WO2023162643A1 - Polyimide film for graphite sheet, graphite sheet, and production methods therefor - Google Patents

Polyimide film for graphite sheet, graphite sheet, and production methods therefor Download PDF

Info

Publication number
WO2023162643A1
WO2023162643A1 PCT/JP2023/003690 JP2023003690W WO2023162643A1 WO 2023162643 A1 WO2023162643 A1 WO 2023162643A1 JP 2023003690 W JP2023003690 W JP 2023003690W WO 2023162643 A1 WO2023162643 A1 WO 2023162643A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
polyimide film
graphite sheet
dianhydride
component
Prior art date
Application number
PCT/JP2023/003690
Other languages
French (fr)
Japanese (ja)
Inventor
幹明 小林
啓介 稲葉
晃男 松谷
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023162643A1 publication Critical patent/WO2023162643A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to polyimide films for graphite sheets, graphite sheets, and methods for producing them.
  • Graphite sheets have excellent thermal conductivity, so they are used as heat dissipation materials in various electronic devices such as computers, semiconductor elements mounted in electrical devices, and other heat-generating parts.
  • Patent Documents 1 to 3 describe a technique for producing a graphite sheet by heat-treating (graphitizing) a polyimide film.
  • An object of one embodiment of the present invention is to provide a polyimide film that can produce a high-density graphite sheet with good productivity.
  • the present inventors have completed the present invention as a result of intensive research aimed at solving the above problems.
  • one embodiment of the present invention includes the following.
  • a polyimide film made from an acid dianhydride component and a diamine component contains 50 to 100 mol% of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic acid in 100 mol% of the total amount of the dianhydride component.
  • PMDA pyromellitic dianhydride
  • ODPA 4,4'-oxydiphthalic dianhydride
  • a method for producing a polyimide film wherein the acid dianhydride component is 50 to 100 mol% of pyromellitic dianhydride (PMDA) in a total amount of 100 mol% of the acid dianhydride component, 3, 0 to 50 mol% of at least one of 3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA), and the diamine component is 50 to 100 mol% of 4,4'-diaminodiphenyl ether (ODA) and 0 to 100 mol% of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) in the total amount of 100
  • a method for producing a graphite sheet comprising a step of heat-treating a polyimide film for a graphite sheet at 2400° C. or higher, wherein the polyimide film for the graphite sheet is made from an acid dianhydride component and a diamine component.
  • a polyimide film wherein the acid dianhydride component contains 50 to 100 mol% of pyromellitic dianhydride (PMDA) in 100 mol% of the total amount of the acid dianhydride component, 3,3',4, At least one of 4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) is contained in an amount of 0 to 50 mol%, and the diamine component is the total amount of the diamine component.
  • PMDA pyromellitic dianhydride
  • BTDA 4'-benzophenonetetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic dianhydride
  • 4,4'-diaminodiphenyl ether is 50 to 100 mol%
  • 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 0 to 50 mol%
  • the total content of anhydride (ODPA) and the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 1 to 50 mol%
  • the total amount of the polyimide film is 100% by weight.
  • a thick graphite sheet can be produced by heat-treating (graphitizing) a polyimide film having a large thickness (for example, 80 ⁇ m or more).
  • a polyimide film having a large thickness (for example, 80 ⁇ m or more).
  • the thickness of a conventional polyimide film is simply increased, the surface of the graphite sheet containing the polyimide film as a raw material (made by heat treatment) is greatly foamed and the thermal conductivity is lowered.
  • the present inventors have found that problems such as poor appearance occur.
  • the inventors of the present invention focused on the outgassing generated in the graphite sheet during the heat treatment of the polyimide film as the cause of the problem that occurs in such a thick graphite sheet.
  • the orientation of the graphite (graphite layer) in the resulting graphite sheet has the effect of increasing the orientation of the polyimide film for the purpose of improving interlaminar strength, etc.
  • Acid anhydrides (PMDA, BPDA, etc.) and/or diamines (ODA, PDA, etc.) with enhancing properties have been employed as raw materials for polyimide films.
  • PMDA, BPDA, etc. acid anhydrides
  • ODA, PDA, etc. diamines
  • acid anhydride and/or diamine which have the effect of increasing the orientation of the polyimide film, are used as raw materials for the polyimide film.
  • a high-density graphite sheet can be made into a polyimide film that can be provided with good productivity, in particular, a thick polyimide film that can provide a thick graphite sheet.
  • the present inventors have made intensive studies to provide a polyimide film that can produce a high-density graphite sheet with good productivity.
  • the following findings were newly discovered, leading to the completion of the present invention: (1) Acid anhydrides (BTDA, ODPA, etc.) and/or diamines (BAPP, etc.), which have the effect of disturbing (lowering) the orientation of the polyimide film, are used as raw materials for the polyimide film in an appropriate amount.
  • the orientation of the resulting polyimide film can be moderately disturbed.
  • the orientation of the graphite layer can be moderately disturbed in the resulting graphite sheet.
  • the outgassing generated in the graphite sheet can be removed appropriately.
  • the graphite sheet can be provided with good productivity because problems such as foaming on the surface of the graphite sheet caused by (2)
  • a graphite sheet having a high density can be provided by heat-treating a polyimide film containing an appropriate proportion of an organic phosphorus compound.
  • the polyimide film according to one embodiment of the present invention contains an appropriate amount of an acid anhydride and / or diamine that has the effect of disturbing the orientation of the polyimide film, and contains an appropriate proportion of an organic phosphorus compound, so that it has a high density. can be provided with high productivity. Therefore, it can be suitably used for manufacturing graphite sheets, particularly thick graphite sheets.
  • Such a polyimide film has not been known in the past and can be said to be a surprising discovery.
  • polyimide film A polyimide film according to one embodiment of the present invention (hereinafter sometimes referred to as the present polyimide film) will be described in detail below.
  • This polyimide film is a polyimide film made from an acid dianhydride component and a diamine component as raw materials, and the acid dianhydride component contains 50 PMDA in the total amount of 100 mol% of the acid dianhydride component. ⁇ 100 mol%, and at least one of BTDA and ODPA in an amount of 0 to 50 mol%, and the diamine component contains 50 to 100 mol% of ODA and 0 to 50 mol% of BAPP in the total amount of 100 mol% of the diamine component.
  • the total content of the BTDA, the ODPA and the BAPP with respect to the total amount of 200 mol% of the acid dianhydride component and the diamine component is 1 to 50 mol% or less, and an organic phosphorus compound 0.1% by weight to 5.0% by weight.
  • the present polyimide film has the above structure, by using the present polyimide film as a raw material, a graphite sheet having a high density can be provided with good productivity. That is, the present polyimide film can be suitably used for producing graphite sheets. Therefore, the present polyimide film can also be called a polyimide film for graphite sheets.
  • the acid dianhydride component which is the raw material of the present polyimide film, contains 50 to 100 mol% of pyromellitic dianhydride (PMDA) and 3,3',4,4'-benzophenonetetracarboxylic dianhydride. (BTDA) and at least one of 4,4'-oxydiphthalic dianhydride (ODPA) from 0 to 50 mol%.
  • the acid dianhydride component may contain only one of BTDA and ODPA, or both of them.
  • the acid dianhydride component may contain BTDA and / or ODPA, and does not contain either BTDA or ODPA. It's good.
  • the amount of PMDA contained in the acid dianhydride component is 50 mol% or more, preferably 60 mol% or more, relative to 100 mol% of the total amount of the acid dianhydride component, More preferably, it is 70 mol % or more.
  • the present polyimide film contains 50 mol % or more of PMDA, it is possible to provide a polyimide film (and a carbonaceous film) having moderate orientation.
  • the amount of PMDA contained in the acid dianhydride component may be 80 mol% or more, 90 mol% or more, 95 mol% or more, or 100 mol%. .
  • the obtained graphite sheet has good thermal diffusivity and flexibility.
  • the content of BTDA and ODPA (the total amount of BTDA and ODPA) is 100% of the total amount of the acid dianhydride component. Based on mol %, it is 1 mol % or more, preferably 5 mol % or more, more preferably 10 mol % or more, and still more preferably 20 mol % or more.
  • the upper limit of the content of BTDA and ODPA is 50 mol% or less, preferably 40 mol% or less, more preferably 30 mol% or less.
  • the acid dianhydride component contains at least one of BTDA and ODPA in an amount of 1 mol % or more, the orientation of the resulting polyimide film (and carbonaceous film) can be moderately disturbed. Thereby, a graphite sheet can be provided with good productivity. Further, when the content (total amount) of at least one of BTDA and ODPA in the acid dianhydride component is 50 mol% or less, there is no fear that the orientation of the resulting graphite sheet will be excessively disturbed. Good thermal diffusivity and flexibility of the sheet.
  • the present polyimide film may contain other acid dianhydrides in addition to the PMDA, the BTDA and the ODPA as acid dianhydride components.
  • Other acid dianhydrides include, for example, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2′,3, 3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride , 3,4,9,10-perylenetetracarboxylic dianhydride, 1,1-(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)
  • the content of the other acid dianhydride in the acid dianhydride component which is the raw material of the present polyimide film is 50 mol% or less, preferably 40 mol, in 100 mol% of the total amount of the acid dianhydride component. %, more preferably 30 mol % or less, still more preferably 20 mol % or less, even more preferably 10 mol % or less, and particularly preferably 0 mol %. That is, it is particularly preferable that the acid dianhydride component, which is the raw material of the present polyimide film, does not contain other acid dianhydrides.
  • the diamine component which is the raw material of the present polyimide film, contains 4,4'-diaminodiphenyl ether (ODA) in an amount of 50 to 100 mol%, and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP ) in an amount of 0 to 50 mol %.
  • ODA 4,4'-diaminodiphenyl ether
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propane
  • the diamine component may or may not contain BAPP.
  • the amount of ODA contained in the diamine component is 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol%, based on 100 mol% of the total amount of the diamine component. % or more.
  • the amount of ODA contained in the diamine component may be 80 mol % or more, 90 mol % or more, 95 mol % or more, or 100 mol %.
  • the diamine component contains 100 mol % of ODA.
  • the dianhydride component contains 50 to 99 mol % of PMDA and 1 to 50 mol of at least one of BTDA and ODPA. % is preferred. With such a configuration, the obtained graphite sheet has good thermal diffusivity and flexibility.
  • the content of BAPP is 1 mol% or more, preferably 5 mol% or more, relative to 100 mol% of the total amount of the diamine component. It is preferably 10 mol % or more, more preferably 20 mol % or more.
  • the upper limit of the BAPP content is 50 mol % or less, preferably 40 mol % or less, and more preferably 30 mol % or less.
  • the content of BAPP in the diamine component is 50 mol% or less, there is no possibility that the orientation of the graphite layers in the graphite sheet is excessively disturbed, and the resulting graphite sheet has good thermal diffusivity and flexibility. .
  • the present polyimide film may contain other diamines in addition to the ODA and BAPP as diamine components.
  • Other diamines include, for example, p-phenylenediamine (PDA), 4,4'-diaminodiphenylmethane, benzidine, 3,3'-dichlorobenzidine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl Sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,5-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diamino Diphenylsilane, 4,4'-diminodiphenylethylphosphine oxide, 4,4'-diaminodiphenyl
  • the content of the other diamine in the diamine component, which is the raw material of the present polyimide film is 50 mol% or less, preferably 40 mol% or less, more preferably 30%, based on the total amount of 100 mol% of the diamine component. It is mol % or less, more preferably 20 mol % or less, even more preferably 10 mol % or less, and particularly preferably 0 mol %. That is, it is particularly preferable that the diamine component, which is the raw material of the present polyimide film, does not contain other diamines.
  • the present polyimide film contains 1 to 50 mol % of the BTDA, the ODPA and the BAPP in total with respect to 200 mol % of the total amount of the acid dianhydride component and the diamine component.
  • the orientation of the present polyimide film (and the carbonaceous film) can be moderately disturbed by setting the amounts of the BTDA, the ODPA and the BAPP used within the above ranges. Therefore, a graphite sheet containing the present polyimide film as a raw material can be produced at a high rate of temperature rise and is highly productive.
  • the lower limit of the total content of the BTDA, the ODPA and the BAPP with respect to the total amount of 200 mol% of the acid dianhydride component and the diamine component is 1 mol% or more, preferably It is 5 mol % or more, more preferably 10 mol % or more, and still more preferably 20 mol % or more.
  • the upper limit of the total content of BTDA, ODPA and BAPP is 50 mol % or less, preferably 40 mol % or less, and more preferably 30 mol % or less.
  • This polyimide film is a polyimide film made from substantially equimolar amounts of the acid dianhydride component and the diamine component as raw materials.
  • substantially equimolar amounts means that the ratio of molar amounts of two or more different substances (for example, an acid dianhydride component and a diamine component) is from 100:98 to 100:102. It is intended to be within the range, preferably 100:100.
  • containing 0 to 50 mol% of at least one of BTDA and ODPA in the total amount of 100 mol% of the acid dianhydride component means "the acid dianhydride component and the diamine component It can also be said that at least one of BTDA and ODPA is contained in an amount of 0 to 50 mol% relative to the total amount of 200 mol%. It can also be said that "0 to 50 mol % of BAPP is contained with respect to 200 mol % of the total amount of the acid dianhydride component and the diamine component".
  • the total content of the BTDA, the ODPA and the BAPP with respect to 200 mol% of the total amount of the acid dianhydride component and the diamine component is the content of BTDA and ODPA in the acid dianhydride component and the content of BAPP in the diamine component.
  • This polyimide film contains 0.1 to 5.0% by weight of an organophosphorus compound in 100% by weight of the total amount of this polyimide film.
  • the content of the organic phosphorus compound in the polyimide film is 0.1 to 5.0% by weight, preferably 0.2 to 3.0% by weight, based on 100% by weight of the total amount of the polyimide film. More preferably 0.3 to 1.5% by weight.
  • the content of the organic phosphorus compound in the present polyimide film is 0.1% by weight or more, a graphite sheet with high density can be provided, and when it is 5.0% by weight or less, the foaming rate during graphitization is reduced. , has the advantage of being able to provide graphite sheets with higher productivity.
  • the present polyimide film contains an organic phosphorus compound within the above range, so that (1) it can provide a graphite sheet with excellent peelability from a slightly adhesive film, and (2) the carbonaceous film in the graphitization process. Since fusion can be prevented, it also has the advantage of being able to provide graphite sheets with higher productivity.
  • organic phosphorous compounds examples include phosphates, phosphine oxides, phosphites, phosphines, phosphonates, phosphinates, and the like. Only one type of these organophosphorus compounds may be contained, or two or more types may be contained. Among the exemplified organophosphorus compounds, phosphate esters are preferred, and triphenyl phosphate is particularly preferred, since they have the advantage of being stable in air.
  • the organic phosphorus compound contained in the present polyimide film is preferably an organic phosphorus compound in which the valence of phosphorus is pentavalent. That is, the present polyimide film preferably contains, as the organic phosphorus compound, an organic phosphorus compound in which the valence of phosphorus is pentavalent, and may contain only an organic phosphorus compound in which the valence of phosphorus is pentavalent. more preferred.
  • organic phosphorus compounds in which the valence of phosphorus is pentavalent include triphenyl phosphate and trimethyl phosphate.
  • the temperature at which the weight loss rate is 5% in TG-DTA measurement is preferably 200 ° C. or higher, more preferably 250 ° C. or higher. It is more preferably 300° C. or higher. If the temperature at which the weight reduction rate of the organic phosphorus compound contained in the present polyimide film is 5% in TG-DTA measurement is 200° C. or higher, contamination of the furnace for forming the polyimide film can be reduced.
  • organophosphorus compounds whose temperature at which the weight loss rate reaches 5% in TG-DTA measurement is 200°C or higher include triphenyl phosphate and triphenylphosphine oxide.
  • the present polyimide film may contain inorganic particles (filler).
  • the present polyimide film contains inorganic particles, the present polyimide film becomes a polyimide film having excellent slipperiness.
  • Such a polyimide film having excellent lubricity can suppress the occurrence of scratches during transport of the polyimide film, and can prevent fusion of the carbonaceous film in the graphitization process.
  • Inorganic particles that the present polyimide film may contain include calcium carbonate (CaCO 3 ), silica, calcium hydrogen phosphate (CaHPO 4 ), calcium phosphate (Ca 2 P 2 O 7 ), and the like.
  • phosphorus-containing inorganic particles such as calcium hydrogen phosphate and calcium phosphate are preferred.
  • the upper limit of the average particle size of the inorganic particles that can be contained in the present polyimide film is not particularly limited, but is preferably 2.5 ⁇ m or less, preferably 2.0 ⁇ m or less, and preferably 1.5 ⁇ m or less. , is preferably 1.0 ⁇ m or less.
  • the average particle size of the inorganic particles is 2.5 ⁇ m or less, voids generated inside the film after graphitization can be reduced, so that a graphite sheet having an excellent density after compression can be obtained. Thus, a graphite sheet with even better density can be provided.
  • the lower limit of the average particle size of the inorganic particles is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, further preferably 0.5 ⁇ m or more, and 0 0.7 ⁇ m or more is even more preferable.
