WO2023163178A1 - Management system, air-conditioning equipment management method, and program - Google Patents

Management system, air-conditioning equipment management method, and program Download PDF

Info

Publication number
WO2023163178A1
WO2023163178A1 PCT/JP2023/007088 JP2023007088W WO2023163178A1 WO 2023163178 A1 WO2023163178 A1 WO 2023163178A1 JP 2023007088 W JP2023007088 W JP 2023007088W WO 2023163178 A1 WO2023163178 A1 WO 2023163178A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
temperature
data
set temperature
operation data
Prior art date
Application number
PCT/JP2023/007088
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 米津
尾上 紗野 津田
岳 林田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023163178A1 publication Critical patent/WO2023163178A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air

Definitions

  • the present disclosure relates to a management system, an air conditioner management method, and a program.
  • Patent Document 1 discloses a temperature control device for an air conditioner that controls so that the set temperature of the air conditioner changes stepwise according to changes in the outside air temperature.
  • the present disclosure provides a management system that enables maintenance of comfort in a space to be conditioned and suppression of energy consumption of air conditioners.
  • the management system in the present disclosure includes a setting unit that sets a set temperature for an air conditioner, an acquisition unit that acquires operation data indicating a temperature change operation for changing the set temperature of the air conditioner, and the acquisition unit for a predetermined period of time.
  • a determination unit that determines whether the acquired operation data acquired by satisfies the conditions necessary for the process of determining control parameters for executing control of the air conditioner; a processing unit that determines the control parameters including at least the set temperature of the air conditioner based on the acquired operation data when it is determined that the operation data satisfies the condition;
  • the setting unit changes the temperature setting of the air conditioner, and the acquisition unit acquires the operation data.
  • the management system in the present disclosure can acquire sufficient data regarding the operation of changing the set temperature of the air conditioner in order to determine the control parameters of the air conditioner. Therefore, appropriate control parameters can be determined for control of the air conditioner.
  • FIG. 1 shows the configuration of the management system
  • Figure 2 is a block diagram of the management server
  • FIG. 3 is a flow chart showing the operation of the management system
  • FIG. 4 is a sequence diagram showing operation data acquisition processing.
  • FIG. 5 is a flowchart showing operation data determination processing
  • Figure 6 is a chart showing an example of a regression line
  • FIG. 7 is a flowchart showing an example of control parameter generation processing
  • Figure 8 is a chart showing an example of a regression line
  • FIG. 9 is a flowchart showing another example of control parameter generation processing
  • FIG. 10 is a flowchart showing another example of control parameter generation processing
  • FIG. 11 is an explanatory diagram showing how the air conditioner operates based on the control parameters.
  • FIG. 12 is a sequence diagram showing the operation of the management system
  • FIG. 13 is a diagram showing an example of display data based on comparison data
  • FIG. 14 is a diagram showing another example of display data based on comparison data;
  • the subject of the present disclosure has been constructed.
  • the inventors have also discovered that when the set temperature of the air conditioner is changed, there is a general tendency to seek excessive comfort, and the energy consumption of the air conditioner tends to increase. , came to constitute the subject matter of the present disclosure in order to solve the problem.
  • excessively seeking comfort means, for example, setting the set temperature unnecessarily low during cooling operation and setting the set temperature unnecessarily high during heating operation.
  • the present disclosure provides a management system capable of maintaining the comfort of the space to be conditioned and suppressing the energy consumption of the air conditioner.
  • FIG. 1 is a diagram showing the configuration of a management system 1000.
  • the management system 1000 is a management system for the air conditioners 10 that includes a management server 100 that is communicatively connected to a plurality of air conditioners 10 and that uses the management server 100 to set the operation of the air conditioners 10 .
  • the air conditioners 10 to be managed by the management server 100 need only be connected to the management server 100 so as to be communicable. There are no restrictions on the number of air conditioners 10 connected to the management server 100 and the installation locations of the air conditioners 10 .
  • the air conditioner 10A installed in the facility 1A, the air conditioner 10B installed in the facility 1B, the air conditioner 10C installed in the facility 1C, and the air conditioner installed in the facility 1D 10D is shown.
  • the air conditioners 10A, 10B, 10C, and 10D are referred to as the air conditioner 10 when not distinguished.
  • the air conditioner 10 will be described assuming a package air conditioner or a room air conditioner that operates on electric power, but the air conditioner 10 is a GHP (gas heat pump) type air conditioner that operates on gas energy. There may be.
  • Facilities 1A, 1B, 1C, and 1D have harmonized spaces.
  • the conditioned space is a space that is air-conditioned by the air conditioner 10 .
  • facilities 1A, 1B, 1C, and 1D are not distinguished, they are referred to as facility 1.
  • the space to be harmonized in the facility 1 may be the entire building, or may be a partitioned space inside the building.
  • the scale and type of the facility 1 and the space to be harmonized are not limited. Spaces to be harmonized are, for example, houses, offices, shops, medical facilities, public facilities, or other facilities.
  • Air conditioning of a room to be conditioned includes heating, cooling, dehumidification, blowing, and ventilation.
  • the management server 100 may be composed of one server computer, or may be configured so that a plurality of server computers function as the management server 100.
  • the management server 100 may be a so-called cloud server.
  • the communication network N is a communication line that includes a dedicated line, a public line network, the Internet, etc.
  • the communication network N may include network devices (not shown) such as Wi-Fi (registered trademark) routers, switches, routers, gateways, and various server devices. Also, the communication network N may include wireless base stations installed by communication carriers.
  • the management system 1000 includes a device used by an administrator who manages the air conditioner 10.
  • the management system 1000 includes a terminal device 5 and a mobile terminal device 7 as examples of devices used by the administrator.
  • the terminal device 5 and the mobile terminal device 7 have a function of communicating with the management server 100 .
  • Specific configurations of the terminal device 5 and the mobile terminal device 7 are not limited.
  • the terminal device 5 may be a PC (Personal Computer), a smart phone, a tablet computer, a wearable terminal such as a smart watch.
  • the number of terminal devices 5 and mobile terminal devices 7 included in the management system 1000 is not limited.
  • the terminal device 5 shown in FIG. 1 is a laptop PC and has a display 71 .
  • the mobile terminal device 7 is a smart phone and has a display 71 that functions as a touch panel. Based on the data generated by the management server 100, the terminal device 5 and the mobile terminal device 7 display information on the power consumption and usage state of the air conditioner 10 on the displays 51 and 71.
  • FIG. 1 The terminal device 5 shown in FIG. 1 is a laptop PC and has a display 71 .
  • the mobile terminal device 7 is a smart phone and has a display 71 that functions as a touch panel. Based on the data generated by the management server 100, the terminal device 5 and the mobile terminal device 7 display information on the power consumption and usage state of the air conditioner 10 on the displays 51 and 71.
  • the air conditioner 10A includes a control device 11, an outdoor unit 12, an indoor unit 13, an operation unit 14, a communication device 15, and an outside air temperature sensor 18.
  • Air conditioners 10B, 10C, 10D and other air conditioners 10 are similarly configured. Note that the configuration of FIG. 1 is an example, and there is no limit to the number of outdoor units 12 and indoor units 13 provided in the air conditioner 10A.
  • the air conditioner 10A may be configured to air-condition a plurality of spaces in the facility 1A using a plurality of indoor units 13 .
  • the outdoor unit 12 includes a compressor, various valves such as a four-way valve and an on-off valve, an outdoor heat exchanger, and a refrigerant circuit connecting them.
  • the indoor unit 13 includes various valves such as an expansion valve and an on-off valve, an indoor heat exchanger, and a refrigerant circuit connecting these. The refrigerant circuit of the outdoor unit 12 and the refrigerant circuit of the indoor unit 13 are connected.
  • the control device 11 is connected to the outdoor unit 12, the indoor unit 13, the operating unit 14, and the outdoor temperature sensor 18.
  • the control device 11 controls the operation of the compressor provided in the outdoor unit 12 and the opening and closing of the valves provided in the outdoor unit 12 and the indoor unit 13 so that the temperature of the space to be conditioned reaches the set target temperature.
  • the air conditioner 10 is operated.
  • the control device 11 includes, for example, a memory and a processor, and the processor controls the air conditioner 10A according to data stored in the memory by executing a program stored in the memory.
  • the processor of controller 11 is, for example, a microcontroller integrated with memory.
  • the control device 11 corresponds to an example of a control unit in the present disclosure.
  • An outside air temperature sensor 18 is connected to the control device 11 . It is a temperature sensor that detects the air temperature, and the detection method of the outside air temperature sensor 18 is not limited.
  • the outside air temperature sensor 18 is installed in the outdoor unit 12, for example.
  • the target temperature set in the air conditioner 10A will be referred to as the set temperature in the following description.
  • the operation unit 14 has switches and the like for operating the air conditioner 10A.
  • the operation unit 14 is, for example, a controller installed in the facility 1A. By operating the operation unit 14, it is possible to instruct the control device 11 to start and stop the operation of the air conditioner 10A, and to change the set temperature.
  • the control device 11 performs operations such as starting and stopping the operation of the air conditioner 10A and changing the set temperature according to the operation of the operation unit 14 .
  • a temperature change operation among the operations performed by the operation unit 14, an operation for changing the set temperature of the air conditioner 10 is called a temperature change operation.
  • the communication device 15 is a device that communicates with the management server 100 via the communication network N.
  • the communication device 15 is a device that connects to a communication network N via a public line network, a WAN (Wide Area Network), a LAN (Local Area Network), an IP communication line network, or the like, and performs data communication.
  • the communication device 15 may be a wireless communication device that connects to the communication network N by performing wireless communication such as a cellular communication system or Wi-Fi.
  • the communication device 15 receives setting data SD described later from the management server 100 and transmits operation data RD described later to the management server 100 .
  • the communication device 15 corresponds to an example of a transmitter in the present disclosure.
  • the air conditioners 10B, 10C, 10D and other air conditioners 10 included in the management system 1000 have the same configuration as the air conditioner 10A. These air conditioners 10 are provided with a control device 11 .
  • the control device 11 operates the outdoor unit 12 and the indoor unit 13 according to the operation of the operation unit 14, thereby air-conditioning the space to be conditioned.
  • the management server 100 transmits the setting data SD to the air conditioners 10 connected to the management server 100. All the air conditioners 10 managed by the management server 100 share the operation related to the setting data SD and the operation data RD, which will be described later.
  • the setting data SD includes the temperature setting of the air conditioner 10, and more specifically, the temperature setting during the cooling operation and the temperature setting during the heating operation.
  • the control device 11 receives the setting data SD through the communication device 15 and operates the air conditioner 10 at the set temperature designated by the received setting data SD.
  • the setting data SD may include information regarding the temperature change operation. Specifically, the setting data SD may include information as to whether or not the temperature changing operation is permitted. The setting data SD may include information instructing to return the setting temperature to the temperature before the change when the control device 11 changes the setting temperature according to the temperature change operation. In this case, the setting data SD may include information specifying a time limit from when the set temperature is changed until the set temperature is returned to the temperature before the change.
  • the control device 11 determines whether or not to permit the temperature change operation according to the setting data SD.
  • the setting data SD designates that the temperature changing operation is permitted
  • the control device 11 changes the set temperature according to the temperature changing operation.
  • the management server 100 transmits to the air conditioner 10 a control parameter CP for determining the set temperature of the air conditioner 10 based on the outside air temperature detected by the outside air temperature sensor 18 by the control device 11 .
  • the control device 11 autonomously determines the set temperature of the air conditioner 10 based on the control parameter CP received by the communication device 15 .
  • the control parameter CP will be described later.
  • the set temperature of the air conditioner 10 is the temperature specified by the set data SD or the temperature determined by the control device 11 according to the control parameter CP. Further, in the air conditioner 10, it is allowed to change the set temperature according to the operation of the temperature change operation.
  • the control device 11 changes the set temperature in accordance with the temperature change operation, and after a predetermined time limit has elapsed since the set temperature was changed, the set temperature is returned to the temperature before the change.
  • the control device 11 generates operation data RD indicating that the temperature change operation has been accepted, and transmits the data to the management server 100 via the communication device 15 .
  • the operation data RD includes, for example, at least one of a facility ID and an air conditioner ID.
  • the facility ID is identification information that identifies each of the facilities 1A, 1B, 1C, 1D and other facilities 1.
  • the air conditioner ID is identification information that identifies each of the air conditioners 10A, 10B, 10C, 10D, and other air conditioners 10 .
  • the operation data RD includes the date and time when the temperature change operation was performed and the outside air temperature when the operation was performed.
  • the operation data RD may include the set temperature after change.
  • the management server 100 receives and stores the operation data RD transmitted by the air conditioner 10 . Based on the operation data RD, the management server 100 determines the control parameter CP used in the process of determining the set temperature of the air conditioner 10 corresponding to the outside air temperature. The management server 100 determines the control parameter CP for each facility 1 or each air conditioner 10 .
  • the indoor temperature of the space to be conditioned is affected by the outdoor temperature. Furthermore, the position and shape of the building, the position of the space to be harmonized in the building, the sunlight in the space to be harmonized, etc. affect the indoor temperature of the space to be harmonized. If the set temperature of the air conditioner 10 is determined based only on the outside air temperature without considering these influences, the possibility that the comfort of the space to be conditioned by the air conditioner 10 will be reduced cannot be ruled out.
  • the management system 1000 of this embodiment makes it possible to determine the set temperature of the air conditioner 10 according to the characteristics of the space to be conditioned. That is, the management server 100 generates, for each air conditioner 10, a control parameter CP for determining the set temperature of the air conditioner 10 based on the outside air temperature, and transmits the control parameter CP to the air conditioner 10.
  • the air conditioner 10 determines the set temperature from the outside air temperature detected by the outside air temperature sensor 18 according to the control parameter CP transmitted by the management server 100 .
  • the control parameters CP generated by the management server 100 are adapted to the conditions of each air conditioner 10 . Therefore, in each air conditioner 10, energy consumption can be suppressed while maintaining the comfort of the space to be conditioned.
  • FIG. 2 is a block diagram of the management server 100. As shown in FIG. The management server 100 has a control unit 110 and a server communication device 150 .
  • the control unit 110 includes a processor 120 and a memory 130.
  • the processor 120 is composed of a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), and other arithmetic processing units.
  • the memory 130 is a storage device that stores programs and data executed by the processor 120 in a non-volatile manner. Memory 130 may comprise magnetic storage devices, semiconductor storage devices, or other types of non-volatile storage devices. Specifically, the memory 130 has a HDD (Hard Disk Drive), a flash ROM (Read Only Memory), an SSD (Solid State Drive) composed of a flash ROM, and the like.
  • the memory 130 may include a RAM (Random Access Memory) forming a work area of the processor 120 .
  • Processor 120 is an example of a computer in this disclosure.
  • Memory 130 stores a control program 131 executed by processor 120 .
  • the control program 131 corresponds to an example of a program in this disclosure.
  • the memory 130 stores temperature setting data 132 , history DB (database) 133 , control parameters CP, and power consumption DB 135 . These are data that are processed or generated by processor 120 .
  • the temperature setting data 132 is data of the temperature setting of the air conditioner 10 .
  • the temperature setting data 132 includes the set temperature data included in the setting data SD.
  • the temperature setting data 132 may be data of a setting temperature common to all air conditioners 10 .
  • the temperature setting data 132 may include data of temperature setting that differs for each air conditioner 10 or each facility 1 .
  • the history DB 133 includes history of temperature change operations in the air conditioner 10 .
  • FIG. 2 shows a configuration example of the history DB 133.
  • the history DB 133 stores data of temperature changing operations performed in the air conditioner 10 .
  • the data stored in the history DB 133 is, for example, record format data in which air conditioner IDs and setting change histories are associated with each other. This configuration is an example, and in the records stored in the history DB 133, the facility ID may be associated with the setting change history instead of the air conditioner ID.
  • the record of the history DB 133 corresponds to one temperature change operation in one air conditioner 10.
  • the record of the history DB 133 includes the setting change date and time, the type of operation, the outside air temperature, the set temperature, and the set temperature after the change.
  • the setting change date and time is the date and time when the set temperature is changed according to the operation of the operation unit 14 and is substantially the same as the date and time when the control device 11 accepts the operation of the operation unit 14 .
  • the operation type indicates the operating state of the air conditioner 10 when the temperature changing operation is performed. In this embodiment, the operation type is either cooling or heating.
  • the outside air temperature is the outside air temperature when the temperature changing operation is performed.
  • the set temperature is the set temperature of the air conditioner 10 when the temperature change operation is performed. This set temperature is the temperature instructed by the management server 100 to the air conditioner 10 by means of the setting data SD.
  • the set temperature after change is the set temperature of the air conditioner 10 that has been changed as a result of the temperature change operation.
  • the history DB 133 includes the history of temperature change operations for each air conditioner 10 in association with the air conditioner ID.
  • the history DB 133 can store data received by the management server 100 throughout the year.
  • the control parameter CP is data for the control device 11 to autonomously determine the set temperature of the air conditioner 10 .
  • the control parameter CP may be data processed by the control device 11 .
  • the control parameter CP may be a program that defines the arithmetic processing executed by the control device 11 or an arithmetic expression for the arithmetic processing executed by the control device 11 .
  • the control parameter CP may include coefficients and constants used in arithmetic processing executed by the control device 11 .
  • the control parameter CP includes at least the set temperature of the air conditioner 10 corresponding to the outside air temperature or data for determining the set temperature.
  • the power consumption DB 135 stores data indicating the power consumption of the air conditioner 10 .
  • the power consumption DB 135 stores data indicating the power consumption in association with the air conditioner ID of the air conditioner 10, for example.
  • the data stored in the power consumption DB 135 is, for example, power consumption data for each day. Data delimiters can be changed as appropriate, and the data stored in the power consumption DB 135 may be power consumption data for each facility.
  • the processor 120 controls each part of the management server 100 by executing the control program 131 .
  • the processor 120 includes an acquisition unit 121, a determination unit 122, a setting unit 123, and a processing unit 124 as functional units. Each of these functional units is realized by the cooperation of software and hardware when the processor 120 executes the control program 131 .
  • a server communication device 150 is connected to the control unit 110 .
  • the server communication device 150 is a communication device connected to the communication network N.
  • the server communication device 150 includes, for example, a connector for connecting a communication cable, and an interface circuit for inputting/outputting signals through the connector.
  • the server communication device 150 may be a wireless communication device that includes an antenna and a wireless circuit and connects to the communication network N via a wireless communication line.
  • the acquisition unit 121 communicates with the air conditioner 10 through the server communication device 150 and receives the operation data RD from the air conditioner 10 .
  • the acquisition unit 121 adds data to the history DB 133 based on the operation data RD and updates the history DB 133 .
  • the acquisition unit 121 also communicates with the air conditioner 10 through the server communication device 150 and receives data on power consumption from the air conditioner 10 .
  • Acquisition unit 121 adds data to power consumption DB 135 based on the received data, and updates power consumption DB 135 .
  • the determination unit 122 determines whether the data acquired by the acquisition unit 121 satisfies the conditions necessary for the process of determining the control parameter CP. For example, the determination unit 122 determines whether or not the number of data acquired by the acquisition unit 121 is equal to or greater than the number required for the process of determining the control parameter CP.
  • the setting unit 123 sets the preset temperature of the air conditioner 10 .
  • the setting unit 123 generates setting data SD based on the temperature setting data 132 and transmits the setting data SD to the air conditioner 10 by the server communication device 150 .
  • the processing unit 124 generates the control parameter CP based on the data stored in the history DB 133. Generating the control parameter CP is synonymous with determining the control parameter CP.
  • the processing unit 124 for example, generates control parameters CP for each air conditioner 10 and stores them in the memory 130 .
  • the control parameter CP stored in the memory 130 is transmitted to the air conditioner 10 by the temperature setting data 132.
  • the processing unit 124 generates comparison data that compares the case where the air conditioner 10 operates not based on the control parameters CP and the case where the air conditioner 10 operates according to the control parameters CP.
  • the processing unit 124 generates comparison data in which power consumptions are compared based on data stored in the power consumption DB 135, for example.
  • the comparison data is the power consumption when the air conditioner 10 is operated at the set temperature specified by the setting data SD, and the power consumption when the set temperature is determined according to the control parameter CP. are data for comparison.
  • the comparison data is, for example, power consumption when the air conditioner 10 is operated at the set temperature specified by the setting data SD and power consumption when the set temperature is determined according to the control parameter CP. , including graphs and tables for visual comparison.
  • the comparison data is transmitted to one or both of the terminal device 5 and the mobile terminal device 7 and displayed on the display 51 or the display 71 .
  • FIG. 3 is a flow chart showing the operation of the management system 1000. As shown in FIG. In FIG. 3, the operations of steps SA1-SA2, SA4-SA9, SA11, SA13-SA15 are executed by the management server 100. FIG. The operations of steps SA3, SA10 and SA12 are executed by the management server 100 and the air conditioner 10. FIG.
  • the processing unit 124 determines control parameter generation conditions (step SA1).
  • the processing unit 124 generates a control parameter CP corresponding to each air conditioner 10 managed by the management server 100 .
  • the processing unit 124 also generates a control parameter CP for the heating operation and a control parameter CP for the cooling operation of the air conditioner 10 . Therefore, in step SA1, the processing unit 124 determines a control parameter generation condition, which is a condition regarding generation of the control parameter CP.
  • the control parameter generation condition includes the air conditioner ID of the air conditioner 10 to which the control parameter CP is applied.
  • the control parameter generation condition may include a driving type to which the control parameter CP is applied. The operation type is heating or cooling.
  • step SA1 identifies the air conditioner 10 for which the control parameter CP is to be generated.
  • the management server 100 can execute the operations of FIG. 3 in parallel for a plurality of air conditioners 10 .
  • the target for generating the control parameter CP is the air conditioner 10A.
  • the setting unit 123 transmits setting data SD including the temperature setting to the air conditioner 10A for which the control parameter CP is to be generated (step SA2).
  • Acquisition unit 121 executes an operation data acquisition process on air conditioner 10A (step SA3).
  • the operation data acquisition process is a process of acquiring operation data RD from the air conditioner 10A and accumulating it in the history DB 133 .
  • FIG. 4 is a sequence diagram showing the operation data acquisition process executed in step SA3 of FIG.
  • steps SB1 to SB4 indicate operations of the management server 100
  • steps SC1 to SC9 indicate operations of the air conditioner 10.
  • FIG. Here, an example in which the air conditioner 10A executes steps SC1 to SC9 will be described.
  • the control device 11 receives the setting data SD transmitted by the management server 100, and starts operating the air conditioner 10A according to the setting data SD (step SC1). During operation of the air conditioner 10A, the control device 11 determines whether or not there is a temperature change operation by the operation unit 14 (step SC2). When determining that the temperature change operation has not been performed (step SC2; NO), the control device 11 proceeds to step SC7, which will be described later.
  • step SC2 When the controller 11 determines that the temperature change operation has been performed (step SC2; YES), it changes the set temperature of the air conditioner 10A according to the temperature change operation (step SC3).
  • the control device 11 generates operation data RD including the content of the temperature change operation by the operation unit 14 (step SC4).
  • step SC5 The control device 11 determines whether or not the return timing for returning the set temperature has been reached (step SC5), and if the return timing has not been reached (step SC5; NO), the operation of the air conditioner 10A is continued. wait while
  • the return timing is determined, for example, by the time limit after the set temperature is changed according to the temperature change operation.
  • the time limit is designated, for example, by setting data SD. For example, if the time limit is 30 minutes, the control device 11 determines that the return timing has been reached 30 minutes after changing the set temperature in step SC3 (step SC5).
  • the return timing may be determined based on time. For example, the control device 11 may set the first hour on the hour after changing the set temperature as the return timing, or may set the second hour on the hour after changing the set temperature as the return timing. In this case as well, the return timing is specified by the setting data SD. This configuration can be applied when the control device 11 has an RTC (Real Time Clock) and can acquire the current time.
  • RTC Real Time Clock
  • step SC5 When the controller 11 determines that the return timing has been reached (step SC5; YES), the set temperature of the air conditioner 10A is returned to the set temperature before the change (step SC6).
  • the set temperature before change is the set temperature before the set temperature is changed in step SC3. After that, the controller 11 proceeds to step SC6.
  • step SC6 the control device 11 determines whether or not the transmission timing for transmitting the operation data RD has arrived (step SC7). If it is determined that the transmission timing has not been reached (step SC7; NO), the control device 11 returns to step SC2. If it is determined that the transmission timing has been reached (step SC7; YES), the control device 11 transmits the operation data RD to the management server 100 through the communication device 15 (step SC8).
  • the transmission timing is specified by the setting data SD or set in the control device 11 in advance.
  • the transmission timing may be one or more times of the day.
  • the control device 11 transmits the operation data RD once or multiple times a day.
  • the control device 11 generates the operation data RD corresponding to the temperature change operation performed before reaching the transmission timing, and transmits the operation data RD to the management server 100 .
  • the control device 11 may generate operation data RD including data relating to a plurality of temperature change operations, or may collectively transmit a plurality of operation data RD corresponding to one temperature change operation to the management server 100. good too.
  • the transmission timing may be once in a plurality of days, or may be in a longer cycle. Also, the transmission timing may be determined by the number of temperature change operations. For example, the transmission timing may be reached every time the temperature changing operation is performed a set number of times.
  • the acquisition unit 121 receives the operation data RD transmitted by the air conditioner 10A (step SB1). Acquisition unit 121 stores information included in received operation data RD in history DB 133 in association with the air conditioner ID of air conditioner 10A, and updates history DB 133 (step SB2).
  • control device 11 transmits data indicating the power consumption of the air conditioner 10A to the management server 100 (step SC9).
  • Acquisition unit 121 receives the power consumption data transmitted by air conditioner 10A (step SB3).
  • the acquisition unit 121 associates the received power consumption data with the air conditioner ID of the air conditioner 10A, stores the data in the power consumption DB 135, and updates the power consumption DB 135 (step SB4).
  • the air conditioner 10A operates according to the operation to start operation, the operation to end operation, and the temperature change operation by the operation unit 14, and repeats steps SC1 to SC10.
  • the frequency at which the control device 11 transmits the operation data RD matches the frequency at which the power consumption data is transmitted.
  • the timing of transmitting the power consumption data may be different from the timing of transmitting the operation data RD.
  • the control device 11 may transmit daily power consumption data of the air conditioner 10A to the management server 100 once a week or once a month in step SC9.
  • control device 11 may be configured to generate the operation data RD only for a temperature change operation instructing a temperature change in a specific direction among the temperature change operations.
  • the specific direction is, for example, a direction that enhances the comfort of the space to be conditioned by the air conditioner 10A.
  • the temperature change operation for instructing a temperature change in a specific direction is specifically a temperature change operation for changing the set temperature to a lower temperature during the cooling operation of the air conditioner 10A, and during the heating operation. is a temperature change operation that changes the set temperature to a higher temperature.
  • the specific direction may be a direction in which the power consumption of the air conditioner 10A increases.
  • step SC2 determines that the temperature change operation has been performed (step SC2; YES)
  • the control device 11 generates the operation data RD in step SC4 if the temperature change operation is to change the set temperature in a specific direction.
  • the control device 11 skips step SC4 when the temperature change operation is not an operation to change the set temperature in a specific direction.
  • the history DB 133 accumulates data related to temperature change operations in a specific direction.
  • the determination unit 122 determines whether or not a predetermined period of time has elapsed since the operation data acquisition process of step SA3 was started (step SA4).
  • the predetermined period is a preset period, and may be, for example, a period of one week, one month, several months, or longer.
  • step SA5 determines whether or not the amount of operation data RD acquired in step SA3 is excessive (step SA5).
  • the acquisition unit 121 and the air conditioner 10A repeatedly execute the operation data acquisition process of step SA3 until the predetermined period elapses.
  • the determination unit 122 determines whether or not the number of pieces of acquired operation data RD is too large before the predetermined period elapses.
  • the determination unit 122 compares, for example, a threshold value determined corresponding to the time from the start of the operation data acquisition process at step SA3 and the number of data items stored in the history DB 133.
  • step SA5 determines that the acquired data is not excessive (step SA5; NO)
  • the acquisition unit 121 returns to step SA3 and executes operation data acquisition processing with the air conditioner 10A.
  • the setting unit 123 changes the operating conditions of the air conditioner 10A (step SA6).
  • the operating conditions include the set temperature of the air conditioner 10A.
  • the operating conditions include the return timing of the air conditioner 10A.
  • the setting unit 123 transmits to the air conditioner 10A the setting data SD designating the operating conditions of the air conditioner 10A after the change.
  • the setting unit 123 changes the operating conditions so that the number of temperature change operations in the air conditioner 10A is reduced or is less likely to increase.
  • the operating conditions are changed so as to increase comfort in the space to be conditioned by the air conditioner 10A.
  • the set temperature is changed to a lower temperature when the air conditioner 10A is in cooling operation, and the set temperature is changed to a higher temperature during heating operation.
  • the setting unit 123 may delay the return timing. In this case, it takes longer for the set temperature changed by the temperature change operation to return to the temperature before the change, so the temperature change operation can be suppressed.
  • step SA7 the determination unit 122 executes operation data determination processing.
  • the operation data determination process is a process of determining whether the data included in the history DB 133 is sufficient data for determining the control parameter CP.
  • the determination unit 122 may use the number of temperature change operations as a criterion for determining whether the data is sufficient for determining the control parameter CP. In this case, the determining unit 122 determines in step SA7 whether or not the number of temperature change operations performed in a predetermined period is equal to or greater than a preset threshold value, thereby obtaining data acquired from the air conditioner 10A. determines whether or not satisfies the conditions. Then, in step SA7, if the number of temperature change operations performed in the predetermined period is less than the threshold, the determination unit 122 determines that the data acquired from the air conditioning apparatus 10A does not satisfy the conditions, and performs the operation in the predetermined period.
  • the number of temperature change operations performed in the air conditioning apparatus 10A during a predetermined period can be determined from the temperature change operation data included in the history DB 133 .
  • FIG. 5 is a flow chart showing the operation data determination process executed at step SA7 in FIG.
  • the determination unit 122 specifies an air conditioner ID to be subjected to determination processing (step SD1), and extracts setting change history data associated with the specified air conditioner ID from the history DB 133 (step SD2).
  • the determination unit 122 Based on the data extracted in step SD2, the determination unit 122 counts the number of temperature change operations for each day and for each outside temperature (step SD3). Thereby, the determination unit 122 associates the number of temperature change operations per day with the outside air temperature. The determination unit 122 performs a regression analysis on the correlation between the number of temperature change operations per day and the outside air temperature, and obtains a regression line (step SD4).
  • FIG. 6 is a chart showing an example of a regression line.
  • FIG. 6 is a scatter diagram plotting data with the horizontal axis representing outside air temperature and the vertical axis representing temperature change operation per day. Point P1 in the figure indicates the data collected in step SD3.
  • FIG. 6 shows an example of a regression line obtained by regression analysis by RG1.
  • the regression line RG1 is a straight line generated using the method of least squares, but this is an example.
  • the method of regression analysis in addition to the method of least squares, geometric mean regression, principal component regression, or other methods can be used, and any method that can obtain a regression line as an approximation can be used.
  • the determination unit 122 may simply perform a process of obtaining an approximate expression in step SD4.
  • the magnitude of the slope of the regression line RG1 indicates the degree to which the number of temperature change operations changes due to the outside temperature.
  • a large slope of the regression line RG1 indicates that the number of times of temperature change operation changes greatly depending on the outside air temperature.
  • the magnitude of the slope of the regression line RG1 means the magnitude of the absolute value of the slope.
  • the number of temperature change operations per day has a positive correlation with the outside temperature, but it is also possible that the number of temperature change operations has a negative correlation with the outside temperature. .
  • the determination unit 122 determines whether or not the slope of the regression line obtained in step SD4 is equal to or greater than a threshold (step SD5).
  • the threshold is a value preset in the control unit 110 and stored in the memory 130, for example. If the slope of the regression line is equal to or greater than the threshold (step SD5; YES), the determination unit 122 determines that the data acquired from the air conditioner 10A in the operation data acquisition process satisfies the conditions (step SD6), and Return to processing.
  • step SD7 determines that the data acquired from the air conditioner 10A does not satisfy the conditions (step SD7), and returns to the process of FIG. .
  • the determination unit 122 refers to the determination result of the operation data determination process (step SA8).
  • the processing unit 124 performs the control parameter generation process based on the data in the history DB 133. Execute (step SA9).
  • the control parameter generation process will be described later.
