WO2023162906A1 - Vehicle lamp - Google Patents

Vehicle lamp Download PDF

Info

Publication number
WO2023162906A1
WO2023162906A1 PCT/JP2023/005904 JP2023005904W WO2023162906A1 WO 2023162906 A1 WO2023162906 A1 WO 2023162906A1 JP 2023005904 W JP2023005904 W JP 2023005904W WO 2023162906 A1 WO2023162906 A1 WO 2023162906A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
projection lens
light source
reflecting surface
low
Prior art date
Application number
PCT/JP2023/005904
Other languages
French (fr)
Japanese (ja)
Inventor
一博 松本
Original Assignee
一博 松本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一博 松本 filed Critical 一博 松本
Publication of WO2023162906A1 publication Critical patent/WO2023162906A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/155Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having inclined and horizontal cutoff lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a projector type vehicle lamp.
  • a projector-type vehicle lamp includes a light source, a reflector having a reflecting surface that reflects light emitted from the light source, a projection lens that transmits the light reflected by the reflecting surface of the reflector and projects the light forward of the vehicle, It consists of a shade that is placed near the back focal point of the projection lens and forms a low beam cutoff line.
  • the reflective surface is composed of a curved surface based on the ellipsoid. Of the two focal points existing on the ellipsoid, the light source is placed near one of the focal points (the first focal point) and the other focal point (the second focal point). ) is basically arranged near the back focal point of the projection lens, which has an aspherical shape.
  • Patent Document 1 describes the general low beam light source, reflector, projection lens and shade arrangement
  • Patent Document 2 describes the general high beam light source, reflector and projection. The placement of lenses is described.
  • the light passing through the vicinity of the rear focal point of the projection lens is projected through the projection lens. Affects optical performance.
  • the general luminous intensity distribution near the rear focal point of the projection lens should be set to In the spatial region centered at , the brightness is the highest near the center, and the brightness decreases as the distance from the center increases.
  • the shape of the reflecting surface of the reflector is close to an elliptical surface near the first focal point, and is deformed into a shape that deviates from the elliptical surface sequentially from the light source toward the rear focal point of the projection lens. is common.
  • the light reflected by the reflective surface near the light source near the first focus forms a luminous intensity distribution near the center of the spatial region centered on the rear focal point of the projection lens, and is sequentially reflected by the reflective surfaces distant from the light source.
  • Light forms a luminous intensity distribution away from the vicinity of the center. If the entire range of the reflecting surface is an elliptical surface, the light reflected by the reflecting surface is blocked by the reflecting surface near the rear focal point of the projection lens and cannot enter the projection lens. Even if the reflective surface near the rear focus of the projection lens is removed, the light reflected by the reflective surface can only pass through the narrow area near the rear focus of the projection lens.
  • Patent Literature 3 and Patent Literature 4 describe the already cut reflective surface and the deformation of the shape of the reflective surface.
  • JP 2014-235836 A Japanese Unexamined Patent Application Publication No. 2007-80606 JP 2018-198168 A JP-A-2005-216520
  • the image of the light reflected by the reflective surface near the light source is larger than the image of the light reflected by the reflective surface far from the light source.
  • the luminous intensity distribution near the center of the spatial region with the rear focal point as the center it is impossible to increase the luminous intensity in the extremely small range in the center, making it difficult to form an ideal luminous intensity distribution.
  • the light forming the luminous intensity distribution near the center and near the cutoff line is formed by the light reflected by the reflecting surface located above the horizontal plane including the optical axis of the projection lens.
  • the reflective surface is partly cut away, and the elliptical surface is gradually deviated from the light source toward the projection lens. There was a problem that it could not be used effectively.
  • the present invention improves distant visibility by making it possible to increase the luminous intensity in an extremely small range of the central luminous intensity, and improves overall visibility by effectively utilizing the light emitted from the light source.
  • An object of the present invention is to provide a vehicle lamp capable of forming an improved light distribution pattern.
  • the present invention is a vehicular lamp that achieves the above object by greatly changing the arrangement of the light source and the reflecting surface from the arrangement of the conventional projector type. That is, the vehicular lamp of the present invention includes a light source, a reflective surface that reflects light emitted from the light source, and a projection lens that transmits the light reflected by the reflective surface and projects the light forward of the vehicle.
  • the light source is arranged at a position spaced apart from the optical axis of the projection lens so that the emitted light is emitted upward or downward
  • the reflecting surface is a concave surface based on an elliptical surface.
  • the light emitted from the light source forms at least one of a low-beam light distribution pattern and a high-beam light distribution pattern. characterized by forming one.
  • the light source is arranged at a position spaced apart from the optical axis of the projection lens, and the reflecting surface is arranged so as to cover the light emitted from the light source from above or below.
  • Light reflected at a relatively distant position can be reflected near the center of the light intensity distribution near the back focus of the projection lens. Therefore, when forming the luminous intensity distribution near the rear focal point of the projection lens, it is possible to brighten a very small range near the center.
  • the curved surface of the ellipsoid can be maintained not only near the first focal point of the reflecting surface composed of concave surfaces with reference to the ellipsoidal surface, but also between the first and second focal points and near the second focal point. Since most of the light emitted from the light source is reflected by the reflecting surface and directed to the projection lens, it is possible to make the luminous intensity distribution in the vicinity of the rear focal point of the projection lens brighter overall. Therefore, by making it possible to increase the luminous intensity within a very small range of the central luminous intensity, it is possible to improve distant visibility, and by effectively using the light emitted from the light source, it is possible to form a light distribution pattern that can improve overall visibility. We can provide lighting fixtures.
  • the vehicle lamp of the present invention includes a first light source as a light source arranged so that emitted light is emitted downward, and a projection lens capable of reflecting the light emitted downward from the first light source.
  • a first reflective surface as a reflective surface arranged to cover from below; and a shade arranged between the first light source and the projection lens to form a cutoff line of the low-beam light distribution pattern;
  • a low-beam light distribution pattern may be formed by light emitted from the light source.
  • the light that forms the luminous intensity distribution near the center and near the cutoff line can be formed by light reflected by a reflecting surface that is close to the horizontal plane including the optical axis of the projection lens. Since the light reflected by the first reflecting surface enters the projection lens at a relatively small angle with respect to the horizontal plane including the optical axis of the projection lens, after passing through the projection lens, the light near the cutoff line It becomes possible to suppress the generation of color.
  • the vehicle lamp of the present invention includes a second light source as a light source arranged so that emitted light is emitted upward, and a projection lens capable of reflecting the light emitted upward from the second light source. and a second reflecting surface as a reflecting surface arranged to cover from above, and forming a high-beam light distribution pattern by light emitted from the second light source.
  • a second light source as a light source arranged so that emitted light is emitted upward
  • a projection lens capable of reflecting the light emitted upward from the second light source.
  • a second reflecting surface as a reflecting surface arranged to cover from above, and forming a high-beam light distribution pattern by light emitted from the second light source.
  • a third reflecting surface provided in front of the front edge of the first reflecting surface and configured with a concave surface based on an elliptical surface for reflecting light from the first light source in a predetermined direction; and a fourth reflecting surface that reflects light from the third reflecting surface toward the projection lens.
  • the light source is composed of a light emitting element having a light emitting surface on one surface, the light emitting surface has a long axis and a short axis perpendicular to each other, and the light source is directed with the long axis toward the projection lens side. may be placed.
  • the vertical width of the light projected from the projection lens and illuminating the road surface can be narrowed and the horizontal width can be widened. Therefore, it is possible to prevent a part of the front of the vehicle from becoming too bright when the low beams are turned on, and it is possible to improve the long-distance visibility for the driver.
  • the light source comprises a light emitting element having a light emitting surface on one side, and the intersection of the normal to the light emitting surface and the horizontal plane including the optical axis of the projection lens is located closer to the projection lens than the light emitting surface.
  • the light emitting surface may be inclined as shown in FIG. In this way, the normal direction of the light-emitting surface, which emits the largest amount of light, can be directed toward the reflecting surface near the optical axis of the projection lens, and the central luminous intensity can be improved. can be made brighter.
  • the fifth reflecting surface is arranged above or below the reflecting surface so as to reflect light from the light source emitted from the projection lens in a direction in which projection is not possible, in a direction in which projection is possible from the projection lens.
  • At least one of a surface and a sixth reflecting surface arranged to the side of the reflecting surface may be provided.
  • the light from the first light source is provided in front of the front edge of the first reflecting surface, and reflects the light from the first light source toward the flat area below the shade along the shade so that the light is reflected from the projection lens.
  • a seventh reflecting surface that projects light onto an overhead sign area; and a light shielding part that is provided on the shade and blocks light between a lower end of the overhead sign area and a cutoff line among the light from the seventh reflecting surface.
  • the light reflected by the flat region is blocked by the light blocking portion, and the remaining light reaches the projection lens and is projected. Therefore, it is possible to illuminate the upper side of the road surface with a light-shielded space adjacent to the cutoff line, thereby suppressing dazzling of oncoming vehicles and illuminating the overhead sign area.
  • the light from the second light source is provided in front of the front edge of the second reflecting surface, and reflects the light from the second light source toward the flat area along the shade on the upper side of the shade, thereby cutting the light from the projection lens.
  • An eighth reflective surface may be provided for illuminating an adjacent position directly below the off-line.
  • FIG. 1 is a front view of a lamp unit of a vehicle lamp according to Embodiment 1 of the present invention
  • FIG. The x and y directions in the drawing indicate the width direction and height direction of the vehicle, respectively, when the vehicle lamp is attached to the vehicle.
  • FIG. 2 is a diagram schematically showing an optical path of light emitted from a low-beam light source in a cross-sectional view taken along line AA of the vehicle lamp shown in FIG. 1;
  • the y and z directions in the drawing indicate the height direction and front-rear direction of the vehicle, respectively, when the vehicle lamp is mounted on the vehicle.
  • FIG. 2 is a diagram schematically showing an optical path of light emitted from a high beam light source in a cross-sectional view taken along line AA of the vehicle lamp shown in FIG. 1;
  • FIG. 3 is a diagram showing the reflection position on the reflection surface and the size of the reflected light source image with respect to FIG. 2 ;
  • FIG. 2 is a road projection diagram of a light distribution pattern of a low beam emitted from the vehicle lamp shown in FIG. 1 ;
  • FIG. 2 is a road projection diagram of a light distribution pattern of a high beam emitted from the vehicle lamp shown in FIG. 1 ;
  • FIG. 4 is a cross-sectional view of a vehicle lamp according to a modification of Embodiment 1 of the present invention;
  • FIG. 3 is a perspective view of a vehicle lamp according to Embodiment 2 of the present invention
  • Fig. 10 shows a vehicle lamp according to Embodiment 3 of the present invention, where (a) is a perspective view and (b) is a front view as seen from the front.
  • FIG. 10 shows the vehicle lamp of Embodiment 3 shown in FIG. 9, (a) is a vertical cross-sectional view of FIG. 9 (b), and (b) is a vertical cross-sectional view for explaining a low-beam reflecting surface.
  • 12A is a perspective view
  • FIG. 1B is an enlarged perspective view for explaining a low-beam reflecting surface and an optical path
  • FIG. ) is a longitudinal sectional view.
  • FIG. 12 is a diagram for explaining a low beam light source in a vehicle lamp according to Embodiment 4, where (a) is a partially enlarged perspective view showing a low beam light source and a low beam reflecting surface, and (b) is a low beam light distribution projected from a projection lens; It is a light distribution curve which shows a part of pattern, (c) is an enlarged view near the center of (b).
  • 12A is a partially enlarged perspective view showing a low-beam light source and a low-beam reflecting surface
  • FIG. 12A is a partially enlarged perspective view showing a low-beam light source and a low-beam reflecting surface
  • FIG. 11B is a view projected from a projection lens.
  • a light distribution curve showing a part of a low beam light distribution pattern (c) is an enlarged view near the center of (b).
  • 12A and 12B are diagrams for explaining a low-beam light source of another modified example of the fourth embodiment, FIG. 11A being a schematic perspective view of the low-beam light source, and FIG. is.
  • FIG. 11 is a vertical cross-sectional view showing a vehicle lamp according to Embodiment 5 of the present invention;
  • (a) is a plan view showing a vehicle lamp according to Embodiment 6 of the present invention, and
  • (b) is a plan view showing a state where a sixth reflecting surface is not arranged.
  • FIG. 7 shows a vehicle lamp according to Embodiment 7 of the present invention, where (a) is a vertical cross-sectional view, (b) is a partially enlarged vertical cross-sectional view, and (c) is a diagram for explaining a state in which a low-beam light distribution pattern is projected onto a road surface.
  • FIG. 8 shows a vehicle lamp according to Embodiment 8 of the present invention, (a) is a vertical cross-sectional view, (b) is a partially enlarged vertical cross-sectional view, and (c) is a diagram for explaining a state in which a high beam light distribution pattern is projected onto a road surface. is.
  • FIG. 1 is a front view showing a lamp unit 10 of a vehicle lamp according to the present invention
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. 1 and an optical path of a low beam.
  • FIG. 3 shows a cross-sectional view taken along the line AA of FIG. 1 and the optical path of the high beam.
  • the vehicle lamp 10 includes a projection lens 21, a low-beam light source 31 arranged behind the projection lens, and emitted downward from the low-beam light source 31 on the projection lens optical axis Lx side. It is composed of a low-beam reflecting surface 41 as a first reflecting surface for reflecting light toward the projection lens, and a shade 50 that is arranged near the rear focal point 21F of the projection lens and forms a cut-off line of the low-beam light distribution pattern. , to form the low beam light distribution pattern JG of FIG.
  • a high beam light source 32 is provided below the low beam reflecting surface 41, and a light source for reflecting the light emitted from the high beam light source 32 upward on the projection lens optical axis Lx side toward the projection lens direction.
  • a high-beam reflecting surface 42 is configured as a second reflecting surface to form the high-beam light distribution pattern YG of FIG.
  • the low-beam light source 31 and the high-beam light source 32 are light emitting elements such as LEDs, and have a rectangular shape, a laterally long rectangular shape, and a vertically long rectangular shape.
  • the low-beam light source 31 is arranged behind the rear focal point 21F of the projection lens and above the horizontal plane including the projection lens optical axis Lx so that light is emitted downward.
  • These low-beam light source 31 and high-beam light source 32 may be arranged with the light emission direction facing the projection lens optical axis Lx, but they do not have to be arranged facing the projection lens optical axis Lx.
  • a low-beam reflecting surface 41 of the reflector 40 is composed of a curved surface based on an elliptical surface, and has a long axis along a straight line L1 connecting the projection lens rear focal point 21F and the emission center of the low-beam light source 31.
  • the vicinity of the center is defined as the first focus, and the vicinity of the rear focus 21F of the projection lens is defined as the second focus.
  • the long axis of the low-beam reflecting surface 41 may be parallel to the projection lens optical axis Lx, but in this embodiment it is inclined so that the rear side rises.
  • the inclination of the long axis with respect to the projection lens optical axis Lx may be, for example, within a range of 30 degrees or less with respect to the projection lens optical axis Lx. If it is excessively large, spectral colors tend to occur near the cutoff lines COL1 and COL2.
  • the high-beam reflecting surface 42 is composed of a curved surface based on an elliptical surface, and is coaxial with a straight line L2 connecting a position 0 to 1.0 mm below the rear focal point 21F of the projection lens and the light emission center of the high-beam light source 32. It has an axis, the first focus is near the light emission center of the high beam light source 32, and the second focus is near 0 to 1.0 mm below the rear focus 21F of the projection lens.
  • the shade 50 is arranged so as to be adjacent between at least the low-beam reflecting surface 41 and the high-beam reflecting surface 42 in front of the front edge of the low-beam reflecting surface 41, and the member surface is made of a member such as metal having a mirror surface property, or resin.
  • the surfaces of the members and metal members are mirror-finished by vapor deposition of aluminum or the like, and both the upper and lower surfaces of the shade 50 have reflective properties.
  • a cut-off line forming portion is provided in the vicinity of the projection lens rear focal point 21F of the shade 50 .
  • the shape of the cutoff line forming portion is a shape that forms the cutoff lines COL1 and COL2 of the low-beam light distribution pattern JG.
  • the shade 50 may be arranged along the projection lens optical axis Lx, but in this embodiment, it is inclined so that the rear side descends with respect to the projection lens optical axis Lx. If the rear side rises, the light reflected by the low-beam reflecting surface 41 may be reduced by the shade 50, resulting in a decrease in efficiency.
  • the optical path of the light emitted from the low-beam light source 31 is reflected by the low-beam reflecting surface 41, passes through the vicinity of the rear focal point 21F of the projection lens, passes through the projection lens 21, and passes through the projection lens 21 as shown in FIG. to form a low-beam light distribution pattern JG.
  • the curved surface of the low-beam reflecting surface 41 can be maintained as an elliptical surface up to the vicinity of the rear focal point 21F of the projection lens, most of the light emitted from the low-beam light source 31 is reflected by the low-beam reflecting surface 41 and projected. It can be used to form the luminous intensity distribution near the rear focal point 21F of the lens. As a result, it is possible to improve the overall brightness of the low-beam light distribution pattern JG formed by the light that has passed through the projection lens 21 .
  • the size of the light source image RSB of the light is that the light emitted from the low beam light source 31 is reflected at a reflection point 41RPA on the low beam reflecting surface 41 which is relatively closer than the light source, and passes near the rear focus 21F of the projection lens.
  • the size of the light source image RSA is smaller than the size of the light source image RSA, the light reflected by the reflecting surface at a relatively long distance from the low beam light source 31 is reflected toward the center of the luminous intensity distribution near the rear focal point 21F of the projection lens. , it is possible to brighten a very small range of the low beam high luminous intensity area HJG near the center of the low beam light distribution pattern JG, and to optimize the luminous intensity distribution of HJG.
  • RSB-like light that forms the luminous intensity distribution near the low beam high luminous intensity area HJG and the cutoff lines COL1 and COL2 can be formed by light reflected by a reflecting surface that is close to the horizontal plane including the optical axis Lx of the projection lens. , and the light reflected by these reflecting surfaces enters the projection lens at a relatively small angle with respect to the horizontal plane including the optical axis Lx of the projection lens. It becomes possible to suppress the occurrence of spectral color of .
  • the optical path of the light emitted from the high-beam light source 32 is reflected by the high-beam reflecting surface 42, passes through the vicinity of the rear focal point 21F of the projection lens, and passes through the projection lens 21.
  • the high beam distribution pattern YG of FIG. Part of the light reflected by the high-beam reflecting surface 42 is reflected by the shade 50, passes through the vicinity of the rear focal point 21F of the projection lens, passes through the projection lens 21, and forms the high-beam light distribution pattern YG of FIG. Form.
  • the light emitted from the high beam light source 32 and directly reflected by the shade 50 also passes through the vicinity of the rear focal point 21F of the projection lens and is transmitted through the projection lens 21, resulting in the high beam light distribution pattern shown in FIG. YG is formed.
  • the curved surface of the high-beam reflecting surface 42 can be maintained as an elliptical surface up to the vicinity of the rear focal point 21F of the projection lens, most of the light emitted from the high-beam light source 32 is reflected by the high-beam reflecting surface 42 and the shade 50. can be used to form the light intensity distribution near the rear focal point 21F of the projection lens. Furthermore, the light emitted from the high beam light source 32 is directly reflected by the shade 50, and can be used to form the light intensity distribution near the rear focal point 21F of the projection lens. As a result, it is possible to improve the overall brightness of the high beam light distribution pattern YG formed by the light that has passed through the projection lens 21 .
  • the light emitted from the low-beam light source 31 is reflected at the reflection point 41RPB on the low-beam reflecting surface 41, which is relatively far away from the light source, and is reflected near the rear focal point 21F of the projection lens.
  • the size of the light source image RSB of the light when passing through is such that the light emitted from the low-beam light source 31 is reflected at the reflection point 41RPA on the low-beam reflecting surface 41, which is relatively closer than the light source, to the rear focal point 21F of the projection lens. It is smaller than the size of the light source image RSA of the light when passing nearby.
  • the high beam light distribution pattern YG is obtained by reflecting the light reflected by the reflecting surface at a relatively long distance from the high beam light source 32 toward the center of the light intensity distribution near the rear focal point 21F of the projection lens. It is possible to brighten a very small range of the high beam high luminous intensity area HYG near the center of , and to optimize the luminous intensity distribution of HYG.
  • FIG. 7 shows a modification of the first embodiment.
  • a shade 50 is provided along a horizontal plane including the projection lens optical axis Lx.
