WO2024071263A1 - Vehicle lamp - Google Patents

Vehicle lamp Download PDF

Info

Publication number
WO2024071263A1
WO2024071263A1 PCT/JP2023/035301 JP2023035301W WO2024071263A1 WO 2024071263 A1 WO2024071263 A1 WO 2024071263A1 JP 2023035301 W JP2023035301 W JP 2023035301W WO 2024071263 A1 WO2024071263 A1 WO 2024071263A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
lens
source unit
low beam
high beam
Prior art date
Application number
PCT/JP2023/035301
Other languages
French (fr)
Japanese (ja)
Inventor
樹生 伊東
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022155689A external-priority patent/JP2024049456A/en
Priority claimed from JP2022155687A external-priority patent/JP2024049454A/en
Priority claimed from JP2022155688A external-priority patent/JP2024049455A/en
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2024071263A1 publication Critical patent/WO2024071263A1/en

Links

Images

Definitions

  • This disclosure relates to vehicle lighting suitable for installation in vehicles such as automobiles.
  • lamp units In order to simplify the structure of vehicle lighting fixtures, particularly automobile headlamps, lamp units have been proposed in which projection lenses corresponding to a number of light source units, including low beam light source units and high beam light source units, are integrated into one projection lens.
  • a low beam light source unit and a high beam light source unit are arranged to correspond to one projection lens, and the light emitted from each light source unit is projected by the one projection lens to form the required low beam light distribution and high beam light distribution, respectively.
  • three low beam light source units are arranged to correspond to one projection lens.
  • high-beam light source units are often configured to allow the divergent light emitted by the light source to enter the projection lens as is.
  • the angle of incidence when part of the light emitted from the high-beam light source unit enters the projection lens becomes large, causing the problem of lens aberration, especially coma aberration.
  • One of the objectives of this disclosure is to provide a vehicle lamp that suppresses lens aberration, particularly in high beam distribution, in an integrated lamp unit that enables high beam and low beam distribution.
  • a single projection lens has multiple different lens shapes, typically a convex spherical or curved surface, formed on the front surface of the projection lens, when the projection lens is observed from the front side, the multiple different lens shapes that appear on the front surface will mar the external appearance of the lighting lamp unit, causing a decrease in design.
  • One of the objectives of this disclosure is to provide a vehicle lamp that enhances the design of the projection lens in a lamp unit in which multiple light source units, particularly multiple light source units with different configurations, are configured to correspond to one projection lens.
  • the high beam lens portion of the projection lens is formed with a lens shape that is suitable for the corresponding light source unit.
  • the lens shape on the front surface of the projection lens differs depending on the difference in high beam light source unit, the uniformity of the appearance of the illumination lamp unit is lost, and design problems arise. The same is true for lamp units that selectively employ low beam light source units of different structures.
  • One of the objectives of this disclosure is to provide a vehicle lamp that has a projection lens integrally formed with a high beam light source unit and a low beam light source unit and a lens portion corresponding to each light source unit, and that enhances the design of the projection lens regardless of differences in the configuration of the light source unit.
  • the vehicle lamp disclosed herein includes a low beam light source unit, a high beam light source unit, and a projection lens that projects the light of each light source unit to form the required light distribution.
  • the projection lens is integrally formed with a low beam lens section that projects the light of the low beam light source unit to form the low beam distribution, and a high beam lens section that projects the light of the high beam light source unit to form the high beam distribution.
  • the high beam light source unit includes a correction optical section that suppresses lens aberration.
  • a lamp unit is configured with light source units for high beam and low beam corresponding to one projection lens, a vehicle lamp that suppresses lens aberration in the high beam light distribution can be obtained.
  • the vehicle lamp according to the present disclosure includes a plurality of low beam light source units and a projection lens that projects light from the plurality of low beam light source units forward to form a required light distribution, and the projection lens is integrally formed with a plurality of lens portions that project light from the plurality of low beam light source units to form different light distributions, the front surface of the projection lens is formed of a uniform curved surface or flat surface, and at least one of the lens portions of the rear surface of the projection lens is formed of a different curved surface.
  • the front surface of the projection lens is a curved surface that is curved in both the vertical and horizontal directions. In this case, it is preferable that the vertical cross section of the front surface of the projection lens is an arc surface with the required curvature.
  • the vehicle lamp according to the present disclosure includes a low beam light source unit, a high beam light source unit, and a projection lens that projects light from each light source unit to form a required light distribution
  • the projection lens is integrally formed with a low beam lens portion that projects light from the low beam light source unit to form a low beam distribution, and a high beam lens portion that projects light from the high beam light source unit to form a high beam distribution
  • the front surface of the projection lens is formed of a uniform curved surface or plane, and at least one of the lens portions of the projection lens is formed of a different curved surface.
  • the front surface of the projection lens is constructed as a uniform curved or flat surface, thereby obtaining a vehicle lamp with enhanced design.
  • the vehicle lamp according to the present disclosure includes a low beam light source unit, a high beam light source unit, and a projection lens that projects light from each light source unit to form a required light distribution, and a low beam lens section that projects light from the low beam light source unit to form a low beam distribution, and a high beam lens section that projects light from the high beam light source unit to form a high beam distribution are integrally formed, and each light source unit can be arranged with a different structure, and the front surface of the projection lens is Regardless of the difference in the light source unit, the projection lens is configured to have the same lens shape, that is, the front surface of the projection lens is configured to have a uniform curved surface or flat surface, and the rear surface is configured to have a different curved surface corresponding to the light source unit disposed therein.
  • uniformity in the appearance of the projection lens can be achieved regardless of differences in the configuration of the light source unit, resulting in a vehicle lamp with improved design.
  • the vehicle lamp disclosed herein suppresses lens aberration in high beam light distribution, resulting in a vehicle lamp with improved design.
  • FIG. 1 is a schematic perspective view of an automobile equipped with a vehicle lamp according to an embodiment
  • 1 is an exploded perspective view of a portion of an automobile equipped with a vehicle lamp according to an embodiment
  • FIG. 2 is a schematic exploded perspective view of the illumination lamp unit according to the first embodiment.
  • FIG. 2 is a schematic plan view of the illumination lamp unit according to the first embodiment.
  • 4 is a cross-sectional view and light distribution diagram of a concentrated Lo light source unit.
  • 4 is a cross-sectional view and light distribution diagram of a diffused Lo light source unit.
  • 4 is a cross-sectional view and light distribution diagram of a diffused Lo light source unit.
  • 4 is a cross-sectional view and light distribution diagram of a diffused Lo light source unit.
  • FIG. 4 is a schematic diagram illustrating the light distribution of a Hi light source unit.
  • FIG. FIG. FIG. Schematic diagram illustrating suppression of coma aberration. Schematic diagram explaining glare caused by coma aberration. Schematic diagram explaining glare caused by coma aberration. Schematic diagram explaining glare caused by coma aberration.
  • FIG. 11 is a schematic exploded perspective view of an illumination lamp unit according to a second embodiment.
  • FIG. 11 is an enlarged perspective view of a portion of the Hi light source unit according to the second embodiment.
  • FIG. 11 is an enlarged perspective view of a portion of the Hi light source unit according to the second embodiment.
  • FIG. 11 is a schematic exploded perspective view of an illumination lamp unit according to a third embodiment.
  • FIG. 13 is a schematic exploded perspective view of an illumination lamp unit according to a fourth embodiment.
  • FIG. 13 is a schematic plan view of an illumination lamp unit according to a fourth embodiment.
  • Cross-sectional view and light distribution diagram of a Hi light source unit with Bi light distribution control Cross-sectional view and light distribution diagram of a Hi light source unit with Bi light distribution control.
  • FIG. 1A is a schematic perspective view of an automobile CAR equipped with left and right headlamps L-HL, R-HL applied as vehicle lighting of the present disclosure.
  • the left and right headlamps L-HL, R-HL are symmetrical except for some configurations, so the following description will mainly focus on the right headlamp R-HL, but it may also be simply referred to as headlamp HL.
  • the right headlamp R-HL is disposed at the right front part of the body of the automobile CAR, and is configured as a composite headlamp in which an illumination lamp unit LLU and an indication lamp unit ILU are disposed within a lamp housing 100 attached to the body.
  • the longitudinal direction basically refers to the longitudinal direction of the automobile CAR
  • the lateral direction refers to the width direction of the automobile CAR.
  • Fig. 1B is a schematic perspective view of a partially exploded right headlamp R-HL.
  • the lamp housing 100 is composed of a lamp body 101 with an opening extending from the front to the side of the vehicle, and a translucent outer cover 102 attached to cover the opening of the lamp body 101.
  • This outer cover 102 is also called a translucent cover or outer lens, and is composed of a so-called plain lens made of colorless translucent resin or the like, and its surface is formed into a slightly curved surface following the curved shape of the right front part of the body of the automobile CAR.
  • An illumination lamp unit LLU is disposed at the bottom of this lamp housing 100, and an indication lamp unit ILU is disposed above it.
  • the illumination lamp unit LLU has a light-emitting surface that is shaped like a horizontally long rectangle with its long side facing in the vehicle width direction.
  • the indication lamp unit ILU has a light-emitting surface that is shaped like a long, thin strip that extends in the vehicle width direction above the illumination lamp unit 1.
  • the lighting lamp unit LLU has multiple embodiments, the details of which will be described later, and is configured so that a low beam (hereinafter, Lo) light source unit and a high beam (hereinafter, Hi) light source unit are assembled to correspond to one projection lens.
  • Lo low beam
  • Hi high beam
  • the Lo light source unit emits light
  • the Hi light source unit provides illumination with a Hi light distribution, in this case ADB (Adaptive Driving Beam)-Hi light distribution.
  • the indication lamp unit ILU is configured here as a lamp unit that functions as a CL (clearance lamp) or DRL (daytime running lamp) that emits white light to indicate the presence of the vehicle.
  • This indication lamp unit ILU is not particularly relevant to this disclosure and so a detailed description will be omitted, but it is equipped with a strip-shaped light guide that extends in the vehicle width direction along the upper edge of the illumination lamp unit LLU, and a white LED that emits white light. When the white LED emits light, the emitted white light passes through the light guide and is emitted, thereby lighting up as a CL or DRL.
  • the indicator lamp unit ILU may be configured with a number of white LEDs arranged in the vehicle width direction, and a projection lens that is elongated in the vehicle width direction and disposed in front of these LEDs. In this configuration, when the white LEDs emit light, the emitted white light passes through the projection lens and is lit as CL or DRL.
  • this indicator lamp unit ILU may further include an amber LED that emits amber light, in which case the indicator lamp unit ILU is also configured as a TSL (turn signal lamp) that has a signal light function.
  • FIG. 2 is a partially exploded perspective view of the first embodiment of the illumination lamp unit LLU in the right headlamp R-HL described above, and Fig. 3 is a schematic plan sectional view.
  • This illumination lamp unit LLU is provided with two Lo light source units, i.e., a first Lo light source unit 1 and a second Lo light source unit 2, and one Hi light source unit 3, for one projection lens 4, and each of the light source units 1, 2, and 3 share the single projection lens 4 to form a projector-type lamp.
  • the two Lo light source units 1, 2 are arranged on the outside in the vehicle width direction, and the one Hi light source unit 3 is arranged on the inside in the vehicle width direction.
  • the first Lo light source unit 1 is configured as a concentrated Lo light source unit that provides concentrated illumination of the central area of light distribution, i.e., the area near the intersection of the horizontal line H and the vertical line V (hereinafter referred to as the HV point), which serves as the reference for light distribution when illuminating the area in front of the vehicle.
  • the second Lo light source unit 2 is configured as a diffuse Lo light source unit that provides illumination at a relatively low illuminance over a wide area including this concentrated area.
  • the first Lo light source unit i.e., concentrated Lo light source unit 1, also referring to the vertical cross-sectional view of FIG. 4A, comprises a white LED 11 as a light source and a reflector 12 that reflects the white light emitted from this white LED 11 forward.
  • the white LED 11 is composed of a chip-type LED that emits white light, and is mounted on a unit body 13 with its light-emitting surface facing vertically upward.
  • This unit body 13 is configured as, for example, a heat sink, and the white LED 11 is mounted on its upper surface via a required attachment, and power for light emission is supplied through wiring (not shown).
  • the reflector 12 is configured as a concave reflecting mirror based on an ellipsoid of revolution, and the white LED 11 is located at its first focus.
  • the reflector 12 is shaped so that the flatness of the ellipse gradually decreases from a vertical cross section including the major axis of the ellipse to a horizontal cross section.
  • the front edge of the upper surface of the unit body 13 is configured as a shade 14, and is a flat shape that is curved concavely toward the front.
  • the second Lo light source unit i.e., diffuse Lo light source unit 2
  • the second Lo light source unit has the same basic configuration as concentrated Lo light source unit 1, also referring to the vertical cross-sectional view of FIG. 4C. That is, it has a white LED 21 as a light source and a reflector 22 that reflects the white light emitted from this white LED 21 forward.
  • the white LED 21 is composed of a chip-type LED that emits white light, and is mounted on a unit body 23 with its light-emitting surface facing vertically upward.
  • the reflector 22 is configured as a concave reflecting mirror based on an ellipsoid of revolution, and the white LED 21 is disposed at its first focus.
  • the front edge of the upper surface of the unit body 23 is configured as a shade 24, and contrary to the concentrated Lo light source unit 1, the shade 24 has a planar shape that is curved convexly forward.
  • the Hi light source unit 3 includes a plurality of white LEDs 31 as light sources, and a correction lens 32 that converges the light emitted from the white LEDs to some extent.
  • the plurality of white LEDs 31 are made up of ten chip-type LEDs, and are mounted in a line in the vehicle width direction on the front surface of a base wall 34 erected on a unit body 33 with their light-emitting surfaces facing forward.
  • the spacing between adjacent white LEDs in the vehicle width direction of these ten white LEDs 31 gradually increases from the outer side of the vehicle width to the inner side of the vehicle width (towards the center of the vehicle width), and details of this will be described later.
  • the correction lens 32 is disposed in front of the 10 white LEDs 31, and is configured to receive the white light emitted from the light-emitting surface of each white LED 31.
  • the correction lens 32 is configured as a lens with positive refractive power, a convex lens in this case, and is configured to refract the white light emitted in a divergent state from each white LED 31 in a converging direction and cause it to enter the projection lens 4.
  • the correction lens 32 is assembled integrally with the Hi light source unit 3, but may be configured separately.
  • the projection lens 4 shown in FIG. 3 is configured as a common projection lens for forming the light distribution of the two Lo light source units 1, 2 and the one Hi light source unit 3, and is disposed across the area on the front side of the two Lo light source units 1, 2 and the one Hi light source unit 3.
  • This projection lens 4 is also called an inner lens, and is configured as the light emitting surface of the illumination lamp unit LLU, and is formed from a translucent material into a shape close to a horizontally long rectangle with its long side facing in the vehicle width direction.
  • FIG. 5 is a perspective view of the projection lens 4 seen from the rear side, with the projection lens 4 divided in the vehicle width direction to correspond to each of the light source units 1, 2, and 3.
  • each divided part will be referred to as a lens part. That is, the parts facing the focusing Lo light source unit 1, the diffusing Lo light source unit 2, and the Hi light source unit 3 will be referred to as the focusing Lo lens part 41, the diffusing Lo lens part 42, and the Hi lens part 43, respectively.
  • the front surface of the projection lens 4 is configured as a uniform curved surface over the entire area. That is, in the vertical cross section, each of the lens portions 41 to 43 is a convex arc surface with the required curvature, or a curved surface close to this. On the other hand, in the horizontal cross section, it is formed as a curved surface that extends gently rearward from the center of the vehicle toward the outside of the vehicle width, following the curved shape of the outer lens 102 of the lamp housing 100.
  • the front surface of the projection lens 4 is configured as a uniform curved surface that is curved in both the vertical and horizontal directions, and when the projection lens 4 is observed from the front side, it is observed as a smooth, continuous surface with no distinguishable divisions between the lens portions 41 to 43, which enhances the design effect in this respect.
  • the shapes of the lens sections 41 to 43 on the rear surface of the projection lens 4 are different.
  • the rear surface of the focusing Lo lens section 41 is formed as a convex spherical or aspherical surface with the required curvature at least in the horizontal direction. It is also formed as a similarly convex curved surface in the vertical direction. Due to these surface shapes, the focusing Lo lens section 41 is configured as a so-called biconvex lens, and is configured as a lens section with positive refractive power that converges light in both the horizontal and vertical directions.
  • the focal point F on the optical axis Lx of this condensing Lo lens section 41 is set to a position near the second focal point of the reflector 12 of the condensing Lo light source unit 1, in other words, a position near the shade 14.
  • the rear surface of the condensing Lo lens section 41 may be a concave surface, so long as it is configured as a lens section with positive refractive power in both the horizontal and vertical directions.
  • the rear surface of the diffusion Lo lens section 42 is formed as a flat surface or a curved surface that generates positive refractive power in the vertical direction.
  • it is formed as a curved surface with a smaller curvature than the front surface, is configured as a so-called meniscus type lens, and is formed to be thinner than the focusing Lo lens section 41.
  • the horizontal direction as shown in Figure 3, it is formed as a curved surface parallel to the front surface, and is therefore configured to not generate refractive power as a lens in the horizontal direction. In other words, it is configured as a cylindrical lens curved in the horizontal direction.
  • This diffused Lo lens section 42 has a specific optical axis Lx and focal point F in the vertical direction, but in the horizontal direction it is planar or linear extending in the horizontal direction. As shown in FIG. 4C, this optical axis Lx and focal point F are set in the vicinity of the second focal point of the reflector 22 of the diffused Lo light source unit 2, i.e., at the position of the shade 24.
  • the rear surface of the Hi lens section 43 is formed as a convex spherical or aspherical surface with the required curvature in the horizontal direction, and is also formed as a similar convex spherical or aspherical surface in the vertical direction. Due to these surface shapes, the Hi lens section 43 is configured as a lens section with positive refractive power that converges light in both the horizontal and vertical directions, and is formed to be the thickest of the three lens sections.