  • step SA10 the operation of the air conditioner 10A based on the control parameter CP is started (step SA10).
  • the setting unit 123 transmits the control parameter CP generated in step SA9 to the air conditioner 10A, and the air conditioner 10A receives the control parameter CP.
  • the control device 11 detects the outside air temperature with the outside air temperature sensor 18 and applies the outside air temperature to the control parameter CP to determine the set temperature of the air conditioner 10A.
  • the control device 11 performs operation based on the set temperature determined by the control parameter CP.
  • step SA8 When it is determined in the operation data determination process that the data does not satisfy the conditions (step SA8; NO), the setting unit 123 changes the operating conditions of the air conditioner 10A (step SA11). The details of the operating conditions are as described for step SA6.
  • step SA11 the operating conditions of the air conditioner 10A in the operation data acquisition process are changed so as to facilitate acquisition of the operation data RD. That is, the setting unit 123 changes the operating conditions so that the number of temperature change operations in the air conditioner 10A is increased. This change is to change the operating conditions so that the comfort in the conditioned space of the air conditioner 10A is lowered. For example, the set temperature is changed to a higher temperature when the air conditioner 10A is in cooling operation, and the set temperature is changed to a lower temperature during heating operation. Also, the setting unit 123 may advance the return timing. In this case, since the time required for the set temperature changed by the temperature change operation to return to the temperature before the change is shortened, the temperature change operation can be accelerated. At step SA11, the setting unit 123 transmits to the air conditioner 10A the setting data SD designating the operating conditions of the air conditioner 10A after the change.
  • the acquisition unit 121 executes operation data acquisition processing similar to that of step SA7 (step SA12). After that, the determination unit 122 determines whether or not a predetermined period of time has passed since the operation data acquisition process of step SA12 was started (step SA13). The predetermined period is the same as step SA4.
  • step SA13 determines that the predetermined period has not elapsed (step SA13; NO)
  • the process returns to step SA12.
  • the acquisition unit 121 and the air conditioner 10A repeatedly execute the operation data acquisition process of step SA12 until the predetermined period elapses.
  • step SA13 When determining that the predetermined period has passed (step SA13; YES), the determination unit 122 executes the operation data determination process in the same manner as in step SA7 (step SA14). After that, the determination unit 122 refers to the determination result of the operation data determination process (step SA15).
  • step SA15 when it is determined that the data acquired from the air conditioner 10A in the operation data acquisition process does not satisfy the conditions (step SA15; NO), the control unit 110 returns to step SA12.
  • control unit 110 may return to step SA11 and change the operating conditions by setting unit 123 . Specifically, the operating conditions of the air conditioner 10A in the operation data acquisition process may be further changed so that the operation data RD can be acquired more easily.
  • step SA15 If it is determined in the operation data acquisition process that the data acquired from the air conditioner 10A satisfies the conditions (step SA15; YES), the processing unit 124 proceeds to step SA9 and executes the control parameter generation process (step SA9).
  • FIG. 7 is a flow chart showing an example of control parameter generation processing executed in step SA9 of FIG.
  • the processing unit 124 identifies the air conditioner ID of the air conditioner 10 to which the control parameter CP is applied (step SE1).
  • the air conditioner ID of the air conditioner 10A is specified.
  • Processing unit 124 extracts data corresponding to the air conditioner ID specified in step SE1 from history DB 133 (step SE2).
  • the processing unit 124 further extracts the outside air temperature and the set temperature changed by the temperature change operation from the data extracted in step SE2 (step SE3).
  • the set temperature changed by the temperature change operation is called the changed temperature.
  • the processing unit 124 performs a regression analysis for obtaining a correlation between the outside air temperature and the changed temperature, and obtains a regression line (step SE4).
  • the method of regression analysis is as described in step SD4, and as an example, a process of obtaining an approximate expression by the method of least squares can be adopted.
  • FIG. 8 is a chart showing an example of a regression line, showing an example of the regression line calculated in step SE4 of FIG.
  • FIG. 8 is a scatter diagram plotting data with the outside air temperature on the horizontal axis and the average set temperature of the air conditioner 10A on the vertical axis.
  • the set temperature on the vertical axis is the set temperature after being changed by the temperature change operation in the air conditioner 10A.
  • the set temperature value plotted in the chart of FIG. 7 may be an average value obtained by averaging a plurality of changed set temperature values corresponding to one outside air temperature.
  • a point P2 in the figure indicates the data extracted in step SE3.
  • the regression line RG2 is a straight line generated using the method of least squares, but this is an example.
  • the method of regression analysis in addition to the method of least squares, geometric mean regression, principal component regression, or other methods can be used, and any method that can obtain a regression line as an approximation can be used.
  • the processing unit 124 may simply perform a process of obtaining an approximate expression in step SE4.
  • a regression line RG2 indicates the correlation between the outside air temperature and the set temperature of the air conditioner 10A set by operating the operation unit 14. For example, when the set temperature is set to a low temperature while the outside air temperature is high, this indicates that the person in the space to be harmonized feels that the space to be harmonized is hot.
  • the processing unit 124 uses the regression line obtained in step SE4 to calculate the recommended set temperature for each outside air temperature (step SE5).
  • the processing unit 124 generates a control parameter CP that enables the control device 11 to obtain the recommended set temperature based on the outside air temperature (step SE6).
  • the processing unit 124 stores the generated control parameter CP in the memory 130 in association with the air conditioner ID of the air conditioner 10A (step SE7).
  • the control parameter CP thus generated reflects the correlation between the set temperature set by the person in the space to be harmonized and the outside air temperature, as shown in FIG.
  • the control parameter CP is a parameter that determines the set temperature of the air conditioner 10A so as to operate the air conditioner 10A so as to reduce the energy consumption of the air conditioner 10A.
  • the air conditioner 10A uses the control parameter CP generated in the process of FIG. 7 to determine the set temperature of the air conditioner 10A based on the outside air temperature detected by the outside air temperature sensor 18.
  • the air conditioner 10A can perform control suitable for the environment of the space to be conditioned by the air conditioner 10A by using the control parameter CP generated using the operation data RD generated by the air conditioner 10A. Therefore, the air conditioner 10A can be operated including the influence of the environment of the building including the space to be conditioned and the sunlight in the space to be conditioned, thereby maintaining the comfort of the space to be conditioned. Furthermore, since the set temperature of the air conditioner 10A can be prevented from being set to an excessively low or high temperature, the energy consumption of the air conditioner 10A can be suppressed while maintaining the comfort of the conditioned space.
  • the number of times the operation in FIG. 3 is executed in the management system 1000 is not limited to one.
  • the management system 1000 may perform the operation of FIG. 3 when the air conditioner 10 performs the cooling operation, generate control parameters CP for the cooling operation, and apply them to the air conditioner 10 .
  • the operation of FIG. 3 is started at the timing when the air conditioner 10 starts the cooling operation.
  • the management system 1000 may perform the operation of FIG. 3 when the air conditioner 10 starts heating operation, generate control parameters CP for heating operation, and apply them to the air conditioner 10. .
  • the processing unit 124 can generate the control parameter CP for the cooling operation by extracting and using the data during the cooling operation from the history DB 133, and similarly generates the control parameter CP for the heating operation. can also
  • the management system 1000 may perform the operation of FIG. 3 while the air conditioner 10 is operating using the control parameters CP.
  • steps SA1 and SA2 can be omitted.
  • the operation of FIG. 3 may be performed at intervals of one year, two years, or more.
  • the control parameter CP can be updated in response to changes in the environment of the space to be harmonized and changes in the mode of use of the space to be harmonized.
  • the space to be harmonized is the work place, it is possible to cope with the change of the person working in the space to be harmonized.
  • the operation of FIG. 3 may be executed and the control parameter CP may be updated at the timing designated by the operation of the operation unit 14 .
  • the control parameter CP can be updated according to the situation of the administrator who manages the air conditioner 10 and the user of the space to be conditioned.
  • the management system 1000 may use the management server 100 to manage the date when the control parameter CP was applied to each air conditioner 10 .
  • the management server 100 updates the control parameter CP for which a predetermined period of time has passed since it was applied, by the operation shown in FIG.
  • FIG. 9 is a flowchart showing another example of control parameter generation processing.
  • the operation of FIG. 9 is executed by the processing unit 124 instead of the operation shown in FIG.
  • steps SE1 to SE6 are common to the operation in FIG.
  • the processing unit 124 counts the number of temperature change operations for each outside temperature zone based on the data extracted in step SE2 (step SE11).
  • the processing unit 124 generates additional data to be added to the control parameter CP (step SE12).
  • step SE12 the processing unit 124 determines the allowable number of temperature change operations for each outside air temperature zone and the temperature range that can be changed by the temperature change operation, based on the number of times counted in step SE11. Then, the processing unit 124 generates additional data indicating the determined allowable number of times and the temperature range.
  • the processing unit 124 updates the control parameter CP by adding the additional data generated in step SE12 to the control parameter CP generated in step SE6, and stores the updated control parameter CP in the memory 130 (step SE13).
  • the allowable number of temperature change operations determined in step SE12 refers to whether or not the air conditioner 10A allows temperature change operations, and the number of temperature change operations accepted by the air conditioner 10A per day or per predetermined time period. Point to the number of times.
  • the allowable number of temperature change operations may be, for example, once, three, five, or the like per day or per predetermined period of time.
  • the processing unit 124 can set the allowable number of temperature change operations to 0, that is, determine not to allow the temperature change operation.
  • the processing unit 124 determines the allowable number of temperature change operations for each outside air temperature zone.
  • the width of the outside air temperature zone may be determined appropriately, and may be, for example, a width of 5°C, 2°C, or 1°C.
  • the temperature range of the temperature change operation refers to the temperature range in which the set temperature of the air conditioner 10A can be changed by the temperature change operation.
  • the processing unit 124 has a first threshold T1 and a second threshold T2 as thresholds for the number of temperature change operations, where T1>T2.
  • T1 the number of times NT of temperature change operations counted in step SE11 is T1 ⁇ NT
  • processing unit 124 sets the temperature range that can be changed by the temperature change operation in the first outside air temperature zone to ⁇ 5°C.
  • the processing unit 124 determines the temperature range that can be changed by the temperature change operation in the second outside air temperature zone. shall be ⁇ 3°C.
  • the processing unit 124 adjusts the temperature range that can be changed by the temperature change operation in the third outside air temperature zone. 1°C.
  • the processing unit 124 sets the changeable temperature range by the temperature change operation to 0 in the fourth outside air temperature zone. °C.
  • the control parameter CP may include a time limit from when the temperature change operation is performed until the set temperature is restored to the state before the change. That is, in addition to the temperature range that can be changed by the temperature changing operation, or instead of this, additional data indicating the time limit may be included in the control parameter CP.
  • the control parameter CP may specify a long time limit in association with the outside air temperature range in which the temperature change operation is performed frequently, and may specify a short time limit in association with the outside air temperature range in which the temperature change operation is performed frequently. good.
  • the time limit may be determined stepwise, for example, 30 minutes, 60 minutes, 120 minutes, and the like.
  • FIG. 10 is a flowchart showing another example of control parameter generation processing. The operation of FIG. 10 is executed by the processing unit 124 instead of the operation shown in FIG. 7 or 9. FIG.
  • steps SE1 to SE5 are common to the operation in FIG.
  • the processing unit 124 Based on the recommended set temperature calculated in step SE5, the processing unit 124 performs a process of generating a first control parameter CP (step SE21) and a process of generating a second control parameter CP (step SE22). Execute.
  • Both the first control parameter CP and the second control parameter CP enable the control device 11 in the air conditioner 10A to obtain the recommended set temperature based on the outside air temperature.
  • the first control parameter CP is used when the air conditioner 10A performs normal operation.
  • the second control parameter CP is used when the air conditioner 10A performs energy saving operation. That is, processing unit 124 generates control parameters CP for normal operation and control parameters CP for energy saving operation in steps SE21 and SE22.
  • the process of FIG. 10 is effective when the air conditioner 10A can switch between normal operation and energy saving operation by operating the operation unit 14 .
  • step SE24 the processing unit 124 determines the allowable number of temperature change operations for each outside air temperature zone and the temperature range that can be changed by the temperature change operation, based on the number of times counted in step SE22. This process is the same as step SE12. Furthermore, in step SE24, the processing unit 124 generates first additional data to be applied to the first control parameter CP and second additional data to be applied to the second control parameter CP.
  • the second additional data has a narrower range of temperature change operation than the first additional data.
  • the allowable number of temperature change operations in the same outside air temperature range is smaller than in the first additional data, and the changeable temperature range is narrow.
  • the processing unit 124 updates the control parameter CP and stores it in the memory 130 (step SE25).
  • the processing unit 124 updates the first control parameter CP by adding the first additional data to the first control parameter CP.
  • the second control parameter CP is updated by adding the second additional data to the second control parameter CP.
  • the processing unit 124 stores the updated first control parameter CP and second control parameter CP in the memory 130 in association with the air conditioner ID of the air conditioner 10A.
  • the manager of the air conditioner 10A switches the operating state of the air conditioner 10A between the normal operation and the energy-saving operation. set temperature can be set. As a result, the balance between the comfort of the space to be conditioned and the energy consumption can be changed according to the manager's request within a range that does not impair the comfort of the space to be conditioned by the air conditioner 10A.
  • steps SE21, SE22, and SE25 described in FIG. 10 can also be applied to steps SE6 and SE7 of FIG.
  • the control parameters CP for normal operation and energy-saving operation can be generated in a manner that does not include the allowable number of temperature change operations and the changeable temperature range.
  • the management server 100 generates control parameters CP suitable for each air conditioner 10, and operates the air conditioner 10 based on the control parameters CP.
  • each air conditioner 10 can reduce energy consumption while maintaining the comfort of the space to be conditioned.
  • FIG. 11 is an explanatory diagram showing how the air conditioner 10 operates based on the control parameters CP.
  • FIG. 11 shows an example of the set temperature of the air conditioner 10 that is set corresponding to the outside air temperature based on the control parameter CP. Further, FIG. 11 shows the set temperatures in the energy saving operation as a comparative example.
  • Air conditioners 1, 2, 3, and 4 in FIG. 11 indicate different air conditioners 10, respectively.
  • the air conditioner 1 refers to the air conditioner 10A.
  • the air conditioner 2 refers to the air conditioner 10B
  • the air conditioner 3 refers to the air conditioner 10C
  • the air conditioner 4 refers to the air conditioner 10D.
  • FIG. 11 shows, as an example, a case where the control parameter CP is applied during cooling operation.
  • the set temperature for energy-saving operation is, for example, 28°C regardless of the outside air temperature.
  • the air conditioner 10 can determine the set temperature suitable for the installation environment of the air conditioner 10 according to the outside air temperature.
  • the air conditioner 1 in FIG. 11 sets the set temperature to 25°C when the outside temperature is lower than 22°C, and sets the set temperature to 24°C when the outside temperature is 23°C or higher and lower than 26°C.
  • the air conditioner 2 sets the set temperature to 28°C when the outside air temperature is lower than 24°C.
  • Different control parameters CP are provided from the management server 100 to the air conditioners 10A, 10B, 10C, and 10D. Therefore, as illustrated in FIG. 11, each air conditioner 10 can determine different set temperatures for the same outside air temperature.
  • the set temperatures of the air conditioner 10 during the cooling operation shown in FIG. 11 are all lower than the set temperatures during the energy saving operation, comfort in the space to be conditioned is improved. Also, by changing the set temperature of the air conditioner 10 according to the outside air temperature, so-called excessive cooling can be avoided, and energy consumption of the air conditioner 10 can be suppressed. A similar effect can be obtained during heating operation.
  • the management system 1000 also has a function of visualizing changes in the energy consumption of the air conditioner 10 and the comfort of the space to be conditioned before and after applying the control parameter CP, and providing this to the administrator.
  • FIG. 12 is a sequence diagram showing the operation of the management system 1000.
  • FIG. Steps SF1 to SF7 in FIG. 12 show operations of the management server 100, and steps SG1 to SG3 show operations of the terminal device 5.
  • FIG. The mobile terminal device 7 may perform the operations of steps SG1 to SG3.
  • the terminal device 5 transmits a comparison data request to the management server 100 according to the operation of the administrator who uses the terminal device 5 (step SG1).
  • the comparison data request includes an air conditioner ID that identifies the air conditioner 10 for which comparison data is to be generated.
  • the comparison data request may specify the type of comparison data.
  • the types of comparison data include, for example, one or more of power consumption comparison and the number of temperature change operations. In the following description, a case where power consumption comparison is designated as the type of comparison data will be described.
  • the acquisition unit 121 receives the comparison data request transmitted by the terminal device 5 (step SF1).
  • Processing unit 124 identifies the air conditioner ID included in the comparison data request (step SF2).
  • the processing unit 124 extracts data corresponding to the specified air conditioner ID from the power consumption DB 135, thereby totaling the power consumption of the air conditioner 10 before applying the control parameter CP (step SF3).
  • the processing unit 124 Based on the data extracted from the power consumption DB 135, the processing unit 124 totals the power consumption of the air conditioner 10 after applying the control parameter CP (step SF4).
  • the processing unit 124 generates comparison data comparing before and after application of the control parameter CP based on the tabulation result of step SF3 and the tabulation result of step SF4 (step SF5).
  • the processing unit 124 generates display data based on the comparison data by performing processing for visualizing the comparison data (step SF6).
  • the processing unit 124 transmits the generated display data to the terminal device 5 that transmitted the comparison data request (step SF7).
  • the terminal device 5 receives the display data transmitted by the management server 100 (step SG2), and displays the display data on the display 51 (step SG3).
  • FIG. 13 is a diagram showing an example of display data based on comparison data.
  • FIG. 13 is a scatter diagram plotting data with the outside air temperature on the horizontal axis and the power consumption per day or per predetermined period on the vertical axis.
  • FIG. 13 shows comparison data comparing power consumption when the air conditioner 10A performs normal operation without using the control parameter CP, energy-saving operation without using the control parameter CP, and operation using the control parameter CP.
  • Normal operation is operation in a state in which temperature change operations can be executed without restriction by operating the operation unit 14 .
  • the energy-saving operation is an operation in which the set temperature of the air conditioner 10A is set to a temperature determined by the Ministry of Economy, Trade and Industry and the like.
  • the set temperature in energy saving operation is, for example, 28° C. during cooling operation and 20° C. during heating operation. In the energy-saving operation, the temperature change operation cannot be performed, or the number of temperature change operations or the changeable temperature range is more severely restricted than in the normal operation.
  • Point P3 in the figure indicates data for normal operation without control parameter CP, and point P4 indicates data for energy saving operation without control parameter CP. Point P5 indicates data for operation using the control parameter CP.
  • the data displayed in FIG. 13 includes a regression curve obtained by regression analysis to facilitate data comparison.
  • Symbol RG3 indicates a regression curve obtained by regression analysis of the data of point P3.
  • Symbol RG4 is a regression curve resulting from regression analysis of data at point P4, and symbol RG5 is a regression curve resulting from regression analysis of data at point P5.
  • the method of regression analysis can be the method of least squares, geometric mean regression, principal component regression, or other methods, and is appropriately selected as described above.
  • the regression curves RG3, RG4, RG5 may be straight lines.
  • the display data in FIG. 13 visualizes and presents to the administrator how the power consumption of the air conditioner 10A changes depending on whether the air conditioner 10A uses the control parameter CP or not. For example, it is shown that the air conditioner 10A uses the control parameter CP to reduce power consumption more than when the energy saving operation is performed without using the control parameter CP.
  • FIG. 14 is a diagram showing another example of display data based on comparison data.
  • FIG. 14 shows comparison data comparing the execution status of the temperature changing operation in the air conditioner 10A. That is, FIG. 14 is a scatter diagram plotting data with the outside air temperature on the horizontal axis and the number of temperature change operations per day or predetermined time on the vertical axis.
  • the data in FIG. 14 compare temperature changing operations when the air conditioner 10A performs normal operation without using the control parameter CP, energy saving operation without using the control parameter CP, and operation using the control parameter CP. .
  • a point P6 in the figure indicates data for normal operation without using the control parameter CP, and a point P7 indicates data for energy saving operation without using the control parameter CP. Point P8 indicates data for operation using the control parameter CP.
  • the data displayed in FIG. 14 includes a regression curve obtained by regression analysis to facilitate data comparison.
  • Symbol RG6 indicates a regression curve obtained by regression analysis of the data of point P6.
  • Symbol RG7 is a regression curve obtained by regression analysis of data at point P7, and symbol RG8 is a regression curve obtained by regression analysis of data at point P8. These regression curves are obtained by the processing unit 124 performing regression analysis in step SF5.
  • the display data in FIG. 14 visualizes and presents to the administrator the number of times the temperature change operation has been performed in the space to be conditioned for each of the cases where the air conditioner 10A uses the control parameter CP and where it does not.
  • the temperature changing operation is performed by a person in the space to be harmonized in order to improve the comfort of the space to be harmonized. Therefore, it can be considered that the greater the number of temperature change operations, the lower the comfort of the space to be harmonized. Also, from the viewpoint of energy saving, it is effective to limit the temperature changing operation, and the point P7 and the regression curve RG7 indicate that the temperature changing operation is limited in the energy saving operation.
  • the display data in FIGS. 13 and 14 are visualizations of data relating to any one of the air conditioners 10 connected to the management server 100.
  • FIG. This is just an example, and for example, data obtained by comparing power consumption or the number of temperature change operations in a plurality of air conditioners 10 may be visualized as one piece of display data and displayed on the displays 51 and 71. .
  • the management system 1000 obtains the setting unit 123 for setting the temperature setting for the air conditioner 10 and the operation data RD indicating the temperature change operation for changing the temperature setting for the air conditioner 10. and whether the acquired operation data RD acquired by the acquiring unit 121 in a predetermined period satisfies the conditions necessary for the process of determining the control parameter CP for executing the control of the air conditioner 10 and a control parameter CP including at least the set temperature of the air conditioner 10 based on the acquired operation data RD when it is determined that the acquired operation data RD satisfies the condition.
  • the setting unit 123 changes the set temperature of the air conditioner 10, and the acquiring unit 121 acquires the operation data RD.
  • the operation data RD can be efficiently acquired from the air conditioner 10 in order to generate the control parameters CP of the air conditioner 10 .
  • the management server 100 can acquire sufficient data regarding the temperature changing operation necessary for determining or generating the control parameter CP. Therefore, an appropriate control parameter CP can be generated for control of the air conditioner 10 .
  • the method for managing the air conditioner 10 sets the temperature setting for the air conditioner 10, acquires operation data RD indicating a temperature change operation for changing the temperature setting for the air conditioner 10, and acquires the operation data RD during a predetermined period. It is determined whether or not the acquired operation data RD satisfies the conditions necessary for the process of determining the control parameter CP for executing the control of the air conditioner 10, and the acquired operation data RD satisfies the conditions.
  • the control parameter CP including at least the set temperature of the air conditioner 10 is determined based on the acquired operation data RD, and if it is determined that the acquired operation data RD does not satisfy the condition , the set temperature of the air conditioner 10 is changed, and the operation data RD is acquired.
  • the operation data RD can be efficiently acquired from the air conditioner 10 in order to generate the control parameters CP of the air conditioner 10 . This makes it possible to obtain from the air conditioner 10 sufficient data regarding the temperature changing operation, which is necessary for determining or generating the control parameter CP. Therefore, an appropriate control parameter CP can be generated for control of the air conditioner 10 .
  • the control program 131 of this embodiment is a program that can be executed by the management server 100 that is a computer that manages the air conditioner 10 .
  • the control program 131 includes the management server 100 as a setting unit 123 that sets the temperature setting for the air conditioner 10, and an acquisition unit 121 that acquires operation data RD indicating a temperature change operation for changing the temperature setting for the air conditioner 10. determines whether or not the acquired operation data RD acquired by the acquisition unit 121 in a predetermined period satisfies the conditions necessary for the process of determining the control parameter CP for executing the control of the air conditioner 10.
  • a determination unit 122 determines a control parameter CP including at least the set temperature of the air conditioner 10 based on the acquired operation data RD. If the determining unit 122 determines that the acquired operation data RD does not satisfy the condition, the setting unit 123 changes the set temperature of the air conditioner 10, and the acquiring unit 124 A program for executing control for acquiring operation data RD. According to this program, the operation data RD can be efficiently acquired from the air conditioner 10 in order to generate the control parameters CP of the air conditioner 10 . This makes it possible to obtain from the air conditioner 10 sufficient data regarding the temperature changing operation, which is necessary for determining or generating the control parameter CP. Therefore, an appropriate control parameter CP can be generated for control of the air conditioner 10 .
  • the management system 1000 when the determination unit 122 determines that the acquired operation data RD does not satisfy the conditions, the management system 1000 causes the setting unit 123 to reduce the energy consumption of the air conditioner 10.
  • the operation data RD may be acquired by the acquisition unit 121 by changing the set temperature of the air conditioner 10 . Thereby, the set temperature is changed so that the temperature change operation of the air conditioner 10 is easily performed according to the acquisition status of the operation data RD. Therefore, it is possible to efficiently acquire the data necessary for determining the control parameter CP from the air conditioner 10 .
  • the control parameter CP includes data that associates the outside air temperature at the installation location of the air conditioner 10 with the set temperature of the air conditioner 10, and the air conditioner 10 sets according to changes in the outside temperature. It may be a parameter for executing control to change the temperature. Accordingly, by operating the air conditioner 10 according to the control parameter CP, the preset temperature of the air conditioner 10 can be appropriately set according to the environment and characteristics of the space to be conditioned by the air conditioner 10 . Therefore, it is possible to realize control of the air conditioner 10 that achieves both the comfort of the space to be conditioned and the suppression of the energy consumption of the air conditioner 10 .
  • the control parameter CP is the outside air temperature at the installation location of the air conditioner 10, the set temperature of the air conditioner 10, and the set temperature that can be changed by the air conditioner 10 according to the temperature change operation. It may be a parameter for the air conditioning apparatus 10 to execute control to change the set temperature in accordance with a change in the outside air temperature and a temperature change operation. As a result, it is possible to allow the temperature changing operation in the case of operating the air conditioner 10 according to the control parameter CP within an appropriate range. Therefore, the comfort of the space to be conditioned can be further enhanced, and the energy consumption of the air conditioner 10 can be reduced.
  • the management system 1000 when a temperature change operation is performed, changes the set temperature of the air conditioner 10 according to the temperature change operation, and changes the set temperature of the air conditioner 10. After a predetermined period of time has elapsed since then, the set temperature of the air conditioner 10 may be returned to the temperature before the temperature change operation was performed. As a result, it is possible to efficiently acquire the data necessary for determining the control parameter CP while maintaining the comfort of the harmonized space in a suitable state.
  • the management system 1000 changes the set temperature of the air conditioner 10 according to the temperature change operation, and after changing the set temperature of the air conditioner 10 At a predetermined timing, the set temperature of the air conditioner 10 may be returned to the temperature before the temperature change operation was performed.
  • the set temperature of the air conditioner 10 may be returned to the temperature before the temperature change operation was performed.
  • the processing unit 124 generates the control parameter CP for the heating operation based on the operation data RD acquired by the acquiring unit 121 while the air conditioner 10 is in the heating operation. may determine the control parameter CP for the cooling operation based on the operation data RD acquired by the acquiring unit 121 during the cooling operation. Thereby, the control parameter CP corresponding to each of the heating operation and the cooling operation of the air conditioner 10 can be determined. Therefore, both when the air conditioner 10 performs the heating operation and when the air conditioner 10 performs the cooling operation, an air conditioner that achieves both the comfort of the space to be conditioned and the suppression of the energy consumption of the air conditioner 10 Control of the device 10 can be realized.
  • the processing unit 124 determines the power consumption of the air conditioner 10 when the air conditioner 10 is operated using the control parameter CP, and the temperature change operation without using the control parameter CP. Accordingly, comparison data may be generated by comparing the power consumption of the air conditioner 10 when the air conditioner 10 is operated. As a result, the administrator or user of the air conditioner 10 can visually grasp the effect of suppressing energy consumption when using the control parameter CP.
  • the management system 1000 includes an air conditioner 10 and a management server 100 that can communicate with the air conditioner 10.
  • the air conditioner 10 includes an operation unit 14 that receives a temperature change operation, a temperature A communication device 15 that transmits operation data RD to the management server 100 based on a change operation, and a control device 11 that controls the air conditioner 10 based on the temperature setting data transmitted by the management server.
  • the set temperature of the air conditioner 10 may be changed based on the control parameter CP generated by the management server 100 and the outside air temperature at the installation location of the air conditioner 10 .
  • the management server 100 transmits the control parameter CP to the air conditioner 10, and the air conditioner 10 operates at the set temperature corresponding to the outside air temperature based on the control parameter CP given by the management server 100. Therefore, under the control of the management server 100, the set temperature of the air conditioner 10 can be appropriately set, so that both the comfort of the air-conditioned space and the suppression of the energy consumption of the air conditioner 10 can be achieved.
  • the configuration in which the outside air temperature is detected by the outside air temperature sensor 18 was exemplified, but this is an example.
  • the air conditioner 10 or the management server 100 uses a weather information distribution service provided by a cloud server or the like.
  • the data of the outside air temperature at the installation location of the facility 1 may be obtained. If the management server 100 is configured to be able to acquire outside temperature data, there is no need to include the outside temperature in the operation data RD. In this case, data on the outside air temperature may be transmitted from the management server 100 to the air conditioner 10 .
  • the configuration for performing linear regression is described as an example of the regression analysis performed by the determination unit 122 in step SD4 (FIG. 5) and the regression analysis performed by the processing unit 124 in step SE4 (FIG. 7). did.
  • the determination unit 122 and the processing unit 124 may perform, for example, processing to obtain a regression curve.
  • the process of comparing the slope of the regression line with the threshold in step SD5 can be replaced with the process of comparing the maximum value or average value of the slope of the regression curve with the threshold.
  • each air conditioner 10 includes the communication device 15 .
  • the plurality of air conditioners 10 are connected independently of the air conditioners 10 or to a communication device built in any one of the air conditioners 10, and communicate with the management server 100 through this communication device. may be configured to execute
  • each air conditioner 10 has a configuration including the control device 11 that determines the set temperature based on the control parameter CP.
  • a central controller that controls a plurality of air conditioners 10 may be provided.
  • the central controller may determine the set temperature of each air conditioner 10 according to the control parameter CP generated by the management server 100 corresponding to each of the plurality of air conditioners 10 .
  • the configuration of the communication unit in the present disclosure may be any configuration that enables communication between the device of the present disclosure and an external device.
  • communication means or communication unit or transmitting/receiving means or transmitting/receiving unit or similar terms are used to enable communication between the device of the present disclosure and an external device.
  • the communication device 15, the server communication device 150, and the communicators constituting the communication units (not shown) provided in the terminal device 5 or the mobile terminal device 7 can be implemented in various ways.
  • the communicator may be wired to connect to the external device, or wirelessly connected to the external device.
  • Wired connection communicators include, for example, a wired LAN based on the Ethernet (registered trademark) standard, and a wired connection using an optical fiber cable.
  • a communicator for wireless connection there are wireless connection with an external device via a base station or the like, direct wireless connection with an external device, and the like. Examples of wireless connections with external devices via base stations include wireless LANs compatible with IEEE802.11 that communicate wirelessly with Wi-Fi routers, third-generation mobile communication systems (commonly known as 3G), and fourth-generation mobile communication systems.
  • a communicator that directly wirelessly connects the device of the present disclosure and an external device is effective in improving the security of communication, and the device of the present disclosure can be used even in places where there is no relay device such as a Wi-Fi router.
  • Examples of communicators that directly wirelessly connect the device of the present disclosure and an external device include communication by Bluetooth (registered trademark), communication by NFC (Near Field Communication) via a loop antenna, infrared communication, and the like.
  • FIGS. 1 and 2 are examples, and the specific implementation is not particularly limited. In other words, it is not always necessary to mount hardware corresponding to each part individually, and it is of course possible to adopt a configuration in which one processor executes a program to realize the function of each part. Further, part of the functions implemented by software in the above-described embodiments may be implemented by hardware, or part of the functions implemented by hardware may be implemented by software. In addition, the specific detailed configurations of other units of the air conditioner 10, the management server 100, the terminal device 5, and the mobile terminal device 7 can be arbitrarily changed without departing from the scope of the present disclosure.
  • the management system, air conditioner management method, and program according to the present disclosure can be used to manage the operation of air conditioners.

