WO2023162668A1 - 情報処理装置および床面高さ調整方法 - Google Patents

情報処理装置および床面高さ調整方法 Download PDF

Info

Publication number
WO2023162668A1
WO2023162668A1 PCT/JP2023/003922 JP2023003922W WO2023162668A1 WO 2023162668 A1 WO2023162668 A1 WO 2023162668A1 JP 2023003922 W JP2023003922 W JP 2023003922W WO 2023162668 A1 WO2023162668 A1 WO 2023162668A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
image
user
mounted display
adjustment screen
Prior art date
Application number
PCT/JP2023/003922
Other languages
English (en)
French (fr)
Inventor
雅則 野村
ゆりか 村瀬
翔威 米富
Original Assignee
株式会社ソニー・インタラクティブエンタテインメント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソニー・インタラクティブエンタテインメント filed Critical 株式会社ソニー・インタラクティブエンタテインメント
Priority to CN202380016057.8A priority Critical patent/CN118511146A/zh
Publication of WO2023162668A1 publication Critical patent/WO2023162668A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/211Input arrangements for video game devices characterised by their sensors, purposes or types using inertial sensors, e.g. accelerometers or gyroscopes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/60Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor
    • A63F13/65Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics

Definitions

  • the present invention relates to data processing technology, and more particularly to an information processing device and a floor height adjustment method.
  • An image display system that allows a user wearing a head-mounted display to view the target space from any viewpoint has become widespread.
  • electronic content that realizes virtual reality (VR) by using a virtual three-dimensional space as a display target and displaying an image according to the user's line of sight on a head-mounted display.
  • VR virtual reality
  • a walk-through system has also been developed in which a user wearing a head-mounted display physically moves to virtually walk around in a space displayed as an image.
  • An image display system that presents a VR image to a user wearing a head-mounted display may place various objects such as game items on the floor of a preset virtual space. If the height of the floor of the virtual space set in the image display system differs greatly from the height of the floor of the real space, the user will feel uncomfortable with the VR image, and the sense of immersion in VR will be impaired. Sometimes.
  • the present invention has been made in view of these problems, and one of its purposes is to provide a technique for assisting in setting the height of the floor surface of the virtual space.
  • an information processing apparatus is an adjustment screen for allowing a user wearing a head-mounted display to adjust the height of the floor surface of a virtual space displayed on the head-mounted display.
  • an adjustment screen generation unit that generates an adjustment screen including an image of a height gauge, a display control unit that displays the adjustment screen on a head-mounted display, and an operation for setting the user's height for the image of the height gauge on the adjustment screen. is input, the height of the floor of the virtual space is set according to the height of the user set in the image of the height meter.
  • Another aspect of the present invention is a floor height adjustment method.
  • This method includes the step of generating an adjustment screen for allowing a user wearing the head-mounted display to adjust the height of the floor surface of the virtual space displayed on the head-mounted display, the adjustment screen including an image of a height gauge. a step of displaying the adjustment screen on the head-mounted display; , and setting the height of the floor surface of the virtual space.
  • setting of the height of the floor surface of the virtual space can be supported.
  • FIG. 3 is a diagram for explaining an example of an image world displayed on a head-mounted display by an image generating device; 3 is a diagram showing the internal circuit configuration of the image generation device; FIG. It is a figure which shows the internal circuit structure of a head mounted display. 2 is a block diagram showing functional blocks of the image generation device; FIG. 4 is a flow chart showing the operation of the image generating device; It is a figure which shows the example of an adjustment screen. It is a figure which shows the example of an adjustment screen.
  • FIG. 1 shows an appearance example of a head mounted display 100 of an embodiment.
  • the head mounted display 100 includes an output mechanism section 102 and a mounting mechanism section 104 .
  • the mounting mechanism section 104 includes a mounting band 106 that is worn by the user so as to go around the head and fix the device.
  • the output mechanism unit 102 includes a housing 108 shaped to cover the left and right eyes when the user wears the head-mounted display 100, and has a display panel inside so as to face the eyes when the head-mounted display 100 is worn. It is assumed that the display panel of the head mounted display 100 of the embodiment has no transparency. That is, the head mounted display 100 of the embodiment is a non-transmissive head mounted display.
  • the housing 108 may further include an eyepiece positioned between the eyes of the user wearing the head-mounted display 100 and the display panel of the head-mounted display 100 to expand the viewing angle of the user.
  • the head-mounted display 100 may further include speakers or earphones at positions corresponding to the ears of the user when worn.
  • the head mounted display 100 incorporates a motion sensor to detect the translational motion and rotational motion of the head of the user wearing the head mounted display 100, as well as the position and posture at each time.
  • the head mounted display 100 also includes a stereo camera 110 on the front surface of the housing 108 .
  • the stereo camera 110 captures moving images of the surrounding real space with a field of view corresponding to the line of sight of the user. By displaying a photographed image immediately, it is possible to realize so-called video see-through, in which the real space in the direction the user faces can be seen as it is. Furthermore, augmented reality (AR) can be realized by drawing a virtual object on the image of the real object appearing in the captured image.
  • the number of cameras included in the image display system 10 is not limited, and the head mounted display 100 may include one camera or three or more cameras.
  • FIG. 2 shows a configuration example of the image display system 10 of the embodiment.
  • the image display system 10 includes a head mounted display 100, an image generation device 200, and a controller 140.
  • the head mounted display 100 is connected to the image generation device 200 by wireless communication.
  • Image generating device 200 may be further connected to a server (not shown) via a network.
  • the server may provide the image generating device 200 with data of an online application such as a game in which a plurality of users can participate via a network.
  • the image generation device 200 identifies the position of the viewpoint and the direction of the line of sight based on the position and posture of the head of the user wearing the head-mounted display 100, generates a display image so as to provide a visual field corresponding to the position, and displays the image on the head-mounted display. It is an information processing device that outputs to a display 100 .
  • the image generation device 200 may be a stationary game machine, a PC, or a tablet terminal.
  • the image generation device 200 can execute various applications related to VR and AR.
  • the image generation device 200 may generate a moving image for viewing or providing information regardless of whether it is in the virtual world or the real world, and display the moving image on the head mounted display 100 .
  • the image generation device 200 may display a panoramic image with a wide angle of view centering on the user's viewpoint on the head-mounted display 100, thereby giving the user a deep sense of immersion in the displayed world.
  • the controller 140 is an input device (for example, a game controller) that is held in the user's hand and through which the user's operation is input.
  • User operations include operations for controlling image generation in image generation device 200 and operations for controlling image display in head mounted display 100 .
  • the controller 140 is connected to the image generation device 200 by wireless communication, and transmits data indicating user operations to the image generation device 200 .
  • one or both of the head mounted display 100 and the controller 140 may be connected to the image generation device 200 by wired communication via a signal cable or the like.
  • the controller 140 includes a button 142 and an analog stick 144 as members for inputting user's operations.
  • Buttons 142 include direction buttons and cross keys.
  • the analog stick 144 also called a control stick, is tilted and used to input the direction and amount of tilt. The tilt amount can also be said to be the angle at which the analog stick 144 is tilted.
  • FIG. 3 is a diagram for explaining an example of an image world displayed on the head mounted display 100 by the image generation device 200.
  • FIG. This example creates a state in which the user 12 is in a room that is a virtual space.
  • objects such as walls, floors, windows, tables, and objects on the table are arranged in the world coordinate system that defines the virtual space.
  • the image generation device 200 defines the view screen 14 in the world coordinate system according to the position of the viewpoint and the direction of the line of sight of the user 12, and draws the display image by expressing the image of the object there.
  • the image generation device 200 acquires the position of the viewpoint and the direction of the line of sight of the user 12 (hereinafter these may be collectively referred to as the “viewpoint”) from the head-mounted display 100 at a predetermined rate. Change the position and direction of the view screen 14 . Accordingly, an image can be displayed on the head mounted display 100 in a field of view corresponding to the user's viewpoint.
  • the image generation device 200 generates a stereo image with parallax and displays the stereo image on the left and right regions of the display panel of the head mounted display 100, thereby allowing the user 12 to stereoscopically view the virtual space. This allows the user 12 to experience virtual reality as if they were in a room in the displayed world.
  • FIG. 4 shows the internal circuit configuration of the image generation device 200.
  • the image generation device 200 includes a CPU (Central Processing Unit) 222 , a GPU (Graphics Processing Unit) 224 and a main memory 226 . These units are interconnected via a bus 230 . An input/output interface 228 is also connected to the bus 230 . A communication unit 232 , a storage unit 234 , an output unit 236 , an input unit 238 and a recording medium drive unit 240 are connected to the input/output interface 228 .
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the communication unit 232 includes peripheral device interfaces such as USB and IEEE1394, and network interfaces such as wired LAN and wireless LAN.
  • the storage unit 234 includes a hard disk drive, nonvolatile memory, and the like.
  • the output unit 236 outputs data to the head mounted display 100 .
  • Input unit 238 receives data input from head mounted display 100 and also receives data input from controller 140 .
  • a recording medium drive unit 240 drives a removable recording medium such as a magnetic disk, an optical disk, or a semiconductor memory.
  • the CPU 222 controls the entire image generation device 200 by executing the operating system stored in the storage unit 234 .
  • the CPU 222 also executes various programs (such as VR game applications) read from the storage unit 234 or a removable recording medium and loaded into the main memory 226 or downloaded via the communication unit 232 .
  • the GPU 224 has a function of a geometry engine and a function of a rendering processor, performs drawing processing according to drawing commands from the CPU 222 , and outputs drawing results to the output unit 236 .
  • One or both of CPU 222 and GPU 224 may also be referred to as processors.
  • the main memory 226 is composed of a RAM (Random Access Memory) and stores programs and data necessary for processing.
  • FIG. 5 shows the internal circuit configuration of the head mounted display 100.
  • FIG. Head mounted display 100 includes CPU 120 , main memory 122 , display section 124 and audio output section 126 . These units are interconnected via a bus 128 .
  • An input/output interface 130 is also connected to the bus 128 .