  • the average particle size of inorganic particles is intended to be the volume average particle size, and the inorganic particles dispersed in dimethylformamide are measured using a microtrac particle size distribution analyzer MT3000II. is.
  • the lower limit of the content of the inorganic particles in the polyimide film is not particularly limited, but is preferably 0.01% by weight or more, more preferably 0.02% by weight. It is preferably 0.03% by weight or more, and more preferably 0.03% by weight or more.
  • the upper limit of the content of the inorganic particles is not particularly limited, but is preferably 0.30% by weight or less, more preferably 0.20% by weight or less, and further preferably 0.15% by weight or less. It is preferably 0.10% by weight or less, and more preferably 0.10% by weight or less.
  • the thickness of the present polyimide film is preferably 80 ⁇ m to 200 ⁇ m, more preferably more than 80 ⁇ m and 200 ⁇ m or less, even more preferably 90 ⁇ m to 180 ⁇ m, even more preferably 100 ⁇ m to 170 ⁇ m, and 110 ⁇ m. ⁇ 150 ⁇ m is particularly preferred, and 115 ⁇ m to 140 ⁇ m is most preferred. If the thickness of the polyimide film is within the above range, it is possible to provide a graphite sheet having a more excellent thermal diffusivity.
  • the lower limit of the thickness of the polyimide film according to one embodiment of the present invention is preferably 80 ⁇ m or more, more preferably more than 80 ⁇ m, even more preferably 90 ⁇ m or more, and even more preferably 100 ⁇ m or more. It is preferably 110 ⁇ m or more, particularly preferably 115 ⁇ m or more, and most preferably 115 ⁇ m or more.
  • the upper limit of the thickness of the polyimide film is preferably 200 ⁇ m or less, more preferably 180 ⁇ m or less, even more preferably 160 ⁇ m or less, even more preferably 140 ⁇ m or less, and 150 ⁇ m or less. It is particularly preferred to have A polyimide film having a thickness of 80 ⁇ m or more can be said to be a polyimide film having a large thickness, and can be said to be a polyimide film capable of providing a thick graphite sheet.
  • the polyimide film of the present invention can provide a thick graphite sheet with good productivity even when the polyimide film is thick, and the resulting graphite sheet has a high density. That is, the present polyimide film can be suitably used as a thick polyimide film.
  • the method for producing a polyimide film according to one embodiment of the present invention (hereinafter sometimes referred to as the method for producing the present polyimide film) is not particularly limited, but for example, a method having the following steps i) to iv) is preferable.
  • the acid dianhydride component and the diamine component are monomer units that constitute polyamic acid, which is a copolymer.
  • the acid dianhydride component and the diamine component may be collectively referred to as the monomer component.
  • polyimide film In the method for producing the present polyimide film, as the step i), the above ⁇ 2.
  • Polyimide film> The acid dianhydride component and the diamine component detailed in the section are polymerized (as raw materials), and are not particularly limited as long as polyamic acid can be obtained, for example, the following polymerization methods (1) to (5) Either can be preferably used.
  • a method of dissolving a diamine component in an organic solvent (organic polar solvent) and reacting the diamine component with a substantially equimolar amount of an acid dianhydride component for polymerization is a method of dissolving a diamine component in an organic solvent (organic polar solvent) and reacting the diamine component with a substantially equimolar amount of an acid dianhydride component for polymerization.
  • a specific example of the method (2) is to synthesize a prepolymer having the acid dianhydride at both ends using a diamine component and an acid dianhydride component, and add the diamine component used in the synthesis of the prepolymer to the prepolymer.
  • a method of synthesizing a polyamic acid by reacting a diamine component having the same composition as or a diamine component having a different composition.
  • the diamine component to be reacted with the prepolymer may have the same composition as the diamine component used to synthesize the prepolymer, or may have a different composition.
  • a diamine component is added in an amount substantially equimolar to the acid dianhydride component to obtain an acid dianhydride.
  • a method of polymerizing by reacting a mixture of an acid dianhydride component and a diamine component in substantially equimolar amounts in an organic solvent.
  • the i) step preferably includes an addition step of adding (mixing) an organophosphorus compound to the polyamic acid solution obtained by polymerizing the acid dianhydride component and the diamine component.
  • the amount of the organophosphorus compound added to the solid content (polyamic acid) of the polyamic acid solution in the addition step is the content of the organophosphorus compound in the resulting polyimide film.
  • the addition amount of the organic phosphorus compound in the adding step the content of the organic phosphorus compound in the resulting polyimide film can be adjusted.
  • the acid dianhydride component and the diamine component to be reacted (subjected to polymerization) in the i) step become the acid dianhydride component and the diamine component which are raw materials of the resulting polyimide film, and the polyamide in the i) step (addition step)
  • the amount of the organophosphorus compound added to the acid can be the content of the organophosphorus compound in the resulting polyimide film.
  • step i) in the present method for producing a polyimide film can be expressed as follows: a step of mixing an acid dianhydride component and a diamine component to obtain a polyamic acid, and 100 weight of the polyamic acid %, and the acid dianhydride component is pyromellitic acid in the total amount of 100 mol% of the acid dianhydride component.
  • dianhydride dianhydride
  • BTDA 3,3′,4,4′-benzophenonetetracarboxylic dianhydride
  • ODPA 4,4′-oxydiphthalic dianhydride
  • the diamine component includes 50 to 100 mol% of 4,4'-diaminodiphenyl ether (ODA), 2,2-bis[4- (4-Aminophenoxy)phenyl]propane (BAPP) is contained in an amount of 0 to 50 mol%, and the 3,3′,4,4′- total of benzophenonetetracarboxylic dianhydride (BTDA), the 4,4′-oxydiphthalic dianhydride (ODPA) and the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP)
  • the content is 1 to 50 mol %.
  • a preferred method for producing the present polyimide film can be expressed as follows: a step of mixing an acid dianhydride component and a diamine component to obtain a polyamic acid; and adding 0.1 to 5.0% by weight of an organic phosphorus compound, wherein the acid dianhydride component is pyromellitic dianhydride in the total amount of 100 mol% of the acid dianhydride component 50 to 100 mol% of (PMDA), at least one of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4′-oxydiphthalic dianhydride (ODPA)
  • the diamine component contains 50 to 100 mol% of 4,4′-diaminodiphenyl ether (ODA), 2,2-bis[4-(4- containing 0 to 50 mol% of aminophenoxy)phenyl]propane (BAPP), and the 3,3',4,4'-benzophenonetetracarboxylic acid relative to the total amount of 200
  • step i) in the method for producing the present polyimide film and the organic phosphorus compound to be added to the polyamic acid are described in ⁇ 2.
  • Polyimide film> section can be incorporated as appropriate.
  • the steps ii) to iv) in the present method for producing a polyimide film are steps of imidizing the polyamic acid solution to obtain a polyimide film.
  • the method for imidizing the polyamic acid includes, for example, (I) a thermal imidization method in which a polyamic acid solution is heated to imidize without using an imidization accelerator, or , (II) polyamic acid, a dehydrating agent (dehydration ring-closing agent) typified by acid dianhydrides such as acetic anhydride, and/or tertiary amines typified by picoline, quinoline, isoquinoline, pyridine, etc.
  • a chemical imidization method of imidizing polyamic acid by adding an imidization accelerator such as a catalyst and heating a polyamic acid solution containing the imidization accelerator can be used.
  • the resulting polyimide film has a small coefficient of linear expansion, a high elastic modulus, a tendency to increase birefringence, and can be rapidly graphitized at a relatively low temperature, so that a high-quality graphite sheet can be obtained. Therefore, the chemical imidization method is preferred. In particular, it is preferable to use a dehydrating agent and an imidization accelerator in combination, because the resulting polyimide film can have a smaller linear expansion coefficient, a larger elastic modulus, and a larger birefringence. In addition, since the imidization reaction proceeds more rapidly in the chemical imidization method, the imidization reaction can be completed in a short time in the heat treatment, and is an industrially advantageous method with excellent productivity.
  • the support used in step ii) is not dissolved by the solution containing the polyimide, and is particularly a support that can withstand the heating required for drying the laminate.
  • a glass plate, an aluminum foil, an endless stainless steel belt, a stainless steel drum, etc. can be suitably used.
  • the thickness of the finally obtained polyimide film and the heating conditions are set according to the production rate, and the mixed solution layer (polyamic acid solution) coated on the support is subjected to After performing at least one of partial imidization and drying, this is a step of obtaining (peeling) a gel film from the support.
  • step iv) more specifically, the gel film (the gel film obtained in step iii) is fixed at its ends and heat-treated while avoiding shrinkage during curing.
  • This is a step of removing water, residual solvent, imidization accelerator, etc., and completely imidizing the remaining amic acid (non-imidized amic acid) to obtain a polyimide-containing film (polyimide film).
  • the heating conditions in the iv) step may be appropriately set according to the thickness of the film to be finally obtained and the production rate.
  • the method for drying the mixed solution layer and the gel film in the iii) step and the iv) step is not particularly limited.
  • a method of heating by treatment can be mentioned.
  • the drying temperature (heating temperature) in the drying step is not particularly limited as long as a gel film or polyimide film can be obtained. It may be 400°C to 500°C.
  • Graphite sheet> In one embodiment of the invention, there is provided a graphite sheet comprising the polyimide film as a raw material. It can also be said that the graphite sheet according to one embodiment of the present invention (hereinafter referred to as the present graphite sheet) is a graphite sheet obtained by heat-treating the present polyimide film. Since the present graphite sheet contains the present polyimide film as a raw material, it has a high density and can be provided with good productivity.
  • the graphite sheet refers to both a graphite sheet before being subjected to the rolling process described later (graphite sheet before rolling) and a graphite sheet after being subjected to the rolling process (graphite sheet after rolling). is intended, unless otherwise specified, graphite sheets after rolling are intended.
  • the density of the present graphite sheet is preferably more than 2.00 g/cm 3 , more preferably 2.02 g/cm 3 or more, and more preferably 2.04 g/cm 3 or more. more preferably 2.06 g/cm 3 or more.
  • the upper limit of the density is not particularly limited, the density of the graphite sheet is usually 2.26 g/cm 3 or less.
  • a graphite sheet with a density of 2.00 g/cm 3 or more can be said to be a graphite sheet with a high density, and can achieve efficient heat dissipation, and is used in fields such as electronic devices that require excellent heat dissipation. , can be suitably used as a heat radiating member.
  • the method for measuring the density of the graphite sheet is as described in Examples below.
  • the thermal conductivity of the graphite sheet can be evaluated by the thermal diffusivity of the graphite sheet (graphite sheet after rolling).
  • the thermal diffusivity of the present graphite sheet is preferably 7.0 cm 2 /s or more, more preferably 8.0 cm 2 /s or more, further preferably 9.0 m 2 /s or more, More preferably, it is 9.5 cm 2 /s or more.
  • a graphite sheet having a thermal diffusivity of 7.0 cm 2 /s or more has excellent thermal conductivity. In other words, it is excellent in heat dissipation, and can be suitably used as a heat dissipation member in fields such as electronic equipment that require excellent heat dissipation.
  • the method for measuring the thermal diffusivity of the graphite sheet is as described in Examples below.
  • the productivity of the graphite sheet is defined as the ratio of the thickness of the raw material polyimide film to the thickness of the resulting graphite sheet (graphite sheet before rolling) (thickness of graphite sheet before rolling/thickness of polyimide film). It can be evaluated based on the thickness (hereinafter referred to as "GS thickness/PI thickness"). If the GS thickness/PI thickness is greater than a certain value (for example, greater than 3.0), it means that the graphite sheet surface is foamed due to outgassing during heat treatment, and the heat treatment is performed at a substantially high temperature increase rate. It can also be said that the graphite sheet is a graphite sheet with poor productivity.
  • the GS thickness/PI thickness is 3.0 or less, it can be evaluated that the graphite sheet has excellent productivity.
  • the GS thickness/PI thickness is preferably 2.5 or less, more preferably 2.0 or less, even more preferably 1.5 or less, and even more preferably 1.0 or less.
  • the lower limit of the thickness of the present graphite sheet is preferably 45 ⁇ m or more, more preferably 50 ⁇ m or more, and even more preferably 55 ⁇ m or more.
  • the upper limit of the thickness of the graphite sheet after rolling is preferably 110 ⁇ m or less, more preferably 105 ⁇ m or less. If the thickness of the graphite sheet after rolling is 45 ⁇ m or more, it can be said that the graphite sheet has a sufficient thickness, and efficient heat dissipation is possible. Moreover, if the thickness is 110 ⁇ m or less, there is an advantage that it can be mounted in a thin electronic device with little space.
  • the method for producing a graphite sheet according to an embodiment of the present invention (hereinafter sometimes referred to as the present graphite sheet producing method) is particularly Although not limited, it includes a step of heat-treating a polyimide film for a graphite sheet to 2400 ° C. or higher, and the polyimide film for the graphite sheet is a polyimide film made from an acid dianhydride component and a diamine component.
  • the acid dianhydride component includes 50 to 100 mol% of pyromellitic dianhydride (PMDA), 3,3′,4,4′-benzophenone tetra At least one of carboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) is contained in 0 to 50 mol%, and the diamine component contains 100 mol% of the total amount of the diamine component, 50 to 100 mol% of 4,4'-diaminodiphenyl ether (ODA) and 0 to 50 mol% of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), the acid dianhydride
  • the 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and the 4,4′-oxydiphthalic dianhydride (ODPA) based on 200 mol % of the total amount of the component and the diamine component and the total content of the 2,2-bis
  • a high-density graphite sheet can be provided with good productivity.
  • the method for producing the present graphite sheet will be described in detail below, taking as an example a method including a step of heat-treating a specific polyimide film at 2400°C or higher.
  • a specific polyimide film at 2400°C or higher.
  • specific aspects of the polyimide film are described in ⁇ 2. Polyimide Film> section is incorporated as appropriate.
  • the method for producing the present graphite sheet is not particularly limited as long as it includes a step of heat-treating a specific polyimide film (the present polyimide film) at 2400 ° C. or higher, but the polyimide film is heat-treated in an inert gas atmosphere or under reduced pressure. It is preferably a so-called polymer thermal decomposition method.
  • the present graphite sheet manufacturing method includes a carbonization step of preheating a polyimide film at a temperature of about 1000° C. to obtain a carbonized polyimide film, and a carbonized polyimide film produced in the carbonization step. is heat-treated (heated) at a temperature of 2400° C. or higher to graphitize, and a rolling step of rolling this.
  • the carbonization step and the graphitization step may be performed continuously, or after the carbonization step is completed, the graphitization step alone may be performed separately.
  • the carbonization step is a step of heat-treating the polyimide film to a temperature of about 1000° C. to carbonize (carbonize) the polyimide film.
  • the carbonization method of the polyimide film in the carbonization step is not particularly limited.
  • a rectangular polyimide film may be carbonized while being laminated with a graphite sheet, or a roll-shaped polyimide film may be carbonized as it is in a roll.
  • the film may be unwound from a roll-shaped polyimide film and carbonized continuously.
  • the carbonization step is preferably performed under a vacuum atmosphere, under reduced pressure, or in an inert gas, and nitrogen is preferably used as the inert gas.
  • the carbonized polyimide film obtained by the carbonization process may be called a carbonaceous film.
  • the graphitization step is a step of heat-treating the carbonaceous film obtained in the carbonization step at a temperature of 2400° C. or higher to graphitize the carbonaceous film.
  • the graphitization step can also be said to be a step of heat-treating a carbonaceous film to obtain a graphite sheet (graphite sheet before rolling).
  • the temperature (maximum temperature) at which the carbonaceous film obtained in the carbonization step is heat-treated is preferably, for example, 2400° C. or higher, 2600° C. or higher, 2800° C. or higher, 2900° C. or higher, or 3000° C. or higher. .
  • the upper limit of the maximum temperature is not particularly limited, it is preferably 3300° C. or lower, more preferably 3200° C. or lower.
  • the temperature (maximum temperature) when heat-treating the carbonaceous film obtained in the carbonization step is 2400°C or higher, there is an advantage that the obtained graphite sheet has a good thermal diffusivity. If it is below, there is an advantage that the sublimation of the graphite member in the graphitization furnace can be suppressed.
  • the graphitization step is performed under reduced pressure or in an inert gas, and argon or helium can be suitably used as the inert gas.
  • a rectangular carbonaceous film may be graphitized in a state of being laminated with a graphite sheet, or a roll-shaped carbonaceous film may be graphitized as it is in a roll. may be drawn out and graphitized continuously.
  • the temperature rise rate when heating the carbonaceous film to the maximum temperature is not particularly limited, but from the viewpoint of providing a graphite sheet with good productivity, it is preferably 0.2 ° C./min or more, and 0.3 ° C. /min or more, more preferably 0.4°C/min or more, and even more preferably 0.5°C/min or more.
  • a carbonaceous film in which excessive foaming does not occur in the resulting graphite sheet when heat-treated (graphitized) at a rate of temperature increase of 0.2° C./min or more can be said to be a carbonaceous film with excellent productivity.
  • a polyimide film that can provide such a carbonaceous film can be said to be a polyimide film with excellent productivity.
  • a carbonaceous film obtained by carbonizing the present polyimide film has a somewhat disturbed orientation, similar to the present polyimide film.