  • a high beam light source 32 and a high beam reflecting surface 42 are arranged on the side.
  • Others are configured in the same manner as in the first embodiment. Even with such a vehicle lamp, it is possible to obtain the same effects as those of the first embodiment.
  • the shade 50 is provided horizontally, although the area of the low-beam reflecting surface 41 is reduced, most of the light reflected by the shade 50 after being reflected by the low-beam reflecting surface 41 enters the projection lens 21. It is possible to improve the flexibility of the configuration of the vehicle lamp by selecting it according to various conditions.
  • FIG. 8 shows Embodiment 2 of the present invention.
  • portions corresponding to those of the first embodiment are denoted by the same reference numerals, and configurations and functions different from those of the first embodiment will be described.
  • this is an example of using a plurality of light sources, in which three low-beam light sources 31 are used and three low-beam reflecting surfaces 41 are arranged on the reflector 40 .
  • each reflecting surface By arranging the second focal position of each reflecting surface near the rear focal point 21F of the projection lens or the horizontal plane including the rear focal point 21F of the projection lens, the interaction of the light reflected by each reflecting surface causes the rear side of the projection lens to Fine adjustment of the luminous intensity distribution near the focal point 21F becomes possible. As a result, compared with the case of a single light source, it is possible to finely adjust the light distribution in the light distribution pattern, which contributes to the improvement of visibility.
  • the number of light sources and reflecting surfaces may be single or plural for both low beam and high beam.
  • a plurality of light sources may be arranged on the same horizontal plane, or the light sources may be arranged inconsistently with respect to the same horizontal plane.
  • FIGS. 9A, 9B and 10A, 10B show a vehicle lamp according to Embodiment 3.
  • FIG. The same reference numerals are given to the parts corresponding to those of the first embodiment and the modified example. Similar to the modified example of Embodiment 1, this vehicle lamp has a shade 50 along a horizontal plane including the projection lens optical axis Lx, and a low beam light source 31 and a low beam reflecting surface 41 are arranged above the shade 50. , a high beam light source 32 and a high beam reflecting surface 42 are arranged below the shade 50 .
  • the high beam light source 32 and the high beam reflecting surface 42 are provided on both sides of the projection lens optical axis Lx. Light from each high beam light source 32 is reflected by each high beam reflecting surface 42 near the rear focal point 21 ⁇ /b>F of the projection lens 21 and projected from the projection lens 21 .
  • a fourth reflecting surface 44 is provided above the shade 50 to reflect the light from the third reflecting surface 43 toward the projection lens 21 .
  • the front edge of the low-beam reflecting surface 41 may be a part near the major axis of the front edge of the concave surface based on the elliptical surface, and at least the rear end forming the cutoff lines COL1 and COL2 in the shade 50. Any leading edge that is positioned more rearwardly may be used.
  • the vehicle lamp of Embodiment 3 is provided behind the projection lens 21 with a base body 51 arranged along a plane including the projection lens optical axis Lx and fixed to a bracket (not shown) or the like.
  • the shape of the base body 51 is arbitrary and can be appropriately set according to various conditions of the portion where the vehicle lamp is installed.
  • the shade 50 is fixed to the base body 51 at both left and right edges.
  • the low-beam reflecting surface 41, the high-beam reflecting surface 42, and the third reflecting surface 43 are all fixed to the base body 51 as well.
  • the low beam light source support portion 301 provided with the low beam light source 31 and the fourth reflecting surface 44 are also fixed to the base body 51 .
  • the third reflecting surface 43 is composed of a concave surface based on the ellipsoidal surface, and may be a curved surface obtained by deforming the concave surface based on the ellipsoidal surface. .
  • the elliptical surface that serves as a reference for the third reflecting surface 43 is set so that the first focus 43A coincides with the low-beam light source 31 and the second focus 43B is set near the fourth reflecting surface 44 .
  • the second focal point 43B of the third reflecting surface 43 is set vertically above the projection lens optical axis Lx.
  • the fourth reflecting surface 44 is composed of a concave surface based on a parabolic surface, an elliptical surface, or a free curved surface, and may be a curved surface deformed based on these concave surfaces.
  • the concave surface of the fourth reflecting surface 44 is arranged vertically above the third reflecting surface 43 so as to face the third reflecting surface 43, and can reflect the light from the third reflecting surface 43 toward the projection lens 21. It has become. Others are the same as the modification of the first embodiment.
  • the light emitted from the low-beam light source 31 is applied to the low-beam reflecting surface 41 and reflected toward the projection lens 21 . Similarly, it is projected from the projection lens 21 as a low-beam light distribution pattern JG. Part or all of the rest of the light emitted from the low-beam light source 31 is directly irradiated onto the third reflecting surface 43 ahead of the front edge of the low-beam reflecting surface 41 . At the third reflecting surface 43 , the light is reflected in a predetermined direction, that is, toward the direction of the fourth reflecting surface 44 . The light reaching the fourth reflecting surface 44 is reflected toward the projection lens 21 and projected from the projection lens 21 . Therefore, from the projection lens 21, the light from the low-beam reflecting surface 41 and the light from the fourth reflecting surface 44 are projected forward as a low-beam light distribution pattern JG.
  • the curved surfaces of the low-beam reflecting surface 41 and the curved surface of the high-beam reflecting surface 42 are each elliptical up to the vicinity of the rear focal point 21F of the projection lens. Since the surface can be maintained, the overall brightness of the low-beam light distribution pattern JG and the high-beam light distribution pattern YG can be improved. Also, the light emitted from the low beam light source 31 and the high beam light source 32 can be reflected at relatively distant positions of the low beam reflecting surface 41 and the high beam reflecting surface 42 to irradiate near the center of the light intensity distribution near the rear focal point 21F of the projection lens.
  • the luminous intensity distribution can be optimized by brightening a very small range near the center. Moreover, since the light can enter the projection lens 21 at a small angle with respect to the projection lens optical axis Lx, it is possible to prevent the occurrence of spectral colors on the upper edge sides of the cutoff lines COL1 and COL2.
  • the third reflecting surface is provided in front of the front edge of the low-beam reflecting surface 41 and is composed of a concave surface based on an elliptical surface, and reflects the light from the low-beam light source 31 in a predetermined direction.
  • the reflecting surface 43 and the fourth reflecting surface 44 it can be used as a part of the low beam pattern. Therefore, the light emitted from the low-beam light source 31 can efficiently form the low-beam light distribution pattern JG.
  • FIGS. 11(a) to 11(c) show modifications of the third embodiment.
  • the projection lens 21 has a thin cylindrical lens shape and is thin in the vertical direction.
  • the third reflecting surface 43 has a shape in which two concave surfaces are combined with an ellipsoidal surface as a reference, and the ellipsoidal surfaces serving as references for the respective concave surfaces are formed symmetrically with respect to the projection lens optical axis Lx. .
  • a first focal point 43A of each concave surface of the third reflecting surface 43 coincides with the common low-beam light source 31, and a second focal point 43B of each concave surface is opposite to each other via the projection lens optical axis Lx, the first reflecting surface , and reflects the light from the low beam light source 31 to the right and left sides of the low beam reflecting surface 41, respectively.
  • a plurality of fourth reflecting surfaces 44 are provided so as to correspond to each concave surface of the third reflecting surface 43, and are arranged near the second focal point 43B of each concave surface of the third reflecting surface 43.
  • Each fourth reflecting surface 44 is composed of a concave surface based on a parabolic surface, an elliptical surface, or a free-form surface, and is arranged so as to be able to reflect light from each third reflecting surface 43 toward the projection lens 21 .
  • each fourth reflecting surface 44 is arranged to have the same height as the low-beam reflecting surface 41 from the horizontal plane including the projection lens optical axis Lx.
  • the shade 50 fixed to the base body 51 is provided with openings 52 at corresponding positions so that the light reflected by each concave surface of the third reflecting surface 43 reaches each fourth reflecting surface 44 .
  • the opening 52 can be configured between the shade 50 and the reflector 40, or can be provided by making a hole in another component.
  • Others are the same as those of the vehicle lamp of Embodiment 3 shown in FIGS. In this modified example, in addition to obtaining the same effects as those of the vehicle lamp of Embodiment 3 shown in FIGS. 9A and 9B, the vertical thickness of the low beam unit can be significantly reduced. It is possible.
  • FIGS. 12(a), 12(b) and 13(a) to 13(c) show a vehicle lamp according to the fourth embodiment.
  • the projection lens 21 has a thin cylindrical lens shape, and as the low-beam light source 31, a light-emitting element having a light-emitting surface 33 on one side is used as shown in FIG. 12(b). It is Although the light emitting element is fixed to the substrate, detailed illustration thereof is omitted. Others are the same as the modification of the first embodiment.
  • the light emitting surface 33 has a long axis La and a short axis Lb perpendicular to each other, and as shown in FIG. It is arranged above the reflecting surface 41 .
  • the long axis La of the low-beam light source 31 is arranged in a direction orthogonal to the projection lens optical axis Lx.
  • the low beam unit of the vehicle lamp of Embodiment 4 similar to the modified example of Embodiment 1, it is possible to increase the luminous intensity in a very small range of the central luminous intensity, thereby improving the long-distance visibility. Effective use of the light emitted from the low-beam light source 31 can improve overall visibility and prevent the occurrence of spectral colors. 13(b) and 13(c) show part of the light distribution curve when the low beam light distribution pattern is projected by this low beam unit.
  • FIGS. 12(a), 12(b), and 14(a) to 14(c) show a low beam unit of a vehicle lamp according to a modified example of the fourth embodiment.
  • the long side of the low-beam light source 31 may be arranged in the front-rear direction, or may be inclined with respect to the projection lens optical axis Lx.
  • the low beam light source 31 is arranged with the long axis La directed toward the projection lens 21 side.
  • a low beam light distribution pattern as shown in is obtained. That is, when the low beam is turned on, the vertical width of the light projected from the projection lens 21 to irradiate the road surface can be narrowed and the horizontal width can be widened, so that a part in front of the vehicle, for example, around 10 to 20 m, becomes bright. You can prevent overdoing it. Therefore, the long-distance visibility for the driver can be improved.
  • FIGS. 15(a) and 15(b) show a low beam unit of a vehicle lamp according to another modified example of the fourth embodiment.
  • a low-beam unit of a vehicle lamp according to another modification of the fourth embodiment as shown in FIG. A light emitting element having a maximum in the linear direction is used.
  • the low beam light source 31 is inclined so that the intersection of the normal to the light emitting surface 33 and the horizontal plane including the projection lens optical axis Lx is located closer to the projection lens 21 than the light emitting surface 33 is. are placed.
  • the light emitting surface 33 may be tilted in a range of 35 degrees or less with respect to the horizontal. Others are the same as the modification of the first embodiment.
  • the same effect as the low beam unit of Embodiment 4 can be obtained, and the intersection of the normal to the light emitting surface 33 and the horizontal plane including the projection lens optical axis Lx is located closer to the projection lens 21 than the light emitting surface 33. Since the light emitting surface 33 is inclined so that the light intensity is the largest, the normal line direction of the light emitting surface 33 can be directed to the low beam reflecting surface 41 near the optical axis Lx of the projection lens, thereby improving the center luminous intensity. It is possible to brighten the vicinity of the center of the low-beam light distribution pattern JG.
  • FIG. 16 shows a vehicle lamp according to Embodiment 5.
  • FIG. The vehicle lamp of Embodiment 5 is the same as the modified example of Embodiment 1 except that a fifth reflecting surface 45 is arranged above the low beam reflecting surface 41 in front of the light emitting surface 33 of the low beam light source 31. .
  • the fifth reflecting surface 45 reflects light from the low-beam light source 31 on the low-beam reflecting surface 41 or the surface of the shade 50 in a direction that cannot be projected from the exit surface of the projection lens 21, and reflects the light in a projectable direction. It is.
  • the light from the low-beam light source 31 when the light from the low-beam light source 31 is applied to the low-beam reflecting surface 41, part of the light is directed upward from the upper edge of the projection lens 21 due to the local unevenness of the low-beam reflecting surface 41, and the like. may be reflected by Further, when the light from the low-beam light source 31 is irradiated onto the surface of the shade 50 in front of the edge of the low-beam reflecting surface 41, the light may be reflected upward from the upper edge of the projection lens 21 by the shade. . The light can be projected from the projection lens 21 by reflecting it inward from the edge of the projection lens 21 on the fifth reflecting surface 45 .
  • the fifth reflecting surface 45 may be a flat surface, a curved surface, or a combination of a flat surface and a curved surface. Furthermore, various uneven shapes may be provided on the surface in order to form a desired light distribution pattern. Further, the fifth reflecting surface 45 is inclined in the front-rear direction so that the projection lens 21 side rises, but it may be inclined in the left-right direction, and is appropriately arranged so as to obtain the desired pattern shape. .
  • the light from the low-beam light source 31 emitted from the projection lens 21 in a non-projectable direction is reflected from the projection lens 21 in a projectable direction.
  • the fifth reflecting surface 45 is arranged above or below the surface 41, the low beam light distribution pattern JG can be efficiently formed by reducing unusable light out of the light emitted from the low beam light source 31. - ⁇
  • the fifth reflecting surface 45 is arranged above the low beam reflecting surface 41 of the low beam unit, but the fifth reflecting surface 45 may be arranged below the high beam reflecting surface 42 of the high beam unit. , effects similar to those described above can be obtained.
  • the low beam unit includes a plurality of low beam light sources 31 and low beam reflecting surfaces 41, five low beam light sources 31, and five low beam reflecting surfaces 41 are arranged on the reflector 40.
  • a plurality of low-beam light sources 31 and low-beam reflecting surfaces 41 are arranged on the left and right sides of the projection lens optical axis Lx.
  • the vehicle lamp of Embodiment 6 includes sixth reflecting surfaces 46 on the left and right front sides of the area where all the low beam reflecting surfaces 41 are arranged.
  • the distance between the right and left sixth reflecting surfaces 46 is arranged so that the distance therebetween becomes narrower toward the projection lens 21 side.
  • the sixth reflecting surface 46 may be a flat surface, a curved surface, or a combination of a flat surface and a curved surface. Moreover, various uneven shapes may be provided on the surface.
  • the left and right sixth reflecting surfaces 46 are set upright in a direction perpendicular to the horizontal plane including the optical axis Lx of the projection lens, but they may be inclined in the front-rear direction or in the left-right direction so that the desired pattern shape can be obtained. properly positioned so that
  • the light reflected by some of the low-beam reflecting surfaces 41 may travel in a direction that cannot be projected from the projection lens 21 .
  • the light reflected by the low-beam reflecting surface 41 arranged at a large inclination with respect to the projection lens optical axis Lx goes in a direction in which the light cannot enter the projection lens 21, or when the projection lens 21 Although the light can be incident on the projection lens 21, the incident angle with respect to the exit surface 21d of the projection lens 21 is large and the light is totally reflected.
  • the light reflected by the low-beam reflecting surface 41 and traveling in a direction that cannot be projected from the projection lens 21 is reflected by the sixth reflecting surfaces 46 arranged on the left and right as shown in FIG. , the light can be reflected in a direction that can be projected from the projection lens 21, that is, in a direction that can be incident on the projection lens 21, or in a direction that is not totally reflected by the exit surface of the projection lens 21, and can be projected from the projection lens 21.
  • the light from the low-beam light source 31 that is emitted from the projection lens 21 in a direction that cannot be projected is reflected from the projection lens 21 in a direction that can be projected. Since the sixth reflecting surfaces 46 are arranged on the left and right sides of the reflecting surface 41 for light, the amount of light emitted from the plurality of low-beam light sources 31 that cannot be used is reduced, and the low-beam light distribution pattern JG is efficiently formed. can.
  • FIGS. 18A to 18C show a vehicle lamp according to Embodiment 7.
  • the light from the low-beam light source 31 is reflected toward the flat area below the shade 50 along the shade 50 at a position forward of the front edge of the low-beam reflecting surface 41 as the seventh reflection.
  • a surface 47 is provided, and a light blocking portion 53 for blocking light from the seventh reflecting surface 47 at a position adjacent to the shade 50 is provided so as to protrude below the shade 50 .
  • the seventh reflecting surface 47 is formed in a shape capable of reflecting light that can be projected onto the entire overhead sign area OSP, and the shape of the light shielding portion 53 can be appropriately set according to the intended light shielding range. Others are the same as the modification of the first embodiment.
  • the light from the low-beam light source 31 projected forward from the front edge of the low-beam reflecting surface 41 passes through the rear end of the shade 50 extending rearward from the rear focal point 21F of the projection lens 21 and the low-beam light. and the front edge of the reflective surface 41 for use, and reaches the seventh reflective surface 47 .
  • Light from the low-beam light source 31 is reflected toward the lower flat region of the shade 50 by the seventh reflecting surface 47, and this light passes through the lower surface side of the shade 50 and near the tip of the shade forming a cutoff line. and reaches the projection lens 21 .
  • the light shielding part 53 shields the light in a very narrow range adjacent to the lower surface of the shade 50 among the light reflected toward the flat area from the seventh reflecting surface 47, thereby achieving the light as shown in FIG. 18(c).
  • light can be projected from the projection lens 21 onto the overhead sign area OSP while blocking light between the lower end of the overhead sign area OSP and the cutoff line.
  • the vehicle lamp of Embodiment 7 light in a narrow range adjacent to the shade 50 is blocked by the light blocking portion, out of the light reflected by the seventh reflecting surface 47 onto the flat region along the lower surface of the shade 50. Therefore, the light can be projected above the road surface with a light-shielded space above the cutoff lines COL1 and COL2, and the overhead sign area OSP can be illuminated while suppressing dazzle of oncoming vehicles.
  • FIGS. 19A to 19C show the vehicle lamp of Embodiment 8.
  • an eighth reflecting surface 48 is provided at a position forward of the front edge of the high beam reflecting surface 42 to reflect the light from the high beam light source 32 toward the flat area along the upper surface of the shade 50. It is Others are the same as the modification of the first embodiment.
  • part of the light emitted forward from the front edge of the high beam reflecting surface 42 from the high beam light source 32 is directed to the rear end of the shade 50 extending rearward from the rear focal point 21F of the projection lens 21. , and the front edge of the high-beam reflecting surface 42 to reach the eighth reflecting surface 48 .
  • Light from the high-beam light source 32 is reflected by the eighth reflecting surface 48 toward a flat area along the upper surface of the shade 50, and this light passes through the upper surface of the shade 50 and is projected together with the light from the low-beam reflecting surface 41.
  • the light reaches the lens 21 and is projected forward to irradiate an area AHP adjacent to the high beam irradiation area in the low beam irradiation area.
  • the adjacent position immediately below the cutoff line of the low beam light distribution pattern JG is irradiated to brighten it. can.
  • the high-beam light distribution pattern YG is projected, the difference in brightness between the upper side and the lower side of the cutoff line can be reduced, and the sense of discomfort felt by the driver can be reduced.
  • each of the above embodiments can be appropriately modified within the scope of the present invention.
  • each of the above-described embodiments may be implemented independently, but it is also possible to implement a combination of multiple embodiments.
  • the projection lens has a circular outer shape when viewed from the front, but it is also possible to configure the projection lens in an outer shape other than circular, such as a rectangular outer shape.
  • the projection lens back surface 21b is shown in a planar shape in each of the above embodiments, it can also be configured in a convex shape.
  • the shape of the shade 50 is configured so that COL2 is positioned higher than COL1 as shown in FIG. It is also possible to form the shape of the shade 50 with a low-beam light distribution pattern of light distribution on the right side.
  • the angle of L1 with respect to the optical axis Lx of the projection lens can be changed depending on the size and positional relationship of the aspherical lens, and the angle of L2 with respect to the optical axis Lx of the projection lens is , the angle can be changed according to the size and positional relationship of the aspheric lens.
  • the low-beam reflecting surface 41 and the high-beam reflecting surface 42 of the reflector are shown as single curved reflecting surfaces for one light source. , and the surface may be provided with various uneven shapes in order to form a desired light distribution pattern.
  • the straight line L1 connects the projection lens rear focus 21F and the light emission center of the low beam light source 31. Even in the case of straight lines connecting positions, the same effects as those of the above embodiments can be obtained.
  • a straight line L2 is shown connecting the position 0 to 1.0 mm below the rear focus 21F of the projection lens and the emission center of the high beam light source 32, but the straight line L2 is shown to connect the center of light emission of the high beam light source 32. Even in the case of a straight line connecting the position below 0 mm and the position slightly deviated from the light emission center of the high beam light source 32, the same effects as those of the above embodiments can be obtained.
  • the low beam light source 31 is arranged in a direction orthogonal to L1, but it can be tilted according to the intended light distribution pattern.
  • the high beam light source 32 is arranged in a direction perpendicular to L2, but it can be tilted according to the intended light distribution pattern.
  • the shade 50 is inclined with respect to the horizontal plane including the optical axis Lx of the projection lens, but it can be made horizontal, and the opposite inclination is also possible.
  • the position of the reflecting surface and the light source depends on the intended light distribution pattern. Since it can be tilted depending on the relationship, it is not limited to vertically downward or vertically upward.
  • the low beam light source 31 and the high beam light source 32 are not limited to LEDs, and may be, for example, halogen bulb light sources, HID light sources, or the like.
  • the present invention can be widely applied to projector-type vehicle lamps. It is possible to improve the degree of freedom in light distribution design of the projector and contribute to the improvement of the light distribution performance.