  • the input/output interface 130 is connected with a communication unit 132 including a wireless communication interface, a motion sensor 134 , an eye tracking sensor 136 and a stereo camera 110 .
  • the CPU 120 processes information acquired from each unit of the head-mounted display 100 via the bus 128 , and also supplies display image and audio data acquired from the image generation device 200 to the display unit 124 and the audio output unit 126 .
  • the main memory 122 stores programs and data necessary for processing in the CPU 120 .
  • the display unit 124 includes a display panel such as a liquid crystal panel or an organic EL panel, and displays an image in front of the user wearing the head mounted display 100 .
  • the display unit 124 realizes stereoscopic vision by displaying a pair of stereo images on a left-eye display panel provided in front of the user's left eye and a right-eye display panel provided in front of the user's right eye. do.
  • the display unit 124 may further include a pair of lenses (a lens for the left eye and a lens for the right eye) positioned between the display panel and the user's eyes when the head-mounted display 100 is attached, to expand the user's viewing angle. .
  • the audio output unit 126 is composed of speakers and earphones provided at positions corresponding to the ears of the user when the head mounted display 100 is worn, and allows the user to hear the audio.
  • the communication unit 132 is an interface for transmitting and receiving data to and from the image generation device 200, and realizes communication using a known wireless communication technology such as Bluetooth (registered trademark).
  • the motion sensor 134 includes a gyro sensor and an acceleration sensor, and acquires the angular velocity and acceleration of the head mounted display 100.
  • Eye tracking sensor 136 is a known sensor for eye tracking. Eye-tracking, which can also be called line-of-sight measurement, is a technique for detecting the position, movement, and line-of-sight direction of a user's pupil (which can also be called an eyeball). For example, the eye tracking sensor 136 detects the position and movement of the user's pupils using infrared radiation or the like.
  • the stereo camera 110 is a pair of video cameras that shoot the surrounding real space from left and right viewpoints with a field of view corresponding to the user's viewpoint.
  • An image of the surrounding space of the user captured by the stereo camera 110 is hereinafter also referred to as a "camera image”.
  • a camera image can be said to be an image of the real space in the user's line-of-sight direction (typically, in front of the user), and can be said to be an image of an object existing in the user's line-of-sight direction.
  • the data transmitted from the head mounted display 100 to the image generating device 200 via the communication unit 132 includes the following contents. (1) Measured value by motion sensor 134 . (2) Measured values by the eye tracking sensor 136 . (3) Data of an image (camera image) captured by the stereo camera 110;
  • the image display system 10 of the embodiment provides an adjustment screen, which is a user interface for allowing the user wearing the head mounted display 100 to adjust the height of the floor surface of the virtual space displayed on the head mounted display 100.
  • the adjustment screen includes an image of a height gauge.
  • the height of the floor surface of the virtual space is set according to the set height of the user.
  • FIG. 6 is a block diagram showing functional blocks of the image generation device.
  • the image generation device 200 executes various information processes such as the progress of the VR game and communication with the server, but mainly functional blocks related to setting the height of the floor surface of the virtual space will be described below.
  • the plurality of functional blocks shown in FIG. 6 can be realized by the configuration of the CPU 222, GPU 224, main memory 226, storage unit 234, etc. shown in FIG. can be realized by a computer program that implements Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and are not limited to either one.
  • the image generation device 200 includes a data processing section 250 and a data storage section 252 .
  • the data storage unit 252 corresponds to the storage unit 234 in FIG. 4 and stores data referenced or updated by the data processing unit 250 .
  • the data storage unit 252 stores image data of each element arranged on an adjustment screen, which will be described later with reference to FIG. 8 and the like.
  • the data storage unit 252 also includes a play area storage unit 254.
  • the play area storage unit 254 stores data regarding the play area.
  • the play area is an area that the user wearing the head mounted display 100 can move while playing an application (for example, a VR game).
  • the play area can be said to be an area or range in which the user is allowed to move around while viewing a VR image (for example, a 3D image of a VR game) in the space surrounding the user (that is, the real-world space that spreads around the user).
  • the play area storage unit 254 may store, as data relating to the play area, data indicating the positions of the point groups forming the boundary of the play area (for example, the coordinate values of each point in the world coordinate system). Also, the play area storage unit 254 of the embodiment further stores data indicating the height of the floor surface of the virtual space where the VR game is played. The height of the floor surface of the virtual space can also be said to be the vertical distance from the reference portion of the head mounted display 100 to the floor surface.
  • the data processing unit 250 executes various data processing.
  • Data processing unit 250 transmits and receives data to and from head mounted display 100 and controller 140 via communication unit 232, output unit 236, and input unit 238 shown in FIG.
  • the data processing unit 250 acquires camera images and sensor data transmitted from the head-mounted display 100 and acquires data regarding user operations transmitted from the controller 140 .
  • the data processing unit 250 includes a system unit 260, an App execution unit 262, and a display control unit 264. Functions of the functional blocks included in the data processing unit 250 may be implemented in a computer program.
  • the processor e.g., CPU 222 and GPU 224) of the image generation device 200 reads the computer program stored in the storage (e.g., storage unit 234) of the image generation device 200 into the main memory 226 and executes it. may exhibit the functions of multiple functional blocks.
  • the App execution unit 262 reads data related to the application (VR game in the embodiment) selected by the user from the data storage unit 252, and executes the application selected by the user.
  • the App execution unit 262 stores (1) data related to the play area stored in the play area storage unit 254, (2) a camera image acquired by the system unit 260, and (3) a head mount image acquired by the system unit 260. Based on the position and orientation of the display 100 and (4) the line-of-sight direction of the user measured by the system unit 260, a VR image showing the execution result of the VR game is generated.
  • a VR image includes a left-eye image and a right-eye image.
  • the display control unit 264 transmits various VR image data generated by the App execution unit 262 to the head mounted display 100 and causes the display unit 124 of the head mounted display 100 to display the VR images.
  • the display unit 124 of the head mounted display 100 displays the left-eye image generated by the App execution unit 262 on the left-eye display panel, and displays the right-eye image generated by the App execution unit 262 on the right-eye display panel. do.
  • the system unit 260 executes system processing related to the head mounted display 100 .
  • the system unit 260 provides common services to multiple applications (for example, multiple VR games) for the head mounted display 100 .
  • Common services include, for example, provision of play area data, provision of camera images, provision of information on the position and orientation of the head-mounted display 100, and provision of line-of-sight measurement results.
  • the system unit 260 also executes processing related to play area setting.
  • the processing for setting the play area includes processing for supporting adjustment of the height of the floor surface of the virtual space.
  • the height of the floor of the virtual space can be said to be the height of the floor of the play area, the height of the floor recognized by the App execution unit 262, or the height of the floor set for the VR game.
  • the system unit 260 includes a camera image acquisition unit 270 , a position/orientation acquisition unit 272 , a line-of-sight measurement unit 274 , a play area setting unit 276 , an adjustment screen generation unit 278 and a floor surface setting unit 280 .
  • the camera image acquisition unit 270 acquires camera image data captured by the stereo camera 110 of the head mounted display 100, which is transmitted from the head mounted display 100.
  • the position/orientation acquisition unit 272 acquires the position and orientation of the head mounted display 100 .
  • the position/orientation acquisition unit 272 detects the position and orientation of the head mounted display 100 worn on the user's head at a predetermined rate based on the detection values of the motion sensor 134 of the head mounted display 100 .
  • the position and orientation of head mounted display 100 can also be said to be the position and orientation of the head of the user wearing head mounted display 100 .
  • the position of the head mounted display 100 may be coordinates indicating the position where the head mounted display 100 exists in the three-dimensional space of the real world.
  • the attitude of the head mounted display 100 may be the inclination of the head mounted display 100 in the vertical direction, the horizontal direction, and the height direction.
  • the position/orientation acquisition unit 272 may acquire the position and orientation of the head mounted display 100 based on the camera image transmitted from the head mounted display 100 . Also, the position/orientation acquisition unit 272 may acquire the position and orientation of the head mounted display 100 based on both the detection value of the motion sensor 134 of the head mounted display 100 and the camera image.
  • the line-of-sight measurement unit 274 uses known eye-tracking technology to detect the position, movement, and line-of-sight direction of the user wearing the head-mounted display 100 based on the detection values of the eye-tracking sensor 136 of the head-mounted display 100. do.
  • the play area setting unit 276 executes various processes related to setting the play area.
  • the play area setting section 276 sets the play area based on the camera image acquired by the camera image acquisition section 270 and the user's operation input via the controller 140 .
  • the play area setting unit 276 includes a function as a play area detection unit. Auto detect area.
  • the play area setting unit 276 stores data regarding the detected and set play area in the play area storage unit 254 .
  • the adjustment screen generation unit 278 generates adjustment screen data for allowing the user wearing the head mounted display 100 to adjust the height of the floor surface of the virtual space displayed on the head mounted display 100 .
  • the display control unit 264 transmits data of the adjustment screen generated by the adjustment screen generation unit 278 to the head mounted display 100, and causes the display unit 124 of the head mounted display 100 to display the adjustment screen.
  • the floor surface setting unit 280 sets the height of the floor surface of the virtual space according to the operation on the adjustment screen input to the button 142 of the controller 140 or the analog stick 144, and indicates the height of the floor surface of the virtual space.
  • the data is stored in the play area storage unit 254.
  • FIG. 7 is a flow chart showing the operation of the image generating device 200. As shown in FIG. FIG. 7 shows a case where the user wearing the head mounted display 100 selects a menu for setting the play area from among a plurality of setting menus for the head mounted display 100 provided by the image generating device 200 using the controller 140. indicates the action to be performed on the
  • the camera image acquisition unit 270 of the image generation device 200 sequentially acquires a plurality of captured images (camera images) by the stereo camera 110 of the head mounted display 100, which are transmitted from the head mounted display 100. .
  • the position/orientation acquisition unit 272 of the image generation device 200 repeatedly acquires the position and orientation of the head mounted display 100 based on the images captured by the stereo camera 110 of the head mounted display 100 and/or the measured values by the motion sensor 134. do.