Abstract

Provided is a management system capable of maintaining the level of comfort of an air-conditioned space and suppressing energy consumption of air-conditioning equipment. A management system according to the present disclosure comprises: a setting unit that sets a set temperature on air-conditioning equipment; an acquisition unit that acquires operation data indicating a temperature changing operation for changing the set temperature of the air-conditioning equipment; a determination unit that determines whether or not the acquired operation data, which was acquired by the acquisition unit within a predetermined period, satisfies a condition necessary for processing for determining control parameters for controlling the air-conditioning equipment; and a processing unit that, if the acquired operation data is determined to satisfy the condition, determines control parameters including at least the set temperature of the air-conditioning equipment on the basis of the acquired operation data. If the determination unit has determined that the acquired operation data does not satisfy the condition, the setting unit changes the set temperature of the air-conditioning equipment and the acquisition unit acquires operation data.

Description

管理システム、空気調和装置の管理方法、および、プログラムMANAGEMENT SYSTEM, AIR CONDITIONER MANAGEMENT METHOD, AND PROGRAM
 本開示は、管理システム、空気調和装置の管理方法、および、プログラムに関する。 The present disclosure relates to a management system, an air conditioner management method, and a program.
 特許文献1は、外気温度の変化に応じて空調機の設定温度が段階的に変化するように制御する空調機の温度制御装置を開示する。 Patent Document 1 discloses a temperature control device for an air conditioner that controls so that the set temperature of the air conditioner changes stepwise according to changes in the outside air temperature.
特開2005-061716号公報JP 2005-061716 A
 本開示は、被調和空間の快適性の維持と空気調和装置の消費エネルギーの抑制とを可能とする管理システムを提供する。 The present disclosure provides a management system that enables maintenance of comfort in a space to be conditioned and suppression of energy consumption of air conditioners.
 この明細書には、2022年2月28日に出願された日本国特許出願・特願2022-029429の全ての内容が含まれる。
 本開示における管理システムは、空気調和装置に設定温度を設定する設定部と、前記空気調和装置の設定温度を変更する温度変更操作を示す操作データを取得する取得部と、所定期間に前記取得部によって取得された、取得済みの前記操作データが、前記空気調和装置の制御を実行するための制御パラメータを決定する処理に必要な条件を満たすか否かを判定する判定部と、取得済みの前記操作データが前記条件を満たすと判定された場合に、取得済みの前記操作データに基づいて、少なくとも前記空気調和装置の設定温度を含む前記制御パラメータを決定する処理部と、を備え、取得済みの前記操作データが前記条件を満たさないと前記判定部が判定した場合に、前記設定部によって前記空気調和装置の設定温度を変更し、前記取得部によって前記操作データの取得を行う。
This specification includes all the contents of Japanese Patent Application/Japanese Patent Application No. 2022-029429 filed on February 28, 2022.
The management system in the present disclosure includes a setting unit that sets a set temperature for an air conditioner, an acquisition unit that acquires operation data indicating a temperature change operation for changing the set temperature of the air conditioner, and the acquisition unit for a predetermined period of time. a determination unit that determines whether the acquired operation data acquired by satisfies the conditions necessary for the process of determining control parameters for executing control of the air conditioner; a processing unit that determines the control parameters including at least the set temperature of the air conditioner based on the acquired operation data when it is determined that the operation data satisfies the condition; When the determination unit determines that the operation data does not satisfy the condition, the setting unit changes the temperature setting of the air conditioner, and the acquisition unit acquires the operation data.
 本開示における管理システムは、空気調和装置の制御パラメータを決定するために、空気調和装置の設定温度を変更する操作に関する十分なデータを取得できる。そのため、空気調和装置の制御に関して、適切な制御パラメータを決定できる。 The management system in the present disclosure can acquire sufficient data regarding the operation of changing the set temperature of the air conditioner in order to determine the control parameters of the air conditioner. Therefore, appropriate control parameters can be determined for control of the air conditioner.
図1は、管理システムの構成を示す図Figure 1 shows the configuration of the management system 図2は、管理サーバのブロック図Figure 2 is a block diagram of the management server 図3は、管理システムの動作を示すフローチャートFIG. 3 is a flow chart showing the operation of the management system 図4は、操作データ取得処理を示すシーケンス図FIG. 4 is a sequence diagram showing operation data acquisition processing. 図5は、操作データ判定処理を示すフローチャートFIG. 5 is a flowchart showing operation data determination processing 図6は、回帰直線の例を示す図表Figure 6 is a chart showing an example of a regression line 図7は、制御パラメータ生成処理の例を示すフローチャートFIG. 7 is a flowchart showing an example of control parameter generation processing 図8は、回帰直線の例を示す図表Figure 8 is a chart showing an example of a regression line 図9は、制御パラメータ生成処理の別の例を示すフローチャートFIG. 9 is a flowchart showing another example of control parameter generation processing 図10は、制御パラメータ生成処理の別の例を示すフローチャートFIG. 10 is a flowchart showing another example of control parameter generation processing 図11は、制御パラメータに基づく空気調和装置の運転の様子を示す説明図FIG. 11 is an explanatory diagram showing how the air conditioner operates based on the control parameters. 図12は、管理システムの動作を示すシーケンス図FIG. 12 is a sequence diagram showing the operation of the management system 図13は、比較データに基づく表示データの例を示す図FIG. 13 is a diagram showing an example of display data based on comparison data; 図14は、比較データに基づく表示データの別の例を示す図FIG. 14 is a diagram showing another example of display data based on comparison data;
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、空気調和装置が設置された建物の外気温度を検出し、外気温度の変化に応じて空気調和装置の設定温度を変化させる技術があった。
 しかしながら、外気温度は、被調和空間における快適性に影響する要素の一つに過ぎないから、外気温度に基づき空気調和装置の設定温度を変更したとしても、被調和空間の快適性が確保されない可能性が高い。そのため、被調和空間における快適性を確保するために、空気調和装置の設定温度が変更されることが多く、空気調和装置の消費エネルギーを抑制することが難しい、と言う課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。また、空気調和装置の設定温度が変更される場合には、一般的に快適性を過剰に求める傾向があり、空気調和装置の消費エネルギーが増加しやすい、と言う課題も発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。なお、快適性を過剰に求めるとは、例えば冷房運転の際には設定温度を必要以上に低くし、暖房運転の際には設定温度を必要以上に高くすることを指す。
 そこで、本開示は、被調和空間の快適性の維持と空気調和装置の消費エネルギーの抑制とを可能とする管理システムを提供する。
(Knowledge, etc. on which this disclosure is based)
At the time when the inventors came up with the present disclosure, there was a technique for detecting the outside air temperature of a building in which an air conditioner is installed and changing the set temperature of the air conditioner according to the change in the outside air temperature.
However, since the outside air temperature is only one of the factors that affect the comfort of the space to be conditioned, even if the set temperature of the air conditioner is changed based on the outside temperature, the comfort of the space to be conditioned may not be ensured. highly sexual. Therefore, the inventors found a problem that the set temperature of the air conditioner is often changed in order to ensure comfort in the space to be conditioned, and it is difficult to suppress the energy consumption of the air conditioner. In order to solve the problem, the subject of the present disclosure has been constructed. In addition, the inventors have also discovered that when the set temperature of the air conditioner is changed, there is a general tendency to seek excessive comfort, and the energy consumption of the air conditioner tends to increase. , came to constitute the subject matter of the present disclosure in order to solve the problem. Note that excessively seeking comfort means, for example, setting the set temperature unnecessarily low during cooling operation and setting the set temperature unnecessarily high during heating operation.
Accordingly, the present disclosure provides a management system capable of maintaining the comfort of the space to be conditioned and suppressing the energy consumption of the air conditioner.
 以下、図面を参照しながら実施形態を詳細に説明する。但し、必要以上に詳細な説明を省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted.
It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter thereby.
 [1.空調監視システムの構成]
 図1は、管理システム1000の構成を示す図である。
 管理システム1000は、複数の空気調和装置10と通信可能に接続される管理サーバ100を備え、管理サーバ100によって空気調和装置10の動作に関する設定を行う、空気調和装置10の管理システムである。
[1. Configuration of air conditioning monitoring system]
FIG. 1 is a diagram showing the configuration of a management system 1000. As shown in FIG.
The management system 1000 is a management system for the air conditioners 10 that includes a management server 100 that is communicatively connected to a plurality of air conditioners 10 and that uses the management server 100 to set the operation of the air conditioners 10 .
 管理サーバ100が管理の対象とする空気調和装置10は、管理サーバ100と通信可能に接続されていればよい。管理サーバ100に接続される空気調和装置10の数、及び、空気調和装置10の設置場所に制限はない。図1の例では、施設1Aに設置された空気調和装置10A、施設1Bに設置された空気調和装置10B、施設1Cに設置された空気調和装置10C、及び、施設1Dに設置された空気調和装置10Dを示す。空気調和装置10A、10B、10C、10Dを区別しない場合に空気調和装置10と表記する。また、空気調和装置10の具体的な構成についても制限はない。本実施形態では、空気調和装置10は、電力で稼働するパッケージエアコンまたはルームエアコンを想定して説明するが、空気調和装置10は、ガスエネルギーで稼働するGHP(ガスヒートポンプ)式の空気調和装置であってもよい。 The air conditioners 10 to be managed by the management server 100 need only be connected to the management server 100 so as to be communicable. There are no restrictions on the number of air conditioners 10 connected to the management server 100 and the installation locations of the air conditioners 10 . In the example of FIG. 1, the air conditioner 10A installed in the facility 1A, the air conditioner 10B installed in the facility 1B, the air conditioner 10C installed in the facility 1C, and the air conditioner installed in the facility 1D 10D is shown. The air conditioners 10A, 10B, 10C, and 10D are referred to as the air conditioner 10 when not distinguished. Moreover, there is no restriction on the specific configuration of the air conditioner 10 either. In the present embodiment, the air conditioner 10 will be described assuming a package air conditioner or a room air conditioner that operates on electric power, but the air conditioner 10 is a GHP (gas heat pump) type air conditioner that operates on gas energy. There may be.
 施設1A、1B、1C、1Dは、被調和空間を有する。被調和空間は、空気調和装置10により空調が行われる空間である。施設1A、1B、1C、1Dを区別しない場合、施設1と表記する。施設1の被調和空間は建物全体であってもよいし、建物の内部において仕切られた空間であってもよい。施設1及び被調和空間の規模および種類は制限されない。被調和空間は、例えば、住宅、オフィス、店舗、医療施設、公共施設、或いは、その他の施設である。被調和室の空調とは、暖房、冷房、除湿、送風、換気等が挙げられるが、本実施形態では、空気調和装置10により被調和空間の冷房および暖房を行う場合を説明する。 Facilities 1A, 1B, 1C, and 1D have harmonized spaces. The conditioned space is a space that is air-conditioned by the air conditioner 10 . When facilities 1A, 1B, 1C, and 1D are not distinguished, they are referred to as facility 1. The space to be harmonized in the facility 1 may be the entire building, or may be a partitioned space inside the building. The scale and type of the facility 1 and the space to be harmonized are not limited. Spaces to be harmonized are, for example, houses, offices, shops, medical facilities, public facilities, or other facilities. Air conditioning of a room to be conditioned includes heating, cooling, dehumidification, blowing, and ventilation.
 管理サーバ100は、1つのサーバコンピュータで構成されてもよいし、複数のサーバコンピュータが管理サーバ100として機能する構成であってもよい。管理サーバ100は、いわゆるクラウドサーバであってもよい。 The management server 100 may be composed of one server computer, or may be configured so that a plurality of server computers function as the management server 100. The management server 100 may be a so-called cloud server.
 通信ネットワークNは、専用回線、公衆回線網、インターネット等を含んで構成される通信回線である。通信ネットワークNは、Wi-Fi(登録商標)ルータ、スイッチ、ルータ、ゲートウェイ、各種のサーバ装置等の不図示のネットワーク装置を含んでもよい。また、通信ネットワークNは、通信事業者が設置する無線基地局を含んでもよい。 The communication network N is a communication line that includes a dedicated line, a public line network, the Internet, etc. The communication network N may include network devices (not shown) such as Wi-Fi (registered trademark) routers, switches, routers, gateways, and various server devices. Also, the communication network N may include wireless base stations installed by communication carriers.
 管理システム1000は、空気調和装置10を管理する管理者が使用する装置を備える。図1の例で、管理システム1000は、管理者が使用する装置の例として、端末装置5及び携帯端末装置7を含む。端末装置5及び携帯端末装置7は、管理サーバ100と通信する機能を有する。端末装置5及び携帯端末装置7の具体的な構成は制限されない。例えば、端末装置5は、PC(Personal Computer)やスマートフォン、タブレット型コンピュータ、スマートウォッチ等のウェアラブル端末であってもよい。携帯端末装置7も同様である。管理システム1000が含む端末装置5及び携帯端末装置7の数に制限はない。 The management system 1000 includes a device used by an administrator who manages the air conditioner 10. In the example of FIG. 1, the management system 1000 includes a terminal device 5 and a mobile terminal device 7 as examples of devices used by the administrator. The terminal device 5 and the mobile terminal device 7 have a function of communicating with the management server 100 . Specific configurations of the terminal device 5 and the mobile terminal device 7 are not limited. For example, the terminal device 5 may be a PC (Personal Computer), a smart phone, a tablet computer, a wearable terminal such as a smart watch. The same applies to the mobile terminal device 7 . The number of terminal devices 5 and mobile terminal devices 7 included in the management system 1000 is not limited.
 図1に示す端末装置5は、ラップトップ型のPCであり、ディスプレイ71を有する。携帯端末装置7は、スマートフォンであり、タッチパネルとして機能するディスプレイ71を有する。端末装置5及び携帯端末装置7は、管理サーバ100が生成するデータに基づいて、空気調和装置10の消費電力量や利用状態に関する情報をディスプレイ51、71に表示する。 The terminal device 5 shown in FIG. 1 is a laptop PC and has a display 71 . The mobile terminal device 7 is a smart phone and has a display 71 that functions as a touch panel. Based on the data generated by the management server 100, the terminal device 5 and the mobile terminal device 7 display information on the power consumption and usage state of the air conditioner 10 on the displays 51 and 71. FIG.
 空気調和装置10Aは、制御装置11、室外機12、室内機13、操作部14、通信装置15、及び、外気温度センサ18を備える。空気調和装置10B、10C、10D及び、その他の空気調和装置10も同様に構成される。なお、図1の構成は一例であり、空気調和装置10Aが備える室外機12及び室内機13の数に制限はない。例えば、空気調和装置10Aは、複数の室内機13により、施設1Aの複数の被調和空間の空調を行う構成であってもよい。 The air conditioner 10A includes a control device 11, an outdoor unit 12, an indoor unit 13, an operation unit 14, a communication device 15, and an outside air temperature sensor 18. Air conditioners 10B, 10C, 10D and other air conditioners 10 are similarly configured. Note that the configuration of FIG. 1 is an example, and there is no limit to the number of outdoor units 12 and indoor units 13 provided in the air conditioner 10A. For example, the air conditioner 10A may be configured to air-condition a plurality of spaces in the facility 1A using a plurality of indoor units 13 .
 室外機12は、図示はしないが、圧縮機、四方弁や開閉弁等の各種の弁、室外熱交換器、及び、これらを接続する冷媒回路を含む。室内機13は、膨張弁、開閉弁等の各種の弁、室内熱交換器、及び、これらを接続する冷媒回路を含む。室外機12の冷媒回路と室内機13の冷媒回路とは接続される。 Although not shown, the outdoor unit 12 includes a compressor, various valves such as a four-way valve and an on-off valve, an outdoor heat exchanger, and a refrigerant circuit connecting them. The indoor unit 13 includes various valves such as an expansion valve and an on-off valve, an indoor heat exchanger, and a refrigerant circuit connecting these. The refrigerant circuit of the outdoor unit 12 and the refrigerant circuit of the indoor unit 13 are connected.
 制御装置11は、室外機12、室内機13、操作部14、及び、外気温度センサ18に接続される。制御装置11は、室外機12が備える圧縮機の運転、及び、室外機12及び室内機13が備える弁の開閉を制御することによって、被調和空間の気温が、設定された目標温度となるように、空気調和装置10を運転させる。制御装置11は、例えば、メモリとプロセッサを備え、プロセッサがメモリに記憶したプログラムを実行することにより、メモリに記憶したデータに従って空気調和装置10Aを制御する。制御装置11のプロセッサは、例えば、メモリと統合されたマイクロコントローラである。制御装置11は、本開示において制御部の一例に対応する。 The control device 11 is connected to the outdoor unit 12, the indoor unit 13, the operating unit 14, and the outdoor temperature sensor 18. The control device 11 controls the operation of the compressor provided in the outdoor unit 12 and the opening and closing of the valves provided in the outdoor unit 12 and the indoor unit 13 so that the temperature of the space to be conditioned reaches the set target temperature. Then, the air conditioner 10 is operated. The control device 11 includes, for example, a memory and a processor, and the processor controls the air conditioner 10A according to data stored in the memory by executing a program stored in the memory. The processor of controller 11 is, for example, a microcontroller integrated with memory. The control device 11 corresponds to an example of a control unit in the present disclosure.
 制御装置11には、外気温度センサ18が接続される。気温を検出する温度センサであり、外気温度センサ18の検出方式は制限されない。外気温度センサ18は、例えば、室外機12に設置される。 An outside air temperature sensor 18 is connected to the control device 11 . It is a temperature sensor that detects the air temperature, and the detection method of the outside air temperature sensor 18 is not limited. The outside air temperature sensor 18 is installed in the outdoor unit 12, for example.
 空気調和装置10Aにおいて設定される目標温度を、以下の説明では設定温度と呼ぶ。
 操作部14は、空気調和装置10Aを操作するスイッチ等を有する。操作部14は、例えば、施設1Aに設置されるコントローラである。操作部14を操作することにより、空気調和装置10Aの運転開始、運転停止、及び、設定温度の変更を制御装置11に対して指示することができる。制御装置11は、操作部14の操作に従って、空気調和装置10Aの運転開始、運転停止、設定温度の変更等を行う。以下の説明において、操作部14によって行われる操作のうち、空気調和装置10の設定温度を変更する操作を、温度変更操作と呼ぶ。
The target temperature set in the air conditioner 10A will be referred to as the set temperature in the following description.
The operation unit 14 has switches and the like for operating the air conditioner 10A. The operation unit 14 is, for example, a controller installed in the facility 1A. By operating the operation unit 14, it is possible to instruct the control device 11 to start and stop the operation of the air conditioner 10A, and to change the set temperature. The control device 11 performs operations such as starting and stopping the operation of the air conditioner 10A and changing the set temperature according to the operation of the operation unit 14 . In the following description, among the operations performed by the operation unit 14, an operation for changing the set temperature of the air conditioner 10 is called a temperature change operation.
 通信装置15は、通信ネットワークNを介して管理サーバ100と通信を実行する装置である。通信装置15は、公衆回線網、WAN(Wide Area Network)、LAN(Local Area Network)、IP通信回線網等を介して通信ネットワークNに接続し、データ通信を実行する装置である。通信装置15は、セルラー通信方式、Wi-Fi等の無線通信を実行することによって通信ネットワークNに接続する無線通信装置であってもよい。通信装置15は、後述する設定データSDを管理サーバ100から受信し、管理サーバ100に対して後述する操作データRDを送信する。通信装置15は、本開示において送信部の一例に対応する。 The communication device 15 is a device that communicates with the management server 100 via the communication network N. The communication device 15 is a device that connects to a communication network N via a public line network, a WAN (Wide Area Network), a LAN (Local Area Network), an IP communication line network, or the like, and performs data communication. The communication device 15 may be a wireless communication device that connects to the communication network N by performing wireless communication such as a cellular communication system or Wi-Fi. The communication device 15 receives setting data SD described later from the management server 100 and transmits operation data RD described later to the management server 100 . The communication device 15 corresponds to an example of a transmitter in the present disclosure.
 空気調和装置10B、10C、10D、及び、管理システム1000に含まれるその他の空気調和装置10は、空気調和装置10Aと同様の構成を有する。これらの空気調和装置10は、制御装置11を備える。制御装置11は、操作部14の操作に従って、室外機12及び室内機13を運転させることにより、被調和空間の空調を行う。 The air conditioners 10B, 10C, 10D and other air conditioners 10 included in the management system 1000 have the same configuration as the air conditioner 10A. These air conditioners 10 are provided with a control device 11 . The control device 11 operates the outdoor unit 12 and the indoor unit 13 according to the operation of the operation unit 14, thereby air-conditioning the space to be conditioned.
 管理サーバ100は、管理サーバ100に接続された空気調和装置10に設定データSDを送信する。設定データSD、及び、後述する操作データRDに関する動作は、管理サーバ100が管理する全ての空気調和装置10において共通である。 The management server 100 transmits the setting data SD to the air conditioners 10 connected to the management server 100. All the air conditioners 10 managed by the management server 100 share the operation related to the setting data SD and the operation data RD, which will be described later.
 設定データSDは、空気調和装置10の設定温度を含み、詳細には、冷房運転時の設定温度、及び、暖房運転時の設定温度を含む。制御装置11は、通信装置15によって設定データSDを受信し、受信した設定データSDにより指定される設定温度で空気調和装置10を運転させる。 The setting data SD includes the temperature setting of the air conditioner 10, and more specifically, the temperature setting during the cooling operation and the temperature setting during the heating operation. The control device 11 receives the setting data SD through the communication device 15 and operates the air conditioner 10 at the set temperature designated by the received setting data SD.
 設定データSDは、温度変更操作に関する情報を含んでもよい。具体的には、設定データSDは、温度変更操作を許容するか否かの情報を含んでもよい。設定データSDは、温度変更操作に従って制御装置11が設定温度を変更した場合に、設定温度を変更前の温度に復帰させることを指示する情報を含んでもよい。この場合、設定データSDは、設定温度を変更してから、設定温度を変更前の温度に復帰させるまでの制限時間を指定する情報を含んでもよい。 The setting data SD may include information regarding the temperature change operation. Specifically, the setting data SD may include information as to whether or not the temperature changing operation is permitted. The setting data SD may include information instructing to return the setting temperature to the temperature before the change when the control device 11 changes the setting temperature according to the temperature change operation. In this case, the setting data SD may include information specifying a time limit from when the set temperature is changed until the set temperature is returned to the temperature before the change.
 制御装置11は、温度変更操作を許容するか否かを、設定データSDに従って決定する。設定データSDによって、温度変更操作を許容することが指定される場合、制御装置11は、温度変更操作に従って設定温度を変更する。 The control device 11 determines whether or not to permit the temperature change operation according to the setting data SD. When the setting data SD designates that the temperature changing operation is permitted, the control device 11 changes the set temperature according to the temperature changing operation.
 さらに、管理サーバ100は、制御装置11が、外気温度センサ18によって検出する外気温度に基づいて、空気調和装置10の設定温度を決定するための制御パラメータCPを空気調和装置10に送信する。制御装置11は、通信装置15によって受信した制御パラメータCPをもとに、空気調和装置10の設定温度を自律的に決定する。制御パラメータCPについては後述する。 Furthermore, the management server 100 transmits to the air conditioner 10 a control parameter CP for determining the set temperature of the air conditioner 10 based on the outside air temperature detected by the outside air temperature sensor 18 by the control device 11 . The control device 11 autonomously determines the set temperature of the air conditioner 10 based on the control parameter CP received by the communication device 15 . The control parameter CP will be described later.
 本実施形態では、施設1において、操作部14の操作により空気調和装置10の運転開始、運転停止、冷房と暖房の切り替えを実行可能である。空気調和装置10の設定温度は、設定データSDによって指定される温度、または、制御装置11が制御パラメータCPに従って決定する温度である。また、空気調和装置10において、温度変更操作の操作に従って設定温度を変更することが許容される。制御装置11は、温度変更操作を受け付けた場合、温度変更操作に応じて設定温度を変更し、設定温度を変更してから所定の制限時間が経過した後に、設定温度を変更前の温度に復帰させる。 In this embodiment, in the facility 1, it is possible to start and stop the operation of the air conditioner 10 and switch between cooling and heating by operating the operation unit 14. The set temperature of the air conditioner 10 is the temperature specified by the set data SD or the temperature determined by the control device 11 according to the control parameter CP. Further, in the air conditioner 10, it is allowed to change the set temperature according to the operation of the temperature change operation. When receiving a temperature change operation, the control device 11 changes the set temperature in accordance with the temperature change operation, and after a predetermined time limit has elapsed since the set temperature was changed, the set temperature is returned to the temperature before the change. Let
 制御装置11は、温度変更操作を受け付けたことを示す操作データRDを生成し、通信装置15によって管理サーバ100に送信する。図1に示すように、操作データRDは、例えば、施設ID、及び、空調機IDの少なくともいずれかを含む。施設IDは、施設1A、1B、1C、1D及びその他の施設1の各々を識別する識別情報である。空調機IDは、空気調和装置10A、10B、10C、10D及びその他の空気調和装置10の各々を識別する識別情報である。 The control device 11 generates operation data RD indicating that the temperature change operation has been accepted, and transmits the data to the management server 100 via the communication device 15 . As shown in FIG. 1, the operation data RD includes, for example, at least one of a facility ID and an air conditioner ID. The facility ID is identification information that identifies each of the facilities 1A, 1B, 1C, 1D and other facilities 1. FIG. The air conditioner ID is identification information that identifies each of the air conditioners 10A, 10B, 10C, 10D, and other air conditioners 10 .
 操作データRDは、温度変更操作が行われた日時、及び、操作が行われたときの外気温度を含む。操作データRDは、変更後の設定温度を含んでもよい。
 管理サーバ100は、空気調和装置10が送信する操作データRDを受信し、記憶する。管理サーバ100は、操作データRDに基づいて、外気温度に対応して空気調和装置10の設定温度を決定する処理に用いる制御パラメータCPを決定する。管理サーバ100は、施設1ごと、或いは、空気調和装置10ごとに、制御パラメータCPを決定する。
The operation data RD includes the date and time when the temperature change operation was performed and the outside air temperature when the operation was performed. The operation data RD may include the set temperature after change.
The management server 100 receives and stores the operation data RD transmitted by the air conditioner 10 . Based on the operation data RD, the management server 100 determines the control parameter CP used in the process of determining the set temperature of the air conditioner 10 corresponding to the outside air temperature. The management server 100 determines the control parameter CP for each facility 1 or each air conditioner 10 .
 空気調和装置10の設定温度を、被調和空間にいる人の快適性を優先して設定することは、省エネルギーの観点から推奨できない。具体的には、例えば、被調和空間にいる人が自由に操作部14を操作して設定温度を変更できるようにすると、空気調和装置10の消費エネルギーが考慮されないため、消費エネルギーが大きくなると考えられる。そこで、空調の設定温度を、省エネルギー化の観点から制限することが考えられる。例えば、経済産業省は、空調の設定温度を、夏季の冷房運転時は28℃、冬季の暖房運転時は20℃とすることを推奨している。しかしながら、これらの温度を空気調和装置10の設定温度とした場合、被調和空間の快適性が低くなることがあり、被調和空間の快適性と省エネルギー化の両立は課題であった。 From the viewpoint of energy saving, it is not recommended to prioritize the comfort of the people in the space to be conditioned when setting the temperature setting of the air conditioner 10 . Specifically, for example, if a person in the space to be conditioned can freely operate the operation unit 14 to change the set temperature, the energy consumption of the air conditioning apparatus 10 is not taken into account, so it is thought that the energy consumption will increase. be done. Therefore, it is conceivable to limit the set temperature of the air conditioner from the viewpoint of saving energy. For example, the Ministry of Economy, Trade and Industry recommends setting the air conditioning temperature to 28° C. during cooling operation in summer and 20° C. during heating operation in winter. However, when these temperatures are used as the set temperatures of the air conditioner 10, the comfort of the space to be conditioned may decrease, and it is a problem to achieve both the comfort of the space to be conditioned and energy saving.
 被調和空間の室内温度は、外気温度に影響される。さらに、建物の位置、形状、建物における被調和空間の位置、被調和空間の日当たり等が被調和空間の室内温度に影響を与える。これらの影響を考慮せずに外気温度のみに基づいて空気調和装置10の設定温度を決定すると、空気調和装置10の被調和空間の快適性が低下する可能性を排除できない。 The indoor temperature of the space to be conditioned is affected by the outdoor temperature. Furthermore, the position and shape of the building, the position of the space to be harmonized in the building, the sunlight in the space to be harmonized, etc. affect the indoor temperature of the space to be harmonized. If the set temperature of the air conditioner 10 is determined based only on the outside air temperature without considering these influences, the possibility that the comfort of the space to be conditioned by the air conditioner 10 will be reduced cannot be ruled out.
 そこで、本実施形態の管理システム1000は、被調和空間の特性に合わせて、空気調和装置10の設定温度を決定することを可能とする。すなわち、管理サーバ100は、外気温度に基づいて空気調和装置10の設定温度を決定するための制御パラメータCPを、空気調和装置10ごとに生成し、空気調和装置10に送信する。空気調和装置10は、管理サーバ100が送信する制御パラメータCPに従って、外気温度センサ18が検出する外気温度から設定温度を決定する。管理サーバ100が生成する制御パラメータCPは、各々の空気調和装置10の状況に適合する。このため、各々の空気調和装置10において、被調和空間の快適性を保ちながら、消費エネルギーの抑制を図ることができる。 Therefore, the management system 1000 of this embodiment makes it possible to determine the set temperature of the air conditioner 10 according to the characteristics of the space to be conditioned. That is, the management server 100 generates, for each air conditioner 10, a control parameter CP for determining the set temperature of the air conditioner 10 based on the outside air temperature, and transmits the control parameter CP to the air conditioner 10. FIG. The air conditioner 10 determines the set temperature from the outside air temperature detected by the outside air temperature sensor 18 according to the control parameter CP transmitted by the management server 100 . The control parameters CP generated by the management server 100 are adapted to the conditions of each air conditioner 10 . Therefore, in each air conditioner 10, energy consumption can be suppressed while maintaining the comfort of the space to be conditioned.
 [2.管理サーバの構成]
 図2は、管理サーバ100のブロック図である。
 管理サーバ100は、制御部110、及び、サーバ通信装置150を備える。
[2. Management server configuration]
FIG. 2 is a block diagram of the management server 100. As shown in FIG.
The management server 100 has a control unit 110 and a server communication device 150 .
 制御部110は、プロセッサ120、及び、メモリ130を備える。プロセッサ120は、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)、その他の演算処理装置により構成される。メモリ130は、プロセッサ120が実行するプログラムやデータを不揮発的に記憶する記憶装置である。メモリ130は、磁気的記憶装置、半導体記憶素子、或いはその他の種類の不揮発性記憶装置により構成される。具体的には、メモリ130は、HDD(Hard Disk Drive)、フラッシュROM(Read Only Memory)、フラッシュROMで構成されるSSD(Solid State Drive)等を有する。メモリ130は、プロセッサ120のワークエリアを構成するRAM(Random Access Memory)を含んでもよい。プロセッサ120は、本開示においてコンピュータの一例である。 The control unit 110 includes a processor 120 and a memory 130. The processor 120 is composed of a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), and other arithmetic processing units. The memory 130 is a storage device that stores programs and data executed by the processor 120 in a non-volatile manner. Memory 130 may comprise magnetic storage devices, semiconductor storage devices, or other types of non-volatile storage devices. Specifically, the memory 130 has a HDD (Hard Disk Drive), a flash ROM (Read Only Memory), an SSD (Solid State Drive) composed of a flash ROM, and the like. The memory 130 may include a RAM (Random Access Memory) forming a work area of the processor 120 . Processor 120 is an example of a computer in this disclosure.
 メモリ130は、プロセッサ120より実行される制御プログラム131を記憶する。制御プログラム131は、本開示においてプログラムの一例に対応する。
 メモリ130は、温度設定データ132、履歴DB(データベース)133、制御パラメータCP、及び、消費電力量DB135を記憶する。これらはプロセッサ120によって処理され、或いは生成されるデータである。
Memory 130 stores a control program 131 executed by processor 120 . The control program 131 corresponds to an example of a program in this disclosure.
The memory 130 stores temperature setting data 132 , history DB (database) 133 , control parameters CP, and power consumption DB 135 . These are data that are processed or generated by processor 120 .
 温度設定データ132は、空気調和装置10の設定温度のデータである。温度設定データ132は、設定データSDに含まれる設定温度のデータを含む。温度設定データ132は、全ての空気調和装置10に共通する設定温度のデータであってもよい。また、温度設定データ132は、空気調和装置10ごと、或いは、施設1ごとに異なる設定温度のデータを含んでもよい。 The temperature setting data 132 is data of the temperature setting of the air conditioner 10 . The temperature setting data 132 includes the set temperature data included in the setting data SD. The temperature setting data 132 may be data of a setting temperature common to all air conditioners 10 . Also, the temperature setting data 132 may include data of temperature setting that differs for each air conditioner 10 or each facility 1 .
 履歴DB133は、空気調和装置10における温度変更操作の履歴を含む。
 図2に、履歴DB133の構成例を示す。履歴DB133は、空気調和装置10において行われた温度変更操作のデータを格納する。履歴DB133が格納するデータは、例えば、空調機IDと、設定変更履歴とが対応付けられたレコード形式のデータである。この構成は一例であり、履歴DB133が格納するレコードにおいて、空調機IDに代えて、施設IDが設定変更履歴に対応付けられてもよい。
The history DB 133 includes history of temperature change operations in the air conditioner 10 .
FIG. 2 shows a configuration example of the history DB 133. As shown in FIG. The history DB 133 stores data of temperature changing operations performed in the air conditioner 10 . The data stored in the history DB 133 is, for example, record format data in which air conditioner IDs and setting change histories are associated with each other. This configuration is an example, and in the records stored in the history DB 133, the facility ID may be associated with the setting change history instead of the air conditioner ID.
 履歴DB133に格納される1つのレコードは、1つの空気調和装置10における1回の温度変更操作に対応する。履歴DB133のレコードは、設定変更履歴は、設定変更日時、運転種別、外気温度、設定温度、及び、変更後の設定温度を含む。設定変更日時は、操作部14の操作に応じて設定温度を変更した日時であり、操作部14の操作を制御装置11が受け付けた日時とほぼ同じである。運転種別は、温度変更操作が行われたときの空気調和装置10の運転状態を示す。本実施形態では、運転種別は、冷房と暖房のいずれかである。外気温度は、温度変更操作が行われたときの外気温度である。設定温度は、温度変更操作が行われたときの空気調和装置10の設定温度である。この設定温度は、管理サーバ100が設定データSDによって空気調和装置10に指示した温度である。変更後の設定温度は、温度変更操作が行われた結果として変更された空気調和装置10の設定温度である。 One record stored in the history DB 133 corresponds to one temperature change operation in one air conditioner 10. The record of the history DB 133 includes the setting change date and time, the type of operation, the outside air temperature, the set temperature, and the set temperature after the change. The setting change date and time is the date and time when the set temperature is changed according to the operation of the operation unit 14 and is substantially the same as the date and time when the control device 11 accepts the operation of the operation unit 14 . The operation type indicates the operating state of the air conditioner 10 when the temperature changing operation is performed. In this embodiment, the operation type is either cooling or heating. The outside air temperature is the outside air temperature when the temperature changing operation is performed. The set temperature is the set temperature of the air conditioner 10 when the temperature change operation is performed. This set temperature is the temperature instructed by the management server 100 to the air conditioner 10 by means of the setting data SD. The set temperature after change is the set temperature of the air conditioner 10 that has been changed as a result of the temperature change operation.