  • the optical axis Lx of the Hi lens section 43 coincides with the optical axis of the correction lens 32 described above.
  • the vertical position of this optical axis Lx coincides with the height position of the white LED 41
  • the horizontal position coincides with a predetermined position set as the horizontal center position of the white LED 41.
  • the rear surface of this Hi lens section 43 may also be concave, so long as it is configured as a lens section with positive refractive power in both the horizontal and vertical directions.
  • the above three light source units 1, 2, 3 and one projection lens 4 may each be constructed separately and then disposed independently within the lamp housing 100.
  • the two Lo light sources 1, 2 may be assembled together and then disposed within the lamp housing 100.
  • the three light source units 1, 2, 3 may be assembled together and then disposed within the lamp housing 100.
  • the projection lens 4 may also be configured to be assembled together with the three light source units 1, 2, 3.
  • the two Lo light source units 1, 2 are simultaneously put into an emitting state.
  • the white light emitted by the white LED 11 is reflected forward by the reflector 12 and converged near the second focal point, and a portion of the light is also reflected by the surface of the unit base 13.
  • the white light that is not blocked by the shade 14 is incident on the condenser lens portion 41 of the projection lens 4.
  • the condenser lens portion 41 has refractive power in both the vertical and horizontal directions, so the white light is irradiated forward of the vehicle by the condenser lens portion 41.
  • the shade 14 of the concentrated Lo light source unit 1 is formed in a horizontal stepped shape as described above, so that as shown in Figure 4B, a cut-off line (hereinafter, CO line) is formed in the projected white light, here a stepped CO line COL1, and a concentrated Lo light distribution PLo1 is obtained in which white light is irradiated onto the lower area of this stepped CO line COL1.
  • This stepped CO line COL1 is lower on the oncoming lane side than on the own lane side, for example, and is at an angle of 0.57 degrees downward from the horizontal line H on the oncoming lane side.
  • the shade 14 is formed in a concave shape facing forward, so that a sharp stepped CO line COL1 is obtained which eliminates or reduces the lens aberration, particularly the field curvature, that occurs in the concentrated Lo lens section 41. Furthermore, because the white light is irradiated in a concentrated state near the HV point due to the vertical and horizontal refractive power of the focusing Lo lens section 41, the focusing Lo light distribution PLo1 becomes an Lo light distribution that includes a relatively high illuminance area, the so-called hot zone.
  • the white light emitted by the white LED 21 is reflected by the reflector 22 and converged near the second focal point, and the white light that is not blocked by the shade 24 is incident on the diffused Lo lens section 42 of the projection lens 4.
  • the diffused Lo lens section 42 has refractive power in the vertical direction, but does not have refractive power in the horizontal direction, as shown in FIG. 3.
  • the shade 24 of the diffused Lo light source unit 2 has a convex shape facing forward, which corresponds to the horizontally curved shape of the diffused Lo lens section 42, so that a horizontal CO line COL2 that is a straight line extending horizontally or a horizontal CO line close to this is formed, as shown in FIG. 4D.
  • This horizontal CO line COL2 is at the same angle position as the stepped CO line COL1 on the oncoming lane side described above, that is, at an angle position of 0.57 degrees downward from the horizontal line H.
  • White light is then irradiated onto the area below this horizontal CO line COL2, forming a diffuse Lo light distribution PLo2. Because the diffuse Lo lens portion 42 has no refractive power in the horizontal direction, the white light is diverged over a wide angle in the horizontal direction and is irradiated onto a wide area in the left-right direction. Also, because the white light is irradiated onto a wider area than the Lo light distribution PLo1, the light distribution has a relatively low illuminance. Note that in Figures 4A to 4D, the area illuminated with white light is indicated by dotted lines.
  • the Lo light distributions PLo1 and PLo2 produced by the concentrated Lo light source unit 1 and the diffused Lo light source unit 2 are combined to form a Lo light distribution PLo that illuminates a wide area in the horizontal direction below the stepped CO line COL1 and the horizontal CO line COL2 and has a hot zone of high illuminance in the straight-ahead direction of the car, i.e., near the HV point.
  • illustration of this Lo light distribution is omitted, it is a combination of the light distributions in Figures 4B and 4D.
  • the white LED 31 of the Hi light source unit 3 emits light at the same time as the two Lo light source units 1 and 2 emit light.
  • the white light of each emitted white LED 31 is incident on the correction lens 32, and after passing through this correction lens 32, is incident on the Hi lens portion 43 of the projection lens 4. Since the Hi lens portion 43 has refractive power in the vertical and horizontal directions, the white light of each white LED 31 is projected forward of the car while being diverged in the vertical and horizontal directions, respectively.
  • FIG. 6 is a schematic diagram for explaining the light distribution operation of the Hi light source unit 3.
  • the ten white LEDs 31 [31(1) to 31(10)] are arranged in the horizontal direction, and the white light of each white LED 31 is projected by the projection lens 4 to obtain a light distribution in which the projection patterns of each white light are arranged in the horizontal direction.
  • the ten white LEDs 31 are arranged more densely in the horizontal direction on the white LED 31(1) side closer to the optical axis Lx than the white LED 31(10) further away from the optical axis Lx.
  • the spacing between the white LEDs 31 gradually increases as they move away from the optical axis Lx. Note that the pointillism of the illumination pattern is omitted here.
  • the white light from the white LED 31 (10) disposed away from the optical axis Lx has a larger angle of incidence with respect to the optical axis Lx than the white light from the white LED 31 (1) closer to the optical axis Lx.
  • the horizontal expansion width of this white light is increased by lens aberration in the Hi lens section 43. Therefore, due to this increase in the horizontal expansion width, both sides of the projection patterns PAHi (10) of adjacent white light from the white LEDs 31 away from the optical axis Lx overlap each other, as shown in FIG. 6.
  • the white light of the 10 white LEDs 31 is projected as a horizontally aligned projection pattern above and including the horizontal line H. Since the projection patterns PAHi(1) to PAHi(10) of the projected white LEDs 31 overlap each other on both horizontal sides, each projection pattern is a continuous light distribution in the horizontal direction, and this light distribution is the so-called Hi-added light distribution PAHi. Although not shown or explained, in the Hi light source unit of the left headlamp L-HL, a Hi-added light distribution PAHi that is symmetrical to this is formed. Therefore, the Hi light distribution PHi shown in FIG. 7B is formed by combining the Lo light distributions PLo1 and PLo2 with the Hi-added light distributions PAHi on the left and right above them.
  • the 10 white LEDs 31 are densely arranged in the horizontal direction on the side of the white LEDs 31(1) closer to the optical axis Lx, so that the illuminance of the projected Hi-added light distribution PAHi is higher on the side closer to the optical axis Lx than on the side further horizontally from the optical axis Lx.
  • a Hi light distribution PHi is obtained in which the illuminance of the area adjacent to the hot zone of the Lo light distribution PLo is higher than the surrounding area.
  • the Hi light source units 31 of the left and right headlamps are symmetrical, and the arrangement of the 10 white LEDs 31 in each is also symmetrical. Therefore, by combining the Hi additional light distribution PAHi from each Hi light source unit 31 of the left and right headlamps, the illuminance on the side closer to the optical axis is further increased, and at the same time, a Hi light distribution PHi is obtained that illuminates a wide area to the left and right in the horizontal direction centered on the optical axis Lx.
  • the 10 white LEDs 31 are selectively turned on or off during ADB light distribution control. Therefore, when some of the white LEDs are turned off during Hi light distribution, the area of the projection pattern of these white LEDs is formed as a light-blocking area. Therefore, when there is an oncoming vehicle, etc., the white LEDs 31 are selectively turned off so that the area where the oncoming vehicle is present becomes a light-blocking area, thereby realizing ADB light distribution control that prevents glare for the oncoming vehicle.
  • the white light from the white LED 31, which is positioned away from the optical axis Lx is projected with a larger width of light distribution by utilizing the lens aberration, or so-called imaging blur, in the Hi lens section 43, but the undesirable effects of this lens aberration cannot be ignored.
  • coma aberration which is one type of lens aberration, becomes prominent, and this coma aberration causes the boundaries of the projection patterns of each white light to become unclear.
  • Figures 9A to 9C are conceptual diagrams of the glare prevention effect
  • Figure 9C is a diagram showing area T in Figure 9B.
  • the Hi light source unit 3 is provided with a correction lens 32, and the positive refractive power of this correction lens 32 suppresses the divergence of the white light emitted from the white LED. That is, as shown in FIG. 8, which is a schematic diagram showing an enlarged portion of the Hi light source unit 3, the light beam (beam of light) of the white light emitted in a divergent state from the white LED 31 is converged by the correction lens 32 as shown by the dashed line to the solid line in the figure, and an aperture effect is obtained. This suppresses the angle of incidence of the white light that passes through the correction lens 32 and enters the Hi lens section 43 of the projection lens 4, and suppresses coma aberration.
  • the Hi lens section 43 is a convex spherical surface whose curvature of the rear surface on which the white light enters is larger than the curvature of the front surface, so that coma aberration is also suppressed from this point of view. Therefore, the boundary of the illumination area L when ADB light distribution control is executed is suppressed from becoming unclear, and highly accurate ADB light distribution control can be realized.
  • the lighting lamp unit LLU of embodiment 1 is provided with a correction lens 32 in the Hi light source unit 3, which suppresses the coma aberration caused by the Hi lens section 43, making the boundaries of the projection pattern using white light clearer and improving ADB light distribution control.
  • the lighting lamp unit LLU of embodiment 1 has a front surface of the projection lens 4 that is uniformly curved, so that the appearance when observed through the outer lens 102 is simple, and the design of the lighting lamp unit LLU can be improved.
  • (Embodiment 2) 10 is an external view showing a schematic configuration of the illumination lamp unit LLU of the second embodiment, and since only the configuration of the Hi light source unit 3A is different from that of the first embodiment, the description of the other configurations will be omitted.
  • the Hi light source unit 3A of the second embodiment is provided with a correction reflector 35 instead of a correction lens. That is, the correction reflector 35, which is open at the front, is attached to the front surface of the base wall 34 on which the ten white LEDs 31 are mounted so as to surround the white LEDs 31. Then, a part of the white light emitted from each white LED 31 is reflected by the correction reflector 35 and made to enter the Hi lens portion 43 of the projection lens 4.
  • the correction reflector 35 is configured as a rectangular or elliptical frame wall that surrounds the 10 white LEDs 31 when viewed from the front. At least the inner surfaces of the left and right frame walls 35a are configured as light reflecting surfaces. Here, the inner surfaces of the top, bottom, left and right frame walls are configured as light reflecting surfaces.
  • the inner surface of each frame wall 35a is formed as a light reflecting surface that is a plane, a paraboloid, or a concave shape similar thereto, with an inclination in the vertical and horizontal directions.
  • the white light emitted at a relatively large angle with respect to the optical axis Lx of the Hi lens section 43 is deflected by the corrective reflector 35 in a direction closer to the optical axis Lx and enters the Hi lens section 43.
  • the light from the left and right white LEDs 31 that are farther away from the optical axis Lx is deflected toward the optical axis Lx by the left and right frame walls 35a.
  • (Embodiment 3) 12 is an external view showing a schematic configuration of the illumination lamp unit LLU of the third embodiment, and the configuration of the projection lens is different from that of the first embodiment.
  • the configurations of the Lo light source units 1 and 2 and the Hi light source unit 3 are the same as those of the first embodiment, so the description will be omitted.
  • the projection lens 4A has a convex spherical surface on the rear surface of the Hi lens portion 43A with a smaller curvature than that of the first embodiment, and is formed into a flat surface or a curved surface close to a flat surface.
  • the front surface of the Hi lens portion 43A is formed into a spherical surface or an aspherical surface protruding forward from the two Lo lens portions 41 and 42.
  • the constraint that the front surface of the Hi lens portion 43A is formed into a predetermined curved surface is lifted, so that the degree of freedom in designing the front surface of the Hi lens portion 43A is increased, and a projection lens 4A with reduced lens aberration is obtained.
  • the front surface of the Hi lens section 43A has a different shape from the front surfaces of the Lo lens sections 41 and 42, but the vertical dimension of the Hi lens section 43A is the same as that of the Lo lens sections 41 and 42. Therefore, when the projection lens 4A is observed from the front, the entire projection lens 4A has the appearance of a horizontally long rectangle, and the projection lens 4A has a sense of unity as a whole. In this way, the illumination lamp unit LLU of embodiment 3 suppresses lens aberration in the Hi light source unit 3A, realizing high-precision ADB control, while also achieving a sufficient design in terms of the appearance of the projection lens 4A.
  • FIG. 13 is an external view showing a schematic configuration of the illumination lamp unit LLU of the fourth embodiment
  • FIG. 14 is a schematic plan view thereof.
  • This illumination lamp unit LLU has the same Lo light source units 1 and 2 as those of the first embodiment, but has a different configuration of the Hi light source unit 3B and the projection lens 4B.
  • the Hi light source unit 3B of the fourth embodiment does not perform ADB light distribution control, but simply projects an additional Hi light distribution formed on the upper side of the Lo light distribution, and is a light source unit used in an illumination lamp unit also called Bi (bi-function) light distribution control.
  • Bi bi-function
  • this Hi light source unit 3B is similar to that of the Lo light source units 1 and 2, so a detailed explanation will be omitted, but as shown in the longitudinal cross-sectional structure in Figure 15A, it is equipped with a white LED 31 as a light source and a reflector 36 based on an ellipsoid of revolution. Furthermore, it is smaller overall than the Lo light source units 1 and 2, and is further configured differently in that it is equipped with a front mirror 38 formed integrally with the unit body 37 at the lower front side of the reflector 36. Furthermore, in this embodiment 3, two Hi light source units 3B with approximately the same configuration are arranged side by side in the horizontal direction.
  • the white LED 31 of each Hi light source unit 3B is composed of a chip-type LED that emits white light, and is mounted on the upper surface of the unit body 37 with its light-emitting surface facing vertically upward, and is supplied with power for light emission.
  • the reflector 36 is configured as a concave reflecting mirror based on an ellipsoid of revolution, and the white LED 31 is disposed at its first focal point.
  • the front mirror 38 is configured as a flat mirror with a light-reflecting surface tilted forward, located near the second focal point, i.e., in front of the second focal point.
  • the front surface of the projection lens 4 in the fourth embodiment is the same as in the first embodiment in that it is configured with a uniform curved surface over the entire area.
  • the configurations of the condensing Lo lens section 41 and the diffusing Lo lens section 42 corresponding to the Lo light source units 1 and 2 are also the same as in the first embodiment.
  • the Hi lens section 43B is divided into two corresponding to the two Hi light source units 3B.
  • Each divided Hi lens section 43B is formed to be smaller in size than the Hi lens section 43 in the first embodiment, but the structure is approximately the same, and the rear surface of the projection lens 4B is formed as a convex spherical or aspherical surface with a required curvature in the horizontal and vertical directions.
  • the two Hi lens sections 43B are arranged side by side in the horizontal direction corresponding to the two Hi light source units 3B, but the optical axis Lx of each Hi lens section 43B is directed in a slightly different direction in the horizontal direction.
  • the Lo light distribution in the fourth embodiment is the same as that in the first embodiment.
  • the two Lo light source units 1 and 2 and the two Hi light source units 3B are simultaneously emitted.
  • the light emitted from the white LED 31 in each Hi light source unit 3B is reflected forward by the reflector 36, converged near the second focal point, and then enters the Hi lens portion 43B of the projection lens 4.
  • Each white light is refracted in each Hi lens portion 43B, and as shown in FIG. 15B, is projected as an additional Hi light distribution PAHi above the Lo light distribution PLo indicated by the dashed line.
  • the additional Hi light distributions PAHi by the two Hi light source units 3B are projected side by side in the horizontal direction.
  • These additional Hi light distributions PAHi can be divided, for example, into the vehicle's lane side and the oncoming lane side. Therefore, it is possible to selectively emit light from the two Hi light source units 3B, or to simultaneously emit light from both, forming an additional Hi light distribution PAHi on either the own lane side or the oncoming lane side.
  • this Hi light source unit 3B a portion of the white light reflected by the reflector 36 is reflected by the front reflector 38 and is transmitted through the Hi lens portion 43B and projected upward.
  • the front reflector 38 a tilting structure that switches between a state in which the white light from the reflector 36 is reflected and a state in which it is not reflected, it becomes possible to form an OHS light distribution as desired.
  • the fourth embodiment may be configured with one Hi light source unit 3B.
  • the required additional Hi light distribution is formed by that one Hi light source unit 3B.
  • the configuration of the Hi lens portion 43B of the projection lens 4B can be configured in substantially the same way as in the first embodiment, so the projection lens 4 of the first embodiment can be used as is.
  • the front surface of the projection lens 4B is also configured as a uniform curved surface, so that the appearance when observed through the outer lens 102 of the headlamp HL is simple, improving the design of the lighting lamp unit LLU.
  • the lighting lamp unit LLU of embodiment 4 since the lighting lamp unit LLU of embodiment 4 has a different configuration from embodiment 1 in terms of the Hi light source unit, it is sufficient to select and apply either the Hi light source unit 3 of embodiment 1 or the Hi light source unit 3B of embodiment 4 as necessary. In this case, if the Hi light source unit 3B is configured with one Hi light source unit, there is no need to change the projection lens.
  • the front shape of the high beam lens portion 43A may be a lens shape different from that of the low beam lens portions 41 and 42, as in the projection lens 4A of embodiment 3.
  • the Hi light source unit 3 of embodiments 1 and 3, the Hi light source unit 3A of embodiment 2, or the Hi light source unit 3B of embodiment 4 is selected as the Hi light source unit to configure the illumination lamp unit, there is no need to make the shape of the projection lens 4A different. Therefore, the appearance of the projection lens does not change when the internal configuration of the illumination lamp unit differs, and the design in this respect can be improved.
  • the configuration and number of the Lo light source units and Hi light source units that make up the illumination lamp unit can be changed as appropriate.
  • the white LEDs constituting the Hi light source unit may be arranged in multiple rows in the vertical direction. Furthermore, the configuration of the Lo light source unit is not limited to the configuration of the embodiment.
  • the configuration of the projection lens in this disclosure particularly the configuration of each lens portion for obtaining Hi and Lo light distributions, various modifications of the lens shape are possible as long as the refractive power required for each lens portion, particularly the refractive power in the vertical and horizontal directions, is satisfied.
  • the front surface of the projection lens may be flat, in which case the rear surface of the projection lens may be formed into a convex curved surface in order to obtain the required refractive power for each lens portion.