  • the line-of-sight measurement unit 274 of the image generation device 200 detects the eyeball position, movement, and line-of-sight direction of the user wearing the head-mounted display 100 based on the measurement values from the eye-tracking sensor 136 of the head-mounted display 100 .
  • the play area setting unit 276 of the image generation device 200 automatically detects the play area in the surrounding space of the user wearing the head mounted display 100 based on the camera image and the motion sensor data acquired from the head mounted display 100 (S10 ). For example, the play area setting unit 276 estimates the 3D shape of the user's room by a known method based on the camera image and the motion sensor data corresponding to the camera image, and uses the 3D shape as the shape of the play area. can be estimated.
  • the play area setting section 276 stores the play area data including the coordinate values of the point group forming the boundary of the play area in the play area storage section 254 .
  • the play area setting unit 276 detects planes perpendicular to the vertical direction indicated by the motion sensor data based on the estimated shape of the play area, and detects a plurality of planes having the same height.
  • the synthesized result is estimated as the shape of the floor of the play area (that is, the floor of the virtual space).
  • the play area setting unit 276 estimates the detected height of the floor (in other words, the distance from the head mounted display 100 to the floor) using a known technique such as triangulation.
  • the play area setting section 276 further stores the estimated shape and height of the floor surface in the play area storage section 254 .
  • the adjustment screen generator 278 of the image generation device 200 If the user has selected to use a height gauge UI (User Interface) in adjusting the floor height (Y in S11), the adjustment screen generator 278 of the image generation device 200 generates an adjustment screen including a height gauge image. data is generated (S12). The display control unit 264 of the image generation device 200 causes the head mounted display 100 to display an adjustment screen including the height gauge image (S13).
  • a height gauge UI User Interface
  • FIG. 8 shows an example of the adjustment screen.
  • the adjustment screen 300 displays a video see-through AR image. Specifically, adjustment screen 300 displays an image showing the state of the real-world space (here, the user's room) captured by stereo camera 110 of head-mounted display 100 .
  • the adjustment screen 300 in FIG. 8 shows the controller 140 held by the user.
  • the adjustment screen 300 also includes a height meter image 302 and a user image 304 .
  • the height scale image 302 includes scales of the height scale.
  • the scale of the height meter is set so that the height of the floor detected by the play area setting unit 276 stored in the play area storage unit 254 is 0, and the value of the scale increases vertically upward from the floor. good too.
  • a user image 304 is an image simulating a user wearing the head mounted display 100 .
  • the adjustment screen including the height gauge image 302 and the user image 304 will also be referred to as a first adjustment screen 300a.
  • the operation to set the height of the user for the height meter image 302 is an operation input to the button 142 or the analog stick 144 of the controller 140, and the position (value) corresponding to the height of the user on the scale of the height meter image 302. It is an operation to specify Specifically, the user operates the buttons 142 of the controller 140 or the analog stick 144 in the vertical direction to align the top of the head of the user image 304 with the height of the user on the scale of the height scale image 302 . Enter the completion operation.
  • the height of the floor stored in the play area storage unit 254 is the detected vertical line from the predetermined reference portion of the head mounted display 100 (for example, the center of the front surface of the housing 108) to the floor. directional distance. Also, the distance from the reference part of the head mounted display 100 to the top of the head of the user image 304 (hereinafter also referred to as the "top of the head distance") is a predetermined fixed value, such as 10 centimeters.
  • the floor surface setting unit 280 of the image generation device 200 stores the height of the floor set on the first adjustment screen 300a in the play area storage unit 254 (S18).
  • the floor surface setting unit 280 subtracts the top of the head distance (eg, 10 cm) from the height (eg, 170 cm) indicated by the scale of the height gauge image 302 aligned with the top of the user image 304.
  • the height of the floor may be set based on the height of the floor (eg, 160 centimeters).
  • the floor surface setting unit 280 may set the vertical distance from the reference portion of the head mounted display 100 to the floor surface to 160 cm, and set the height of the floor surface to 160 cm. It may be set to minus 160 centimeters from the site.
  • the floor surface setting unit 280 If the setting completion operation is not input on the first adjustment screen 300a and the sight line measurement unit 274 detects that the user's sight line is directed downward (for example, vertically downward direction) (N in S14), the floor surface setting unit 280 generates data for an adjustment screen 300 (hereinafter also referred to as "second adjustment screen 300b") showing an image of the floor surface in the real space and the floor surface in the virtual space superimposed.
  • the display control unit 264 causes the head mounted display 100 to display the second adjustment screen 300b.
  • the floor surface setting unit 280 and the display control unit 264 change the display target from the first adjustment screen 300a to the second adjustment screen 300b when the user's line of sight direction changes from the horizontal direction (perpendicular to the vertical direction) to the downward direction. switch to
  • FIG. 9 also shows an example of the adjustment screen 300.
  • FIG. 9 shows an example of the second adjustment screen 300b.
  • the second adjustment screen 300 b includes a real floor image 306 and a virtual floor image 308 .
  • the actual floor surface image 306 is an image of the floor surface in the physical space captured by the stereo camera 110 of the head mounted display 100 .
  • a virtual floor image 308 is an image representing the floor of the virtual space detected by the play area setting unit 276 .
  • Adjustment screen generator 278 creates a virtual floor image at a position based on the height of the floor stored in play area storage 254 (in other words, the vertical distance from the reference portion of head mounted display 100 to the floor). 308 is placed. Note that both the actual floor image 306 and the virtual floor image 308 have a predetermined number greater than 0 so that the user can visually recognize both of them. transparency (also referred to as transmittance) may be set and displayed semi-transparently.
  • the user's operation on the second adjustment screen 300b is an operation input to the button 142 or the analog stick 144 of the controller 140, and is an operation to match the height of the floor surface in the real space with the height of the floor surface in the virtual space. .
  • the user vertically moves the virtual floor image 308 so that the real floor image 306 and the virtual floor image 308 exactly overlap each other by operating the buttons 142 of the controller 140 or the analog sticks 144 in the vertical direction. Adjust the direction position and enter the setting completion operation.
  • the floor setting section 280 stores the height of the floor set on the second adjustment screen 300b in the play area. It saves in the section 254 (S18).
  • the floor setting unit 280 estimates the floor height based on the position of the virtual floor image 308 when the setting completion operation is input, and the floor height stored in the play area storage unit 254. A difference from the value (that is, the value before adjustment) may be derived, and the height of the floor stored in the user image 304 may be updated to reflect the difference. For example, if the estimated floor height is minus 150 centimeters from the reference portion of the head-mounted display 100, and the virtual floor image 308 is pushed down by 10 centimeters on the second adjustment screen 300b, the floor surface The setting unit 280 may update the floor height to minus 160 centimeters from the reference portion of the head mounted display 100 .
  • the display control unit 264 may continue to display the first adjustment screen 300a or the second adjustment screen 300b according to the direction of the user's line of sight.
  • the image generation device 200 further provides a method for adjusting the height of the floor surface of the virtual space, which is different from the method using the adjustment screen 300 (the first adjustment screen 300a and the second adjustment screen 300b).
  • This different method is the conventional method of setting the height of the floor of the virtual space, that is, the method of having the controller 140 touch the floor of the real space.
  • the user can select a method of touching the floor surface with the controller 140 instead of using the height gauge UI to adjust the floor surface height.
  • the height of the floor surface of the virtual space can be set by a method that is easy for the user to select from various methods. For example, a user accustomed to the conventional method of setting the height of the floor surface of the virtual space can select the method of touching the floor surface with the controller 140 instead of the method of using the height gauge UI.
  • the display control unit 264 displays information instructing to place the controller 140 on the floor surface. It is displayed on the display 100 (S16). At this time, the display control unit 264 may cause the head-mounted display 100 to display a video see-through AR image including the instructed information.
  • the floor surface setting unit 280 sets the height position of the controller 140 to The height of the floor of the virtual space is estimated, and data indicating the estimated height of the floor is stored in the play area storage unit 254 (S18).
  • Known techniques may be used to detect that the controller 140 has moved to a predetermined height position (for example, the floor in the real space) and to estimate the height of the floor triggered by this detection.
  • the predetermined height position means the lowest position to which the controller 140 moves during the height adjustment of the floor surface of the virtual space.
  • the App execution unit 262 of the image generation device 200 executes the play stored in the play area storage unit 254.
  • a VR game is executed using area data.
  • the App execution unit 262 creates a VR image in which various characters, buildings, items, etc. are arranged on the floor surface of the virtual space based on the height of the floor surface of the virtual space stored in the play area storage unit 254. Generate.
  • an operation of setting the height of the user for the height gauge image 302 on the adjustment screen 300 (specifically, specifying a position on the scale of the height gauge image 302 that matches the height of the user) is performed. operation), set the height of the floor surface of the virtual space.
  • a user interface that makes it easy to appropriately set the height of the floor surface of the virtual space with an intuitive operation.
  • the image generation device 200 by changing the mode of the adjustment screen according to the direction of the user's line of sight, it is a user interface that facilitates setting the height of the floor surface of the virtual space appropriately through intuitive operations.
  • the functions implemented in the image generation device 200 in the above embodiments may be implemented in the head mounted display 100, and may be implemented in a server connected to the image generation device 200 via a network.
  • the head mounted display 100 may have a function of generating various screens and image data based on camera images and sensor measurement values.
  • the server may have a function to generate data of various screens and images based on camera images and sensor measurement values, and the head mounted display 100 may display screens and images generated by the server. good.
  • the technology of the present disclosure can be applied to information processing devices and systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Processing Or Creating Images (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

