showing a processing procedure of liquid detection processing using the liquid ejection device according to the embodiment.
  • the processing procedure (irradiation process, observation process, and detection process) shown in FIG. 7 is executed after the head 4 moves from the ejection position to the maintenance position. Note that part or all of the processing procedure shown in FIG. 7 may be executed under the control of the control unit 13 .
  • the light source 5 obliquely irradiates the ejection surface 4s of the head 4 with light (step S101, irradiation step).
  • the irradiation step light is irradiated along the lateral direction (X-axis direction) of the head 4 in plan view.
  • the path of the light irradiated onto the ejection surface 4s and the path of the reflected light from the ejection surface 4s are positioned along the short direction of the head 4 (the X-axis direction).
  • the ejection surface 4s is irradiated with light having a wavelength within the range of 460 nm or more and 620 nm or less at which the light intensity becomes maximum.
  • Light having a maximum light intensity wavelength of less than 460 nm or light having a maximum light intensity wavelength of greater than 620 nm can significantly reduce relative luminosity in scotopic vision and photopic vision.
  • a decrease in relative luminosity in scotopic vision and photopic vision is suppressed. Therefore, the visibility of the ejection surface 4s is improved.
  • the ejection surface 4s is irradiated with light at an irradiation angle ⁇ of 10° or more and 80° or less.
  • the observation device 6 observes the ejection surface 4s irradiated with light (step S102, observation step).
  • the observer O is provided with a mirror image of the ejection surface 4s reflected on the observation device 6, which is a reflecting mirror, as an observation result.
  • a mirror image of the ejection surface 4s is provided toward the observation position (the position of the observer O in FIG. 3) in the longitudinal direction (Y-axis direction) of the head 4 in plan view. Accordingly, the observer O at the observation position can observe the mirror image of the ejection surface 4s without being obstructed by the light irradiated on the ejection surface 4s and the reflected light from the ejection surface 4s.
  • FIG. 8 is a diagram showing a specific example of the detection process according to the embodiment.
  • FIG. 8 shows a mirror image of the ejection surface 4s reflected on the observing device 6, which is a reflecting mirror. Further, in FIG. 8, the region R of the ejection surface 4s that has been irradiated with light is shown.
  • the height of the liquid L leaked from the ejection surface 4s is greater than that of the mist-like deposits adhering to the ejection surface 4s. For this reason, under a situation where the liquid L is leaking from the ejection surface 4s, if the ejection surface 4s is irradiated with light from an oblique direction, the surroundings of the liquid L leaking from the ejection surface 4s will be A shadow Ls is generated. By checking the presence or absence of the shadow Ls of the liquid L in the mirror image of the ejection surface 4s reflected on the observation device 6, the observer O can accurately detect the presence or absence of leakage of the liquid from the ejection surface 4s. can.
  • the detection step detects that there is leakage of liquid from the ejection surface 4s
  • a cleaning step for cleaning the ejection surface 4s may be performed.
  • the liquid ejection device 1 may include a cleaning section for cleaning the ejection surface 4 s of the head 4 .
  • the cleaning unit cleans the head 4 by, for example, wiping processing or purging processing.
  • the wiping process is, for example, a process of removing exposed liquid from the ejection surface 4s by wiping the ejection surface 4s with a wiping member such as a flexible wiper.
  • the purging process is a process of forcibly ejecting liquid from the ejection holes 405h (see FIG. 6) of the head 4, thereby discharging liquids and foreign substances having a higher viscosity than the standard state from the ejection holes 405h. .
  • a pressure adjustment step of adjusting the pressure of the liquid inside the head 4 may be performed.
  • the pressure of the liquid inside the head 4 may be adjusted by lowering the supply pressure of the discharge pump of the circulation device that supplies the liquid to the head 4 .
  • the pressure of the liquid inside the head 4 may be adjusted by increasing the suction pressure of the suction pump of the circulation device.
  • FIG. 9 is a diagram showing an example of experimental results showing the relationship between the irradiation angle ⁇ of light irradiated onto the ejection surface 4s and the visibility of the ejection surface 4s.
  • the ejection surface 4s was irradiated with light while changing the irradiation angle ⁇ under the condition that liquid was leaking from the ejection surface 4s, and the visibility of the ejection surface 4s was improved. checked for good or bad.
  • the irradiation angles ⁇ illustrated in FIG. 9 are associated with “ ⁇ ”, and the irradiation angles at which the visibility of the ejection surface 4 s was not good. "x" is associated with ⁇ . Also, the irradiation angle ⁇ at which the visibility of the ejection surface 4s was the best is associated with “ ⁇ ”.
  • the visibility of the ejection surface 4s is good when the observer O can confirm the shadow of the liquid leaked from the ejection surface 4s in the mirror image of the ejection surface 4s projected on the observation device 6. was determined to be In the experiment shown in FIG.
  • the experimental conditions used in the experiment shown in FIG. 9 are as follows. Distance between light source 5 and head 4: 300 mm Distance between ejection surface 4s and observation device 6: 200 mm Intensity of light applied to ejection surface 4s: 3400 lumens Wavelength of light applied to ejection surface 4s: 510 nm
  • the irradiation angle ⁇ was 10° or more and 80° or less
  • the visibility of the ejection surface 4s was good.
  • the irradiation angle ⁇ was 20° or more and 40° or less
  • the visibility of the ejection surface 4s was the best. That is, from the experimental results shown in FIG. 9, the ejection surface 4s is irradiated with light at an irradiation angle of 10° or more and 80° or less, and more preferably at an irradiation angle of 20° or more and 40° or less. It was confirmed that good visibility of the surface 4s could be maintained.
  • the ejection holes 405h located in a plurality of irradiation areas of the ejection surface 4s 6) may be sequentially observed by the observation device 6 .
  • the observer O can sequentially detect liquid leakage from the plurality of ejection holes 405h.
  • the most upstream side is the supply side to which the liquid is supplied to the head 4, and the side where the pressure is the highest in the flow path (see FIG. 5 or FIG. 6) inside the head 4 (or the most supply port). It can also be said that it is the side close to Pin ).
  • the observation device 6 may observe the discharge hole group irradiated with light. In this way, only the ejection hole group including the ejection hole 405h located on the most upstream side in the liquid flow direction inside the head 4 is irradiated with light and observed, thereby reducing the work burden on the observer O. be able to.
  • the liquid ejecting apparatus 1 may have an imaging device that converts a mirror image of the ejection surface 4s reflected on the observation device 6, which is a reflecting mirror, into image data. Then, the control unit 13 performs image analysis processing on the image data obtained from the image sensor, and determines whether or not there is a shadow of the liquid leaked from the ejection surface 4s using the image analysis result. It is possible to detect the presence or absence of liquid leakage in the
  • the observation device 6 is a reflecting mirror
  • the observation device 6 may be an imaging device.
  • a captured image an example of a second observation result
  • a captured image of the ejection surface 4s may be provided to, for example, a display device (not shown).
  • the detection step step S103 in FIG. 7
  • presence or absence of leakage of liquid from the ejection surface 4s may be detected based on the captured image of the ejection surface 4s.
  • a circulation type liquid ejection head is used as the head 4 in the description, a non-circulation type liquid ejection head may be used.
  • a pressure adjusting step of adjusting the pressure of the liquid inside the head 4 may be performed. Specifically, it can be adjusted by changing the height of the liquid surface of the ink tank.
  • the liquid detection method includes an irradiation process (eg, step S101), an observation process (eg, step S102), and a detection process (eg, step S103).
  • a light source for example, A light source 5
  • an observation device for example, observation device 6
  • the detecting step the presence or absence of leakage of liquid from the ejection surface is detected based on the result of observation of the ejection surface by an observation device.
  • the observation equipment may be a reflector.
  • the observation step may provide a mirror image of the ejection surface reflected on the reflecting mirror as an observation result.
  • the detection step may detect the presence or absence of liquid leakage from the ejection surface based on the mirror image of the ejection surface.
  • an observer for example, an observer O
  • the presence or absence of liquid leakage can be detected with high accuracy.
  • the observation step may provide a mirror image of the ejection surface toward an observation position that does not overlap the path of the light applied to the ejection surface and the path of the reflected light from the ejection surface in plan view.
  • the observer at the observation position can confirm the mirror image of the ejection surface without being blocked by the light irradiated on the ejection surface and the reflected light from the ejection surface. be able to.
  • the head may have a substantially rectangular parallelepiped shape.
  • the light may be irradiated along the short direction of the head (for example, the X-axis direction) in plan view.
  • the observation step may provide a mirror image of the ejection surface toward an observation position in the longitudinal direction of the head (eg, Y-axis direction) in plan view.
  • the observer at the observation position can confirm the mirror image of the ejection surface without being blocked by the light irradiated on the ejection surface and the reflected light from the ejection surface. be able to.
  • the observation equipment may be an imaging device.
  • an image of the ejection surface captured by the imaging device may be provided as an observation result.
  • detection step presence or absence of leakage of liquid from the ejection surface may be detected based on a captured image of the ejection surface.
  • the observer can check whether or not there is a shadow of the liquid in the captured image of the ejection surface captured by the imaging device, thereby detecting whether or not the liquid leaks from the ejection surface. can be detected with high accuracy.
  • the ejection surface may be irradiated with light having a wavelength within a range of 460 nm or more and 620 nm or less at which the light intensity is maximum.
  • the visibility of the ejection surface is improved because the decrease in relative luminosity in scotopic vision and photopic vision is suppressed.
  • the ejection surface may be irradiated with light at an irradiation angle (for example, irradiation angle ⁇ ) of 10° or more and 80° or less.
  • irradiation angle ⁇ for example, irradiation angle ⁇
  • the head may be movable between an ejection position at which liquid is ejected onto a recording medium (for example, the recording medium M) and a maintenance position at which maintenance processing of the head is performed.
  • the irradiation process, the observation process, and the detection process may be performed after the head moves from the ejection position to the maintenance position.
  • the head may have a substantially rectangular parallelepiped shape.
  • the light source may sequentially irradiate a plurality of irradiation areas of the ejection surface with light while moving the light source in the longitudinal direction of the head (for example, the Y-axis direction).
  • the observation device may be moved in the longitudinal direction (Y-axis direction) of the head, and the observation device may sequentially observe the ejection holes positioned in the plurality of irradiation areas of the ejection surface.
  • the observer can sequentially detect the leakage of the liquid from the plurality of ejection holes.
  • the irradiation step light may be applied to an ejection hole group including an ejection hole located on the most upstream side in the flow direction of the liquid inside the head, among the plurality of ejection holes on the ejection surface.
  • the observation step the discharge hole group irradiated with light may be observed by an observation device.
  • the liquid detection method according to the embodiment may further include a cleaning step of cleaning the ejection surface when the detection step detects that liquid has leaked from the ejection surface.
  • the liquid exposed from the ejection surface can be removed.
  • the liquid detection method according to the embodiment may further include a pressure adjustment step of adjusting the pressure of the liquid inside the head when the detection step detects that the liquid has leaked from the ejection surface.
  • the liquid exposed from the ejection surface can be removed.