Abstract

The present invention comprises light sources (31, 32), reflecting surfaces (41, 42) that reflect light emitted from the light sources (31, 32), a projection lens (21) which transmits the light reflected by the reflecting surfaces (41, 42) to project the transmitted light toward the front side of a vehicle, and a shade (50) disposed between the light sources (31, 32) and the projection lens (21) to form a cut-off line for each light distribution pattern. The light sources (31, 32) are disposed at positions spaced apart from the optical axis of the projection lens (21), and the reflecting surfaces (41, 42) are disposed to cover the light sources from an upper side or from a lower side such that the light emitted from the light sources (31, 32) can be reflected toward the projection lens (21), thereby forming a low beam light distribution pattern or a high beam light distribution pattern.

Description

車両用灯具vehicle lamp
 本発明は、プロジェクタ型の車両用灯具に関する。 The present invention relates to a projector type vehicle lamp.
 プロジェクタ型車両用灯具においては、光源と、前記光源から出射された光を反射させる反射面を有するリフレクタと、前記リフレクタの反射面で反射した光を透過させ車両前方へ投影する投影レンズと、前記投影レンズの後側焦点付近に配置されロービームのカットオフラインを形成するシェードで構成されている。
 反射面は楕円面を基準とする曲面で構成され、楕円面に存在する2つの焦点に対して、一方の焦点付近(第一焦点とする)に光源を配置し、他方の焦点(第二焦点とする)は非球面形状を基本とする投影レンズの後側焦点付近に配置する事が基本的な構成となっている。
A projector-type vehicle lamp includes a light source, a reflector having a reflecting surface that reflects light emitted from the light source, a projection lens that transmits the light reflected by the reflecting surface of the reflector and projects the light forward of the vehicle, It consists of a shade that is placed near the back focal point of the projection lens and forms a low beam cutoff line.
The reflective surface is composed of a curved surface based on the ellipsoid. Of the two focal points existing on the ellipsoid, the light source is placed near one of the focal points (the first focal point) and the other focal point (the second focal point). ) is basically arranged near the back focal point of the projection lens, which has an aspherical shape.
 その配置はロービームとハイビームでは異なり、特許文献1にはロービームの一般的な光源とリフレクタと投影レンズとシェードの配置が記載されており、特許文献2にはハイビームの一般的な光源とリフレクタと投影レンズの配置が記載されている。 The arrangement is different for low beam and high beam. Patent Document 1 describes the general low beam light source, reflector, projection lens and shade arrangement, and Patent Document 2 describes the general high beam light source, reflector and projection. The placement of lenses is described.
 前記の様なプロジェクタ型の車両用灯具は投影レンズの後側焦点付近を通過する光が投影レンズを透過して投影されるので、投影レンズの後側焦点付近の光度分布が車両用灯具の配光性能に影響する。その為、投影レンズの後側焦点付近の一般的な光度分布は、車両用灯具の配光性能としての法規適合性や車両運転者への快適な視認性を考慮し、投影レンズの後側焦点を中心部とした空間領域において中心部付近が一番明るくなり、中心部から離れるに従って明るさが減少した分布になっている。
 その光度分布を形成するために、リフレクタの反射面の形状は第一焦点付近が楕円面に近い形状であり、光源から投影レンズの後側焦点に向かって順次楕円面から乖離する形状に変形させることが一般的である。
 つまり、第一焦点付近の光源に近い反射面で反射した光が投影レンズの後側焦点を中心部とした空間領域の中心付近の光度分布を形成し、順次光源から離れた反射面で反射した光が中心付近から離れた光度分布を形成する。
 仮に反射面の全ての範囲が楕円面の場合は、反射面で反射した光が投影レンズの後側焦点付近の反射面で遮られ、投影レンズに入射出来ない。仮に投影レンズの後側焦点付近の反射面を切除したとしても、反射面で反射した光は投影レンズの後側焦点付近の切除した狭い範囲しか通過出来ないので、投影レンズの後側焦点付近の光度分布の形成において前述した車両用灯具の配光性能としての法規適合性や車両運転者への快適な視認性の確保が達成できない。
 よって、投影レンズの後側焦点付近の反射面を切除し、反射面の形状を楕円曲面から大きく変形することが必須になっている。
 特許文献3と特許文献4には、既に切除された反射面と、その反射面の形状の変形に関する内容が記載されている。
In the projector-type vehicle lamp as described above, the light passing through the vicinity of the rear focal point of the projection lens is projected through the projection lens. Affects optical performance. For this reason, the general luminous intensity distribution near the rear focal point of the projection lens should be set to In the spatial region centered at , the brightness is the highest near the center, and the brightness decreases as the distance from the center increases.
In order to form the luminous intensity distribution, the shape of the reflecting surface of the reflector is close to an elliptical surface near the first focal point, and is deformed into a shape that deviates from the elliptical surface sequentially from the light source toward the rear focal point of the projection lens. is common.
In other words, the light reflected by the reflective surface near the light source near the first focus forms a luminous intensity distribution near the center of the spatial region centered on the rear focal point of the projection lens, and is sequentially reflected by the reflective surfaces distant from the light source. Light forms a luminous intensity distribution away from the vicinity of the center.
If the entire range of the reflecting surface is an elliptical surface, the light reflected by the reflecting surface is blocked by the reflecting surface near the rear focal point of the projection lens and cannot enter the projection lens. Even if the reflective surface near the rear focus of the projection lens is removed, the light reflected by the reflective surface can only pass through the narrow area near the rear focus of the projection lens. In the formation of the luminous intensity distribution, it is not possible to ensure compliance with regulations regarding the light distribution performance of the above-described vehicle lamp and comfortable visibility for the vehicle driver.
Therefore, it is essential to cut off the reflecting surface near the rear focal point of the projection lens and largely change the shape of the reflecting surface from the elliptical surface.
Patent Literature 3 and Patent Literature 4 describe the already cut reflective surface and the deformation of the shape of the reflective surface.
特開2014-235836号公報JP 2014-235836 A 特開2007-80606号公報Japanese Unexamined Patent Application Publication No. 2007-80606 特開2018-198168号公報JP 2018-198168 A 特開2005-216520号公報JP-A-2005-216520
 しかしながら前記の様な一般的なプロジェクタ型車両用灯具のロービームにおいては、光源の近くの反射面で反射する光の像は光源から遠くの反射面で反射する光の像よりも大きい為、投影レンズの後側焦点を中心部とした空間領域の中心付近の光度分布の形成に際し、中心部の極微小な範囲の光度を高くすることが出来ず、理想的な光度分布を形成する事が困難になる。
 また、中心付近及びカットオフライン付近の光度分布を形成する光は投影レンズの光軸を含む水平面よりも上方の位置の反射面で反射した光で形成されることになり、投影レンズの光軸を通る水平面に対して比較的大きな角度で投影レンズに入光する為、投影レンズを通過した後にカットオフライン付近に分光色を発生させやすい。
 さらに、前述の様に反射面は一部切除し、光源から投影レンズに向かって順次楕円面から乖離する形状になっているので、光源から出射される光の多くが反射面に反射せずに有効に活用できない、という課題があった。
 尚且つ、前記の様な一般的なプロジェクタ型車両用灯具のハイビームにおいては、光源の近くの反射面で反射する光の像は光源から遠くの反射面で反射する光の像よりも大きい為、投影レンズの後側焦点を中心部とした空間領域の中心付近の光度分布の形成に際し、中心部の極微小な範囲を明るくすることが出来ず、理想的な光度分布を形成する事が困難になる。
 また、前述の様に反射面は一部切除し、光源から投影レンズに向けて順次楕円面から乖離する形状になっているので、光源から出射される光の多くが反射面に反射せずに有効に活用できない、という課題があった。
However, in the low beam of the general projector-type vehicle lamp as described above, the image of the light reflected by the reflective surface near the light source is larger than the image of the light reflected by the reflective surface far from the light source. When forming the luminous intensity distribution near the center of the spatial region with the rear focal point as the center, it is impossible to increase the luminous intensity in the extremely small range in the center, making it difficult to form an ideal luminous intensity distribution. Become.
In addition, the light forming the luminous intensity distribution near the center and near the cutoff line is formed by the light reflected by the reflecting surface located above the horizontal plane including the optical axis of the projection lens. Since the light enters the projection lens at a relatively large angle with respect to the horizontal plane through which it passes, spectral colors tend to occur near the cutoff line after passing through the projection lens.
Furthermore, as described above, the reflective surface is partly cut away, and the elliptical surface is gradually deviated from the light source toward the projection lens. There was a problem that it could not be used effectively.
In addition, in the high beam of a general projector-type vehicle lamp as described above, since the image of light reflected by the reflective surface near the light source is larger than the image of light reflected by the reflective surface far from the light source, When forming the luminous intensity distribution near the center of the spatial region with the rear focal point of the projection lens as the center, it is impossible to brighten the extremely small area in the center, making it difficult to form an ideal luminous intensity distribution. Become.
In addition, as described above, the reflective surface is partly cut away, and since the elliptical surface is gradually deviated from the light source toward the projection lens, most of the light emitted from the light source is not reflected on the reflective surface. There was a problem that it could not be used effectively.
 本発明は、このような事情に鑑み、中心光度の極微小な範囲の光度上昇を可能にする事で遠方視認性を向上し、光源から出射される光の有効利用により全体的な視認性が向上できる配光パターンを形成可能な車両用灯具を提供することを目的とする。 In view of such circumstances, the present invention improves distant visibility by making it possible to increase the luminous intensity in an extremely small range of the central luminous intensity, and improves overall visibility by effectively utilizing the light emitted from the light source. An object of the present invention is to provide a vehicle lamp capable of forming an improved light distribution pattern.
 本発明は光源と反射面の配置を従来のプロジェクタ型の配置に対して大きく変えることで、前記目的の達成を図った車両用灯具である。
 即ち、本発明の車両用灯具は、光源と、光源から出射された光を反射させる反射面と、反射面で反射した光を透過させ車両前方へ投影させる投影レンズと、が配置された車両用灯具において、光源は、投影レンズの光軸から離間した位置に、出射した光が上方側又は下方側へ向けて照射されるように配置され、反射面は、楕円面を基準とする凹面で構成され、光源から照射された光を投影レンズに向けて反射可能に上方側又は下方側から覆うように配置され、光源から出射された光によりロービーム配光パターンとハイビーム配光パターンとのうちの少なくとも一方を形成することを特徴とする。
The present invention is a vehicular lamp that achieves the above object by greatly changing the arrangement of the light source and the reflecting surface from the arrangement of the conventional projector type.
That is, the vehicular lamp of the present invention includes a light source, a reflective surface that reflects light emitted from the light source, and a projection lens that transmits the light reflected by the reflective surface and projects the light forward of the vehicle. In the lamp, the light source is arranged at a position spaced apart from the optical axis of the projection lens so that the emitted light is emitted upward or downward, and the reflecting surface is a concave surface based on an elliptical surface. and is arranged to cover from the upper side or the lower side so as to be able to reflect the light emitted from the light source toward the projection lens, and the light emitted from the light source forms at least one of a low-beam light distribution pattern and a high-beam light distribution pattern. characterized by forming one.
 本発明によれば、投影レンズの光軸から離間した位置に光源を配置し、光源から出射される光を上方側又は下方側から覆う様に反射面を配置することで、反射面の光源から比較的遠い位置で反射した光を投影レンズの後側焦点付近の光度分布の中央付近へ反射させることができる。そのため、投影レンズの後側焦点付近の光度分布を形成する際に、中心付近の極微小な範囲を明るくすることが可能になる。 According to the present invention, the light source is arranged at a position spaced apart from the optical axis of the projection lens, and the reflecting surface is arranged so as to cover the light emitted from the light source from above or below. Light reflected at a relatively distant position can be reflected near the center of the light intensity distribution near the back focus of the projection lens. Therefore, when forming the luminous intensity distribution near the rear focal point of the projection lens, it is possible to brighten a very small range near the center.
 更に、楕円面を基準とする凹面で構成された反射面の第一焦点付近だけでなく、第一焦点と第二焦点の間、および第二焦点付近においても楕円面の曲面を維持する事が可能になり、光源から出射された光の多くが反射面で反射して投影レンズへ向かうので、投影レンズの後側焦点付近の光度分布を全体的に明るくすることが可能になる。
 従って中心光度の極微小な範囲の光度上昇を可能にする事で遠方視認性を向上でき、光源から出射される光の有効利用により全体的な視認性が向上できる配光パターンを形成可能な車両用灯具を提供することができる。
Furthermore, the curved surface of the ellipsoid can be maintained not only near the first focal point of the reflecting surface composed of concave surfaces with reference to the ellipsoidal surface, but also between the first and second focal points and near the second focal point. Since most of the light emitted from the light source is reflected by the reflecting surface and directed to the projection lens, it is possible to make the luminous intensity distribution in the vicinity of the rear focal point of the projection lens brighter overall.
Therefore, by making it possible to increase the luminous intensity within a very small range of the central luminous intensity, it is possible to improve distant visibility, and by effectively using the light emitted from the light source, it is possible to form a light distribution pattern that can improve overall visibility. We can provide lighting fixtures.
 本発明の車両用灯具は、出射された光が下方へ照射されるように配置された光源としての第一光源と、第一光源から下方へ照射された光を投影レンズに向けて反射可能に下方側から覆うように配置された反射面としての第一反射面と、第一光源と投影レンズとの間に配置され、ロービーム配光パターンのカットオフラインを形成するシェードと、を備え、第一光源から出射された光によりロービーム配光パターンを形成することを特徴としてもよい。 The vehicle lamp of the present invention includes a first light source as a light source arranged so that emitted light is emitted downward, and a projection lens capable of reflecting the light emitted downward from the first light source. a first reflective surface as a reflective surface arranged to cover from below; and a shade arranged between the first light source and the projection lens to form a cutoff line of the low-beam light distribution pattern; A low-beam light distribution pattern may be formed by light emitted from the light source.
 この構成によれば、上記と同様に、中心光度の極微小な範囲の光度上昇を可能にする事で遠方視認性を向上でき、光源から出射される光の有効利用により全体的な視認性が向上できるロービーム配光パターンを形成可能であることに加え、中心付近及びカットオフライン付近の光度分布を形成する光は投影レンズの光軸を含む水平面に近い反射面で反射した光で形成する事が可能であり、それらの第1反射面で反射した光は投影レンズの光軸を含む水平面に対して比較的小さい角度で投影レンズに入光する為、投影レンズを通過した後にカットオフライン付近の分光色の発生を抑制することが可能になる。 According to this configuration, similar to the above, it is possible to improve the visibility at a distance by increasing the luminous intensity in an extremely small range of the central luminous intensity, and the effective use of the light emitted from the light source improves the overall visibility. In addition to being able to form an improved low-beam light distribution pattern, the light that forms the luminous intensity distribution near the center and near the cutoff line can be formed by light reflected by a reflecting surface that is close to the horizontal plane including the optical axis of the projection lens. Since the light reflected by the first reflecting surface enters the projection lens at a relatively small angle with respect to the horizontal plane including the optical axis of the projection lens, after passing through the projection lens, the light near the cutoff line It becomes possible to suppress the generation of color.
 本発明の車両用灯具は、出射された光が上方へ照射されるように配置された光源としての第二光源と、第二光源から上方へ照射された光を投影レンズに向けて反射可能に上方側から覆うように配置された反射面としての第二反射面と、が配置され、第二光源から出射された光によりハイビーム配光パターンを形成することを特徴としてもよい。
 この構成によれば、上記と同様に、中心光度の極微小な範囲の光度上昇を可能にする事で遠方視認性を向上でき、光源から出射される光の有効利用により全体的な視認性が向上できるハイビーム配光パターンを形成可能である。
The vehicle lamp of the present invention includes a second light source as a light source arranged so that emitted light is emitted upward, and a projection lens capable of reflecting the light emitted upward from the second light source. and a second reflecting surface as a reflecting surface arranged to cover from above, and forming a high-beam light distribution pattern by light emitted from the second light source.
According to this configuration, similar to the above, it is possible to improve the visibility at a distance by increasing the luminous intensity in an extremely small range of the central luminous intensity, and the effective use of the light emitted from the light source improves the overall visibility. An improved high beam light distribution pattern can be formed.
 本発明の車両用灯具では、第一反射面の前縁より前方に設けられ、楕円面を基準とする凹面で構成され、第一光源からの光を所定方向に反射する第三反射面と、第三反射面からの光を投影レンズに向けて反射する第四反射面と、を備えていてもよい。
 このようにすれば、第一反射面に入射しない第一光源からの光を第三反射面及び第四反射面で反射させることで、ロービームパターンの一部として利用することができる。そのため第1光源から出射された光により、効率よくロービーム配光パターンを形成できる。
In the vehicular lamp of the present invention, a third reflecting surface provided in front of the front edge of the first reflecting surface and configured with a concave surface based on an elliptical surface for reflecting light from the first light source in a predetermined direction; and a fourth reflecting surface that reflects light from the third reflecting surface toward the projection lens.
In this way, the light from the first light source that does not enter the first reflecting surface can be reflected by the third reflecting surface and the fourth reflecting surface, so that it can be used as part of the low beam pattern. Therefore, the light emitted from the first light source can efficiently form a low-beam light distribution pattern.
 本発明の車両用灯具では、光源が一方の面に発光面を有する発光素子からなり、発光面は互いに直交する長軸と短軸とを有し、長軸を投影レンズ側に向けて光源が配置されていてもよい。
 このようにすれば、投影レンズから投影されて路面を照射する光の上下幅を狭くして左右幅を広げることができる。そのためロービームを点灯したときに車両前方の一部が明るくなり過ぎることを防止でき、運転者に対する遠方視認性を向上することができる。
In the vehicle lamp of the present invention, the light source is composed of a light emitting element having a light emitting surface on one surface, the light emitting surface has a long axis and a short axis perpendicular to each other, and the light source is directed with the long axis toward the projection lens side. may be placed.
In this way, the vertical width of the light projected from the projection lens and illuminating the road surface can be narrowed and the horizontal width can be widened. Therefore, it is possible to prevent a part of the front of the vehicle from becoming too bright when the low beams are turned on, and it is possible to improve the long-distance visibility for the driver.
 本発明の車両用灯具では、光源が一方の面に発光面を有する発光素子からなり、発光面の法線と投影レンズの光軸を含む水平面との交点が発光面より投影レンズ側に位置するように発光面が傾斜していてもよい。
 このようにすれば、光量が一番大きい発光面の法線方向を、投影レンズの光軸付近の反射面に向けることができ、中心光度を向上することが可能で、配光パターンの中央付近をより明るくできる。
In the vehicle lamp of the present invention, the light source comprises a light emitting element having a light emitting surface on one side, and the intersection of the normal to the light emitting surface and the horizontal plane including the optical axis of the projection lens is located closer to the projection lens than the light emitting surface. The light emitting surface may be inclined as shown in FIG.
In this way, the normal direction of the light-emitting surface, which emits the largest amount of light, can be directed toward the reflecting surface near the optical axis of the projection lens, and the central luminous intensity can be improved. can be made brighter.
 本発明の車両用灯具では、投影レンズから投影不能な方向に出射された光源の光を、投影レンズから投影可能な方向に反射するように、反射面の上方若しくは下方に配置された第五反射面と、反射面の側方に配置された第6反射面と、のうちの少なくとも一方を備えていてもよい。
 このようにすれば、光源から出射された光のうち利用できない光を少なくして、効率よく配光パターンを形成できる。
In the vehicular lamp of the present invention, the fifth reflecting surface is arranged above or below the reflecting surface so as to reflect light from the light source emitted from the projection lens in a direction in which projection is not possible, in a direction in which projection is possible from the projection lens. At least one of a surface and a sixth reflecting surface arranged to the side of the reflecting surface may be provided.
By doing so, it is possible to efficiently form a light distribution pattern by reducing the amount of light that cannot be used out of the light emitted from the light source.
 本発明の車両用灯具では、第一反射面の前縁より前方に設けられ、第一光源からの光をシェードの下側における該シェードに沿う扁平領域に向けて反射することで、投影レンズからオーバーヘッドサイン領域に光を投影する第七反射面と、シェードに設けられ、第七反射面からの光のうちオーバーヘッドサイン領域の下端とカットオフラインとの間の光を遮光する遮光部と、を備えていてもよい。
 このようにすれば、第一光源から第一反射面の前縁より前方に照射された光の一部が第七反射面によりシェードの下側におけるシェードに沿う扁平領域に反射される。この扁平領域に反射された光のうち、シェードに隣接する領域に反射された光が遮光部により遮光され、残りの光が投影レンズに到達して投影される。そのためカットオフラインに隣接する上方の遮光された間隔を空けて路面上方に光を照射でき、対向車への幻惑を抑制してオーバーヘッドサイン領域を照射できる。
In the vehicular lamp of the present invention, the light from the first light source is provided in front of the front edge of the first reflecting surface, and reflects the light from the first light source toward the flat area below the shade along the shade so that the light is reflected from the projection lens. a seventh reflecting surface that projects light onto an overhead sign area; and a light shielding part that is provided on the shade and blocks light between a lower end of the overhead sign area and a cutoff line among the light from the seventh reflecting surface. may be
With this configuration, part of the light emitted forward from the front edge of the first reflecting surface from the first light source is reflected by the seventh reflecting surface onto the flat area below the shade along the shade. Of the light reflected by the flat region, the light reflected by the region adjacent to the shade is blocked by the light blocking portion, and the remaining light reaches the projection lens and is projected. Therefore, it is possible to illuminate the upper side of the road surface with a light-shielded space adjacent to the cutoff line, thereby suppressing dazzling of oncoming vehicles and illuminating the overhead sign area.