画像生成装置は、ヘッドマウントディスプレイを装着したユーザにヘッドマウントディスプレイに表示させる仮想空間の床面の高さを調整させるための調整画面300を生成する。調整画面300は、身長計画像302を含む。画像生成装置は、調整画面300をヘッドマウントディスプレイに表示させる。画像生成装置は、調整画面300の身長計画像302に対してユーザの身長を設定する操作が入力された場合、身長計画像302に設定されたユーザの身長に応じて、仮想空間の床面の高さを設定する。

Description

情報処理装置および床面高さ調整方法
 本発明は、データ処理技術に関し、特に情報処理装置および床面高さ調整方法に関する。
 ヘッドマウントディスプレイを装着したユーザが対象空間を自由な視点から鑑賞できる画像表示システムが普及している。例えば仮想3次元空間を表示対象とし、ユーザの視線方向に応じた画像がヘッドマウントディスプレイに表示されるようにすることで仮想現実(Virtual Reality:VR)を実現する電子コンテンツが知られている。ヘッドマウントディスプレイを利用することで、映像への没入感を高めたり、ゲーム等のアプリケーションの操作性を向上させたりすることもできる。また、ヘッドマウントディスプレイを装着したユーザが物理的に移動することで、映像として表示された空間内を仮想的に歩き回ることのできるウォークスルーシステムも開発されている。
 ヘッドマウントディスプレイを装着したユーザにVR画像を提示する画像表示システムは、予め設定された仮想空間の床面の上に、ゲームのアイテム等の様々なオブジェクトを配置することがある。画像表示システムにおいて設定された仮想空間の床面の高さと、現実空間の床面の高さとの乖離が大きい場合、VR画像に対する違和感をユーザに抱かせてしまい、VRへの没入感が損なわれることがある。
 本発明はこうした課題に鑑みてなされたものであり、1つの目的は、仮想空間の床面の高さの設定を支援する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の情報処理装置は、ヘッドマウントディスプレイを装着したユーザにヘッドマウントディスプレイに表示させる仮想空間の床面の高さを調整させるための調整画面であって、身長計の画像を含む調整画面を生成する調整画面生成部と、調整画面をヘッドマウントディスプレイに表示させる表示制御部と、調整画面の身長計の画像に対してユーザの身長を設定する操作が入力された場合、身長計の画像に設定されたユーザの身長に応じて、仮想空間の床面の高さを設定する床面設定部とを備える。
 本発明の別の態様は、床面高さ調整方法である。この方法は、ヘッドマウントディスプレイを装着したユーザにヘッドマウントディスプレイに表示させる仮想空間の床面の高さを調整させるための調整画面であって、身長計の画像を含む調整画面を生成するステップと、調整画面をヘッドマウントディスプレイに表示させるステップと、調整画面の身長計の画像に対してユーザの身長を設定する操作が入力された場合、身長計の画像に設定されたユーザの身長に応じて、仮想空間の床面の高さを設定するステップとをコンピュータが実行する。
 なお、以上の構成要素の任意の組合せ、本発明の表現をシステム、コンピュータプログラム、コンピュータプログラムを読み取り可能に記録した記録媒体、データ構造などの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、仮想空間の床面の高さの設定を支援することができる。
実施例のヘッドマウントディスプレイの外観例を示す図である。 実施例の画像表示システムの構成例を示す図である。 画像生成装置がヘッドマウントディスプレイに表示させる画像世界の例を説明するための図である。 画像生成装置の内部回路構成を示す図である。 ヘッドマウントディスプレイの内部回路構成を示す図である。 画像生成装置の機能ブロックを示すブロック図である。 画像生成装置の動作を示すフローチャートである。 調整画面の例を示す図である。 調整画面の例を示す図である。
 本実施例は、ユーザの頭部に装着されたヘッドマウントディスプレイにアプリケーションの画像を表示する画像表示システムに関する。ヘッドマウントディスプレイは、VRヘッドセットとも呼ばれる。図1は、実施例のヘッドマウントディスプレイ100の外観例を示す。ヘッドマウントディスプレイ100は、出力機構部102と装着機構部104を備える。装着機構部104は、ユーザが被ることにより頭部を一周し装置の固定を実現する装着バンド106を含む。
 出力機構部102は、ヘッドマウントディスプレイ100をユーザが装着した状態において左右の目を覆うような形状の筐体108を含み、内部には装着時に目に正対するように表示パネルを備える。実施例のヘッドマウントディスプレイ100の表示パネルは、透過性がないものとする。すなわち、実施例のヘッドマウントディスプレイ100は、光不透過型のヘッドマウントディスプレイである。
 筐体108内部にはさらに、ヘッドマウントディスプレイ100を装着したユーザの目とヘッドマウントディスプレイ100の表示パネルとの間に位置し、ユーザの視野角を拡大する接眼レンズを備えてもよい。ヘッドマウントディスプレイ100はさらに、装着時にユーザの耳に対応する位置にスピーカーやイヤホンを備えてよい。また、ヘッドマウントディスプレイ100は、モーションセンサを内蔵し、ヘッドマウントディスプレイ100を装着したユーザの頭部の並進運動や回転運動、ひいては各時刻の位置や姿勢を検出する。
 また、ヘッドマウントディスプレイ100は、筐体108の前面にステレオカメラ110を備える。ステレオカメラ110は、ユーザの視線に対応する視野で周囲の実空間を動画撮影する。撮影した画像を即時に表示させれば、ユーザが向いた方向の実空間の様子がそのまま見える、いわゆるビデオシースルーを実現できる。さらに撮影画像に写っている実物体の像上に仮想オブジェクトを描画すれば拡張現実(Augmented Reality:AR)を実現できる。なお、画像表示システム10が備えるカメラの台数に制限はなく、ヘッドマウントディスプレイ100は、1台のカメラを備えてもよく、3台以上のカメラを備えてもよい。
 図2は、実施例の画像表示システム10の構成例を示す。画像表示システム10は、ヘッドマウントディスプレイ100、画像生成装置200、コントローラ140を備える。ヘッドマウントディスプレイ100は、無線通信により画像生成装置200に接続される。画像生成装置200は、さらにネットワークを介してサーバ(不図示)に接続されてもよい。その場合、サーバは、複数のユーザがネットワークを介して参加できるゲームなどのオンラインアプリケーションのデータを画像生成装置200に提供してもよい。
 画像生成装置200は、ヘッドマウントディスプレイ100を装着したユーザの頭部の位置や姿勢に基づき視点の位置や視線の方向を特定し、それに応じた視野となるように表示画像を生成してヘッドマウントディスプレイ100に出力する情報処理装置である。画像生成装置200は、据置型ゲーム機、PCまたはタブレット端末であってもよい。画像生成装置200は、VRやARに関する様々なアプリケーションを実行可能であるが、実施例の画像生成装置200は、仮想世界を描く電子ゲーム(以下「VRゲーム」とも呼ぶ。)を進捗させつつゲームの舞台である仮想世界の表示画像を生成し、その表示画像をヘッドマウントディスプレイ100に表示させることとする。
 なお、画像生成装置200は、仮想世界か実世界かに関わらず観賞や情報提供のための動画像を生成し、その動画像をヘッドマウントディスプレイ100に表示させてもよい。また、画像生成装置200は、ユーザの視点を中心に広い画角のパノラマ画像をヘッドマウントディスプレイ100に表示させてもよく、これにより、表示世界への深い没入感をユーザに与えることができる。
 コントローラ140は、ユーザの手に把持され、ユーザの操作が入力される入力装置(例えばゲームコントローラ)である。ユーザの操作は、画像生成装置200における画像生成を制御する操作や、ヘッドマウントディスプレイ100における画像表示を制御する操作を含む。コントローラ140は、無線通信により画像生成装置200に接続され、ユーザの操作を示すデータを画像生成装置200へ送信する。変形例として、ヘッドマウントディスプレイ100とコントローラ140の一方または両方は、信号ケーブル等を介した有線通信で画像生成装置200に接続されてもよい。
 コントローラ140は、ユーザの操作が入力される部材としてボタン142とアナログスティック144を備える。ボタン142は、方向ボタンや十字キーを含む。アナログスティック144は、コントロールスティックとも呼ばれ、傾動されて方向および傾動量を入力するために用いられる。傾動量は、アナログスティック144が傾けられた角度とも言える。
 図3は、画像生成装置200がヘッドマウントディスプレイ100に表示させる画像世界の例を説明するための図である。この例では、ユーザ12が仮想空間である部屋にいる状態を作り出している。図示するように、仮想空間を定義するワールド座標系には、壁、床、窓、テーブル、テーブル上の物などのオブジェクトを配置している。画像生成装置200は、当該ワールド座標系に、ユーザ12の視点の位置や視線の方向に応じてビュースクリーン14を定義し、そこにオブジェクトの像を表すことで表示画像を描画する。