Landscapes

  • Ink Jet (AREA)

Abstract

This liquid detection method comprises an irradiation step, an observation step, and a detection step. In the irradiation step, a discharge surface of a head that has the discharge surface, in which a plurality of discharge holes for discharging liquid are formed, is irradiated with light from a light source from a diagonal direction. In the observation step, the irradiated discharge surface is observed with an observation apparatus. In the detection step, the presence or absence of leakage of the liquid at the discharge surface is detected on the basis of the result of observation by the observation apparatus.

Description

液体検知方法及び液体吐出装置Liquid detection method and liquid ejection device
 開示の実施形態は、液体検知方法及び液体吐出装置に関する。 The disclosed embodiments relate to a liquid detection method and a liquid ejection device.
 液体吐出装置として、インクジェット記録方式を利用したインクジェットプリンタやインクジェットプロッタが知られている。このようなインクジェット方式の液体吐出装置には、液体を吐出させるための液体吐出ヘッドが搭載されている。液体吐出ヘッドは、液体を吐出する複数の吐出孔が開口する吐出面を有する。 Inkjet printers and inkjet plotters using an inkjet recording method are known as liquid ejection devices. A liquid ejection head for ejecting liquid is mounted in such an inkjet type liquid ejection apparatus. The liquid ejection head has an ejection surface through which a plurality of ejection holes for ejecting liquid are opened.
 また、液体吐出ヘッドの吐出面からの液体の漏出が確認された場合に、吐出面を、例えばワイパーなどのワイピング部材によって払拭することで、漏出した液体を除去する技術が提案されている(例えば、特許文献1参照)。 Further, there has been proposed a technique of removing the leaked liquid by wiping the ejection surface with a wiping member such as a wiper when leakage of the liquid from the ejection surface of the liquid ejection head is confirmed (for example, , see Patent Document 1).
特開2009-143071号公報JP 2009-143071 A
 実施形態の一態様による液体検知方法は、照射工程と、観測工程と、検知工程とを含む。照射工程は、液体を吐出する複数の吐出孔が開口する吐出面を有するヘッドの吐出面に対して光源によって斜め方向から光を照射する。観測工程は、照射された吐出面を観測機器によって観測する。検知工程は、観測機器による観測結果に基づいて、吐出面での液体の漏出の有無を検知する。 A liquid detection method according to one aspect of the embodiment includes an irradiation process, an observation process, and a detection process. In the irradiation step, a light source obliquely irradiates an ejection surface of a head having an ejection surface in which a plurality of ejection holes for ejecting liquid are opened. The observation step observes the irradiated ejection surface with an observation device. In the detecting step, the presence or absence of leakage of liquid from the ejection surface is detected based on the observation result of the observation device.
図1は、実施形態に係る液体吐出装置の構成を模式的に示す平面図である。FIG. 1 is a plan view schematically showing the configuration of the liquid ejection device according to the embodiment. 図2は、図1に示す液体吐出装置をY軸負方向から見た側面図である。FIG. 2 is a side view of the liquid ejection device shown in FIG. 1 as seen from the Y-axis negative direction. 図3は、図1に示す液体吐出装置をX軸正方向から見た側面図である。FIG. 3 is a side view of the liquid ejection device shown in FIG. 1 as seen from the positive direction of the X-axis. 図4は、実施形態に係るヘッドの外観構成を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing the external configuration of the head according to the embodiment. 図5は、実施形態に係るヘッドの平面図である。FIG. 5 is a plan view of the head according to the embodiment. 図6は、実施形態に係るヘッドの内部の流路を模式的に示す図である。FIG. 6 is a diagram schematically showing flow paths inside the head according to the embodiment. 図7は、実施形態に係る液体吐出装置を用いた液体検知処理の処理手順を示すフローチャートである。FIG. 7 is a flow chart showing a processing procedure of liquid detection processing using the liquid ejection device according to the embodiment. 図8は、実施形態に係る検知工程の具体例を示す図である。FIG. 8 is a diagram showing a specific example of the detection process according to the embodiment. 図9は、吐出面に対して照射される光の照射角度と、吐出面の視認性との関係を示す実験結果の一例を示す図である。FIG. 9 is a diagram showing an example of experimental results showing the relationship between the irradiation angle of light with which the ejection surface is irradiated and the visibility of the ejection surface.
 以下、添付図面を参照して、本願の開示する液体検知方法及び液体吐出装置の実施形態について説明する。なお、以下に示す実施形態により本開示が限定されるものではない。 Hereinafter, embodiments of the liquid detection method and the liquid ejection device disclosed in the present application will be described with reference to the accompanying drawings. It should be noted that the present disclosure is not limited by the embodiments shown below.
 以下参照する各図面では、説明を分かりやすくするために、互いに直交するX軸方向、Y軸方向およびZ軸方向を規定し、Z軸正方向を鉛直上向き方向とする直交座標系を示す。 Each drawing referred to below shows an orthogonal coordinate system in which the X-axis direction, the Y-axis direction, and the Z-axis direction are defined to be orthogonal to each other, and the Z-axis positive direction is the vertically upward direction, in order to make the explanation easier to understand.
<液体吐出装置の構成例>
 実施形態に係る液体吐出装置1の構成例について図1~図3を参照して説明する。図1は、実施形態に係る液体吐出装置の構成を模式的に示す平面図である。図2は、図1に示す液体吐出装置をY軸負方向から見た側面図である。図3は、図1に示す液体吐出装置をX軸正方向から見た側面図である。
<Configuration Example of Liquid Ejecting Device>
A configuration example of a liquid ejection device 1 according to an embodiment will be described with reference to FIGS. 1 to 3. FIG. FIG. 1 is a plan view schematically showing the configuration of the liquid ejection device according to the embodiment. FIG. 2 is a side view of the liquid ejection device shown in FIG. 1 as seen from the Y-axis negative direction. FIG. 3 is a side view of the liquid ejection device shown in FIG. 1 as seen from the positive direction of the X-axis.
 図1に示すように、実施形態に係る液体吐出装置1は、記録媒体Mに対してインクジェット方式で液体を吐出することにより、記録媒体Mに画像や文字等の記録を行う。記録媒体Mは、例えば布又は紙等である。液体吐出装置1は、搬送部2と、キャリッジ3と、ヘッド4とを有する。 As shown in FIG. 1, the liquid ejecting apparatus 1 according to the embodiment ejects liquid onto the recording medium M by an inkjet method, thereby printing images, characters, and the like on the recording medium M. FIG. The recording medium M is, for example, cloth or paper. The liquid ejection device 1 has a transport section 2 , a carriage 3 and a head 4 .
 搬送部2は、記録媒体Mを搬送方向(ここでは、X軸正方向)に搬送する。例えば、搬送部2は、印刷前の記録媒体Mを繰り出す送り出しローラーと、印刷後の記録媒体Mを巻き取る巻き取りローラーとを含んでいてもよい。巻き取りローラーには、巻き取りローラーを軸回りに回転駆動し、記録媒体Mの巻き取り動作を実行させるモーターが付設される。搬送部2は、送り出しローラーおよび巻き取りローラー間の搬送経路に、記録媒体Mに張力を付与するテンションローラーおよび記録媒体Mを間欠送りする搬送力を発生させる搬送ローラー等を有していてもよい。 The transport unit 2 transports the recording medium M in the transport direction (here, the positive direction of the X axis). For example, the transport unit 2 may include a delivery roller that delivers the recording medium M before printing and a take-up roller that takes up the recording medium M after printing. The take-up roller is provided with a motor that rotates the take-up roller about its axis and causes the recording medium M to be taken up. The transport unit 2 may include a tension roller that applies tension to the recording medium M and a transport roller that generates a transport force to intermittently feed the recording medium M, etc., on the transport path between the delivery roller and the take-up roller. .
 キャリッジ3は、記録媒体Mの搬送方向(X軸正方向)と交差(実施形態では直交)する走査方向(ここでは、Y軸正方向)に沿って延在する不図示の一対のガイドレールに支持されている。かかる一対のガイドレールは、例えば、記録媒体Mの搬送経路に対して側方(ここでは、Y軸負方向)に延びるように設けられる。記録媒体Mの搬送経路の側方における一対のガイドレールの間の位置は、ヘッド4のメンテナンス処理を行うメンテナンス位置とされている。キャリッジ3は、かかる一対のガイドレールに沿って移動可能である。キャリッジ3の内部に位置するヘッド4は、記録媒体Mに対して液体の吐出を行う吐出位置と、メンテナンス位置との間をキャリッジ3とともに移動可能である。図1においては、吐出位置に位置するキャリッジ3及びヘッド4が二点鎖線で示され、メンテナンス位置に位置するキャリッジ3及びヘッド4が実線で示されている。 The carriage 3 is mounted on a pair of guide rails (not shown) extending along a scanning direction (here, the positive direction of the Y axis) that intersects (perpendicularly in the embodiment) the conveying direction of the recording medium M (the positive direction of the X axis). Supported. Such a pair of guide rails is provided, for example, so as to extend laterally (here, in the Y-axis negative direction) with respect to the conveying path of the recording medium M. As shown in FIG. A position between a pair of guide rails on the side of the transport path of the recording medium M is a maintenance position where maintenance processing of the head 4 is performed. The carriage 3 is movable along the pair of guide rails. The head 4 positioned inside the carriage 3 can move together with the carriage 3 between an ejection position for ejecting liquid onto the recording medium M and a maintenance position. In FIG. 1, the carriage 3 and head 4 positioned at the ejection position are indicated by two-dot chain lines, and the carriage 3 and head 4 positioned at the maintenance position are indicated by solid lines.
 ヘッド4は、内部で液体を循環させつつ、液体を吐出する、いわゆる循環型の液体吐出ヘッドである。ヘッド4は、液体を吐出する複数の吐出孔が開口する吐出面4s(図2及び図3参照)を有している。ヘッド4には、図示しない循環装置から液体、例えば、インクが供給される。この循環装置は、ヘッド4との間を循環する液体の循環圧力を制御しつつ、ヘッド4に液体を供給する。ヘッド4及び循環装置は、キャリッジ3の内部に配置される。なお、循環装置は、一部(例えば、タンク等)がキャリッジ3の外部に配置されてもよい。 The head 4 is a so-called circulation type liquid ejection head that ejects liquid while circulating the liquid inside. The head 4 has an ejection surface 4s (see FIGS. 2 and 3) through which a plurality of ejection holes for ejecting liquid are opened. A liquid such as ink is supplied to the head 4 from a circulation device (not shown). This circulation device supplies the liquid to the head 4 while controlling the circulation pressure of the liquid circulating between the heads 4 . The head 4 and circulation device are arranged inside the carriage 3 . A part of the circulation device (for example, a tank or the like) may be arranged outside the carriage 3 .
 ヘッド4は、例えば、略直方体形状に形成されている。ヘッド4は、長手方向が記録媒体Mの搬送方向(X軸正方向)に直交するように位置している。 The head 4 is formed, for example, in a substantially rectangular parallelepiped shape. The head 4 is positioned such that its longitudinal direction is orthogonal to the transport direction of the recording medium M (X-axis positive direction).
 また、液体吐出装置1は、光源5と、観測機器6と、第1レール7と、第2レール8と、第1移動部材9と、第2移動部材10と、第1支持部材11と、第2支持部材12とを有する。なお、以下においては、キャリッジ3及びヘッド4がメンテナンス位置に位置しているものとして説明を行う。 Further, the liquid ejecting apparatus 1 includes a light source 5, an observation device 6, a first rail 7, a second rail 8, a first moving member 9, a second moving member 10, a first supporting member 11, and a second support member 12 . In the following description, it is assumed that the carriage 3 and head 4 are positioned at the maintenance position.
 光源5は、第1支持部材11に支持されて第1移動部材9上に取り付けられる。光源5は、平面視において、ヘッド4の側方に位置している。光源5は、図2に示すように、ヘッド4の吐出面4sに対して斜め方向から光を照射する。光源5は、平面視において、ヘッド4の短手方向(X軸方向)に沿って光を照射する。光源5は、光強度が最大となる波長が460nm以上620nm以下の範囲内である光を吐出面4sに対して照射する。光源5としては、例えば、ポラリオンライトを用いることができる。 The light source 5 is mounted on the first moving member 9 while being supported by the first supporting member 11 . The light source 5 is positioned to the side of the head 4 in plan view. As shown in FIG. 2, the light source 5 irradiates the ejection surface 4s of the head 4 with light from an oblique direction. The light source 5 emits light along the lateral direction (X-axis direction) of the head 4 in plan view. The light source 5 irradiates the ejection surface 4s with light having a wavelength within the range of 460 nm or more and 620 nm or less, which maximizes the light intensity. As the light source 5, for example, a Polarion light can be used.