 このように、履歴DB133は、空調機IDに対応付けて、空気調和装置10ごとの温度変更操作の履歴を含む。図2の例では運転種別が冷房のレコードのみを例示しているが、履歴DB133は、1年間を通して管理サーバ100が受信するデータを格納することができる。 In this way, the history DB 133 includes the history of temperature change operations for each air conditioner 10 in association with the air conditioner ID. In the example of FIG. 2, only the records in which the operation type is cooling are illustrated, but the history DB 133 can store data received by the management server 100 throughout the year.
 制御パラメータCPは、制御装置11が空気調和装置10の設定温度を自律的に決定するためのデータである。制御パラメータCPは、制御装置11が処理するデータであってもよい。また、制御パラメータCPは、制御装置11が実行する演算処理を規定するプログラム、或いは、制御装置11が実行する演算処理のための演算式であってもよい。また、制御パラメータCPは、制御装置11が実行する演算処理で利用される係数や定数を含んでもよい。制御パラメータCPは、少なくとも、外気温度に対応する空気調和装置10の設定温度、または、設定温度を決定するためのデータを含む。 The control parameter CP is data for the control device 11 to autonomously determine the set temperature of the air conditioner 10 . The control parameter CP may be data processed by the control device 11 . Also, the control parameter CP may be a program that defines the arithmetic processing executed by the control device 11 or an arithmetic expression for the arithmetic processing executed by the control device 11 . Further, the control parameter CP may include coefficients and constants used in arithmetic processing executed by the control device 11 . The control parameter CP includes at least the set temperature of the air conditioner 10 corresponding to the outside air temperature or data for determining the set temperature.
 消費電力量DB135は、空気調和装置10の消費電力量を示すデータを格納する。消費電力量DB135は、例えば、空気調和装置10の空調機IDに対応付けて、消費電力量を示すデータを格納する。消費電力量DB135が格納するデータは、例えば、日ごとの消費電力量のデータである。データの区切りは適宜に変更可能であり、消費電力量DB135が格納するデータは施設1ごとの消費電力量のデータであってもよい。 The power consumption DB 135 stores data indicating the power consumption of the air conditioner 10 . The power consumption DB 135 stores data indicating the power consumption in association with the air conditioner ID of the air conditioner 10, for example. The data stored in the power consumption DB 135 is, for example, power consumption data for each day. Data delimiters can be changed as appropriate, and the data stored in the power consumption DB 135 may be power consumption data for each facility.
 プロセッサ120は、制御プログラム131を実行することによって、管理サーバ100の各部を制御する。プロセッサ120は、機能部として、取得部121、判定部122、設定部123、及び、処理部124を備える。これらの各機能部は、プロセッサ120が制御プログラム131を実行することによって、ソフトウェアとハードウェアとの協働により実現される。 The processor 120 controls each part of the management server 100 by executing the control program 131 . The processor 120 includes an acquisition unit 121, a determination unit 122, a setting unit 123, and a processing unit 124 as functional units. Each of these functional units is realized by the cooperation of software and hardware when the processor 120 executes the control program 131 .
 制御部110には、サーバ通信装置150が接続される。サーバ通信装置150は、通信ネットワークNに接続される通信装置である。サーバ通信装置150は、例えば、通信ケーブルを接続するコネクタと、コネクタを通じて信号を入出力するインターフェイス回路とを備える。また、例えば、サーバ通信装置150は、アンテナ及び無線回路を備え、無線通信回線を介して通信ネットワークNに接続する無線通信装置であってもよい。 A server communication device 150 is connected to the control unit 110 . The server communication device 150 is a communication device connected to the communication network N. FIG. The server communication device 150 includes, for example, a connector for connecting a communication cable, and an interface circuit for inputting/outputting signals through the connector. Further, for example, the server communication device 150 may be a wireless communication device that includes an antenna and a wireless circuit and connects to the communication network N via a wireless communication line.
 取得部121は、サーバ通信装置150によって空気調和装置10と通信を実行し、空気調和装置10から操作データRDを受信する。取得部121は、操作データRDに基づいてデータを履歴DB133に追加し、履歴DB133を更新する。 The acquisition unit 121 communicates with the air conditioner 10 through the server communication device 150 and receives the operation data RD from the air conditioner 10 . The acquisition unit 121 adds data to the history DB 133 based on the operation data RD and updates the history DB 133 .
 また、取得部121は、サーバ通信装置150によって空気調和装置10と通信を実行し、空気調和装置10から消費電力量に関するデータを受信する。取得部121は、受信したデータに基づいてデータを消費電力量DB135に追加し、消費電力量DB135を更新する。 The acquisition unit 121 also communicates with the air conditioner 10 through the server communication device 150 and receives data on power consumption from the air conditioner 10 . Acquisition unit 121 adds data to power consumption DB 135 based on the received data, and updates power consumption DB 135 .
 判定部122は、取得部121によって取得されたデータが、制御パラメータCPを決定する処理に必要な条件を満たすか否かを判定する。例えば、判定部122は、取得部121によって取得されたデータの数が、制御パラメータCPを決定する処理に必要な数以上であるか否かを判定する。 The determination unit 122 determines whether the data acquired by the acquisition unit 121 satisfies the conditions necessary for the process of determining the control parameter CP. For example, the determination unit 122 determines whether or not the number of data acquired by the acquisition unit 121 is equal to or greater than the number required for the process of determining the control parameter CP.
 設定部123は、空気調和装置10の設定温度を設定する。例えば、設定部123は、温度設定データ132に基づいて設定データSDを生成し、サーバ通信装置150によって設定データSDを空気調和装置10に送信する。 The setting unit 123 sets the preset temperature of the air conditioner 10 . For example, the setting unit 123 generates setting data SD based on the temperature setting data 132 and transmits the setting data SD to the air conditioner 10 by the server communication device 150 .
 処理部124は、履歴DB133が格納するデータに基づいて、制御パラメータCPを生成する。制御パラメータCPを生成することは、制御パラメータCPを決定することと同義である。処理部124は、例えば、空気調和装置10ごとに制御パラメータCPを生成し、メモリ130に記憶させる。メモリ130が記憶する制御パラメータCPは、温度設定データ132によって空気調和装置10に送信される。 The processing unit 124 generates the control parameter CP based on the data stored in the history DB 133. Generating the control parameter CP is synonymous with determining the control parameter CP. The processing unit 124 , for example, generates control parameters CP for each air conditioner 10 and stores them in the memory 130 . The control parameter CP stored in the memory 130 is transmitted to the air conditioner 10 by the temperature setting data 132. FIG.
 処理部124は、空気調和装置10が制御パラメータCPに基づかない運転をした場合と、空気調和装置10が制御パラメータCPに従って運転した場合と、を比較した比較データを生成する。処理部124は、例えば、消費電力量DB135に格納されたデータに基づいて、消費電力量を比較した比較データを生成する。この場合、比較データは、空気調和装置10が設定データSDにより指定された設定温度で運転した場合の消費電力量と、制御パラメータCPに従って設定温度を決定する運転を行った場合の消費電力量とを比較するデータである。比較データは、例えば、空気調和装置10が設定データSDにより指定された設定温度で運転した場合の消費電力量と、制御パラメータCPに従って設定温度を決定する運転を行った場合の消費電力量とを、視覚的に比較したグラフや表を含む。比較データでは、端末装置5及び携帯端末装置7のいずれか又は両方に送信され、ディスプレイ51やディスプレイ71に表示される。 The processing unit 124 generates comparison data that compares the case where the air conditioner 10 operates not based on the control parameters CP and the case where the air conditioner 10 operates according to the control parameters CP. The processing unit 124 generates comparison data in which power consumptions are compared based on data stored in the power consumption DB 135, for example. In this case, the comparison data is the power consumption when the air conditioner 10 is operated at the set temperature specified by the setting data SD, and the power consumption when the set temperature is determined according to the control parameter CP. are data for comparison. The comparison data is, for example, power consumption when the air conditioner 10 is operated at the set temperature specified by the setting data SD and power consumption when the set temperature is determined according to the control parameter CP. , including graphs and tables for visual comparison. The comparison data is transmitted to one or both of the terminal device 5 and the mobile terminal device 7 and displayed on the display 51 or the display 71 .
 [3.管理システムの動作]
 図3は、管理システム1000の動作を示すフローチャートである。
 図3において、ステップSA1~SA2、SA4~SA9、SA11、SA13~SA15の動作は、管理サーバ100により実行される。ステップSA3、SA10、SA12の動作は管理サーバ100と空気調和装置10とによって実行される。
[3. Operation of management system]
FIG. 3 is a flow chart showing the operation of the management system 1000. As shown in FIG.
In FIG. 3, the operations of steps SA1-SA2, SA4-SA9, SA11, SA13-SA15 are executed by the management server 100. FIG. The operations of steps SA3, SA10 and SA12 are executed by the management server 100 and the air conditioner 10. FIG.
 処理部124は、制御パラメータ生成条件を判定する(ステップSA1)。処理部124は、管理サーバ100の管理対象である各々の空気調和装置10に対応する制御パラメータCPを生成する。また、処理部124は、空気調和装置10の暖房運転用の制御パラメータCPと、冷房運転用の制御パラメータCPとを生成する。このため、ステップSA1において、処理部124は、制御パラメータCPの生成に関する条件である制御パラメータ生成条件を判定する。制御パラメータ生成条件は、具体的には、制御パラメータCPを適用する空気調和装置10の空調機IDを含む。制御パラメータ生成条件は、制御パラメータCPを適用する運転種別を含んでもよい。運転種別とは暖房または冷房である。 The processing unit 124 determines control parameter generation conditions (step SA1). The processing unit 124 generates a control parameter CP corresponding to each air conditioner 10 managed by the management server 100 . The processing unit 124 also generates a control parameter CP for the heating operation and a control parameter CP for the cooling operation of the air conditioner 10 . Therefore, in step SA1, the processing unit 124 determines a control parameter generation condition, which is a condition regarding generation of the control parameter CP. Specifically, the control parameter generation condition includes the air conditioner ID of the air conditioner 10 to which the control parameter CP is applied. The control parameter generation condition may include a driving type to which the control parameter CP is applied. The operation type is heating or cooling.
 ステップSA1の判定によって、制御パラメータCPを生成する対象の空気調和装置10が特定される。管理サーバ100は、複数の空気調和装置10に対し、並行して図3の動作を実行可能である。以下の説明では、ステップSA1で、制御パラメータCPを生成する対象が空気調和装置10Aであると判定された場合を例に挙げて説明する。 The determination in step SA1 identifies the air conditioner 10 for which the control parameter CP is to be generated. The management server 100 can execute the operations of FIG. 3 in parallel for a plurality of air conditioners 10 . In the following description, an example will be described in which it is determined in step SA1 that the target for generating the control parameter CP is the air conditioner 10A.
 設定部123は、制御パラメータCPを生成する対象である空気調和装置10Aに対して、設定温度を含む設定データSDを送信する(ステップSA2)。
 取得部121は、空気調和装置10Aに対し、操作データ取得処理を実行する(ステップSA3)。操作データ取得処理は、空気調和装置10Aから操作データRDを取得し、履歴DB133に蓄積する処理である。
The setting unit 123 transmits setting data SD including the temperature setting to the air conditioner 10A for which the control parameter CP is to be generated (step SA2).
Acquisition unit 121 executes an operation data acquisition process on air conditioner 10A (step SA3). The operation data acquisition process is a process of acquiring operation data RD from the air conditioner 10A and accumulating it in the history DB 133 .
 図4は、図3のステップSA3で実行される操作データ取得処理を示すシーケンス図である。図4において、ステップSB1~SB4は管理サーバ100の動作を示し、ステップSC1~SC9は空気調和装置10の動作を示す。ここでは、空気調和装置10AがステップSC1~SC9を実行する例を説明する。 FIG. 4 is a sequence diagram showing the operation data acquisition process executed in step SA3 of FIG. In FIG. 4, steps SB1 to SB4 indicate operations of the management server 100, and steps SC1 to SC9 indicate operations of the air conditioner 10. FIG. Here, an example in which the air conditioner 10A executes steps SC1 to SC9 will be described.
 制御装置11は、管理サーバ100が送信した設定データSDを受信し、設定データSDに従って空気調和装置10Aの運転を開始する(ステップSC1)。空気調和装置10Aの運転中、制御装置11は、操作部14による温度変更操作の有無を判定する(ステップSC2)。温度変更操作がされていないと判定した場合(ステップSC2;NO)、制御装置11は、後述するステップSC7に移行する。 The control device 11 receives the setting data SD transmitted by the management server 100, and starts operating the air conditioner 10A according to the setting data SD (step SC1). During operation of the air conditioner 10A, the control device 11 determines whether or not there is a temperature change operation by the operation unit 14 (step SC2). When determining that the temperature change operation has not been performed (step SC2; NO), the control device 11 proceeds to step SC7, which will be described later.
 制御装置11は、温度変更操作があったと判定した場合(ステップSC2;YES)、温度変更操作に従って空気調和装置10Aの設定温度を変更する(ステップSC3)。制御装置11は、操作部14による温度変更操作の内容を含む操作データRDを生成する(ステップSC4)。制御装置11は、設定温度を復帰する復帰タイミングに達したか否かを判定し(ステップSC5)、復帰タイミングに達していない場合は(ステップSC5;NO)、空気調和装置10Aの運転を継続しながら待機する。 When the controller 11 determines that the temperature change operation has been performed (step SC2; YES), it changes the set temperature of the air conditioner 10A according to the temperature change operation (step SC3). The control device 11 generates operation data RD including the content of the temperature change operation by the operation unit 14 (step SC4). The control device 11 determines whether or not the return timing for returning the set temperature has been reached (step SC5), and if the return timing has not been reached (step SC5; NO), the operation of the air conditioner 10A is continued. wait while
 復帰タイミングは、例えば、温度変更操作に従って設定温度を変更してからの制限時間により定められる。制限時間は、例えば、設定データSDにより指定される。例えば、制限時間が30分である場合、制御装置11は、ステップSC3で設定温度を変更してから30分後に復帰タイミングに達したと判定する(ステップSC5)。復帰タイミングは、時刻に基づき定められても良い。例えば、制御装置11は、設定温度を変更した後の最初の正時を復帰タイミングとしてもよいし、設定温度を変更した後の2番目の正時を復帰タイミングとしてもよい。この場合も、復帰タイミングは設定データSDにより指定される。この構成は、制御装置11がRTC(Real Time Clock)を備え、現在時刻を取得可能である場合に適用できる。 The return timing is determined, for example, by the time limit after the set temperature is changed according to the temperature change operation. The time limit is designated, for example, by setting data SD. For example, if the time limit is 30 minutes, the control device 11 determines that the return timing has been reached 30 minutes after changing the set temperature in step SC3 (step SC5). The return timing may be determined based on time. For example, the control device 11 may set the first hour on the hour after changing the set temperature as the return timing, or may set the second hour on the hour after changing the set temperature as the return timing. In this case as well, the return timing is specified by the setting data SD. This configuration can be applied when the control device 11 has an RTC (Real Time Clock) and can acquire the current time.
 制御装置11は、復帰タイミングに達したと判定した場合(ステップSC5;YES)、空気調和装置10Aの設定温度を、変更前の設定温度に戻す(ステップSC6)。変更前の設定温度とは、ステップSC3で設定温度を変更する前の設定温度である。その後、制御装置11はステップSC6に移行する。 When the controller 11 determines that the return timing has been reached (step SC5; YES), the set temperature of the air conditioner 10A is returned to the set temperature before the change (step SC6). The set temperature before change is the set temperature before the set temperature is changed in step SC3. After that, the controller 11 proceeds to step SC6.
 ステップSC6で、制御装置11は、操作データRDを送信する送信タイミングに達したか否かを判定する(ステップSC7)。送信タイミングに達していないと判定した場合(ステップSC7;NO)、制御装置11はステップSC2に戻る。送信タイミングに達したと判定した場合(ステップSC7;YES)、制御装置11は、通信装置15によって操作データRDを管理サーバ100に送信する(ステップSC8)。 At step SC6, the control device 11 determines whether or not the transmission timing for transmitting the operation data RD has arrived (step SC7). If it is determined that the transmission timing has not been reached (step SC7; NO), the control device 11 returns to step SC2. If it is determined that the transmission timing has been reached (step SC7; YES), the control device 11 transmits the operation data RD to the management server 100 through the communication device 15 (step SC8).
 送信タイミングは、設定データSDにより指定され、或いは、予め制御装置11に設定される。送信タイミングは、1日のうちの1または複数の時刻であってもよい。この場合、制御装置11は、1日に1回または複数回、操作データRDを送信する。制御装置11は、送信タイミングに達するまでに行われた温度変更操作に対応する操作データRDを生成し、管理サーバ100に送信する。制御装置11は、複数の温度変更操作に関するデータを含む操作データRDを生成してもよいし、1回の温度変更操作に対応する操作データRDを、複数、まとめて管理サーバ100に送信してもよい。送信タイミングは複数の日に1回であってもよいし、より長い周期であってもよい。また、送信タイミングは、温度変更操作の回数により定められてもよい。例えば、設定された回数の温度変更操作が行われるごとに、送信タイミングに達する構成としてもよい。 The transmission timing is specified by the setting data SD or set in the control device 11 in advance. The transmission timing may be one or more times of the day. In this case, the control device 11 transmits the operation data RD once or multiple times a day. The control device 11 generates the operation data RD corresponding to the temperature change operation performed before reaching the transmission timing, and transmits the operation data RD to the management server 100 . The control device 11 may generate operation data RD including data relating to a plurality of temperature change operations, or may collectively transmit a plurality of operation data RD corresponding to one temperature change operation to the management server 100. good too. The transmission timing may be once in a plurality of days, or may be in a longer cycle. Also, the transmission timing may be determined by the number of temperature change operations. For example, the transmission timing may be reached every time the temperature changing operation is performed a set number of times.
 取得部121は、空気調和装置10Aが送信する操作データRDを受信する(ステップSB1)。取得部121は、受信した操作データRDに含まれる情報を、空気調和装置10Aの空調機IDに対応付けて履歴DB133に格納させ、履歴DB133を更新する(ステップSB2)。 The acquisition unit 121 receives the operation data RD transmitted by the air conditioner 10A (step SB1). Acquisition unit 121 stores information included in received operation data RD in history DB 133 in association with the air conditioner ID of air conditioner 10A, and updates history DB 133 (step SB2).
 さらに、制御装置11は、空気調和装置10Aの消費電力量を示すデータを、管理サーバ100に送信する(ステップSC9)。取得部121は、空気調和装置10Aが送信した消費電力量のデータを受信する(ステップSB3)。取得部121は、受信した消費電力量のデータを、空気調和装置10Aの空調機IDに対応付けて消費電力量DB135に格納させ、消費電力量DB135を更新する(ステップSB4)。 Furthermore, the control device 11 transmits data indicating the power consumption of the air conditioner 10A to the management server 100 (step SC9). Acquisition unit 121 receives the power consumption data transmitted by air conditioner 10A (step SB3). The acquisition unit 121 associates the received power consumption data with the air conditioner ID of the air conditioner 10A, stores the data in the power consumption DB 135, and updates the power consumption DB 135 (step SB4).
 空気調和装置10Aは、管理サーバ100が指示を与えない限り、操作部14による運転開始の操作、運転終了の操作、及び、温度変更操作に従って運転を実行し、ステップSC1~SC10を繰り返す。 Unless the management server 100 gives an instruction, the air conditioner 10A operates according to the operation to start operation, the operation to end operation, and the temperature change operation by the operation unit 14, and repeats steps SC1 to SC10.
 図4の動作例では、制御装置11が操作データRDを送信する頻度と、消費電力量のデータを送信する頻度とが一致する。これは一例であり、例えば、消費電力量のデータを送信するタイミングは、操作データRDの送信タイミングとは異なるタイミングであってもよい。例えば、制御装置11は、日ごとの空気調和装置10Aの消費電力量のデータを、ステップSC9で、一週間に1回や一ヶ月に1回のタイミングで管理サーバ100に送信してもよい。 In the operation example of FIG. 4, the frequency at which the control device 11 transmits the operation data RD matches the frequency at which the power consumption data is transmitted. This is just an example, and for example, the timing of transmitting the power consumption data may be different from the timing of transmitting the operation data RD. For example, the control device 11 may transmit daily power consumption data of the air conditioner 10A to the management server 100 once a week or once a month in step SC9.
 また、制御装置11は、温度変更操作のうち、特定の方向への温度変更を指示する温度変更操作のみについて、操作データRDを生成する構成であってもよい。特定の方向とは、例えば、空気調和装置10Aの被調和空間の快適性を高める方向である。この場合、特定の方向への温度変更を指示する温度変更操作とは、具体的には、空気調和装置10Aの冷房運転中は設定温度を低い温度に変更させる温度変更操作であり、暖房運転中は設定温度を高い温度に変更させる温度変更操作である。また、特定の方向とは、空気調和装置10Aの消費電力量が増大する方向であってもよい。 Further, the control device 11 may be configured to generate the operation data RD only for a temperature change operation instructing a temperature change in a specific direction among the temperature change operations. The specific direction is, for example, a direction that enhances the comfort of the space to be conditioned by the air conditioner 10A. In this case, the temperature change operation for instructing a temperature change in a specific direction is specifically a temperature change operation for changing the set temperature to a lower temperature during the cooling operation of the air conditioner 10A, and during the heating operation. is a temperature change operation that changes the set temperature to a higher temperature. Also, the specific direction may be a direction in which the power consumption of the air conditioner 10A increases.
 この場合、制御装置11は、温度変更操作が行われたと判定した場合(ステップSC2;YES)、温度変更の方向に関わらず、ステップSC3で空気調和装置10Aの設定温度を変更する。その後、制御装置11は、設定温度を特定の方向に変更させる温度変更操作である場合はステップSC4で操作データRDを生成する。また、制御装置11は、温度変更操作が設定温度を特定の方向に変更させる操作でない場合は、ステップSC4をスキップする。これにより、履歴DB133には、特定の方向の温度変更操作に関するデータが蓄積される。 In this case, if the control device 11 determines that the temperature change operation has been performed (step SC2; YES), it changes the set temperature of the air conditioner 10A in step SC3 regardless of the direction of the temperature change. After that, the control device 11 generates the operation data RD in step SC4 if the temperature change operation is to change the set temperature in a specific direction. Further, the control device 11 skips step SC4 when the temperature change operation is not an operation to change the set temperature in a specific direction. As a result, the history DB 133 accumulates data related to temperature change operations in a specific direction.
 図3に戻り、判定部122は、ステップSA3の操作データ取得処理を開始してから、予め設定された所定期間が経過したか否かを判定する(ステップSA4)。所定期間は、予め設定された期間であり、例えば、1週間、1ヶ月、数ヶ月、或いは、それ以上の期間であってもよい。 Returning to FIG. 3, the determination unit 122 determines whether or not a predetermined period of time has elapsed since the operation data acquisition process of step SA3 was started (step SA4). The predetermined period is a preset period, and may be, for example, a period of one week, one month, several months, or longer.
 判定部122は、所定期間が経過していないと判定した場合(ステップSA4;NO)、ステップSA3で取得された操作データRDの量が過多であるか否かを判定する(ステップSA5)。取得部121及び空気調和装置10Aは、所定期間が経過するまでの間、ステップSA3の操作データ取得処理を繰り返し実行する。判定部122は、所定期間が経過するまでの途中の時点において、取得された操作データRDの数が多すぎるか否かを判定する。ステップSA5で、判定部122は、例えば、ステップSA3の操作データ取得処理を開始してからの時間に対応して定められた閾値と、履歴DB133に格納されたデータの数とを比較する。 When determining that the predetermined period has not passed (step SA4; NO), the determination unit 122 determines whether or not the amount of operation data RD acquired in step SA3 is excessive (step SA5). The acquisition unit 121 and the air conditioner 10A repeatedly execute the operation data acquisition process of step SA3 until the predetermined period elapses. The determination unit 122 determines whether or not the number of pieces of acquired operation data RD is too large before the predetermined period elapses. At step SA5, the determination unit 122 compares, for example, a threshold value determined corresponding to the time from the start of the operation data acquisition process at step SA3 and the number of data items stored in the history DB 133. FIG.
 取得されたデータが過多でないと判定部122が判定した場合(ステップSA5;NO)、取得部121はステップSA3に戻り、空気調和装置10Aとの間で操作データ取得処理を実行する。 When the determination unit 122 determines that the acquired data is not excessive (step SA5; NO), the acquisition unit 121 returns to step SA3 and executes operation data acquisition processing with the air conditioner 10A.
 取得されたデータが過多であると判定部122が判定した場合(ステップSA5;YES)、設定部123は、空気調和装置10Aの運転条件を変更する(ステップSA6)。運転条件は、空気調和装置10Aの設定温度を含む。運転条件は、空気調和装置10Aの復帰タイミングを含む。ステップSA6で、設定部123は、変更後の空気調和装置10Aの運転条件を指定する設定データSDを空気調和装置10Aに送信する。 When the determination unit 122 determines that the acquired data is excessive (step SA5; YES), the setting unit 123 changes the operating conditions of the air conditioner 10A (step SA6). The operating conditions include the set temperature of the air conditioner 10A. The operating conditions include the return timing of the air conditioner 10A. At step SA6, the setting unit 123 transmits to the air conditioner 10A the setting data SD designating the operating conditions of the air conditioner 10A after the change.
 ステップSA6で、設定部123は、空気調和装置10Aにおける温度変更操作の回数が少なくなる、或いは、回数が増えにくくなるように運転条件を変更する。換言すれば、空気調和装置10Aの被調和空間における快適性が高くなるように、運転条件を変更する。例えば、空気調和装置10Aが冷房運転中の場合は設定温度をより低い温度に変更し、暖房運転中には設定温度をより高い温度に変更する。また、設定部123は、復帰タイミングを遅らせてもよい。この場合、温度変更操作によって変更された設定温度が変更前の温度に戻るまでの時間が長くなるので、温度変更操作を抑制することができる。 At step SA6, the setting unit 123 changes the operating conditions so that the number of temperature change operations in the air conditioner 10A is reduced or is less likely to increase. In other words, the operating conditions are changed so as to increase comfort in the space to be conditioned by the air conditioner 10A. For example, the set temperature is changed to a lower temperature when the air conditioner 10A is in cooling operation, and the set temperature is changed to a higher temperature during heating operation. Also, the setting unit 123 may delay the return timing. In this case, it takes longer for the set temperature changed by the temperature change operation to return to the temperature before the change, so the temperature change operation can be suppressed.
 一方、所定期間が経過したと判定した場合(ステップSA4;YES)、判定部122は、操作データ判定処理を実行する(ステップSA7)。操作データ判定処理は、履歴DB133に含まれるデータが、制御パラメータCPを決定するために十分なデータであるか否かを判定する処理である。 On the other hand, if it is determined that the predetermined period has passed (step SA4; YES), the determination unit 122 executes operation data determination processing (step SA7). The operation data determination process is a process of determining whether the data included in the history DB 133 is sufficient data for determining the control parameter CP.
 判定部122は、上述のように、制御パラメータCPを決定するために十分なデータであるか否かを判定する基準を、温度変更操作の回数としてもよい。この場合、判定部122は、ステップSA7において、所定期間に行われた温度変更操作の回数が、予め設定された閾値以上であるか否かを判定することにより、空気調和装置10Aから取得したデータが条件を満たすか否かを判定する。そして、判定部122は、ステップSA7で、所定期間に行われた温度変更操作の回数が閾値より少ない場合に、空気調和装置10Aから取得したデータが条件を満たさないと判定し、所定期間に行われた温度変更操作の回数が閾値以上の場合に空気調和装置10Aから取得したデータが条件を満たすと判定する。所定期間に空気調和装置10Aにおいて実行された温度変更操作の回数は、履歴DB133に含まれる温度変更操作のデータから判定できる。 As described above, the determination unit 122 may use the number of temperature change operations as a criterion for determining whether the data is sufficient for determining the control parameter CP. In this case, the determining unit 122 determines in step SA7 whether or not the number of temperature change operations performed in a predetermined period is equal to or greater than a preset threshold value, thereby obtaining data acquired from the air conditioner 10A. determines whether or not satisfies the conditions. Then, in step SA7, if the number of temperature change operations performed in the predetermined period is less than the threshold, the determination unit 122 determines that the data acquired from the air conditioning apparatus 10A does not satisfy the conditions, and performs the operation in the predetermined period. It is determined that the data acquired from the air conditioner 10A satisfies the condition when the number of temperature change operations received is equal to or greater than the threshold. The number of temperature change operations performed in the air conditioning apparatus 10A during a predetermined period can be determined from the temperature change operation data included in the history DB 133 .
 本実施形態では、判定部122が履歴DB133のデータの質を含めて判定を行う例を、図5を参照して説明する。図5は、図3のステップSA7で実行される操作データ判定処理を示すフローチャートである。
 判定部122は、判定処理の対象である空調機IDを特定し(ステップSD1)、特定した空調機IDに対応付けられた設定変更履歴のデータを履歴DB133から抽出する(ステップSD2)。
In this embodiment, an example in which the determination unit 122 performs determination including the quality of data in the history DB 133 will be described with reference to FIG. 5 . FIG. 5 is a flow chart showing the operation data determination process executed at step SA7 in FIG.
The determination unit 122 specifies an air conditioner ID to be subjected to determination processing (step SD1), and extracts setting change history data associated with the specified air conditioner ID from the history DB 133 (step SD2).
 判定部122は、ステップSD2で抽出したデータをもとに、日ごと、及び、外気温度ごとの温度変更操作の回数を集計する(ステップSD3)。これにより、判定部122は、1日あたりの温度変更操作の回数と、外気温度とを対応付ける。判定部122は、1日あたりの温度変更操作の回数と、外気温度との相関について回帰分析を行い、回帰直線を求める(ステップSD4)。 Based on the data extracted in step SD2, the determination unit 122 counts the number of temperature change operations for each day and for each outside temperature (step SD3). Thereby, the determination unit 122 associates the number of temperature change operations per day with the outside air temperature. The determination unit 122 performs a regression analysis on the correlation between the number of temperature change operations per day and the outside air temperature, and obtains a regression line (step SD4).
 図6は、回帰直線の例を示す図表である。図6は、横軸を外気温度、縦軸を1日あたりの温度変更操作としてデータをプロットした散布図であり、図中の点P1はステップSD3で集計されたデータを示す。図6には回帰分析により得られる回帰直線の例を符号RG1で示す。回帰直線RG1は最小二乗法を用いて生成された直線であるが、これは一例である。回帰分析の手法は、最小二乗法のほか、幾何平均回帰、主成分回帰、或いはその他の手法を用いることができ、近似式としての回帰直線を得られる手法であればよい。また、判定部122は、ステップSD4において単に近似式を求める処理を行ってもよい。 Fig. 6 is a chart showing an example of a regression line. FIG. 6 is a scatter diagram plotting data with the horizontal axis representing outside air temperature and the vertical axis representing temperature change operation per day. Point P1 in the figure indicates the data collected in step SD3. FIG. 6 shows an example of a regression line obtained by regression analysis by RG1. The regression line RG1 is a straight line generated using the method of least squares, but this is an example. As the method of regression analysis, in addition to the method of least squares, geometric mean regression, principal component regression, or other methods can be used, and any method that can obtain a regression line as an approximation can be used. Alternatively, the determination unit 122 may simply perform a process of obtaining an approximate expression in step SD4.
 回帰直線RG1の傾きの大きさは、外気温度により温度変更操作の回数が変化する度合いを示す。回帰直線RG1の傾きが大きいことは、外気温度によって温度変更操作の回数が大きく変化することを示す。ここで、回帰直線RG1の傾きの大きさとは、傾きの絶対値の大きさを意味する。図6の例では、外気温度に対し1日あたりの温度変更操作の回数が正の相関を有しているが、外気温度に対して温度変更操作の回数が負の相関を有することもあり得る。 The magnitude of the slope of the regression line RG1 indicates the degree to which the number of temperature change operations changes due to the outside temperature. A large slope of the regression line RG1 indicates that the number of times of temperature change operation changes greatly depending on the outside air temperature. Here, the magnitude of the slope of the regression line RG1 means the magnitude of the absolute value of the slope. In the example of FIG. 6, the number of temperature change operations per day has a positive correlation with the outside temperature, but it is also possible that the number of temperature change operations has a negative correlation with the outside temperature. .
 図5に戻り、判定部122は、ステップSD4で求めた回帰直線の傾きが閾値以上であるか否かを判定する(ステップSD5)。閾値は、予め制御部110に設定された値であり、例えばメモリ130に記憶されている。回帰直線の傾きが閾値以上である場合(ステップSD5;YES)、判定部122は、操作データ取得処理で空気調和装置10Aから取得したデータが条件を満たすと判定し(ステップSD6)、図3の処理に戻る。 Returning to FIG. 5, the determination unit 122 determines whether or not the slope of the regression line obtained in step SD4 is equal to or greater than a threshold (step SD5). The threshold is a value preset in the control unit 110 and stored in the memory 130, for example. If the slope of the regression line is equal to or greater than the threshold (step SD5; YES), the determination unit 122 determines that the data acquired from the air conditioner 10A in the operation data acquisition process satisfies the conditions (step SD6), and Return to processing.
 一方、回帰直線の傾きが閾値より小さい場合(ステップSD5;NO)、判定部122は、空気調和装置10Aから取得したデータが条件を満たさないと判定し(ステップSD7)、図3の処理に戻る。 On the other hand, when the slope of the regression line is smaller than the threshold (step SD5; NO), the determination unit 122 determines that the data acquired from the air conditioner 10A does not satisfy the conditions (step SD7), and returns to the process of FIG. .
 判定部122は、操作データ判定処理の判定結果を参照する(ステップSA8)。ここで、操作データ取得処理で空気調和装置10Aから取得したデータが条件を満たすと判定された場合(ステップSA8;YES)、処理部124は、履歴DB133のデータをもとに制御パラメータ生成処理を実行する(ステップSA9)。制御パラメータ生成処理については後述する。 The determination unit 122 refers to the determination result of the operation data determination process (step SA8). Here, when it is determined that the data acquired from the air conditioner 10A in the operation data acquisition process satisfies the condition (step SA8; YES), the processing unit 124 performs the control parameter generation process based on the data in the history DB 133. Execute (step SA9). The control parameter generation process will be described later.
 その後、ステップSA10で、制御パラメータCPに基づく空気調和装置10Aの運転が開始される(ステップSA10)。ここで、設定部123は、ステップSA9で生成された制御パラメータCPを空気調和装置10Aに送信し、空気調和装置10Aは、制御パラメータCPを受信する。制御装置11は、外気温度センサ18により外気温度を検出し、外気温度を制御パラメータCPに適用することによって空気調和装置10Aの設定温度を決定する。制御装置11は、制御パラメータCPにより決定した設定温度に基づく運転を実行する。 After that, in step SA10, the operation of the air conditioner 10A based on the control parameter CP is started (step SA10). Here, the setting unit 123 transmits the control parameter CP generated in step SA9 to the air conditioner 10A, and the air conditioner 10A receives the control parameter CP. The control device 11 detects the outside air temperature with the outside air temperature sensor 18 and applies the outside air temperature to the control parameter CP to determine the set temperature of the air conditioner 10A. The control device 11 performs operation based on the set temperature determined by the control parameter CP.