 画像生成装置200は、ユーザ12の視点の位置や視線の方向(以後、これらを包括的に「視点」と呼ぶ場合がある)を所定のレートでヘッドマウントディスプレイ100から取得し、これに応じてビュースクリーン14の位置や方向を変化させる。これにより、ユーザの視点に対応する視野で画像をヘッドマウントディスプレイ100に表示させることができる。また、画像生成装置200は、視差を有するステレオ画像を生成し、ヘッドマウントディスプレイ100の表示パネルの左右の領域にステレオ画像を表示させれば、仮想空間をユーザ12に立体視させることもできる。これにより、ユーザ12は、あたかも表示世界の部屋の中にいるような仮想現実を体験することができる。
 図4は、画像生成装置200の内部回路構成を示す。画像生成装置200は、CPU(Central Processing Unit)222、GPU(Graphics Processing Unit)224、メインメモリ226を含む。これらの各部は、バス230を介して相互に接続される。バス230にはさらに入出力インターフェース228が接続される。入出力インターフェース228には、通信部232、記憶部234、出力部236、入力部238、記録媒体駆動部240が接続される。
 通信部232は、USBやIEEE1394などの周辺機器インターフェースや、有線LANまたは無線LAN等のネットワークインターフェースを含む。記憶部234は、ハードディスクドライブや不揮発性メモリ等を含む。出力部236は、ヘッドマウントディスプレイ100へのデータを出力する。入力部238は、ヘッドマウントディスプレイ100からのデータ入力を受け付け、また、コントローラ140からのデータ入力を受け付ける。記録媒体駆動部240は、磁気ディスク、光ディスクまたは半導体メモリなどのリムーバブル記録媒体を駆動する。
 CPU222は、記憶部234に記憶されているオペレーティングシステムを実行することにより画像生成装置200の全体を制御する。また、CPU222は、記憶部234またはリムーバブル記録媒体から読み出されてメインメモリ226にロードされた、あるいは通信部232を介してダウンロードされた各種プログラム(例えばVRゲームアプリケーション等)を実行する。GPU224は、ジオメトリエンジンの機能とレンダリングプロセッサの機能とを有し、CPU222からの描画命令にしたがって描画処理を行い、描画結果を出力部236に出力する。CPU222とGPU224の一方または両方をプロセッサと呼ぶこともできる。メインメモリ226は、RAM(Random Access Memory)により構成され、処理に必要なプログラムやデータを記憶する。
 図5は、ヘッドマウントディスプレイ100の内部回路構成を示す。ヘッドマウントディスプレイ100は、CPU120、メインメモリ122、表示部124、音声出力部126を含む。これらの各部はバス128を介して相互に接続されている。バス128にはさらに入出力インターフェース130が接続されている。入出力インターフェース130には、無線通信のインターフェースを含む通信部132、モーションセンサ134、アイトラッキングセンサ136およびステレオカメラ110が接続される。
 CPU120は、バス128を介してヘッドマウントディスプレイ100の各部から取得した情報を処理するとともに、画像生成装置200から取得した表示画像や音声のデータを表示部124や音声出力部126に供給する。メインメモリ122は、CPU120における処理に必要なプログラムやデータを格納する。
 表示部124は、液晶パネルや有機ELパネルなどの表示パネルを含み、ヘッドマウントディスプレイ100を装着したユーザの眼前に画像を表示する。表示部124は、ユーザの左目の前に設けられた左目用の表示パネルと、ユーザの右目の前に設けられた右目用の表示パネルとに一対のステレオ画像を表示することにより立体視を実現する。表示部124はさらに、ヘッドマウントディスプレイ100装着時に表示パネルとユーザの目との間に位置し、ユーザの視野角を拡大する一対のレンズ(左目用のレンズ、右目用のレンズ)を含んでもよい。
 音声出力部126は、ヘッドマウントディスプレイ100の装着時にユーザの耳に対応する位置に設けたスピーカーやイヤホンで構成され、ユーザに音声を聞かせる。通信部132は、画像生成装置200との間でデータを送受するためのインターフェースであり、Bluetooth(登録商標)などの既知の無線通信技術により通信を実現する。
 モーションセンサ134は、ジャイロセンサおよび加速度センサを含み、ヘッドマウントディスプレイ100の角速度や加速度を取得する。アイトラッキングセンサ136は、アイトラッキング用の公知のセンサである。アイトラッキングは、視線計測とも言え、ユーザの瞳(眼球とも言える)の位置、動きおよび視線方向を検出する技術である。例えば、アイトラッキングセンサ136は、赤外線等を用いてユーザの瞳の位置および動きを検出する。
 ステレオカメラ110は、図1で示したとおり、ユーザの視点に対応する視野で周囲の実空間を左右の視点から撮影するビデオカメラの対である。ステレオカメラ110により撮像されたユーザの周囲空間を写した画像を以下「カメラ画像」とも呼ぶ。カメラ画像は、ユーザの視線方向(典型的にはユーザの正面)の実空間を写した画像と言え、ユーザの視線方向に存在する物体が写る画像とも言える。
 通信部132を介して、ヘッドマウントディスプレイ100から画像生成装置200へ送信されるデータは、以下の内容を含む。
 (1)モーションセンサ134による計測値。
 (2)アイトラッキングセンサ136による計測値。
 (3)ステレオカメラ110による撮影画像(カメラ画像)のデータ。
 ここで、仮想空間の床面の高さを設定する従来技術の課題と、実施例の画像表示システム10の特徴を説明する。仮想空間の床面の高さを設定する従来の方法として、コントローラを用いて現実空間の床をタッチする方法が知られている。しかし、この従来の方法は、膝を曲げることが辛い人には困難である等、アクセシビリティの観点から万能ではないと本発明者は考えた。
 そこで、実施例の画像表示システム10は、ヘッドマウントディスプレイ100を装着したユーザに、ヘッドマウントディスプレイ100に表示させる仮想空間の床面の高さを調整させるためのユーザインタフェースである調整画面を提供する。調整画面には、身長計の画像が含まれる。調整画面の身長計の画像に対してユーザの身長を設定する操作が入力されると、設定されたユーザの身長に応じて、仮想空間の床面の高さを設定する。これにより、仮想空間の床面の高さをユーザが適切に設定できるよう支援できる。また、仮想空間の床面の高さを設定するアクセシビリティの高い方法を提供できる。
 図6は、画像生成装置の機能ブロックを示すブロック図である。画像生成装置200は、VRゲームの進行やサーバとの通信等、様々な情報処理を実行するが、以下では主に、仮想空間の床面の高さの設定に関連する機能ブロックを説明する。
 図6に示す複数の機能ブロックは、ハードウェア的には、図4に示したCPU222、GPU224、メインメモリ226、記憶部234等の構成で実現でき、ソフトウェア的には、複数の機能ブロックの機能を実装したコンピュータプログラムにより実現できる。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。
 画像生成装置200は、データ処理部250とデータ記憶部252を備える。データ記憶部252は、図4の記憶部234に対応し、データ処理部250により参照または更新されるデータを記憶する。例えば、データ記憶部252は、図8等に関連して後述する調整画面に配置される各要素の画像データを記憶する。
 また、データ記憶部252は、プレイエリア記憶部254を含む。プレイエリア記憶部254は、プレイエリアに関するデータを記憶する。プレイエリアは、ヘッドマウントディスプレイ100を装着したユーザがアプリケーション(例えばVRゲーム)のプレイ中に移動可能なエリアである。プレイエリアは、ユーザの周囲空間(すなわちユーザの周囲に広がる実世界の空間)うちユーザがVR画像(例えばVRゲームの3次元画像)を視聴中に動き回ることが許可されたエリアまたは範囲と言える。
 プレイエリア記憶部254は、プレイエリアに関するデータとして、プレイエリアの境界を構成する点群の位置を示すデータ(例えばワールド座標系における各点の座標値)を記憶してもよい。また、実施例のプレイエリア記憶部254は、VRゲームが行われる仮想空間の床面の高さを示すデータをさらに記憶する。仮想空間の床面の高さは、ヘッドマウントディスプレイ100の基準部位から床面への鉛直方向の距離とも言える。
 データ処理部250は、各種のデータ処理を実行する。データ処理部250は、図4に示した通信部232、出力部236、入力部238を介して、ヘッドマウントディスプレイ100およびコントローラ140とデータを送受信する。例えば、データ処理部250は、ヘッドマウントディスプレイ100から送信されたカメラ画像やセンサデータを取得し、コントローラ140から送信されたユーザの操作に関するデータを取得する。
 データ処理部250は、システム部260、App実行部262、表示制御部264を含む。データ処理部250に含まれる複数の機能ブロックの機能は、コンピュータプログラムに実装されてもよい。画像生成装置200のプロセッサ(例えばCPU222とGPU224)は、画像生成装置200のストレージ(例えば記憶部234)に記憶された上記コンピュータプログラムをメインメモリ226に読み出して実行することによりデータ処理部250に含まれる複数の機能ブロックの機能を発揮してもよい。