  • Such a carbonaceous film having a somewhat disturbed orientation is outgassed even when the carbonaceous film is heat-treated (graphitized) at a high temperature increase rate of 0.2 ° C./min or more in the graphitization process. It is easy to come off, and it is possible to suppress the foaming of the obtained graphite sheet, so that the graphite sheet can be provided with good productivity.
  • the rolling step is a step of rolling the graphite sheet obtained by the graphitization step (graphite sheet before rolling).
  • the rolling process can be said to be a process of obtaining a graphite sheet after rolling, and can also be said to be a compression process.
  • the graphite sheet before rolling is in a foamed state due to the influence of outgassing generated in the graphitization process, and may have an excessive thickness unsuitable for practical use. The thickness can be adjusted and flexibility can be imparted.
  • the method of rolling the graphite sheet is not particularly limited, and examples thereof include a method of rolling using metal rolls or the like.
  • the rolling step may be performed while the manufactured graphite sheet is cooled to room temperature, or may be performed continuously with the graphitization step.
  • An embodiment of the present invention may include the following configuration.
  • the diamine component contains 50 to 100 mol% of 4,4′-diaminodiphenyl ether (ODA), 2,2-bis[4-(4 -Aminophenoxy)phenyl]propane (BAPP) in an amount of 0 to 50 mol%, and the 3,3′,4,4′-benzophenone tetra Total content of carboxylic dianhydride (BTDA), 4,4'-oxydiphthalic dianhydride (ODPA) and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP
  • BTDA 3',4,4'-benzophenonetetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic dianhydride
  • a method for producing a polyimide film comprising the step of adding 0.1 to 5.0% by weight of an organic phosphorus compound with respect to 100% by weight of the polyamic acid, wherein the acid dianhydride component is the acid 50 to 100 mol% of pyromellitic dianhydride (PMDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 4, At least one of 4'-oxydiphthalic dianhydride (ODPA) is contained in 0 to 50 mol%, and the diamine component contains 4,4'-diaminodiphenyl ether (ODA) in the total amount of 100 mol% of the diamine component.
  • PMDA pyromellitic dianhydride
  • BTDA 3,3′,4,4′-benzophenonetetracarboxylic dianhydride
  • ODA 4,4'-oxydiphthalic dianhydride
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propane
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propane
  • the total amount of the acid dianhydride component and the diamine component being 200 mol % of the 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), the 4,4′-oxydiphthalic dianhydride (ODPA) and the 2,2-bis[4-( the total content of 4-aminophenoxy)phenyl]propane (BAPP) is 1-50 mol%
  • a method for producing a polyimide film is 1-50 mol%;
  • a method for producing a graphite sheet comprising a step of heat-treating a polyimide film for a graphite sheet at 2400° C. or higher, wherein the polyimide film for a graphite sheet comprises an acid dianhydride component and a diamine component.
  • a polyimide film as a raw material wherein the acid dianhydride component is 50 to 100 mol% of pyromellitic dianhydride (PMDA) in the total amount of 100 mol% of the acid dianhydride component, 3,3' , 4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) containing 0 to 50 mol% of at least one, and the diamine component is the diamine 50 to 100 mol% of 4,4'-diaminodiphenyl ether (ODA) and 0 to 50 mol of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) in 100 mol% of the total amount of components %, the 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), the 4,4′- The total content of oxydiphthalic dianhydride (ODPA) and
  • the polyimide film for the graphite sheet contains 100 mol% of pyromellitic dianhydride (PMDA) as the acid dianhydride component, and 4,4'-diaminodiphenyl ether (ODA) as the diamine component. and 1 to 50 mol% of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP).
  • PMDA pyromellitic dianhydride
  • ODA 4,4'-diaminodiphenyl ether
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propane
  • the polyimide film for the graphite sheet contains 100 mol% of 4,4'-diaminodiphenyl ether (ODA) as the diamine component, and pyromellitic dianhydride (PMDA) as the acid dianhydride component. 50 to 99 mol%, at least one of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) from 1 to 50 mol %, the method for producing a graphite sheet according to [9].
  • ODA 4,4'-diaminodiphenyl ether
  • PMDA pyromellitic dianhydride
  • BTDA 3,3',4,4'-benzophenonetetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic dianhydride
  • the temperature at which the weight loss rate of the organic phosphorus compound contained in the polyimide film for the graphite sheet is 5% in TG-DTA measurement is 200 ° C. or higher, [9] to [13] A method for producing a graphite sheet according to any one of the above.
  • the thickness of the graphite sheet before rolling was measured by the following method.
  • the thickness of the graphite sheet was measured at four corners and one central point using a Mitutoyo micrometer.
  • the "central point” refers to the position of the intersection of diagonal lines drawn from the four measurement points at each corner of the obtained graphite sheet to the diagonal measurement points.
  • the average value of the thickness measurement values obtained at a total of five locations was taken as the thickness of the graphite sheet before rolling. Note that the four corners mean the vertices of a rectangular graphite sheet before rolling, which is the object of measurement.
  • the thickness of the graphite sheet after rolling was measured by the following method.
  • the thickness of the graphite sheet was measured at four corners and one central point using a Mitutoyo micrometer.
  • the "central point” refers to the position of the intersection of diagonal lines drawn from the four measurement points at each corner of the obtained graphite sheet to the diagonal measurement points.
  • the average value of the thickness measurement values obtained at a total of five locations was taken as the thickness of the graphite sheet after rolling. It should be noted that the four corners are intended to be the vertices when the rolled graphite sheet to be measured is rectangular.
  • the thermal diffusivity of the graphite sheet after rolling was measured by the following method.
  • a sample of a graphite sheet after rolling cut into a square of 30 mm ⁇ 30 mm was measured using a "Thermo Wave Analyzer TA3" manufactured by Bethel Co., Ltd. under the conditions of an atmosphere of 25 ° C. and a frequency of 75 Hz to determine the thermal diffusivity. was obtained by measuring
  • the sample was prepared by punching out the center portion of the graphite sheet after rolling, which is the object of measurement, with a Thomson blade.
  • the “central portion” means the central portion of the rolled graphite sheet in the width direction and also in the longitudinal direction.
  • Example 1 ⁇ Production of polyimide film> 90 mol% of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic acid di 10 mol % of anhydride (BTDA) was dissolved to obtain a polyamic acid solution containing 18.5% by weight of polyamic acid. To the obtained polyamic acid solution, triphenyl phosphate (TPP, pentavalence of phosphorus, temperature 220 ° C. at which the weight loss rate becomes 5% in the measurement of TG-DTA), which is an organic phosphorus compound, was added.
  • TPP triphenyl phosphate
  • Triphenyl phosphate was added so that the concentration of triphenyl phosphate was 0.3% by weight with respect to 100% by weight of the solid content (polyamic acid) of the polyamic acid solution, and calcium hydrogen phosphate having an average particle size of 2.2 ⁇ m ( Inorganic particles) were added so that the concentration of the calcium hydrogen phosphate was 0.08% by weight with respect to 100% by weight of the solid content (polyamic acid) in the polyamic acid solution.
  • an imidization catalyst containing 1 equivalent of acetic anhydride, 1 equivalent of isoquinoline and 1 equivalent of dimethylformamide is added to the carboxylic acid groups contained in the polyamic acid, and defoaming.
  • a polyamic acid solution (mixed solution) containing an imidization catalyst was obtained.
  • the mixed solution was applied onto an aluminum foil so that the thickness after drying was 135 ⁇ m to obtain a mixed solution layer.
  • the mixed solution layer on the aluminum foil was dried using a hot air oven and a far infrared heater.
  • the drying conditions are as follows. First, the mixed solution layer on the aluminum foil was dried in a hot air oven at 120° C. for 440 seconds to form a self-supporting gel film. The gel film was peeled off from the aluminum foil and fixed to the frame. Further, the gel film was heated stepwise in a hot air oven at 120°C for 60 seconds, 275°C for 72 seconds, 400°C for 77 seconds, 450°C for 93 seconds, and a far infrared heater at 460°C for 40 seconds. and dried to produce a polyimide film (A) having a thickness of 135 ⁇ m.
  • the laminate was placed in a carbonization device (a carbonization device manufactured by Kurata Giken Co., Ltd.) (inside a heating space).
  • the heating space in the carbonization apparatus in which the laminate was installed was heated to 600° C. at a heating rate of 0.4° C./min, and then held at 600° C. for 1 hour.
  • the heating space in the carbonization device is heated to 1000° C. at a heating rate of 0.4° C./min, and then the laminate (polyimide film in the laminate) is heat-treated (carbonized) at 1000° C. for 30 minutes. to obtain a carbonaceous film.
  • the obtained carbonaceous film was cooled to room temperature (23°C) and formed into a roll having an inner diameter of 100 mm to obtain a roll of carbonaceous film.
  • the carbonaceous film roll is placed on the hearth of a graphitization furnace (graphitization furnace manufactured by Kurata Giken Co., Ltd.) so that the width direction is vertical.
  • a graphitization furnace graphitization furnace manufactured by Kurata Giken Co., Ltd.
  • the temperature was raised to 2900 ° C. (maximum graphitization temperature) at a heating rate of 0.5 ° C./min, and then held at 2900 ° C. for 30 minutes to obtain a graphitized film (graphite before rolling). sheet) was prepared.
  • Table 1 shows the measurement results of the thickness of the obtained graphite sheet before rolling.
  • the resulting graphitized film was cooled to room temperature and rolled by a 2-ton precision roll press (clearance type) manufactured by Thank Metal Co., Ltd. to obtain a graphite sheet (graphite sheet after rolling).
  • the thickness, thermal diffusivity and density of the obtained graphite sheet after rolling were measured and evaluated. Table 1 shows the results.
  • Examples 2-3 Comparative Example 1
  • a polyimide film was prepared and heat-treated in the same manner as in Example 1, except that the amount of the organic phosphorus compound added and/or the average particle size of the inorganic particles was changed as shown in Table 1. to obtain a graphite sheet. Each physical property of the obtained graphite sheet was measured and evaluated. Table 1 shows the results.
  • Example 4 In the production of polyimide film, 4,4'-diaminodiphenyl ether (ODA) 85 mol% and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) 15 mol% dissolved in dimethyl 100 mol % of pyromellitic dianhydride (PMDA) was dissolved in a formamide solution to obtain a polyamic acid solution containing 18.5% by weight of polyamic acid.
  • ODA 4,4'-diaminodiphenyl ether
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propane
  • PMDA pyromellitic dianhydride
  • Triphenyl phosphate which is an organic phosphorous compound, was added to the obtained polyamic acid solution so that the concentration of the triphenyl phosphate was 0.00% relative to 100% by weight of the solid content (polyamic acid) in the polyamic acid solution.
  • TPP Triphenyl phosphate
  • Examples 5-6 Comparative Example 2
  • a polyimide film was prepared and heat-treated in the same manner as in Example 4, except that the amount of the organic phosphorus compound added and/or the average particle size of the inorganic particles was changed as shown in Table 2. to obtain a graphite sheet. Each physical property of the obtained graphite sheet was measured and evaluated. Table 1 shows the results.
  • the polyimide film contains 90 mol% (within the range of 50 to 100 mol%) of PMDA and 10 mol% (within the range of 0 to 50 mol%) of BTDA as the acid dianhydride component. and 100 mol% (within the range of 50 to 100 mol%) of ODA as a diamine component, and 0.3 to 1.1% by weight (0.1 to 5.0).
  • the graphite sheet obtained by heat-treating a polyimide film containing 135 ⁇ m in thickness before heat treatment has a thickness of 135 ⁇ m before heat treatment. It can be seen that the graphite sheet is excellent in Also, from a comparison between Examples 1 to 3 and Comparative Example 1, it can be seen that a graphite sheet having a higher density can be provided by including an organophosphorus compound in the polyimide film.
  • the polyimide film contains 100 mol% PMDA (within the range of 50 to 100 mol%) as the acid dianhydride component and 85 mol% ODA as the diamine component (50 to 100 mol% ), 15 mol% (within the range of 0 to 50 mol%) of BAPP, and 0.3 to 1.1% by weight (0.1 to 5.0).
  • the graphite sheet obtained by heat-treating the polyimide film containing 135 ⁇ m in thickness before the heat treatment was heat-treated at a relatively high heating rate of 0.5° C./min.
  • the thickness of the graphite sheet obtained by rolling is sufficiently thin.
  • the graphite sheet is excellent in productivity, in which excessive foaming does not occur even when heat-treated at a relatively high rate of temperature rise. Further, from a comparison between Examples 4 to 6 and Comparative Example 2, it can be seen that a graphite sheet having a higher density can be provided by including an organophosphorus compound in the polyimide film.
  • the polyimide film according to one embodiment of the present invention can provide a high-density graphite sheet, particularly a high-density thick graphite sheet, with good productivity.
  • a graphite sheet with high density can be provided with good productivity.
  • a graphite sheet with such a high density can be suitably used as a heat dissipation member for electronic devices, particularly thin electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention addresses the problem of providing a polyimide film capable of providing a high-density graphite sheet with good productivity. This problem is solved by a polyimide film for a graphite sheet, said polyimide film having a dianhydride component and a diamine component as starting materials. The polyimide film for a graphite sheet has a total BTDA, ODPA, and BAPP content of 1-50 mol% with respect to a total of 200 mol% of the dianhydride component and the diamine component, and contains a prescribed amount of an organophosphorous compound.

Description

グラファイトシート用のポリイミドフィルム、グラファイトシートおよびそれらの製造方法Polyimide film for graphite sheet, graphite sheet and manufacturing method thereof
 本発明はグラファイトシート用のポリイミドフィルム、グラファイトシートおよびそれらの製造方法に関する。 The present invention relates to polyimide films for graphite sheets, graphite sheets, and methods for producing them.
 グラファイトシートは、優れた熱伝導性を有することから、コンピュータなどの各種電子機器、電気機器に搭載される半導体素子およびその他の発熱部品などに、放熱用の部材として使用されている。 Graphite sheets have excellent thermal conductivity, so they are used as heat dissipation materials in various electronic devices such as computers, semiconductor elements mounted in electrical devices, and other heat-generating parts.
 このようなグラファイトシートを製造する方法として、例えば、特許文献1~3には、ポリイミドフィルムを熱処理(グラファイト化)して、グラファイトシートを製造する技術が記載されている。 As a method for producing such a graphite sheet, for example, Patent Documents 1 to 3 describe a technique for producing a graphite sheet by heat-treating (graphitizing) a polyimide film.
日本国公開特許公報「2003-165714号」公報Japanese Patent Publication "2003-165714" 日本国公開特許公報「2016-17169号」公報Japanese Patent Publication "2016-17169" 日本国公開特許公報「特開2020-164611号」公報Japanese Patent Publication "JP 2020-164611" 日本国公開特許公報「特開2014-136721号」公報Japanese Patent Publication "JP 2014-136721"
 しかしながら、上記の技術には、得られるグラファイトシートの密度および生産性について、課題があった。 However, the above technology has problems with the density and productivity of the resulting graphite sheets.
 本発明の一実施形態は、密度が高いグラファイトシートを生産性よく提供し得る、ポリイミドフィルムを提供することを目的とする。 An object of one embodiment of the present invention is to provide a polyimide film that can produce a high-density graphite sheet with good productivity.
 本発明者らは、前記課題を解決すべく鋭意研究した結果、本発明を完成させるに至った。 The present inventors have completed the present invention as a result of intensive research aimed at solving the above problems.
 すなわち、本発明の一実施形態は、以下を含むものである。 That is, one embodiment of the present invention includes the following.
 酸二無水物成分と、ジアミン成分と、を原料とするポリイミドフィルムであって、
 前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%であり、前記ポリイミドフィルムの全量100重量%中、有機リン系化合物を、0.1~5.0重量%含む、グラファイトシート用のポリイミドフィルム。
A polyimide film made from an acid dianhydride component and a diamine component,
The acid dianhydride component contains 50 to 100 mol% of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic acid in 100 mol% of the total amount of the dianhydride component. At least one of acid dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) is contained in 0 to 50 mol%, and the diamine component is 4 in 100 mol% of the total amount of the diamine component. , 4'-diaminodiphenyl ether (ODA) in an amount of 50 to 100 mol% and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) in an amount of 0 to 50 mol%, and the acid dianhydride component The 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), the 4,4′-oxydiphthalic dianhydride (ODPA) and The total content of the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 1 to 50 mol%, and the total amount of the polyimide film is 100% by weight. 0.1 to 5.0% by weight of a polyimide film for a graphite sheet.
 酸二無水物成分とジアミン成分とを混合し、ポリアミド酸を得る工程、および、前記ポリアミド酸100重量%に対して、0.1~5.0重量%の有機リン系化合物を添加する工程を含む、ポリイミドフィルムの製造方法であって、前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%である、ポリイミドフィルムの製造方法。 A step of mixing an acid dianhydride component and a diamine component to obtain a polyamic acid, and a step of adding 0.1 to 5.0 wt% of an organic phosphorus compound with respect to 100 wt% of the polyamic acid. A method for producing a polyimide film, wherein the acid dianhydride component is 50 to 100 mol% of pyromellitic dianhydride (PMDA) in a total amount of 100 mol% of the acid dianhydride component, 3, 0 to 50 mol% of at least one of 3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA), and the diamine component is 50 to 100 mol% of 4,4'-diaminodiphenyl ether (ODA) and 0 to 100 mol% of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) in the total amount of 100 mol% of the diamine component The 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), the 4,4 The total content of '-oxydiphthalic dianhydride (ODPA) and the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 1 to 50 mol% of the polyimide film. Production method.