 本発明の車両用灯具では、第二反射面の前縁より前方に設けられ、第二光源からの光をシェードの上側における該シェードに沿う扁平領域に向けて反射することで、投影レンズからカットオフライン直下の隣接位置を照射するための第八反射面を備えていてもよい。 In the vehicular lamp of the present invention, the light from the second light source is provided in front of the front edge of the second reflecting surface, and reflects the light from the second light source toward the flat area along the shade on the upper side of the shade, thereby cutting the light from the projection lens. An eighth reflective surface may be provided for illuminating an adjacent position directly below the off-line.
 このようにすれば、第二光源から第二反射面の前縁より前方に照射された光の一部が第八反射面によりシェードの上側におけるシェードに沿う扁平領域に反射される。この上側扁平形状に反射された光が、第1反射面からの光とともに投影レンズに到達し、前方に投影される。これにより投影レンズから前方にハイビーム配光パターンを投影する際、ロービーム配光パターンのカットオフラインに隣接する直下の位置を照射して明るくできる。その結果、ハイビーム配光パターンを投影する際、カットオフラインの上側と下側との明るさの差異を緩和できて、運転者に違和感を与えないようにすることができる。 With this configuration, part of the light emitted forward from the front edge of the second reflecting surface from the second light source is reflected by the eighth reflecting surface onto the flat region above the shade along the shade. The light reflected by the upper flat shape reaches the projection lens together with the light from the first reflecting surface, and is projected forward. As a result, when the high-beam light distribution pattern is projected forward from the projection lens, it is possible to irradiate and brighten the position immediately below and adjacent to the cut-off line of the low-beam light distribution pattern. As a result, when projecting the high-beam light distribution pattern, the difference in brightness between the upper side and the lower side of the cutoff line can be reduced, and the driver can be prevented from feeling discomfort.
本発明の実施形態1に係る車両用灯具の灯具ユニットの正面図である。図中のx、y方向は、本車両用灯具を車両に取り付けた場合に、それぞれ、車両の幅方向、高さ方向を示す。1 is a front view of a lamp unit of a vehicle lamp according to Embodiment 1 of the present invention; FIG. The x and y directions in the drawing indicate the width direction and height direction of the vehicle, respectively, when the vehicle lamp is attached to the vehicle. 図1に示す本車両用灯具のA-A断面図にロービームの光源から出射された光の光路を概略的に示した図である。図中のy、z方向は、本車両用灯具を車両に取り付けた場合に、それぞれ、車両の高さ方向、前後方向を示す。FIG. 2 is a diagram schematically showing an optical path of light emitted from a low-beam light source in a cross-sectional view taken along line AA of the vehicle lamp shown in FIG. 1; The y and z directions in the drawing indicate the height direction and front-rear direction of the vehicle, respectively, when the vehicle lamp is mounted on the vehicle. 図1に示す本車両用灯具のA-A断面図にハイビームの光源から出射された光の光路を概略的に示した図である。FIG. 2 is a diagram schematically showing an optical path of light emitted from a high beam light source in a cross-sectional view taken along line AA of the vehicle lamp shown in FIG. 1; 図2に対して反射面上の反射位置と反射した光源像の大きさを示した図である。FIG. 3 is a diagram showing the reflection position on the reflection surface and the size of the reflected light source image with respect to FIG. 2 ; 図1に示す本車両用灯具から出射されるロービームの配光パターンの道路投影図である。FIG. 2 is a road projection diagram of a light distribution pattern of a low beam emitted from the vehicle lamp shown in FIG. 1 ; 図1に示す本車両用灯具から出射されるハイビームの配光パターンの道路投影図である。FIG. 2 is a road projection diagram of a light distribution pattern of a high beam emitted from the vehicle lamp shown in FIG. 1 ; 本発明の実施形態1の変形例に係る車両用灯具の断面図である。FIG. 4 is a cross-sectional view of a vehicle lamp according to a modification of Embodiment 1 of the present invention; 本発明の実施形態2に係る車両用灯具の斜視図である。FIG. 3 is a perspective view of a vehicle lamp according to Embodiment 2 of the present invention; 本発明の実施形態3に係る車両用灯具を示し、(a)は斜視図、(b)は前方から見た正面図である。Fig. 10 shows a vehicle lamp according to Embodiment 3 of the present invention, where (a) is a perspective view and (b) is a front view as seen from the front. 図9に示す実施形態3の車両用灯具を示し、(a)は図9(b)の縦断面図であり、(b)はロービーム用反射面を説明するための縦断面図である。FIG. 10 shows the vehicle lamp of Embodiment 3 shown in FIG. 9, (a) is a vertical cross-sectional view of FIG. 9 (b), and (b) is a vertical cross-sectional view for explaining a low-beam reflecting surface. 本発明の実施形態3の変形例に係る車両用灯具の要部を示し、(a)は斜視図、(b)はロービーム用反射面と光路を説明するための拡大斜視図であり、(c)は縦断面図である。12A is a perspective view, FIG. 1B is an enlarged perspective view for explaining a low-beam reflecting surface and an optical path, and FIG. ) is a longitudinal sectional view. 本発明の実施形態4及びその変形例に係る車両用灯具を示し、(a)は斜視図、(b)はそのロービーム光源の概略斜視図である。4A and 4B show a vehicle lamp according to Embodiment 4 of the present invention and its modification, wherein (a) is a perspective view and (b) is a schematic perspective view of a low beam light source thereof. 実施形態4の車両用灯具におけるロービーム光源を説明するための図であり、(a)はロービーム光源及びロービーム用反射面を示す部分拡大斜視図、(b)は投影レンズから投影されたロービーム配光パターンの一部を示す配光曲線、(c)は(b)の中心付近の拡大図である。FIG. 12 is a diagram for explaining a low beam light source in a vehicle lamp according to Embodiment 4, where (a) is a partially enlarged perspective view showing a low beam light source and a low beam reflecting surface, and (b) is a low beam light distribution projected from a projection lens; It is a light distribution curve which shows a part of pattern, (c) is an enlarged view near the center of (b). 実施形態4の変形例の車両用灯具におけるロービーム光源を説明するための図であり、(a)はロービーム光源及びロービーム用反射面を示す部分拡大斜視図、(b)は投影レンズから投影されたロービーム配光パターンの一部を示す配光曲線、(c)は(b)の中心付近の拡大図である。12A is a partially enlarged perspective view showing a low-beam light source and a low-beam reflecting surface, and FIG. 11B is a view projected from a projection lens. A light distribution curve showing a part of a low beam light distribution pattern, (c) is an enlarged view near the center of (b). 実施形態4の別の変形例のロービーム光源を説明するための図であり、(a)はロービーム光源の概略斜視図、(b)はロービーム光源を投影レンズ側に傾斜させた状態を示す断面図である。12A and 12B are diagrams for explaining a low-beam light source of another modified example of the fourth embodiment, FIG. 11A being a schematic perspective view of the low-beam light source, and FIG. is. 本発明の実施形態5に係る車両用灯具を示す縦断面図である。FIG. 11 is a vertical cross-sectional view showing a vehicle lamp according to Embodiment 5 of the present invention; (a)は本発明の実施形態6に係る車両用灯具を示す平面図であり、(b)は第6反射面を配置しない状態を示す平面図である。(a) is a plan view showing a vehicle lamp according to Embodiment 6 of the present invention, and (b) is a plan view showing a state where a sixth reflecting surface is not arranged. 本発明の実施形態7に係る車両用灯具を示し、(a)は縦断面図、(b)は部分拡大縦断面図、(c)はロービーム配光パターンを路面に投影した状態を説明する図である。7 shows a vehicle lamp according to Embodiment 7 of the present invention, where (a) is a vertical cross-sectional view, (b) is a partially enlarged vertical cross-sectional view, and (c) is a diagram for explaining a state in which a low-beam light distribution pattern is projected onto a road surface. is. 本発明の実施形態8に係る車両用灯具を示し、(a)は縦断面図、(b)は部分拡大縦断面図、(c)はハイビーム配光パターンを路面に投影した状態を説明する図である。8 shows a vehicle lamp according to Embodiment 8 of the present invention, (a) is a vertical cross-sectional view, (b) is a partially enlarged vertical cross-sectional view, and (c) is a diagram for explaining a state in which a high beam light distribution pattern is projected onto a road surface. is.
以下、本発明の実施形態について説明する。
[実施形態1]
 図1乃至図6には、本発明の実施形態1を示す。
 図1は、本発明の車両用灯具の灯具ユニット10を示す正面図であり、図2は、図1のA-A断面図とロービームの光路を表してある。
 また、図3は図1のA-A断面図とハイビームの光路を表してある。
Embodiments of the present invention will be described below.
[Embodiment 1]
1 to 6 show Embodiment 1 of the present invention.
FIG. 1 is a front view showing a lamp unit 10 of a vehicle lamp according to the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG. 1 and an optical path of a low beam.
Also, FIG. 3 shows a cross-sectional view taken along the line AA of FIG. 1 and the optical path of the high beam.
 図2で示す様に、本発明に係る車両用灯具10は、投影レンズ21と投影レンズ後方に配置されたロービーム光源31と、ロービーム光源31から投影レンズ光軸Lx側となる下方へ出射される光を投影レンズ方向へ反射させる為の第一反射面としてのロービーム用反射面41と、投影レンズの後側焦点21F付近に配置され、ロービーム配光パターンのカットオフラインを形成するシェード50で構成され、図5のロービーム配光パターンJGを形成する。 As shown in FIG. 2, the vehicle lamp 10 according to the present invention includes a projection lens 21, a low-beam light source 31 arranged behind the projection lens, and emitted downward from the low-beam light source 31 on the projection lens optical axis Lx side. It is composed of a low-beam reflecting surface 41 as a first reflecting surface for reflecting light toward the projection lens, and a shade 50 that is arranged near the rear focal point 21F of the projection lens and forms a cut-off line of the low-beam light distribution pattern. , to form the low beam light distribution pattern JG of FIG.
 また、図3で示す様に、ロービーム用反射面41の下側にハイビーム光源32と、ハイビーム光源32から投影レンズ光軸Lx側となる上方に出射される光を投影レンズ方向へ反射させる為の第二反射面としてのハイビーム用反射面42が構成され、図6のハイビーム配光パターンYGを形成する。 Further, as shown in FIG. 3, a high beam light source 32 is provided below the low beam reflecting surface 41, and a light source for reflecting the light emitted from the high beam light source 32 upward on the projection lens optical axis Lx side toward the projection lens direction. A high-beam reflecting surface 42 is configured as a second reflecting surface to form the high-beam light distribution pattern YG of FIG.
 ロービーム光源31とハイビーム光源32はLED等の発光素子であり、矩形,横長矩形、縦長矩形を有している。
 ロービーム光源31は投影レンズの後側焦点21Fより後方および投影レンズ光軸Lxを含む水平面より上方の位置に配置され、下方に光が出射されるように配置されており、ハイビーム光源32は投影レンズの後側焦点21Fより後方に配置され、上方に光が出射されるように配置されている。これらのロービーム光源31やハイビーム光源32は光の出射方向を投影レンズ光軸Lxに向けて配置してもよいが、投影レンズ光軸Lxに向けて配置されなくてもよい。
The low-beam light source 31 and the high-beam light source 32 are light emitting elements such as LEDs, and have a rectangular shape, a laterally long rectangular shape, and a vertically long rectangular shape.
The low-beam light source 31 is arranged behind the rear focal point 21F of the projection lens and above the horizontal plane including the projection lens optical axis Lx so that light is emitted downward. is arranged behind the rear focal point 21F, and is arranged so that light is emitted upward. These low-beam light source 31 and high-beam light source 32 may be arranged with the light emission direction facing the projection lens optical axis Lx, but they do not have to be arranged facing the projection lens optical axis Lx.
 リフレクタ40のロービーム用反射面41は楕円面を基準とする曲面で構成され、投影レンズ後側焦点21Fとロービーム光源31の発光中心を結ぶ直線L1に沿う長軸を有し、ロービーム光源31の発光中心付近を第一焦点とし、投影レンズ後側焦点21F付近を第二焦点としている。 A low-beam reflecting surface 41 of the reflector 40 is composed of a curved surface based on an elliptical surface, and has a long axis along a straight line L1 connecting the projection lens rear focal point 21F and the emission center of the low-beam light source 31. The vicinity of the center is defined as the first focus, and the vicinity of the rear focus 21F of the projection lens is defined as the second focus.
 ロービーム用反射面41の長軸は投影レンズ光軸Lxに対して平行であってもよいが、本実施形態では後方側が上昇するように傾斜している。投影レンズ光軸Lxに対する長軸の傾斜は、例えば投影レンズ光軸Lxに対して30度以下の範囲としてもよい。過剰に大きいとカットオフラインCOL1,COL2付近に分光色が発生し易くなる。 The long axis of the low-beam reflecting surface 41 may be parallel to the projection lens optical axis Lx, but in this embodiment it is inclined so that the rear side rises. The inclination of the long axis with respect to the projection lens optical axis Lx may be, for example, within a range of 30 degrees or less with respect to the projection lens optical axis Lx. If it is excessively large, spectral colors tend to occur near the cutoff lines COL1 and COL2.
 また、ハイビーム用反射面42は楕円面を基準とする曲面で構成され、投影レンズの後側焦点21Fの0~1.0mm下方の位置とハイビーム光源32の発光中心を結ぶ直線L2と同軸の長軸を有し、ハイビーム光源32の発光中心付近を第一焦点とし投影レンズ後側焦点21Fより下方0~1.0mm付近を第二焦点としている。 The high-beam reflecting surface 42 is composed of a curved surface based on an elliptical surface, and is coaxial with a straight line L2 connecting a position 0 to 1.0 mm below the rear focal point 21F of the projection lens and the light emission center of the high-beam light source 32. It has an axis, the first focus is near the light emission center of the high beam light source 32, and the second focus is near 0 to 1.0 mm below the rear focus 21F of the projection lens.
 シェード50は少なくともロービーム用反射面41の前縁より前方におけるロービーム用反射面41とハイビーム用反射面42の間に隣接する様に配置され、部材表面が鏡面性質を持つ金属等の部材か、樹脂部材,金属部材にアルミニウム蒸着等で部材表面を鏡面性質にしたものであり、シェード50の上面,下面、両方とも反射性質がある。
 また、シェード50の投影レンズ後側焦点21F付近にはカットオフライン形成部が設けられている。カットオフライン形成部の形状は、ロービーム配光パターンJGのカットオフラインCOL1とCOL2を形成する形状になっている。
The shade 50 is arranged so as to be adjacent between at least the low-beam reflecting surface 41 and the high-beam reflecting surface 42 in front of the front edge of the low-beam reflecting surface 41, and the member surface is made of a member such as metal having a mirror surface property, or resin. The surfaces of the members and metal members are mirror-finished by vapor deposition of aluminum or the like, and both the upper and lower surfaces of the shade 50 have reflective properties.
A cut-off line forming portion is provided in the vicinity of the projection lens rear focal point 21F of the shade 50 . The shape of the cutoff line forming portion is a shape that forms the cutoff lines COL1 and COL2 of the low-beam light distribution pattern JG.
 シェード50は投影レンズ光軸Lxに沿って配置されていてもよいが、本実施形態では、投影レンズ光軸Lxに対して後方側が下降するように傾斜している。後方側が上昇すると、ロービーム用反射面41により反射した光がシェード50により減少して効率が低下することがある。 The shade 50 may be arranged along the projection lens optical axis Lx, but in this embodiment, it is inclined so that the rear side descends with respect to the projection lens optical axis Lx. If the rear side rises, the light reflected by the low-beam reflecting surface 41 may be reduced by the shade 50, resulting in a decrease in efficiency.
 次に、本実施形態の作用効果について説明する。 Next, the effects of this embodiment will be described.
 図2に示した様に、ロービーム光源31から出射された光の光路はロービーム用反射面41で反射した後、投影レンズの後側焦点21F付近を通過した後に投影レンズ21を透過し、図5のロービーム配光パターンJGを形成する。 As shown in FIG. 2, the optical path of the light emitted from the low-beam light source 31 is reflected by the low-beam reflecting surface 41, passes through the vicinity of the rear focal point 21F of the projection lens, passes through the projection lens 21, and passes through the projection lens 21 as shown in FIG. to form a low-beam light distribution pattern JG.
 この光路においてはロービーム用反射面41と投影レンズ21との間に光路を遮る様な部品がシェード50以外に存在しないので、ロービーム用反射面41を楕円面形状から自由に変形させることが可能となり、投影レンズの後側焦点21F付近の光度分布を意図した分布に形成することが容易に可能となる。 In this optical path, there is no part other than the shade 50 that blocks the optical path between the low-beam reflecting surface 41 and the projection lens 21, so that the low-beam reflecting surface 41 can be freely deformed from the ellipsoidal shape. , the luminous intensity distribution near the rear focal point 21F of the projection lens can be easily formed into an intended distribution.
 また、ロービーム用反射面41の曲面を投影レンズの後側焦点21F付近まで楕円面を維持させることが出来るので、ロービーム光源31から出射される光の多くはロービーム用反射面41で反射し、投影レンズ後側焦点21F付近の光度分布の形成に活用できる。
 その結果、投影レンズ21を通過した光が形成するロービーム配光パターンJGの全体的な明るさの向上が可能になる。
Further, since the curved surface of the low-beam reflecting surface 41 can be maintained as an elliptical surface up to the vicinity of the rear focal point 21F of the projection lens, most of the light emitted from the low-beam light source 31 is reflected by the low-beam reflecting surface 41 and projected. It can be used to form the luminous intensity distribution near the rear focal point 21F of the lens.
As a result, it is possible to improve the overall brightness of the low-beam light distribution pattern JG formed by the light that has passed through the projection lens 21 .
 加えて図4に示す様に、ロービーム光源31から出射した光が光源より比較的遠い距離のロービーム用反射面41上の反射点41RPBで反射して投影レンズの後側焦点21F付近を通過する際の光の光源像RSBの大きさは、ロービーム光源31から出射した光が光源より比較的近い距離のロービーム用反射面41上の反射点41RPAで反射して投影レンズの後側焦点21F付近を通過する際の光の光源像RSAの大きさよりも小さいので、ロービーム光源31から比較的遠い距離の反射面で反射した光を投影レンズの後側焦点21F付近の光度分布の中央付近へ反射させる事で、ロービーム配光パターンJGの中央付近にあるロービーム高光度エリアHJGの極微小な範囲を明るくする事が可能となり、HJGの光度分布の適正化が可能になる。 In addition, as shown in FIG. 4, when the light emitted from the low-beam light source 31 is reflected at the reflection point 41RPB on the low-beam reflecting surface 41, which is relatively far away from the light source, and passes near the rear focus 21F of the projection lens, The size of the light source image RSB of the light is that the light emitted from the low beam light source 31 is reflected at a reflection point 41RPA on the low beam reflecting surface 41 which is relatively closer than the light source, and passes near the rear focus 21F of the projection lens. Since the size of the light source image RSA is smaller than the size of the light source image RSA, the light reflected by the reflecting surface at a relatively long distance from the low beam light source 31 is reflected toward the center of the luminous intensity distribution near the rear focal point 21F of the projection lens. , it is possible to brighten a very small range of the low beam high luminous intensity area HJG near the center of the low beam light distribution pattern JG, and to optimize the luminous intensity distribution of HJG.
 尚且つ、ロービーム高光度エリアHJG及びカットオフラインCOL1,COL2付近の光度分布を形成するRSBの様な光は、投影レンズ光軸Lxを含む水平面に近い反射面で反射した光で形成する事が可能であり、それらの反射面で反射した光は投影レンズ光軸Lxを含む水平面に対して比較的小さい角度で投影レンズに入光する為、投影レンズを通過した後にカットオフラインCOL1,COL2の上端辺の分光色の発生を抑制することが可能になる。 In addition, RSB-like light that forms the luminous intensity distribution near the low beam high luminous intensity area HJG and the cutoff lines COL1 and COL2 can be formed by light reflected by a reflecting surface that is close to the horizontal plane including the optical axis Lx of the projection lens. , and the light reflected by these reflecting surfaces enters the projection lens at a relatively small angle with respect to the horizontal plane including the optical axis Lx of the projection lens. It becomes possible to suppress the occurrence of spectral color of .
 次に、図3に示した様に、ハイビーム光源32から出射された光の光路はハイビーム用反射面42で反射した後、投影レンズの後側焦点21F付近を通過して投影レンズ21を透過し、図6のハイビーム配光パターンYGを形成する。
 また、ハイビーム用反射面42で反射した一部の光はシェード50で反射した後、投影レンズの後側焦点21F付近を通過した後に投影レンズ21を透過し、図6のハイビーム配光パターンYGを形成する。
 尚、図3の状況においてはハイビーム光源32から出射されて直接シェード50で反射した光も、投影レンズの後側焦点21F付近を通過して投影レンズ21を透過し、図6のハイビーム配光パターンYGを形成する。
Next, as shown in FIG. 3, the optical path of the light emitted from the high-beam light source 32 is reflected by the high-beam reflecting surface 42, passes through the vicinity of the rear focal point 21F of the projection lens, and passes through the projection lens 21. , to form the high beam distribution pattern YG of FIG.
Part of the light reflected by the high-beam reflecting surface 42 is reflected by the shade 50, passes through the vicinity of the rear focal point 21F of the projection lens, passes through the projection lens 21, and forms the high-beam light distribution pattern YG of FIG. Form.
3, the light emitted from the high beam light source 32 and directly reflected by the shade 50 also passes through the vicinity of the rear focal point 21F of the projection lens and is transmitted through the projection lens 21, resulting in the high beam light distribution pattern shown in FIG. YG is formed.
 この光路においてはハイビーム用反射面42と投影レンズ21との間に光路を遮る様な部品がシェード50以外に存在しないので、ハイビーム用反射面42を楕円面形状から自由に変形させることが可能となり、投影レンズの後側焦点21F付近の光度分布を意図した分布に形成することが容易に可能となる。 In this optical path, there is no component other than the shade 50 that blocks the optical path between the high beam reflecting surface 42 and the projection lens 21, so that the high beam reflecting surface 42 can be freely deformed from the ellipsoidal shape. , the luminous intensity distribution near the rear focal point 21F of the projection lens can be easily formed into an intended distribution.
 また、ハイビーム用反射面42の曲面を投影レンズの後側焦点21F付近まで楕円面を維持させることが出来るので、ハイビーム光源32から出射される光の多くはハイビーム用反射面42とシェード50で反射し、投影レンズ後側焦点21F付近の光度分布の形成に活用できる。さらにハイビーム光源32から出射された光が直接シェード50で反射し、投影レンズ後側焦点21F付近の光度分布の形成に活用できる。
 その結果、投影レンズ21を通過した光が形成するハイビーム配光パターンYGの全体的な明るさの向上が可能になる。
In addition, since the curved surface of the high-beam reflecting surface 42 can be maintained as an elliptical surface up to the vicinity of the rear focal point 21F of the projection lens, most of the light emitted from the high-beam light source 32 is reflected by the high-beam reflecting surface 42 and the shade 50. can be used to form the light intensity distribution near the rear focal point 21F of the projection lens. Furthermore, the light emitted from the high beam light source 32 is directly reflected by the shade 50, and can be used to form the light intensity distribution near the rear focal point 21F of the projection lens.
As a result, it is possible to improve the overall brightness of the high beam light distribution pattern YG formed by the light that has passed through the projection lens 21 .
 加えて、前述の図4に示す様に、ロービーム光源31から出射した光が光源より比較的遠い距離のロービーム用反射面41上の反射点41RPBで反射して投影レンズの後側焦点21F付近を通過する際の光の光源像RSBの大きさは、ロービーム光源31から出射した光が光源より比較的近い距離のロービーム用反射面41上の反射点41RPAで反射して投影レンズの後側焦点21F付近を通過する際の光の光源像RSAの大きさよりも小さい。
 この原理はハイビームにおいても同様なので、ハイビーム光源32から比較的遠い距離の反射面で反射した光を投影レンズの後側焦点21F付近の光度分布の中央付近へ反射させる事で、ハイビーム配光パターンYGの中央付近にあるハイビーム高光度エリアHYGの極微小な範囲を明るくする事が可能となり、HYGの光度分布の適正化が可能になる。
In addition, as shown in FIG. 4, the light emitted from the low-beam light source 31 is reflected at the reflection point 41RPB on the low-beam reflecting surface 41, which is relatively far away from the light source, and is reflected near the rear focal point 21F of the projection lens. The size of the light source image RSB of the light when passing through is such that the light emitted from the low-beam light source 31 is reflected at the reflection point 41RPA on the low-beam reflecting surface 41, which is relatively closer than the light source, to the rear focal point 21F of the projection lens. It is smaller than the size of the light source image RSA of the light when passing nearby.