 App実行部262は、ユーザにより選択されたアプリケーション(実施例ではVRゲーム)に関するデータをデータ記憶部252から読み出し、ユーザにより選択されたアプリケーションを実行する。App実行部262は、(1)プレイエリア記憶部254に記憶されたプレイエリアに関するデータと、(2)システム部260により取得されたカメラ画像と、(3)システム部260により取得されたヘッドマウントディスプレイ100の位置および姿勢と、(4)システム部260により計測されたユーザの視線方向とに基づいて、VRゲームの実行結果を示すVR画像を生成する。VR画像は左目用画像と右目用画像を含む。
 表示制御部264は、App実行部262により生成された様々なVR画像のデータをヘッドマウントディスプレイ100へ送信し、VR画像をヘッドマウントディスプレイ100の表示部124に表示させる。ヘッドマウントディスプレイ100の表示部124は、App実行部262により生成された左目用画像を左目用の表示パネルに表示し、App実行部262により生成された右目用画像を右目用の表示パネルに表示する。
 システム部260は、ヘッドマウントディスプレイ100に関するシステムの処理を実行する。システム部260は、ヘッドマウントディスプレイ100用の複数のアプリケーション(例えば複数のVRゲーム)に対して共通のサービスを提供する。共通のサービスは、例えば、プレイエリアのデータの提供や、カメラ画像の提供、ヘッドマウントディスプレイ100の位置および姿勢の情報の提供、視線計測結果の提供を含む。
 また、システム部260は、プレイエリアの設定に関する処理を実行する。プレイエリアの設定に関する処理は、仮想空間の床面の高さの調整を支援する処理を含む。仮想空間の床面の高さは、プレイエリアの床面の高さとも言え、App実行部262が認識する床面の高さとも言え、VRゲームに設定される床面の高さとも言える。
 システム部260は、カメラ画像取得部270、位置・姿勢取得部272、視線計測部274、プレイエリア設定部276、調整画面生成部278、床面設定部280を含む。
 カメラ画像取得部270は、ヘッドマウントディスプレイ100から送信された、ヘッドマウントディスプレイ100のステレオカメラ110により撮像されたカメラ画像のデータを取得する。
 位置・姿勢取得部272は、ヘッドマウントディスプレイ100の位置および姿勢を取得する。位置・姿勢取得部272は、ヘッドマウントディスプレイ100のモーションセンサ134の検出値に基づいて、ユーザの頭部に装着されたヘッドマウントディスプレイ100の位置および姿勢を所定のレートで検出する。ヘッドマウントディスプレイ100の位置および姿勢は、ヘッドマウントディスプレイ100を装着したユーザの頭部の位置および姿勢とも言える。
 ヘッドマウントディスプレイ100の位置は、現実世界の3次元空間においてヘッドマウントディスプレイ100が存在する位置を示す座標であってもよい。ヘッドマウントディスプレイ100の姿勢は、縦方向、横方向、高さ方向の3軸におけるヘッドマウントディスプレイ100の傾きであってもよい。位置・姿勢取得部272は、ヘッドマウントディスプレイ100から送信されたカメラ画像に基づいて、ヘッドマウントディスプレイ100の位置および姿勢を取得してもよい。また、位置・姿勢取得部272は、ヘッドマウントディスプレイ100のモーションセンサ134の検出値とカメラ画像の両方に基づいて、ヘッドマウントディスプレイ100の位置および姿勢を取得してもよい。
 視線計測部274は、公知のアイトラッキング技術を用いて、ヘッドマウントディスプレイ100のアイトラッキングセンサ136の検出値に基づいて、ヘッドマウントディスプレイ100を装着したユーザの瞳の位置、動きおよび視線方向を検出する。
 プレイエリア設定部276は、プレイエリアの設定に関する各種処理を実行する。プレイエリア設定部276は、カメラ画像取得部270により取得されたカメラ画像と、コントローラ140を介して入力されたユーザの操作とに基づいて、プレイエリアを設定する。プレイエリア設定部276は、プレイエリア検出部としての機能を含み、具体的には、カメラ画像取得部270により取得されたカメラ画像に基づいて、ヘッドマウントディスプレイ100を装着したユーザの周囲空間からプレイエリアを自動検出する。プレイエリア設定部276は、検出および設定したプレイエリアに関するデータをプレイエリア記憶部254に格納する。
 調整画面生成部278は、ヘッドマウントディスプレイ100を装着したユーザにヘッドマウントディスプレイ100に表示させる仮想空間の床面の高さを調整させるための調整画面のデータを生成する。表示制御部264は、調整画面生成部278により生成された調整画面のデータをヘッドマウントディスプレイ100へ送信し、ヘッドマウントディスプレイ100の表示部124に調整画面を表示させる。
 床面設定部280は、コントローラ140のボタン142やアナログスティック144に入力された調整画面に対する操作に応じて、仮想空間の床面の高さを設定し、仮想空間の床面の高さを示すデータをプレイエリア記憶部254に格納する。実施例では、床面設定部280は、調整画面の身長計の画像に対してユーザの身長を設定する操作が入力された場合、そのユーザの身長に応じて、仮想空間の床面の高さを設定する。
 以上の構成による画像生成装置200の動作を説明する。
 図7は、画像生成装置200の動作を示すフローチャートである。図7は、ヘッドマウントディスプレイ100を装着したユーザが、コントローラ140を用いて、画像生成装置200が提供するヘッドマウントディスプレイ100の複数の設定メニューの中から、プレイエリアを設定するメニューを選択した場合に実行される動作を示している。
 図7には不図示だが、画像生成装置200のカメラ画像取得部270は、ヘッドマウントディスプレイ100から送信された、ヘッドマウントディスプレイ100のステレオカメラ110による複数の撮影画像(カメラ画像)を逐次取得する。また、画像生成装置200の位置・姿勢取得部272は、ヘッドマウントディスプレイ100のステレオカメラ110による撮影画像および/またはモーションセンサ134による計測値に基づいて、ヘッドマウントディスプレイ100の位置および姿勢を繰り返し取得する。画像生成装置200の視線計測部274は、ヘッドマウントディスプレイ100のアイトラッキングセンサ136による計測値に基づいて、ヘッドマウントディスプレイ100を装着したユーザの眼球の位置、動きおよび視線方向を検出する。
 画像生成装置200のプレイエリア設定部276は、ヘッドマウントディスプレイ100から取得されたカメラ画像およびモーションセンサデータに基づいて、ヘッドマウントディスプレイ100を装着したユーザの周囲空間におけるプレイエリアを自動検出する(S10)。例えば、プレイエリア設定部276は、カメラ画像と、そのカメラ画像に対応するモーションセンサデータとに基づいて、公知の手法によりユーザの部屋の3D形状を推定し、その3D形状をプレイエリアの形状として推定してもよい。プレイエリア設定部276は、プレイエリアの境界を構成する点群の座標値を含むプレイエリアデータをプレイエリア記憶部254に格納する。
 また、S10において、プレイエリア設定部276は、推定したプレイエリアの形状をもとに、モーションセンサデータが示す鉛直方向に対して垂直な平面を検出し、検出した同じ高さの複数の平面を合成した結果をプレイエリアの床面(すなわち仮想空間の床面)の形状として推定する。プレイエリア設定部276は、検出した床面の高さ(言い換えればヘッドマウントディスプレイ100から床面までの距離)を三角測量等の公知の手法を用いて推定する。プレイエリア設定部276は、推定した床面の形状および高さをプレイエリア記憶部254にさらに格納する。
 床面高さの調整において身長計UI(User Interface)を用いることをユーザが選択している場合(S11のY)、画像生成装置200の調整画面生成部278は、身長計画像を含む調整画面のデータを生成する(S12)。画像生成装置200の表示制御部264は、身長計画像を含む調整画面をヘッドマウントディスプレイ100に表示させる(S13)。
 図8は、調整画面の例を示す。調整画面300は、ビデオシースルーによるAR画像を表示する。具体的には、調整画面300には、ヘッドマウントディスプレイ100のステレオカメラ110により撮影された現実世界の空間(ここではユーザの部屋)の様子を示す映像が表示される。図8の調整画面300には、ユーザが把持するコントローラ140が写っている。
 また、調整画面300は、身長計画像302とユーザ画像304を含む。身長計画像302は、身長計の目盛りを含む。身長計の目盛りは、プレイエリア記憶部254に記憶された、プレイエリア設定部276により検出された床面の高さを0として、床面から鉛直上向きに目盛りの値が大きくなるよう設定されてもよい。ユーザ画像304は、ヘッドマウントディスプレイ100を装着したユーザを模した画像である。以下、身長計画像302とユーザ画像304を含む調整画面を第1調整画面300aとも呼ぶ。
 図8に示す第1調整画面300aにおいて、ユーザは、身長計画像302に対してユーザの身長を設定する操作を入力する。身長計画像302に対してユーザの身長を設定する操作は、コントローラ140のボタン142またはアナログスティック144に入力された操作であって、身長計画像302の目盛りにおけるユーザの身長に一致する位置(値とも言える)を指定する操作である。具体的には、ユーザは、コントローラ140のボタン142またはアナログスティック144に対する上下方向の操作入力により、身長計画像302の目盛りにおけるユーザの身長に一致する位置にユーザ画像304の頭頂部をあわせ、設定完了操作を入力する。