 観測機器6は、第2支持部材12に支持されて第2移動部材10上に取り付けられる。観測機器6は、図2及び図3に示すように、ヘッド4の吐出面4sの下方に位置している。観測機器6は、光の照射を受けた吐出面4sを観測することができる。本実施形態においては、観測機器6は、吐出面4sを映す反射鏡である。反射鏡である観測機器6に映された吐出面4sの鏡像(第1観測結果の一例)は、観測結果として観測者Oに提供される。これにより、観測者Oは、観測機器6による吐出面4sの観測結果、つまり、吐出面4sの鏡像に基づいて、吐出面4sでの液体の漏出の有無を検知することができる。 The observation device 6 is supported by the second support member 12 and mounted on the second moving member 10 . The observation device 6 is positioned below the ejection surface 4s of the head 4, as shown in FIGS. The observation device 6 can observe the ejection surface 4s irradiated with light. In this embodiment, the observation device 6 is a reflecting mirror that reflects the ejection surface 4s. A mirror image (an example of the first observation result) of the ejection surface 4s reflected on the observation device 6, which is a reflecting mirror, is provided to the observer O as the observation result. Accordingly, the observer O can detect the presence or absence of liquid leakage from the ejection surface 4s based on the result of observation of the ejection surface 4s by the observation device 6, that is, the mirror image of the ejection surface 4s.
 仮に、観測者Oが吐出面4sを目視で確認すると、吐出面4sの視認性が悪いため、吐出面4sにおける異物が、吐出後の液体の一部がミスト化して付着したミスト状付着物であるのか、若しくは、吐出面4sから漏出した液体であるのかの判別が難しい。また、吐出面4sに対して垂直な方向から光を照射しながら観測者Oが吐出面4sを目視で確認すると、吐出面4sからの反射光による影響で吐出面4sの視認性が低下するため、吐出面4sにおける異物の判別が同様に難しい。このように、吐出面4sに対して垂直な方向からの照射及び目視では、吐出面4sでの液体の漏出の有無を精度良く検知することが困難である。 If an observer O visually checks the ejection surface 4s, the visibility of the ejection surface 4s is poor, and the foreign matter on the ejection surface 4s is a mist-like deposit made by part of the ejected liquid becoming a mist. It is difficult to determine whether there is liquid or liquid leaked from the ejection surface 4s. Further, when the observer O visually confirms the ejection surface 4s while irradiating the ejection surface 4s with light from a direction perpendicular to the ejection surface 4s, the visibility of the ejection surface 4s is deteriorated due to the influence of the reflected light from the ejection surface 4s. , it is also difficult to discriminate foreign matter on the ejection surface 4s. Thus, it is difficult to accurately detect the presence or absence of liquid leakage from the ejection surface 4s by irradiation from a direction perpendicular to the ejection surface 4s and visual observation.
 これに対し、実施形態に係る液体吐出装置1では、吐出面4sに対して光源5によって斜め方向から光を照射し、光の照射を受けた吐出面4sを観測機器6によって観測することで、吐出面4sの視認性を向上することができる。これにより、観測者Oは、吐出面4sから漏出した液体の影の有無に応じて、吐出面4sでの液体の漏出の有無を検知することができることから、吐出面4sから漏出した液体と吐出面4s上に付着したミスト状付着物とを容易に判別することができる。したがって、実施形態に係る液体吐出装置1によれば、吐出面4sでの液体の漏出の有無を精度良く検知することができる。 In contrast, in the liquid ejection apparatus 1 according to the embodiment, the light source 5 irradiates the ejection surface 4 s with light from an oblique direction, and the observation device 6 observes the ejection surface 4 s irradiated with the light. Visibility of the ejection surface 4s can be improved. Accordingly, the observer O can detect the presence or absence of leakage of liquid from the ejection surface 4s according to the presence or absence of the shadow of the liquid that has leaked from the ejection surface 4s. It can be easily distinguished from the mist-like deposits adhering to the surface 4s. Therefore, according to the liquid ejecting apparatus 1 according to the embodiment, it is possible to accurately detect whether or not the liquid leaks from the ejection surface 4s.
 また、反射鏡である観測機器6に映された吐出面4sの鏡像は、平面視において、吐出面4sに照射される光の経路及び吐出面4sからの反射光の経路とは重ならない観測位置に向かって提供される。本実施形態においては、光源5が、平面視において、ヘッド4の短手方向(X軸方向)に沿って光を照射し、吐出面4sの鏡像は、平面視において、ヘッド4の長手方向(Y軸方向)における観測位置(図3の観測者Oの位置)に向かって提供される。かかる観測位置に吐出面4sの鏡像が提供されることにより、観測位置における観測者Oは、吐出面4sに照射される光及び吐出面4sからの反射光によって視界を遮られることなく、吐出面4sの鏡像を確認することができる。 In addition, the mirror image of the ejection surface 4s reflected on the observation device 6, which is a reflector, is an observation position that does not overlap the path of the light applied to the ejection surface 4s and the path of the reflected light from the ejection surface 4s in plan view. provided towards. In the present embodiment, the light source 5 emits light along the lateral direction (X-axis direction) of the head 4 in plan view, and the mirror image of the ejection surface 4s is the longitudinal direction (X-axis direction) of the head 4 in plan view. Y-axis direction) is provided toward the observation position (the position of the observer O in FIG. 3). By providing the observation position with the mirror image of the ejection surface 4s, the observer O at the observation position can view the ejection surface without being blocked by the light irradiated on the ejection surface 4s and the reflected light from the ejection surface 4s. A mirror image of 4s can be seen.
 第1レール7及び第2レール8は、図1に示すように、ヘッド4の短手方向(X軸方向)に並べられ、且つ、ヘッド4の長手方向(Y軸方向)に沿って延在する。 The first rail 7 and the second rail 8 are arranged in the lateral direction (X-axis direction) of the head 4 and extend along the longitudinal direction (Y-axis direction) of the head 4, as shown in FIG. do.
 第1レール7及び第2レール8は、平面視において、ヘッド4の短手方向(X軸方向)において、メンテナンス位置(つまり、メンテナンス位置に位置するヘッド4)を挟む位置に位置している。第1レール7は、メンテナンス位置に位置するヘッド4のX軸負方向側に位置し、第2レール8は、メンテナンス位置に位置するヘッド4のX軸正方向側に位置している。 The first rail 7 and the second rail 8 are located at positions sandwiching the maintenance position (that is, the head 4 positioned at the maintenance position) in the lateral direction (X-axis direction) of the head 4 in plan view. The first rail 7 is positioned on the X-axis negative direction side of the head 4 positioned at the maintenance position, and the second rail 8 is positioned on the X-axis positive direction side of the head 4 positioned at the maintenance position.
 第1移動部材9は、第1レール7上に位置し、第1レール7に沿って移動する。第2移動部材10は、第2レール8上に位置し、第2レール8に沿って移動する。なお、第1移動部材9及び第2移動部材10は、それぞれモーター等の駆動装置によって、第1レール7及び第2レール8に沿って移動してもよい。第1移動部材9及び第2移動部材10は、各々独立して移動してもよく、一体に移動してもよい。 The first moving member 9 is positioned on the first rail 7 and moves along the first rail 7 . The second moving member 10 is positioned on the second rail 8 and moves along the second rail 8 . The first moving member 9 and the second moving member 10 may be moved along the first rail 7 and the second rail 8 by driving devices such as motors. The first moving member 9 and the second moving member 10 may move independently or integrally.
 第1移動部材9上には、第1支持部材11を介して光源5が取り付けられる。第1移動部材9上に光源5が取り付けられることにより、第1レール7に沿ってヘッド4の長手方向(Y軸方向)に第1移動部材9とともに光源5を移動させることができる。これにより、ヘッド4の吐出面4sに対して光が照射される位置を自由に変更することができる。 A light source 5 is mounted on the first moving member 9 via a first supporting member 11 . By mounting the light source 5 on the first moving member 9 , the light source 5 can be moved along the first rail 7 in the longitudinal direction (Y-axis direction) of the head 4 together with the first moving member 9 . This makes it possible to freely change the position where the ejection surface 4s of the head 4 is irradiated with light.
 第2移動部材10上には、第2支持部材12を介して観測機器6が取り付けられる。第2移動部材10上に観測機器6が取り付けられることにより、第2レール8に沿ってヘッド4の長手方向(Y軸方向)に第2移動部材10とともに観測機器6を移動させることができる。これにより、観測される吐出面4sの位置を自由に変更することができる。なお、光源5と観測機器6とは、連動して移動してもよい。 The observation device 6 is attached to the second moving member 10 via the second supporting member 12 . By mounting the observation device 6 on the second moving member 10 , the observation device 6 can be moved along the second rail 8 in the longitudinal direction (Y-axis direction) of the head 4 together with the second moving member 10 . Thereby, the observed position of the ejection surface 4s can be freely changed. Note that the light source 5 and the observation device 6 may be moved together.
 第1支持部材11は、第1移動部材9上に位置している。第1支持部材11は、図2に示すように、第1回動軸11aを介して光源5を回動可能に支持する。光源5が第1回動軸11a周りに回動することにより、ヘッド4の吐出面4sに対して照射される光の照射角度θが変更される。これにより、ヘッド4の吐出面4sに対して照射される光の照射角度θを自由に調節することができる。なお、第1支持部材11は、鉛直方向(Z軸方向)に沿って伸縮可能に構成されてもよい。 The first support member 11 is positioned on the first moving member 9 . The first supporting member 11 rotatably supports the light source 5 via a first rotating shaft 11a, as shown in FIG. By rotating the light source 5 around the first rotating shaft 11a, the irradiation angle θ of the light applied to the ejection surface 4s of the head 4 is changed. This makes it possible to freely adjust the irradiation angle θ of light with which the ejection surface 4s of the head 4 is irradiated. Note that the first support member 11 may be configured to be expandable and contractable along the vertical direction (Z-axis direction).
 第2支持部材12は、第2移動部材10上に位置している。第2支持部材12は、図2及び図3に示すように、第2回動軸12aを介して観測機器6を回動可能に支持する。観測機器6が第2回動軸12a周りに回動することにより、ヘッド4の吐出面4sに対する観測機器6の角度が変更される。これにより、ヘッド4の吐出面4sに対する観測機器6の角度を自由に調節することができる。なお、第2支持部材12は、鉛直方向(Z軸方向)に沿って伸縮可能に構成されてもよい。 The second support member 12 is positioned on the second moving member 10 . As shown in FIGS. 2 and 3, the second support member 12 rotatably supports the observation device 6 via a second rotation shaft 12a. By rotating the observation device 6 around the second rotation shaft 12a, the angle of the observation device 6 with respect to the ejection surface 4s of the head 4 is changed. Thereby, the angle of the observation device 6 with respect to the ejection surface 4s of the head 4 can be freely adjusted. The second support member 12 may be configured to be expandable and contractable along the vertical direction (Z-axis direction).
 また、液体吐出装置1は、制御部13を有している。制御部13は、例えばCPU(Central Processing Unit)であり、図示しない記憶部に記憶された図示しないプログラムを読み出して実行することにより、液体吐出装置1全体を制御する。 The liquid ejection device 1 also has a control section 13 . The control unit 13 is, for example, a CPU (Central Processing Unit), and controls the entire liquid ejecting apparatus 1 by reading and executing a program (not shown) stored in a storage unit (not shown).
<ヘッドの構成例>
 次に、ヘッド4の構成例について図4~図6を参照して説明する。図4は、実施形態に係るヘッド4の外観構成を模式的に示す斜視図である。図5は、実施形態に係るヘッド4の平面図である。図6は、実施形態に係るヘッド4の内部の流路を模式的に示す図である。
<Head configuration example>
Next, a configuration example of the head 4 will be described with reference to FIGS. 4 to 6. FIG. FIG. 4 is a perspective view schematically showing the external configuration of the head 4 according to the embodiment. FIG. 5 is a plan view of the head 4 according to the embodiment. FIG. 6 is a diagram schematically showing flow paths inside the head 4 according to the embodiment.