 グラファイトシート用のポリイミドフィルムを2400℃以上に熱処理する工程を含む、グラファイトシートの製造方法であって、前記グラファイトシート用のポリイミドフィルムは、酸二無水物成分と、ジアミン成分と、を原料とするポリイミドフィルムであって、前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%であり、前記ポリイミドフィルムの全量100重量%中、有機リン系化合物を、0.1~5.0重量%含む、グラファイトシートの製造方法。 A method for producing a graphite sheet, comprising a step of heat-treating a polyimide film for a graphite sheet at 2400° C. or higher, wherein the polyimide film for the graphite sheet is made from an acid dianhydride component and a diamine component. A polyimide film, wherein the acid dianhydride component contains 50 to 100 mol% of pyromellitic dianhydride (PMDA) in 100 mol% of the total amount of the acid dianhydride component, 3,3',4, At least one of 4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) is contained in an amount of 0 to 50 mol%, and the diamine component is the total amount of the diamine component. In 100 mol%, 4,4'-diaminodiphenyl ether (ODA) is 50 to 100 mol%, 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 0 to 50 mol%, The 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and the 4,4′-oxydiphthalic acid dianhydride with respect to 200 mol % of the total amount of the acid dianhydride component and the diamine component The total content of anhydride (ODPA) and the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 1 to 50 mol%, and the total amount of the polyimide film is 100% by weight. A method for producing a graphite sheet containing 0.1 to 5.0% by weight of an organic phosphorus compound.
 本発明の一実施形態によれば、密度が高いグラファイトシートを生産性よく提供し得る、ポリイミドフィルムを提供することができる。 According to one embodiment of the present invention, it is possible to provide a polyimide film that can provide a high-density graphite sheet with good productivity.
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上B以下」を意図する。 An embodiment of the present invention will be described below, but the present invention is not limited to this. The present invention is not limited to each configuration described below, and various modifications are possible within the scope of the claims, and technical means disclosed in different embodiments and examples can be used. Embodiments and examples obtained by appropriate combinations are also included in the technical scope of the present invention. Also, all scientific and patent documents mentioned in this specification are incorporated herein by reference. In addition, unless otherwise specified in this specification, "A to B" representing a numerical range intends "A or more and B or less".
 <1.本発明の技術的思想>
 近年、電子機器の高性能化に伴い、より優れた放熱性能を有する、厚物のグラファイトシート(厚みの大きいグラファイトシート)が求められている。厚物のグラファイトシートは、厚みの大きい(例えば、80μm以上)ポリイミドフィルムを熱処理(黒鉛化)することにより製造できる。しかしながら、従来のポリイミドフィルムにおいて、その厚みを単に大きくした場合、当該ポリイミドフィルムを原料として含む(熱処理してなる)グラファイトシートにおいて、当該グラファイトシートの表面が大きく発泡し、熱伝導率が低下する、外観が不良となる、等の問題が発生することを本発明者らは見出した。
<1. Technical idea of the present invention>
2. Description of the Related Art In recent years, as the performance of electronic devices has improved, there has been a demand for thick graphite sheets (thick graphite sheets) having better heat dissipation performance. A thick graphite sheet can be produced by heat-treating (graphitizing) a polyimide film having a large thickness (for example, 80 μm or more). However, when the thickness of a conventional polyimide film is simply increased, the surface of the graphite sheet containing the polyimide film as a raw material (made by heat treatment) is greatly foamed and the thermal conductivity is lowered. The present inventors have found that problems such as poor appearance occur.
 このような厚物のグラファイトシートに発生する問題の原因として、本発明者らは、ポリイミドフィルムを熱処理する際にグラファイトシート中で発生するアウトガスに着目した。 The inventors of the present invention focused on the outgassing generated in the graphite sheet during the heat treatment of the polyimide film as the cause of the problem that occurs in such a thick graphite sheet.
 従来の、比較的薄いグラファイトシートを製造する場合、層間強度等の向上を目的として、ポリイミドフィルムの配向性を高める作用のある、すなわち、得られるグラファイトシートにおける、グラファイト(グラファイト層)の配向性を高める作用のある、酸無水物(PMDA、BPDA等)、および/または、ジアミン(ODA、PDA等)が、ポリイミドフィルムの原料として採用されている。しかしながら、厚物のグラファイトシートにおいては、グラファイト層の層数が増加することから、前記ポリイミドフィルムの配向性を高める作用のある酸無水物、および/または、ジアミンをポリイミドフィルムの原料として使用した場合、ポリイミドフィルムの熱処理によりグラファイトシート中(グラファイト層の層間)に発生するアウトガスが、配向性の高い多数のグラファイト層に阻まれ、グラファイトシート内部から排出されず、グラファイト層の層間に充満する。そして、加熱が進むにつれ、当該アウトガスの量が増加するとともに、当該アウトガスの体積が増大し、グラファイト層の表面を押し上げる。このアウトガスによるグラファイト層の押し上げが、グラファイトシート表面が発泡(隆起)する、等の問題が発生する要因であると考えられた。 When a conventional relatively thin graphite sheet is produced, the orientation of the graphite (graphite layer) in the resulting graphite sheet has the effect of increasing the orientation of the polyimide film for the purpose of improving interlaminar strength, etc. Acid anhydrides (PMDA, BPDA, etc.) and/or diamines (ODA, PDA, etc.) with enhancing properties have been employed as raw materials for polyimide films. However, in a thick graphite sheet, since the number of graphite layers increases, when acid anhydride and/or diamine, which have the effect of increasing the orientation of the polyimide film, are used as raw materials for the polyimide film. , The outgas generated in the graphite sheet (between the graphite layers) due to the heat treatment of the polyimide film is blocked by a large number of highly oriented graphite layers, is not discharged from the inside of the graphite sheet, and fills between the graphite layers. Then, as the heating progresses, the amount of the outgas increases and the volume of the outgas increases, pushing up the surface of the graphite layer. It was thought that this outgas push-up of the graphite layer was the cause of problems such as foaming (raising) on the surface of the graphite sheet.
 ポリイミドフィルムを熱処理する際に、アウトガスの発生を抑制するには、熱処理の際の昇温速度を低くする(例えば、0.1℃/min未満)必要がある。すなわち、従来のポリイミドフィルムにおいては、アウトガスに起因する問題の発生を抑制するために、アウトガスの発生が抑制できる程度まで昇温速度を低くする必要があった。しかしながら、このようにアウトガスの発生が抑制できる程度まで昇温速度を低くした場合、ポリイミドフィルムの熱処理に要する時間が増大し、グラファイトシートの生産性が大きく低下する。すなわち、従来のポリイミドフィルムには、厚物のグラファイトシートを製造する場合に、グラファイトシートの生産性が大きく低下するという課題があった。 In order to suppress the generation of outgassing when heat-treating a polyimide film, it is necessary to reduce the rate of temperature increase during heat-treatment (for example, less than 0.1°C/min). That is, in conventional polyimide films, in order to suppress the occurrence of problems caused by outgassing, it was necessary to reduce the rate of temperature rise to such an extent that the occurrence of outgassing can be suppressed. However, when the heating rate is reduced to such an extent that the generation of outgas can be suppressed, the time required for the heat treatment of the polyimide film increases, and the productivity of the graphite sheet greatly decreases. That is, the conventional polyimide film has a problem that the productivity of the graphite sheet is greatly reduced when manufacturing a thick graphite sheet.
 また、近年の電子機器の小型化に伴い、小型電子機器内の限られたスペースに配置するため、グラファイトシートには、効率的な放熱を実現する観点から、高い密度を有することも要求されるようになっている。 In addition, due to the recent miniaturization of electronic devices, graphite sheets are required to have a high density from the viewpoint of realizing efficient heat dissipation because they are placed in limited spaces in small electronic devices. It's like
 このような状況にあって、本発明者らは、密度が高いグラファイトシートを、生産性よく提供できるポリイミドフィルム、特に、厚物のグラファイトシートを提供できる、厚みの大きいポリイミドフィルムとした場合であっても、密度が高いグラファイトシートを生産性よく提供できるポリイミドフィルムを提供すべく、鋭意検討を行った。その結果、以下の知見を新たに見出し、本発明を完成させるに至った:
 (1)ポリイミドフィルムの配向性を乱す(低下させる)作用のある酸無水物(BTDA、ODPA等)、および/または、ジアミン(BAPP等)を、ポリイミドフィルムの原料として適量使用することにより、得られるポリイミドフィルムの配向性を適度に乱すことができる。そして、このような配向性が適度に乱れたポリイミドフィルムを熱処理した場合、得られるグラファイトシートにおいて、グラファイト層の配向性を適度に乱すことができる。そして、グラファイトシート中のグラファイト層の配向性を適度に乱すことで、当該グラファイトシート中に発生するアウトガスを適度に除去できるため、高い昇温速度でポリイミドフィルムを熱処理した場合であっても、アウトガスに起因するグラファイトシートの表面の発泡等の問題が発生しないため、生産性よくグラファイトシートを提供できること;
 (2)適切な割合の有機リン系化合物を含むポリイミドフィルムを熱処理することで、高い密度を有するグラファイトシートを提供できること。
Under such circumstances, the present inventors have found that a high-density graphite sheet can be made into a polyimide film that can be provided with good productivity, in particular, a thick polyimide film that can provide a thick graphite sheet. However, the present inventors have made intensive studies to provide a polyimide film that can produce a high-density graphite sheet with good productivity. As a result, the following findings were newly discovered, leading to the completion of the present invention:
(1) Acid anhydrides (BTDA, ODPA, etc.) and/or diamines (BAPP, etc.), which have the effect of disturbing (lowering) the orientation of the polyimide film, are used as raw materials for the polyimide film in an appropriate amount. The orientation of the resulting polyimide film can be moderately disturbed. When such a polyimide film having moderately disturbed orientation is heat treated, the orientation of the graphite layer can be moderately disturbed in the resulting graphite sheet. By appropriately disturbing the orientation of the graphite layers in the graphite sheet, the outgassing generated in the graphite sheet can be removed appropriately. The graphite sheet can be provided with good productivity because problems such as foaming on the surface of the graphite sheet caused by
(2) A graphite sheet having a high density can be provided by heat-treating a polyimide film containing an appropriate proportion of an organic phosphorus compound.
 本発明の一実施形態に係るポリイミドフィルムは、ポリイミドフィルムの配向性を乱す作用のある酸無水物、および/または、ジアミンを適量含み、適切な割合の有機リン系化合物を含むため、高い密度を有するグラファイトシートを、生産性よく提供することができる。したがって、グラファイトシートの、特に、厚物のグラファイトシートの製造に好適に利用することができる。このようなポリイミドフィルムは従来知られておらず、驚くべき発見であると言える。 The polyimide film according to one embodiment of the present invention contains an appropriate amount of an acid anhydride and / or diamine that has the effect of disturbing the orientation of the polyimide film, and contains an appropriate proportion of an organic phosphorus compound, so that it has a high density. can be provided with high productivity. Therefore, it can be suitably used for manufacturing graphite sheets, particularly thick graphite sheets. Such a polyimide film has not been known in the past and can be said to be a surprising discovery.
 <2.ポリイミドフィルム>
 以下、本発明の一実施形態に係るポリイミドフィルム(以下、本ポリイミドフィルムと称する場合がある。)について詳説する。本ポリイミドフィルムは、酸二無水物成分と、ジアミン成分とを、原料とするポリイミドフィルムであって、前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、PMDAを50~100モル%、BTDAおよびODPAのうち少なくともいずれかを0~50モル%含み、前記ジアミン成分は、前記ジアミン成分の総量100モル%中、ODAを50~100モル%、BAPPを0~50モル%含み、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記BTDA、前記ODPAおよび前記BAPPの合計の含有量は、1~50モル%以下であり、有機リン系化合物を0.1重量%~5.0重量%含むものである。
<2. Polyimide film>
A polyimide film according to one embodiment of the present invention (hereinafter sometimes referred to as the present polyimide film) will be described in detail below. This polyimide film is a polyimide film made from an acid dianhydride component and a diamine component as raw materials, and the acid dianhydride component contains 50 PMDA in the total amount of 100 mol% of the acid dianhydride component. ~100 mol%, and at least one of BTDA and ODPA in an amount of 0 to 50 mol%, and the diamine component contains 50 to 100 mol% of ODA and 0 to 50 mol% of BAPP in the total amount of 100 mol% of the diamine component. %, the total content of the BTDA, the ODPA and the BAPP with respect to the total amount of 200 mol% of the acid dianhydride component and the diamine component is 1 to 50 mol% or less, and an organic phosphorus compound 0.1% by weight to 5.0% by weight.
 本ポリイミドフィルムは、前記構成を有するために、本ポリイミドフィルムを原料とすることで、高い密度を有するグラファイトシートを生産性よく提供することができる。すなわち、本ポリイミドフィルムは、グラファイトシートの製造に好適に利用することができる。それゆえ、本ポリイミドフィルムは、グラファイトシート用のポリイミドフィルムと言うこともできる。 Since the present polyimide film has the above structure, by using the present polyimide film as a raw material, a graphite sheet having a high density can be provided with good productivity. That is, the present polyimide film can be suitably used for producing graphite sheets. Therefore, the present polyimide film can also be called a polyimide film for graphite sheets.
 (酸二無水物成分)
 本ポリイミドフィルムの原料である酸二無水物成分は、ピロメリット酸二無水物(PMDA)を50~100モル%含み、かつ、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含むものである。酸二無水物成分は、BTDAおよびODPAの何れか1種のみを含んでもよく、2種類両方を含んでもよい。また、本ポリイミドフィルムが、後述するジアミン成分として、1モル%以上のBAPPを原料とする場合、酸二無水物成分は、BTDAおよび/またはODPAを含んでもよく、BTDAおよびODPAの何れも含まなくともよい。
(Acid dianhydride component)
The acid dianhydride component, which is the raw material of the present polyimide film, contains 50 to 100 mol% of pyromellitic dianhydride (PMDA) and 3,3',4,4'-benzophenonetetracarboxylic dianhydride. (BTDA) and at least one of 4,4'-oxydiphthalic dianhydride (ODPA) from 0 to 50 mol%. The acid dianhydride component may contain only one of BTDA and ODPA, or both of them. In addition, when the present polyimide film uses 1 mol% or more of BAPP as a raw material as a diamine component described later, the acid dianhydride component may contain BTDA and / or ODPA, and does not contain either BTDA or ODPA. It's good.
 本発明の一実施形態において、酸二無水物成分が含むPMDAの量は、酸二無水物成分の全量100モル%に対して、50モル%以上であり、好ましくは60モル%以上であり、より好ましくは、70モル%以上である。本ポリイミドフィルムが、PMDAを50モル%以上含むことにより、適度な配向性を有するポリイミドフィルム(および炭素質フィルム)を提供することができる。酸二無水物成分が含むPMDAの量は、80モル%以上であってもよく、90モル%以上であってもよく、95モル%以上であってもよく、100モル%であってもよい。 In one embodiment of the present invention, the amount of PMDA contained in the acid dianhydride component is 50 mol% or more, preferably 60 mol% or more, relative to 100 mol% of the total amount of the acid dianhydride component, More preferably, it is 70 mol % or more. When the present polyimide film contains 50 mol % or more of PMDA, it is possible to provide a polyimide film (and a carbonaceous film) having moderate orientation. The amount of PMDA contained in the acid dianhydride component may be 80 mol% or more, 90 mol% or more, 95 mol% or more, or 100 mol%. .
 なかでも、前記酸二無水物成分として、PMDAを100モル%含むことが好ましく、この場合、前記ジアミン成分として、ODAを50~99モル%、BAPPを1~50モル%含むことが好ましい。かかる構成によれば、得られるグラファイトシートの熱拡散率および柔軟性が良好となる。 Above all, it is preferable that 100 mol% of PMDA is included as the acid dianhydride component, and in this case, it is preferable that 50 to 99 mol% of ODA and 1 to 50 mol% of BAPP are included as the diamine component. With such a configuration, the obtained graphite sheet has good thermal diffusivity and flexibility.