 実施例では、プレイエリア記憶部254に格納される床面の高さは、予め定められたヘッドマウントディスプレイ100の基準部位(例えば筐体108前面の中心)から、検出された床面への鉛直方向の距離である。また、ヘッドマウントディスプレイ100の基準部位から、ユーザ画像304の頭頂部までの距離(以下「頭頂部距離」とも呼ぶ。)は、予め定められた固定値であり、例えば10センチメートルである。
 図7に戻り、第1調整画面300aにおいて、身長計画像302の目盛りにユーザ画像304があわせられ、設定完了操作が入力されると(S14のY)、画像生成装置200の床面設定部280は、第1調整画面300aで設定された床面の高さをプレイエリア記憶部254に保存する(S18)。
 この場合、床面設定部280は、ユーザ画像304の頭頂部にあわせられた身長計画像302の目盛りが示す高さ(例えば170センチメートル)から頭頂部距離(例えば10センチメートル)を引いた残りの高さ(例えば160センチメートル)に基づいて、床面の高さを設定してもよい。例えば、床面設定部280は、ヘッドマウントディスプレイ100の基準部位から床面への鉛直方向の距離を160センチメートルに設定してもよく、また、床面の高さをヘッドマウントディスプレイ100の基準部位からマイナス160センチメートルに設定してもよい。
 第1調整画面300aにおいて設定完了操作が入力されず、ユーザの視線が下方向(例えば鉛直下向き方向)を向くことが視線計測部274により検出された場合(S14のN)、床面設定部280は、現実空間の床面を写した画像と、仮想空間の床面とを重ねて示す調整画面300(以下「第2調整画面300b」とも呼ぶ。)のデータを生成する。表示制御部264は、第2調整画面300bをヘッドマウントディスプレイ100に表示させる。床面設定部280と表示制御部264は、ユーザの視線方向が水平方向(鉛直方向に対し垂直な方向)から下方向に変化した場合、表示対象を第1調整画面300aから第2調整画面300bに切り替える。
 図9も、調整画面300の例を示す。図9は、第2調整画面300bの例を示している。第2調整画面300bは、実床面画像306と仮想床面画像308を含む。実床面画像306は、ヘッドマウントディスプレイ100のステレオカメラ110により現実空間の床面を写した画像である。仮想床面画像308は、プレイエリア設定部276により検出された仮想空間の床面を示す画像である。調整画面生成部278は、プレイエリア記憶部254に記憶された床面の高さ(言い換えれば、ヘッドマウントディスプレイ100の基準部位から床面への鉛直方向の距離)に基づく位置に仮想床面画像308を配置する。なお、実床面画像306と仮想床面画像308のいずれが上であってもユーザが両方を視認できるように、実床面画像306と仮想床面画像308のいずれにも、0より大きい所定の透過度(透過率とも呼ばれる)が設定され、半透明で表示されてもよい。
 第2調整画面300bにおけるユーザの操作は、コントローラ140のボタン142またはアナログスティック144に入力される操作であって、現実空間の床面の高さと仮想空間の床面の高さをあわせる操作である。具体的には、ユーザは、コントローラ140のボタン142またはアナログスティック144に対する上下方向の操作入力により、実床面画像306と仮想床面画像308とがぴったり重なるように、仮想床面画像308の上下方向の位置を調整し、設定完了操作を入力する。
 図7に戻り、第2調整画面300bにおいて設定完了操作が入力されると(S15のY)、床面設定部280は、第2調整画面300bで設定された床面の高さをプレイエリア記憶部254に保存する(S18)。
 S18において、床面設定部280は、設定完了操作が入力された際の仮想床面画像308の位置に基づく床面の高さと、プレイエリア記憶部254に記憶された床面の高さの推定値(すなわち調整前の値)との差分を導出し、その差分を反映するように、ユーザ画像304に記憶された床面の高さを更新してもよい。例えば、床面の高さの推定値がヘッドマウントディスプレイ100の基準部位からマイナス150センチメートルであり、かつ、第2調整画面300bにおいて仮想床面画像308が10センチメートル押し下げられた場合、床面設定部280は、床面の高さをヘッドマウントディスプレイ100の基準部位からマイナス160センチメートルに更新してもよい。
 第2調整画面300bにおいて設定完了操作が入力されなければ(S15のN)、S18をスキップして本図の処理を終了する。なお、S14に戻って、表示制御部264は、ユーザの視線方向に応じて、第1調整画面300aまたは第2調整画面300bの表示を継続してもよい。
 画像生成装置200は、仮想空間の床面の高さを調整する方法として、調整画面300(第1調整画面300aおよび第2調整画面300b)を用いる方法とは異なる方法をさらに提供する。この異なる方法は、仮想空間の床面の高さを設定する従来の方法であり、すなわち、コントローラ140を現実空間の床面にタッチさせる方法である。ユーザは、床面高さの調整において身長計UIを用いることに代えて、コントローラ140を床面にタッチさせる方法を選択可能である。これにより、多様な方法の中からユーザにとって容易な方法にて仮想空間の床面の高さを設定させることができる。例えば、仮想空間の床面の高さを設定する従来の方法に慣れたユーザは、身長計UIを用いる方法でなく、コントローラ140を床面にタッチさせる方法を選択できる。
 床面高さの調整においてコントローラ140を床面にタッチさせる方法をユーザが選択している場合(S11のN)、表示制御部264は、コントローラ140を床面に置くよう指示する情報をヘッドマウントディスプレイ100に表示させる(S16)。このとき、表示制御部264は、上記の指示する情報を含むビデオシースルーによるAR画像をヘッドマウントディスプレイ100に表示させてもよい。
 コントローラ140が所定の高さの位置(例えば、現実空間の床面)に移動したことが検出されると(S17のY)、床面設定部280は、コントローラ140の高さの位置に応じて仮想空間の床面の高さを推定し、推定した床面の高さを示すデータをプレイエリア記憶部254に格納する(S18)。コントローラ140が所定の高さの位置(例えば、現実空間の床面)に移動したことの検出とその検出を契機とした床面の高さ推定は、公知の技術により実現されてよい。この場合、所定の高さの位置とは、仮想空間の床面の高さ調整中にコントローラ140が移動した一番低い位置を意味している。コントローラ140が所定の高さの位置(例えば、現実空間の床面)に移動したことが未検出であれば(S17のN)、S18の処理をスキップして本図のフローを終了する。なお、コントローラ140が所定の高さの位置(例えば、現実空間の床面)に移動したことを検出するまで待機してもよく、例えば、コントローラ140を床面に置くよう指示する情報の表示を継続してもよい。
 仮想空間の床面の高さの調整が終了し、VRゲームの開始を指示するユーザ操作が入力されると、画像生成装置200のApp実行部262は、プレイエリア記憶部254に記憶されたプレイエリアのデータを用いてVRゲームを実行する。App実行部262は、プレイエリア記憶部254に記憶された仮想空間の床面の高さに基づいて、様々なキャラクタや建築物、アイテム等を仮想空間の床面の上に配置したVR画像を生成する。
 実施例の画像生成装置200によると、調整画面300の身長計画像302に対してユーザの身長を設定する操作(具体的には身長計画像302の目盛りにおけるユーザの身長に一致する位置を指定する操作)に応じて、仮想空間の床面の高さを設定する。これにより、直観的な操作で仮想空間の床面の高さを適切に設定し易いユーザインタフェースを提供できる。また、画像生成装置200によると、ユーザの視線方向に応じて調整画面の態様を変更することにより、直観的な操作で仮想空間の床面の高さを適切に設定し易いユーザインタフェースであり、かつ、ユーザの視線方向に適合したユーザインタフェースを提供できる。
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 変形例を説明する。上記の実施例において画像生成装置200に実装された複数の機能のうち少なくとも一部の機能は、ヘッドマウントディスプレイ100に実装されてもよく、ネットワークを介して画像生成装置200に接続されるサーバに実装されてもよい。例えば、ヘッドマウントディスプレイ100は、カメラ画像やセンサ計測値に基づいて、各種画面や画像のデータを生成する機能を備えてもよい。また、サーバは、カメラ画像やセンサ計測値に基づいて、各種画面や画像のデータを生成する機能を備えてもよく、ヘッドマウントディスプレイ100は、サーバにより生成された画面や画像を表示してもよい。
 上述した実施例および変形例の任意の組み合わせもまた本開示の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施例および変形例それぞれの効果をあわせもつ。また、請求項に記載の各構成要件が果たすべき機能は、実施例および変形例において示された各構成要素の単体もしくはそれらの連携によって実現されることも当業者には理解されるところである。
 本開示の技術は、情報処理装置やシステムに適用できる。
 100 ヘッドマウントディスプレイ、 140 コントローラ、 142 ボタン、 144 アナログスティック、 200 画像生成装置、 264 表示制御部、 278 調整画面生成部、 280 床面設定部。