 図4に示すように、ヘッド4は、箱型の部材410と平板形状の部材420とを含む筐体を備えている。ヘッド4の筐体には、外部の循環装置からヘッド内部に液体を供給するための第1の流路RTと、ヘッド内部で回収された液体を循環装置に送り返すための第2の流路RTとが設置されている。図4又は図5に示すように、ヘッド4の部材420は、第1の流路RTを通じてヘッド内部に液体が供給される供給口Pinと、第2の流路RTを通じてヘッド内部から液体が排出される排出口Poutとを有する。 As shown in FIG. 4 , the head 4 has a housing including a box-shaped member 410 and a plate-shaped member 420 . The housing of the head 4 has a first flow path RT1 for supplying liquid from an external circulation device to the inside of the head, and a second flow path for returning the liquid recovered inside the head to the circulation device. RT 2 is installed. As shown in FIG. 4 or FIG. 5, the member 420 of the head 4 includes a supply port P in through which the liquid is supplied to the inside of the head through the first flow path RT- 1 , and a supply port Pin through which the liquid is supplied to the inside of the head through the second flow path RT- 2 . and an outlet P out through which the liquid is discharged.
 図5に示すように、ヘッド4は、供給リザーバ401と、供給マニホールド402と、回収マニホールド403と、回収リザーバ404と、素子405とを有している。 As shown in FIG. 5, the head 4 has a supply reservoir 401, a supply manifold 402, a recovery manifold 403, a recovery reservoir 404, and an element 405.
 供給リザーバ401は、ヘッド4の長手方向(Y軸方向)に伸びた細長い形状を有し、供給マニホールド402と繋がっている。供給リザーバ401は、内部に流路を有する。図5又は図6に示すように、第1の流路RT及び供給口Pinを通じて供給リザーバ401に供給され、供給リザーバ401の流路に貯留された液体は、供給マニホールド402へと送り出される。 The supply reservoir 401 has an elongated shape extending in the longitudinal direction (Y-axis direction) of the head 4 and is connected to the supply manifold 402 . Supply reservoir 401 has a channel therein. As shown in FIG. 5 or 6, the liquid is supplied to the supply reservoir 401 through the first flow path RT1 and the supply port P in , and stored in the flow path of the supply reservoir 401 is delivered to the supply manifold 402. .
 供給マニホールド402は、ヘッド4の短手方向(X軸方向)に回収リザーバ404の手前まで延伸した細長い形状を有する。供給マニホールド402は、供給リザーバ401が有する流路及び素子405に連通した流路を内部に有する。図5又は図6に示すように、供給リザーバ401から供給マニホールド402へと送り出された液体は、供給マニホールド402から素子405へと送り出される。 The supply manifold 402 has an elongated shape extending to the front of the recovery reservoir 404 in the lateral direction (X-axis direction) of the head 4 . The supply manifold 402 internally has a channel communicating with the channel of the supply reservoir 401 and the element 405 . As shown in FIG. 5 or 6 , liquid delivered from supply reservoir 401 to supply manifold 402 is delivered from supply manifold 402 to element 405 .
 回収マニホールド403は、ヘッド4の短手方向(X軸方向)に供給リザーバ401の手前まで延伸した細長い形状を有する。回収マニホールド403は、回収リザーバ404が有する流路及び素子405と連通した流路を内部に有する。図5又は図6に示すように、素子405(吐出孔405h)から外部へ吐出されなかった液体は、回収マニホールド403へと送り出される。 The collection manifold 403 has an elongated shape extending in the short direction (X-axis direction) of the head 4 to the front of the supply reservoir 401 . The recovery manifold 403 internally has a channel that communicates with the channel of the recovery reservoir 404 and the element 405 . As shown in FIG. 5 or 6, the liquid that has not been discharged from the element 405 (discharge hole 405h) is sent to the recovery manifold 403. As shown in FIG.
 回収リザーバ404は、ヘッド4の長手方向(Y軸方向)に伸びた細長い形状を有し、回収マニホールド403と繋がっている。回収リザーバ404は、内部に流路を有する。図5又は図6に示すように、回収マニホールド403から回収リザーバ404に送り出され、回収リザーバ404の流路に貯留された液体は、排出口Pout及び第2の流路RTを通じて、外部の循環装置へと送り返される。 The recovery reservoir 404 has an elongated shape extending in the longitudinal direction (Y-axis direction) of the head 4 and is connected to the recovery manifold 403 . The collection reservoir 404 has a channel therein. As shown in FIG. 5 or 6, the liquid sent from the recovery manifold 403 to the recovery reservoir 404 and stored in the channel of the recovery reservoir 404 is discharged from the outside through the outlet Pout and the second channel RT2 . sent back to the circulator.
 素子405は、吐出孔405hを有する。素子405は、例えば、図示しない圧力室で生成された負圧によって供給マニホールド402から液体を吸引し、吸引した液体を図示しない圧力室で生成された正圧によって吐出孔405hから記録媒体Mに向かって吐出させる。 The element 405 has a discharge hole 405h. The element 405 sucks the liquid from the supply manifold 402 by, for example, a negative pressure generated in a pressure chamber (not shown), and pushes the sucked liquid toward the recording medium M from the discharge hole 405h by a positive pressure generated in the pressure chamber (not shown). to dispense.
<液体吐出装置を用いた液体検知処理>
 次に、実施形態に係る液体吐出装置1を用いた液体検知処理について図7を参照して説明する。図7は、実施形態に係る液体吐出装置を用いた液体検知処理の処理手順を示すフローチャートである。図7に示す処理手順(照射工程、観測工程及び検知工程)は、ヘッド4が吐出位置からメンテナンス位置に移動した後に、実行される。なお、図7に示す処理手順の一部又は全部は、制御部13による制御に従って、実行されてもよい。
<Liquid Detection Processing Using Liquid Ejecting Apparatus>
Next, liquid detection processing using the liquid ejecting apparatus 1 according to the embodiment will be described with reference to FIG. FIG. 7 is a flow chart showing a processing procedure of liquid detection processing using the liquid ejection device according to the embodiment. The processing procedure (irradiation process, observation process, and detection process) shown in FIG. 7 is executed after the head 4 moves from the ejection position to the maintenance position. Note that part or all of the processing procedure shown in FIG. 7 may be executed under the control of the control unit 13 .
 図7に示すように、ヘッド4の吐出面4sに対して光源5によって斜め方向から光が照射される(ステップS101、照射工程)。照射工程では、平面視において、ヘッド4の短手方向(X軸方向)に沿って光が照射される。これにより、吐出面4sに照射される光の経路及び吐出面4sからの反射光の経路は、ヘッド4の短手方向(X軸方向)に沿って位置することとなる。 As shown in FIG. 7, the light source 5 obliquely irradiates the ejection surface 4s of the head 4 with light (step S101, irradiation step). In the irradiation step, light is irradiated along the lateral direction (X-axis direction) of the head 4 in plan view. As a result, the path of the light irradiated onto the ejection surface 4s and the path of the reflected light from the ejection surface 4s are positioned along the short direction of the head 4 (the X-axis direction).
 また、吐出面4sに対して、光強度が最大となる波長が460nm以上620nm以下の範囲内である光が照射される。光強度が最大となる波長が460nm未満又である光、又は光強度が最大となる波長が620nmよりも大きい光は、暗所視及び明所視での比視感度が顕著に低下することが知られている。吐出面4sに対して、光強度が最大となる波長が460nm以上620nm以下の範囲内である光が照射されることにより、暗所視及び明所視での比視感度の低下が抑えられることから、吐出面4sの視認性が向上する。 In addition, the ejection surface 4s is irradiated with light having a wavelength within the range of 460 nm or more and 620 nm or less at which the light intensity becomes maximum. Light having a maximum light intensity wavelength of less than 460 nm or light having a maximum light intensity wavelength of greater than 620 nm can significantly reduce relative luminosity in scotopic vision and photopic vision. Are known. By irradiating the ejection surface 4s with light having a wavelength within the range of 460 nm or more and 620 nm or less at which the light intensity is maximum, a decrease in relative luminosity in scotopic vision and photopic vision is suppressed. Therefore, the visibility of the ejection surface 4s is improved.
 また、吐出面4sに対して、10°以上80°以下の照射角度θで光が照射される。 Also, the ejection surface 4s is irradiated with light at an irradiation angle θ of 10° or more and 80° or less.
 続いて、光の照射を受けた吐出面4sが観測機器6によって観測される(ステップS102、観測工程)。観測工程では、反射鏡である観測機器6に映された吐出面4sの鏡像が観測結果として観測者Oに提供される。観測工程では、平面視において、ヘッド4の長手方向(Y軸方向)における観測位置(図3の観測者Oの位置)に向かって吐出面4sの鏡像が提供される。これにより、観測位置における観測者Oは、吐出面4sに照射される光及び吐出面4sからの反射光によって視界を遮られることなく、吐出面4sの鏡像を観察することができる。 Subsequently, the observation device 6 observes the ejection surface 4s irradiated with light (step S102, observation step). In the observation process, the observer O is provided with a mirror image of the ejection surface 4s reflected on the observation device 6, which is a reflecting mirror, as an observation result. In the observation step, a mirror image of the ejection surface 4s is provided toward the observation position (the position of the observer O in FIG. 3) in the longitudinal direction (Y-axis direction) of the head 4 in plan view. Accordingly, the observer O at the observation position can observe the mirror image of the ejection surface 4s without being obstructed by the light irradiated on the ejection surface 4s and the reflected light from the ejection surface 4s.
 続いて、観測機器6による吐出面4sの観測結果に基づいて、吐出面4sでの液体の漏出の有無が検知される(ステップS103、検知工程)。具体的には、例えば図8に示すように、吐出面4sの鏡像に基づいて、吐出面4sでの液体の漏出の有無が検知される。図8は、実施形態に係る検知工程の具体例を示す図である。図8には、反射鏡である観測機器6に映された吐出面4sの鏡像が示されている。また、図8においては、吐出面4sのうち、光の照射を受けた領域が領域Rとして示されている。 Subsequently, the presence or absence of liquid leakage from the ejection surface 4s is detected based on the observation result of the ejection surface 4s by the observation device 6 (step S103, detection step). Specifically, for example, as shown in FIG. 8, the presence or absence of liquid leakage from the ejection surface 4s is detected based on the mirror image of the ejection surface 4s. FIG. 8 is a diagram showing a specific example of the detection process according to the embodiment. FIG. 8 shows a mirror image of the ejection surface 4s reflected on the observing device 6, which is a reflecting mirror. Further, in FIG. 8, the region R of the ejection surface 4s that has been irradiated with light is shown.
 吐出面4sから漏出した液体Lは、吐出面4s上に付着したミスト状付着物と比べて、吐出面4sからの高さが大きい。このため、吐出面4sでの液体Lの漏出が発生している状況の下で、吐出面4sに対して斜め方向から光が照射されると、吐出面4sから漏出した液体Lの周囲には影Lが発生する。かかる液体Lの影Lの有無を観測機器6に映された吐出面4sの鏡像において確認することで、観測者Oは、吐出面4sでの液体の漏出の有無を精度良く検知することができる。 The height of the liquid L leaked from the ejection surface 4s is greater than that of the mist-like deposits adhering to the ejection surface 4s. For this reason, under a situation where the liquid L is leaking from the ejection surface 4s, if the ejection surface 4s is irradiated with light from an oblique direction, the surroundings of the liquid L leaking from the ejection surface 4s will be A shadow Ls is generated. By checking the presence or absence of the shadow Ls of the liquid L in the mirror image of the ejection surface 4s reflected on the observation device 6, the observer O can accurately detect the presence or absence of leakage of the liquid from the ejection surface 4s. can.
 なお、検知工程によって吐出面4sでの液体の漏出があると検知された場合、吐出面4sのクリーニングを行うクリーニング工程が実行されてもよい。この場合、液体吐出装置1は、ヘッド4の吐出面4sをクリーニングするためのクリーニング部を備えていてもよい。クリーニング部は、例えば、ワイピング処理やパージ処理によってヘッド4の洗浄を行う。 It should be noted that if the detection step detects that there is leakage of liquid from the ejection surface 4s, a cleaning step for cleaning the ejection surface 4s may be performed. In this case, the liquid ejection device 1 may include a cleaning section for cleaning the ejection surface 4 s of the head 4 . The cleaning unit cleans the head 4 by, for example, wiping processing or purging processing.
 ワイピング処理とは、例えば、柔軟性のあるワイパーなどのワイピング部材で、吐出面4sを払拭することで、吐出面4sから露出した液体を取り除く処理である。 The wiping process is, for example, a process of removing exposed liquid from the ejection surface 4s by wiping the ejection surface 4s with a wiping member such as a flexible wiper.
 また、パージ処理とは、ヘッド4の吐出孔405h(図6参照)から液体を強制的に吐出することで、吐出孔405hから標準状態よりも粘度が高い液体や異物などを排出する処理である。 The purging process is a process of forcibly ejecting liquid from the ejection holes 405h (see FIG. 6) of the head 4, thereby discharging liquids and foreign substances having a higher viscosity than the standard state from the ejection holes 405h. .