Abstract

This vehicle lamp comprises: low-beam light source units (1), (2); a high-beam light source unit (3); and a projection lens (4) that projects light from each of the light source units (1), (2), (3) to form required light distribution. In the projection lens (4), low-beam lenses (41), (42) that project the light from the low-beam light source units (1), (2) to form low-beam light distribution and a high-beam lens (43) that projects the light from the high-beam light source unit (3) to form high-beam light distribution are integrally formed. Further, the high-beam light source unit (3) is provided with a correction optical part (32) that suppresses lens aberration.

Description

車両用灯具Vehicle lighting fixtures
 本開示は自動車等の車両に装備して好適な車両用灯具に関する。 This disclosure relates to vehicle lighting suitable for installation in vehicles such as automobiles.
 車両用灯具、特に、自動車のヘッドランプの構造の簡易化を図るために、ロービーム光源ユニットやハイビーム光源ユニットを含む複数の光源ユニットにそれぞれ対応する投影レンズを一体化し、一つの投影レンズとして構成したランプユニットが提案されている。例えば、特許文献1には、一つの投影レンズに対してロービーム光源ユニットとハイビーム光源ユニットが対応配置されており、各光源ユニットから出射された光を当該一つの投影レンズにより投影してそれぞれ所要のロービーム配光とハイビーム配光を形成する構成がとられている。また、特許文献2には1つの投影レンズに対して3つのロービーム光源ユニットが対応配置されている。 In order to simplify the structure of vehicle lighting fixtures, particularly automobile headlamps, lamp units have been proposed in which projection lenses corresponding to a number of light source units, including low beam light source units and high beam light source units, are integrated into one projection lens. For example, in Patent Document 1, a low beam light source unit and a high beam light source unit are arranged to correspond to one projection lens, and the light emitted from each light source unit is projected by the one projection lens to form the required low beam light distribution and high beam light distribution, respectively. In Patent Document 2, three low beam light source units are arranged to correspond to one projection lens.
国際公開2021-261559号公報International Publication No. 2021-261559 国際公開2013-183240号公報International Publication No. 2013-183240
 このようにロービーム配光とハイビーム配光を一つの投影レンズで投影するように構成した場合に、ハイビーム配光において生じるレンズ収差が問題になる。すなわち、ハイビーム光源ユニットはハイビーム配光を広くかつ高い照度(明るさ)とするために、光源で発光された発散状態の光をそのまま投影レンズに入射させる構成がとられることが多い。そのため、ハイビーム光源ユニットから出射された光の一部が投影レンズに入射する際の入射角が大きくなり、レンズ収差、特にコマ収差が発生するという問題が生じる。 When low-beam and high-beam light distributions are projected using a single projection lens in this way, lens aberration that occurs in the high-beam light distribution becomes a problem. That is, in order to make the high-beam light distribution wide and highly illuminant (bright), high-beam light source units are often configured to allow the divergent light emitted by the light source to enter the projection lens as is. As a result, the angle of incidence when part of the light emitted from the high-beam light source unit enters the projection lens becomes large, causing the problem of lens aberration, especially coma aberration.
 本開示の目的の一つは、ハイビーム配光とロービーム配光を可能にした一体型のランプユニットにおいて、特にハイビーム配光におけるレンズ収差を抑制した車両用灯具を提供することである。 One of the objectives of this disclosure is to provide a vehicle lamp that suppresses lens aberration, particularly in high beam distribution, in an integrated lamp unit that enables high beam and low beam distribution.
 また、一つの投影レンズに複数の異なるレンズ形状、通常では凸状の球面や曲面が投影レンズの前面に形成されると、当該投影レンズを前面側から観察したときに、前面に表れている複数の異なるレンズ形状が照明ランプユニットの外観上の見栄えを損ない、意匠性が低下する要因となる。 In addition, if a single projection lens has multiple different lens shapes, typically a convex spherical or curved surface, formed on the front surface of the projection lens, when the projection lens is observed from the front side, the multiple different lens shapes that appear on the front surface will mar the external appearance of the lighting lamp unit, causing a decrease in design.
 本開示の目的の一つは、複数の光源ユニット、特に構成が異なる複数の光源ユニットを一つの投影レンズに対応して構成したランプユニットにおいて、投影レンズの意匠性を高めた車両用灯具を提供することである。 One of the objectives of this disclosure is to provide a vehicle lamp that enhances the design of the projection lens in a lamp unit in which multiple light source units, particularly multiple light source units with different configurations, are configured to correspond to one projection lens.
 また、異なる構造のハイビーム光源ユニットを選択的に採用した照明ランプユニットが構成される際には、投影レンズのハイビームレンズ部は対応した光源ユニットに好適なレンズ形状として形成される。このような場合において、ハイビーム光源ユニットの違いに応じて投影レンズの前面のレンズ形状が相違されると、照明ランプユニットの外観上の統一性が損なわれ、意匠性の問題が生じる。このことは、異なる構成のロービーム光源ユニットを選択的に採用したランプユニットについても同様である。 In addition, when an illumination lamp unit is constructed that selectively employs high beam light source units of different structures, the high beam lens portion of the projection lens is formed with a lens shape that is suitable for the corresponding light source unit. In such a case, if the lens shape on the front surface of the projection lens differs depending on the difference in high beam light source unit, the uniformity of the appearance of the illumination lamp unit is lost, and design problems arise. The same is true for lamp units that selectively employ low beam light source units of different structures.
 本開示の目的の一つは、ハイビーム光源ユニットとロービーム光源ユニットを備え、各光源ユニットに対応するレンズ部を一体に形成した投影レンズを備えるランプユニットにおいて、光源ユニットの構成の相違にかかわらず投影レンズの意匠性を高めた車両用灯具を提供することである。 One of the objectives of this disclosure is to provide a vehicle lamp that has a projection lens integrally formed with a high beam light source unit and a low beam light source unit and a lens portion corresponding to each light source unit, and that enhances the design of the projection lens regardless of differences in the configuration of the light source unit.
 本開示の車両用灯具は、ロービーム光源ユニットと、ハイビーム光源ユニットと、各光源ユニットの光を投影して所要の配光を形成する投影レンズとを備えており、投影レンズは、ロービーム光源ユニットの光を投影してロービーム配光を形成するロービームレンズ部と、ハイビーム光源ユニットの光を投影してハイビーム配光を形成するハイビームレンズ部とが一体に形成され、さらに、ハイビーム光源ユニットはレンズ収差を抑制する補正光学部を備える。 The vehicle lamp disclosed herein includes a low beam light source unit, a high beam light source unit, and a projection lens that projects the light of each light source unit to form the required light distribution. The projection lens is integrally formed with a low beam lens section that projects the light of the low beam light source unit to form the low beam distribution, and a high beam lens section that projects the light of the high beam light source unit to form the high beam distribution. Furthermore, the high beam light source unit includes a correction optical section that suppresses lens aberration.
 本開示によれば、一つの投影レンズに対応してハイビーム用とロービーム用の光源ユニットを備えたランプユニットを構成した場合において、ハイビーム配光におけるレンズ収差を抑制した車両用灯具が得られる。 According to the present disclosure, when a lamp unit is configured with light source units for high beam and low beam corresponding to one projection lens, a vehicle lamp that suppresses lens aberration in the high beam light distribution can be obtained.
 本開示に係る車両用灯具は、複数のロービーム光源ユニットと、これら複数のロービーム光源ユニットの光を前方に向けて投影して所要の配光を形成する投影レンズとを備えており、投影レンズは、複数のロービーム光源ユニットの光を投影してそれぞれ異なる配光を形成する複数のレンズ部が一体に形成されており、当該投影レンズの前面は一様な曲面又は平面で構成され、当該投影レンズの後面は複数のレンズ部の少なくとも1つが異なる曲面で構成されている。例えば、投影レンズの前面は鉛直方向と水平方向にそれぞれ湾曲した曲面である。この場合、投影レンズの前面は鉛直方向断面が所要の曲率の円弧面であることが好ましい。 The vehicle lamp according to the present disclosure includes a plurality of low beam light source units and a projection lens that projects light from the plurality of low beam light source units forward to form a required light distribution, and the projection lens is integrally formed with a plurality of lens portions that project light from the plurality of low beam light source units to form different light distributions, the front surface of the projection lens is formed of a uniform curved surface or flat surface, and at least one of the lens portions of the rear surface of the projection lens is formed of a different curved surface. For example, the front surface of the projection lens is a curved surface that is curved in both the vertical and horizontal directions. In this case, it is preferable that the vertical cross section of the front surface of the projection lens is an arc surface with the required curvature.
 また、本開示に係る車両用灯具は、ロービーム光源ユニットと、ハイビーム光源ユニットと、各光源ユニットの光を投影して所要の配光を形成する投影レンズとを備えており、投影レンズは、ロービーム光源ユニットの光を投影してロービーム配光を形成するロービームレンズ部と、ハイビーム光源ユニットの光を投影してハイビーム配光を形成するハイビームレンズ部とが一体に形成されるとともに、当該投影レンズの前面は一様な曲面又は平面で構成され、当該投影レンズの後面は各レンズ部の少なくとも1つが異なる曲面で構成される。
 本開示によれば、一つの投影レンズに対応して異なる構成の光源ユニットを備えたランプユニットを構成した場合において、投影レンズの前面が一様な曲面又は平面で構成されるので意匠性を高めた車両用灯具が得られる。
In addition, the vehicle lamp according to the present disclosure includes a low beam light source unit, a high beam light source unit, and a projection lens that projects light from each light source unit to form a required light distribution, and the projection lens is integrally formed with a low beam lens portion that projects light from the low beam light source unit to form a low beam distribution, and a high beam lens portion that projects light from the high beam light source unit to form a high beam distribution, and the front surface of the projection lens is formed of a uniform curved surface or plane, and at least one of the lens portions of the projection lens is formed of a different curved surface.
According to the present disclosure, when a lamp unit is constructed having light source units of different configurations corresponding to one projection lens, the front surface of the projection lens is constructed as a uniform curved or flat surface, thereby obtaining a vehicle lamp with enhanced design.
 本開示に係る車両用灯具は、ロービーム光源ユニットと、ハイビーム光源ユニットと、各光源ユニットの光を投影して所要の配光を形成する投影レンズとを備えており、ロービーム光源ユニットの光を投影してロービーム配光を形成するロービームレンズ部と、ハイビーム光源ユニットの光を投影してハイビーム配光を形成するハイビームレンズ部とが一体に形成され、各光源ユニットは異なる構造のものが配設可能であり、投影レンズの前面は、
光源ユニットの相違にかかわらず同じレンズ形状に構成される。すなわち、投影レンズの前面は一様な曲面又は平面で構成され、後面は配設される光源ユニットに対応して異なる曲面で構成される。
The vehicle lamp according to the present disclosure includes a low beam light source unit, a high beam light source unit, and a projection lens that projects light from each light source unit to form a required light distribution, and a low beam lens section that projects light from the low beam light source unit to form a low beam distribution, and a high beam lens section that projects light from the high beam light source unit to form a high beam distribution are integrally formed, and each light source unit can be arranged with a different structure, and the front surface of the projection lens is
Regardless of the difference in the light source unit, the projection lens is configured to have the same lens shape, that is, the front surface of the projection lens is configured to have a uniform curved surface or flat surface, and the rear surface is configured to have a different curved surface corresponding to the light source unit disposed therein.
 本開示によれば、一つの投影レンズに対応してハイビーム光源ユニットとロービーム光源ユニットを備えたランプユニットにおいて、光源ユニットの構成の違いにかかわらず投影レンズの外観上の統一性が得られ、意匠性を高めた車両用灯具が得られる。 According to the present disclosure, in a lamp unit equipped with a high beam light source unit and a low beam light source unit corresponding to one projection lens, uniformity in the appearance of the projection lens can be achieved regardless of differences in the configuration of the light source unit, resulting in a vehicle lamp with improved design.
 本開示に係る車両用灯具によれば、ハイビーム配光におけるレンズ収差を抑制し、意匠性を高めた車両用灯具が得られる。 The vehicle lamp disclosed herein suppresses lens aberration in high beam light distribution, resulting in a vehicle lamp with improved design.
実施形態の車両用灯具を搭載した自動車の概略斜視図。1 is a schematic perspective view of an automobile equipped with a vehicle lamp according to an embodiment; 実施形態の車両用灯具を搭載した自動車の一部の分解斜視図。1 is an exploded perspective view of a portion of an automobile equipped with a vehicle lamp according to an embodiment; 実施形態1の照明ランプユニットの概略の分解斜視図。FIG. 2 is a schematic exploded perspective view of the illumination lamp unit according to the first embodiment. 実施形態1の照明ランプユニットの概略平面図。FIG. 2 is a schematic plan view of the illumination lamp unit according to the first embodiment. 集光Lo光源ユニットの断面図と配光図。4 is a cross-sectional view and light distribution diagram of a concentrated Lo light source unit. 拡散Lo光源ユニットの断面図と配光図。4 is a cross-sectional view and light distribution diagram of a diffused Lo light source unit. 拡散Lo光源ユニットの断面図と配光図。4 is a cross-sectional view and light distribution diagram of a diffused Lo light source unit. 拡散Lo光源ユニットの断面図と配光図。4 is a cross-sectional view and light distribution diagram of a diffused Lo light source unit. 投影レンズの後面側からの斜視図。FIG. Hi光源ユニットの配光を説明する模式図。FIG. 4 is a schematic diagram illustrating the light distribution of a Hi light source unit. Hi配光を説明する配光図。FIG. Hi配光を説明する配光図。FIG. コマ収差の抑制を説明する模式図。Schematic diagram illustrating suppression of coma aberration. コマ収差によるグレアを説明する模式図。Schematic diagram explaining glare caused by coma aberration. コマ収差によるグレアを説明する模式図。Schematic diagram explaining glare caused by coma aberration. コマ収差によるグレアを説明する模式図。Schematic diagram explaining glare caused by coma aberration. 実施形態2の照明ランプユニットの概略の分解斜視図。FIG. 11 is a schematic exploded perspective view of an illumination lamp unit according to a second embodiment. 実施形態2のHi光源ユニットの一部の拡大斜視図。FIG. 11 is an enlarged perspective view of a portion of the Hi light source unit according to the second embodiment. 実施形態2のHi光源ユニットの一部の拡大斜視図。FIG. 11 is an enlarged perspective view of a portion of the Hi light source unit according to the second embodiment. 実施形態3の照明ランプユニットの概略の分解斜視図。FIG. 11 is a schematic exploded perspective view of an illumination lamp unit according to a third embodiment. 実施形態4の照明ランプユニットの概略の分解斜視図。FIG. 13 is a schematic exploded perspective view of an illumination lamp unit according to a fourth embodiment. 実施形態4の照明ランプユニットの概略平面図。FIG. 13 is a schematic plan view of an illumination lamp unit according to a fourth embodiment. Bi配光制御のHi光源ユニットの断面図と配光図。Cross-sectional view and light distribution diagram of a Hi light source unit with Bi light distribution control. Bi配光制御のHi光源ユニットの断面図と配光図。Cross-sectional view and light distribution diagram of a Hi light source unit with Bi light distribution control.
 次に、本開示の実施の形態について図面を参照して説明する。図1Aは本開示の車両用灯具として適用された左右のヘッドランプL-HL,R-HLを備える自動車CARの概略斜視図である。これら左右のヘッドランプL-HL,R-HLの構成は一部の構成を除けば左右対称であるので、以降は主に右ヘッドランプR-HLについて説明するが、単にヘッドランプHLと称することもある。右ヘッドランプR-HLは自動車CARの車体の右前部に配設されており、当該車体に取り付けられたランプハウジング100内に、照明ランプユニットLLUと表示ランプユニットILUが配設された複合型ヘッドランプとして構成されている。なお、以降の説明において、基本的に前後方向は自動車CARの前後方向であり、左右方向は自動車CARの車幅方向である。 Next, an embodiment of the present disclosure will be described with reference to the drawings. FIG. 1A is a schematic perspective view of an automobile CAR equipped with left and right headlamps L-HL, R-HL applied as vehicle lighting of the present disclosure. The left and right headlamps L-HL, R-HL are symmetrical except for some configurations, so the following description will mainly focus on the right headlamp R-HL, but it may also be simply referred to as headlamp HL. The right headlamp R-HL is disposed at the right front part of the body of the automobile CAR, and is configured as a composite headlamp in which an illumination lamp unit LLU and an indication lamp unit ILU are disposed within a lamp housing 100 attached to the body. In the following description, the longitudinal direction basically refers to the longitudinal direction of the automobile CAR, and the lateral direction refers to the width direction of the automobile CAR.
 図1Bは右ヘッドランプR-HLの一部を分解した概略斜視図である。ランプハウジング100は、車両の前方から側方にわたる部位が開口されたランプボディ101と、このランプボディ101の開口を塞ぐように取り付けられた透光性のアウターカバー102とで構成されている。このアウターカバー102は透光性カバーあるいはアウターレンズとも称されるが、無色の透光性樹脂等からなる、いわゆる素通しレンズとて構成されており、自動車CARの車体の右前部の湾曲形状に倣って表面が幾分湾曲された曲面に形成されている。 Fig. 1B is a schematic perspective view of a partially exploded right headlamp R-HL. The lamp housing 100 is composed of a lamp body 101 with an opening extending from the front to the side of the vehicle, and a translucent outer cover 102 attached to cover the opening of the lamp body 101. This outer cover 102 is also called a translucent cover or outer lens, and is composed of a so-called plain lens made of colorless translucent resin or the like, and its surface is formed into a slightly curved surface following the curved shape of the right front part of the body of the automobile CAR.
 このランプハウジング100内の下部に照明ランプユニットLLUが配設され、その上部に表示ランプユニットILUが配設されている。照明ランプユニットLLUは前面側から見たときには車幅方向に長辺を向けた横長の長方形に近い形状の発光面を有する構成とされている。また、表示ランプユニットILUは照明ランプユニット1の上側において車幅方向に延びる細長いストリップ(帯)状に近い形状の発光面を有する構成とされている。 An illumination lamp unit LLU is disposed at the bottom of this lamp housing 100, and an indication lamp unit ILU is disposed above it. When viewed from the front side, the illumination lamp unit LLU has a light-emitting surface that is shaped like a horizontally long rectangle with its long side facing in the vehicle width direction. The indication lamp unit ILU has a light-emitting surface that is shaped like a long, thin strip that extends in the vehicle width direction above the illumination lamp unit 1.