Claims (6)

  1.  ヘッドマウントディスプレイを装着したユーザに前記ヘッドマウントディスプレイに表示させる仮想空間の床面の高さを調整させるための調整画面であって、身長計の画像を含む調整画面を生成する調整画面生成部と、
     前記調整画面を前記ヘッドマウントディスプレイに表示させる表示制御部と、
     前記調整画面の前記身長計の画像に対して前記ユーザの身長を設定する操作が入力された場合、前記身長計の画像に設定された前記ユーザの身長に応じて、前記仮想空間の床面の高さを設定する床面設定部と、
     を備える情報処理装置。
  2.  前記身長計の画像に対して前記ユーザの身長を設定する操作は、コントローラのボタンまたはスティックに入力された操作であって、前記身長計の目盛りにおける前記ユーザの身長に一致する位置を指定する操作である、
     請求項1に記載の情報処理装置。
  3.  前記調整画面生成部は、前記ユーザの視線が下方向を向く場合、現実空間の床面を写した画像と、前記仮想空間の床面の画像とを重ねて示す調整画面を生成し、
     前記床面設定部は、コントローラのボタンまたはスティックに入力された操作であって、現実空間の床面の高さと前記仮想空間の床面の高さをあわせる操作に応じて、前記仮想空間の床面の高さを設定する、
     請求項1または2に記載の情報処理装置。
  4.  前記仮想空間の床面の高さを調整する方法として、前記調整画面を用いる方法とは異なる方法を前記ユーザが選択可能である、
     請求項1または2に記載の情報処理装置。
  5.  ヘッドマウントディスプレイを装着したユーザに前記ヘッドマウントディスプレイに表示させる仮想空間の床面の高さを調整させるための調整画面であって、身長計の画像を含む調整画面を生成するステップと、
     前記調整画面を前記ヘッドマウントディスプレイに表示させるステップと、
     前記調整画面の前記身長計の画像に対して前記ユーザの身長を設定する操作が入力された場合、前記身長計の画像に設定された前記ユーザの身長に応じて、前記仮想空間の床面の高さを設定するステップと、
     をコンピュータが実行する床面高さ調整方法。
  6.  ヘッドマウントディスプレイを装着したユーザに前記ヘッドマウントディスプレイに表示させる仮想空間の床面の高さを調整させるための調整画面であって、身長計の画像を含む調整画面を生成する機能と、
     前記調整画面を前記ヘッドマウントディスプレイに表示させる機能と、
     前記調整画面の前記身長計の画像に対して前記ユーザの身長を設定する操作が入力された場合、前記身長計の画像に設定された前記ユーザの身長に応じて、前記仮想空間の床面の高さを設定する機能と、
     をコンピュータに実現させるためのコンピュータプログラム。
PCT/JP2023/003922 2022-02-28 2023-02-07 情報処理装置および床面高さ調整方法 WO2023162668A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380016057.8A CN118511146A (zh) 2022-02-28 2023-02-07 信息处理设备和地板高度调整方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029965 2022-02-28
JP2022029965A JP2023125711A (ja) 2022-02-28 2022-02-28 情報処理装置および床面高さ調整方法

Publications (1)

Publication Number Publication Date
WO2023162668A1 true WO2023162668A1 (ja) 2023-08-31

Family

ID=87765653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003922 WO2023162668A1 (ja) 2022-02-28 2023-02-07 情報処理装置および床面高さ調整方法

Country Status (3)

Country Link
JP (1) JP2023125711A (ja)
CN (1) CN118511146A (ja)
WO (1) WO2023162668A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156642A (ja) * 2005-12-01 2007-06-21 Matsushita Electric Works Ltd 仮想空間体験システム
WO2019215997A1 (ja) * 2018-05-10 2019-11-14 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び床面モデリングシステム
WO2020230748A1 (ja) * 2019-05-11 2020-11-19 株式会社キテミル 画像生成装置、方法、及び、プログラム、並びに、仮想試着システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156642A (ja) * 2005-12-01 2007-06-21 Matsushita Electric Works Ltd 仮想空間体験システム
WO2019215997A1 (ja) * 2018-05-10 2019-11-14 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び床面モデリングシステム
WO2020230748A1 (ja) * 2019-05-11 2020-11-19 株式会社キテミル 画像生成装置、方法、及び、プログラム、並びに、仮想試着システム

Also Published As

Publication number Publication date
CN118511146A (zh) 2024-08-16
JP2023125711A (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
CN108780360B (zh) 虚拟现实导航
JP6097377B1 (ja) 画像表示方法及びプログラム
CN114730094A (zh) 具有人工现实内容的变焦显示的人工现实系统
US20220147138A1 (en) Image generation apparatus and information presentation method
JP2023116432A (ja) アニメーション制作システム
US20180161676A1 (en) Information processing apparatus, image generating method, and program
JP6964302B2 (ja) アニメーション制作方法
JP6535699B2 (ja) 情報処理方法、情報処理プログラム及び情報処理装置
WO2023162668A1 (ja) 情報処理装置および床面高さ調整方法
JP2022153476A (ja) アニメーション制作システム
JP6382928B2 (ja) 仮想空間における画像の表示を制御するためにコンピュータによって実行される方法、当該方法をコンピュータに実現させるためのプログラム、および、コンピュータ装置
JP2018170013A (ja) 仮想空間における画像の表示を制御するためにコンピュータによって実行される方法、当該方法をコンピュータに実現させるためのプログラム、および、コンピュータ装置
JP6955725B2 (ja) アニメーション制作システム
JP6403843B1 (ja) 情報処理方法、情報処理プログラム及び情報処理装置
JP6878346B2 (ja) 仮想空間を提供するための方法、当該方法をコンピュータに実行させるためのプログラム、および当該プログラムを実行するための情報処理装置
WO2023157332A1 (ja) 情報処理装置および調整画面表示方法
JP6941130B2 (ja) 情報処理方法、情報処理プログラム及び情報処理装置
WO2023140004A1 (ja) 情報処理装置および情報処理方法
JP2018190380A (ja) 仮想空間の立体視映像を提供するためのプログラム、システム、及び方法
JP7390542B2 (ja) アニメーション制作システム
JP2017097918A (ja) 画像表示方法及びプログラム
KR20230052297A (ko) 게임 프로그램, 게임 처리 방법 및 게임 장치
JP2022025470A (ja) アニメーション制作システム
JP2024033849A (ja) 情報処理装置および情報処理方法
JP2022025469A (ja) アニメーション制作システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759672

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023759672

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023759672

Country of ref document: EP

Effective date: 20240930