Since this principle is the same for the high beam, the high beam light distribution pattern YG is obtained by reflecting the light reflected by the reflecting surface at a relatively long distance from the high beam light source 32 toward the center of the light intensity distribution near the rear focal point 21F of the projection lens. It is possible to brighten a very small range of the high beam high luminous intensity area HYG near the center of , and to optimize the luminous intensity distribution of HYG.
[実施形態1の変形例]
 図7は、実施形態1の変形例を示す。この変形例の車両用灯具では、投影レンズ光軸Lxを含む水平面に沿ってシェード50が設けられ、このシェード50の上側にロービーム光源31及びロービーム用反射面41が配置されるとともにシェード50の下側にハイビーム光源32及びハイビーム用反射面42が配置されている。その他は実施形態1と同様に構成されている。
 このような車両用灯具であっても、実施形態1と同様の作用効果を得ることが可能である。またシェード50が水平に設けられているので、ロービーム用反射面41の領域が減少するものの、ロービーム用反射面41で反射した後にシェード50で反射した光の多くが投影レンズ21に入射することになり、各種条件に応にて選択することで車両用灯具の構成の自由度を向上できる
[Modification of Embodiment 1]
FIG. 7 shows a modification of the first embodiment. In the vehicle lamp of this modified example, a shade 50 is provided along a horizontal plane including the projection lens optical axis Lx. A high beam light source 32 and a high beam reflecting surface 42 are arranged on the side. Others are configured in the same manner as in the first embodiment.
Even with such a vehicle lamp, it is possible to obtain the same effects as those of the first embodiment. Further, since the shade 50 is provided horizontally, although the area of the low-beam reflecting surface 41 is reduced, most of the light reflected by the shade 50 after being reflected by the low-beam reflecting surface 41 enters the projection lens 21. It is possible to improve the flexibility of the configuration of the vehicle lamp by selecting it according to various conditions.
[実施形態2]
 図8は、本発明の実施形態2を示す。なお、実施形態2では、前記実施形態1と対応する部分に同一の符号を付して前記実施形態1と異なる構成および作用について説明する。
 図8に示した様に、光源を複数使用した例であり、ロービーム光源31を3個使用し、リフレクタ40にロービーム用反射面41を3面配置して構成したものである。
[Embodiment 2]
FIG. 8 shows Embodiment 2 of the present invention. In the second embodiment, portions corresponding to those of the first embodiment are denoted by the same reference numerals, and configurations and functions different from those of the first embodiment will be described.
As shown in FIG. 8, this is an example of using a plurality of light sources, in which three low-beam light sources 31 are used and three low-beam reflecting surfaces 41 are arranged on the reflector 40 .
 各反射面の第二焦点位置を投影レンズの後側焦点21Fまたは投影レンズの後側焦点21Fを含む水平面付近に配置する事で、各反射面で反射した光の相互作用により投影レンズの後側焦点21F付近の光度分布の微妙な調整が可能となる。
 その結果、単光源の場合と比較して、配光パターン内の配光分布の繊細な調整が可能になり、視認性の向上に寄与できる。
By arranging the second focal position of each reflecting surface near the rear focal point 21F of the projection lens or the horizontal plane including the rear focal point 21F of the projection lens, the interaction of the light reflected by each reflecting surface causes the rear side of the projection lens to Fine adjustment of the luminous intensity distribution near the focal point 21F becomes possible.
As a result, compared with the case of a single light source, it is possible to finely adjust the light distribution in the light distribution pattern, which contributes to the improvement of visibility.
 更に、光源を分散する事で光源から発生する熱量の分散も可能になり、車両用灯具としての耐熱に対して有効になる。
 尚、光源と反射面の個数は、ロービーム,ハイビーム共に単数,複数いずれも可能である。
 また、複数光源は同一水平面に配置しても良いし、各光源を同一水平面に対して不一致に配置する事も可能である。
Furthermore, by dispersing the light sources, it becomes possible to disperse the amount of heat generated from the light sources, which is effective for heat resistance as a vehicle lamp.
It should be noted that the number of light sources and reflecting surfaces may be single or plural for both low beam and high beam.
Also, a plurality of light sources may be arranged on the same horizontal plane, or the light sources may be arranged inconsistently with respect to the same horizontal plane.
[実施形態3]
 図9(a)(b)及び図10(a)(b)は実施形態3に係る車両用灯具を示す。前記実施形態1及び変形例と対応する部分には同一の符号を付している。
 この車両用灯具は、実施形態1の変形例と同様に、投影レンズ光軸Lxを含む水平面に沿ってシェード50が設けられ、シェード50の上側にロービーム光源31及びロービーム用反射面41が配置され、シェード50の下側にハイビーム光源32及びハイビーム用反射面42が配置されている。
 本実施形態では、ハイビーム光源32及びハイビーム用反射面42が投影レンズ光軸Lxを挟んで両側にそれぞれ設けられている。各ハイビーム光源32からの光が各ハイビーム用反射面42により投影レンズ21の後側焦点21F近傍に反射されて投影レンズ21から投影されるように配置されている。
[Embodiment 3]
FIGS. 9A, 9B and 10A, 10B show a vehicle lamp according to Embodiment 3. FIG. The same reference numerals are given to the parts corresponding to those of the first embodiment and the modified example.
Similar to the modified example of Embodiment 1, this vehicle lamp has a shade 50 along a horizontal plane including the projection lens optical axis Lx, and a low beam light source 31 and a low beam reflecting surface 41 are arranged above the shade 50. , a high beam light source 32 and a high beam reflecting surface 42 are arranged below the shade 50 .
In this embodiment, the high beam light source 32 and the high beam reflecting surface 42 are provided on both sides of the projection lens optical axis Lx. Light from each high beam light source 32 is reflected by each high beam reflecting surface 42 near the rear focal point 21</b>F of the projection lens 21 and projected from the projection lens 21 .
 またシェード50のカットオフライン形成部より後方でロービーム用反射面41の前縁より前方の位置に、ロービーム光源31からの光を所定方向に反射する第三反射面43がシェード50より下方に突出して設けられ、第三反射面43からの光を投影レンズ21に向けて反射する第四反射面44がシェード50より上方に設けられている。
 ここでロービーム用反射面41の前縁とは、楕円面を基準とする凹面の前縁における長軸付近の一部であってもよく、少なくともシェード50におけるカットオフラインCOL1,COL2を形成する後端より後方に配置される前縁であればよい。
A third reflecting surface 43 that reflects the light from the low beam light source 31 in a predetermined direction protrudes downward from the shade 50 at a position behind the cutoff line forming portion of the shade 50 and forward of the front edge of the low beam reflecting surface 41 . A fourth reflecting surface 44 is provided above the shade 50 to reflect the light from the third reflecting surface 43 toward the projection lens 21 .
Here, the front edge of the low-beam reflecting surface 41 may be a part near the major axis of the front edge of the concave surface based on the elliptical surface, and at least the rear end forming the cutoff lines COL1 and COL2 in the shade 50. Any leading edge that is positioned more rearwardly may be used.
 この実施形態3の車両用灯具には、投影レンズ21の後方に、投影レンズ光軸Lxを含む平面に沿って配置され、図示しないブラケット等に固定されたベースボディ51が設けられている。ベースボディ51の形状は任意であり、車両用灯具が設置される部位の各種条件に応じて適宜設定可能であり、本実施形態ではシェード50が左右両縁においてベースボディ51に固定されている。またロービーム用反射面41、ハイビーム用反射面42、第三反射面43も全てベースボディ51に固定して設けられている。さらに詳細な図示は省略されているが、ロービーム光源31が設けられたロービーム光源支持部301及び第四反射面44もベースボディ51に固定されている。 The vehicle lamp of Embodiment 3 is provided behind the projection lens 21 with a base body 51 arranged along a plane including the projection lens optical axis Lx and fixed to a bracket (not shown) or the like. The shape of the base body 51 is arbitrary and can be appropriately set according to various conditions of the portion where the vehicle lamp is installed. In this embodiment, the shade 50 is fixed to the base body 51 at both left and right edges. The low-beam reflecting surface 41, the high-beam reflecting surface 42, and the third reflecting surface 43 are all fixed to the base body 51 as well. Although detailed illustration is omitted, the low beam light source support portion 301 provided with the low beam light source 31 and the fourth reflecting surface 44 are also fixed to the base body 51 .
 第三反射面43は、図10(b)に仮想線で示すように、楕円面を基準とする凹面で構成されていて、楕円面を基準とする凹面を変形させた曲面であってもよい。第三反射面43の基準となる楕円面は、第一焦点43Aがロービーム光源31と一致するように設定されるとともに、第二焦点43Bが第四反射面44付近に設定されている。本実施形態では、図10(a)(b)に示すように、第三反射面43の第二焦点43Bが投影レンズ光軸Lxに対して鉛直方向上方に設定されている。 The third reflecting surface 43, as shown by the phantom lines in FIG. 10(b), is composed of a concave surface based on the ellipsoidal surface, and may be a curved surface obtained by deforming the concave surface based on the ellipsoidal surface. . The elliptical surface that serves as a reference for the third reflecting surface 43 is set so that the first focus 43A coincides with the low-beam light source 31 and the second focus 43B is set near the fourth reflecting surface 44 . In this embodiment, as shown in FIGS. 10A and 10B, the second focal point 43B of the third reflecting surface 43 is set vertically above the projection lens optical axis Lx.
 第四反射面44は、放物面若しくは楕円面又は自由曲面を基準とする凹面で構成されていて、これらの凹面を基準に変形させた曲面であってもよい。第四反射面44の凹面は、第三反射面43と対向するように、第三反射面43の鉛直方向上方に配置され、第三反射面43からの光を投影レンズ21に向けて反射可能となっている。
 その他は実施形態1の変形例と同様である。
The fourth reflecting surface 44 is composed of a concave surface based on a parabolic surface, an elliptical surface, or a free curved surface, and may be a curved surface deformed based on these concave surfaces. The concave surface of the fourth reflecting surface 44 is arranged vertically above the third reflecting surface 43 so as to face the third reflecting surface 43, and can reflect the light from the third reflecting surface 43 toward the projection lens 21. It has become.
Others are the same as the modification of the first embodiment.
 このような実施形態3の車両用灯具では、ロービーム光源31から出射された光は、多くがロービーム用反射面41に照射されて投影レンズ21に向けて反射され、実施形態1の車両用灯具と同様に投影レンズ21からロービーム配光パターンJGとして投影される。
 ロービーム光源31から出射された光の残部の一部又は全部は、ロービーム用反射面41の前縁よりも前方の第三反射面43に直接照射される。第三反射面43では、予め設定された所定方向、即ち、第四反射面44の方向に向けて反射される。第四反射面44に到達した光が投影レンズ21に向けて反射され、投影レンズ21から投影される。そのため投影レンズ21からは、ロービーム用反射面41からの光に第四反射面44からの光を重ねた状態でロービーム配光パターンJGとして前方へ投影される。
In the vehicle lamp of Embodiment 3, most of the light emitted from the low-beam light source 31 is applied to the low-beam reflecting surface 41 and reflected toward the projection lens 21 . Similarly, it is projected from the projection lens 21 as a low-beam light distribution pattern JG.
Part or all of the rest of the light emitted from the low-beam light source 31 is directly irradiated onto the third reflecting surface 43 ahead of the front edge of the low-beam reflecting surface 41 . At the third reflecting surface 43 , the light is reflected in a predetermined direction, that is, toward the direction of the fourth reflecting surface 44 . The light reaching the fourth reflecting surface 44 is reflected toward the projection lens 21 and projected from the projection lens 21 . Therefore, from the projection lens 21, the light from the low-beam reflecting surface 41 and the light from the fourth reflecting surface 44 are projected forward as a low-beam light distribution pattern JG.
 以上のような実施形態3の車両用灯具によれば、実施形態1と同様に、ロービーム用反射面41の曲面やハイビーム用反射面42の曲面を、それぞれ投影レンズの後側焦点21F付近まで楕円面を維持させることが出来るので、ロービーム配光パターンJGやハイビーム配光パターンYGの全体的な明るさを向上できる。またロービーム光源31やハイビーム光源32から出射した光がロービーム用反射面41やハイビーム用反射面42の比較的遠い位置で反射して投影レンズの後側焦点21F付近における光度分布の中央付近へ照射できるので、中心付近の極微小な範囲を明るくして光度分布を適正化できる。しかもその光が投影レンズ光軸Lxに対して小さい角度で投影レンズ21に入光できるため、カットオフラインCOL1,COL2の上端辺の分光色の発生を防止できる。 According to the vehicle lamp of Embodiment 3 as described above, similarly to Embodiment 1, the curved surfaces of the low-beam reflecting surface 41 and the curved surface of the high-beam reflecting surface 42 are each elliptical up to the vicinity of the rear focal point 21F of the projection lens. Since the surface can be maintained, the overall brightness of the low-beam light distribution pattern JG and the high-beam light distribution pattern YG can be improved. Also, the light emitted from the low beam light source 31 and the high beam light source 32 can be reflected at relatively distant positions of the low beam reflecting surface 41 and the high beam reflecting surface 42 to irradiate near the center of the light intensity distribution near the rear focal point 21F of the projection lens. Therefore, the luminous intensity distribution can be optimized by brightening a very small range near the center. Moreover, since the light can enter the projection lens 21 at a small angle with respect to the projection lens optical axis Lx, it is possible to prevent the occurrence of spectral colors on the upper edge sides of the cutoff lines COL1 and COL2.
 しかもこの車両用灯具によれば、ロービーム用反射面41の前縁より前方に設けられて楕円面を基準とする凹面で構成され、ロービーム光源31からの光を所定方向に反射する第三反射面43と、第三反射面43からの光を投影レンズ21に向けて反射する第四反射面44と、を備えているので、ロービーム用反射面41に入射しないロービーム光源31からの光を第三反射面43及び第四反射面44で反射させることで、ロービームパターンの一部として利用することができる。そのためロービーム光源31から出射された光により、効率よくロービーム配光パターンJGを形成できる。 Moreover, according to this vehicular lamp, the third reflecting surface is provided in front of the front edge of the low-beam reflecting surface 41 and is composed of a concave surface based on an elliptical surface, and reflects the light from the low-beam light source 31 in a predetermined direction. 43 and the fourth reflecting surface 44 for reflecting the light from the third reflecting surface 43 toward the projection lens 21, the light from the low-beam light source 31 that does not enter the low-beam reflecting surface 41 is reflected from the third reflecting surface 43. By reflecting on the reflecting surface 43 and the fourth reflecting surface 44, it can be used as a part of the low beam pattern. Therefore, the light emitted from the low-beam light source 31 can efficiently form the low-beam light distribution pattern JG.
[実施形態3の変形例]
 図11(a)~(c)は実施形態3の変形例を示す。
 この変形例では、投影レンズ21が薄肉のシリンドリカルレンズ形状を有し、上下方向の厚みが薄く構成されている。
 第三反射面43は、楕円面を基準とする2つの凹面が複合された形状を有し、各凹面の基準となる楕円面が投影レンズ光軸Lxを介して、左右対象に形成されている。
 第三反射面43の各凹面の第一焦点43Aは、共通のロービーム光源31と一致し、各凹面の第二焦点43Bは、投影レンズ光軸Lxを介して互いに反対側に、第一反射面の外側の位置におけるロービーム用反射面41の側方に設定され、ロービーム光源31からの光をそれぞれロービーム用反射面41の左右外側に向けて反射する。
[Modification of Embodiment 3]
FIGS. 11(a) to 11(c) show modifications of the third embodiment.
In this modification, the projection lens 21 has a thin cylindrical lens shape and is thin in the vertical direction.
The third reflecting surface 43 has a shape in which two concave surfaces are combined with an ellipsoidal surface as a reference, and the ellipsoidal surfaces serving as references for the respective concave surfaces are formed symmetrically with respect to the projection lens optical axis Lx. .
A first focal point 43A of each concave surface of the third reflecting surface 43 coincides with the common low-beam light source 31, and a second focal point 43B of each concave surface is opposite to each other via the projection lens optical axis Lx, the first reflecting surface , and reflects the light from the low beam light source 31 to the right and left sides of the low beam reflecting surface 41, respectively.
 第四反射面44は、第三反射面43の各凹面に対応するように複数設けられ、第三反射面43の各凹面の第二焦点43B付近にそれぞれ配置されている。各第四反射面44は放物面若しくは楕円面又は自由曲面を基準とする凹面で構成され、各第三反射面43からの光を投影レンズ21に向けて反射可能に配置されている。本実施形態では各第四反射面44は、投影レンズ光軸Lxを含む水平面からの高さがロービーム用反射面41と同等に配置されている。 A plurality of fourth reflecting surfaces 44 are provided so as to correspond to each concave surface of the third reflecting surface 43, and are arranged near the second focal point 43B of each concave surface of the third reflecting surface 43. Each fourth reflecting surface 44 is composed of a concave surface based on a parabolic surface, an elliptical surface, or a free-form surface, and is arranged so as to be able to reflect light from each third reflecting surface 43 toward the projection lens 21 . In this embodiment, each fourth reflecting surface 44 is arranged to have the same height as the low-beam reflecting surface 41 from the horizontal plane including the projection lens optical axis Lx.
 またベースボディ51に固定されたシェード50には第三反射面43の各凹面で反射した光が各第四反射面44に到達するようにそれぞれ対応する位置に開口52が設けられている。なお開口52はシェード50とリフレクター40との間で構成したり、他の部品に穴を開けることで設けることも可能である。
 その他は図9(a)(b)に示す実施形態3の車両用灯具と同様である。
 このような変形例では、図9(a)(b)に示す実施形態3の車両用灯具と同様の作用効果が得られることに加え、ロービームユニットの上下方向の厚みを大幅に薄くすることが可能である。
The shade 50 fixed to the base body 51 is provided with openings 52 at corresponding positions so that the light reflected by each concave surface of the third reflecting surface 43 reaches each fourth reflecting surface 44 . The opening 52 can be configured between the shade 50 and the reflector 40, or can be provided by making a hole in another component.
Others are the same as those of the vehicle lamp of Embodiment 3 shown in FIGS.
In this modified example, in addition to obtaining the same effects as those of the vehicle lamp of Embodiment 3 shown in FIGS. 9A and 9B, the vertical thickness of the low beam unit can be significantly reduced. It is possible.
[実施形態4]
 図12(a)(b)及び図13(a)~(c)は実施形態4の車両用灯具を示している。
 実施形態4の車両用灯具では、投影レンズ21が薄肉のシリンドリカルレンズ形状を有し、ロービーム光源31として、図12(b)に示すように、一方の面に発光面33を有する発光素子が使用されている。発光素子は基板に固定されているが、詳細な図示は省略している。その他は実施形態1の変形例と同様である。
 発光面33は互いに直交する長軸Laと短軸Lbとを有し、図13(a)に示すように、発光素子は発光面33を下向きにしてロービーム光源支持部301に支持されてロービーム用反射面41の上方に配置されている。ここではロービーム光源31の長軸Laが投影レンズ光軸Lxに対して直交する方向に向けて配置されている。
[Embodiment 4]
FIGS. 12(a), 12(b) and 13(a) to 13(c) show a vehicle lamp according to the fourth embodiment.
In the vehicle lamp of Embodiment 4, the projection lens 21 has a thin cylindrical lens shape, and as the low-beam light source 31, a light-emitting element having a light-emitting surface 33 on one side is used as shown in FIG. 12(b). It is Although the light emitting element is fixed to the substrate, detailed illustration thereof is omitted. Others are the same as the modification of the first embodiment.
The light emitting surface 33 has a long axis La and a short axis Lb perpendicular to each other, and as shown in FIG. It is arranged above the reflecting surface 41 . Here, the long axis La of the low-beam light source 31 is arranged in a direction orthogonal to the projection lens optical axis Lx.
 このような実施形態4の車両用灯具のロービームユニットによれば、実施形態1の変形例と同様に、中心光度の極微小な範囲の光度上昇を可能にする事で遠方視認性を向上でき、ロービーム光源31から出射される光の有効利用により全体的な視認性が向上でき、また分光色の発生を防止できる。またこのロービームユニットによりロービーム配光パターンを投影したときの配光曲線の一部を図13(b)(c)に示す。 According to the low beam unit of the vehicle lamp of Embodiment 4, similar to the modified example of Embodiment 1, it is possible to increase the luminous intensity in a very small range of the central luminous intensity, thereby improving the long-distance visibility. Effective use of the light emitted from the low-beam light source 31 can improve overall visibility and prevent the occurrence of spectral colors. 13(b) and 13(c) show part of the light distribution curve when the low beam light distribution pattern is projected by this low beam unit.
[実施形態4の変形例]
 図12(a)(b)及び図14(a)~(c)は実施形態4の変形例における車両用灯具のロービームユニットを示している。
 実施形態4の変形例における車両用灯具のロービームユニットでは、図14(a)に示すように、発光面33の長軸Laを投影レンズ21側に向けてロービーム光源31が配置されている他は実施形態4と同様である。ここではロービーム光源31の長辺が前後方向に配置されていてもよく、投影レンズ光軸Lxに対して傾斜して配置することも可能である。
[Modification of Embodiment 4]
FIGS. 12(a), 12(b), and 14(a) to 14(c) show a low beam unit of a vehicle lamp according to a modified example of the fourth embodiment.
In the low-beam unit of the vehicle lamp according to the modified example of the fourth embodiment, as shown in FIG. It is the same as the fourth embodiment. Here, the long side of the low-beam light source 31 may be arranged in the front-rear direction, or may be inclined with respect to the projection lens optical axis Lx.
 このような構成でも実施形態4のロービームユニットと同様の作用効果が得られ、しかも長軸Laを投影レンズ21側に向けてロービーム光源31が配置されているので、図14(b)(c)に示すようなロービーム配光パターンが得られる。即ち、ロービームを点灯したときに、投影レンズ21から投影されて路面を照射する光の上下幅を狭くして左右幅を広げることができ、車両前方の一部、例えば10~20m付近が明るくなり過ぎることを防止できる。そのため運転者に対する遠方視認性を向上することができる。 14(b) and 14(c) because the low beam light source 31 is arranged with the long axis La directed toward the projection lens 21 side. A low beam light distribution pattern as shown in is obtained. That is, when the low beam is turned on, the vertical width of the light projected from the projection lens 21 to irradiate the road surface can be narrowed and the horizontal width can be widened, so that a part in front of the vehicle, for example, around 10 to 20 m, becomes bright. You can prevent overdoing it. Therefore, the long-distance visibility for the driver can be improved.
[実施形態4の別の変形例]
 図15(a)(b)は実施形態4の別の変形例における車両用灯具のロービームユニットを示している。
 実施形態4の別の変形例における車両用灯具のロービームユニットでは、図15(a)に示すように、ロービーム光源31が一方の面に発光面33を有して、光量が発光面33の法線方向に最大となる発光素子からなるものを用いている。そして図15(b)に示すように、ロービーム光源31が、発光面33の法線と投影レンズ光軸Lxを含む水平面との交点が発光面33より投影レンズ21側に位置するように傾斜して配置されている。例えば発光面33を水平に対して35度以下の範囲で傾斜させてもよい。その他は実施形態1の変形例と同様である。
[Another Modification of Embodiment 4]
FIGS. 15(a) and 15(b) show a low beam unit of a vehicle lamp according to another modified example of the fourth embodiment.
In a low-beam unit of a vehicle lamp according to another modification of the fourth embodiment, as shown in FIG. A light emitting element having a maximum in the linear direction is used. Then, as shown in FIG. 15B, the low beam light source 31 is inclined so that the intersection of the normal to the light emitting surface 33 and the horizontal plane including the projection lens optical axis Lx is located closer to the projection lens 21 than the light emitting surface 33 is. are placed. For example, the light emitting surface 33 may be tilted in a range of 35 degrees or less with respect to the horizontal. Others are the same as the modification of the first embodiment.