 照明ランプユニットLLUは、詳細については後述するが複数の実施の形態があり、1つの投影レンズに対応してロービーム(以下、Lo)光源ユニットとハイビーム(以下、Hi)光源ユニットが組み付けられている。そして、Lo光源ユニットが発光されたときに所定のLo配光での照明を行い、Hi光源ユニットが発光されたときにHi配光、ここではADB(Adaptive Driving Beam)-Hi配光での照明を行うように構成されている。 The lighting lamp unit LLU has multiple embodiments, the details of which will be described later, and is configured so that a low beam (hereinafter, Lo) light source unit and a high beam (hereinafter, Hi) light source unit are assembled to correspond to one projection lens. When the Lo light source unit emits light, it provides illumination with a specified Lo light distribution, and when the Hi light source unit emits light, it provides illumination with a Hi light distribution, in this case ADB (Adaptive Driving Beam)-Hi light distribution.
 表示ランプユニットILUは、ここでは自車の存在を表示するための白色光で発光するCL(クリアランスランプ)又はDRL(デイタイムランニングランプ)として機能するランプユニットとして構成されている。この表示ランプユニットILUは本開示との関連が少ないので詳細な説明は省略するが、照明ランプユニットLLUの上縁に沿って車幅方向に延びるストリップ状の導光体と、白色光を発光する白色LEDを備えている。そして、白色LEDが発光したときに発光された白色光が導光体を透して出射されることによりCL又はDRLとして点灯される。 The indication lamp unit ILU is configured here as a lamp unit that functions as a CL (clearance lamp) or DRL (daytime running lamp) that emits white light to indicate the presence of the vehicle. This indication lamp unit ILU is not particularly relevant to this disclosure and so a detailed description will be omitted, but it is equipped with a strip-shaped light guide that extends in the vehicle width direction along the upper edge of the illumination lamp unit LLU, and a white LED that emits white light. When the white LED emits light, the emitted white light passes through the light guide and is emitted, thereby lighting up as a CL or DRL.
 あるいは、表示ランプユニットILUは、車幅方向に配列された複数の白色LEDと、これらのLEDの前側に配設された車幅方向に細長い投影レンズとで構成されてもよい。この構成では、白色LEDが発光したときに発光された白色光が投影レンズを透して出射されることによりCL又はDRLとして点灯される。なお、この表示ランプユニットILUは、さらにアンバー色光を発光するアンバー色LEDを備えてもよく、その場合には表示ランプユニットILUは信号灯機能を有するTSL(ターンシグナルランプ)としても構成される。 Alternatively, the indicator lamp unit ILU may be configured with a number of white LEDs arranged in the vehicle width direction, and a projection lens that is elongated in the vehicle width direction and disposed in front of these LEDs. In this configuration, when the white LEDs emit light, the emitted white light passes through the projection lens and is lit as CL or DRL. Note that this indicator lamp unit ILU may further include an amber LED that emits amber light, in which case the indicator lamp unit ILU is also configured as a TSL (turn signal lamp) that has a signal light function.
(実施形態1)
 図2は前記した右ヘッドランプR-HLにおける照明ランプユニットLLUの実施形態1の一部を分解した斜視図であり、図3は概略の平面断面図である。この照明ランプユニットLLUは、一つの投影レンズ4に対して、2つのLo光源ユニット、すなわち第1Lo光源ユニット1及び第2Lo光源ユニット2と、1つのHi光源ユニット3を備えており、各光源ユニット1,2,3は1つの投影レンズ4を共用してそれぞれプロジェクター型のランプを構成している。
(Embodiment 1)
Fig. 2 is a partially exploded perspective view of the first embodiment of the illumination lamp unit LLU in the right headlamp R-HL described above, and Fig. 3 is a schematic plan sectional view. This illumination lamp unit LLU is provided with two Lo light source units, i.e., a first Lo light source unit 1 and a second Lo light source unit 2, and one Hi light source unit 3, for one projection lens 4, and each of the light source units 1, 2, and 3 share the single projection lens 4 to form a projector-type lamp.
 2つのLo光源ユニット1,2は車幅方向の外側に配置され、1つのHi光源ユニット3は車幅方向の内側に配置されている。第1Lo光源ユニット1は、後述するように、配光の中心領域、すなわち自動車の前方を照明する際の配光の基準となる水平線Hと鉛直線Vの交点(以下、HV点と称する)の近傍領域を集光的に照明する集光Lo光源ユニットとして構成されている。第2Lo光源ユニット2は、この集光領域を含む広い領域を相対的に低い照度で照明する拡散Lo光源ユニットとして構成されている。 The two Lo light source units 1, 2 are arranged on the outside in the vehicle width direction, and the one Hi light source unit 3 is arranged on the inside in the vehicle width direction. As described below, the first Lo light source unit 1 is configured as a concentrated Lo light source unit that provides concentrated illumination of the central area of light distribution, i.e., the area near the intersection of the horizontal line H and the vertical line V (hereinafter referred to as the HV point), which serves as the reference for light distribution when illuminating the area in front of the vehicle. The second Lo light source unit 2 is configured as a diffuse Lo light source unit that provides illumination at a relatively low illuminance over a wide area including this concentrated area.
 第1Lo光源ユニット、すなわち集光Lo光源ユニット1は、図4Aの縦断面図を合わせて参照すると、光源としての白色LED11と、この白色LED11から出射された白色光を前方に向けて反射するリフレクタ12を備えている。白色LED11は白色光を発光するチップ型LEDで構成され、その発光面を鉛直上方に向けた状態でユニットボディ13に搭載されている。このユニットボディ13は例えばヒートシンクとして構成されており、その上面に所要のアタッチメントを介して白色LED11が搭載され、さらに図示を省略した配線を通して発光のための給電が行われる。 The first Lo light source unit, i.e., concentrated Lo light source unit 1, also referring to the vertical cross-sectional view of FIG. 4A, comprises a white LED 11 as a light source and a reflector 12 that reflects the white light emitted from this white LED 11 forward. The white LED 11 is composed of a chip-type LED that emits white light, and is mounted on a unit body 13 with its light-emitting surface facing vertically upward. This unit body 13 is configured as, for example, a heat sink, and the white LED 11 is mounted on its upper surface via a required attachment, and power for light emission is supplied through wiring (not shown).
 リフレクタ12は回転楕円面を基礎とする凹面反射鏡として構成されており、その第1焦点に前記白色LED11が配置されている。実際には、リフレクタ12は、楕円長軸を含む鉛直方向断面から水平方向断面に向けて楕円の偏平率が徐々に小さくなる形状とされている。また、前記ユニットボディ13の上面の前端縁はシェード14として構成されており、前方に向けて凹状に湾曲された平面形状である。 The reflector 12 is configured as a concave reflecting mirror based on an ellipsoid of revolution, and the white LED 11 is located at its first focus. In reality, the reflector 12 is shaped so that the flatness of the ellipse gradually decreases from a vertical cross section including the major axis of the ellipse to a horizontal cross section. The front edge of the upper surface of the unit body 13 is configured as a shade 14, and is a flat shape that is curved concavely toward the front.
 第2Lo光源ユニット、すなわち拡散Lo光源ユニット2は、図4Cの縦断面図を合わせて参照すると、基本的な構成は集光Lo光源ユニット1と同様である。すなわち、光源としての白色LED21と、この白色LED21から出射された白色光を前方に向けて反射するリフレクタ22を備えている。白色LED21は白色光を発光するチップ型LEDで構成され、その発光面を鉛直上方に向けた状態でユニットボディ23に搭載されている。リフレクタ22は回転楕円面を基礎とする凹面反射鏡として構成されており、その第1焦点に前記白色LED21が配置されている。前記ユニットボディ23の上面の前端縁はシェード24として構成されており、集光Lo光源ユニット1とは逆に、シェード24は前方に向けて凸状に湾曲された平面形状である。 The second Lo light source unit, i.e., diffuse Lo light source unit 2, has the same basic configuration as concentrated Lo light source unit 1, also referring to the vertical cross-sectional view of FIG. 4C. That is, it has a white LED 21 as a light source and a reflector 22 that reflects the white light emitted from this white LED 21 forward. The white LED 21 is composed of a chip-type LED that emits white light, and is mounted on a unit body 23 with its light-emitting surface facing vertically upward. The reflector 22 is configured as a concave reflecting mirror based on an ellipsoid of revolution, and the white LED 21 is disposed at its first focus. The front edge of the upper surface of the unit body 23 is configured as a shade 24, and contrary to the concentrated Lo light source unit 1, the shade 24 has a planar shape that is curved convexly forward.
 前記Hi光源ユニット3は、図3に示したように、光源としての複数個の白色LED31と、この白色LEDから出射された光を幾分収束させる補正レンズ32を備えている。複数個の白色LED31は10個のチップ型LEDで構成されており、それぞれの発光面を前方に向けた状態でユニットボディ33に立設されたベース壁34の前面に車幅方向に一列に並んで搭載されている。これら10個の白色LED31は、自動車の車幅外方向から車幅内方向(車幅中央方向)に向けて隣接する白色LEDとの車幅方向の間隔寸法が徐々に大きくされているが、その詳細は後述する。 As shown in FIG. 3, the Hi light source unit 3 includes a plurality of white LEDs 31 as light sources, and a correction lens 32 that converges the light emitted from the white LEDs to some extent. The plurality of white LEDs 31 are made up of ten chip-type LEDs, and are mounted in a line in the vehicle width direction on the front surface of a base wall 34 erected on a unit body 33 with their light-emitting surfaces facing forward. The spacing between adjacent white LEDs in the vehicle width direction of these ten white LEDs 31 gradually increases from the outer side of the vehicle width to the inner side of the vehicle width (towards the center of the vehicle width), and details of this will be described later.
 前記補正レンズ32は10個の白色LED31の前側位置に配置され、各白色LED31の発光面から出射された白色光が入射されるように構成されている。この補正レンズ32は正の屈折力を有するレンズ、ここでは凸レンズで構成されており、各白色LED31から発散状態で出射された白色光を収束方向に屈折して投影レンズ4に入射させる構成とされている。この補正レンズ32はHi光源ユニット3と一体的に組み立てられているが、別体に構成されてもよい。 The correction lens 32 is disposed in front of the 10 white LEDs 31, and is configured to receive the white light emitted from the light-emitting surface of each white LED 31. The correction lens 32 is configured as a lens with positive refractive power, a convex lens in this case, and is configured to refract the white light emitted in a divergent state from each white LED 31 in a converging direction and cause it to enter the projection lens 4. The correction lens 32 is assembled integrally with the Hi light source unit 3, but may be configured separately.
 一方、図3に示した投影レンズ4は、2つのLo光源ユニット1,2と1つのHi光源ユニット3の各配光を形成するための共通の投影レンズとして構成されており、2つのLo光源ユニット1,2と1つのHi光源ユニット3の前面側の領域にわたって配設されている。この投影レンズ4はインナーレンズとも称されるが、照明ランプユニットLLUの発光面として構成されるものであり、透光性材料により車幅方向に長辺を向けた横長の長方形に近い形状に形成されている。 On the other hand, the projection lens 4 shown in FIG. 3 is configured as a common projection lens for forming the light distribution of the two Lo light source units 1, 2 and the one Hi light source unit 3, and is disposed across the area on the front side of the two Lo light source units 1, 2 and the one Hi light source unit 3. This projection lens 4 is also called an inner lens, and is configured as the light emitting surface of the illumination lamp unit LLU, and is formed from a translucent material into a shape close to a horizontally long rectangle with its long side facing in the vehicle width direction.
 図5は投影レンズ4を後面側から見た斜視図であり、投影レンズ4は各光源ユニット1,2,3に対応して車幅方向に区分されている。以降においては、区分した各部を便宜的にレンズ部と称する。すなわち、集光Lo光源ユニット1、拡散Lo光源ユニット2、Hi光源ユニット3に対向される部位をそれぞれ集光Loレンズ部41、拡散Loレンズ部42、Hiレンズ部43と称する。 FIG. 5 is a perspective view of the projection lens 4 seen from the rear side, with the projection lens 4 divided in the vehicle width direction to correspond to each of the light source units 1, 2, and 3. Hereinafter, for convenience, each divided part will be referred to as a lens part. That is, the parts facing the focusing Lo light source unit 1, the diffusing Lo light source unit 2, and the Hi light source unit 3 will be referred to as the focusing Lo lens part 41, the diffusing Lo lens part 42, and the Hi lens part 43, respectively.
 前記投影レンズ4の前面は全域にわたって一様な曲面で構成されている。すなわち、鉛直断面については各レンズ部41~43について所要の曲率の凸状をした円弧面あるいはこれに近い曲面とされる。一方、水平断面についてはランプハウジング100のアウターレンズ102の湾曲形状に倣って車両中央側から車幅外側方向に向けて緩やかに後方に延びる曲面に形成されている。したがって、投影レンズ4の前面は鉛直方向及び水平方向にそれぞれ湾曲した一様な曲面として構成され、投影レンズ4を前面側から観察したときには、各レンズ部41~43の区分が識別できない滑らかに連続した面として観察され、この点での意匠的効果が高められる。 The front surface of the projection lens 4 is configured as a uniform curved surface over the entire area. That is, in the vertical cross section, each of the lens portions 41 to 43 is a convex arc surface with the required curvature, or a curved surface close to this. On the other hand, in the horizontal cross section, it is formed as a curved surface that extends gently rearward from the center of the vehicle toward the outside of the vehicle width, following the curved shape of the outer lens 102 of the lamp housing 100. Therefore, the front surface of the projection lens 4 is configured as a uniform curved surface that is curved in both the vertical and horizontal directions, and when the projection lens 4 is observed from the front side, it is observed as a smooth, continuous surface with no distinguishable divisions between the lens portions 41 to 43, which enhances the design effect in this respect.
 投影レンズ4の後面については各レンズ部41~43の形状は相違している。集光Loレンズ部41の後面は、少なくとも水平方向に所要の曲率の凸状の球面ないしは非球面に形成されている。また、鉛直方向についても同様な凸状の曲面に形成されている。これらの面形状により、集光Loレンズ部41は、いわゆる両凸レンズとして構成されており、水平方向及び鉛直方向のいずれも光を収束させる正の屈折力のあるレンズ部として構成されている。 The shapes of the lens sections 41 to 43 on the rear surface of the projection lens 4 are different. The rear surface of the focusing Lo lens section 41 is formed as a convex spherical or aspherical surface with the required curvature at least in the horizontal direction. It is also formed as a similarly convex curved surface in the vertical direction. Due to these surface shapes, the focusing Lo lens section 41 is configured as a so-called biconvex lens, and is configured as a lens section with positive refractive power that converges light in both the horizontal and vertical directions.
 また、図4Aに示したように、この集光Loレンズ部41の光軸Lx上にある焦点Fは、集光Lo光源ユニット1のリフレクタ12の第2焦点の近傍位置、換言すればシェード14の近傍位置に設定される。なお、水平方向と鉛直方向のそれぞれについて正の屈折力のレンズ部として構成されるのであれば、集光Loレンズ部41の後面は凹面であってもよい。 Also, as shown in FIG. 4A, the focal point F on the optical axis Lx of this condensing Lo lens section 41 is set to a position near the second focal point of the reflector 12 of the condensing Lo light source unit 1, in other words, a position near the shade 14. Note that the rear surface of the condensing Lo lens section 41 may be a concave surface, so long as it is configured as a lens section with positive refractive power in both the horizontal and vertical directions.
 拡散Loレンズ部42の後面は、鉛直方向については正の屈折力を生じる平面又は曲面に形成されている。ここでは前面よりも小さい曲率の曲面に形成されており、いわゆるメニスカス型のレンズとして構成され、集光Loレンズ部41よりも薄肉に形成されている。一方、水平方向については、図3に示したように、前面と平行な曲面に形成されており、したがって水平方向にはレンズとしての屈折力を生じない構成とされている。換言すれば、水平方向に湾曲されたシリンドリカルレンズとして構成されている。 The rear surface of the diffusion Lo lens section 42 is formed as a flat surface or a curved surface that generates positive refractive power in the vertical direction. Here, it is formed as a curved surface with a smaller curvature than the front surface, is configured as a so-called meniscus type lens, and is formed to be thinner than the focusing Lo lens section 41. On the other hand, in the horizontal direction, as shown in Figure 3, it is formed as a curved surface parallel to the front surface, and is therefore configured to not generate refractive power as a lens in the horizontal direction. In other words, it is configured as a cylindrical lens curved in the horizontal direction.
 この拡散Loレンズ部42は鉛直方向については光軸Lx及び焦点Fが特定できるが、水平方向については水平方向に延びる面状又は線状となる。この光軸Lx及び焦点Fは、図4Cに示したように、拡散Lo光源ユニット2のリフレクタ22の第2焦点の近傍位置、すなわちシェード24の位置に設定される。 This diffused Lo lens section 42 has a specific optical axis Lx and focal point F in the vertical direction, but in the horizontal direction it is planar or linear extending in the horizontal direction. As shown in FIG. 4C, this optical axis Lx and focal point F are set in the vicinity of the second focal point of the reflector 22 of the diffused Lo light source unit 2, i.e., at the position of the shade 24.
 Hiレンズ部43の後面は、集光Loレンズ部41と同様に、水平方向には所要の曲率の凸状の球面ないしは非球面に形成され、鉛直方向についても同様な凸状の球面ないしは非球面に形成されている。これらの面形状により、Hiレンズ部43は、水平方向及び鉛直方向のいずれも光を収束させる正の屈折力のあるレンズ部として構成されており、3つのレンズ部のうち最も肉厚に形成されている。 The rear surface of the Hi lens section 43, like the focusing Lo lens section 41, is formed as a convex spherical or aspherical surface with the required curvature in the horizontal direction, and is also formed as a similar convex spherical or aspherical surface in the vertical direction. Due to these surface shapes, the Hi lens section 43 is configured as a lens section with positive refractive power that converges light in both the horizontal and vertical directions, and is formed to be the thickest of the three lens sections.
 Hiレンズ部43の光軸Lxは、前記した補正レンズ32の光軸と一致されている。また、この光軸Lxの鉛直方向の位置は白色LED41の高さ位置に一致され、水平方向の位置は白色LED41の水平方向中心位置として設定された所定位置に一致されている。このHiレンズ部43についても、水平方向と鉛直方向のそれぞれについて正の屈折力のレンズ部として構成されるのであれば、後面は凹面であってもよい。 The optical axis Lx of the Hi lens section 43 coincides with the optical axis of the correction lens 32 described above. In addition, the vertical position of this optical axis Lx coincides with the height position of the white LED 41, and the horizontal position coincides with a predetermined position set as the horizontal center position of the white LED 41. The rear surface of this Hi lens section 43 may also be concave, so long as it is configured as a lens section with positive refractive power in both the horizontal and vertical directions.
 以上の3つの光源ユニット1,2,3と、1つの投影レンズ4はそれぞれ別体に構成された上で独立して前記ランプハウジング100内に配設されてもよい。あるいは2つのLo光源1,2が一体に組み立てられた上でランプハウジング100内に配設されてもよい。さらには、3つの光源ユニット1,2,3が一体的に組み立てられた上でランプハウジング100内に配設されてもよい。この場合には、投影レンズ4も3つの光源ユニット1,2,3と一体的に組み立てられる構成とされてもよい。 The above three light source units 1, 2, 3 and one projection lens 4 may each be constructed separately and then disposed independently within the lamp housing 100. Alternatively, the two Lo light sources 1, 2 may be assembled together and then disposed within the lamp housing 100. Furthermore, the three light source units 1, 2, 3 may be assembled together and then disposed within the lamp housing 100. In this case, the projection lens 4 may also be configured to be assembled together with the three light source units 1, 2, 3.