 操作データ判定処理で、データが条件を満たさないと判定された場合(ステップSA8;NO)、設定部123は、空気調和装置10Aの運転条件を変更する(ステップSA11)。運転条件の詳細はステップSA6に関して説明した通りである。 When it is determined in the operation data determination process that the data does not satisfy the conditions (step SA8; NO), the setting unit 123 changes the operating conditions of the air conditioner 10A (step SA11). The details of the operating conditions are as described for step SA6.
 ステップSA11では、操作データRDを取得しやすくなるように、操作データ取得処理における空気調和装置10Aの運転条件が変更される。つまり、設定部123は、空気調和装置10Aにおける温度変更操作の回数が多くなるように運転条件を変更する。この変更は、空気調和装置10Aの被調和空間における快適性が低くなるように、運転条件を変更することである。例えば、空気調和装置10Aが冷房運転中の場合は設定温度をより高い温度に変更し、暖房運転中には設定温度をより低い温度に変更する。また、設定部123は、復帰タイミングを早めてもよい。この場合、温度変更操作によって変更された設定温度が変更前の温度に戻るまでの時間が短くなるので、温度変更操作を促進することができる。ステップSA11で、設定部123は、変更後の空気調和装置10Aの運転条件を指定する設定データSDを空気調和装置10Aに送信する。 In step SA11, the operating conditions of the air conditioner 10A in the operation data acquisition process are changed so as to facilitate acquisition of the operation data RD. That is, the setting unit 123 changes the operating conditions so that the number of temperature change operations in the air conditioner 10A is increased. This change is to change the operating conditions so that the comfort in the conditioned space of the air conditioner 10A is lowered. For example, the set temperature is changed to a higher temperature when the air conditioner 10A is in cooling operation, and the set temperature is changed to a lower temperature during heating operation. Also, the setting unit 123 may advance the return timing. In this case, since the time required for the set temperature changed by the temperature change operation to return to the temperature before the change is shortened, the temperature change operation can be accelerated. At step SA11, the setting unit 123 transmits to the air conditioner 10A the setting data SD designating the operating conditions of the air conditioner 10A after the change.
 取得部121は、ステップSA7と同様の操作データ取得処理を実行する(ステップSA12)。その後、判定部122は、ステップSA12の操作データ取得処理を開始してから、予め設定された所定期間が経過したか否かを判定する(ステップSA13)。所定期間についてはステップSA4と同様である。 The acquisition unit 121 executes operation data acquisition processing similar to that of step SA7 (step SA12). After that, the determination unit 122 determines whether or not a predetermined period of time has passed since the operation data acquisition process of step SA12 was started (step SA13). The predetermined period is the same as step SA4.
 判定部122は、所定期間が経過していないと判定した場合(ステップSA13;NO)、ステップSA12に戻る。取得部121及び空気調和装置10Aは、所定期間が経過するまでの間、ステップSA12の操作データ取得処理を繰り返し実行する。 When the determining unit 122 determines that the predetermined period has not elapsed (step SA13; NO), the process returns to step SA12. The acquisition unit 121 and the air conditioner 10A repeatedly execute the operation data acquisition process of step SA12 until the predetermined period elapses.
 判定部122は、所定期間が経過したと判定した場合(ステップSA13;YES)、ステップSA7と同様に操作データ判定処理を実行する(ステップSA14)。その後、判定部122は、操作データ判定処理の判定結果を参照する(ステップSA15)。ここで、操作データ取得処理で空気調和装置10Aから取得したデータが条件を満たさないと判定された場合(ステップSA15;NO)、制御部110はステップSA12に戻る。ここで、制御部110は、ステップSA11に戻り、設定部123によって運転条件を変更してもよい。具体的には、操作データRDをより取得しやすくなるように、操作データ取得処理における空気調和装置10Aの運転条件を、さらに変更してもよい。 When determining that the predetermined period has passed (step SA13; YES), the determination unit 122 executes the operation data determination process in the same manner as in step SA7 (step SA14). After that, the determination unit 122 refers to the determination result of the operation data determination process (step SA15). Here, when it is determined that the data acquired from the air conditioner 10A in the operation data acquisition process does not satisfy the conditions (step SA15; NO), the control unit 110 returns to step SA12. Here, control unit 110 may return to step SA11 and change the operating conditions by setting unit 123 . Specifically, the operating conditions of the air conditioner 10A in the operation data acquisition process may be further changed so that the operation data RD can be acquired more easily.
 操作データ取得処理で空気調和装置10Aから取得したデータが条件を満たすと判定された場合(ステップSA15;YES)、処理部124は、ステップSA9に移行して、制御パラメータ生成処理を実行する(ステップSA9)。 If it is determined in the operation data acquisition process that the data acquired from the air conditioner 10A satisfies the conditions (step SA15; YES), the processing unit 124 proceeds to step SA9 and executes the control parameter generation process (step SA9).
 図7は、図3のステップSA9で実行される制御パラメータ生成処理の例を示すフローチャートである。
 処理部124は、制御パラメータCPを適用する空気調和装置10の空調機IDを特定する(ステップSE1)。ここでは、空気調和装置10Aの空調機IDを特定する。処理部124は、ステップSE1で特定した空調機IDに対応するデータを履歴DB133から抽出する(ステップSE2)。
FIG. 7 is a flow chart showing an example of control parameter generation processing executed in step SA9 of FIG.
The processing unit 124 identifies the air conditioner ID of the air conditioner 10 to which the control parameter CP is applied (step SE1). Here, the air conditioner ID of the air conditioner 10A is specified. Processing unit 124 extracts data corresponding to the air conditioner ID specified in step SE1 from history DB 133 (step SE2).
 処理部124は、ステップSE2で抽出したデータから、外気温度と、温度変更操作により変更された設定温度とをさらに抽出する(ステップSE3)。温度変更操作により変更された設定温度を、変更後の温度と呼ぶ。処理部124は、外気温度と変更後の温度との相関を求める回帰分析を実行し、回帰直線を求める(ステップSE4)。回帰分析の手法はステップSD4で説明した通りであり、一例として、最小二乗法により近似式を求める処理を採用できる。 The processing unit 124 further extracts the outside air temperature and the set temperature changed by the temperature change operation from the data extracted in step SE2 (step SE3). The set temperature changed by the temperature change operation is called the changed temperature. The processing unit 124 performs a regression analysis for obtaining a correlation between the outside air temperature and the changed temperature, and obtains a regression line (step SE4). The method of regression analysis is as described in step SD4, and as an example, a process of obtaining an approximate expression by the method of least squares can be adopted.
 図8は、回帰直線の例を示す図表であり、図7のステップSE4で算出される回帰直線の例を示す。図8は、横軸を外気温度、縦軸を空気調和装置10Aにおける平均設定温度としてデータをプロットした散布図である。縦軸の設定温度は、空気調和装置10Aにおいて温度変更操作による変更後の設定温度である。図7の図表においてプロットされる設定温度の値は、1つの外気温度に対応する変更後の設定温度の複数の値を平均した、平均値であってもよい。図中の点P2はステップSE3で抽出されたデータを示す。 FIG. 8 is a chart showing an example of a regression line, showing an example of the regression line calculated in step SE4 of FIG. FIG. 8 is a scatter diagram plotting data with the outside air temperature on the horizontal axis and the average set temperature of the air conditioner 10A on the vertical axis. The set temperature on the vertical axis is the set temperature after being changed by the temperature change operation in the air conditioner 10A. The set temperature value plotted in the chart of FIG. 7 may be an average value obtained by averaging a plurality of changed set temperature values corresponding to one outside air temperature. A point P2 in the figure indicates the data extracted in step SE3.
 図7には回帰分析により得られる回帰直線の例を符号RG2で示す。回帰直線RG2は最小二乗法を用いて生成された直線であるが、これは一例である。回帰分析の手法は、最小二乗法のほか、幾何平均回帰、主成分回帰、或いはその他の手法を用いることができ、近似式としての回帰直線を得られる手法であればよい。また、処理部124は、ステップSE4において単に近似式を求める処理を行ってもよい。 An example of a regression line obtained by regression analysis is indicated by RG2 in FIG. The regression line RG2 is a straight line generated using the method of least squares, but this is an example. As the method of regression analysis, in addition to the method of least squares, geometric mean regression, principal component regression, or other methods can be used, and any method that can obtain a regression line as an approximation can be used. Alternatively, the processing unit 124 may simply perform a process of obtaining an approximate expression in step SE4.
 回帰直線RG2は、外気温度と、操作部14の操作により設定された空気調和装置10Aの設定温度との相関を示す。例えば、外気温度が高い状態で設定温度が低温に設定された場合、被調和空間にいる人が、被調和空間が暑いと感じたことを示す。 A regression line RG2 indicates the correlation between the outside air temperature and the set temperature of the air conditioner 10A set by operating the operation unit 14. For example, when the set temperature is set to a low temperature while the outside air temperature is high, this indicates that the person in the space to be harmonized feels that the space to be harmonized is hot.
 図7に戻り、処理部124は、ステップSE4で求めた回帰直線を利用して、外気温度毎の推奨設定温度を算出する(ステップSE5)。処理部124は、制御装置11が外気温度をもとに推奨設定温度を求める処理を可能とする制御パラメータCPを生成する(ステップSE6)。処理部124は、生成した制御パラメータCPを、空気調和装置10Aの空調機IDに対応付けてメモリ130に記憶させる(ステップSE7)。これにより生成される制御パラメータCPは、図8に示したように、被調和空間にいる人が設定した設定温度と外気温度との相関を反映している。その上で、制御パラメータCPは、空気調和装置10Aの消費エネルギーが小さくなるように空気調和装置10Aを運転するように、空気調和装置10Aの設定温度を定めるパラメータである。 Returning to FIG. 7, the processing unit 124 uses the regression line obtained in step SE4 to calculate the recommended set temperature for each outside air temperature (step SE5). The processing unit 124 generates a control parameter CP that enables the control device 11 to obtain the recommended set temperature based on the outside air temperature (step SE6). The processing unit 124 stores the generated control parameter CP in the memory 130 in association with the air conditioner ID of the air conditioner 10A (step SE7). The control parameter CP thus generated reflects the correlation between the set temperature set by the person in the space to be harmonized and the outside air temperature, as shown in FIG. In addition, the control parameter CP is a parameter that determines the set temperature of the air conditioner 10A so as to operate the air conditioner 10A so as to reduce the energy consumption of the air conditioner 10A.
 空気調和装置10Aは、図7の処理で生成された制御パラメータCPを利用して、外気温度センサ18によって検出される外気温度に基づき、空気調和装置10Aの設定温度を決定する。空気調和装置10Aは、空気調和装置10Aが生成した操作データRDを利用して生成された制御パラメータCPを利用することにより、空気調和装置10Aの被調和空間の環境に適した制御を実行できる。従って、被調和空間を含む建物の環境や被調和空間の日当たり等の影響を含めて空気調和装置10Aを運転させることができ、これにより被調和空間の快適性を維持できる。さらに、空気調和装置10Aの設定温度が過度に低温または高温に設定されることを防止できるので、被調和空間の快適性を維持しながら、空気調和装置10Aの消費エネルギーを抑制できる。 The air conditioner 10A uses the control parameter CP generated in the process of FIG. 7 to determine the set temperature of the air conditioner 10A based on the outside air temperature detected by the outside air temperature sensor 18. The air conditioner 10A can perform control suitable for the environment of the space to be conditioned by the air conditioner 10A by using the control parameter CP generated using the operation data RD generated by the air conditioner 10A. Therefore, the air conditioner 10A can be operated including the influence of the environment of the building including the space to be conditioned and the sunlight in the space to be conditioned, thereby maintaining the comfort of the space to be conditioned. Furthermore, since the set temperature of the air conditioner 10A can be prevented from being set to an excessively low or high temperature, the energy consumption of the air conditioner 10A can be suppressed while maintaining the comfort of the conditioned space.
 管理システム1000において図3の動作が実行される回数は、1回に限らない。管理システム1000は、空気調和装置10が冷房運転を行う時期に図3の動作を実行して、冷房運転用の制御パラメータCPを生成し、空気調和装置10に適用してもよい。この場合、空気調和装置10が冷房運転を開始するタイミングで、図3の動作が開始される。例えば、空気調和装置10が、運転種別として冷房運転を指定する操作が行われた場合に、冷房運転の開始を示す操作データRDを管理サーバ100に送信し、この操作データRDを契機として管理サーバ100が図3の処理を実行する。同様に、管理システム1000は、空気調和装置10が暖房運転を開始するときに図3の動作を実行して、暖房運転用の制御パラメータCPを生成し、空気調和装置10に適用してもよい。 The number of times the operation in FIG. 3 is executed in the management system 1000 is not limited to one. The management system 1000 may perform the operation of FIG. 3 when the air conditioner 10 performs the cooling operation, generate control parameters CP for the cooling operation, and apply them to the air conditioner 10 . In this case, the operation of FIG. 3 is started at the timing when the air conditioner 10 starts the cooling operation. For example, when the air conditioner 10 is operated to specify the cooling operation as the operation type, the operation data RD indicating the start of the cooling operation is transmitted to the management server 100, and this operation data RD serves as a trigger for the management server. 100 performs the process of FIG. Similarly, the management system 1000 may perform the operation of FIG. 3 when the air conditioner 10 starts heating operation, generate control parameters CP for heating operation, and apply them to the air conditioner 10. .
 処理部124は、履歴DB133から冷房運転時のデータを抽出して利用することで冷房運転用の制御パラメータCPを生成することが可能であり、同様に、暖房運転用の制御パラメータCPを生成することもできる。 The processing unit 124 can generate the control parameter CP for the cooling operation by extracting and using the data during the cooling operation from the history DB 133, and similarly generates the control parameter CP for the heating operation. can also
 また、管理システム1000は、空気調和装置10が制御パラメータCPを利用して運転を実行する間に、図3の動作を実行してもよい。この場合、ステップSA1、SA2は省略することができる。例えば、1年、2年、或いはそれ以上の周期で、図3の動作を実行してもよい。この場合、被調和空間の環境の変化や、被調和空間の利用形態の変化に対応して、制御パラメータCPを更新できる。また、被調和空間が就業場所である場合に、被調和空間で働く人物の変化にも対応できる。さらに、操作部14の操作によって指定されたタイミングで、図3の動作が実行され、制御パラメータCPが更新される構成であってもよい。この場合、空気調和装置10を管理する管理者や被調和空間の利用者の状況に応じて、制御パラメータCPを更新できる。 Also, the management system 1000 may perform the operation of FIG. 3 while the air conditioner 10 is operating using the control parameters CP. In this case, steps SA1 and SA2 can be omitted. For example, the operation of FIG. 3 may be performed at intervals of one year, two years, or more. In this case, the control parameter CP can be updated in response to changes in the environment of the space to be harmonized and changes in the mode of use of the space to be harmonized. In addition, when the space to be harmonized is the work place, it is possible to cope with the change of the person working in the space to be harmonized. Furthermore, the operation of FIG. 3 may be executed and the control parameter CP may be updated at the timing designated by the operation of the operation unit 14 . In this case, the control parameter CP can be updated according to the situation of the administrator who manages the air conditioner 10 and the user of the space to be conditioned.
 この場合、管理システム1000は、各々の空気調和装置10に制御パラメータCPが適用された年月日を管理サーバ100によって管理すればよい。管理サーバ100は、適用されてから所定の期間が経過した制御パラメータCPを、図3の動作により更新する。 In this case, the management system 1000 may use the management server 100 to manage the date when the control parameter CP was applied to each air conditioner 10 . The management server 100 updates the control parameter CP for which a predetermined period of time has passed since it was applied, by the operation shown in FIG.
 図9は、制御パラメータ生成処理の別の例を示すフローチャートである。図9の動作は、図7に示した動作に代えて、処理部124により実行される。
 図9において、ステップSE1~SE6は図7の動作と共通である。ステップSE6で制御パラメータCPを生成した後、処理部124は、ステップSE2で抽出したデータをもとに、外気温度帯毎の温度変更操作の回数を集計する(ステップSE11)。
FIG. 9 is a flowchart showing another example of control parameter generation processing. The operation of FIG. 9 is executed by the processing unit 124 instead of the operation shown in FIG.
In FIG. 9, steps SE1 to SE6 are common to the operation in FIG. After generating the control parameter CP in step SE6, the processing unit 124 counts the number of temperature change operations for each outside temperature zone based on the data extracted in step SE2 (step SE11).
 処理部124は、制御パラメータCPに付加する付加データを生成する(ステップSE12)。ステップSE12において、処理部124は、ステップSE11で集計した回数をもとに、外気温度帯毎の温度変更操作の許容回数、及び、温度変更操作により変更可能な温度幅を決定する。そして、処理部124は、決定した許容回数および温度幅を示す付加データを生成する。 The processing unit 124 generates additional data to be added to the control parameter CP (step SE12). In step SE12, the processing unit 124 determines the allowable number of temperature change operations for each outside air temperature zone and the temperature range that can be changed by the temperature change operation, based on the number of times counted in step SE11. Then, the processing unit 124 generates additional data indicating the determined allowable number of times and the temperature range.
 処理部124は、ステップSE6で生成した制御パラメータCPに、ステップSE12で生成した付加データを加えることにより制御パラメータCPを更新し、更新した制御パラメータCPをメモリ130に記憶させる(ステップSE13)。 The processing unit 124 updates the control parameter CP by adding the additional data generated in step SE12 to the control parameter CP generated in step SE6, and stores the updated control parameter CP in the memory 130 (step SE13).
 ステップSE12で決定される温度変更操作の許容回数とは、空気調和装置10Aが温度変更操作を許容するか否か、及び、1日あたり又は所定時間あたりに空気調和装置10Aが受け付ける温度変更操作の回数を指す。温度変更操作の許容回数は、例えば、1日あたり又は所定時間あたりに1回、3回、5回等とすることができる。また、処理部124は、温度変更操作の許容回数を0回とする、すなわち、温度変更操作を許容しないよう決定することも可能である。処理部124は、外気温度帯毎に、温度変更操作の許容回数を定める。外気温度帯の幅は適宜に決めればよく、例えば、5℃、2℃、或いは1℃の幅とすることができる。 The allowable number of temperature change operations determined in step SE12 refers to whether or not the air conditioner 10A allows temperature change operations, and the number of temperature change operations accepted by the air conditioner 10A per day or per predetermined time period. Point to the number of times. The allowable number of temperature change operations may be, for example, once, three, five, or the like per day or per predetermined period of time. In addition, the processing unit 124 can set the allowable number of temperature change operations to 0, that is, determine not to allow the temperature change operation. The processing unit 124 determines the allowable number of temperature change operations for each outside air temperature zone. The width of the outside air temperature zone may be determined appropriately, and may be, for example, a width of 5°C, 2°C, or 1°C.
 温度変更操作の温度幅とは、温度変更操作によって空気調和装置10Aの設定温度を変更できる温度の範囲をいう。例えば、処理部124は、温度変更操作の回数の閾値として、第1閾値T1、第2閾値T2を有し、T1>T2とする。処理部124は、第1の外気温度帯について、ステップSE11で集計した温度変更操作の回数NTがT1<NTである場合、第1の外気温度帯で温度変更操作により変更可能な温度幅を±5℃とする。処理部124は、第2の外気温度帯について、ステップSE11で集計した温度変更操作の回数NがT2<NT<T1である場合、第2の外気温度帯で温度変更操作により変更可能な温度幅を±3℃とする。処理部124は、第3の外気温度帯について、ステップSE11で集計した温度変更操作の回数NがNT<T2である場合、第3の外気温度帯で温度変更操作により変更可能な温度幅を±1℃とする。また、処理部124は、第4の外気温度帯について、ステップSE11で集計した温度変更操作の回数NTが0である場合、第4の外気温度帯で温度変更操作により変更可能な温度幅を0℃とする。 The temperature range of the temperature change operation refers to the temperature range in which the set temperature of the air conditioner 10A can be changed by the temperature change operation. For example, the processing unit 124 has a first threshold T1 and a second threshold T2 as thresholds for the number of temperature change operations, where T1>T2. For the first outside air temperature zone, if the number of times NT of temperature change operations counted in step SE11 is T1<NT, processing unit 124 sets the temperature range that can be changed by the temperature change operation in the first outside air temperature zone to ± 5°C. For the second outside air temperature zone, if the number of times N of temperature change operations counted in step SE11 is T2<NT<T1, the processing unit 124 determines the temperature range that can be changed by the temperature change operation in the second outside air temperature zone. shall be ±3°C. For the third outside air temperature zone, if the number of times N of temperature change operations counted in step SE11 is NT<T2, the processing unit 124 adjusts the temperature range that can be changed by the temperature change operation in the third outside air temperature zone. 1°C. Further, when the number NT of temperature change operations counted in step SE11 for the fourth outside air temperature zone is 0, the processing unit 124 sets the changeable temperature range by the temperature change operation to 0 in the fourth outside air temperature zone. °C.
 図9の動作例によれば、制御パラメータCPに基づき空気調和装置10Aが運転される間の温度変更操作を、適切な範囲で許容することができる。従って、空気調和装置10Aの被調和空間にいる人の快適性を、より一層高めることが可能となる。 According to the operation example of FIG. 9, it is possible to allow the temperature change operation while the air conditioner 10A is being operated based on the control parameter CP within an appropriate range. Therefore, it is possible to further improve the comfort of people in the space to be conditioned by the air conditioner 10A.
 図9の動作例において、制御パラメータCPは、温度変更操作が行われてから設定温度を変更前に復帰させるまでの制限時間を含んでもよい。すなわち、温度変更操作により変更可能な温度幅に加えて、或いは、これに代えて、制限時間を示す付加データを、制御パラメータCPに含めてもよい。例えば、制御パラメータCPは、温度変更操作の回数が多い外気温度帯に対応付けて長い制限時間を指定し、温度変更操作の回数が多い外気温度帯に対応付けて短い制限時間を指定してもよい。制限時間は、例えば、30分、60分、120分等と段階的に決定すればよい。 In the operation example of FIG. 9, the control parameter CP may include a time limit from when the temperature change operation is performed until the set temperature is restored to the state before the change. That is, in addition to the temperature range that can be changed by the temperature changing operation, or instead of this, additional data indicating the time limit may be included in the control parameter CP. For example, the control parameter CP may specify a long time limit in association with the outside air temperature range in which the temperature change operation is performed frequently, and may specify a short time limit in association with the outside air temperature range in which the temperature change operation is performed frequently. good. The time limit may be determined stepwise, for example, 30 minutes, 60 minutes, 120 minutes, and the like.
 図10は、制御パラメータ生成処理の別の例を示すフローチャートである。図10の動作は、図7または図9に示した動作に代えて、処理部124により実行される。 FIG. 10 is a flowchart showing another example of control parameter generation processing. The operation of FIG. 10 is executed by the processing unit 124 instead of the operation shown in FIG. 7 or 9. FIG.
 図10において、ステップSE1~SE5は図7の動作と共通である。
 処理部124は、ステップSE5で算出した推奨設定温度をもとに、第1の制御パラメータCPを生成する処理(ステップSE21)、及び、第2の制御パラメータCPを生成する処理(ステップSE22)を実行する。
In FIG. 10, steps SE1 to SE5 are common to the operation in FIG.
Based on the recommended set temperature calculated in step SE5, the processing unit 124 performs a process of generating a first control parameter CP (step SE21) and a process of generating a second control parameter CP (step SE22). Execute.
 第1の制御パラメータCP及び第2の制御パラメータCPは、いずれも、空気調和装置10Aにおいて制御装置11が外気温度をもとに推奨設定温度を求める処理を可能とする。このうち、第1の制御パラメータCPは、空気調和装置10Aが通常運転を行う場合に利用される。第2の制御パラメータCPは、空気調和装置10Aが省エネルギー運転を行う場合に利用される。つまり、処理部124は、ステップSE21、SE22で、通常運転用の制御パラメータCPと、省エネルギー運転用の制御パラメータCPとを生成する。図10の処理は、空気調和装置10Aにおいて、操作部14の操作によって通常運転と省エネルギー運転とを切り替えることが可能な場合に有効である。 Both the first control parameter CP and the second control parameter CP enable the control device 11 in the air conditioner 10A to obtain the recommended set temperature based on the outside air temperature. Among these, the first control parameter CP is used when the air conditioner 10A performs normal operation. The second control parameter CP is used when the air conditioner 10A performs energy saving operation. That is, processing unit 124 generates control parameters CP for normal operation and control parameters CP for energy saving operation in steps SE21 and SE22. The process of FIG. 10 is effective when the air conditioner 10A can switch between normal operation and energy saving operation by operating the operation unit 14 .
 処理部124は、ステップSE2で抽出したデータをもとに、外気温度帯毎の温度変更操作の回数を集計する(ステップSE23)。処理部124は、制御パラメータCPに付加する付加データを生成する(ステップSE24)。ステップSE24において、処理部124は、ステップSE22で集計した回数をもとに、外気温度帯毎の温度変更操作の許容回数、及び、温度変更操作により変更可能な温度幅を決定する。この処理はステップSE12と同様である。さらに、処理部124は、ステップSE24において、第1の制御パラメータCPに適用する第1付加データと、第2の制御パラメータCPに適用する第2付加データとを生成する。 Based on the data extracted in step SE2, the processing unit 124 tallies the number of temperature change operations for each outside temperature zone (step SE23). Processing unit 124 generates additional data to be added to control parameter CP (step SE24). In step SE24, the processing unit 124 determines the allowable number of temperature change operations for each outside air temperature zone and the temperature range that can be changed by the temperature change operation, based on the number of times counted in step SE22. This process is the same as step SE12. Furthermore, in step SE24, the processing unit 124 generates first additional data to be applied to the first control parameter CP and second additional data to be applied to the second control parameter CP.
 第1の制御パラメータCPは通常運転用であり、第2の制御パラメータCPは省エネルギー運転用である場合、第2付加データは第1付加データに比べて、温度変更操作を許容する範囲が狭い。例えば、第2付加データでは、第1付加データに比べて、同じ外気温度帯における温度変更操作の許容回数が少なく、変更可能な温度幅が狭い。 When the first control parameter CP is for normal operation and the second control parameter CP is for energy-saving operation, the second additional data has a narrower range of temperature change operation than the first additional data. For example, in the second additional data, the allowable number of temperature change operations in the same outside air temperature range is smaller than in the first additional data, and the changeable temperature range is narrow.
 処理部124は、制御パラメータCPを更新してメモリ130に記憶させる処理を行う(ステップSE25)。ステップSE25で、処理部124は、第1の制御パラメータCPに第1付加データを加えることにより、第1の制御パラメータCPを更新する。また、第2の制御パラメータCPに第2付加データを加えることにより、第2の制御パラメータCPを更新する。処理部124は、更新した第1の制御パラメータCP及び第2の制御パラメータCPを、空気調和装置10Aの空調機IDに対応付けて、メモリ130に記憶させる。 The processing unit 124 updates the control parameter CP and stores it in the memory 130 (step SE25). At step SE25, the processing unit 124 updates the first control parameter CP by adding the first additional data to the first control parameter CP. Also, the second control parameter CP is updated by adding the second additional data to the second control parameter CP. The processing unit 124 stores the updated first control parameter CP and second control parameter CP in the memory 130 in association with the air conditioner ID of the air conditioner 10A.
 図10の動作例によれば、空気調和装置10Aの管理者が、空気調和装置10Aの運転状態を、通常運転と省エネルギー運転とに切り替えることに対応して、外気温度に基づいて空気調和装置10Aの設定温度を設定できる。これにより、空気調和装置10Aの被調和空間の快適性を損なわない範囲において、被調和空間の快適性と消費エネルギーとのバランスを、管理者の要望に応じて変更できる。 According to the operation example of FIG. 10, the manager of the air conditioner 10A switches the operating state of the air conditioner 10A between the normal operation and the energy-saving operation. set temperature can be set. As a result, the balance between the comfort of the space to be conditioned and the energy consumption can be changed according to the manager's request within a range that does not impair the comfort of the space to be conditioned by the air conditioner 10A.
 図10で説明したステップSE21、SE22、SE25の処理を、図7のステップSE6、ステップSE7に適用することも可能である。この場合、温度変更操作の許容回数や変更可能な温度幅を含まない態様で、通常運転用と省エネルギー運転用の制御パラメータCPをそれぞれ生成できる。 The processing of steps SE21, SE22, and SE25 described in FIG. 10 can also be applied to steps SE6 and SE7 of FIG. In this case, the control parameters CP for normal operation and energy-saving operation can be generated in a manner that does not include the allowable number of temperature change operations and the changeable temperature range.
 このように、管理システム1000では、管理サーバ100が各々に空気調和装置10に適した制御パラメータCPを生成し、制御パラメータCPに基づいて空気調和装置10を運転させる。これにより、各々の空気調和装置10によって、被調和空間の快適性を維持しながら、消費エネルギーを抑制することが可能となる。 Thus, in the management system 1000, the management server 100 generates control parameters CP suitable for each air conditioner 10, and operates the air conditioner 10 based on the control parameters CP. As a result, each air conditioner 10 can reduce energy consumption while maintaining the comfort of the space to be conditioned.
 図11は、制御パラメータCPに基づく空気調和装置10の運転の様子を示す説明図である。図11には、制御パラメータCPに基づき外気温度に対応して設定される空気調和装置10の設定温度の例を示す。また、図11には、比較例として、省エネルギー運転における設定温度を示す。 FIG. 11 is an explanatory diagram showing how the air conditioner 10 operates based on the control parameters CP. FIG. 11 shows an example of the set temperature of the air conditioner 10 that is set corresponding to the outside air temperature based on the control parameter CP. Further, FIG. 11 shows the set temperatures in the energy saving operation as a comparative example.
 図11における空調機1、2、3、4は、それぞれ異なる空気調和装置10を指す。例えば、空調機1は空気調和装置10Aを指す。同様に、空調機2は空気調和装置10Bを指し、空調機3は空気調和装置10Cを指し、空調機4は空気調和装置10Dを指すと考えてよい。また、図11には一例として、冷房運転時に制御パラメータCPを適用する場合を示す。 Air conditioners 1, 2, 3, and 4 in FIG. 11 indicate different air conditioners 10, respectively. For example, the air conditioner 1 refers to the air conditioner 10A. Similarly, it may be considered that the air conditioner 2 refers to the air conditioner 10B, the air conditioner 3 refers to the air conditioner 10C, and the air conditioner 4 refers to the air conditioner 10D. Further, FIG. 11 shows, as an example, a case where the control parameter CP is applied during cooling operation.
 上述のように、省エネルギー運転における設定温度は、例えば、外気温度に関わらず28℃である。これに対し、制御パラメータCPを適用すると、空気調和装置10が、外気温度に対応して、空気調和装置10の設置環境に適する設定温度を決定できる。 As described above, the set temperature for energy-saving operation is, for example, 28°C regardless of the outside air temperature. On the other hand, if the control parameter CP is applied, the air conditioner 10 can determine the set temperature suitable for the installation environment of the air conditioner 10 according to the outside air temperature.
 例えば、図11の空調機1は、外気温度が22℃より低い場合は設定温度を25℃とし、外気温度が23℃以上で26℃より低い場合は設定温度を24℃とする。これに対し、空調機2は、外気温度が24℃より低い場合は設定温度を28℃とする。空気調和装置10A、10B、10C、10Dには、それぞれ異なる制御パラメータCPが管理サーバ100から与えられる。従って、各々の空気調和装置10は、図11に例示するように、同一の外気温度に対応して、互いに異なる設定温度を決定することが可能となる。 For example, the air conditioner 1 in FIG. 11 sets the set temperature to 25°C when the outside temperature is lower than 22°C, and sets the set temperature to 24°C when the outside temperature is 23°C or higher and lower than 26°C. On the other hand, the air conditioner 2 sets the set temperature to 28°C when the outside air temperature is lower than 24°C. Different control parameters CP are provided from the management server 100 to the air conditioners 10A, 10B, 10C, and 10D. Therefore, as illustrated in FIG. 11, each air conditioner 10 can determine different set temperatures for the same outside air temperature.
 図11に示す空気調和装置10の冷房運転時の設定温度は、いずれも省エネルギー運転における設定温度より低いので、被調和空間における快適性は改善する。また、外気温度に対応して空気調和装置10の設定温度を変更することにより、いわゆる冷房の効きすぎを回避し、空気調和装置10の消費エネルギーの抑制を実現できる。暖房運転時においても同様の効果が得られる。 Since the set temperatures of the air conditioner 10 during the cooling operation shown in FIG. 11 are all lower than the set temperatures during the energy saving operation, comfort in the space to be conditioned is improved. Also, by changing the set temperature of the air conditioner 10 according to the outside air temperature, so-called excessive cooling can be avoided, and energy consumption of the air conditioner 10 can be suppressed. A similar effect can be obtained during heating operation.
 また、管理システム1000は、制御パラメータCPを適用前後における空気調和装置10の消費エネルギー、及び、被調和空間の快適性の変化を可視化して、管理者に提供する機能を有する。 The management system 1000 also has a function of visualizing changes in the energy consumption of the air conditioner 10 and the comfort of the space to be conditioned before and after applying the control parameter CP, and providing this to the administrator.
 図12は、管理システム1000の動作を示すシーケンス図である。図12のステップSF1~SF7は管理サーバ100の動作を示し、ステップSG1~SG3は端末装置5の動作を示す。ステップSG1~SG3の動作を携帯端末装置7が実行してもよい。 FIG. 12 is a sequence diagram showing the operation of the management system 1000. FIG. Steps SF1 to SF7 in FIG. 12 show operations of the management server 100, and steps SG1 to SG3 show operations of the terminal device 5. FIG. The mobile terminal device 7 may perform the operations of steps SG1 to SG3.
 端末装置5は、端末装置5を使用する管理者の操作に従って、管理サーバ100に対して比較データ要求を送信する(ステップSG1)。比較データ要求は、比較データを生成する対象の空気調和装置10を特定する空調機IDを含む。比較データ要求は、比較データの種類を特定してもよい。比較データの種類は、例えば、消費電力量の比較、及び、温度変更操作の回数のいずれか1以上を含む。以下の説明では、比較データの種類として消費電力量の比較が指定された場合を説明する。 The terminal device 5 transmits a comparison data request to the management server 100 according to the operation of the administrator who uses the terminal device 5 (step SG1). The comparison data request includes an air conditioner ID that identifies the air conditioner 10 for which comparison data is to be generated. The comparison data request may specify the type of comparison data. The types of comparison data include, for example, one or more of power consumption comparison and the number of temperature change operations. In the following description, a case where power consumption comparison is designated as the type of comparison data will be described.
 取得部121は、端末装置5が送信する比較データ要求を受信する(ステップSF1)。処理部124は、比較データ要求に含まれる空調機IDを特定する(ステップSF2)。処理部124は、特定した空調機IDに対応するデータを、消費電力量DB135から抽出することにより、制御パラメータCPを適用する前の空気調和装置10の消費電力量を集計する(ステップSF3)。 The acquisition unit 121 receives the comparison data request transmitted by the terminal device 5 (step SF1). Processing unit 124 identifies the air conditioner ID included in the comparison data request (step SF2). The processing unit 124 extracts data corresponding to the specified air conditioner ID from the power consumption DB 135, thereby totaling the power consumption of the air conditioner 10 before applying the control parameter CP (step SF3).
 処理部124は、消費電力量DB135から抽出したデータに基づいて、制御パラメータCPを適用した後の空気調和装置10の消費電力量を集計する(ステップSF4)。 Based on the data extracted from the power consumption DB 135, the processing unit 124 totals the power consumption of the air conditioner 10 after applying the control parameter CP (step SF4).
 処理部124は、ステップSF3の集計結果とステップSF4の集計結果とをもとに、制御パラメータCPの適用前後を比較した比較データを生成する(ステップSF5)。処理部124は、比較データを可視化する処理を行うことにより、比較データに基づく表示データを生成する(ステップSF6)。処理部124は、生成した表示データを、比較データ要求を送信した端末装置5に送信する(ステップSF7)。 The processing unit 124 generates comparison data comparing before and after application of the control parameter CP based on the tabulation result of step SF3 and the tabulation result of step SF4 (step SF5). The processing unit 124 generates display data based on the comparison data by performing processing for visualizing the comparison data (step SF6). The processing unit 124 transmits the generated display data to the terminal device 5 that transmitted the comparison data request (step SF7).