 このように、ヘッド4の吐出面4sをクリーニングすることで、吐出面4sから露出した液体を取り除くことができる。 By cleaning the ejection surface 4s of the head 4 in this manner, the liquid exposed from the ejection surface 4s can be removed.
 また、検知工程によって吐出面4sでの液体の漏出があると検知された場合、ヘッド4内部の液体の圧力を調整する圧力調整工程が実行されてもよい。例えば、圧力調整工程において、ヘッド4に液体を供給する循環装置の吐出ポンプによる供給圧力を下げることで、ヘッド4内部の液体の圧力を調整してもよい。また、例えば、圧力調整工程において、循環装置の吸引ポンプによる吸引圧力を上げることで、ヘッド4内部の液体の圧力を調整してもよい。 Further, when the detection step detects that the liquid leaks from the ejection surface 4s, a pressure adjustment step of adjusting the pressure of the liquid inside the head 4 may be performed. For example, in the pressure adjustment step, the pressure of the liquid inside the head 4 may be adjusted by lowering the supply pressure of the discharge pump of the circulation device that supplies the liquid to the head 4 . Further, for example, in the pressure adjustment step, the pressure of the liquid inside the head 4 may be adjusted by increasing the suction pressure of the suction pump of the circulation device.
<光の照射角度について>
 次に、ヘッド4の吐出面4sに対して照射される光の照射角度θの適正範囲を評価した実験結果について図9を参照して説明する。図9は、吐出面4sに対して照射される光の照射角度θと、吐出面4sの視認性との関係を示す実験結果の一例を示す図である。図9に示す実験では、吐出面4sでの液体の漏出が発生している状況の下で、照射角度θを変更しつつ吐出面4sに対して光を照射し、吐出面4sの視認性の良否を調べた。
<About the irradiation angle of light>
Next, experimental results of evaluating the appropriate range of the irradiation angle θ of the light irradiated onto the ejection surface 4s of the head 4 will be described with reference to FIG. FIG. 9 is a diagram showing an example of experimental results showing the relationship between the irradiation angle θ of light irradiated onto the ejection surface 4s and the visibility of the ejection surface 4s. In the experiment shown in FIG. 9, the ejection surface 4s was irradiated with light while changing the irradiation angle θ under the condition that liquid was leaking from the ejection surface 4s, and the visibility of the ejection surface 4s was improved. checked for good or bad.
 図9に例示された各照射角度θにおいて、吐出面4sの視認性が良好であった照射角度θについては、「○」が対応付けられ、吐出面4sの視認性が良好ではなかった照射角度θに、「×」が対応付けられている。また、吐出面4sの視認性が最も良好であった照射角度θについては、「◎」が対応付けられている。また、図9に示す実験では、観測者Oが吐出面4sから漏出した液体の影を観測機器6に映された吐出面4sの鏡像において確認できた場合に、吐出面4sの視認性が良好であると判定された。また、図9に示す実験では、観測者Oが吐出面4sから漏出した液体の影を観測機器6に映された吐出面4sの鏡像において最も短時間で確認できた場合に、吐出面4sの視認性が最も良好であると判定された。 Among the irradiation angles θ illustrated in FIG. 9 , the irradiation angles θ at which the visibility of the ejection surface 4 s was good are associated with “◯”, and the irradiation angles at which the visibility of the ejection surface 4 s was not good. "x" is associated with θ. Also, the irradiation angle θ at which the visibility of the ejection surface 4s was the best is associated with “⊚”. In the experiment shown in FIG. 9, the visibility of the ejection surface 4s is good when the observer O can confirm the shadow of the liquid leaked from the ejection surface 4s in the mirror image of the ejection surface 4s projected on the observation device 6. was determined to be In the experiment shown in FIG. 9, when the observer O was able to confirm the shadow of the liquid leaking from the ejection surface 4s in the mirror image of the ejection surface 4s projected on the observation device 6 in the shortest time, the ejection surface 4s Visibility was determined to be the best.
 また、図9に示す実験で用いられた実験条件は、以下の通りである。
 光源5とヘッド4との距離:       300mm
 吐出面4sと観測機器6との距離:    200mm
 吐出面4sに対して照射される光の強度: 3400ルーメン
 吐出面4sに対して照射される光の波長: 510nm
Also, the experimental conditions used in the experiment shown in FIG. 9 are as follows.
Distance between light source 5 and head 4: 300 mm
Distance between ejection surface 4s and observation device 6: 200 mm
Intensity of light applied to ejection surface 4s: 3400 lumens Wavelength of light applied to ejection surface 4s: 510 nm
 照射角度θが10°よりも小さい場合、吐出面4sの視認性が良好ではなかった。これは、照射角度θが10°よりも小さいと、吐出面4sに対して照射される光の照度が漏出した液体の影を確認できる程度の値を満たさなかったためであると考えられる。 When the irradiation angle θ was smaller than 10°, the visibility of the ejection surface 4s was not good. This is presumably because when the irradiation angle θ is smaller than 10°, the illuminance of the light irradiated onto the ejection surface 4s does not satisfy a value at which the shadow of the leaked liquid can be confirmed.
 また、照射角度θが80°よりも大きい場合でも、吐出面4sの視認性が良好ではなかった。これは、照射角度θが大きくなるにつれて、漏出した液体の影が小さくなり、確認され難くなったためであると考えられる。 Also, even when the irradiation angle θ was greater than 80°, the visibility of the ejection surface 4s was not good. This is probably because as the irradiation angle θ increases, the shadow of the leaked liquid becomes smaller, making it difficult to confirm.
 一方、照射角度θが10°以上80°以下である場合、吐出面4sの視認性が良好であった。特に、照射角度θが20°以上40°以下である場合、吐出面4sの視認性が最も良好であった。すなわち、図9に示す実験結果から、吐出面4sに対して、10°以上80°以下の照射角度で、より好ましくは、20°以上40°以下の照射角度で光を照射することにより、吐出面4sの視認性を良好に保つことができることが確認された。 On the other hand, when the irradiation angle θ was 10° or more and 80° or less, the visibility of the ejection surface 4s was good. In particular, when the irradiation angle θ was 20° or more and 40° or less, the visibility of the ejection surface 4s was the best. That is, from the experimental results shown in FIG. 9, the ejection surface 4s is irradiated with light at an irradiation angle of 10° or more and 80° or less, and more preferably at an irradiation angle of 20° or more and 40° or less. It was confirmed that good visibility of the surface 4s could be maintained.
(変形例)
 上述した実施形態では、光源5及び観測機器6を移動させることなく光の照射及び観測が行われる場合の例について説明した。開示の技術は、これに限らず、光源5及び観測機器6は移動されてもよい。かかる場合、例えば、照射工程(図7のステップS101)では、ヘッド4の長手方向(Y軸方向)に光源5が移動されながら、吐出面4sの複数の照射領域に対して光源5によって光が順次照射されてもよい。また、例えば、観測工程(図7のステップS102)では、ヘッド4の長手方向(Y軸方向)に観測機器6が移動されながら、吐出面4sの複数の照射領域に位置する吐出孔405h(図6参照)が観測機器6によって順次観測されてもよい。このように、光源5及び観測機器6の移動を連動して行うことで、観測者Oは、複数の吐出孔405hからの液体の漏出を順次検知することができる。
(Modification)
In the embodiment described above, an example in which light irradiation and observation are performed without moving the light source 5 and the observation device 6 has been described. The disclosed technology is not limited to this, and the light source 5 and observation device 6 may be moved. In such a case, for example, in the irradiation step (step S101 in FIG. 7), light is emitted from the light source 5 to a plurality of irradiation regions of the ejection surface 4s while the light source 5 is moved in the longitudinal direction (Y-axis direction) of the head 4. They may be irradiated sequentially. Further, for example, in the observation step (step S102 in FIG. 7), while the observation device 6 is moved in the longitudinal direction (Y-axis direction) of the head 4, the ejection holes 405h (see FIG. 7) located in a plurality of irradiation areas of the ejection surface 4s 6) may be sequentially observed by the observation device 6 . By moving the light source 5 and the observation device 6 in conjunction with each other in this manner, the observer O can sequentially detect liquid leakage from the plurality of ejection holes 405h.
 また、上述した実施形態では、吐出面4sの全ての吐出孔405hに関して光の照射及び観測が行われる場合の例について説明した。開示の技術は、これに限らず、吐出面4sの複数の吐出孔405hに含まれる一部の吐出孔群に関して光の照射及び観測が行われてもよい。かかる場合、例えば、照射工程(図7のステップS101)では、吐出面4sの複数の吐出孔405hのうち、ヘッド4内部の液体の流れ方向における最も上流側に位置する吐出孔405hを含む吐出孔群に対して光が照射されてもよい。ここで、最も上流側とは、ヘッド4に対して液体が供給される供給側であり、ヘッド4内部の流路(図5又は図6参照)において最も圧力が高い側(又は、最も供給口Pinに近い側)であるともいえる。また、例えば、観測工程(図7のステップS102)では、光の照射を受けた吐出孔群が観測機器6によって観測されてもよい。このように、ヘッド4内部の液体の流れ方向における最も上流側に位置する吐出孔405hを含む吐出孔群に関してのみ、光の照射及び観測が行われることで、観測者Oの作業負担を軽減することができる。 Further, in the above-described embodiment, an example has been described in which light irradiation and observation are performed with respect to all the ejection holes 405h of the ejection surface 4s. The technology disclosed herein is not limited to this, and light irradiation and observation may be performed with respect to a part of the ejection hole group included in the plurality of ejection holes 405h of the ejection surface 4s. In such a case, for example, in the irradiation step (step S101 in FIG. 7), among the plurality of ejection holes 405h of the ejection surface 4s, the ejection holes including the ejection hole 405h located on the most upstream side in the liquid flow direction inside the head 4 are exposed. Light may be applied to the group. Here, the most upstream side is the supply side to which the liquid is supplied to the head 4, and the side where the pressure is the highest in the flow path (see FIG. 5 or FIG. 6) inside the head 4 (or the most supply port). It can also be said that it is the side close to Pin ). Further, for example, in the observation step (step S102 in FIG. 7), the observation device 6 may observe the discharge hole group irradiated with light. In this way, only the ejection hole group including the ejection hole 405h located on the most upstream side in the liquid flow direction inside the head 4 is irradiated with light and observed, thereby reducing the work burden on the observer O. be able to.
 また、上述した実施形態では、観測者Oによって検知工程(図7のステップS103)が実行される場合の例について説明した。開示の技術は、これに限らず、制御部13による制御に従って検知工程が実行されてもよい。この場合、液体吐出装置1は、反射鏡である観測機器6に映された吐出面4sの鏡像を画像データに変換する撮像素子を有してもよい。そして、制御部13は、かかる撮像素子から得られる画像データに対して画像解析処理を行い、画像解析結果を用いて吐出面4sから漏出した液体の影の有無を判定することにより、吐出面4sでの液体の漏出の有無を検知することができる。 Also, in the above-described embodiment, an example in which the observer O executes the detection step (step S103 in FIG. 7) has been described. The technology disclosed herein is not limited to this, and the detection process may be executed under the control of the control unit 13 . In this case, the liquid ejecting apparatus 1 may have an imaging device that converts a mirror image of the ejection surface 4s reflected on the observation device 6, which is a reflecting mirror, into image data. Then, the control unit 13 performs image analysis processing on the image data obtained from the image sensor, and determines whether or not there is a shadow of the liquid leaked from the ejection surface 4s using the image analysis result. It is possible to detect the presence or absence of liquid leakage in the
 また、上述した実施形態では、観測機器6が反射鏡である場合の例について説明した。開示の技術は、これに限らず、観測機器6は、撮像装置であってもよい。この場合、観測工程(図7のステップS102)では、撮像装置である観測機器6によって撮像された吐出面4sの撮像画像(第2観測結果の一例)が観測結果として提供されてもよい。吐出面4sの撮像画像は、例えば、図示しない表示装置などに提供されてもよい。そして、検知工程(図7のステップS103)では、吐出面4sの撮像画像に基づいて、吐出面4sでの液体の漏出の有無が検知されてもよい。 Also, in the above-described embodiment, an example in which the observation device 6 is a reflecting mirror has been described. The disclosed technology is not limited to this, and the observation device 6 may be an imaging device. In this case, in the observation step (step S102 in FIG. 7), a captured image (an example of a second observation result) of the ejection surface 4s captured by the observation device 6, which is an imaging device, may be provided as the observation result. A captured image of the ejection surface 4s may be provided to, for example, a display device (not shown). Then, in the detection step (step S103 in FIG. 7), presence or absence of leakage of liquid from the ejection surface 4s may be detected based on the captured image of the ejection surface 4s.