 以上の構成の照明ランプユニットの作用について説明する。ヘッドランプHLがLoビーム配光で点灯されたときには、2つのLo光源ユニット1,2が同時に発光状態とされる。集光Lo光源ユニット1では、図4Aのように、発光された白色LED11の白色光はリフレクタ12で前方に向けて反射されて第2焦点の近傍に収束され、また、一部はユニットベース13の表面で反射される。シェード14で遮光されない白色光が投影レンズ4の集光レンズ部41に入射される。集光レンズ部41は、図3にも示すように、鉛直方向と水平方向に屈折力を有しているので、白色光は集光レンズ部41により自動車の前方に照射される。 The operation of the lighting lamp unit configured as above will now be described. When the headlamp HL is turned on with the Lo beam distribution, the two Lo light source units 1, 2 are simultaneously put into an emitting state. In the condensed Lo light source unit 1, as shown in FIG. 4A, the white light emitted by the white LED 11 is reflected forward by the reflector 12 and converged near the second focal point, and a portion of the light is also reflected by the surface of the unit base 13. The white light that is not blocked by the shade 14 is incident on the condenser lens portion 41 of the projection lens 4. As shown in FIG. 3, the condenser lens portion 41 has refractive power in both the vertical and horizontal directions, so the white light is irradiated forward of the vehicle by the condenser lens portion 41.
 集光Lo光源ユニット1のシェード14は、前記したように水平方向に段状に形成されているので、図4Bに示すように、投影される白色光にはカットオフライン(以下、COライン)、ここでは段状COラインCOL1が形成され、この段状COラインCOL1の下側領域に白色光が照射された集光Lo配光PLo1が得られる。この段状COラインCOL1は、例えば対向車線側が自車線側よりも低くされており、対向車線側では水平線Hに対して下方に0.57度の角度位置である。また、集光Lo光源ユニット1では、シェード14は前方に向けて凹形状とされているので、集光Loレンズ部41に生じるレンズ収差、特に像面湾曲を解消ないし低減した鮮鋭な段状COラインCOL1が得られる。さらに、集光Loレンズ部41の鉛直方向と水平方向の屈折力によって白色光はHV点の近傍に集光状態で照射されるので、集光Lo配光PLo1は相対的に照度の高い領域、いわゆるホットゾーンを含むLo配光となる。 The shade 14 of the concentrated Lo light source unit 1 is formed in a horizontal stepped shape as described above, so that as shown in Figure 4B, a cut-off line (hereinafter, CO line) is formed in the projected white light, here a stepped CO line COL1, and a concentrated Lo light distribution PLo1 is obtained in which white light is irradiated onto the lower area of this stepped CO line COL1. This stepped CO line COL1 is lower on the oncoming lane side than on the own lane side, for example, and is at an angle of 0.57 degrees downward from the horizontal line H on the oncoming lane side. Also, in the concentrated Lo light source unit 1, the shade 14 is formed in a concave shape facing forward, so that a sharp stepped CO line COL1 is obtained which eliminates or reduces the lens aberration, particularly the field curvature, that occurs in the concentrated Lo lens section 41. Furthermore, because the white light is irradiated in a concentrated state near the HV point due to the vertical and horizontal refractive power of the focusing Lo lens section 41, the focusing Lo light distribution PLo1 becomes an Lo light distribution that includes a relatively high illuminance area, the so-called hot zone.
 拡散Lo光源ユニット2では、図4Cのように、発光された白色LED21の白色光はリフレクタ22で反射されて第2焦点の近傍に収束され、シェード24で遮光されない白色光が投影レンズ4の拡散Loレンズ部42に入射される。拡散Loレンズ部42は鉛直方向に屈折力を有しているが、図3に示したように、水平方向には屈折力を有していない。また、拡散Lo光源ユニット2のシェード24は、前方に向けて凸形状とされており、これは拡散Loレンズ部42の水平方向の湾曲形状に対応した凸形状であるので、図4Dに示すように、水平方向に延びる直線ないしこれに近い水平COラインCOL2が形成される。この水平COラインCOL2は前記した段状COラインCOL1の対向車線側と同じ角度位置、すなわち水平線Hに対して下方に0.57度の角度位置である。 In the diffused Lo light source unit 2, as shown in FIG. 4C, the white light emitted by the white LED 21 is reflected by the reflector 22 and converged near the second focal point, and the white light that is not blocked by the shade 24 is incident on the diffused Lo lens section 42 of the projection lens 4. The diffused Lo lens section 42 has refractive power in the vertical direction, but does not have refractive power in the horizontal direction, as shown in FIG. 3. In addition, the shade 24 of the diffused Lo light source unit 2 has a convex shape facing forward, which corresponds to the horizontally curved shape of the diffused Lo lens section 42, so that a horizontal CO line COL2 that is a straight line extending horizontally or a horizontal CO line close to this is formed, as shown in FIG. 4D. This horizontal CO line COL2 is at the same angle position as the stepped CO line COL1 on the oncoming lane side described above, that is, at an angle position of 0.57 degrees downward from the horizontal line H.
 そして、この水平COラインCOL2の下側の領域に白色光が照射され、拡散Lo配光PLo2が形成される。拡散Loレンズ部42は水平方向に屈折力を有していないため、白色光は水平方向の広い角度に向けて発散され、左右方向の広い領域に照射される。また、白色光はLo配光PLo1よりも広い領域に照射されるので相対的に低い照度の配光となる。なお、この図4A~図4Dにおいては、白色光で照明される領域は点描で表している。 White light is then irradiated onto the area below this horizontal CO line COL2, forming a diffuse Lo light distribution PLo2. Because the diffuse Lo lens portion 42 has no refractive power in the horizontal direction, the white light is diverged over a wide angle in the horizontal direction and is irradiated onto a wide area in the left-right direction. Also, because the white light is irradiated onto a wider area than the Lo light distribution PLo1, the light distribution has a relatively low illuminance. Note that in Figures 4A to 4D, the area illuminated with white light is indicated by dotted lines.
 これらの集光Lo光源ユニット1と拡散Lo光源ユニット2による各Lo配光PLo1,PLo2は合成されるので、段状COラインCOL1及び水平COラインCOL2の下側の水平方向に広い領域を照明し、かつ自動車の直進方向、すなわちHV点の近傍の高い照度のホットゾーンを有するLo配光PLoが形成される。このLo配光の図示は省略するが、図4Bと図4Dの配光を合成したものとなる。 The Lo light distributions PLo1 and PLo2 produced by the concentrated Lo light source unit 1 and the diffused Lo light source unit 2 are combined to form a Lo light distribution PLo that illuminates a wide area in the horizontal direction below the stepped CO line COL1 and the horizontal CO line COL2 and has a hot zone of high illuminance in the straight-ahead direction of the car, i.e., near the HV point. Although illustration of this Lo light distribution is omitted, it is a combination of the light distributions in Figures 4B and 4D.
 ヘッドランプHLがHiビーム配光で点灯されたときには、2つのLo光源ユニット1,2の発光と同時にHi光源ユニット3の白色LED31が発光される。発光された白色LED31の各白色光は補正レンズ32に入射され、この補正レンズ32を透過された上で投影レンズ4のHiレンズ部43に入射される。Hiレンズ部43は鉛直方向と水平方向に屈折力を有しているので、各白色LED31の白色光はそれぞれ鉛直方向と水平方向に発散された状態で自動車の前方に投影される。 When the headlamp HL is turned on with the Hi beam light distribution, the white LED 31 of the Hi light source unit 3 emits light at the same time as the two Lo light source units 1 and 2 emit light. The white light of each emitted white LED 31 is incident on the correction lens 32, and after passing through this correction lens 32, is incident on the Hi lens portion 43 of the projection lens 4. Since the Hi lens portion 43 has refractive power in the vertical and horizontal directions, the white light of each white LED 31 is projected forward of the car while being diverged in the vertical and horizontal directions, respectively.
 図6はHi光源ユニット3における配光動作を説明するための模式図である。10個の白色LED31[31(1)~31(10)]は水平方向に配列されているので、各白色LED31の白色光が投影レンズ4により投影されることにより、各白色光の投影パターンが水平方向に配列した配光が得られる。この実施形態1では、10個の白色LED31は、光軸Lxに近い白色LED31(1)側が光軸Lxから離れた白色LED31(10)よりも水平方向に密に配置されている。換言すれば、光軸Lxから離れるのにしたがって白色LED31の間隔寸法は徐々に大きくされている。なお、ここでは照明パターンの点描は省略している。 FIG. 6 is a schematic diagram for explaining the light distribution operation of the Hi light source unit 3. The ten white LEDs 31 [31(1) to 31(10)] are arranged in the horizontal direction, and the white light of each white LED 31 is projected by the projection lens 4 to obtain a light distribution in which the projection patterns of each white light are arranged in the horizontal direction. In this embodiment 1, the ten white LEDs 31 are arranged more densely in the horizontal direction on the white LED 31(1) side closer to the optical axis Lx than the white LED 31(10) further away from the optical axis Lx. In other words, the spacing between the white LEDs 31 gradually increases as they move away from the optical axis Lx. Note that the pointillism of the illumination pattern is omitted here.
 このような10個の白色LED31の配列では、光軸Lxから離れて配置された白色LED31(10)側の白色光は、光軸Lxに近い白色LED31(1)側の白色光よりも光軸Lxに対する入射角が大きくなる。そして、この白色光はHiレンズ部43でのレンズ収差によって水平方向の拡大幅が増大される。したがって、この水平方向の拡大幅の増大により、図6に示すように、光軸Lxから離れた白色LED31の隣接する白色光の投影パターンPAHi(10)の両側部は互いに重なるようになる。 In such an arrangement of 10 white LEDs 31, the white light from the white LED 31 (10) disposed away from the optical axis Lx has a larger angle of incidence with respect to the optical axis Lx than the white light from the white LED 31 (1) closer to the optical axis Lx. The horizontal expansion width of this white light is increased by lens aberration in the Hi lens section 43. Therefore, due to this increase in the horizontal expansion width, both sides of the projection patterns PAHi (10) of adjacent white light from the white LEDs 31 away from the optical axis Lx overlap each other, as shown in FIG. 6.
 これにより、図7Aに示すように、10個の白色LED31の白色光は水平線Hを含むその上側において水平方向に並んだ投影パターンとして投影される。投影された各白色LED31の投影パターンPAHi(1)~PAHi(10)は水平方向の両側部が互いに重なるため、各投影パターンは水平方向に連続した配光とされ、この配光がいわゆるHi付加配光PAHiとされる。図示及び説明は省略するが、左ヘッドランプL-HLのHi光源ユニットにおいては、これと左右対称のHi付加配光PAHiが形成される。したがって、Lo配光PLo1,PLo2と、その上側の左右のHi付加配光PAHiが合成されることにより、図7Bに示すHi配光PHiが形成される。 As a result, as shown in FIG. 7A, the white light of the 10 white LEDs 31 is projected as a horizontally aligned projection pattern above and including the horizontal line H. Since the projection patterns PAHi(1) to PAHi(10) of the projected white LEDs 31 overlap each other on both horizontal sides, each projection pattern is a continuous light distribution in the horizontal direction, and this light distribution is the so-called Hi-added light distribution PAHi. Although not shown or explained, in the Hi light source unit of the left headlamp L-HL, a Hi-added light distribution PAHi that is symmetrical to this is formed. Therefore, the Hi light distribution PHi shown in FIG. 7B is formed by combining the Lo light distributions PLo1 and PLo2 with the Hi-added light distributions PAHi on the left and right above them.
 また、この構成では、10個の白色LED31は、光軸Lxに近い白色LED31(1)側が水平方向に密に配置されているので、投影されたHi付加配光PAHiは光軸Lxに近い側の照度が光軸Lxから水平方向に離れた側よりも高くなる。これにより、Hi付加配光PAHiをLo配光PLoと合成したときに、Lo配光PLoのホットゾーンに連なる領域の照度が周辺領域よりも高くされたHi配光PHiが得られる。 In addition, in this configuration, the 10 white LEDs 31 are densely arranged in the horizontal direction on the side of the white LEDs 31(1) closer to the optical axis Lx, so that the illuminance of the projected Hi-added light distribution PAHi is higher on the side closer to the optical axis Lx than on the side further horizontally from the optical axis Lx. As a result, when the Hi-added light distribution PAHi is combined with the Lo light distribution PLo, a Hi light distribution PHi is obtained in which the illuminance of the area adjacent to the hot zone of the Lo light distribution PLo is higher than the surrounding area.
 前記したように左右のヘッドランプのHi光源ユニット31は左右対称であり、それぞれ10個の白色LED31の配置も左右対称とされている。したがって、左右のヘッドランプの各Hi光源ユニット31によるHi付加配光PAHiを合成することにより、光軸に近い側の照度はさらに高められ、同時に光軸Lxを中心にした水平方向の左右に広い領域が照射されるHi配光PHiが得られる。 As mentioned above, the Hi light source units 31 of the left and right headlamps are symmetrical, and the arrangement of the 10 white LEDs 31 in each is also symmetrical. Therefore, by combining the Hi additional light distribution PAHi from each Hi light source unit 31 of the left and right headlamps, the illuminance on the side closer to the optical axis is further increased, and at the same time, a Hi light distribution PHi is obtained that illuminates a wide area to the left and right in the horizontal direction centered on the optical axis Lx.
 このHi光源ユニット3では、ADB配光制御時には、10個の白色LED31は選択的に発光あるいは消光される。したがって、Hi配光時に一部の白色LEDが消光されると、この白色LEDの投影パターンの領域は遮光領域として形成される。したがって、対向車等が存在するときに、当該対向車の存在する領域を遮光領域とするように白色LED31を選択的に消光することにより、当該対向車に対するグレアを防止したADB配光制御が実現できる。 In this Hi light source unit 3, the 10 white LEDs 31 are selectively turned on or off during ADB light distribution control. Therefore, when some of the white LEDs are turned off during Hi light distribution, the area of the projection pattern of these white LEDs is formed as a light-blocking area. Therefore, when there is an oncoming vehicle, etc., the white LEDs 31 are selectively turned off so that the area where the oncoming vehicle is present becomes a light-blocking area, thereby realizing ADB light distribution control that prevents glare for the oncoming vehicle.
 ところで、光軸Lxから離れて配置された白色LED31の白色光について、Hiレンズ部43でのレンズ収差、いわゆる結像ボケを利用して投影する配光の拡大幅を大きくしているが、このレンズ収差による好ましくない影響も無視できなくなる。すなわち、光軸に対する白色光の入射角が大きくなるとレンズ収差の一つであるコマ収差が顕著になり、このコマ収差により各白色光の投影パターンの境界が不鮮明になる。 By the way, the white light from the white LED 31, which is positioned away from the optical axis Lx, is projected with a larger width of light distribution by utilizing the lens aberration, or so-called imaging blur, in the Hi lens section 43, but the undesirable effects of this lens aberration cannot be ignored. In other words, when the angle of incidence of the white light with respect to the optical axis increases, coma aberration, which is one type of lens aberration, becomes prominent, and this coma aberration causes the boundaries of the projection patterns of each white light to become unclear.
 投影パターンの境界が不鮮明になると、ADB配光制御を実行したときにグレア防止効果が低下するおそれが生じる。図9A~図9Cはグレア防止効果の概念図であり、図9Cは図9Bにおける領域Tを示す図である。ADB制御を実行したときには、図9Aのように、例えば対向車Oが存在する領域の白色LEDが消光され、この領域が遮光領域Dとなってグレア防止効果が得られる。しかし、この遮光領域Dに隣接する照明領域Lにコマ収差が生じていると、図9B、図9Cのように、当該隣接する照明領域Lの境界が遮光領域Dに進出される状態となり、遮光領域Dの境界が不鮮明となり、対向車Oに対するグレア防止効果が低下するおそれが生じる。 If the boundaries of the projection pattern become unclear, there is a risk that the glare prevention effect will be reduced when ADB light distribution control is executed. Figures 9A to 9C are conceptual diagrams of the glare prevention effect, and Figure 9C is a diagram showing area T in Figure 9B. When ADB control is executed, as in Figure 9A, for example, the white LEDs in the area where an oncoming vehicle O is present are turned off, and this area becomes a light-blocking area D, providing a glare prevention effect. However, if coma aberration occurs in the illumination area L adjacent to this light-blocking area D, as in Figures 9B and 9C, the boundary of the adjacent illumination area L will advance into the light-blocking area D, making the boundary of the light-blocking area D unclear, and there is a risk that the glare prevention effect for oncoming vehicles O will be reduced.
 この実施形態1では、Hi光源ユニット3に補正レンズ32を備えており、この補正レンズ32の正の屈折力によって白色LEDから出射された白色光の発散が抑制される。すなわち、図8にHi光源ユニット3の一部を拡大した模式図を示すように、白色LED31から発散状態に出射された白色光の光束(光の束)は、補正レンズ32によって同図の鎖線から実線に示すように収束され、絞り効果が得られる。これにより、補正レンズ32を透過して投影レンズ4のHiレンズ部43に入射される白色光の入射角が抑制され、コマ収差が抑制される。また、この実施形態1では、Hiレンズ部43は、白色光が入射する後面の曲率が前面の曲率よりも大きな凸球面であるので、この点からもコマ収差が抑制される。したがって、ADB配光制御を実行したときの照明領域Lの境界が不鮮明になることを抑制し、精度の高いADB配光制御が実現できる。 In this embodiment 1, the Hi light source unit 3 is provided with a correction lens 32, and the positive refractive power of this correction lens 32 suppresses the divergence of the white light emitted from the white LED. That is, as shown in FIG. 8, which is a schematic diagram showing an enlarged portion of the Hi light source unit 3, the light beam (beam of light) of the white light emitted in a divergent state from the white LED 31 is converged by the correction lens 32 as shown by the dashed line to the solid line in the figure, and an aperture effect is obtained. This suppresses the angle of incidence of the white light that passes through the correction lens 32 and enters the Hi lens section 43 of the projection lens 4, and suppresses coma aberration. In addition, in this embodiment 1, the Hi lens section 43 is a convex spherical surface whose curvature of the rear surface on which the white light enters is larger than the curvature of the front surface, so that coma aberration is also suppressed from this point of view. Therefore, the boundary of the illumination area L when ADB light distribution control is executed is suppressed from becoming unclear, and highly accurate ADB light distribution control can be realized.
 以上のように、実施形態1の照明ランプユニットLLUは、Hi光源ユニット3に補正レンズ32を備えることにより、Hiレンズ部43により生じるコマ収差が抑制され、白色光による投影パターンの境界が鮮明なものとされADB配光制御が高められる。また、実施形態1の照明ランプユニットLLUは、投影レンズ4の前面が一様な曲面で構成されているので、アウターレンズ102を透して観察したときの外観がシンプルなものになり、照明ランプユニットLLUの意匠性を高めることができる。 As described above, the lighting lamp unit LLU of embodiment 1 is provided with a correction lens 32 in the Hi light source unit 3, which suppresses the coma aberration caused by the Hi lens section 43, making the boundaries of the projection pattern using white light clearer and improving ADB light distribution control. In addition, the lighting lamp unit LLU of embodiment 1 has a front surface of the projection lens 4 that is uniformly curved, so that the appearance when observed through the outer lens 102 is simple, and the design of the lighting lamp unit LLU can be improved.
(実施形態2)
 図10は実施形態2の照明ランプユニットLLUの概略構成を示す外観図であり、実施形態1と比較してHi光源ユニット3Aの構成のみが相違しているので、その他の構成については説明を省略する。実施形態2のHi光源ユニット3Aは、補正レンズを備える代わりに補正リフレクタ35を備えている。すなわち、10個の白色LED31を搭載しているベース壁34の前面に、これら白色LED31を囲むように前方を開口した補正リフレクタ35が取り付けられている。そして、各白色LED31から出射される白色光の一部を、この補正リフレクタ35で反射して投影レンズ4のHiレンズ部43に入射させる構成とされている。
(Embodiment 2)