 本発明の一実施形態において、酸二無水物成分がBTDAおよびODPAのうち少なくともいずれかを含む場合、BTDAおよびODPAの含有量(BTDAおよびODPAの合計量)は、酸二無水物成分の全量100モル%に対して、1モル%以上であり、好ましくは5モル%以上であり、より好ましくは10モル%以上であり、さらに好ましくは20モル%以上である。BTDAおよびODPAの含有量の上限は、50モル%以下であり、好ましくは40モル%以下であり、より好ましくは30モル%以下である。酸二無水物成分がBTDAおよびODPAのうち少なくともいずれかを1モル%以上含む場合、得られるポリイミドフィルム(および炭素質フィルム)の配向性を適度に乱すことができる。それにより、グラファイトシートを生産性よく提供することができる。また、酸二無水物成分におけるBTDAおよびODPAのうち少なくともいずれかの含有量(合計量)が50モル%以下である場合、得られるグラファイトシートの配向性が過度に乱れる虞が無く、得られるグラファイトシートの熱拡散率および柔軟性が良好となる。換言すると、BTDAおよびODPAの含有量(合計量)が50モル%超であると、得られるグラファイトシートにおけるグラファイト層の配向性が過度に乱れ、当該グラファイトシートの熱伝導率および柔軟性が不良となる傾向がある。 In one embodiment of the present invention, when the acid dianhydride component contains at least one of BTDA and ODPA, the content of BTDA and ODPA (the total amount of BTDA and ODPA) is 100% of the total amount of the acid dianhydride component. Based on mol %, it is 1 mol % or more, preferably 5 mol % or more, more preferably 10 mol % or more, and still more preferably 20 mol % or more. The upper limit of the content of BTDA and ODPA is 50 mol% or less, preferably 40 mol% or less, more preferably 30 mol% or less. When the acid dianhydride component contains at least one of BTDA and ODPA in an amount of 1 mol % or more, the orientation of the resulting polyimide film (and carbonaceous film) can be moderately disturbed. Thereby, a graphite sheet can be provided with good productivity. Further, when the content (total amount) of at least one of BTDA and ODPA in the acid dianhydride component is 50 mol% or less, there is no fear that the orientation of the resulting graphite sheet will be excessively disturbed. Good thermal diffusivity and flexibility of the sheet. In other words, when the content (total amount) of BTDA and ODPA exceeds 50 mol%, the orientation of the graphite layers in the resulting graphite sheet is excessively disturbed, and the thermal conductivity and flexibility of the graphite sheet are poor. tend to become
 本ポリイミドフィルムは、酸二無水物成分として、前記PMDA、前記BTDAおよび前記ODPAに加え、その他の酸二無水物を含んでもよい。その他の酸二無水物としては、例えば、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,1-(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸二無水物)、エチレンビス(トリメリット酸モノエステル酸二無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸二無水物)およびそれらの類似物を挙げることができる。その他の酸二無水物としては、これらの酸二無水物を単独で使用してもよく、これら酸二無水物の複数種類を任意の割合で混合することもできる。 The present polyimide film may contain other acid dianhydrides in addition to the PMDA, the BTDA and the ODPA as acid dianhydride components. Other acid dianhydrides include, for example, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2′,3, 3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride , 3,4,9,10-perylenetetracarboxylic dianhydride, 1,1-(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride anhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, p-phenylene bis (trimellitic monoester dianhydride), ethylene bis (trimellitic monoester dianhydride), bisphenol A Mention may be made of bis(trimellitic monoester dianhydride) and their analogues. As other acid dianhydrides, these acid dianhydrides may be used singly, or multiple types of these acid dianhydrides may be mixed in an arbitrary ratio.
 本ポリイミドフィルムの原料である酸二無水物成分における、前記その他の酸二無水物の含有量は、前記酸二無水物成分の総量100モル%中、50モル%以下であり、好ましくは40モル%以下であり、より好ましくは30モル%以下であり、さらに好ましくは、20モル%以下であり、よりさらに好ましくは10モル%以下であり、特に好ましくは0モル%である。すなわち、本ポリイミドフィルムの原料である酸二無水物成分は、その他の酸二無水物を含まないことが特に好ましい。 The content of the other acid dianhydride in the acid dianhydride component which is the raw material of the present polyimide film is 50 mol% or less, preferably 40 mol, in 100 mol% of the total amount of the acid dianhydride component. %, more preferably 30 mol % or less, still more preferably 20 mol % or less, even more preferably 10 mol % or less, and particularly preferably 0 mol %. That is, it is particularly preferable that the acid dianhydride component, which is the raw material of the present polyimide film, does not contain other acid dianhydrides.
 (ジアミン成分)
 本ポリイミドフィルムの原料であるジアミン成分は、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%含み、かつ、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含むものである。本ポリイミドフィルムが、前記酸二無水物成分として、1モル%以上のBTDAまたはODPAを原料とする場合、ジアミン成分は、BAPPを含んでもよく、含まなくともよい。
(Diamine component)
The diamine component, which is the raw material of the present polyimide film, contains 4,4'-diaminodiphenyl ether (ODA) in an amount of 50 to 100 mol%, and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP ) in an amount of 0 to 50 mol %. When the present polyimide film is made from 1 mol % or more of BTDA or ODPA as the acid dianhydride component, the diamine component may or may not contain BAPP.
 本発明の一実施形態において、ジアミン成分が含むODAの量は、ジアミン成分の全量100モル%に対して、50モル%以上であり、好ましくは60モル%以上であり、より好ましくは、70モル%以上である。本ポリイミドフィルムが、ODAを50モル%以上含むことにより、適度な配向性を有するポリイミドフィルム(および炭素質フィルム)を提供することができる。ジアミン成分が含むODAの量は、80モル%以上であってもよく、90モル%以上であってもよく、95モル%以上であってもよく、100モル%であってもよい。 In one embodiment of the present invention, the amount of ODA contained in the diamine component is 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol%, based on 100 mol% of the total amount of the diamine component. % or more. By including 50 mol % or more of ODA in the present polyimide film, it is possible to provide a polyimide film (and a carbonaceous film) having an appropriate orientation. The amount of ODA contained in the diamine component may be 80 mol % or more, 90 mol % or more, 95 mol % or more, or 100 mol %.
 なかでも、前記ジアミン成分として、ODAを100モル%含むことが好ましく、この場合、前記酸二無水物成分として、PMDAを50~99モル%、BTDAおよびODPAのうち少なくともいずれかを1~50モル%含むことが好ましい。かかる構成によれば、得られるグラファイトシートの熱拡散率および柔軟性が良好となる。 Among them, it is preferable that the diamine component contains 100 mol % of ODA. In this case, the dianhydride component contains 50 to 99 mol % of PMDA and 1 to 50 mol of at least one of BTDA and ODPA. % is preferred. With such a configuration, the obtained graphite sheet has good thermal diffusivity and flexibility.
 本発明の一実施形態において、ジアミン成分がBAPPを含む場合、BAPPの含有量は、ジアミン成分の全量100モル%に対して、1モル%以上であり、好ましくは5モル%以上であり、より好ましくは10モル%以上であり、さらに好ましくは20モル%以上である。BAPPの含有量の上限は、50モル%以下であり、好ましくは40モル%以下であり、より好ましくは30モル%以下である。ジアミン成分がBAPPを1モル%以上含む場合、得られるポリイミドフィルム(および炭素質フィルム)の配向性を適度に乱すことができる。それにより、グラファイトシートを生産性よく提供することができる。また、ジアミン成分におけるBAPPの含有量が50モル%以下である場合、グラファイトシート中のグラファイト層の配向性が過度に乱れる虞が無く、得られるグラファイトシートの熱拡散率および柔軟性が良好となる。 In one embodiment of the present invention, when the diamine component contains BAPP, the content of BAPP is 1 mol% or more, preferably 5 mol% or more, relative to 100 mol% of the total amount of the diamine component. It is preferably 10 mol % or more, more preferably 20 mol % or more. The upper limit of the BAPP content is 50 mol % or less, preferably 40 mol % or less, and more preferably 30 mol % or less. When the diamine component contains 1 mol % or more of BAPP, the orientation of the resulting polyimide film (and carbonaceous film) can be moderately disturbed. Thereby, a graphite sheet can be provided with good productivity. Further, when the content of BAPP in the diamine component is 50 mol% or less, there is no possibility that the orientation of the graphite layers in the graphite sheet is excessively disturbed, and the resulting graphite sheet has good thermal diffusivity and flexibility. .
 本ポリイミドフィルムは、ジアミン成分として、前記ODAおよび前記BAPPに加え、その他のジアミンを含んでもよい。その他のジアミンとしては、例えば、p-フェニレンジアミン(PDA)、4,4’-ジアミノジフェニルメタン、ベンジジン、3,3’-ジクロロベンジジン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、4,4’-ジミノジフェニルエチルホスフィンオキシド、4,4’-ジアミノジフェニルN-メチルアミン、4,4’-ジアミノジフェニルN-フェニルアミン、1,3-ジアミノベンゼン、1,2-ジアミノベンゼンおよびそれらの類似物を挙げることができる。その他のジアミンとしては、これらのジアミンを単独で使用してもよく、これらジアミンの複数種類を任意の割合で混合することもできる。 The present polyimide film may contain other diamines in addition to the ODA and BAPP as diamine components. Other diamines include, for example, p-phenylenediamine (PDA), 4,4'-diaminodiphenylmethane, benzidine, 3,3'-dichlorobenzidine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl Sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,5-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diamino Diphenylsilane, 4,4'-diminodiphenylethylphosphine oxide, 4,4'-diaminodiphenyl N-methylamine, 4,4'-diaminodiphenyl N-phenylamine, 1,3-diaminobenzene, 1,2- Mention may be made of diaminobenzenes and their analogues. As other diamines, these diamines may be used alone, or multiple types of these diamines may be mixed in an arbitrary ratio.
 本ポリイミドフィルムの原料であるジアミン成分における、前記その他のジアミンの含有量は、前記ジアミン成分の総量100モル%中、50モル%以下であり、好ましくは40モル%以下であり、より好ましくは30モル%以下であり、さらに好ましくは、20モル%以下であり、よりさらに好ましくは10モル%以下であり、特に好ましくは0モル%である。すなわち、本ポリイミドフィルムの原料であるジアミン成分は、その他のジアミンを含まないことが特に好ましい。 The content of the other diamine in the diamine component, which is the raw material of the present polyimide film, is 50 mol% or less, preferably 40 mol% or less, more preferably 30%, based on the total amount of 100 mol% of the diamine component. It is mol % or less, more preferably 20 mol % or less, even more preferably 10 mol % or less, and particularly preferably 0 mol %. That is, it is particularly preferable that the diamine component, which is the raw material of the present polyimide film, does not contain other diamines.
 (BTDA、ODPAおよびBAPPの合計の含有量)
 本ポリイミドフィルムは、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対して、前記BTDA、前記ODPAおよび前記BAPPを、合計で1~50モル%含む。本ポリイミドフィルムにおいて、前記BTDA、前記ODPAおよび前記BAPPの使用量を前記の範囲とすることにより、本ポリイミドフィルム(および炭素質フィルム)の配向性を適度に乱すことができる。それゆえ、本ポリイミドフィルムを原料として含むグラファイトシートは、高い昇温速度で生産することができる、生産性のよいグラファイトシートとなる。
(Total content of BTDA, ODPA and BAPP)
The present polyimide film contains 1 to 50 mol % of the BTDA, the ODPA and the BAPP in total with respect to 200 mol % of the total amount of the acid dianhydride component and the diamine component. In the present polyimide film, the orientation of the present polyimide film (and the carbonaceous film) can be moderately disturbed by setting the amounts of the BTDA, the ODPA and the BAPP used within the above ranges. Therefore, a graphite sheet containing the present polyimide film as a raw material can be produced at a high rate of temperature rise and is highly productive.
 本ポリイミドフィルムにおける、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記BTDA、前記ODPAおよび前記BAPPの合計の含有量の下限は、1モル%以上であり、好ましくは5モル%以上であり、より好ましくは10モル%以上であり、さらに好ましくは20モル%以上である。また、前記BTDA、前記ODPAおよび前記BAPPの合計の含有量の上限は、50モル%以下であり、好ましくは40モル%以下であり、より好ましくは30モル%以下である。 In the present polyimide film, the lower limit of the total content of the BTDA, the ODPA and the BAPP with respect to the total amount of 200 mol% of the acid dianhydride component and the diamine component is 1 mol% or more, preferably It is 5 mol % or more, more preferably 10 mol % or more, and still more preferably 20 mol % or more. The upper limit of the total content of BTDA, ODPA and BAPP is 50 mol % or less, preferably 40 mol % or less, and more preferably 30 mol % or less.
 本ポリイミドフィルムは、実質的に当モル量の前記酸二無水物成分と、前記ジアミン成分と、を原料とするポリイミドフィルムである。なお、本明細書において、実質的に等モル量とは、それぞれ異なる2種類以上の物質(例えば、酸二無水物成分とジアミン成分)のモル量の比率が、100:98~100:102の範囲内であり、好ましくは100:100であることを意図する。すなわち、本明細書において、「酸二無水物成分の総量100モル%中、BTDAおよびODPAのうち少なくともいずれかを0~50モル%含む」とは、「酸二無水物成分とジアミン成分との合計量200モル%に対して、BTDAおよびODPAのうち少なくともいずれかを0~50モル%含む」とも言え、「ジアミン成分の総量100モル%中、BAPPを0~50モル%含む」とは、「酸二無水物成分とジアミン成分との合計量200モル%に対して、BAPPを0~50モル%含む」とも言える。すなわち、「酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記BTDA、前記ODPAおよび前記BAPPの合計の含有量」は、酸二無水物成分中のBTDAおよびODPAの含有量と、ジアミン成分中の、BAPPの含有量と、の合計として算出することができる。 This polyimide film is a polyimide film made from substantially equimolar amounts of the acid dianhydride component and the diamine component as raw materials. In this specification, substantially equimolar amounts means that the ratio of molar amounts of two or more different substances (for example, an acid dianhydride component and a diamine component) is from 100:98 to 100:102. It is intended to be within the range, preferably 100:100. That is, in the present specification, "containing 0 to 50 mol% of at least one of BTDA and ODPA in the total amount of 100 mol% of the acid dianhydride component" means "the acid dianhydride component and the diamine component It can also be said that at least one of BTDA and ODPA is contained in an amount of 0 to 50 mol% relative to the total amount of 200 mol%. It can also be said that "0 to 50 mol % of BAPP is contained with respect to 200 mol % of the total amount of the acid dianhydride component and the diamine component". That is, "the total content of the BTDA, the ODPA and the BAPP with respect to 200 mol% of the total amount of the acid dianhydride component and the diamine component" is the content of BTDA and ODPA in the acid dianhydride component and the content of BAPP in the diamine component.
 (有機リン系化合物)
 本ポリイミドフィルムは、本ポリイミドフィルムの全量100重量%中、有機リン系化合物を、0.1~5.0重量%含む。
(organophosphorus compound)
This polyimide film contains 0.1 to 5.0% by weight of an organophosphorus compound in 100% by weight of the total amount of this polyimide film.
 本ポリイミドフィルムにおける有機リン系化合物の含有量は、本ポリイミドフィルムの全量100重量%中、0.1~5.0重量%であり、0.2~3.0重量%であることが好ましく、0.3~1.5重量%であることがより好ましい。本ポリイミドフィルムにおける有機リン系化合物の含有量が0.1重量%以上である場合、密度の高いグラファイトシートを提供でき、5.0重量%以下である場合、黒鉛化時の発泡率が低減され、より生産性よくグラファイトシートを提供できるという利点がある。また、本ポリイミドフィルムは、上記の範囲で有機リン系化合物を含むことにより、(1)微粘着フィルムからの引き剥がし性に優れるグラファイトシートを提供できる、(2)黒鉛化工程における炭素質フィルムの融着を防ぐことができるため、より生産性よくグラファイトシートを提供できる、等の利点をも有する。 The content of the organic phosphorus compound in the polyimide film is 0.1 to 5.0% by weight, preferably 0.2 to 3.0% by weight, based on 100% by weight of the total amount of the polyimide film. More preferably 0.3 to 1.5% by weight. When the content of the organic phosphorus compound in the present polyimide film is 0.1% by weight or more, a graphite sheet with high density can be provided, and when it is 5.0% by weight or less, the foaming rate during graphitization is reduced. , has the advantage of being able to provide graphite sheets with higher productivity. In addition, the present polyimide film contains an organic phosphorus compound within the above range, so that (1) it can provide a graphite sheet with excellent peelability from a slightly adhesive film, and (2) the carbonaceous film in the graphitization process. Since fusion can be prevented, it also has the advantage of being able to provide graphite sheets with higher productivity.
 本ポリイミドフィルムが含み得る有機リン系化合物としては、リン酸エステル類、ホスフィンオキシド類、亜リン酸エステル類、ホスフィン類、ホスホン酸エステル類、ホスフィン酸エステル類、等が挙げられる。これらの有機リン系化合物の1種類のみを含んでいてもよく、2種類以上を含んでいてもよい。例示した有機リン系化合物の中でも、空気中で安定であるという利点があることから、リン酸エステル類が好ましく、リン酸トリフェニルが特に好ましい。 Examples of organic phosphorous compounds that the present polyimide film may contain include phosphates, phosphine oxides, phosphites, phosphines, phosphonates, phosphinates, and the like. Only one type of these organophosphorus compounds may be contained, or two or more types may be contained. Among the exemplified organophosphorus compounds, phosphate esters are preferred, and triphenyl phosphate is particularly preferred, since they have the advantage of being stable in air.
 安定性の観点から、本ポリイミドフィルムが含む有機リン系化合物としては、リンの価数が5価である有機リン系化合物が好ましい。すなわち、本ポリイミドフィルムは、有機リン系化合物として、リンの価数が5価である有機リン系化合物を含むことが好ましく、リンの価数が5価である有機リン系化合物のみを含むことがより好ましい。 From the viewpoint of stability, the organic phosphorus compound contained in the present polyimide film is preferably an organic phosphorus compound in which the valence of phosphorus is pentavalent. That is, the present polyimide film preferably contains, as the organic phosphorus compound, an organic phosphorus compound in which the valence of phosphorus is pentavalent, and may contain only an organic phosphorus compound in which the valence of phosphorus is pentavalent. more preferred.