 また、ヘッド4として循環型の液体吐出ヘッドを用いて説明したが、非循環型の液体吐出ヘッドを用いてもよい。その場合、検知工程によって吐出面4sでの液体の漏出があると検知された場合、ヘッド4内部の液体の圧力を調整する圧力調整工程が実行されてもよい。具体的には、インクタンクの液面の高さを変えて調整することができる。 Also, although a circulation type liquid ejection head is used as the head 4 in the description, a non-circulation type liquid ejection head may be used. In this case, when the detecting step detects that the liquid leaks from the ejection surface 4s, a pressure adjusting step of adjusting the pressure of the liquid inside the head 4 may be performed. Specifically, it can be adjusted by changing the height of the liquid surface of the ink tank.
 以上のように、実施形態に係る液体検知方法は、照射工程(例えば、ステップS101)と、観測工程(例えば、ステップS102)と、検知工程(例えば、ステップS103)とを含む。照射工程は、液体を吐出する複数の吐出孔(例えば、吐出孔405h)が開口する吐出面(例えば、吐出面4s)を有するヘッド(例えば、ヘッド4)の吐出面に対して光源(例えば、光源5)によって斜め方向から光を照射する。観測工程は、光の照射を受けた吐出面を観測機器(例えば、観測機器6)によって観測する。検知工程は、観測機器による吐出面の観測結果に基づいて、吐出面での液体の漏出の有無を検知する。これにより、実施形態に係る液体検知方法によれば、吐出面での液体の漏出の有無を精度良く検知することができる。 As described above, the liquid detection method according to the embodiment includes an irradiation process (eg, step S101), an observation process (eg, step S102), and a detection process (eg, step S103). In the irradiation step, a light source (for example, A light source 5) emits light from an oblique direction. In the observation step, an observation device (for example, observation device 6) observes the ejection surface irradiated with light. In the detecting step, the presence or absence of leakage of liquid from the ejection surface is detected based on the result of observation of the ejection surface by an observation device. Thus, according to the liquid detection method according to the embodiment, it is possible to accurately detect the presence or absence of liquid leakage from the ejection surface.
 また、観測機器は、反射鏡であってもよい。観測工程は、反射鏡に映された吐出面の鏡像を観測結果として提供してもよい。検知工程は、吐出面の鏡像に基づいて、吐出面での液体の漏出の有無を検知してもよい。これにより、実施形態に係る液体検知方法によれば、観測者(例えば、観測者O)は、液体の影の有無を反射鏡に映された吐出面の鏡像において確認することで、吐出面での液体の漏出の有無を精度良く検知することができる。 Also, the observation equipment may be a reflector. The observation step may provide a mirror image of the ejection surface reflected on the reflecting mirror as an observation result. The detection step may detect the presence or absence of liquid leakage from the ejection surface based on the mirror image of the ejection surface. As a result, according to the liquid detection method according to the embodiment, an observer (for example, an observer O) confirms whether or not there is a shadow of the liquid in the mirror image of the ejection surface reflected by the reflecting mirror. The presence or absence of liquid leakage can be detected with high accuracy.
 また、観測工程は、平面視において、吐出面に照射される光の経路及び吐出面からの反射光の経路とは重ならない観測位置に向かって吐出面の鏡像を提供してもよい。これにより、実施形態に係る液体検知方法によれば、観測位置における観測者は、吐出面に照射される光及び吐出面からの反射光によって視界を遮られることなく、吐出面の鏡像を確認することができる。 In addition, the observation step may provide a mirror image of the ejection surface toward an observation position that does not overlap the path of the light applied to the ejection surface and the path of the reflected light from the ejection surface in plan view. Thus, according to the liquid detection method according to the embodiment, the observer at the observation position can confirm the mirror image of the ejection surface without being blocked by the light irradiated on the ejection surface and the reflected light from the ejection surface. be able to.
 また、ヘッドは、略直方体形状であってもよい。照射工程は、平面視において、ヘッドの短手方向(例えば、X軸方向)に沿って光を照射してもよい。観測工程は、平面視において、ヘッドの長手方向(例えば、Y軸方向)における観測位置に向かって吐出面の鏡像を提供してもよい。これにより、実施形態に係る液体検知方法によれば、観測位置における観測者は、吐出面に照射される光及び吐出面からの反射光によって視界を遮られることなく、吐出面の鏡像を確認することができる。 Also, the head may have a substantially rectangular parallelepiped shape. In the irradiation step, the light may be irradiated along the short direction of the head (for example, the X-axis direction) in plan view. The observation step may provide a mirror image of the ejection surface toward an observation position in the longitudinal direction of the head (eg, Y-axis direction) in plan view. Thus, according to the liquid detection method according to the embodiment, the observer at the observation position can confirm the mirror image of the ejection surface without being blocked by the light irradiated on the ejection surface and the reflected light from the ejection surface. be able to.
 また、観測機器は、撮像装置であってもよい。観測工程は、撮像装置によって撮像された吐出面の撮像画像を観測結果として提供してもよい。検知工程は、吐出面の撮像画像に基づいて、吐出面での液体の漏出の有無を検知してもよい。これにより、実施形態に係る液体検知方法によれば、観測者は、液体の影の有無を撮像装置によって撮像された吐出面の撮像画像において確認することで、吐出面での液体の漏出の有無を精度良く検知することができる。 Also, the observation equipment may be an imaging device. In the observation step, an image of the ejection surface captured by the imaging device may be provided as an observation result. In the detection step, presence or absence of leakage of liquid from the ejection surface may be detected based on a captured image of the ejection surface. As a result, according to the liquid detection method according to the embodiment, the observer can check whether or not there is a shadow of the liquid in the captured image of the ejection surface captured by the imaging device, thereby detecting whether or not the liquid leaks from the ejection surface. can be detected with high accuracy.
 また、照射工程は、吐出面に対して、光強度が最大となる波長が460nm以上620nm以下の範囲内である光を照射してもよい。これにより、実施形態に係る液体検知方法によれば、暗所視及び明所視での比視感度の低下が抑えられることから、吐出面の視認性が向上する。 Further, in the irradiation step, the ejection surface may be irradiated with light having a wavelength within a range of 460 nm or more and 620 nm or less at which the light intensity is maximum. As a result, according to the liquid detection method according to the embodiment, the visibility of the ejection surface is improved because the decrease in relative luminosity in scotopic vision and photopic vision is suppressed.
 また、照射工程は、吐出面に対して、10°以上80°以下の照射角度(例えば、照射角度θ)で光を照射してもよい。これにより、実施形態に係る液体検知方法によれば、吐出面の視認性を良好に保つことができる。 In the irradiation step, the ejection surface may be irradiated with light at an irradiation angle (for example, irradiation angle θ) of 10° or more and 80° or less. Thus, according to the liquid detection method according to the embodiment, it is possible to maintain good visibility of the ejection surface.
 また、ヘッドは、記録媒体(例えば、記録媒体M)に対して液体の吐出を行う吐出位置と、ヘッドのメンテナンス処理を行うメンテナンス位置との間で移動可能であってもよい。照射工程、観測工程及び検知工程は、ヘッドが吐出位置からメンテナンス位置に移動した後に、実行されてもよい。これにより、実施形態に係る液体検知方法によれば、メンテナンス位置においてヘッドのメンテナンス処理が行われる前に、吐出面での液体の漏出の有無を検知することができる。 Further, the head may be movable between an ejection position at which liquid is ejected onto a recording medium (for example, the recording medium M) and a maintenance position at which maintenance processing of the head is performed. The irradiation process, the observation process, and the detection process may be performed after the head moves from the ejection position to the maintenance position. Thus, according to the liquid detection method according to the embodiment, it is possible to detect the presence or absence of liquid leakage on the ejection surface before the head maintenance process is performed at the maintenance position.
 また、ヘッドは、略直方体形状であってもよい。照射工程は、ヘッドの長手方向(例えば、Y軸方向)に光源を移動させながら、吐出面の複数の照射領域に対して光源によって光を順次照射してもよい。観測工程は、ヘッドの長手方向(Y軸方向)に観測機器を移動させながら、吐出面の複数の照射領域に位置する吐出孔を観測機器によって順次観測してもよい。これにより、実施形態に係る液体検知方法によれば、観測者は、複数の吐出孔からの液体の漏出を順次検知することができる。 Also, the head may have a substantially rectangular parallelepiped shape. In the irradiation step, the light source may sequentially irradiate a plurality of irradiation areas of the ejection surface with light while moving the light source in the longitudinal direction of the head (for example, the Y-axis direction). In the observation step, the observation device may be moved in the longitudinal direction (Y-axis direction) of the head, and the observation device may sequentially observe the ejection holes positioned in the plurality of irradiation areas of the ejection surface. Thus, according to the liquid detection method according to the embodiment, the observer can sequentially detect the leakage of the liquid from the plurality of ejection holes.
 また、照射工程は、吐出面の複数の吐出孔のうち、ヘッド内部の液体の流れ方向における最も上流側に位置する吐出孔を含む吐出孔群に対して光を照射してもよい。観測工程は、光の照射を受けた吐出孔群を観測装置によって観測してもよい。これにより、実施形態に係る液体検知方法によれば、観測者の作業負担を軽減することができる。 Further, in the irradiation step, light may be applied to an ejection hole group including an ejection hole located on the most upstream side in the flow direction of the liquid inside the head, among the plurality of ejection holes on the ejection surface. In the observation step, the discharge hole group irradiated with light may be observed by an observation device. Thus, according to the liquid detection method according to the embodiment, it is possible to reduce the workload of the observer.
 また、実施形態に係る液体検知方法は、検知工程によって吐出面での液体の漏出があると検知された場合、吐出面のクリーニングを行うクリーニング工程をさらに含んでもよい。これにより、実施形態に係る液体検知方法によれば、吐出面から露出した液体を取り除くことができる。 Further, the liquid detection method according to the embodiment may further include a cleaning step of cleaning the ejection surface when the detection step detects that liquid has leaked from the ejection surface. Thus, according to the liquid detection method according to the embodiment, the liquid exposed from the ejection surface can be removed.
 また、実施形態に係る液体検知方法は、検知工程によって吐出面での液体の漏出があると検知された場合、ヘッド内部の液体の圧力を調整する圧力調整工程をさらに含んでもよい。これにより、実施形態に係る液体検知方法によれば、吐出面から露出した液体を取り除くことができる。 Further, the liquid detection method according to the embodiment may further include a pressure adjustment step of adjusting the pressure of the liquid inside the head when the detection step detects that the liquid has leaked from the ejection surface. Thus, according to the liquid detection method according to the embodiment, the liquid exposed from the ejection surface can be removed.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細及び代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲及びその均等物によって定義される総括的な発明の概念の精神又は範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspects of the invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and equivalents thereof.
1 液体吐出装置
2 搬送部
3 キャリッジ
4 ヘッド
4s 吐出面
5 光源
6 観測機器
7 第1レール
8 第2レール
9 第1移動部材
10 第2移動部材
11 第1支持部材
11a 第1回動軸
12 第2支持部材
12a 第2回動軸
13 制御部
405h 吐出孔
M 記録媒体
Reference Signs List 1 liquid ejection device 2 transportation unit 3 carriage 4 head 4s ejection surface 5 light source 6 observation device 7 first rail 8 second rail 9 first moving member 10 second moving member 11 first supporting member 11a first rotating shaft 12 2 Support member 12a Second rotating shaft 13 Control unit 405h Discharge hole M Recording medium