10 is an external view showing a schematic configuration of the illumination lamp unit LLU of the second embodiment, and since only the configuration of the Hi light source unit 3A is different from that of the first embodiment, the description of the other configurations will be omitted. The Hi light source unit 3A of the second embodiment is provided with a correction reflector 35 instead of a correction lens. That is, the correction reflector 35, which is open at the front, is attached to the front surface of the base wall 34 on which the ten white LEDs 31 are mounted so as to surround the white LEDs 31. Then, a part of the white light emitted from each white LED 31 is reflected by the correction reflector 35 and made to enter the Hi lens portion 43 of the projection lens 4.
補正リフレクタ35は、図11Aに拡大斜視図を示すように、前面方向から見たときに10個の白色LED31の周囲を囲む四角枠壁あるいは長円枠壁として構成されている。そして、少なくとも左右の枠壁35aの内側面がそれぞれ光反射面として構成されている。ここでは、上下、左右の各枠壁の内側面が光反射面として構成されている。ここでは各枠壁35aの内面は、鉛直方向及び水平方向にそれぞれ傾きを有する平面、放物面ないしはこれに近い凹面形状の光反射面に形成されている。 As shown in the enlarged perspective view of FIG. 11A, the correction reflector 35 is configured as a rectangular or elliptical frame wall that surrounds the 10 white LEDs 31 when viewed from the front. At least the inner surfaces of the left and right frame walls 35a are configured as light reflecting surfaces. Here, the inner surfaces of the top, bottom, left and right frame walls are configured as light reflecting surfaces. Here, the inner surface of each frame wall 35a is formed as a light reflecting surface that is a plane, a paraboloid, or a concave shape similar thereto, with an inclination in the vertical and horizontal directions.
 したがって、図11Bに示すように、各白色LED31から出射された光のうち、Hiレンズ部43の光軸Lxに対して相対的に大きな角度で出射された白色光は、補正リフレクタ35で光軸Lx寄りの方向に偏向されてHiレンズ部43に入射される。特に、光軸Lxからの距離が大きな左右の白色LED31の光が左右の枠壁35aにより光軸Lx側に偏向される。これにより、実施形態1に比較すると改善度は低いが、Hiレンズ部43において生じるコマ収差が抑制され、ADB配光制御の精度が改善される。 Therefore, as shown in FIG. 11B, of the light emitted from each white LED 31, the white light emitted at a relatively large angle with respect to the optical axis Lx of the Hi lens section 43 is deflected by the corrective reflector 35 in a direction closer to the optical axis Lx and enters the Hi lens section 43. In particular, the light from the left and right white LEDs 31 that are farther away from the optical axis Lx is deflected toward the optical axis Lx by the left and right frame walls 35a. As a result, although the degree of improvement is lower compared to embodiment 1, coma aberration that occurs in the Hi lens section 43 is suppressed, and the accuracy of the ADB light distribution control is improved.
(実施形態3)
 図12は実施形態3の照明ランプユニットLLUの概略構成を示す外観図であり、実施形態1とは投影レンズの構成が相違している。Lo光源ユニット1,2とHi光源ユニット3の構成は実施形態1と同じであるので説明は省略する。実施形態3では、投影レンズ4Aは、Hiレンズ部43Aの後面の凸球面の曲率が実施形態1よりも小さくされ、平面もしくは平面に近い曲面に形成されている。その一方で、Hiレンズ部43Aの前面は2つのLoレンズ部41,42よりも前方に突出された球面もしくは非球面に形成されている。このように、Hiレンズ部43Aについては前面が所定の曲面に形成するという制約が解除されるので、当該Hiレンズ部43Aの前面の設計の自由度が高められ、レンズ収差を低減した投影レンズ4Aが得られる。
(Embodiment 3)
12 is an external view showing a schematic configuration of the illumination lamp unit LLU of the third embodiment, and the configuration of the projection lens is different from that of the first embodiment. The configurations of the Lo light source units 1 and 2 and the Hi light source unit 3 are the same as those of the first embodiment, so the description will be omitted. In the third embodiment, the projection lens 4A has a convex spherical surface on the rear surface of the Hi lens portion 43A with a smaller curvature than that of the first embodiment, and is formed into a flat surface or a curved surface close to a flat surface. On the other hand, the front surface of the Hi lens portion 43A is formed into a spherical surface or an aspherical surface protruding forward from the two Lo lens portions 41 and 42. In this way, the constraint that the front surface of the Hi lens portion 43A is formed into a predetermined curved surface is lifted, so that the degree of freedom in designing the front surface of the Hi lens portion 43A is increased, and a projection lens 4A with reduced lens aberration is obtained.
 また、Hiレンズ部43Aの前面はLoレンズ部41,42の前面とは形状が相違しているが、Hiレンズ部43Aの鉛直方向の寸法はLoレンズ部41,42と同じである。したがって、投影レンズ4Aを正面から観察したときには、投影レンズ4Aの全体が横長の長方形の外観を呈していることから、投影レンズ4Aは全体としての一体感が得られる。このように、実施形態3の照明ランプユニットLLUでは、Hi光源ユニット3Aにおけるレンズ収差を抑制し、高精度のADB制御が実現できる一方で、投影レンズ4Aの外観上の意匠性についても十分な意匠性が得られる。 The front surface of the Hi lens section 43A has a different shape from the front surfaces of the Lo lens sections 41 and 42, but the vertical dimension of the Hi lens section 43A is the same as that of the Lo lens sections 41 and 42. Therefore, when the projection lens 4A is observed from the front, the entire projection lens 4A has the appearance of a horizontally long rectangle, and the projection lens 4A has a sense of unity as a whole. In this way, the illumination lamp unit LLU of embodiment 3 suppresses lens aberration in the Hi light source unit 3A, realizing high-precision ADB control, while also achieving a sufficient design in terms of the appearance of the projection lens 4A.
(実施形態4)
 図13は実施形態4の照明ランプユニットLLUの概略構成を示す外観図であり、図14はその概略平面図である。この照明ランプユニットLLUは、実施形態1と比較してLo光源ユニット1,2は同じであるが、Hi光源ユニット3Bと投影レンズ4Bの構成が相違している。実施形態4のHi光源ユニット3BはADB配光制御を行わず、単純にLo配光の上側に形成する付加Hi配光を投影するものであり、Bi(バイファンクション:Bi-function)配光制御とも称せられる照明ランプユニットに用いられる光源ユニットである。この実施形態4では、実施形態1のADB配光制御を行うHi光源ユニット3(第1Hi光源ユニット)を、これと構造の異なるBi配光制御を行うHi光源ユニット3B(第2Hi光源ユニット)に置き換えている構成であると言える。
(Embodiment 4)
FIG. 13 is an external view showing a schematic configuration of the illumination lamp unit LLU of the fourth embodiment, and FIG. 14 is a schematic plan view thereof. This illumination lamp unit LLU has the same Lo light source units 1 and 2 as those of the first embodiment, but has a different configuration of the Hi light source unit 3B and the projection lens 4B. The Hi light source unit 3B of the fourth embodiment does not perform ADB light distribution control, but simply projects an additional Hi light distribution formed on the upper side of the Lo light distribution, and is a light source unit used in an illumination lamp unit also called Bi (bi-function) light distribution control. In this fourth embodiment, it can be said that the Hi light source unit 3 (first Hi light source unit) performing the ADB light distribution control of the first embodiment is replaced with a Hi light source unit 3B (second Hi light source unit) performing Bi light distribution control having a different structure.
 このHi光源ユニット3Bの基本的な構成はLo光源ユニット1,2と同様であるので説明は簡略するが、図15Aに縦断面構造を示すように、光源としての白色LED31と、回転楕円面を基礎としたリフレクタ36を備えている。その上で、Lo光源ユニット1,2よりも全体が小型に構成され、さらにリフレクタ36の前側の下部に、ユニットボディ37と一体に形成されたフロントミラー38を備えている点で構成が相違している。また、この実施形態3では、略同じ構成をした2つのHi光源ユニット3Bが水平方向に並んで配設されている。 The basic configuration of this Hi light source unit 3B is similar to that of the Lo light source units 1 and 2, so a detailed explanation will be omitted, but as shown in the longitudinal cross-sectional structure in Figure 15A, it is equipped with a white LED 31 as a light source and a reflector 36 based on an ellipsoid of revolution. Furthermore, it is smaller overall than the Lo light source units 1 and 2, and is further configured differently in that it is equipped with a front mirror 38 formed integrally with the unit body 37 at the lower front side of the reflector 36. Furthermore, in this embodiment 3, two Hi light source units 3B with approximately the same configuration are arranged side by side in the horizontal direction.
 各Hi光源ユニット3Bの白色LED31は白色光を発光するチップ型LEDで構成され、その発光面を鉛直上方に向けた状態でユニットボディ37の上面に搭載され、発光のための給電が行われる。また、リフレクタ36は回転楕円面を基礎とする凹面反射鏡として構成されており、その第1焦点に白色LED31が配置されている。また、フロントミラー38は、第2焦点の近傍、すなわち第2焦点よりも前側位置に、光反射面を前方に傾斜させた平面鏡で構成されている。 The white LED 31 of each Hi light source unit 3B is composed of a chip-type LED that emits white light, and is mounted on the upper surface of the unit body 37 with its light-emitting surface facing vertically upward, and is supplied with power for light emission. The reflector 36 is configured as a concave reflecting mirror based on an ellipsoid of revolution, and the white LED 31 is disposed at its first focal point. The front mirror 38 is configured as a flat mirror with a light-reflecting surface tilted forward, located near the second focal point, i.e., in front of the second focal point.
 実施形態4の投影レンズ4の前面は全域にわたって一様な曲面で構成されていることは実施形態1と同じである。また、Lo光源ユニット1,2に対応した集光Loレンズ部41と拡散Loレンズ部42の構成も実施形態1と同じである。一方、Hiレンズ部43Bについては、2つのHi光源ユニット3Bに対応して2つに区分されている。区分された各Hiレンズ部43Bは、実施形態1のHiレンズ部43に比較して小さいサイズに形成されるが、その構造は略同様であり、投影レンズ4Bの後面が水平方向及び鉛直方向について所要の曲率の凸状の球面ないしは非球面に形成されている。そして、2つのHiレンズ部43Bは2つのHi光源ユニット3Bに対応して水平方向に並んで配設されているが、各Hiレンズ部43Bの光軸Lxは水平方向に幾分相違された方向に向けられている。 The front surface of the projection lens 4 in the fourth embodiment is the same as in the first embodiment in that it is configured with a uniform curved surface over the entire area. The configurations of the condensing Lo lens section 41 and the diffusing Lo lens section 42 corresponding to the Lo light source units 1 and 2 are also the same as in the first embodiment. On the other hand, the Hi lens section 43B is divided into two corresponding to the two Hi light source units 3B. Each divided Hi lens section 43B is formed to be smaller in size than the Hi lens section 43 in the first embodiment, but the structure is approximately the same, and the rear surface of the projection lens 4B is formed as a convex spherical or aspherical surface with a required curvature in the horizontal and vertical directions. The two Hi lens sections 43B are arranged side by side in the horizontal direction corresponding to the two Hi light source units 3B, but the optical axis Lx of each Hi lens section 43B is directed in a slightly different direction in the horizontal direction.
 実施形態4におけるLo配光については実施形態1と同じである。Hi配光では2つのLo光源ユニット1,2と同時に2つのHi光源ユニット3Bが同時に発光される。図15Aに示すように、各Hi光源ユニット3Bにおいて白色LED31から出射された光は、リフレクタ36で前方に向けて反射され、第2焦点の近傍に収束された後、投影レンズ4のHiレンズ部43Bに入射される。各白色光は各Hiレンズ部43Bにおいて屈折され、図15Bに示すように、破線で示したLo配光PLoの上側に付加Hi配光PAHiとして投影される。2つのHiレンズ部43Bは光軸が若干相違しているので、2つのHi光源ユニット3Bによる付加Hi配光PAHiは水平方向に並んで投影される。これらの付加Hi配光PAHiは、例えば自車線側と対向車線側とに分けるようにすることができる。したがって、2つのHi光源ユニット3Bを選択的に、あるいは2つ同時に発光することにより自車線側あるいは対向車線側のいずれかについて付加Hi配光PAHiを形成することも可能になる。 The Lo light distribution in the fourth embodiment is the same as that in the first embodiment. In the Hi light distribution, the two Lo light source units 1 and 2 and the two Hi light source units 3B are simultaneously emitted. As shown in FIG. 15A, the light emitted from the white LED 31 in each Hi light source unit 3B is reflected forward by the reflector 36, converged near the second focal point, and then enters the Hi lens portion 43B of the projection lens 4. Each white light is refracted in each Hi lens portion 43B, and as shown in FIG. 15B, is projected as an additional Hi light distribution PAHi above the Lo light distribution PLo indicated by the dashed line. Since the optical axes of the two Hi lens portions 43B are slightly different, the additional Hi light distributions PAHi by the two Hi light source units 3B are projected side by side in the horizontal direction. These additional Hi light distributions PAHi can be divided, for example, into the vehicle's lane side and the oncoming lane side. Therefore, it is possible to selectively emit light from the two Hi light source units 3B, or to simultaneously emit light from both, forming an additional Hi light distribution PAHi on either the own lane side or the oncoming lane side.
 また、このHi光源ユニット3Bは、リフレクタ36で反射された白色光の一部はフロントリフレクタ38において反射され、Hiレンズ部43Bを上方に向けて透過されて投影される。これにより、付加Hi配光PAHiの上側にOHS(オーバヘッドサイン)配光POHiが形成される。図示は省略するが、フロントリフレクタ38を傾動構造とし、リフレクタ36からの白色光を反射する状態としない状態とを切り換える構造とすることにより、OHS配光を任意に形成することが可能になる。 In addition, in this Hi light source unit 3B, a portion of the white light reflected by the reflector 36 is reflected by the front reflector 38 and is transmitted through the Hi lens portion 43B and projected upward. This forms an OHS (overhead sign) light distribution POHi above the additional Hi light distribution PAHi. Although not shown in the figure, by making the front reflector 38 a tilting structure that switches between a state in which the white light from the reflector 36 is reflected and a state in which it is not reflected, it becomes possible to form an OHS light distribution as desired.
 実施形態4においては、1つのHi光源ユニット3Bで構成されてもよい。この場合には当該1つのHi光源ユニット3Bで所要の付加Hi配光が形成される。また、この場合には、投影レンズ4BのHiレンズ部43Bの構成は実施形態1と略同様に構成できるので、実施形態1の投影レンズ4をそのまま利用することもできる。 In the fourth embodiment, it may be configured with one Hi light source unit 3B. In this case, the required additional Hi light distribution is formed by that one Hi light source unit 3B. Also, in this case, the configuration of the Hi lens portion 43B of the projection lens 4B can be configured in substantially the same way as in the first embodiment, so the projection lens 4 of the first embodiment can be used as is.
 実施形態4の照明ランプユニットLLUにおいても、投影レンズ4Bの前面が一様な曲面で構成されているので、ヘッドランプHLのアウターレンズ102を透して観察したときの外観がシンプルなものになり、照明ランプユニットLLUの意匠性を高めることができる。 In the lighting lamp unit LLU of embodiment 4, the front surface of the projection lens 4B is also configured as a uniform curved surface, so that the appearance when observed through the outer lens 102 of the headlamp HL is simple, improving the design of the lighting lamp unit LLU.
 また、実施形態4の照明ランプユニットLLUは、実施形態1とはHi光源ユニットが相違する構成であるので、必要に応じて実施形態1のHi光源ユニット3又は実施形態4のHi光源ユニット3Bを選択して適用するようにすればよい。この場合、Hi光源ユニット3Bが1つのHi光源ユニットで構成された場合には、投影レンズを変更する必要もない。 In addition, since the lighting lamp unit LLU of embodiment 4 has a different configuration from embodiment 1 in terms of the Hi light source unit, it is sufficient to select and apply either the Hi light source unit 3 of embodiment 1 or the Hi light source unit 3B of embodiment 4 as necessary. In this case, if the Hi light source unit 3B is configured with one Hi light source unit, there is no need to change the projection lens.
 さらに、実施形態4の照明ランプユニットLLUにおいては、図示は省略するが、実施形態3の投影レンズ4Aのように、ハイビームレンズ部43Aの前面形状をロービームレンズ部41,42と異なるレンズ形状にしてもよい。この場合においては、Hi光源ユニットとして実施形態1,3のHi光源ユニット3や実施形態2のHi光源ユニット3A、あるいは実施形態4のHi光源ユニット3Bのいずれを選択して照明ランプユニットを構成した場合においても投影レンズ4Aの形状を相違させる必要がない。したがって、照明ランプユニットの内部構成が相違したときに投影レンズの見栄えが変化するようなことはなく、この点における意匠性を高めることができる。 Furthermore, in the illumination lamp unit LLU of embodiment 4, although not shown, the front shape of the high beam lens portion 43A may be a lens shape different from that of the low beam lens portions 41 and 42, as in the projection lens 4A of embodiment 3. In this case, whether the Hi light source unit 3 of embodiments 1 and 3, the Hi light source unit 3A of embodiment 2, or the Hi light source unit 3B of embodiment 4 is selected as the Hi light source unit to configure the illumination lamp unit, there is no need to make the shape of the projection lens 4A different. Therefore, the appearance of the projection lens does not change when the internal configuration of the illumination lamp unit differs, and the design in this respect can be improved.
 以上説明した実施形態1~4において、照明ランプユニットを構成するLo光源ユニットとHi光源ユニットの構成や個数については適宜に変更することが可能である。特に、実施形態では説明を省略したLo光源ユニットとして、実施形態に記載した以外の構成の光源ユニットを配設する場合についても同様であり、この場合においても投影レンズの前面のレンズ形状を同じにして後面のレンズ形状を相違させるように構成すればよい。 In the above-described first to fourth embodiments, the configuration and number of the Lo light source units and Hi light source units that make up the illumination lamp unit can be changed as appropriate. In particular, the same applies to cases where a light source unit with a configuration other than that described in the embodiments is arranged as the Lo light source unit, the description of which is omitted in the embodiments, and in this case as well, it is sufficient to configure the projection lens so that the lens shape on the front surface is the same and the lens shape on the rear surface is different.
 本開示において、Hi光源ユニットを構成する白色LEDは、上下方向に複数の列で配列されてもよい。また、Lo光源ユニットの構成は実施形態の構成に限定されるものではない。 In the present disclosure, the white LEDs constituting the Hi light source unit may be arranged in multiple rows in the vertical direction. Furthermore, the configuration of the Lo light source unit is not limited to the configuration of the embodiment.
 本開示における投影レンズの構成、特にHi配光とLo配光を得るための各レンズ部の構成についても、各レンズ部において要求される屈折力、特に鉛直方向と水平方向の屈折力について要求を満たしていれば、レンズ形状については種々の変形が考えられる。また、投影レンズの前面は平面であってもよく、この場合には各レンズ部において所要の屈折力を得るために投影レンズの後面を凸曲面に形成すればよい。 As for the configuration of the projection lens in this disclosure, particularly the configuration of each lens portion for obtaining Hi and Lo light distributions, various modifications of the lens shape are possible as long as the refractive power required for each lens portion, particularly the refractive power in the vertical and horizontal directions, is satisfied. The front surface of the projection lens may be flat, in which case the rear surface of the projection lens may be formed into a convex curved surface in order to obtain the required refractive power for each lens portion.
 本出願は、2022年9月29日出願の日本特許出願2022-155687号、日本特許出願2022-155688号、日本特許出願2022-155689号に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2022-155687, Japanese Patent Application No. 2022-155688, and Japanese Patent Application No. 2022-155689, filed on September 29, 2022, the contents of which are incorporated herein by reference.