 リンの価数が5価である有機リン系化合物としては、リン酸トリフェニル、リン酸トリメチル等が挙げられる。 Examples of organic phosphorus compounds in which the valence of phosphorus is pentavalent include triphenyl phosphate and trimethyl phosphate.
 本ポリイミドフィルムが含み得る有機リン系化合物としては、TG-DTAの測定において、重量減少率が5%となる温度が、200℃以上であることが好ましく、250℃以上であることがより好ましく、300℃以上であることが更に好ましい。本ポリイミドフィルムが含む有機リン系化合物の、TG-DTAの測定における重量減少率が5%となる温度が200℃以上であれば、ポリイミドフィルムを製膜する炉の汚れを軽減することができる。 As the organic phosphorus compound that can be contained in the present polyimide film, the temperature at which the weight loss rate is 5% in TG-DTA measurement is preferably 200 ° C. or higher, more preferably 250 ° C. or higher. It is more preferably 300° C. or higher. If the temperature at which the weight reduction rate of the organic phosphorus compound contained in the present polyimide film is 5% in TG-DTA measurement is 200° C. or higher, contamination of the furnace for forming the polyimide film can be reduced.
 TG-DTAの測定において、重量減少率が5%となる温度が、200℃以上である有機リン系化合物としては、リン酸トリフェニル、トリフェニルホスフィンオキシド等が挙げられる。 Examples of organophosphorus compounds whose temperature at which the weight loss rate reaches 5% in TG-DTA measurement is 200°C or higher include triphenyl phosphate and triphenylphosphine oxide.
 (無機粒子)
 本ポリイミドフィルムは、無機粒子(フィラー)を含んでもよい。本ポリイミドフィルムが無機粒子を含む場合、本ポリイミドフィルムは、滑り性に優れるポリイミドフィルムとなる。このような滑り性に優れるポリイミドフィルムは、当該ポリイミドフィルムの搬送中のキズの発生を抑制でき、また、黒鉛化工程における炭素質フィルムの融着を防ぐことができる。
(Inorganic particles)
The present polyimide film may contain inorganic particles (filler). When the present polyimide film contains inorganic particles, the present polyimide film becomes a polyimide film having excellent slipperiness. Such a polyimide film having excellent lubricity can suppress the occurrence of scratches during transport of the polyimide film, and can prevent fusion of the carbonaceous film in the graphitization process.
 本ポリイミドフィルムが含み得る無機粒子としては、炭酸カルシウム(CaCO)、シリカ、リン酸水素カルシウム(CaHPO)、リン酸カルシウム(Ca)などを挙げることができる。これらの無機粒子のなかでも、リン酸水素カルシウムおよびリン酸カルシウム等のリンを含む無機粒子が好ましい。 Inorganic particles that the present polyimide film may contain include calcium carbonate (CaCO 3 ), silica, calcium hydrogen phosphate (CaHPO 4 ), calcium phosphate (Ca 2 P 2 O 7 ), and the like. Among these inorganic particles, phosphorus-containing inorganic particles such as calcium hydrogen phosphate and calcium phosphate are preferred.
 本ポリイミドフィルムが含み得る無機粒子の平均粒子径の上限は、特に限定されないが、2.5μm以下であることが好ましく、2.0μm以下であることが好ましく、1.5μm以下であることが好ましく、1.0μm以下であることが好ましい。無機粒子の平均粒子径が2.5μm以下である場合、黒鉛化後のフィルム内部に発生する空隙を小さくできるため、圧縮後に密度に優れるグラファイトシートを得られ、特に、1.0μm以下であることにより、さらに密度に優れたグラファイトシートを提供し得る。また、無機粒子の平均粒子径の下限は、特に限定されないが、0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.5μm以上であることがさらに好ましく、0.7μm以上であることがよりさらに好ましい。 The upper limit of the average particle size of the inorganic particles that can be contained in the present polyimide film is not particularly limited, but is preferably 2.5 μm or less, preferably 2.0 μm or less, and preferably 1.5 μm or less. , is preferably 1.0 μm or less. When the average particle size of the inorganic particles is 2.5 μm or less, voids generated inside the film after graphitization can be reduced, so that a graphite sheet having an excellent density after compression can be obtained. Thus, a graphite sheet with even better density can be provided. In addition, the lower limit of the average particle size of the inorganic particles is not particularly limited, but is preferably 0.1 μm or more, more preferably 0.3 μm or more, further preferably 0.5 μm or more, and 0 0.7 μm or more is even more preferable.
 なお、本明細書において、無機粒子の平均粒子径とは、体積平均粒子径を意図し、ジメチルホルムアミド中に分散した無機粒子について、microtrac社製粒子径分布測定装置MT3000IIを用いて測定される値である。 In the present specification, the average particle size of inorganic particles is intended to be the volume average particle size, and the inorganic particles dispersed in dimethylformamide are measured using a microtrac particle size distribution analyzer MT3000II. is.
 本ポリイミドフィルムが無機粒子を含む場合、本ポリイミドフィルムにおける無機粒子の含有量の下限は、特に限定されないが、0.01重量%以上であることが好ましく、0.02重量%であることがより好ましく、0.03重量%以上であることがさらに好ましい。無機粒子の含有量の上限は、特に限定されないが、0.30重量%以下であることが好ましく、0.20重量%以下であることがより好ましく、0.15重量%以下であることがさらに好ましく、0.10重量%以下であることがよりさらに好ましい。 When the polyimide film contains inorganic particles, the lower limit of the content of the inorganic particles in the polyimide film is not particularly limited, but is preferably 0.01% by weight or more, more preferably 0.02% by weight. It is preferably 0.03% by weight or more, and more preferably 0.03% by weight or more. The upper limit of the content of the inorganic particles is not particularly limited, but is preferably 0.30% by weight or less, more preferably 0.20% by weight or less, and further preferably 0.15% by weight or less. It is preferably 0.10% by weight or less, and more preferably 0.10% by weight or less.
 (ポリイミドフィルムの厚み)
 本ポリイミドフィルムの厚みは、80μm~200μmであることが好ましく、80μm超、200μm以下であることがより好ましく、90μm~180μmであることがさらに好ましく、100μm~170μmであることがよりさらに好ましく、110μm~150μmであることが特に好ましく、115μm~140μmであることが最も好ましい。ポリイミドフィルムの厚みが前記範囲内であれば、熱拡散率により優れるグラファイトシートを提供することができる。
(Thickness of polyimide film)
The thickness of the present polyimide film is preferably 80 μm to 200 μm, more preferably more than 80 μm and 200 μm or less, even more preferably 90 μm to 180 μm, even more preferably 100 μm to 170 μm, and 110 μm. ~150 µm is particularly preferred, and 115 µm to 140 µm is most preferred. If the thickness of the polyimide film is within the above range, it is possible to provide a graphite sheet having a more excellent thermal diffusivity.
 本発明の一実施形態に係るポリイミドフィルムの厚みの下限は、80μm以上であることが好ましく、80μm超であることがより好ましく、90μm以上であることがさらに好ましく、100μm以上であることがよりさらに好ましく、110μm以上であることが特に好ましく、115μm以上であることが最も好ましい。また、ポリイミドフィルムの厚みの上限としては、200μm以下であることが好ましく、180μm以下であることがより好ましく、160μm以下であることがさらに好ましく、140μm以下であることがよりさらに好ましく、150μm以下であることが特に好ましい。厚みが80μm以上であるポリイミドフィルムは、厚みの大きいポリイミドフィルムであると言え、厚物のグラファイトシートを提供できるポリイミドフィルムであるとも言える。 The lower limit of the thickness of the polyimide film according to one embodiment of the present invention is preferably 80 μm or more, more preferably more than 80 μm, even more preferably 90 μm or more, and even more preferably 100 μm or more. It is preferably 110 μm or more, particularly preferably 115 μm or more, and most preferably 115 μm or more. Further, the upper limit of the thickness of the polyimide film is preferably 200 μm or less, more preferably 180 μm or less, even more preferably 160 μm or less, even more preferably 140 μm or less, and 150 μm or less. It is particularly preferred to have A polyimide film having a thickness of 80 μm or more can be said to be a polyimide film having a large thickness, and can be said to be a polyimide film capable of providing a thick graphite sheet.
 従来のポリイミドフィルムは、厚物のグラファイトシートを提供すべく、ポリイミドフィルムの厚さを大きく(例えば、厚さ80μm以上)した場合、得られるグラファイトシートの生産性等が不良となるという課題があるが、本ポリイミドフィルムは、厚みの大きいポリイミドフィルムとした場合であっても、厚物のグラファイトシートを、生産性良く提供でき、さらに、得られるグラファイトシートを高い密度を有する。すなわち、本ポリイミドフィルムは、厚みの大きいポリイミドフィルムとして好適に利用できる。 Conventional polyimide films have a problem that when the thickness of the polyimide film is increased (e.g., 80 μm or more) in order to provide a thick graphite sheet, the productivity of the resulting graphite sheet becomes poor. However, the polyimide film of the present invention can provide a thick graphite sheet with good productivity even when the polyimide film is thick, and the resulting graphite sheet has a high density. That is, the present polyimide film can be suitably used as a thick polyimide film.
 <3.ポリイミドフィルムの製造方法>
 本発明の一実施形態に係るポリイミドフィルムの製造方法(以下、本ポリイミドフィルムの製造方法と称する場合がある)は、特に限定されないが、例えば、以下のi)~iv)工程を有する方法が好ましい;
i)有機溶媒中で酸二無水物成分と、ジアミン成分とを反応させてポリアミド酸溶液を得る工程、
ii)前記ポリアミド酸溶液を支持体上に塗布して、混合溶液層を形成する工程、
iii)前記混合溶液層を前記支持体上で乾燥(加熱)して、自己支持性を持ったゲルフィルムとし、その後、前記支持体から前記ゲルフィルムを引き剥がす工程、
iv)前記引き剥がしたゲルフィルムを更に加熱して、残ったアミド酸をイミド化し、かつ、前記ゲルフィルムを乾燥することで、ポリイミドフィルムを得る工程。
<3. Method for producing polyimide film>
The method for producing a polyimide film according to one embodiment of the present invention (hereinafter sometimes referred to as the method for producing the present polyimide film) is not particularly limited, but for example, a method having the following steps i) to iv) is preferable. ;
i) reacting an acid dianhydride component and a diamine component in an organic solvent to obtain a polyamic acid solution;
ii) applying the polyamic acid solution onto a support to form a mixed solution layer;
iii) drying (heating) the mixed solution layer on the support to form a self-supporting gel film, and then peeling off the gel film from the support;
iv) further heating the peeled gel film to imidize the remaining amic acid, and drying the gel film to obtain a polyimide film.
 酸二無水物成分と、ジアミン成分とは、共重合体であるポリアミド酸を構成するモノマー単位であるとも言える。本明細書において、酸二無水物成分と、ジアミン成分とを合わせてモノマー成分と称する場合がある。 It can also be said that the acid dianhydride component and the diamine component are monomer units that constitute polyamic acid, which is a copolymer. In this specification, the acid dianhydride component and the diamine component may be collectively referred to as the monomer component.
 本ポリイミドフィルムの製造方法における、i)工程としては、前記<2.ポリイミドフィルム>項で詳説した酸二無水物成分およびジアミン成分を重合し(原料とし)、ポリアミド酸を得ることができる限り特に限定されず、例えば、以下の重合方法(1)~(5)のいずれかを好適に使用することができる。 In the method for producing the present polyimide film, as the step i), the above <2. Polyimide film> The acid dianhydride component and the diamine component detailed in the section are polymerized (as raw materials), and are not particularly limited as long as polyamic acid can be obtained, for example, the following polymerization methods (1) to (5) Either can be preferably used.
 (1)ジアミン成分を有機溶媒(有機極性溶媒)中に溶解し、ジアミン成分と、これと実質的に等モル量の酸二無水物成分とを反応させて重合する方法。 (1) A method of dissolving a diamine component in an organic solvent (organic polar solvent) and reacting the diamine component with a substantially equimolar amount of an acid dianhydride component for polymerization.
 (2)酸二無水物成分と、これに対して過小モル量のジアミン成分とを有機溶媒中で反応させ、両末端に酸二無水物基を有するプレポリマを得る。続いて、プレポリマに、酸二無水物成分に対して、重合工程全体の総使用量が実質的に等モル量となるようジアミン成分を重合させる方法。 (2) An acid dianhydride component and an excessively small amount of diamine component are reacted in an organic solvent to obtain a prepolymer having acid dianhydride groups at both ends. Subsequently, the prepolymer is polymerized with a diamine component so that the total amount used in the entire polymerization process is substantially equimolar with respect to the acid dianhydride component.
 前記(2)の方法の具体例は、ジアミン成分と酸二無水物成分を用いて前記酸二無水物を両末端に有するプレポリマを合成し、前記プレポリマに、前記プレポリマの合成に使用したジアミン成分と同様の組成のジアミン成分または異なる組成のジアミン成分を反応させてポリアミド酸を合成する方法が挙げられる。(2)の方法においても、プレポリマと反応させるジアミン成分は、前記プレポリマの合成に使用したジアミン成分と同じ組成のジアミン成分であってよく、異なる組成のジアミン成分であってもよい。 A specific example of the method (2) is to synthesize a prepolymer having the acid dianhydride at both ends using a diamine component and an acid dianhydride component, and add the diamine component used in the synthesis of the prepolymer to the prepolymer. A method of synthesizing a polyamic acid by reacting a diamine component having the same composition as or a diamine component having a different composition. Also in method (2), the diamine component to be reacted with the prepolymer may have the same composition as the diamine component used to synthesize the prepolymer, or may have a different composition.
 (3)酸二無水物成分と、これに対し過剰モル量のジアミン成分とを有機溶媒中で反応させ、両末端にアミノ基を有するプレポリマを得る。続いて、当該プレポリマにジアミン成分を追加添加後に、重合工程全体の酸二無水物成分とジアミン成分との合計の使用量が実質的に等モル量となるように、酸二無水物成分を加え、プレポリマと酸二無水物成分とを重合する方法。 (3) An acid dianhydride component and an excess molar amount of a diamine component are reacted in an organic solvent to obtain a prepolymer having amino groups at both ends. Subsequently, after adding the diamine component to the prepolymer, the acid dianhydride component is added so that the total amount of the acid dianhydride component and the diamine component used in the entire polymerization process is substantially equimolar. , a method of polymerizing a prepolymer and a dianhydride component.
 (4)酸二無水物成分を有機溶媒中に溶解および/または分散させた後に、その酸二無水物成分に対して実質的に等モル量になるようにジアミン成分を加えて、酸二無水物成分とジアミン成分とを重合させる方法。 (4) After dissolving and/or dispersing an acid dianhydride component in an organic solvent, a diamine component is added in an amount substantially equimolar to the acid dianhydride component to obtain an acid dianhydride. A method of polymerizing a substance component and a diamine component.
 (5)実質的に等モル量の酸二無水物成分とジアミン成分との混合物を、有機溶媒中で反応させて重合する方法。 (5) A method of polymerizing by reacting a mixture of an acid dianhydride component and a diamine component in substantially equimolar amounts in an organic solvent.
 i)工程は、酸二無水物成分とジアミン成分とを重合して得られるポリアミド酸溶液に、さらに、有機リン系化合物を添加(混合)する添加工程を含むことが好ましい。添加工程における、ポリアミド酸溶液の固形分(ポリアミド酸)に対する有機リン系化合物の添加量が、得られるポリイミドフィルムにおける、有機リン系化合物の含有量となる。換言すると、添加工程における有機リン系化合物の添加量を調整することで、得られるポリイミドフィルムにおける有機リン系化合物の含有量を調整することができる。 The i) step preferably includes an addition step of adding (mixing) an organophosphorus compound to the polyamic acid solution obtained by polymerizing the acid dianhydride component and the diamine component. The amount of the organophosphorus compound added to the solid content (polyamic acid) of the polyamic acid solution in the addition step is the content of the organophosphorus compound in the resulting polyimide film. In other words, by adjusting the addition amount of the organic phosphorus compound in the adding step, the content of the organic phosphorus compound in the resulting polyimide film can be adjusted.
 i)工程において反応させる(重合に供する)酸二無水物成分およびジアミン成分が、得られるポリイミドフィルムの原料たる酸二無水物成分およびジアミン成分となり、また、i)工程(添加工程)における、ポリアミド酸に対する有機リン系化合物の添加量が、得られるポリイミドフィルムにおける、有機リン系化合物の含有量となりうる。したがって、本ポリイミドフィルムの製造方法におけるi)工程は、以下のように表現することができる:酸二無水物成分とジアミン成分とを混合し、ポリアミド酸を得る工程、および、前記ポリアミド酸100重量%に対して、0.1~5.0重量%の有機リン系化合物を添加する工程を含み、前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%である。 The acid dianhydride component and the diamine component to be reacted (subjected to polymerization) in the i) step become the acid dianhydride component and the diamine component which are raw materials of the resulting polyimide film, and the polyamide in the i) step (addition step) The amount of the organophosphorus compound added to the acid can be the content of the organophosphorus compound in the resulting polyimide film. Therefore, step i) in the present method for producing a polyimide film can be expressed as follows: a step of mixing an acid dianhydride component and a diamine component to obtain a polyamic acid, and 100 weight of the polyamic acid %, and the acid dianhydride component is pyromellitic acid in the total amount of 100 mol% of the acid dianhydride component. 50 to 100 mol% of dianhydride (PMDA), at least 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4′-oxydiphthalic dianhydride (ODPA) 0 to 50 mol% of either, and the diamine component includes 50 to 100 mol% of 4,4'-diaminodiphenyl ether (ODA), 2,2-bis[4- (4-Aminophenoxy)phenyl]propane (BAPP) is contained in an amount of 0 to 50 mol%, and the 3,3′,4,4′- total of benzophenonetetracarboxylic dianhydride (BTDA), the 4,4′-oxydiphthalic dianhydride (ODPA) and the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) The content is 1 to 50 mol %.