Claims (19)

  1.  液体を吐出する複数の吐出孔が開口する吐出面を有するヘッドの前記吐出面に対して光源によって斜め方向から光を照射する照射工程と、
     照射された前記吐出面を観測機器によって観測する観測工程と、
     前記観測機器による観測結果に基づいて、前記吐出面での前記液体の漏出の有無を検知する検知工程と
     を含む、液体検知方法。
    an irradiation step of irradiating light obliquely from a light source onto the ejection surface of a head having an ejection surface in which a plurality of ejection holes for ejecting liquid are opened;
    an observation step of observing the irradiated ejection surface with an observation device;
    and a detection step of detecting the presence or absence of leakage of the liquid from the ejection surface based on observation results obtained by the observation device.
  2.  前記観測機器は、反射鏡であり、
     前記観測工程は、
     前記反射鏡に映された前記吐出面の鏡像である第1観測結果を前記観測結果として提供し、
     前記検知工程は、
     前記第1観測結果に基づいて、前記吐出面での前記液体の漏出の有無を検知する、請求項1に記載の液体検知方法。
    The observation device is a reflector,
    The observation step includes
    providing, as the observation result, a first observation result that is a mirror image of the ejection surface reflected on the reflecting mirror;
    The detection step includes
    2. The liquid detection method according to claim 1, wherein presence or absence of leakage of said liquid from said ejection surface is detected based on said first observation result.
  3.  前記観測工程は、
     平面視において、前記吐出面に照射される前記光の経路及び前記吐出面からの反射光の経路とは重ならない観測位置に向かって前記吐出面の鏡像を提供する、請求項2に記載の液体検知方法。
    The observation step includes
    3. The liquid according to claim 2, which provides a mirror image of the ejection surface toward an observation position that does not overlap the path of the light applied to the ejection surface and the path of the reflected light from the ejection surface in plan view. Detection method.
  4.  前記ヘッドは、略直方体形状であり、
     前記照射工程は、
     平面視において、前記ヘッドの短手方向に沿って前記光を照射し、
     前記観測工程は、
     平面視において、前記ヘッドの長手方向における前記観測位置に向かって前記吐出面の鏡像を提供する、請求項3に記載の液体検知方法。
    The head has a substantially rectangular parallelepiped shape,
    The irradiation step includes
    irradiating the light along the lateral direction of the head in plan view;
    The observation step includes
    4. The method of detecting liquid according to claim 3, wherein in plan view, a mirror image of the ejection surface is provided toward the observation position in the longitudinal direction of the head.
  5.  前記観測機器は、撮像装置であり、
     前記観測工程は、
     前記撮像装置によって撮像された前記吐出面の撮像画像である第2観測結果を前記観測結果として提供し、
     前記検知工程は、
     前記第2観測結果に基づいて、前記吐出面での前記液体の漏出の有無を検知する、請求項1に記載の液体検知方法。
    The observation equipment is an imaging device,
    The observation step includes
    providing a second observation result, which is a captured image of the ejection surface captured by the imaging device, as the observation result;
    The detection step includes
    2. The liquid detection method according to claim 1, wherein presence or absence of leakage of said liquid from said ejection surface is detected based on said second observation result.
  6.  前記照射工程は、
     前記吐出面に対して、光強度が最大となる波長が460nm以上620nm以下の範囲内である前記光を照射する、請求項1~5のいずれか一つに記載の液体検知方法。
    The irradiation step includes
    The liquid detection method according to any one of claims 1 to 5, wherein the ejection surface is irradiated with the light having a wavelength of 460 nm or more and 620 nm or less at which the light intensity becomes maximum.
  7.  前記照射工程は、
     前記吐出面に対して、10°以上80°以下の照射角度で前記光を照射する、請求項1~6のいずれか一つに記載の液体検知方法。
    The irradiation step includes
    The liquid detection method according to any one of claims 1 to 6, wherein the ejection surface is irradiated with the light at an irradiation angle of 10° or more and 80° or less.
  8.  前記ヘッドは、記録媒体に対して液体の吐出を行う吐出位置と、前記ヘッドのメンテナンス処理を行うメンテナンス位置との間で移動可能であり、
     前記照射工程、前記観測工程及び前記検知工程は、前記ヘッドが前記吐出位置から前記メンテナンス位置に移動した後に、実行される、請求項1~7のいずれか一つに記載の液体検知方法。
    the head is movable between an ejection position for ejecting liquid onto a recording medium and a maintenance position for performing maintenance processing of the head;
    8. The liquid detection method according to claim 1, wherein said irradiation step, said observation step and said detection step are executed after said head moves from said discharge position to said maintenance position.
  9.  前記ヘッドは、略直方体形状であり、
     前記照射工程は、
     前記ヘッドの長手方向に前記光源を移動させながら、前記吐出面の複数の照射領域に対して前記光源によって光を順次照射し、
     前記観測工程は、
     前記ヘッドの長手方向に前記観測機器を移動させながら、前記吐出面の前記複数の照射領域に位置する前記吐出孔を前記観測機器によって順次観測する、請求項1~8のいずれか一つに記載の液体検知方法。
    The head has a substantially rectangular parallelepiped shape,
    The irradiation step includes
    sequentially irradiating light from the light source onto a plurality of irradiation areas of the ejection surface while moving the light source in the longitudinal direction of the head;
    The observation step includes
    9. The observation device according to claim 1, wherein the observation device sequentially observes the ejection holes positioned in the plurality of irradiation areas of the ejection surface while moving the observation device in the longitudinal direction of the head. liquid detection method.
  10.  前記照射工程は、
     前記吐出面の前記複数の吐出孔のうち、前記ヘッド内部の液体の流れ方向における最も上流側に位置する吐出孔を含む吐出孔群に対して前記光を照射し、
     前記観測工程は、
     前記光の照射を受けた前記吐出孔群を前記観測機器によって観測する、請求項1~8のいずれか一つに記載の液体検知方法。
    The irradiation step includes
    irradiating an ejection hole group including an ejection hole positioned most upstream in a liquid flow direction inside the head, among the plurality of ejection holes of the ejection surface, with the light;
    The observation step includes
    The liquid detection method according to any one of claims 1 to 8, wherein the observation device observes the ejection hole group irradiated with the light.
  11.  前記検知工程によって前記吐出面での前記液体の漏出があると検知された場合、前記吐出面のクリーニングを行うクリーニング工程をさらに含む、請求項1~10のいずれか一つに記載の液体検知方法。 11. The liquid detection method according to any one of claims 1 to 10, further comprising a cleaning step of cleaning the ejection surface when the detection step detects that the liquid has leaked from the ejection surface. .
  12.  前記検知工程によって前記吐出面での前記液体の漏出があると検知された場合、前記ヘッド内部の液体の圧力を調整する圧力調整工程をさらに含む、請求項1~10のいずれか一つに記載の液体検知方法。 11. The method according to any one of claims 1 to 10, further comprising a pressure adjusting step of adjusting the pressure of the liquid inside the head when it is detected by the detecting step that the liquid leaks from the ejection surface. liquid detection method.
  13.  液体を吐出する複数の吐出孔が開口する吐出面を有するヘッドと、
     前記吐出面に対して斜め方向から光を照射する光源と、
     前記吐出面の下方に位置し、照射された前記吐出面を観測する観測機器と
     を有する液体吐出装置。
    a head having an ejection surface in which a plurality of ejection holes for ejecting liquid are opened;
    a light source that irradiates the ejection surface with light from an oblique direction;
    an observation device positioned below the ejection surface for observing the illuminated ejection surface.
  14.  前記観測機器は、反射鏡である、請求項13に記載の液体吐出装置。 The liquid ejection device according to claim 13, wherein the observation device is a reflecting mirror.
  15.  前記観測機器は、撮像装置である、請求項13に記載の液体吐出装置。 The liquid ejection device according to claim 13, wherein the observation device is an imaging device.
  16.  前記ヘッドは、略直方体形状であり、
     前記ヘッドの短手方向に並べられ、且つ、前記ヘッドの長手方向に沿って延在する第1レール及び第2レールと、
     前記第1レールに沿って移動する第1移動部材と、
     前記第2レールに沿って移動する第2移動部材と
     をさらに有し、
     前記光源は、前記第1移動部材上に取り付けられ、
     前記観測機器は、前記第2移動部材上に取り付けられる、請求項13~15のいずれか一つに記載の液体吐出装置。
    The head has a substantially rectangular parallelepiped shape,
    a first rail and a second rail arranged in the lateral direction of the head and extending along the longitudinal direction of the head;
    a first moving member that moves along the first rail;
    a second moving member that moves along the second rail;
    the light source is mounted on the first moving member;
    16. The liquid ejecting apparatus according to any one of claims 13 to 15, wherein said observation device is mounted on said second moving member.
  17.  前記第1移動部材上に位置し、第1回動軸を介して前記光源を回動可能に支持する第1支持部材をさらに有し、
     前記光源が前記第1回動軸周りに回動することにより、前記吐出面に対して照射される前記光の照射角度が変更される、請求項16に記載の液体吐出装置。
    further comprising a first support member positioned on the first moving member and rotatably supporting the light source via a first rotation shaft;
    17. The liquid ejecting apparatus according to claim 16, wherein an irradiation angle of the light with which the ejection surface is irradiated is changed by rotating the light source around the first rotation axis.
  18.  前記第2移動部材上に位置し、第2回動軸を介して前記観測機器を回動可能に支持する第2支持部材をさらに有し、
     前記観測機器が前記第2回動軸周りに回動することにより、前記吐出面に対する前記観測機器の角度が変更される、請求項17に記載の液体吐出装置。
    further comprising a second support member positioned on the second moving member and rotatably supporting the observation device via a second rotation shaft;
    18. The liquid ejection device according to claim 17, wherein an angle of said observation device with respect to said ejection surface is changed by rotating said observation device around said second rotation axis.
  19.  前記ヘッドは、記録媒体に対して液体の吐出を行う吐出位置と、前記ヘッドのメンテナンスを行うメンテナンス位置との間で移動可能であり、
     前記第1レール及び前記第2レールは、平面視において、前記ヘッドの短手方向において、前記メンテナンス位置を挟む位置に位置する、請求項16~18のいずれか一つに記載の液体吐出装置。
    The head is movable between an ejection position at which liquid is ejected onto a recording medium and a maintenance position at which maintenance of the head is performed,
    19. The liquid ejecting apparatus according to claim 16, wherein said first rail and said second rail are located at positions sandwiching said maintenance position in a lateral direction of said head in plan view.
PCT/JP2023/007115 2022-02-28 2023-02-27 Liquid detection method and liquid discharge device WO2023163181A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-030339 2022-02-28
JP2022030339 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163181A1 true WO2023163181A1 (en) 2023-08-31