 このような構成でも実施形態4のロービームユニットと同様の作用効果が得られ、しかも発光面33の法線と投影レンズ光軸Lxを含む水平面との交点が発光面33より投影レンズ21側に位置するように発光面33が傾斜しているので、光量が一番大きい発光面33の法線方向を、投影レンズ光軸Lx付近のロービーム用反射面41に向けることができ、中心光度を向上することが可能で、ロービーム配光パターンJGの中央付近をより明るくできる。 Even with such a configuration, the same effect as the low beam unit of Embodiment 4 can be obtained, and the intersection of the normal to the light emitting surface 33 and the horizontal plane including the projection lens optical axis Lx is located closer to the projection lens 21 than the light emitting surface 33. Since the light emitting surface 33 is inclined so that the light intensity is the largest, the normal line direction of the light emitting surface 33 can be directed to the low beam reflecting surface 41 near the optical axis Lx of the projection lens, thereby improving the center luminous intensity. It is possible to brighten the vicinity of the center of the low-beam light distribution pattern JG.
[実施形態5]
 図16は実施形態5の車両用灯具を示す。
 実施形態5の車両用灯具では、ロービーム光源31の発光面33より前方におけるロービーム用反射面41の上方に第五反射面45が配置されている他は、実施形態1の変形例と同様である。
 この第五反射面45は、ロービーム光源31からの光がロービーム用反射面41又はシェード50の表面で、投影レンズ21の出射面から投影できない方向に反射した光を、投影可能な方向に反射させるものである。
 即ち、ロービーム光源31からの光がロービーム用反射面41に照射されると、一部の光がロービーム用反射面41の局部的な凹凸形状等により投影レンズ21の上側の縁部より上方に向けて反射されることがある。またロービーム光源31からの光がロービーム用反射面41の縁部より前方におけるシェード50の表面に照射されると、シェードにより投影レンズ21の上側の縁部より上方に向けて反射されることがある。第五反射面45ではこれらの光を投影レンズ21の縁部より内側に反射することで投影レンズ21から投影させることができる。
[Embodiment 5]
FIG. 16 shows a vehicle lamp according to Embodiment 5. FIG.
The vehicle lamp of Embodiment 5 is the same as the modified example of Embodiment 1 except that a fifth reflecting surface 45 is arranged above the low beam reflecting surface 41 in front of the light emitting surface 33 of the low beam light source 31. .
The fifth reflecting surface 45 reflects light from the low-beam light source 31 on the low-beam reflecting surface 41 or the surface of the shade 50 in a direction that cannot be projected from the exit surface of the projection lens 21, and reflects the light in a projectable direction. It is.
That is, when the light from the low-beam light source 31 is applied to the low-beam reflecting surface 41, part of the light is directed upward from the upper edge of the projection lens 21 due to the local unevenness of the low-beam reflecting surface 41, and the like. may be reflected by Further, when the light from the low-beam light source 31 is irradiated onto the surface of the shade 50 in front of the edge of the low-beam reflecting surface 41, the light may be reflected upward from the upper edge of the projection lens 21 by the shade. . The light can be projected from the projection lens 21 by reflecting it inward from the edge of the projection lens 21 on the fifth reflecting surface 45 .
 この第五反射面45は平面であっても曲面であってもよく、平面と曲面を合成したものであってもよい。さらに所望の配光パターンを形成するために表面に各種の凹凸形状が設けられていてもよい。
 また第五反射面45は投影レンズ21側が上昇するように前後方向に傾斜しているが、左右方向に傾斜していてもよく、目的とするパターン形状が得られるように適切に配置されている。
The fifth reflecting surface 45 may be a flat surface, a curved surface, or a combination of a flat surface and a curved surface. Furthermore, various uneven shapes may be provided on the surface in order to form a desired light distribution pattern.
Further, the fifth reflecting surface 45 is inclined in the front-rear direction so that the projection lens 21 side rises, but it may be inclined in the left-right direction, and is appropriately arranged so as to obtain the desired pattern shape. .
 このような実施形態5の車両用灯具によれば、投影レンズ21から投影不能な方向に出射されたロービーム光源31からの光を投影レンズ21から投影可能な方向に反射するように、ロービーム用反射面41の上方若しくは下方に配置された第五反射面45を備えているので、ロービーム光源31から出射された光のうち利用できない光を少なくして、効率よくロービーム配光パターンJGを形成できる。
 なお、実施形態5では、第五反射面45をロービームユニットにおけるロービーム用反射面41の上方に配置したが、ハイビームユニットにおけるハイビーム用反射面42の下方に第五反射面45を配置してもよく、上記と同様の作用効果を得ることができる。
According to the vehicle lamp of Embodiment 5, the light from the low-beam light source 31 emitted from the projection lens 21 in a non-projectable direction is reflected from the projection lens 21 in a projectable direction. Since the fifth reflecting surface 45 is arranged above or below the surface 41, the low beam light distribution pattern JG can be efficiently formed by reducing unusable light out of the light emitted from the low beam light source 31. - 特許庁
In the fifth embodiment, the fifth reflecting surface 45 is arranged above the low beam reflecting surface 41 of the low beam unit, but the fifth reflecting surface 45 may be arranged below the high beam reflecting surface 42 of the high beam unit. , effects similar to those described above can be obtained.
[実施形態6]
 図17(a)(b)は実施形態6の車両用灯具を説明する図である。
 実施形態6の車両用灯具では、ロービームユニットが複数のロービーム光源31及びロービーム用反射面41を備え、ロービーム光源31が5個、リフレクタ40にロービーム用反射面41が5面配置されている。投影レンズ光軸Lxを中心に左右に複数のロービーム光源31及びロービーム用反射面41が配置され、各ロービーム用反射面41が投影レンズ21の入射面21cの中心側に向けて開口している。
 実施形態6の車両用灯具は、図17(a)に示すように、全てのロービーム用反射面41が配置された領域の左右両側方における前方側に、第六反射面46を備えている。本実施形態では、左右の第六反射面46間の間隔が投影レンズ21側ほど狭くなるように配置されている。
 第六反射面46は平面であっても曲面であってもよく、平面と曲面を合成したものであってもよい。また表面に各種の凹凸形状が設けられていてもよい。さらに左右の第六反射面46は投影レンズ光軸Lxを含む水平面に対して垂直方向に立設されているが、前後方向又は左右方向に傾斜していてもよく、目的とするパターン形状が得られるように適切に配置されている。
[Embodiment 6]
17(a) and 17(b) are diagrams for explaining the vehicle lamp of Embodiment 6. FIG.
In the vehicle lamp of Embodiment 6, the low beam unit includes a plurality of low beam light sources 31 and low beam reflecting surfaces 41, five low beam light sources 31, and five low beam reflecting surfaces 41 are arranged on the reflector 40. A plurality of low-beam light sources 31 and low-beam reflecting surfaces 41 are arranged on the left and right sides of the projection lens optical axis Lx.
As shown in FIG. 17(a), the vehicle lamp of Embodiment 6 includes sixth reflecting surfaces 46 on the left and right front sides of the area where all the low beam reflecting surfaces 41 are arranged. In the present embodiment, the distance between the right and left sixth reflecting surfaces 46 is arranged so that the distance therebetween becomes narrower toward the projection lens 21 side.
The sixth reflecting surface 46 may be a flat surface, a curved surface, or a combination of a flat surface and a curved surface. Moreover, various uneven shapes may be provided on the surface. Further, the left and right sixth reflecting surfaces 46 are set upright in a direction perpendicular to the horizontal plane including the optical axis Lx of the projection lens, but they may be inclined in the front-rear direction or in the left-right direction so that the desired pattern shape can be obtained. properly positioned so that
 複数のロービーム用反射面41が左右に並べて配置されていると、一部のロービーム用反射面41で反射された光が投影レンズ21から投影できない方向に向かう場合がある。例えば投影レンズ光軸Lxに対して大きく傾斜して配置されたロービーム用反射面41で反射した光が投影レンズ21に入射できない方向に向かう場合や、図17(b)のように、投影レンズ21に入射できるものの投影レンズ21の出射面21dに対する入射角が大きくて全反射される場合である。 When a plurality of low-beam reflecting surfaces 41 are arranged side by side, the light reflected by some of the low-beam reflecting surfaces 41 may travel in a direction that cannot be projected from the projection lens 21 . For example, when the light reflected by the low-beam reflecting surface 41 arranged at a large inclination with respect to the projection lens optical axis Lx goes in a direction in which the light cannot enter the projection lens 21, or when the projection lens 21 Although the light can be incident on the projection lens 21, the incident angle with respect to the exit surface 21d of the projection lens 21 is large and the light is totally reflected.
 実施形態6では、このようなロービーム用反射面41で反射して投影レンズ21から投影できない方向に向かう光を、図17(a)に示すように、左右に配置された第六反射面46により、投影レンズ21から投影可能な向きに、即ち、投影レンズ21に入射できる方向、或いは投影レンズ21の出射面で全反射されない方向に反射させることができ、投影レンズ21から投影させることができる。 In the sixth embodiment, as shown in FIG. 17A, the light reflected by the low-beam reflecting surface 41 and traveling in a direction that cannot be projected from the projection lens 21 is reflected by the sixth reflecting surfaces 46 arranged on the left and right as shown in FIG. , the light can be reflected in a direction that can be projected from the projection lens 21, that is, in a direction that can be incident on the projection lens 21, or in a direction that is not totally reflected by the exit surface of the projection lens 21, and can be projected from the projection lens 21.
 このような実施形態6の車両用灯具によれば、投影レンズ21から投影不能な方向に出射されたロービーム光源31からの光を投影レンズ21から投影可能な方向に反射するように、複数のロービーム用反射面41の左右に配置された第六反射面46を備えているので、複数のロービーム光源31から出射された光のうち利用できない光を少なくして、効率よくロービーム配光パターンJGを形成できる。 According to the vehicle lamp of Embodiment 6, the light from the low-beam light source 31 that is emitted from the projection lens 21 in a direction that cannot be projected is reflected from the projection lens 21 in a direction that can be projected. Since the sixth reflecting surfaces 46 are arranged on the left and right sides of the reflecting surface 41 for light, the amount of light emitted from the plurality of low-beam light sources 31 that cannot be used is reduced, and the low-beam light distribution pattern JG is efficiently formed. can.
[実施形態7]
 図18(a)乃至(c)は実施形態7の車両用灯具を示している。
 実施形態7の車両用灯具では、ロービーム用反射面41の前縁より前方の位置に、ロービーム光源31からの光をシェード50の下側におけるシェード50に沿う扁平領域に向けて反射する第七反射面47が設けられ、さらに第七反射面47からの光のうちシェード50に隣接する位置の光を遮光する遮光部53がシェード50の下側に突出して設けられている。第七反射面47はオーバーヘッドサイン領域OSP全体に投影可能な光を反射可能な形状に形成されていて、遮光部53の形状は意図する遮光範囲に応じて適宜設定することが可能である。
 その他は実施形態1の変形例と同様である。
[Embodiment 7]
FIGS. 18A to 18C show a vehicle lamp according to Embodiment 7. FIG.
In the vehicle lamp of Embodiment 7, the light from the low-beam light source 31 is reflected toward the flat area below the shade 50 along the shade 50 at a position forward of the front edge of the low-beam reflecting surface 41 as the seventh reflection. A surface 47 is provided, and a light blocking portion 53 for blocking light from the seventh reflecting surface 47 at a position adjacent to the shade 50 is provided so as to protrude below the shade 50 . The seventh reflecting surface 47 is formed in a shape capable of reflecting light that can be projected onto the entire overhead sign area OSP, and the shape of the light shielding portion 53 can be appropriately set according to the intended light shielding range.
Others are the same as the modification of the first embodiment.
 この車両用灯具では、ロービーム用反射面41の前縁より前方に照射されたロービーム光源31からの光が、投影レンズ21の後側焦点21Fから後方へ延長されたシェード50の後端と、ロービーム用反射面41の前縁と、の間を透過して第七反射面47に達する。
 第七反射面47ではロービーム光源31からの光がシェード50の下側の扁平領域に向けて反射され、この光がシェード50の下面側を通り、カットオフラインを形成するシェード先端部附近を通過して、投影レンズ21に到達する。この扁平領域の光がそのまま投影レンズ21から投影されると、カットオフラインCOL1,COL2直上における上下方向に狭く左右方向に広がる範囲に投影される。
 そのため遮光部53では、第七反射面47から扁平領域に向けて反射された光のうち、シェード50の下面に隣接する極狭い範囲の光を遮光することで、図18(c)に示すように、オーバーヘッドサイン領域OSPの下端とカットオフラインとの間の光を遮光した状態で、投影レンズ21からオーバーヘッドサイン領域OSPに光を投影することができる。
In this vehicle lamp, the light from the low-beam light source 31 projected forward from the front edge of the low-beam reflecting surface 41 passes through the rear end of the shade 50 extending rearward from the rear focal point 21F of the projection lens 21 and the low-beam light. and the front edge of the reflective surface 41 for use, and reaches the seventh reflective surface 47 .
Light from the low-beam light source 31 is reflected toward the lower flat region of the shade 50 by the seventh reflecting surface 47, and this light passes through the lower surface side of the shade 50 and near the tip of the shade forming a cutoff line. and reaches the projection lens 21 . When the light in this flat region is projected from the projection lens 21 as it is, it is projected in a range that is narrow in the vertical direction and spreads in the horizontal direction directly above the cutoff lines COL1 and COL2.
Therefore, the light shielding part 53 shields the light in a very narrow range adjacent to the lower surface of the shade 50 among the light reflected toward the flat area from the seventh reflecting surface 47, thereby achieving the light as shown in FIG. 18(c). In addition, light can be projected from the projection lens 21 onto the overhead sign area OSP while blocking light between the lower end of the overhead sign area OSP and the cutoff line.
 このような実施形態7の車両用灯具によれば、第七反射面47によりシェード50の下面に沿う扁平領域に反射された光のうち、シェード50に隣接する狭い範囲の光を遮光部により遮光するので、カットオフラインCOL1,COL2に隣接する上方の遮光された間隔を空けて路面上方に投影でき、対向車への幻惑を抑制してオーバーヘッドサイン領域OSPを照射できる。 According to the vehicle lamp of Embodiment 7, light in a narrow range adjacent to the shade 50 is blocked by the light blocking portion, out of the light reflected by the seventh reflecting surface 47 onto the flat region along the lower surface of the shade 50. Therefore, the light can be projected above the road surface with a light-shielded space above the cutoff lines COL1 and COL2, and the overhead sign area OSP can be illuminated while suppressing dazzle of oncoming vehicles.
[実施形態8]
 図19(a)乃至(c)は実施形態8の車両用灯具を示している。
 実施形態8の車両用灯具では、ハイビーム用反射面42の前縁より前方の位置に、ハイビーム光源32からの光をシェード50の上面に沿う扁平領域に向けて反射する第八反射面48が設けられている。その他は実施形態1の変形例と同様である。
 この実施形態8では、ハイビーム光源32からハイビーム用反射面42の前縁より前方に照射された光の一部が、投影レンズ21の後側焦点21Fから後方へ延長されたシェード50の後端と、ハイビーム用反射面42の前縁と、の間を透過して第八反射面48に達する。
 第八反射面48ではハイビーム光源32からの光がシェード50の上側の上面に沿う扁平領域に向けて反射され、この光がシェード50の上面側を通り、ロービーム用反射面41からの光とともに投影レンズ21に到達して前方へ投影され、ロービームの照射領域におけるハイビームの照射領域との隣接領域AHPを照射することができる。
[Embodiment 8]
FIGS. 19A to 19C show the vehicle lamp of Embodiment 8. FIG.
In the vehicle lamp of the eighth embodiment, an eighth reflecting surface 48 is provided at a position forward of the front edge of the high beam reflecting surface 42 to reflect the light from the high beam light source 32 toward the flat area along the upper surface of the shade 50. It is Others are the same as the modification of the first embodiment.
In the eighth embodiment, part of the light emitted forward from the front edge of the high beam reflecting surface 42 from the high beam light source 32 is directed to the rear end of the shade 50 extending rearward from the rear focal point 21F of the projection lens 21. , and the front edge of the high-beam reflecting surface 42 to reach the eighth reflecting surface 48 .
Light from the high-beam light source 32 is reflected by the eighth reflecting surface 48 toward a flat area along the upper surface of the shade 50, and this light passes through the upper surface of the shade 50 and is projected together with the light from the low-beam reflecting surface 41. The light reaches the lens 21 and is projected forward to irradiate an area AHP adjacent to the high beam irradiation area in the low beam irradiation area.
 このような実施形態8の車両用灯具によれば、投影レンズ21から前方にハイビーム配光パターンYGを投影する際、ロービーム配光パターンJGのカットオフラインに隣接する直下の隣接位置を照射して明るくできる。その結果、ハイビーム配光パターンYGを投影する際、カットオフラインの上側と下側との明るさの差異を緩和できて、運転者に違和感を軽減することができる。 According to the vehicle lamp of the eighth embodiment, when projecting the high beam light distribution pattern YG forward from the projection lens 21, the adjacent position immediately below the cutoff line of the low beam light distribution pattern JG is irradiated to brighten it. can. As a result, when the high-beam light distribution pattern YG is projected, the difference in brightness between the upper side and the lower side of the cutoff line can be reduced, and the sense of discomfort felt by the driver can be reduced.
[その他の実施形態]
 なお、上記各実施形態は、本発明の範囲内において適宜変更可能である。例えば上記の各実施形態は、単独で実施してもよいが、複数の実施形態を組み合わせて実施することも可能である。
 また上記の多くの実施形態においては、投影レンズが正面視で円形の外形で示されているが、円形以外の外形形状、例えば矩形等の外形形状で構成する事も可能である。
[Other embodiments]
It should be noted that each of the above embodiments can be appropriately modified within the scope of the present invention. For example, each of the above-described embodiments may be implemented independently, but it is also possible to implement a combination of multiple embodiments.
In addition, in many of the above-described embodiments, the projection lens has a circular outer shape when viewed from the front, but it is also possible to configure the projection lens in an outer shape other than circular, such as a rectangular outer shape.
 上記の各実施形態例においては、投影レンズ裏面21bが平面形状で示されているが、凸形状で構成する事も可能である。 Although the projection lens back surface 21b is shown in a planar shape in each of the above embodiments, it can also be configured in a convex shape.
 上記の各実施形態においては、図5等で示す様にCOL2がCOL1よりも高い位置になる様にシェード50の形状が構成されており、左側配光のロービーム配光パターンJGとなっているが、右側配光のロービーム配光パターンでシェード50の形状を構成する事も可能である。 In each of the above-described embodiments, the shape of the shade 50 is configured so that COL2 is positioned higher than COL1 as shown in FIG. It is also possible to form the shape of the shade 50 with a low-beam light distribution pattern of light distribution on the right side.
 上記の各実施形態において、投影レンズの光軸Lxに対するL1の角度は、非球面レンズの大きさ,位置関係によって角度を変更する事も可能であり、投影レンズの光軸Lxに対するL2の角度は、非球面レンズの大きさ,位置関係によって角度を変更する事も可能である。 In each of the above embodiments, the angle of L1 with respect to the optical axis Lx of the projection lens can be changed depending on the size and positional relationship of the aspherical lens, and the angle of L2 with respect to the optical axis Lx of the projection lens is , the angle can be changed according to the size and positional relationship of the aspheric lens.
 上記の各実施形態において、リフレクタのロービーム用反射面41とハイビーム用反射面42は、一つの光源に対して単一曲面の反射面で示されているが、一つの光源に対して分割した曲面で構成する事も可能であり、所望の配光パターンを形成するために表面に各種の凹凸形状が設けられていてもよい。 In each of the above-described embodiments, the low-beam reflecting surface 41 and the high-beam reflecting surface 42 of the reflector are shown as single curved reflecting surfaces for one light source. , and the surface may be provided with various uneven shapes in order to form a desired light distribution pattern.
 上記の各実施形態においては、直線L1が投影レンズ後側焦点21Fとロービーム光源31の発光中心を結ぶと示されているが、投影レンズ後側焦点21Fおよびロービーム光源31の発光中心から多少外れた位置を結ぶ直線の場合においても、上記の各実施例と同様の効果を得ることが出来る。
 同様に、直線L2が投影レンズの後側焦点21Fの0~1.0mm下方の位置とハイビーム光源32の発光中心を結ぶと示されているが、投影レンズの後側焦点21Fの0~1.0mm下方の位置およびハイビーム光源32の発光中心から多少外れた位置を結ぶ直線の場合においても、上記の各実施例と同様の効果を得ることが出来る。
In each of the embodiments described above, the straight line L1 connects the projection lens rear focus 21F and the light emission center of the low beam light source 31. Even in the case of straight lines connecting positions, the same effects as those of the above embodiments can be obtained.
Similarly, a straight line L2 is shown connecting the position 0 to 1.0 mm below the rear focus 21F of the projection lens and the emission center of the high beam light source 32, but the straight line L2 is shown to connect the center of light emission of the high beam light source 32. Even in the case of a straight line connecting the position below 0 mm and the position slightly deviated from the light emission center of the high beam light source 32, the same effects as those of the above embodiments can be obtained.
 上記の多くの実施形態においては、ロービーム光源31はL1に対して直交する方向に配置しているが、意図する配光パターンに応じて傾斜させる事が出来る。同様にハイビーム光源32はL2に対して直交する方向に配置しているが、意図する配光パターンに応じて傾斜させる事が出来る。 In many of the embodiments described above, the low beam light source 31 is arranged in a direction orthogonal to L1, but it can be tilted according to the intended light distribution pattern. Similarly, the high beam light source 32 is arranged in a direction perpendicular to L2, but it can be tilted according to the intended light distribution pattern.
 上記の各実施例においては、シェード50は投影レンズの光軸Lxを含む水平面に対して傾斜しているが、水平にすることも可能であり、逆の傾斜にする事も可能である。 In each of the above embodiments, the shade 50 is inclined with respect to the horizontal plane including the optical axis Lx of the projection lens, but it can be made horizontal, and the opposite inclination is also possible.
 上記の各実施例におけるロービーム光源31から出射される光の照射方向の下方およびハイビーム光源32から出射される光の照射方向の上方については、意図する配光パターンに応じて反射面と光源の位置関係によって傾斜させる事が出来るので、鉛直下向、鉛直上向に限定されるものではない。
 またロービーム光源31及びハイビーム光源32はLEDに限られることはなく、例えばハロゲンバルブ光源、HID光源等であってもよい。
Regarding the downward direction of irradiation of the light emitted from the low beam light source 31 and the upward direction of the irradiation direction of light emitted from the high beam light source 32 in each of the above embodiments, the position of the reflecting surface and the light source depends on the intended light distribution pattern. Since it can be tilted depending on the relationship, it is not limited to vertically downward or vertically upward.
Also, the low beam light source 31 and the high beam light source 32 are not limited to LEDs, and may be, for example, halogen bulb light sources, HID light sources, or the like.
 本発明は、プロジェクタ型の車両用灯具に広く適用する事が出来る。プロジェクタの配光設計自由度を向上させ、配光性能の向上に寄与する事が出来る。 The present invention can be widely applied to projector-type vehicle lamps. It is possible to improve the degree of freedom in light distribution design of the projector and contribute to the improvement of the light distribution performance.
10 車両用灯具
20 レンズホルダ
21 投稿レンズ
21b 投影レンズ裏面
21F 投影レンズの後側焦点
21c 入射面
21d 出射面
301 ロービーム光源支持部
302 ハイビーム光源支持部
31 ロービーム光源(第一光源)
32 ハイビーム光源(第二光源)
33 発光面
La 長軸
Lb 短軸
40 リフレクタ
41 ロービーム用反射面(第一反射面)
41RPA ロービーム用反射面上の反射点1
41RPB ロービーム用反射面上の反射点2
RSA ロービーム用反射面上の反射点1で反射した光の光源像1
RSB ロービーム用反射面上の反射点2で反射した光の光源像2
42 ハイビーム用反射面(第二反射面)
43 第三反射面
43A 第一焦点
43B 第二焦点
44 第四反射面
45 第五反射面
46 第六反射面
47 第七反射面
48 第八反射面
Lx 投影レンズ光軸
50 シェード
51 ベースボディ
52 開口
53 遮光部
L1 投影レンズの後側焦点21Fとロービーム光源31の発光中心を結ぶ直線
L2 投影レンズの後側焦点21Fの0~1.0mm下方の位置とハイビーム光源32の発光中心を結ぶ直線
JG ロービーム配光パターン
COL1 ロービーム配光パターンの中心より右側のカットオフライン
COL2 ロービーム配光パターンの中心より左側のカットオフライン
HJG ロービーム高光度エリア
YG ハイビーム配光パターン
HYG ハイビーム高光度エリア
OSP オーバーヘッドサイン領域
AHP ハイビームの照射領域との隣接領域
 