Claims (28)

  1.  ロービーム光源ユニットと、ハイビーム光源ユニットと、前記各光源ユニットの光を投影して所要の配光を形成する投影レンズとを備え、前記投影レンズは、前記ロービーム光源ユニットの光を投影してロービーム配光を形成するロービームレンズ部と、前記ハイビーム光源ユニットの光を投影してハイビーム配光を形成するハイビームレンズ部とが一体に形成され、前記ハイビーム光源ユニットはレンズ収差を抑制する補正光学部を備えることを特徴とする車両用灯具。 A vehicle lamp comprising a low beam light source unit, a high beam light source unit, and a projection lens that projects the light of each of the light source units to form a desired light distribution, the projection lens being integrally formed with a low beam lens section that projects the light of the low beam light source unit to form a low beam distribution, and a high beam lens section that projects the light of the high beam light source unit to form a high beam distribution, the high beam light source unit being equipped with a correction optical section that suppresses lens aberration.
  2.  前記補正光学部は、光源ユニットから出射されてハイビームレンズ部に入射される光の入射角を抑制する光学部材で構成される請求項1に記載の車両用灯具。 The vehicle lamp according to claim 1, wherein the correction optical section is composed of an optical member that suppresses the angle of incidence of light emitted from the light source unit and incident on the high beam lens section.
  3.  前記補正光学部は正の屈折力を有するレンズで構成される請求項2に記載の車両用灯具。 The vehicle lamp according to claim 2, wherein the correction optical unit is composed of a lens having positive refractive power.
  4.  前記補正光学部は光を収束反射するリフレクタで構成される請求項2に記載の車両用灯具。 The vehicle lamp according to claim 2, wherein the correction optical unit is composed of a reflector that converges and reflects light.
  5.  前記投影レンズの前面は一様な曲面で構成され、当該投影レンズの後面は前記ハイビームレンズ部と前記ロービームレンズ部が異なる曲面で構成されている請求項1に記載の車両用灯具。 The vehicle lamp according to claim 1, wherein the front surface of the projection lens is formed of a uniform curved surface, and the rear surface of the projection lens is formed of different curved surfaces in the high beam lens portion and the low beam lens portion.
  6.  前記ハイビーム光源ユニットのレンズ部は鉛直方向と水平方向に屈折力を有するレンズとして構成される請求項5に記載の車両用灯具。 The vehicle lamp according to claim 5, wherein the lens portion of the high beam light source unit is configured as a lens having refractive power in the vertical and horizontal directions.
  7.  前記投影レンズの前面は鉛直方向と水平方向にそれぞれ湾曲した曲面である請求項6に記載の車両用灯具。 The vehicle lamp according to claim 6, wherein the front surface of the projection lens is a curved surface that is curved in both the vertical and horizontal directions.
  8.  前記投影レンズの前面は、前記ハイビームレンズ部と前記ロービームレンズ部が異なる曲面で構成されている請求項1に記載の車両用灯具。 The vehicle lamp according to claim 1, wherein the front surface of the projection lens is configured such that the high beam lens portion and the low beam lens portion have different curved surfaces.
  9.  前記ロービーム光源ユニットはロービーム配光のホットゾーンを含む中央領域を照明する集光ロービーム光源ユニットと、前記中央領域よりも広い広域領域を照明する拡散ロービーム光源ユニットを備え、前記集光ロービーム光源ユニットのレンズ部は鉛直方向と水平方向に屈折力を有するレンズとして構成され、前記拡散ロービーム光源ユニットのレンズ部は鉛直方向に屈折力を有し水平方向に屈折力を有しないレンズとして構成されている請求項1に記載の車両用灯具。 The vehicle lamp according to claim 1, wherein the low beam light source unit includes a concentrating low beam light source unit that illuminates a central area including a hot zone of the low beam light distribution, and a diffuse low beam light source unit that illuminates a wide area wider than the central area, the lens portion of the concentrating low beam light source unit is configured as a lens having refractive power in the vertical and horizontal directions, and the lens portion of the diffuse low beam light source unit is configured as a lens having refractive power in the vertical direction but not in the horizontal direction.
  10.  自動車のヘッドランプとして機能する照明ランプユニットとして構成される請求項1から9のいずれか一項に記載の車両用灯具。 A vehicle lamp according to any one of claims 1 to 9, configured as an illumination lamp unit that functions as a headlamp of an automobile.
  11.  複数のロービーム光源ユニットと、前記複数のロービーム光源ユニットの光を前方に向けて投影して所要の配光を形成する投影レンズとを備え、前記投影レンズは、前記複数のロービーム光源ユニットの光を投影してそれぞれ異なる配光を形成する複数のレンズ部が一体に形成されており、当該投影レンズの前面は一様な曲面又は平面で構成され、当該投影レンズの後面は前記複数のレンズ部の少なくとも1つが異なる曲面で構成されていることを特徴とする車両用灯具。 A vehicle lamp comprising a plurality of low beam light source units and a projection lens that projects the light of the plurality of low beam light source units forward to form a desired light distribution, the projection lens being formed integrally with a plurality of lens sections that project the light of the plurality of low beam light source units to form different light distributions, the front surface of the projection lens being formed of a uniform curved or flat surface, and the rear surface of the projection lens being formed of at least one of the plurality of lens sections being formed of a different curved surface.
  12.  前記投影レンズの前面は鉛直方向と水平方向にそれぞれ湾曲した曲面である請求項11に記載の車両用灯具。 The vehicle lamp according to claim 11, wherein the front surface of the projection lens is a curved surface that is curved in both the vertical and horizontal directions.
  13.  前記投影レンズの前面は鉛直方向断面が所要の曲率の円弧面である請求項12に記載の車両用灯具。 The vehicle lamp according to claim 12, wherein the front surface of the projection lens has a vertical cross section that is an arcuate surface with a required curvature.
  14.  前記ロービーム光源ユニットはロービーム配光のホットゾーンを含む中央領域を照明する集光ロービーム光源ユニットと、前記中央領域よりも広い広域領域を照明する拡散ロービーム光源ユニットを備え、前記集光ロービーム光源ユニットのレンズ部は鉛直方向と水平方向に屈折力を有するレンズとして構成され、前記拡散ロービーム光源ユニットのレンズ部は鉛直方向に屈折力を有し水平方向に屈折力を有しないレンズとして構成されている請求項11に記載の車両用灯具。 The vehicle lamp according to claim 11, wherein the low beam light source unit includes a concentrating low beam light source unit that illuminates a central area including a hot zone of the low beam distribution, and a diffuse low beam light source unit that illuminates a wide area wider than the central area, the lens portion of the concentrating low beam light source unit is configured as a lens having refractive power in the vertical and horizontal directions, and the lens portion of the diffuse low beam light source unit is configured as a lens having refractive power in the vertical direction but not in the horizontal direction.
  15.  ロービーム光源ユニットと、ハイビーム光源ユニットと、前記各光源ユニットの光を投影して所要の配光を形成する投影レンズとを備え、前記投影レンズは、前記ロービーム光源ユニットの光を投影してロービーム配光を形成するロービームレンズ部と、前記ハイビーム光源ユニットの光を投影してハイビーム配光を形成するハイビームレンズ部とが一体に形成されるとともに、当該投影レンズの前面は一様な曲面又は平面で構成され、当該投影レンズの後面は前記各レンズ部の少なくとも1つが異なる曲面で構成されていることを特徴とする車両用灯具。 A vehicle lamp comprising a low beam light source unit, a high beam light source unit, and a projection lens that projects light from each of the light source units to form a desired light distribution, the projection lens being integrally formed with a low beam lens section that projects light from the low beam light source unit to form a low beam distribution, and a high beam lens section that projects light from the high beam light source unit to form a high beam distribution, the front surface of the projection lens being formed with a uniform curved or flat surface, and the rear surface of the projection lens being formed with at least one of the lens sections being formed with a different curved surface.
  16.  前記ロービーム光源ユニットはロービーム配光のホットゾーンを含む中央領域を照明する集光ロービーム光源ユニットと、前記中央領域よりも広い広域領域を照明する拡散ロービーム光源ユニットを備え、前記集光ロービーム光源ユニットのレンズ部は鉛直方向と水平方向に屈折力を有するレンズとして構成され、前記拡散ロービーム光源ユニットのレンズ部は鉛直方向に屈折力を有し水平方向に屈折力を有しないレンズとして構成され、前記ハイビームレンズ部は鉛直方向と水平方向に屈折力を有するレンズとして構成される請求項15に記載の車両用灯具。 The vehicle lamp according to claim 15, wherein the low beam light source unit includes a concentrating low beam light source unit that illuminates a central area including a hot zone of the low beam light distribution, and a diffuse low beam light source unit that illuminates a wide area wider than the central area, the lens portion of the concentrating low beam light source unit is configured as a lens having refractive power in the vertical direction and the horizontal direction, the lens portion of the diffuse low beam light source unit is configured as a lens having refractive power in the vertical direction and no refractive power in the horizontal direction, and the high beam lens portion is configured as a lens having refractive power in the vertical direction and the horizontal direction.
  17.  自動車のヘッドランプとして機能する照明ランプユニットとして構成される請求項11から16のいずれかに記載の車両用灯具。 A vehicle lamp according to any one of claims 11 to 16, configured as an illumination lamp unit that functions as a headlamp of an automobile.
  18.  前記照明ランプユニットは前記ヘッドランプのランプハウジング内に配設されており、
    前記投影レンズは当該ランプハウジングの前面に配設された透光性のアウターレンズを透して視認される請求項17に記載の車両用灯具。
    The illumination lamp unit is disposed in a lamp housing of the headlamp,
    18. The vehicular lamp according to claim 17, wherein the projection lens is visible through a light-transmitting outer lens disposed on a front surface of the lamp housing.
  19.  ロービーム光源ユニットと、ハイビーム光源ユニットと、前記各光源ユニットの光を投影して所要の配光を形成する投影レンズとを備え、前記ロービーム光源ユニットの光を投影してロービーム配光を形成するロービームレンズ部と、前記ハイビーム光源ユニットの光を投影してハイビーム配光を形成するハイビームレンズ部とが一体に形成され、前記各光源ユニットは異なる構造のものが配設可能であり、前記投影レンズの前面は、光源ユニットの相違にかかわらず同じレンズ形状に構成されることを特徴とする車両用灯具。 A vehicle lamp comprising a low beam light source unit, a high beam light source unit, and a projection lens that projects the light of each of the light source units to form a desired light distribution, wherein a low beam lens section that projects the light of the low beam light source unit to form a low beam distribution, and a high beam lens section that projects the light of the high beam light source unit to form a high beam distribution are integrally formed, each of the light source units can be arranged with a different structure, and the front surface of the projection lens is configured to have the same lens shape regardless of the difference in the light source unit.
  20.  前記投影レンズの前面は一様な曲面又は平面で構成され、後面は配設される光源ユニットに対応して異なる曲面で構成される請求項19に記載の車両用灯具。 The vehicle lamp according to claim 19, wherein the front surface of the projection lens is formed as a uniform curved or flat surface, and the rear surface is formed as a different curved surface corresponding to the light source unit to be installed.
  21.  前記ロービームレンズ部とハイビームレンズ部は前面が同じ曲面又は平面で構成され、
    後面が異なる曲面で構成されている請求項20に記載の車両用灯具。
    The low beam lens unit and the high beam lens unit have a front surface that is the same curved or flat surface,
    21. The vehicular lamp according to claim 20, wherein the rear surface is formed of different curved surfaces.
  22.  前記ロービーム光源ユニットはロービーム配光のホットゾーンを含む中央領域を照明する集光ロービーム光源ユニットと、前記中央領域よりも広い広域領域を照明する拡散ロービーム光源ユニットを備え、前記投影レンズの前面は一様な曲面又は平面で構成され、前記集光ロービーム光源ユニットのロービームレンズ部と、前記拡散ロービーム光源ユニットのロービームレンズ部の後面が異なる曲面で構成されている請求項20に記載の車両用灯具。 The vehicle lamp according to claim 20, wherein the low beam light source unit includes a converging low beam light source unit that illuminates a central area including a hot zone of the low beam distribution, and a diffuse low beam light source unit that illuminates a wide area wider than the central area, the front surface of the projection lens is formed as a uniform curved surface or flat surface, and the rear surface of the low beam lens portion of the converging low beam light source unit and the rear surface of the low beam lens portion of the diffuse low beam light source unit are formed as different curved surfaces.
  23.  前記ハイビーム光源ユニットは、選択的に発光することが可能な複数の発光素子を備え、各発光素子から出射された光を前記ハイビームレンズ部により所要の配光で投影する第1ハイビーム光源ユニットと、1つの発光素子から出射されかつリフレクタにより収束反射された光を前記ハイビームレンズ部により所要の配光で投影する第2ハイビーム光源ユニットのいずれかで構成され、これら第1ハイビーム光源ユニットと第2ハイビーム光源ユニットの各ハイビームレンズ部の前面は同じ曲面又は平面で構成されている請求項20に記載の車両用灯具。 The vehicle lamp according to claim 20, wherein the high beam light source unit is composed of either a first high beam light source unit having a plurality of light emitting elements capable of selectively emitting light, and projecting the light emitted from each light emitting element with the required light distribution by the high beam lens section, or a second high beam light source unit which projects the light emitted from one light emitting element and convergently reflected by a reflector with the required light distribution by the high beam lens section, and the front surface of each high beam lens section of the first high beam light source unit and the second high beam light source unit is composed of the same curved surface or flat surface.
  24.  前記第1ハイビーム光源ユニットのハイビームレンズ部と、前記第2ハイビーム光源ユニットのハイビームレンズ部の後面は異なる曲面で構成される請求項23に記載の車両用灯具。 The vehicle lamp according to claim 23, wherein the rear surfaces of the high beam lens portion of the first high beam light source unit and the high beam lens portion of the second high beam light source unit are formed with different curved surfaces.
  25.  前記第1ハイビーム光源ユニットは、当該光源ユニットから出射されてハイビームレンズ部に入射される光の入射角を抑制する補正光学部を備え、当該補正光学部は、正の屈折力を有する補正レンズまたは光を収束させる補正リフレクタで構成される請求項24に記載の車両用灯具。 The vehicle lamp according to claim 24, wherein the first high beam light source unit includes a correction optical section that suppresses the angle of incidence of light emitted from the light source unit and incident on the high beam lens section, and the correction optical section is composed of a correction lens having a positive refractive power or a correction reflector that converges light.
  26.  前記第2ハイビーム光源ユニットは、ロービーム配光の上側に付加ハイビーム配光を形成し、さらにその上側にオーバヘッド配光を形成することが可能である請求項24に記載の車両用灯具。 The vehicle lamp according to claim 24, wherein the second high beam light source unit is capable of forming an additional high beam distribution above the low beam distribution and further forming an overhead distribution above that.
  27.  前記第2ハイビーム光源ユニットは複数の光源ユニットで構成され、前記ハイビームレンズ部は前記複数の光源ユニットに対応した複数のハイビームレンズ部を備える請求項24に記載の車両用灯具。 The vehicle lamp according to claim 24, wherein the second high beam light source unit is composed of a plurality of light source units, and the high beam lens portion includes a plurality of high beam lens portions corresponding to the plurality of light source units.
  28.  自動車のヘッドランプとして機能する照明ランプユニットとして構成される請求項19から27のいずれか一項に記載の車両用灯具。
     