 また、本ポリイミドフィルムの好ましい製造方法は、以下のように表現することができる:酸二無水物成分とジアミン成分とを混合し、ポリアミド酸を得る工程、および、前記ポリアミド酸100重量%に対して、0.1~5.0重量%の有機リン系化合物を添加する工程を含み、前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%である、方法。 A preferred method for producing the present polyimide film can be expressed as follows: a step of mixing an acid dianhydride component and a diamine component to obtain a polyamic acid; and adding 0.1 to 5.0% by weight of an organic phosphorus compound, wherein the acid dianhydride component is pyromellitic dianhydride in the total amount of 100 mol% of the acid dianhydride component 50 to 100 mol% of (PMDA), at least one of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4′-oxydiphthalic dianhydride (ODPA) The diamine component contains 50 to 100 mol% of 4,4′-diaminodiphenyl ether (ODA), 2,2-bis[4-(4- containing 0 to 50 mol% of aminophenoxy)phenyl]propane (BAPP), and the 3,3',4,4'-benzophenonetetracarboxylic acid relative to the total amount of 200 mol% of the acid dianhydride component and the diamine component; The total content of acid dianhydride (BTDA), the 4,4′-oxydiphthalic dianhydride (ODPA) and the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is , 1 to 50 mol %.
 なお、本ポリイミドフィルムの製造方法におけるi)工程において反応させる(重合に供する)酸二無水物成分およびジアミン成分、ならびに、ポリアミド酸に添加する有機リン系化合物については、上記<2.ポリイミドフィルム>項の記載を適宜援用することができる。 The acid dianhydride component and the diamine component to be reacted (to be subjected to polymerization) in step i) in the method for producing the present polyimide film, and the organic phosphorus compound to be added to the polyamic acid are described in <2. Polyimide film> section can be incorporated as appropriate.
 本ポリイミドフィルムの製造方法における、ii)~iv)の工程は、前記ポリアミド酸溶液をイミド化し、ポリイミドフィルムを得る工程であるとも言える。ii)~iv)の工程において、ポリアミド酸をイミド化する方法としては、例えば、(I)イミド化促進剤を使用せずに、ポリアミド酸溶液を加熱してイミド化する熱イミド化法、または、(II)ポリアミド酸に、無水酢酸等の酸二無水物に代表される脱水剤(脱水閉環剤)、および/または、ピコリン、キノリン、イソキノリン、ピリジン等の第3級アミン類に代表される触媒、等のイミド化促進剤を添加し、当該イミド化促進剤を含むポリアミド酸溶液を加熱することで、ポリアミド酸をイミド化する化学イミド化法、等を用いることができる。 It can also be said that the steps ii) to iv) in the present method for producing a polyimide film are steps of imidizing the polyamic acid solution to obtain a polyimide film. In the steps ii) to iv), the method for imidizing the polyamic acid includes, for example, (I) a thermal imidization method in which a polyamic acid solution is heated to imidize without using an imidization accelerator, or , (II) polyamic acid, a dehydrating agent (dehydration ring-closing agent) typified by acid dianhydrides such as acetic anhydride, and/or tertiary amines typified by picoline, quinoline, isoquinoline, pyridine, etc. A chemical imidization method of imidizing polyamic acid by adding an imidization accelerator such as a catalyst and heating a polyamic acid solution containing the imidization accelerator can be used.
 特に、得られるポリイミドフィルムの線膨張係数が小さく、弾性率が高く、複屈折が大きくなりやすく、また比較的低温で迅速なグラファイト化が可能で、品質のよいグラファイトシートを得ることができるという観点から、化学イミド化法が好ましい。特に、脱水剤とイミド化促進剤とを併用することで、得られるポリイミドフィルムの線膨張係数がより小さく、弾性率がより大きく、複屈折がより大きくなり得るので好ましい。また、化学イミド化法は、イミド化反応がより速く進行するので、熱処理においてイミド化反応を短時間で完結させることができ、生産性に優れた工業的に有利な方法である。 In particular, the resulting polyimide film has a small coefficient of linear expansion, a high elastic modulus, a tendency to increase birefringence, and can be rapidly graphitized at a relatively low temperature, so that a high-quality graphite sheet can be obtained. Therefore, the chemical imidization method is preferred. In particular, it is preferable to use a dehydrating agent and an imidization accelerator in combination, because the resulting polyimide film can have a smaller linear expansion coefficient, a larger elastic modulus, and a larger birefringence. In addition, since the imidization reaction proceeds more rapidly in the chemical imidization method, the imidization reaction can be completed in a short time in the heat treatment, and is an industrially advantageous method with excellent productivity.
 本ポリイミドフィルムの製造方法において、ii)工程で使用する支持体としては、前記ポリイミドを含む溶液により溶解することが無く、かつ、前記積層体の乾燥に要する加熱に耐えうる支持体であれば特に限定されず、例えば、ガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラム等が好適に用いられ得る。 In the method for producing a polyimide film of the present invention, the support used in step ii) is not dissolved by the solution containing the polyimide, and is particularly a support that can withstand the heating required for drying the laminate. Without limitation, for example, a glass plate, an aluminum foil, an endless stainless steel belt, a stainless steel drum, etc. can be suitably used.
 iii)工程は、より具体的には、最終的に得られるポリイミドフィルムの厚み、生産速度に応じて加熱条件を設定し、支持体上に塗布した混合溶液層(ポリアミド酸溶液)に対して、部分的にイミド化または乾燥の少なくとも一方を行った後、前記支持体からゲルフィルムを得る(剥離する)工程である。 In the iii) step, more specifically, the thickness of the finally obtained polyimide film and the heating conditions are set according to the production rate, and the mixed solution layer (polyamic acid solution) coated on the support is subjected to After performing at least one of partial imidization and drying, this is a step of obtaining (peeling) a gel film from the support.
 iv)工程は、より具体的には、前記ゲルフィルム(前記iii)工程で得たゲルフィルム)の端部を固定して、硬化時の収縮を回避した状態で熱処理し、前記ゲルフィルムから、水、残留溶媒、イミド化促進剤等を除去し、かつ、残ったアミド酸(イミド化していないアミド酸)を完全にイミド化して、ポリイミドを含有するフィルム(ポリイミドフィルム)を得る工程である。iv)工程における加熱条件については、最終的に得られるフィルムの厚み、生産速度に応じて適宜設定すれば良い。 In step iv), more specifically, the gel film (the gel film obtained in step iii) is fixed at its ends and heat-treated while avoiding shrinkage during curing. This is a step of removing water, residual solvent, imidization accelerator, etc., and completely imidizing the remaining amic acid (non-imidized amic acid) to obtain a polyimide-containing film (polyimide film). The heating conditions in the iv) step may be appropriately set according to the thickness of the film to be finally obtained and the production rate.
 また、iii)工程およびiv)工程における、混合溶液層およびゲルフィルムの乾燥方法は特に限定されず、例えば、熱風オーブン等を用いた熱風処理、および/または、遠赤外線ヒーター等を用いた輻射熱線処理により加熱する方法が挙げられる。乾燥工程における乾燥温度(加熱温度)は、ゲルフィルムまたはポリイミドフィルムを得られる限り特に限定されないが、例えば、熱風処理を行う場合は100℃~140℃であってよく、赤外線ヒーターを用いる場合は、400℃~500℃であってもよい。 In addition, the method for drying the mixed solution layer and the gel film in the iii) step and the iv) step is not particularly limited. A method of heating by treatment can be mentioned. The drying temperature (heating temperature) in the drying step is not particularly limited as long as a gel film or polyimide film can be obtained. It may be 400°C to 500°C.
 <4.グラファイトシート>
 本発明の一実施形態において、本ポリイミドフィルムを原料として含むグラファイトシートを提供する。本発明の一実施形態に係るグラファイトシート(以下、本グラファイトシートと称する)は、本ポリイミドフィルムを熱処理してなるグラファイトシートであるとも言える。本グラファイトシートは、本ポリイミドフィルムを原料として含むため、密度が高く、かつ、生産性よく提供できる。なお、本明細書において、本グラファイトシートとは、後述する圧延工程に供する前のグラファイトシート(圧延前のグラファイトシート)および圧延工程に供した後のグラファイトシート(圧延後のグラファイトシート)、の両方を意図するが、特に言及のない場合は、圧延後のグラファイトシートを意図する。
<4. Graphite sheet>
In one embodiment of the invention, there is provided a graphite sheet comprising the polyimide film as a raw material. It can also be said that the graphite sheet according to one embodiment of the present invention (hereinafter referred to as the present graphite sheet) is a graphite sheet obtained by heat-treating the present polyimide film. Since the present graphite sheet contains the present polyimide film as a raw material, it has a high density and can be provided with good productivity. In this specification, the graphite sheet refers to both a graphite sheet before being subjected to the rolling process described later (graphite sheet before rolling) and a graphite sheet after being subjected to the rolling process (graphite sheet after rolling). is intended, unless otherwise specified, graphite sheets after rolling are intended.
 本グラファイトシート(圧延後のグラファイトシート)の密度は、2.00g/cm超であることが好ましく、2.02g/cm以上であることがよりに好ましく、2.04g/cm以上であることがさらに好ましく、2.06g/cm以上であることがよりさらに好ましい。密度の上限は特に限定されないが、通常、グラファイトシートの密度は2.26g/cm以下である。密度が2.00g/cm以上であるグラファイトシートは、密度が高いグラファイトシートであると言え、効率的な放熱を実現することができ、電子機器等の優れた放熱性を要求される分野において、放熱部材として好適に使用できる。なお、グラファイトシートの密度の測定方法は、後述する実施例に記載の通りである。 The density of the present graphite sheet (graphite sheet after rolling) is preferably more than 2.00 g/cm 3 , more preferably 2.02 g/cm 3 or more, and more preferably 2.04 g/cm 3 or more. more preferably 2.06 g/cm 3 or more. Although the upper limit of the density is not particularly limited, the density of the graphite sheet is usually 2.26 g/cm 3 or less. A graphite sheet with a density of 2.00 g/cm 3 or more can be said to be a graphite sheet with a high density, and can achieve efficient heat dissipation, and is used in fields such as electronic devices that require excellent heat dissipation. , can be suitably used as a heat radiating member. The method for measuring the density of the graphite sheet is as described in Examples below.
 (熱伝導率)
 本明細書において、グラファイトシートの熱伝導率は、グラファイトシート(圧延後のグラファイトシート)の熱拡散率により評価することができる。本グラファイトシートの熱拡散率は、7.0cm/s以上であることが好ましく、8.0cm/s以上であることがより好ましく、9.0m/s以上であることがさらに好ましく、9.5cm/s以上であることがよりさらに好ましい。熱拡散率が7.0cm/s以上であるグラファイトシートは、熱伝導率に優れるものである。換言すると、放熱性に優れるものであり、電子機器の等の優れた放熱性を要求される分野において、放熱部材として好適に利用できる。なお、グラファイトシートの熱拡散率の測定方法は、後述する実施例に記載の通りである。
(Thermal conductivity)
In this specification, the thermal conductivity of the graphite sheet can be evaluated by the thermal diffusivity of the graphite sheet (graphite sheet after rolling). The thermal diffusivity of the present graphite sheet is preferably 7.0 cm 2 /s or more, more preferably 8.0 cm 2 /s or more, further preferably 9.0 m 2 /s or more, More preferably, it is 9.5 cm 2 /s or more. A graphite sheet having a thermal diffusivity of 7.0 cm 2 /s or more has excellent thermal conductivity. In other words, it is excellent in heat dissipation, and can be suitably used as a heat dissipation member in fields such as electronic equipment that require excellent heat dissipation. The method for measuring the thermal diffusivity of the graphite sheet is as described in Examples below.
 (生産性)
 本明細書において、グラファイトシートの生産性は、原料であるポリイミドフィルムの厚みと、得られるグラファイトシート(圧延前のグラファイトシート)の厚みと、の比率(圧延前のグラファイトシートの厚み/ポリイミドフィルムの厚み、以下、「GS厚み/PI厚み」と称する)に基づき評価することができる。GS厚み/PI厚みが一定値より大きい(例えば、3.0超)場合、当該グラファイトシートは、熱処理時にアウトガスにより表面が発泡していることを意味し、実質的に高い昇温速度で熱処理することができない、生産性が不良なグラファイトシートであるとも言える。一方で、GS厚み/PI厚みが小さいほど、当該グラファイトシートは熱処理時のアウトガスによる発泡が抑制されていることを意味し、高い昇温速度で熱処理することができる、生産性に優れるグラファイトシートであると言える。具体的に、GS厚み/PI厚みが3.0以下であれば、当該グラファイトシートは生産性に優れる、と評価することができる。GS厚み/PI厚みは、好ましくは2.5以下であり、より好ましくは2.0以下であり、さらに好ましくは、1.5以下であり、よりさらに好ましくは1.0以下である。
(Productivity)
In this specification, the productivity of the graphite sheet is defined as the ratio of the thickness of the raw material polyimide film to the thickness of the resulting graphite sheet (graphite sheet before rolling) (thickness of graphite sheet before rolling/thickness of polyimide film). It can be evaluated based on the thickness (hereinafter referred to as "GS thickness/PI thickness"). If the GS thickness/PI thickness is greater than a certain value (for example, greater than 3.0), it means that the graphite sheet surface is foamed due to outgassing during heat treatment, and the heat treatment is performed at a substantially high temperature increase rate. It can also be said that the graphite sheet is a graphite sheet with poor productivity. On the other hand, the smaller the GS thickness/PI thickness, the more the graphite sheet is suppressed from foaming due to outgassing during heat treatment, and the graphite sheet can be heat-treated at a high heating rate and has excellent productivity. I can say there is. Specifically, if the GS thickness/PI thickness is 3.0 or less, it can be evaluated that the graphite sheet has excellent productivity. The GS thickness/PI thickness is preferably 2.5 or less, more preferably 2.0 or less, even more preferably 1.5 or less, and even more preferably 1.0 or less.
 本グラファイトシート(圧延後のグラファイトシート)の厚みの下限は、45μm以上であることが好ましく、50μm以上であることがより好ましく、55μm以上であることがさらに好ましい。また、圧延後のグラファイトシートの厚みの上限としては、110μm以下であることが好ましく、105μm以下であることがより好ましい。圧延後のグラファイトシートの厚みが45μm以上であれば、当該グラファイトシートは、十分な厚みを有するグラファイトシートであると言え、効率的な放熱が可能である。また、厚みが110μm以下であれば、空間に余裕の少ない薄型電子機器内等にも搭載可能であるという利点を有する。 The lower limit of the thickness of the present graphite sheet (graphite sheet after rolling) is preferably 45 μm or more, more preferably 50 μm or more, and even more preferably 55 μm or more. The upper limit of the thickness of the graphite sheet after rolling is preferably 110 μm or less, more preferably 105 μm or less. If the thickness of the graphite sheet after rolling is 45 μm or more, it can be said that the graphite sheet has a sufficient thickness, and efficient heat dissipation is possible. Moreover, if the thickness is 110 μm or less, there is an advantage that it can be mounted in a thin electronic device with little space.
 <5.グラファイトシートの製造方法>
 本発明の一実施形態に係るグラファイトシートの製造方法(以下、本グラファイトシートの製造方法と称する場合がある)は、本グラファイトシート、すなわち、密度が高いグラファイトシートを、生産性よく提供できる限り特に限定されないが、グラファイトシート用のポリイミドフィルムを2400℃以上に熱処理する工程を含み、前記グラファイトシート用のポリイミドフィルムは、酸二無水物成分と、ジアミン成分と、を原料とするポリイミドフィルムであって、前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%であり、前記ポリイミドフィルムの全量100重量%中、有機リン系化合物を、0.1~5.0重量%含むポリイミドフィルムである、方法である。本グラファイトシートの製造方法は、本ポリイミドフィルムを2400℃以上に熱処理する工程を含む方法であるともいえる。
<5. Manufacturing method of graphite sheet>
The method for producing a graphite sheet according to an embodiment of the present invention (hereinafter sometimes referred to as the present graphite sheet producing method) is particularly Although not limited, it includes a step of heat-treating a polyimide film for a graphite sheet to 2400 ° C. or higher, and the polyimide film for the graphite sheet is a polyimide film made from an acid dianhydride component and a diamine component. , the acid dianhydride component includes 50 to 100 mol% of pyromellitic dianhydride (PMDA), 3,3′,4,4′-benzophenone tetra At least one of carboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) is contained in 0 to 50 mol%, and the diamine component contains 100 mol% of the total amount of the diamine component, 50 to 100 mol% of 4,4'-diaminodiphenyl ether (ODA) and 0 to 50 mol% of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), the acid dianhydride The 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and the 4,4′-oxydiphthalic dianhydride (ODPA) based on 200 mol % of the total amount of the component and the diamine component and the total content of the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 1 to 50 mol%, and the total amount of the polyimide film is 100% by weight. The method is a polyimide film containing 0.1 to 5.0% by weight of the compound. It can also be said that the present graphite sheet manufacturing method includes a step of heat-treating the present polyimide film at 2400° C. or higher.