 端末装置5は、管理サーバ100が送信する表示データを受信し(ステップSG2)、表示データをディスプレイ51に表示する(ステップSG3)。 The terminal device 5 receives the display data transmitted by the management server 100 (step SG2), and displays the display data on the display 51 (step SG3).
 図13は、比較データに基づく表示データの例を示す図である。
 図13は、横軸を外気温度、縦軸を1日または所定期間あたりの消費電力量としてデータをプロットした散布図である。図13は、空気調和装置10Aが、制御パラメータCPを用いない通常運転、制御パラメータCPを用いない省エネルギー運転、及び、制御パラメータCPを用いた運転を実行した場合の消費電力量を比較した比較データを示す。通常運転は、操作部14の操作により温度変更操作を無制限に実行可能な状態での運転である。省エネルギー運転は、空気調和装置10Aの設定温度を、経済産業省等が定める温度にする運転である。省エネルギー運転における設定温度は、例えば、冷房運転時は28℃、暖房運転時は20℃である。省エネルギー運転においては温度変更操作が実行できないか、温度変更操作の回数または変更可能な温度幅が、通常運転よりも厳しく制限される。
FIG. 13 is a diagram showing an example of display data based on comparison data.
FIG. 13 is a scatter diagram plotting data with the outside air temperature on the horizontal axis and the power consumption per day or per predetermined period on the vertical axis. FIG. 13 shows comparison data comparing power consumption when the air conditioner 10A performs normal operation without using the control parameter CP, energy-saving operation without using the control parameter CP, and operation using the control parameter CP. indicates Normal operation is operation in a state in which temperature change operations can be executed without restriction by operating the operation unit 14 . The energy-saving operation is an operation in which the set temperature of the air conditioner 10A is set to a temperature determined by the Ministry of Economy, Trade and Industry and the like. The set temperature in energy saving operation is, for example, 28° C. during cooling operation and 20° C. during heating operation. In the energy-saving operation, the temperature change operation cannot be performed, or the number of temperature change operations or the changeable temperature range is more severely restricted than in the normal operation.
 図中の点P3は制御パラメータCPを用いない通常運転のデータを示し、点P4は制御パラメータCPを用いない省エネルギー運転のデータを示す。点P5は制御パラメータCPを用いた運転のデータを示す。 Point P3 in the figure indicates data for normal operation without control parameter CP, and point P4 indicates data for energy saving operation without control parameter CP. Point P5 indicates data for operation using the control parameter CP.
 図13の表示データは、データの比較を容易にするため、回帰分析により得られる回帰曲線を含む。符号RG3は、点P3のデータを回帰分析した回帰曲線を示す。符号RG4は点P4のデータを回帰分析した回帰曲線であり、符号RG5は点P5のデータを回帰分析した回帰曲線である。これらの回帰曲線は、ステップSF5において処理部124が回帰分析を実行することによって得られる。回帰分析の手法は、最小二乗法、幾何平均回帰、主成分回帰、或いはその他の手法を用いることができ、上述したように適宜に選択される。回帰曲線RG3、RG4、RG5は直線であってもよい。 The data displayed in FIG. 13 includes a regression curve obtained by regression analysis to facilitate data comparison. Symbol RG3 indicates a regression curve obtained by regression analysis of the data of point P3. Symbol RG4 is a regression curve resulting from regression analysis of data at point P4, and symbol RG5 is a regression curve resulting from regression analysis of data at point P5. These regression curves are obtained by the processing unit 124 performing regression analysis in step SF5. The method of regression analysis can be the method of least squares, geometric mean regression, principal component regression, or other methods, and is appropriately selected as described above. The regression curves RG3, RG4, RG5 may be straight lines.
 図13の表示データは、空気調和装置10Aが制御パラメータCPを利用する場合と利用しない場合とで、空気調和装置10Aの消費電力量が変化した様子を可視化して管理者に提示する。例えば、空気調和装置10Aが制御パラメータCPを利用することにより、制御パラメータCPを用いない省エネルギー運転を実行した場合よりも消費電力量を抑制していることが示される。 The display data in FIG. 13 visualizes and presents to the administrator how the power consumption of the air conditioner 10A changes depending on whether the air conditioner 10A uses the control parameter CP or not. For example, it is shown that the air conditioner 10A uses the control parameter CP to reduce power consumption more than when the energy saving operation is performed without using the control parameter CP.
 図14は、比較データに基づく表示データの別の例を示す図である。
 図14は、空気調和装置10Aにおける温度変更操作の実行状況を比較した比較データを示している。すなわち、図14は、横軸を外気温度、縦軸を1日または所定時間あたりの温度変更操作の回数としてデータをプロットした散布図である。
FIG. 14 is a diagram showing another example of display data based on comparison data.
FIG. 14 shows comparison data comparing the execution status of the temperature changing operation in the air conditioner 10A. That is, FIG. 14 is a scatter diagram plotting data with the outside air temperature on the horizontal axis and the number of temperature change operations per day or predetermined time on the vertical axis.
 図14のデータは、空気調和装置10Aが、制御パラメータCPを用いない通常運転、制御パラメータCPを用いない省エネルギー運転、及び、制御パラメータCPを用いた運転を実行した場合の温度変更操作を比較する。 The data in FIG. 14 compare temperature changing operations when the air conditioner 10A performs normal operation without using the control parameter CP, energy saving operation without using the control parameter CP, and operation using the control parameter CP. .
 図中の点P6は制御パラメータCPを用いない通常運転のデータを示し、点P7は制御パラメータCPを用いない省エネルギー運転のデータを示す。点P8は制御パラメータCPを用いた運転のデータを示す。 A point P6 in the figure indicates data for normal operation without using the control parameter CP, and a point P7 indicates data for energy saving operation without using the control parameter CP. Point P8 indicates data for operation using the control parameter CP.
 図14の表示データは、データの比較を容易にするため、回帰分析により得られる回帰曲線を含む。符号RG6は、点P6のデータを回帰分析した回帰曲線を示す。符号RG7は点P7のデータを回帰分析した回帰曲線であり、符号RG8は点P8のデータを回帰分析した回帰曲線である。これらの回帰曲線は、ステップSF5において処理部124が回帰分析を実行することによって得られる。 The data displayed in FIG. 14 includes a regression curve obtained by regression analysis to facilitate data comparison. Symbol RG6 indicates a regression curve obtained by regression analysis of the data of point P6. Symbol RG7 is a regression curve obtained by regression analysis of data at point P7, and symbol RG8 is a regression curve obtained by regression analysis of data at point P8. These regression curves are obtained by the processing unit 124 performing regression analysis in step SF5.
 図14の表示データは、空気調和装置10Aが制御パラメータCPを利用する場合と利用しない場合とのそれぞれについて、被調和空間において温度変更操作が行われた回数を可視化して管理者に提示する。温度変更操作は、被調和空間にいる人が、被調和空間の快適性を改善させるために行う。従って、温度変更操作の回数が多いほど、被調和空間の快適性が低いと考えることができる。また、省エネルギーの観点からは温度変更操作を制限することが効果的であり、点P7及び回帰曲線RG7は、省エネルギー運転において温度変更操作が制限されたことを示している。 The display data in FIG. 14 visualizes and presents to the administrator the number of times the temperature change operation has been performed in the space to be conditioned for each of the cases where the air conditioner 10A uses the control parameter CP and where it does not. The temperature changing operation is performed by a person in the space to be harmonized in order to improve the comfort of the space to be harmonized. Therefore, it can be considered that the greater the number of temperature change operations, the lower the comfort of the space to be harmonized. Also, from the viewpoint of energy saving, it is effective to limit the temperature changing operation, and the point P7 and the regression curve RG7 indicate that the temperature changing operation is limited in the energy saving operation.
 図14の例では、空気調和装置10Aが制御パラメータCPを利用した場合に、制御パラメータCPを用いない通常運転よりも温度変更操作が減少したことが現れている。つまり、制御パラメータCPを利用することによって被調和空間の快適性が向上したといえる。 In the example of FIG. 14, when the air conditioner 10A uses the control parameter CP, the number of temperature change operations is reduced compared to normal operation without using the control parameter CP. In other words, it can be said that the comfort of the harmonized space is improved by using the control parameter CP.
 図13及び図14の表示データは、管理サーバ100に接続されるいずれか1の空気調和装置10に関するデータを視覚化したものである。これは一例であり、例えば、複数の空気調和装置10において消費電力量あるいは温度変更操作の回数を比較したデータを、1つの表示データにまとめて視覚化し、ディスプレイ51、71に表示してもよい。 The display data in FIGS. 13 and 14 are visualizations of data relating to any one of the air conditioners 10 connected to the management server 100. FIG. This is just an example, and for example, data obtained by comparing power consumption or the number of temperature change operations in a plurality of air conditioners 10 may be visualized as one piece of display data and displayed on the displays 51 and 71. .
 [4.効果等]
 以上のように、本実施形態において、管理システム1000は、空気調和装置10に設定温度を設定する設定部123と、空気調和装置10の設定温度を変更する温度変更操作を示す操作データRDを取得する取得部121と、所定期間に取得部121によって取得された、取得済みの操作データRDが、空気調和装置10の制御を実行するための制御パラメータCPを決定する処理に必要な条件を満たすか否かを判定する判定部122と、取得済みの操作データRDが条件を満たすと判定された場合に、取得済みの操作データRDに基づいて、少なくとも空気調和装置10の設定温度を含む制御パラメータCPを決定する処理部124と、を備え、取得済みの操作データRDが条件を満たさないと判定部122が判定した場合に、設定部123によって空気調和装置10の設定温度を変更し、取得部121によって操作データRDの取得を行う。
 これにより、空気調和装置10の制御パラメータCPを生成するために、操作データRDを、効率よく空気調和装置10から取得することができる。これにより、管理サーバ100は、制御パラメータCPの決定または生成に必要な、温度変更操作に関する十分なデータを取得できる。そのため、空気調和装置10の制御に関して、適切な制御パラメータCPを生成できる。
[4. effects, etc.]
As described above, in the present embodiment, the management system 1000 obtains the setting unit 123 for setting the temperature setting for the air conditioner 10 and the operation data RD indicating the temperature change operation for changing the temperature setting for the air conditioner 10. and whether the acquired operation data RD acquired by the acquiring unit 121 in a predetermined period satisfies the conditions necessary for the process of determining the control parameter CP for executing the control of the air conditioner 10 and a control parameter CP including at least the set temperature of the air conditioner 10 based on the acquired operation data RD when it is determined that the acquired operation data RD satisfies the condition. When the determining unit 122 determines that the acquired operation data RD does not satisfy the condition, the setting unit 123 changes the set temperature of the air conditioner 10, and the acquiring unit 121 acquires the operation data RD.
Thereby, the operation data RD can be efficiently acquired from the air conditioner 10 in order to generate the control parameters CP of the air conditioner 10 . Thereby, the management server 100 can acquire sufficient data regarding the temperature changing operation necessary for determining or generating the control parameter CP. Therefore, an appropriate control parameter CP can be generated for control of the air conditioner 10 .
 本実施形態の空気調和装置10の管理方法は、空気調和装置10に設定温度を設定し、空気調和装置10の設定温度を変更する温度変更操作を示す操作データRDを取得し、所定期間に取得した、取得済みの操作データRDが、空気調和装置10の制御を実行するための制御パラメータCPを決定する処理に必要な条件を満たすか否かを判定し、取得済みの操作データRDが条件を満たすと判定した場合に、取得済みの操作データRDに基づいて、少なくとも空気調和装置10の設定温度を含む制御パラメータCPを決定し、取得済みの操作データRDが条件を満たさないと判定した場合に、空気調和装置10の設定温度を変更し、操作データRDの取得を行う。この方法によれば、空気調和装置10の制御パラメータCPを生成するために、操作データRDを、効率よく空気調和装置10から取得することができる。これにより、制御パラメータCPの決定または生成に必要な、温度変更操作に関する十分なデータを、空気調和装置10から取得することが可能となる。そのため、空気調和装置10の制御に関して、適切な制御パラメータCPを生成できる。 The method for managing the air conditioner 10 according to the present embodiment sets the temperature setting for the air conditioner 10, acquires operation data RD indicating a temperature change operation for changing the temperature setting for the air conditioner 10, and acquires the operation data RD during a predetermined period. It is determined whether or not the acquired operation data RD satisfies the conditions necessary for the process of determining the control parameter CP for executing the control of the air conditioner 10, and the acquired operation data RD satisfies the conditions. If it is determined that the condition is satisfied, the control parameter CP including at least the set temperature of the air conditioner 10 is determined based on the acquired operation data RD, and if it is determined that the acquired operation data RD does not satisfy the condition , the set temperature of the air conditioner 10 is changed, and the operation data RD is acquired. According to this method, the operation data RD can be efficiently acquired from the air conditioner 10 in order to generate the control parameters CP of the air conditioner 10 . This makes it possible to obtain from the air conditioner 10 sufficient data regarding the temperature changing operation, which is necessary for determining or generating the control parameter CP. Therefore, an appropriate control parameter CP can be generated for control of the air conditioner 10 .
 本実施形態の制御プログラム131は、空気調和装置10を管理するコンピュータである管理サーバ100により実行可能なプログラムである。制御プログラム131は、管理サーバ100を、空気調和装置10に設定温度を設定する設定部123と、空気調和装置10の設定温度を変更する温度変更操作を示す操作データRDを取得する取得部121と、所定期間に取得部121によって取得された、取得済みの操作データRDが、空気調和装置10の制御を実行するための制御パラメータCPを決定する処理に必要な条件を満たすか否かを判定する判定部122と、取得済みの操作データRDが条件を満たすと判定部122が判定した場合に、取得済みの操作データRDに基づいて、少なくとも空気調和装置10の設定温度を含む制御パラメータCPを決定する処理部124と、して機能させ、取得済みの操作データRDが条件を満たさないと判定部122が判定した場合に、設定部123によって空気調和装置10の設定温度を変更し、取得部121によって操作データRDの取得を行う制御を実行させる、プログラム。このプログラムによれば、空気調和装置10の制御パラメータCPを生成するために、操作データRDを、効率よく空気調和装置10から取得することができる。これにより、制御パラメータCPの決定または生成に必要な、温度変更操作に関する十分なデータを、空気調和装置10から取得することが可能となる。そのため、空気調和装置10の制御に関して、適切な制御パラメータCPを生成できる。 The control program 131 of this embodiment is a program that can be executed by the management server 100 that is a computer that manages the air conditioner 10 . The control program 131 includes the management server 100 as a setting unit 123 that sets the temperature setting for the air conditioner 10, and an acquisition unit 121 that acquires operation data RD indicating a temperature change operation for changing the temperature setting for the air conditioner 10. determines whether or not the acquired operation data RD acquired by the acquisition unit 121 in a predetermined period satisfies the conditions necessary for the process of determining the control parameter CP for executing the control of the air conditioner 10. A determination unit 122, and when the determination unit 122 determines that the acquired operation data RD satisfies a condition, determines a control parameter CP including at least the set temperature of the air conditioner 10 based on the acquired operation data RD. If the determining unit 122 determines that the acquired operation data RD does not satisfy the condition, the setting unit 123 changes the set temperature of the air conditioner 10, and the acquiring unit 124 A program for executing control for acquiring operation data RD. According to this program, the operation data RD can be efficiently acquired from the air conditioner 10 in order to generate the control parameters CP of the air conditioner 10 . This makes it possible to obtain from the air conditioner 10 sufficient data regarding the temperature changing operation, which is necessary for determining or generating the control parameter CP. Therefore, an appropriate control parameter CP can be generated for control of the air conditioner 10 .
 本実施形態のように、管理システム1000は、取得済みの操作データRDが条件を満たさないと判定部122が判定した場合に、設定部123によって、空気調和装置10の消費エネルギーが小さくなるように空気調和装置10の設定温度を変更し、取得部121によって操作データRDの取得を行ってもよい。これにより、操作データRDの取得状況に応じて、空気調和装置10の温度変更操作が行われやすいように、設定温度を変更する。そのため、制御パラメータCPの決定に必要なデータを、空気調和装置10から効率よく取得することが可能となる。 As in the present embodiment, when the determination unit 122 determines that the acquired operation data RD does not satisfy the conditions, the management system 1000 causes the setting unit 123 to reduce the energy consumption of the air conditioner 10. The operation data RD may be acquired by the acquisition unit 121 by changing the set temperature of the air conditioner 10 . Thereby, the set temperature is changed so that the temperature change operation of the air conditioner 10 is easily performed according to the acquisition status of the operation data RD. Therefore, it is possible to efficiently acquire the data necessary for determining the control parameter CP from the air conditioner 10 .
 本実施形態のように、制御パラメータCPは、空気調和装置10の設置場所における外気温度と空気調和装置10の設定温度とを対応付けるデータを含み、空気調和装置10が外気温度の変化に応じて設定温度を変更する制御を実行するためのパラメータであってもよい。これにより、制御パラメータCPに従って空気調和装置10を運転させることによって、空気調和装置10の被調和空間の環境や特性に対応して、空気調和装置10の設定温度を適切に設定できる。そのため、被調和空間の快適性と空気調和装置10の消費エネルギーの抑制とを両立した、空気調和装置10の制御を実現できる。 As in the present embodiment, the control parameter CP includes data that associates the outside air temperature at the installation location of the air conditioner 10 with the set temperature of the air conditioner 10, and the air conditioner 10 sets according to changes in the outside temperature. It may be a parameter for executing control to change the temperature. Accordingly, by operating the air conditioner 10 according to the control parameter CP, the preset temperature of the air conditioner 10 can be appropriately set according to the environment and characteristics of the space to be conditioned by the air conditioner 10 . Therefore, it is possible to realize control of the air conditioner 10 that achieves both the comfort of the space to be conditioned and the suppression of the energy consumption of the air conditioner 10 .
 本実施形態のように、制御パラメータCPは、空気調和装置10の設置場所における外気温度と、空気調和装置10の設定温度と、空気調和装置10が温度変更操作に応じて設定温度を変更可能な温度幅と、を対応付けるデータを含み、空気調和装置10が外気温度の変化及び温度変更操作に応じて設定温度を変更する制御を実行するためのパラメータであってもよい。これにより、制御パラメータCPに従って空気調和装置10を運転させる場合の温度変更操作を、適切な範囲で許容することができる。そのため、被調和空間の快適性をより一層高めるとともに、空気調和装置10の消費エネルギーの抑制を実現できる。 As in the present embodiment, the control parameter CP is the outside air temperature at the installation location of the air conditioner 10, the set temperature of the air conditioner 10, and the set temperature that can be changed by the air conditioner 10 according to the temperature change operation. It may be a parameter for the air conditioning apparatus 10 to execute control to change the set temperature in accordance with a change in the outside air temperature and a temperature change operation. As a result, it is possible to allow the temperature changing operation in the case of operating the air conditioner 10 according to the control parameter CP within an appropriate range. Therefore, the comfort of the space to be conditioned can be further enhanced, and the energy consumption of the air conditioner 10 can be reduced.
 本実施形態のように、管理システム1000は、温度変更操作が行われた場合に、温度変更操作に応じて空気調和装置10の設定温度を変更し、空気調和装置10の設定温度を変更してから所定時間が経過した後に、空気調和装置10の設定温度を温度変更操作が行われる前の温度に復帰させてもよい。これにより、被調和空間の快適性を好適な状態に維持しながら、制御パラメータCPを決定するために必要なデータを効率よく取得できる。 As in the present embodiment, when a temperature change operation is performed, the management system 1000 changes the set temperature of the air conditioner 10 according to the temperature change operation, and changes the set temperature of the air conditioner 10. After a predetermined period of time has elapsed since then, the set temperature of the air conditioner 10 may be returned to the temperature before the temperature change operation was performed. As a result, it is possible to efficiently acquire the data necessary for determining the control parameter CP while maintaining the comfort of the harmonized space in a suitable state.
 本実施形態のように、管理システム1000は、温度変更操作が行われた場合に、温度変更操作に応じて空気調和装置10の設定温度を変更し、空気調和装置10の設定温度を変更した後の所定のタイミングで、空気調和装置10の設定温度を温度変更操作が行われる前の温度に復帰させてもよい。これにより、被調和空間の快適性を好適な状態に維持しながら、制御パラメータCPを決定するために必要なデータを効率よく取得できる。 As in the present embodiment, when a temperature change operation is performed, the management system 1000 changes the set temperature of the air conditioner 10 according to the temperature change operation, and after changing the set temperature of the air conditioner 10 At a predetermined timing, the set temperature of the air conditioner 10 may be returned to the temperature before the temperature change operation was performed. As a result, it is possible to efficiently acquire the data necessary for determining the control parameter CP while maintaining the comfort of the harmonized space in a suitable state.
 本実施形態のように、処理部124は、空気調和装置10が暖房運転中に取得部121によって取得された操作データRDに基づいて、暖房運転用の制御パラメータCPを生成し、空気調和装置10が冷房運転中に取得部121によって取得された操作データRDに基づいて、冷房運転用の制御パラメータCPを決定してもよい。これにより、空気調和装置10の暖房運転と冷房運転との各々に対応する制御パラメータCPを決定できる。そのため、空気調和装置10が暖房運転を実行する場合、及び、冷房運転を実行する場合のいずれにおいても、被調和空間の快適性と空気調和装置10の消費エネルギーの抑制とを両立した、空気調和装置10の制御を実現できる。 As in the present embodiment, the processing unit 124 generates the control parameter CP for the heating operation based on the operation data RD acquired by the acquiring unit 121 while the air conditioner 10 is in the heating operation. may determine the control parameter CP for the cooling operation based on the operation data RD acquired by the acquiring unit 121 during the cooling operation. Thereby, the control parameter CP corresponding to each of the heating operation and the cooling operation of the air conditioner 10 can be determined. Therefore, both when the air conditioner 10 performs the heating operation and when the air conditioner 10 performs the cooling operation, an air conditioner that achieves both the comfort of the space to be conditioned and the suppression of the energy consumption of the air conditioner 10 Control of the device 10 can be realized.
 本実施形態のように、処理部124は、制御パラメータCPを利用して空気調和装置10を運転させた場合の空気調和装置10の消費電力量と、制御パラメータCPを利用せず温度変更操作に応じて空気調和装置10を運転させた場合の空気調和装置10の消費電力量と、を比較した比較データを生成してもよい。これにより、空気調和装置10の管理者や利用者が、制御パラメータCPを利用する場合の消費エネルギーの抑制効果を、視覚的に把握できる。 As in the present embodiment, the processing unit 124 determines the power consumption of the air conditioner 10 when the air conditioner 10 is operated using the control parameter CP, and the temperature change operation without using the control parameter CP. Accordingly, comparison data may be generated by comparing the power consumption of the air conditioner 10 when the air conditioner 10 is operated. As a result, the administrator or user of the air conditioner 10 can visually grasp the effect of suppressing energy consumption when using the control parameter CP.
 本実施形態のように、管理システム1000は、空気調和装置10と、空気調和装置10と通信可能な管理サーバ100とを備え、空気調和装置10は、温度変更操作を受け付ける操作部14と、温度変更操作に基づき操作データRDを管理サーバ100に送信する通信装置15と、管理サーバが送信する温度設定データに基づいて、空気調和装置10を制御する制御装置11と、を備え、制御装置11は、管理サーバ100により生成された制御パラメータCPと、空気調和装置10の設置場所における外気温度とに基づいて、空気調和装置10の設定温度を変更してもよい。これにより、管理サーバ100が制御パラメータCPを空気調和装置10に送信し、空気調和装置10が、管理サーバ100によって与えられる制御パラメータCPに基づいて、外気温度に対応する設定温度で運転する。そのため、管理サーバ100の制御のもとで、空気調和装置10の設定温度を適切に設定できるので、被調和空間の快適性と空気調和装置10の消費エネルギーの抑制とを両立できる。 As in the present embodiment, the management system 1000 includes an air conditioner 10 and a management server 100 that can communicate with the air conditioner 10. The air conditioner 10 includes an operation unit 14 that receives a temperature change operation, a temperature A communication device 15 that transmits operation data RD to the management server 100 based on a change operation, and a control device 11 that controls the air conditioner 10 based on the temperature setting data transmitted by the management server. , the set temperature of the air conditioner 10 may be changed based on the control parameter CP generated by the management server 100 and the outside air temperature at the installation location of the air conditioner 10 . Thereby, the management server 100 transmits the control parameter CP to the air conditioner 10, and the air conditioner 10 operates at the set temperature corresponding to the outside air temperature based on the control parameter CP given by the management server 100. Therefore, under the control of the management server 100, the set temperature of the air conditioner 10 can be appropriately set, so that both the comfort of the air-conditioned space and the suppression of the energy consumption of the air conditioner 10 can be achieved.
 [5.他の実施形態]
 以上のように、本出願において開示する例示として、上記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施形態にも適用できる。また、上記実施形態で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。
 そこで、以下、他の実施形態を例示する。
[5. Other embodiments]
As described above, the above embodiments have been described as examples disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like. Further, it is also possible to combine the constituent elements described in the above embodiment to form a new embodiment.
Therefore, other embodiments will be exemplified below.
 上述した実施形態では、外気温度を外気温度センサ18により検出する構成を例示したが、これは一例である。例えば、日射や室外機12の熱の籠りなどの影響を避けて外気温度を取得するために、空気調和装置10または管理サーバ100が、クラウドサーバ等によって提供される気象情報配信サービスを利用して、施設1の設置場所における外気温度のデータを取得してもよい。管理サーバ100が外気温度のデータを取得可能な構成である場合、操作データRDに外気温度を含める必要はない。この場合、外気温度のデータを管理サーバ100から空気調和装置10に送信してもよい。 In the above-described embodiment, the configuration in which the outside air temperature is detected by the outside air temperature sensor 18 was exemplified, but this is an example. For example, in order to obtain the outdoor temperature while avoiding the effects of solar radiation and heat build-up in the outdoor unit 12, the air conditioner 10 or the management server 100 uses a weather information distribution service provided by a cloud server or the like. , the data of the outside air temperature at the installation location of the facility 1 may be obtained. If the management server 100 is configured to be able to acquire outside temperature data, there is no need to include the outside temperature in the operation data RD. In this case, data on the outside air temperature may be transmitted from the management server 100 to the air conditioner 10 .
 上述した実施形態では、判定部122がステップSD4(図5)で実行する回帰分析、及び、処理部124がステップSE4(図7)で実行する回帰分析の例として、線形回帰を行う構成を説明した。これは一例であり、判定部122及び処理部124は、例えば、回帰曲線を求める処理を行ってもよい。この場合、ステップSD5で回帰直線の傾きを閾値と比較する処理は、回帰曲線の傾きの最大値または平均値を閾値と比較する処理に置き換えることができる。 In the above-described embodiment, the configuration for performing linear regression is described as an example of the regression analysis performed by the determination unit 122 in step SD4 (FIG. 5) and the regression analysis performed by the processing unit 124 in step SE4 (FIG. 7). did. This is an example, and the determination unit 122 and the processing unit 124 may perform, for example, processing to obtain a regression curve. In this case, the process of comparing the slope of the regression line with the threshold in step SD5 can be replaced with the process of comparing the maximum value or average value of the slope of the regression curve with the threshold.
 また、上述した実施形態では、各々の空気調和装置10が通信装置15を備える構成を説明した。この構成において、複数の空気調和装置10が、空気調和装置10とは独立して、或いは、いずれかの空気調和装置10に内蔵された通信装置に接続され、この通信装置により管理サーバ100と通信を実行する構成であってもよい。 Also, in the above-described embodiment, the configuration in which each air conditioner 10 includes the communication device 15 has been described. In this configuration, the plurality of air conditioners 10 are connected independently of the air conditioners 10 or to a communication device built in any one of the air conditioners 10, and communicate with the management server 100 through this communication device. may be configured to execute
 また、上述した実施形態では、各々の空気調和装置10が、制御パラメータCPに基づいて設定温度を決定する制御装置11を備える構成を説明した。この構成において、複数の空気調和装置10を制御する中央制御装置を設けてもよい。この場合、中央制御装置は、複数の空気調和装置10のそれぞれに対応して管理サーバ100が生成する制御パラメータCPに従って、各々の空気調和装置10の設定温度を決定してもよい。 Also, in the above-described embodiment, each air conditioner 10 has a configuration including the control device 11 that determines the set temperature based on the control parameter CP. In this configuration, a central controller that controls a plurality of air conditioners 10 may be provided. In this case, the central controller may determine the set temperature of each air conditioner 10 according to the control parameter CP generated by the management server 100 corresponding to each of the plurality of air conditioners 10 .
 本開示における通信部の構成は、本開示の装置と外部機器との通信を可能にするものであればよい。発明の主題を表現する際に、本開示の装置と外部機器との通信を可能にするものとして、コミュニケータの他にも通信手段または通信部または送受信手段または送受信部またはそれらに類似する文言で表記する場合がある。通信装置15、サーバ通信装置150、及び、端末装置5または携帯端末装置7が備える不図示の通信部を構成するコミュニケータは、様々な態様で実現可能である。例えば、コミュニケータは、外部機器と有線で接続する態様であってもよいし、外部機器と無線で通信接続する態様であってもよい。本開示の装置と外部機器とを有線で接続するコミュニケータであれば、通信のセキュリティ性、及び、通信の安定性において有効である。有線接続のコミュニケータとしては、例えば、Ethernet(登録商標)規格に基づく有線LAN、または、光ファイバーケーブルを用いた有線接続などがある。無線接続のコミュニケータとしては、基地局等を介しての外部機器との無線接続、または、外部機器との直接無線接続などがある。基地局等を介しての外部機器との無線接続としては、例えば、Wi-Fiルータと無線通信するIEEE802.11対応の無線LAN、第3世代移動通信システム(通称3G)、第4世代移動通信システム(通称4G)、IEEE 802.16対応のWiMax(登録商標)、または、LPWA(Low Power Wide Area)などがある。本開示の装置と外部機器とを直接無線接続するコミュニケータを用いれば、通信のセキュリティ性の向上に有効であるとともに、Wi-Fiルータなどの中継機器が存在しない場所でも、本開示の装置は外部機器と通信できる。本開示の装置と外部機器とを直接無線接続するコミュニケータとしては、例えば、Bluetooth(登録商標)による通信、ループアンテナを介したNFC(Near Field Communication)による通信、または、赤外線通信などがある。 The configuration of the communication unit in the present disclosure may be any configuration that enables communication between the device of the present disclosure and an external device. In expressing the subject matter of the invention, in addition to communicator, communication means or communication unit or transmitting/receiving means or transmitting/receiving unit or similar terms are used to enable communication between the device of the present disclosure and an external device. may be indicated. The communication device 15, the server communication device 150, and the communicators constituting the communication units (not shown) provided in the terminal device 5 or the mobile terminal device 7 can be implemented in various ways. For example, the communicator may be wired to connect to the external device, or wirelessly connected to the external device. A communicator that connects the device of the present disclosure and an external device by wire is effective in terms of communication security and communication stability. Wired connection communicators include, for example, a wired LAN based on the Ethernet (registered trademark) standard, and a wired connection using an optical fiber cable. As a communicator for wireless connection, there are wireless connection with an external device via a base station or the like, direct wireless connection with an external device, and the like. Examples of wireless connections with external devices via base stations include wireless LANs compatible with IEEE802.11 that communicate wirelessly with Wi-Fi routers, third-generation mobile communication systems (commonly known as 3G), and fourth-generation mobile communication systems. There are systems (commonly known as 4G), WiMax (registered trademark) compatible with IEEE 802.16, or LPWA (Low Power Wide Area). Using a communicator that directly wirelessly connects the device of the present disclosure and an external device is effective in improving the security of communication, and the device of the present disclosure can be used even in places where there is no relay device such as a Wi-Fi router. Can communicate with external devices. Examples of communicators that directly wirelessly connect the device of the present disclosure and an external device include communication by Bluetooth (registered trademark), communication by NFC (Near Field Communication) via a loop antenna, infrared communication, and the like.
 図1及び図2に示した各部は一例であって、具体的な実装形態は特に限定されない。つまり、必ずしも各部に個別に対応するハードウェアが実装される必要はなく、一つのプロセッサがプログラムを実行することで各部の機能を実現する構成とすることも勿論可能である。また、上述した実施形態においてソフトウェアで実現される機能の一部をハードウェアとしてもよく、或いは、ハードウェアで実現される機能の一部をソフトウェアで実現してもよい。その他、空気調和装置10、管理サーバ100、端末装置5、及び携帯端末装置7の他の各部の具体的な細部構成についても、本開示の趣旨を逸脱しない範囲で任意に変更可能である。 Each part shown in FIGS. 1 and 2 is an example, and the specific implementation is not particularly limited. In other words, it is not always necessary to mount hardware corresponding to each part individually, and it is of course possible to adopt a configuration in which one processor executes a program to realize the function of each part. Further, part of the functions implemented by software in the above-described embodiments may be implemented by hardware, or part of the functions implemented by hardware may be implemented by software. In addition, the specific detailed configurations of other units of the air conditioner 10, the management server 100, the terminal device 5, and the mobile terminal device 7 can be arbitrarily changed without departing from the scope of the present disclosure.
 また、例えば、図3~図5、図7、図9、図10、図12に示す動作のステップ単位は、管理システム1000の各部の動作の理解を容易にするために、主な処理内容に応じて分割したものであり、処理単位の分割の仕方や名称によって、本開示が限定されることはない。 3 to 5, 7, 9, 10, and 12, for example, the operation steps shown in FIGS. The present disclosure is not limited by the division method or names of the processing units.
 なお、上述の実施形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Note that the above-described embodiment is for illustrating the technology in the present disclosure, and various changes, replacements, additions, omissions, etc. can be made within the scope of the claims or equivalents thereof.
 以上のように、本開示に係る管理システム、空気調和装置の管理方法、および、プログラムは、空気調和装置の運転を管理する用途に利用可能である。 As described above, the management system, air conditioner management method, and program according to the present disclosure can be used to manage the operation of air conditioners.
 5 端末装置
 7 携帯端末装置
 10、10A、10B、10C、10D 空気調和装置
 11 制御装置(制御部)
 12 室外機
 13 室内機
 14 操作部
 15 通信装置(送信部)
 18 外気温度センサ
 51、71 ディスプレイ
 100 管理サーバ
 110 制御部
 120 プロセッサ
 121 取得部
 122 判定部
 123 設定部
 124 処理部
 130 メモリ
 131 制御プログラム(プログラム)
 132 温度設定データ
 150 サーバ通信装置
 1000 管理システム
 CP 制御パラメータ
 RD 操作データ
 N 通信ネットワーク
 SD 設定データ
5 terminal device 7 portable terminal device 10, 10A, 10B, 10C, 10D air conditioning device 11 control device (control unit)
12 outdoor unit 13 indoor unit 14 operation unit 15 communication device (transmitting unit)
18 outside air temperature sensor 51, 71 display 100 management server 110 control unit 120 processor 121 acquisition unit 122 determination unit 123 setting unit 124 processing unit 130 memory 131 control program (program)
132 temperature setting data 150 server communication device 1000 management system CP control parameter RD operation data N communication network SD setting data