      
    28. A vehicle lamp according to any one of claims 19 to 27, configured as an illumination lamp unit that functions as a headlamp of an automobile.

PCT/JP2023/035301 2022-09-29 2023-09-27 Vehicle lamp WO2024071263A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-155687 2022-09-29
JP2022155689A JP2024049456A (en) 2022-09-29 2022-09-29 Vehicle lighting fixtures
JP2022155687A JP2024049454A (en) 2022-09-29 2022-09-29 Vehicle lighting fixtures
JP2022155688A JP2024049455A (en) 2022-09-29 2022-09-29 Vehicle lighting fixtures
JP2022-155688 2022-09-29
JP2022-155689 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071263A1 true WO2024071263A1 (en) 2024-04-04

Family

ID=90478001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035301 WO2024071263A1 (en) 2022-09-29 2023-09-27 Vehicle lamp

Country Status (1)

Country Link
WO (1) WO2024071263A1 (en)

Similar Documents

Publication Publication Date Title
CN113227645B (en) Optical element, optical module, and vehicle
KR100570481B1 (en) Vehicle headlamp
US6416210B1 (en) Headlamp for a vehicle
JP4782064B2 (en) Vehicle lamp unit
JP4068387B2 (en) Light source unit
JP4205048B2 (en) Vehicle headlamp
KR100570480B1 (en) Vehicle headlamp
JP5442463B2 (en) Vehicle headlamp
KR100824912B1 (en) Vehicular headlamp
JP6516495B2 (en) Vehicle lamp
US20070171665A1 (en) High-intensity zone LED projector
JP4264319B2 (en) Vehicle headlamp
JPH10217843A (en) Headlight for vehicle
JP2017195050A (en) Vehicular lighting fixture
JP6690960B2 (en) Vehicle lighting
CN109386807B (en) Vehicle lamp
JP2005166587A (en) Vehicular headlamp
JP2005251435A (en) Vehicular headlight
JP4926642B2 (en) Lighting fixtures for vehicles
JP7364409B2 (en) vehicle lamp
US7445366B2 (en) Vehicle lamp with auxiliary lens
JP6690961B2 (en) Vehicle lighting
WO2024071263A1 (en) Vehicle lamp
JP7447698B2 (en) Vehicle lights
JP4666160B2 (en) Vehicle lighting