10 Vehicle lamp 20 Lens holder 21 Posting lens 21b Projection lens rear surface 21F Projection lens rear focal point 21c Entrance surface 21d Output surface 301 Low beam light source support 302 High beam light source support 31 Low beam light source (first light source)
32 high beam light source (second light source)
33 Light-emitting surface La Long axis Lb Short axis 40 Reflector 41 Reflecting surface for low beam (first reflecting surface)
41RPA Reflection point 1 on the reflection surface for low beam
41RPB Reflection point 2 on the reflection surface for low beam
Light source image 1 of the light reflected by the reflection point 1 on the RSA low beam reflection surface
RSB Light source image 2 of light reflected at reflection point 2 on reflection surface for low beam
42 Reflective surface for high beam (second reflecting surface)
43 Third reflecting surface 43A First focus 43B Second focus 44 Fourth reflecting surface 45 Fifth reflecting surface 46 Sixth reflecting surface 47 Seventh reflecting surface 48 Eighth reflecting surface Lx Projection lens optical axis 50 Shade 51 Base body 52 Opening 53 Light blocking part L1 Straight line L2 connecting the rear focus 21F of the projection lens and the emission center of the low beam light source 31 Straight line JG connecting the position 0 to 1.0 mm below the rear focus 21F of the projection lens and the emission center of the high beam light source 32 Low beam Light distribution pattern COL1 Cutoff line on the right side of the center of the low beam distribution pattern COL2 Cutoff line on the left side of the center of the low beam distribution pattern HJG Low beam high brightness area YG High beam distribution pattern HYG High beam high brightness area OSP Overhead sign area AHP High beam irradiation Adjacent region with region