Claims (11)

  1.  空気調和装置に設定温度を設定する設定部と、
     前記空気調和装置の設定温度を変更する温度変更操作を示す操作データを取得する取得部と、
     所定期間に前記取得部によって取得された、取得済みの前記操作データが、前記空気調和装置の制御を実行するための制御パラメータを決定する処理に必要な条件を満たすか否かを判定する判定部と、
     取得済みの前記操作データが前記条件を満たすと判定された場合に、取得済みの前記操作データに基づいて、少なくとも前記空気調和装置の設定温度を含む前記制御パラメータを決定する処理部と、を備え、
     取得済みの前記操作データが前記条件を満たさないと前記判定部が判定した場合に、前記設定部によって前記空気調和装置の設定温度を変更し、前記取得部によって前記操作データの取得を行う、
     管理システム。
    a setting unit for setting a preset temperature for the air conditioner;
    an acquisition unit for acquiring operation data indicating a temperature change operation for changing the set temperature of the air conditioner;
    A determination unit that determines whether or not the acquired operation data acquired by the acquisition unit during a predetermined period satisfies a condition necessary for a process of determining control parameters for executing control of the air conditioner. and,
    a processing unit that determines the control parameters including at least the set temperature of the air conditioner based on the acquired operation data when it is determined that the acquired operation data satisfies the condition. ,
    when the determination unit determines that the acquired operation data does not satisfy the condition, the setting unit changes the temperature setting of the air conditioner, and the acquisition unit acquires the operation data;
    management system.
  2.  取得済みの前記操作データが前記条件を満たさないと前記判定部が判定した場合に、前記設定部によって、前記空気調和装置の消費エネルギーが小さくなるように前記空気調和装置の設定温度を変更し、前記取得部によって前記操作データの取得を行う、請求項1に記載の管理システム。 when the determination unit determines that the acquired operation data does not satisfy the condition, the setting unit changes the set temperature of the air conditioner so that the energy consumption of the air conditioner is reduced; The management system according to claim 1, wherein said acquisition unit acquires said operation data.
  3.  前記制御パラメータは、前記空気調和装置の設置場所における外気温度と前記空気調和装置の設定温度とを対応付けるデータを含み、前記空気調和装置が外気温度の変化に応じて設定温度を変更する制御を実行するためのパラメータである、
     請求項1または2に記載の管理システム。
    The control parameter includes data that associates an outside air temperature at an installation location of the air conditioner with a set temperature of the air conditioner, and the air conditioner executes control to change the set temperature according to changes in the outside air temperature. is a parameter for
    3. Management system according to claim 1 or 2.
  4.  前記制御パラメータは、前記空気調和装置の設置場所における外気温度と、前記空気調和装置の設定温度と、前記空気調和装置が前記温度変更操作に応じて設定温度を変更可能な温度幅と、を対応付けるデータを含み、前記空気調和装置が外気温度の変化及び前記温度変更操作に応じて設定温度を変更する制御を実行するためのパラメータである、
     請求項1または2に記載の管理システム。
    The control parameter associates an outside air temperature at an installation location of the air conditioner, a set temperature of the air conditioner, and a temperature range in which the air conditioner can change the set temperature in accordance with the temperature change operation. A parameter for executing control that includes data and that the air conditioner changes the set temperature in response to a change in the outside temperature and the temperature change operation,
    3. Management system according to claim 1 or 2.
  5.  前記温度変更操作が行われた場合に、前記温度変更操作に応じて前記空気調和装置の設定温度を変更し、前記空気調和装置の設定温度を変更してから所定時間が経過した後に、前記空気調和装置の設定温度を前記温度変更操作が行われる前の温度に復帰させる、
     請求項1から請求項4のいずれかに記載の管理システム。
    When the temperature change operation is performed, the set temperature of the air conditioner is changed according to the temperature change operation, and after a predetermined time has passed since the set temperature of the air conditioner was changed, the air returning the set temperature of the conditioning device to the temperature before the temperature change operation is performed;
    The management system according to any one of claims 1 to 4.
  6.  前記温度変更操作が行われた場合に、前記温度変更操作に応じて前記空気調和装置の設定温度を変更し、前記空気調和装置の設定温度を変更した後の所定のタイミングで、前記空気調和装置の設定温度を前記温度変更操作が行われる前の温度に復帰させる、
     請求項1から請求項4のいずれかに記載の管理システム。
    When the temperature change operation is performed, the set temperature of the air conditioner is changed according to the temperature change operation, and at a predetermined timing after the set temperature of the air conditioner is changed, the air conditioner returning the set temperature of to the temperature before the temperature change operation was performed;
    The management system according to any one of claims 1 to 4.
  7.  前記処理部は、前記空気調和装置が暖房運転中に前記取得部によって取得された前記操作データに基づいて、暖房運転用の前記制御パラメータを決定し、前記空気調和装置が冷房運転中に前記取得部によって取得された前記操作データに基づいて、冷房運転用の前記制御パラメータを決定する、
     請求項1から請求項6のいずれかに記載の管理システム。
    The processing unit determines the control parameter for heating operation based on the operation data acquired by the acquisition unit while the air conditioner is in heating operation, and determines the control parameter for heating operation while the air conditioner is in cooling operation. determining the control parameters for cooling operation based on the operational data obtained by a unit;
    The management system according to any one of claims 1 to 6.
  8.  前記処理部は、前記制御パラメータを利用して前記空気調和装置を運転させた場合の前記空気調和装置の消費電力量と、前記制御パラメータを利用せず前記温度変更操作に応じて前記空気調和装置を運転させた場合の前記空気調和装置の消費電力量と、を比較した比較データを生成する、
     請求項1から請求項7のいずれかに記載の管理システム。
    The processing unit controls the power consumption of the air conditioner when the air conditioner is operated using the control parameter, and the air conditioner according to the temperature change operation without using the control parameter. Generate comparison data comparing the power consumption of the air conditioner when operating
    The management system according to any one of claims 1 to 7.
  9.  前記空気調和装置と、前記空気調和装置と通信可能な管理サーバとを備え、
     前記空気調和装置は、
     前記温度変更操作を受け付ける操作部と、
     前記温度変更操作に基づき前記操作データを前記管理サーバに送信する送信部と、
     前記管理サーバが送信する温度設定データに基づいて、前記空気調和装置を制御する制御部と、を備え、
     前記制御部は、前記管理サーバにより生成された前記制御パラメータと、前記空気調和装置の設置場所における外気温度とに基づいて、前記空気調和装置の設定温度を変更する、
     請求項1から請求項8のいずれかに記載の管理システム。
    The air conditioner and a management server capable of communicating with the air conditioner,
    The air conditioner is
    an operation unit that receives the temperature change operation;
    a transmission unit configured to transmit the operation data to the management server based on the temperature change operation;
    a control unit that controls the air conditioner based on the temperature setting data transmitted by the management server;
    The control unit changes the set temperature of the air conditioner based on the control parameter generated by the management server and the outside air temperature at the installation location of the air conditioner.
    The management system according to any one of claims 1 to 8.
  10.  空気調和装置に設定温度を設定し、
     前記空気調和装置の設定温度を変更する温度変更操作を示す操作データを取得し、
     所定期間に取得した、取得済みの前記操作データが、前記空気調和装置の制御を実行するための制御パラメータを決定する処理に必要な条件を満たすか否かを判定し、
     取得済みの前記操作データが前記条件を満たすと判定した場合に、取得済みの前記操作データに基づいて、少なくとも前記空気調和装置の設定温度を含む前記制御パラメータを決定し、
     取得済みの前記操作データが前記条件を満たさないと判定した場合に、前記空気調和装置の設定温度を変更し、前記操作データの取得を行う、
     空気調和装置の管理方法。
    Set the set temperature on the air conditioner,
    Acquiring operation data indicating a temperature change operation for changing the set temperature of the air conditioner;
    Determining whether the acquired operation data acquired in a predetermined period satisfies the conditions necessary for the process of determining control parameters for executing control of the air conditioner,
    when it is determined that the acquired operation data satisfies the condition, determining the control parameter including at least the set temperature of the air conditioner based on the acquired operation data;
    when it is determined that the acquired operation data does not satisfy the condition, changing the set temperature of the air conditioner and acquiring the operation data;
    A management method for an air conditioner.
  11.  空気調和装置を管理するコンピュータにより実行可能なプログラムであって、
     前記コンピュータを、
     前記空気調和装置に設定温度を設定する設定部と、
     前記空気調和装置の設定温度を変更する温度変更操作を示す操作データを取得する取得部と、
     所定期間に前記取得部によって取得された、取得済みの前記操作データが、前記空気調和装置の制御を実行するための制御パラメータを決定する処理に必要な条件を満たすか否かを判定する判定部と、
     取得済みの前記操作データが前記条件を満たすと前記判定部が判定した場合に、取得済みの前記操作データに基づいて、少なくとも前記空気調和装置の設定温度を含む前記制御パラメータを決定する処理部と、して機能させ、
     取得済みの前記操作データが前記条件を満たさないと前記判定部が判定した場合に、前記設定部によって前記空気調和装置の設定温度を変更し、前記取得部によって前記操作データの取得を行う制御を実行させる、
     プログラム。
    A computer-executable program for managing an air conditioner,
    said computer,
    a setting unit that sets a preset temperature for the air conditioner;
    an acquisition unit for acquiring operation data indicating a temperature change operation for changing the set temperature of the air conditioner;
    A determination unit that determines whether or not the acquired operation data acquired by the acquisition unit during a predetermined period satisfies a condition necessary for a process of determining control parameters for executing control of the air conditioner. and,
    a processing unit that determines the control parameters including at least the set temperature of the air conditioner based on the acquired operation data when the determination unit determines that the acquired operation data satisfies the condition; , to make it work,
    When the determination unit determines that the acquired operation data does not satisfy the conditions, the setting unit changes the set temperature of the air conditioner, and the acquisition unit acquires the operation data. let it run,
    program.
PCT/JP2023/007088 2022-02-28 2023-02-27 Management system, air-conditioning equipment management method, and program WO2023163178A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029429 2022-02-28
JP2022029429A JP2023125380A (en) 2022-02-28 2022-02-28 Management system, management method for air conditioner and program