Family

ID=87766235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007115 WO2023163181A1 (en) 2022-02-28 2023-02-27 Liquid detection method and liquid discharge device

Country Status (1)

Country Link
WO (1) WO2023163181A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349635A (en) * 2004-06-09 2005-12-22 Olympus Corp Inspecting apparatus for liquid droplet discharging head and its inspection method
JP2009143071A (en) * 2007-12-13 2009-07-02 Brother Ind Ltd Liquid jet device
JP2018024131A (en) * 2016-08-09 2018-02-15 セイコーエプソン株式会社 Liquid droplet discharge device
JP2018034492A (en) * 2016-08-31 2018-03-08 東友科技股▲ふん▼有限公司Teco Image Systems Co.,Ltd. Ink jet printer and its inspection device
JP2021037714A (en) * 2019-09-04 2021-03-11 株式会社リコー Liquid level imaging device, device of discharging liquid
US20210122154A1 (en) * 2019-10-23 2021-04-29 Semes Co., Ltd. Droplet inspection module and droplet inspection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349635A (en) * 2004-06-09 2005-12-22 Olympus Corp Inspecting apparatus for liquid droplet discharging head and its inspection method
JP2009143071A (en) * 2007-12-13 2009-07-02 Brother Ind Ltd Liquid jet device
JP2018024131A (en) * 2016-08-09 2018-02-15 セイコーエプソン株式会社 Liquid droplet discharge device
JP2018034492A (en) * 2016-08-31 2018-03-08 東友科技股▲ふん▼有限公司Teco Image Systems Co.,Ltd. Ink jet printer and its inspection device
JP2021037714A (en) * 2019-09-04 2021-03-11 株式会社リコー Liquid level imaging device, device of discharging liquid
US20210122154A1 (en) * 2019-10-23 2021-04-29 Semes Co., Ltd. Droplet inspection module and droplet inspection method

Similar Documents

Publication Publication Date Title
US10391795B2 (en) Target transport apparatus and liquid ejecting apparatus
CN100335182C (en) Base plate treater, slit jet nozzle and mechanism for determining liquid filling degree and gas mixing degree in filled body
JP4331760B2 (en) Droplet discharge head inspection device and droplet discharge device
US9033454B2 (en) Liquid discharge device and liquid discharge method
US7909453B2 (en) Ultraviolet irradiation device and ink ejection device
JP6274207B2 (en) Inkjet recording apparatus and recording head maintenance method
US7677691B2 (en) Droplet jetting applicator and method of manufacturing coated body
JP7014933B2 (en) Printing machine
WO2023163181A1 (en) Liquid detection method and liquid discharge device
KR20060059187A (en) Film-forming apparatus and film-forming method
JP2000337840A (en) Marking device for inspection
JP2017227593A (en) Ink jet recording device and method for detecting abnormality of the ink jet recording device
JP5262494B2 (en) Fluid ejection device
JP4715917B2 (en) Liquid ejection device
JP6333065B2 (en) Coating device
JP6412356B2 (en) Cleaning device
JP2013193431A (en) Liquid ejecting apparatus and maintenance method
JP2013071292A (en) Liquid droplet discharge device and maintenance method therefor
CN115103776B (en) Test device
JP5008066B2 (en) Ink coating method and ink coating apparatus
JP2004114613A (en) Wiper for cleaning discharge head and liquid discharge device
JP2011131483A (en) Discharge inspection method of inkjet head, discharge inspection device of inkjet head, and liquid droplet discharging apparatus equipped with the same
JP2016074176A (en) Inkjet head and inkjet printer
JP4337343B2 (en) Droplet ejection apparatus and electro-optic device manufacturing method
KR102187198B1 (en) Apparatus and method for printing substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760179

Country of ref document: EP

Kind code of ref document: A1