Claims (10)

  1.  光源と、光源から出射された光を反射させる反射面と、前記反射面で反射した光を透過させ車両前方へ投影させる投影レンズと、が配置された車両用灯具において、
     前記光源は、前記投影レンズの光軸から離間した位置に、出射した光が上方側又は下方側へ向けて照射されるように配置され、
     前記反射面は、楕円面を基準とする凹面で構成され、前記光源から照射された前記光を前記投影レンズに向けて反射可能に上方側又は下方側から覆うように配置され、
     前記光源から出射された光によりロービーム配光パターンとハイビーム配光パターンとのうちの少なくとも一方が形成されることを特徴とする車両用灯具。
    A vehicular lamp in which a light source, a reflective surface that reflects light emitted from the light source, and a projection lens that transmits the light reflected by the reflective surface and projects the light forward of the vehicle are arranged,
    The light source is arranged at a position spaced apart from the optical axis of the projection lens so that emitted light is emitted upward or downward,
    The reflecting surface is formed of a concave surface based on an elliptical surface, and is arranged to cover the light emitted from the light source toward the projection lens from the upper side or the lower side so as to be able to be reflected,
    A vehicle lamp, wherein at least one of a low-beam light distribution pattern and a high-beam light distribution pattern is formed by light emitted from the light source.
  2.  出射された光が下方へ照射されるように配置された前記光源としての第一光源と、
     前記第一光源から下方へ照射された前記光を前記投影レンズに向けて反射可能に下方側から覆うように配置された前記反射面としての第一反射面と、
     前記第一光源と前記投影レンズとの間に配置され、前記ロービーム配光パターンのカットオフラインを形成するシェードと、を備え、
     前記第一光源から出射された光により前記ロービーム配光パターンが形成されることを特徴とする請求項1に記載の車両用灯具。
    a first light source as the light source arranged so that emitted light is emitted downward;
    a first reflecting surface as the reflecting surface arranged to cover the light emitted downward from the first light source toward the projection lens so as to be reflected from below;
    a shade disposed between the first light source and the projection lens and forming a cutoff line of the low-beam light distribution pattern;
    2. The vehicle lamp according to claim 1, wherein the light emitted from the first light source forms the low-beam light distribution pattern.
  3.  前記シェードの下側に、出射された光が上方へ照射されるように配置された前記光源としての第二光源と、前記第二光源から上方へ照射された前記光を前記投影レンズに向けて反射可能に上方側から覆うように配置された前記反射面としての第二反射面と、が配置され、
     前記第二光源から出射された光によりハイビーム配光パターンが形成されることを特徴とする請求項2に記載の車両用灯具。
    a second light source as the light source arranged below the shade so that emitted light is emitted upward; and the light emitted upward from the second light source is directed toward the projection lens. a second reflective surface as the reflective surface arranged so as to be able to reflect from above, and
    3. The vehicle lamp according to claim 2, wherein the light emitted from the second light source forms a high-beam light distribution pattern.
  4.  出射された光が上方へ照射されるように配置された前記光源としての第二光源と、
     前記第二光源から上方へ照射された光を前記投影レンズに向けて反射可能に上方側から覆うように配置された前記反射面としての第二反射面と、を備え、
     前記第二光源から出射された光により前記ハイビーム配光パターンが形成されることを特徴とする請求項1に記載の車両用灯具。
    a second light source as the light source arranged so that emitted light is emitted upward;
    a second reflecting surface as the reflecting surface arranged to cover the light emitted upward from the second light source toward the projection lens from above so as to be able to reflect the light;
    2. The vehicle lamp according to claim 1, wherein the light emitted from the second light source forms the high-beam light distribution pattern.
  5.  前記第一反射面の前縁より前方に設けられ、楕円面を基準とする凹面で構成され、前記第一光源からの光を所定方向に反射する第三反射面と、前記第三反射面からの光を前記投影レンズに向けて反射する第四反射面と、を備えたことを特徴とする請求項2に記載の車両用灯具。 a third reflecting surface provided in front of the front edge of the first reflecting surface, configured with a concave surface based on an elliptical surface, and reflecting light from the first light source in a predetermined direction; 3. The vehicle lamp according to claim 2, further comprising a fourth reflecting surface that reflects the light from the light toward the projection lens.
  6.  前記光源は一方の面に発光面を有する発光素子からなり、前記発光面は互いに直交する長軸と短軸とを有し、前記長軸を前記投影レンズ側に向けて前記光源が配置されていることを特徴とする請求項1に記載の車両用灯具。 The light source comprises a light-emitting element having a light-emitting surface on one surface, the light-emitting surface having a long axis and a short axis perpendicular to each other, and the light source is arranged with the long axis directed toward the projection lens. 2. The vehicle lamp according to claim 1, wherein
  7.  前記光源は一方の面に発光面を有する発光素子からなり、前記発光面の法線と前記投影レンズの光軸を含む水平面との交点が前記発光面より前記投影レンズ側に位置するように前記発光面が傾斜していることを特徴とする請求項1に記載の車両用灯具。 The light source is composed of a light emitting element having a light emitting surface on one surface, and the light source is arranged so that the intersection of a normal line of the light emitting surface and a horizontal plane including the optical axis of the projection lens is located closer to the projection lens than the light emitting surface. 2. The vehicle lamp according to claim 1, wherein the light emitting surface is inclined.
  8.  前記投影レンズから投影不能な方向に出射された前記光源の光を、前記投影レンズから投影可能な方向に反射するように、前記反射面の上方若しくは下方に配置された第五反射面と、前記反射面の側方に配置された第6反射面と、のうちの少なくとも一方を備えていることを特徴とする請求項1に記載の車両用灯具。 a fifth reflecting surface arranged above or below the reflecting surface so as to reflect light from the light source emitted from the projection lens in a direction that cannot be projected from the projection lens in a direction that can be projected from the projection lens; 2. The vehicle lamp according to claim 1, further comprising at least one of a sixth reflecting surface arranged laterally of the reflecting surface.
  9.  前記第一反射面の前縁より前方に設けられ、前記第一光源からの光を前記シェードの下側における該シェードに沿う扁平領域に向けて反射することで、前記投影レンズからオーバーヘッドサイン領域に光を投影する第七反射面と、
     前記シェードに設けられ、前記第七反射面からの光のうち前記オーバーヘッドサイン領域の下端と前記カットオフラインとの間の光を遮光する遮光部と、を備えたことを特徴とする請求項2に記載の車両用灯具。
    Provided in front of the front edge of the first reflecting surface, reflecting light from the first light source toward a flat area along the shade under the shade, from the projection lens to the overhead sign area a seventh reflective surface that projects light;
    3. The light shielding part provided in the shade for blocking light between the lower end of the overhead sign area and the cutoff line among the light from the seventh reflecting surface. Vehicle lighting fixtures as described.
  10.  前記第二反射面の前縁より前方に設けられ、前記第二光源からの光を前記シェードの上側における該シェードに沿う扁平領域に向けて反射することで、前記投影レンズから前記カットオフライン直下の隣接位置を照射するための第八反射面を備えたことを特徴とする請求項3に記載の車両用灯具。
     

     
    Provided in front of the front edge of the second reflecting surface, reflecting light from the second light source toward a flat area along the shade on the upper side of the shade, from the projection lens directly below the cutoff line 4. The vehicle lamp according to claim 3, further comprising an eighth reflecting surface for illuminating an adjacent position.


PCT/JP2023/005904 2022-02-25 2023-02-20 Vehicle lamp WO2023162906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-028451 2022-02-25
JP2022028451 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023162906A1 true WO2023162906A1 (en) 2023-08-31

Family

ID=87765818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005904 WO2023162906A1 (en) 2022-02-25 2023-02-20 Vehicle lamp

Country Status (1)

Country Link
WO (1) WO2023162906A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307534A (en) * 2012-03-13 2013-09-18 汽车照明罗伊特林根有限公司 Light module of a lighting device of a motor vehicle
JP2015026497A (en) * 2013-07-25 2015-02-05 市光工業株式会社 Vehicular lighting fixture
JP2016115583A (en) * 2014-12-16 2016-06-23 市光工業株式会社 Vehicular lighting unit
JP2017103189A (en) * 2015-12-04 2017-06-08 パナソニックIpマネジメント株式会社 Headlamp and movable body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307534A (en) * 2012-03-13 2013-09-18 汽车照明罗伊特林根有限公司 Light module of a lighting device of a motor vehicle
JP2015026497A (en) * 2013-07-25 2015-02-05 市光工業株式会社 Vehicular lighting fixture
JP2016115583A (en) * 2014-12-16 2016-06-23 市光工業株式会社 Vehicular lighting unit
JP2017103189A (en) * 2015-12-04 2017-06-08 パナソニックIpマネジメント株式会社 Headlamp and movable body

Similar Documents

Publication Publication Date Title
KR100570481B1 (en) Vehicle headlamp
US8348486B2 (en) Vehicular lamp unit and vehicular lamp
EP1794491B1 (en) Led collimator element with an asymmetrical collimator
US7748880B2 (en) Vehicle lamp with overhead sign illumination
JP4089866B2 (en) Light projecting unit and LED vehicle illumination lamp comprising the light projecting unit
KR100645863B1 (en) Vehicular headlamp
KR100570480B1 (en) Vehicle headlamp
JP5146214B2 (en) Vehicle lighting
US7866862B2 (en) Vehicular lamp
JP4587048B2 (en) Vehicle lighting
US7325954B2 (en) Vehicle light
US20140321147A1 (en) Lamp unit
KR20040020838A (en) Vehicle headlamp
KR101393659B1 (en) Vehicular headlamp
JP4926642B2 (en) Lighting fixtures for vehicles
EP3249284B1 (en) Vehicle lighting module
JP2019204616A (en) Vehicular lighting fixture
US8469568B2 (en) Vehicle light
WO2023162906A1 (en) Vehicle lamp
JP4158140B2 (en) Vehicle lighting
JP4608645B2 (en) Vehicle lighting
JP2008091262A (en) Headlight for vehicle
JP2007207687A (en) Vehicular lighting fixture
JP7101547B2 (en) Vehicle headlights
WO2024071263A1 (en) Vehicle lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759907

Country of ref document: EP

Kind code of ref document: A1