Publications (1)

Publication Number Publication Date
WO2023163178A1 true WO2023163178A1 (en) 2023-08-31

Family

ID=87766229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007088 WO2023163178A1 (en) 2022-02-28 2023-02-27 Management system, air-conditioning equipment management method, and program

Country Status (2)

Country Link
JP (1) JP2023125380A (en)
WO (1) WO2023163178A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228225A (en) * 2001-01-26 2002-08-14 Yamatake Building Systems Co Ltd Method and system for operating energy saving effect achievement
JP2008241156A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Air conditioning control system
JP2010266090A (en) * 2009-05-12 2010-11-25 Daikin Ind Ltd Air conditioner
JP2020197337A (en) * 2019-05-31 2020-12-10 三菱電機株式会社 Air conditioner management device, air conditioning system, air conditioner management method and program
JP2021042877A (en) * 2019-09-06 2021-03-18 シャープ株式会社 Server, control system and control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228225A (en) * 2001-01-26 2002-08-14 Yamatake Building Systems Co Ltd Method and system for operating energy saving effect achievement
JP2008241156A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Air conditioning control system
JP2010266090A (en) * 2009-05-12 2010-11-25 Daikin Ind Ltd Air conditioner
JP2020197337A (en) * 2019-05-31 2020-12-10 三菱電機株式会社 Air conditioner management device, air conditioning system, air conditioner management method and program
JP2021042877A (en) * 2019-09-06 2021-03-18 シャープ株式会社 Server, control system and control program

Also Published As

Publication number Publication date
JP2023125380A (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US20200025403A1 (en) Equipment management system, air conditioner management system, and communication condition adjustment method
US10060643B2 (en) Air-conditioning apparatus and air-conditioning system executing a precooling operation or a preheating operation
JP6091624B2 (en) Air conditioning system
JP6005304B2 (en) Ventilation control device and ventilation control method
WO2016009506A1 (en) Air conditioning controller, air conditioning control method, and program
US9546797B2 (en) Air conditioner management device, air conditioner management system, non-transitory computer-readable recording medium and air conditioner management method
CN103162373A (en) Controller, control system and control method
JPWO2015079502A1 (en) Air conditioning controller
JP2011179722A (en) Air conditioning control system
JP5585261B2 (en) Air conditioning controller
US10054328B2 (en) Operational conditioning based on environmental components
US10830479B2 (en) HVAC zone schedule management systems and methods
JP2017187195A (en) Air conditioning control device, air conditioning control system, air conditioning control method and program
JP2014185832A (en) Air conditioning system, air conditioning control device, and air conditioning system control method
US11466885B2 (en) Air-conditioning control device, air-conditioning system, and air-conditioning control method
WO2023163178A1 (en) Management system, air-conditioning equipment management method, and program
WO2016113874A1 (en) Coordination system, centralized controller, and centralized control method
JP6381808B2 (en) Rule generation device, rule generation method, and program
JP2007147167A (en) Wind direction control system, and wind direction control method
JP2017096603A (en) Air-conditioning equipment
JPWO2018179350A1 (en) Control device, air conditioning system, air conditioning control method, and program
JP2019196885A (en) Control device, air conditioner, air conditioning system, air conditioner control method, and program
JP6956205B2 (en) Air conditioner, control device, and information processing method
JP2012021709A (en) Air-conditioning controller and air-conditioning control method
JP2017089996A (en) Air-conditioning control system, air-conditioning control method and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760176

Country of ref document: EP

Kind code of ref document: A1