 本グラファイトシートの製造方法によれば、密度が高いグラファイトシートを、生産性よく提供できる。 According to this graphite sheet manufacturing method, a high-density graphite sheet can be provided with good productivity.
 以下、特定のポリイミドフィルムを2400℃以上に熱処理する工程を含む方法を例に挙げて、本グラファイトシートの製造方法について詳説する。以下の説明において、ポリイミドフィルムの具体的な態様については、前記<2.ポリイミドフィルム>項の記載が適宜援用される。 The method for producing the present graphite sheet will be described in detail below, taking as an example a method including a step of heat-treating a specific polyimide film at 2400°C or higher. In the following description, specific aspects of the polyimide film are described in <2. Polyimide Film> section is incorporated as appropriate.
 本グラファイトシートの製造方法は、特定のポリイミドフィルム(本ポリイミドフィルム)を2400℃以上に熱処理する工程を含む方法であれば、特に限定されないが、ポリイミドフィルムを不活性ガス雰囲気下や減圧下で熱処理する、いわゆる高分子熱分解法であることが好ましい。具体的には、本グラファイトシートの製造方法は、ポリイミドフィルムを1000℃程度の温度で予備加熱し、炭素化されたポリイミドフィルムを得る炭化工程と、炭化工程で作製された炭素化されたポリイミドフィルムを2400℃以上の温度で熱処理(加熱)し、グラファイト化する黒鉛化工程と、これを圧延する圧延工程とを含む方法であることが好ましい。なお、本グラファイトシートの製造方法において、炭化工程と黒鉛化工程とは連続して行ってもよく、炭化工程を終了させた後、別途、黒鉛化工程のみを単独で行っても構わない。 The method for producing the present graphite sheet is not particularly limited as long as it includes a step of heat-treating a specific polyimide film (the present polyimide film) at 2400 ° C. or higher, but the polyimide film is heat-treated in an inert gas atmosphere or under reduced pressure. It is preferably a so-called polymer thermal decomposition method. Specifically, the present graphite sheet manufacturing method includes a carbonization step of preheating a polyimide film at a temperature of about 1000° C. to obtain a carbonized polyimide film, and a carbonized polyimide film produced in the carbonization step. is heat-treated (heated) at a temperature of 2400° C. or higher to graphitize, and a rolling step of rolling this. In the present graphite sheet manufacturing method, the carbonization step and the graphitization step may be performed continuously, or after the carbonization step is completed, the graphitization step alone may be performed separately.
 以下、本グラファイトシートの製造方法の含み得る、炭化工程、黒鉛化工程、および、圧延工程、について詳説する。 Below, the carbonization process, graphitization process, and rolling process that can be included in the present graphite sheet manufacturing method will be described in detail.
 (炭化工程)
 炭化工程は、ポリイミドフィルムを1000℃程度の温度まで熱処理し、ポリイミドフィルムを炭素化(炭化)する工程である。炭化工程におけるポリイミドフィルムの炭化方法は特に限定されず、例えば、長方形状のポリイミドフィルムを、黒鉛シートと積層した状態で炭化してもよく、ロール状のポリイミドフィルムをロール状のまま炭化してもよく、ロール状ポリイミドフィルムからフィルムを繰り出して連続的に炭化してもよい。炭化工程は、真空雰囲気下、減圧下もしくは不活性ガス中で行うことが好ましく、不活性ガスとしては窒素が好適に用いられる。なお、本明細書において、炭化工程により得られる炭素化したポリイミドフィルムを、炭素質フィルムと称する場合がある。
(Carbonization process)
The carbonization step is a step of heat-treating the polyimide film to a temperature of about 1000° C. to carbonize (carbonize) the polyimide film. The carbonization method of the polyimide film in the carbonization step is not particularly limited. For example, a rectangular polyimide film may be carbonized while being laminated with a graphite sheet, or a roll-shaped polyimide film may be carbonized as it is in a roll. Alternatively, the film may be unwound from a roll-shaped polyimide film and carbonized continuously. The carbonization step is preferably performed under a vacuum atmosphere, under reduced pressure, or in an inert gas, and nitrogen is preferably used as the inert gas. In addition, in this specification, the carbonized polyimide film obtained by the carbonization process may be called a carbonaceous film.
 (黒鉛化工程)
 黒鉛化工程は、炭化工程で得た炭素質フィルムを2400℃以上の温度で熱処理し、当該炭素質フィルムを黒鉛化する工程である。黒鉛化工程は、炭素質フィルムを熱処理し、グラファイトシート(圧延前のグラファイトシート)を得る工程であるとも言える。黒鉛化工程において、炭化工程で得た炭素質フィルムを熱処理する際の温度(最高温度)としては、例えば、2400℃以上、2600℃以上、2800℃以上、2900℃以上、または3000℃以上が好ましい。最高温度の上限は特に限定されないが、3300℃以下であることが好ましく、3200℃以下であることがより好ましい。黒鉛化工程において、炭化工程で得た炭素質フィルムを熱処理する際の温度(最高温度)が2400℃以上であれば、得られるグラファイトシートの熱拡散率が良好となるという利点があり、3300℃以下であれば、黒鉛化炉中の黒鉛部材の昇華を抑制できるという利点がある。なお、黒鉛化工程は、減圧下もしくは不活性ガス中でおこなわれるが、不活性ガスとしてはアルゴン、またはヘリウムが好適に使用できる。
(Graphitization process)
The graphitization step is a step of heat-treating the carbonaceous film obtained in the carbonization step at a temperature of 2400° C. or higher to graphitize the carbonaceous film. The graphitization step can also be said to be a step of heat-treating a carbonaceous film to obtain a graphite sheet (graphite sheet before rolling). In the graphitization step, the temperature (maximum temperature) at which the carbonaceous film obtained in the carbonization step is heat-treated is preferably, for example, 2400° C. or higher, 2600° C. or higher, 2800° C. or higher, 2900° C. or higher, or 3000° C. or higher. . Although the upper limit of the maximum temperature is not particularly limited, it is preferably 3300° C. or lower, more preferably 3200° C. or lower. In the graphitization step, if the temperature (maximum temperature) when heat-treating the carbonaceous film obtained in the carbonization step is 2400°C or higher, there is an advantage that the obtained graphite sheet has a good thermal diffusivity. If it is below, there is an advantage that the sublimation of the graphite member in the graphitization furnace can be suppressed. The graphitization step is performed under reduced pressure or in an inert gas, and argon or helium can be suitably used as the inert gas.
 黒鉛化工程では、長方形状の炭素質フィルムを、黒鉛シートと積層した状態で黒鉛化してもよく、ロール状の炭素質フィルムをロール状のまま黒鉛化してもよく、ロール状炭素質フィルムからフィルムを繰り出して連続的に黒鉛化してもよい。 In the graphitization step, a rectangular carbonaceous film may be graphitized in a state of being laminated with a graphite sheet, or a roll-shaped carbonaceous film may be graphitized as it is in a roll. may be drawn out and graphitized continuously.
 黒鉛化工程において、最高温度まで炭素質フィルムを加熱する際の昇温速度は特に限定されないが、生産性よくグラファイトシートを提供する観点から、0.2℃/min以上が好ましく、0.3℃/min以上がより好ましく、0.4℃/min以上がさらに好ましく、0.5℃/min以上がよりさらに好ましい。昇温速度を0.2℃/min以上で熱処理(黒鉛化)した際に、得られるグラファイトシートに過剰な発泡が生じない炭素質フィルムは、生産性に優れる炭素質フィルムであると言え、このような炭素質フィルムを提供できるポリイミドフィルムは、生産性に優れるポリイミドフィルムであると言える。 In the graphitization step, the temperature rise rate when heating the carbonaceous film to the maximum temperature is not particularly limited, but from the viewpoint of providing a graphite sheet with good productivity, it is preferably 0.2 ° C./min or more, and 0.3 ° C. /min or more, more preferably 0.4°C/min or more, and even more preferably 0.5°C/min or more. A carbonaceous film in which excessive foaming does not occur in the resulting graphite sheet when heat-treated (graphitized) at a rate of temperature increase of 0.2° C./min or more can be said to be a carbonaceous film with excellent productivity. A polyimide film that can provide such a carbonaceous film can be said to be a polyimide film with excellent productivity.
 本ポリイミドフィルムを炭化してなる炭素質フィルムは、本ポリイミドフィルムと同様に、ある程度乱れた配向性を有するものとなる。このようなある程度乱れた配向性を有する炭素質フィルムは、黒鉛化工程において、0.2℃/min以上という高い昇温速度で炭素質フィルムを熱処理(黒鉛化)した場合であっても、アウトガスが抜けやすく、得られるグラファイトシートの発泡を抑制できるため、生産性よくグラファイトシートを提供することができる。 A carbonaceous film obtained by carbonizing the present polyimide film has a somewhat disturbed orientation, similar to the present polyimide film. Such a carbonaceous film having a somewhat disturbed orientation is outgassed even when the carbonaceous film is heat-treated (graphitized) at a high temperature increase rate of 0.2 ° C./min or more in the graphitization process. It is easy to come off, and it is possible to suppress the foaming of the obtained graphite sheet, so that the graphite sheet can be provided with good productivity.
 (圧延工程)
 圧延工程は、黒鉛化工程により得られたグラファイトシート(圧延前のグラファイトシート)を、圧延する工程である。圧延工程は、圧延後のグラファイトシートを得る工程であるとも言え、圧縮工程であるとも言える。圧延前のグラファイトシートは、黒鉛化工程により生じるアウトガスの影響等により発泡した状態であり、実施用には不適な過剰な厚みを有する場合があるが、圧延工程を行うことによって、当該グラファイトシートの厚みを調整でき、また、柔軟性を付与することができる。圧延工程において、グラファイトシートを圧延する方法は特に限定されず、例えば、金属ロールなどを用いて圧延する方法が挙げられる。圧延工程は、製造したグラファイトシートを室温に冷却した状態でおこなってもよく、黒鉛化工程と連続して行ってもよい。
(rolling process)
The rolling step is a step of rolling the graphite sheet obtained by the graphitization step (graphite sheet before rolling). The rolling process can be said to be a process of obtaining a graphite sheet after rolling, and can also be said to be a compression process. The graphite sheet before rolling is in a foamed state due to the influence of outgassing generated in the graphitization process, and may have an excessive thickness unsuitable for practical use. The thickness can be adjusted and flexibility can be imparted. In the rolling step, the method of rolling the graphite sheet is not particularly limited, and examples thereof include a method of rolling using metal rolls or the like. The rolling step may be performed while the manufactured graphite sheet is cooled to room temperature, or may be performed continuously with the graphitization step.
 本発明の一実施形態は、以下の構成を含むものであってもよい。 An embodiment of the present invention may include the following configuration.
 〔1〕酸二無水物成分と、ジアミン成分と、を原料とするポリイミドフィルムであって、前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%であり、前記ポリイミドフィルムの全量100重量%中、有機リン系化合物を、0.1~5.0重量%含む、グラファイトシート用のポリイミドフィルム。 [1] A polyimide film made from an acid dianhydride component and a diamine component, wherein the acid dianhydride component is pyromellitic dianhydride in the total amount of 100 mol% of the acid dianhydride component at least one of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4′-oxydiphthalic dianhydride (ODPA) The diamine component contains 50 to 100 mol% of 4,4′-diaminodiphenyl ether (ODA), 2,2-bis[4-(4 -Aminophenoxy)phenyl]propane (BAPP) in an amount of 0 to 50 mol%, and the 3,3′,4,4′-benzophenone tetra Total content of carboxylic dianhydride (BTDA), 4,4'-oxydiphthalic dianhydride (ODPA) and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 1 to 50 mol %, and a polyimide film for a graphite sheet containing 0.1 to 5.0 wt % of an organophosphorus compound in 100 wt % of the total amount of the polyimide film.
 〔2〕前記酸二無水物成分として、ピロメリット酸二無水物(PMDA)を100モル%含み、前記ジアミン成分として、4,4’-ジアミノジフェニルエーテル(ODA)を50~99モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を1~50モル%含む、〔1〕に記載のグラファイトシート用のポリイミドフィルム。 [2] containing 100 mol% of pyromellitic dianhydride (PMDA) as the acid dianhydride component, and 50 to 99 mol% of 4,4'-diaminodiphenyl ether (ODA) as the diamine component; The polyimide film for a graphite sheet according to [1], containing 1 to 50 mol% of 2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP).
 〔3〕前記ジアミン成分として、4,4’-ジアミノジフェニルエーテル(ODA)を100モル%含み、前記酸二無水物成分として、ピロメリット酸二無水物(PMDA)を50~99モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを1~50モル%含む、〔1〕に記載のグラファイトシート用のポリイミドフィルム。〔4〕厚みが80~200μmである、〔1〕~〔3〕のいずれか1つに記載のグラファイトシート用のポリイミドフィルム。 [3] containing 100 mol% of 4,4'-diaminodiphenyl ether (ODA) as the diamine component, and 50 to 99 mol% of pyromellitic dianhydride (PMDA) as the acid dianhydride component; [1], containing 1 to 50 mol% of at least one of 3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) polyimide film for graphite sheets. [4] The polyimide film for graphite sheets according to any one of [1] to [3], which has a thickness of 80 to 200 μm.
 〔5〕前記有機リン系化合物として、リンの価数が5価である有機リン系化合物を含む、〔1〕~〔4〕のいずれか一つに記載のグラファイトシート用のポリイミドフィルム。 [5] The polyimide film for a graphite sheet according to any one of [1] to [4], containing an organic phosphorus compound in which the valence of phosphorus is pentavalent as the organic phosphorus compound.
 〔6〕前記有機リン系化合物が、TG-DTAの測定において、重量減少率が5%となる温度が200℃以上である、〔1〕~〔5〕のいずれか1つに記載のグラファイトシート用のポリイミドフィルム。 [6] The graphite sheet according to any one of [1] to [5], wherein the organophosphorus compound has a temperature of 200° C. or higher at which the weight loss rate becomes 5% in TG-DTA measurement. polyimide film for
 〔7〕〔1〕~〔6〕のいずれか1つに記載のグラファイトシート用のポリイミドフィルムを原料として含むグラファイトシート。 [7] A graphite sheet containing, as a raw material, the polyimide film for a graphite sheet according to any one of [1] to [6].
 〔8〕酸二無水物成分とジアミン成分とを混合し、ポリアミド酸を得る工程、および、
前記ポリアミド酸100重量%に対して、0.1~5.0重量%の有機リン系化合物を添加する工程を含む、ポリイミドフィルムの製造方法であって、前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%である、
ポリイミドフィルムの製造方法。
[8] a step of mixing an acid dianhydride component and a diamine component to obtain a polyamic acid;
A method for producing a polyimide film, comprising the step of adding 0.1 to 5.0% by weight of an organic phosphorus compound with respect to 100% by weight of the polyamic acid, wherein the acid dianhydride component is the acid 50 to 100 mol% of pyromellitic dianhydride (PMDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 4, At least one of 4'-oxydiphthalic dianhydride (ODPA) is contained in 0 to 50 mol%, and the diamine component contains 4,4'-diaminodiphenyl ether (ODA) in the total amount of 100 mol% of the diamine component. 50 to 100 mol%, containing 0 to 50 mol% of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), the total amount of the acid dianhydride component and the diamine component being 200 mol % of the 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), the 4,4′-oxydiphthalic dianhydride (ODPA) and the 2,2-bis[4-( the total content of 4-aminophenoxy)phenyl]propane (BAPP) is 1-50 mol%;
A method for producing a polyimide film.
 〔9〕グラファイトシート用のポリイミドフィルムを2400℃以上に熱処理する工程を含む、グラファイトシートの製造方法であって、前記グラファイトシート用のポリイミドフィルムは、酸二無水物成分と、ジアミン成分と、を原料とするポリイミドフィルムであって、前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%であり、前記ポリイミドフィルムの全量100重量%中、有機リン系化合物を、0.1~5.0重量%含む、グラファイトシートの製造方法。 [9] A method for producing a graphite sheet, comprising a step of heat-treating a polyimide film for a graphite sheet at 2400° C. or higher, wherein the polyimide film for a graphite sheet comprises an acid dianhydride component and a diamine component. A polyimide film as a raw material, wherein the acid dianhydride component is 50 to 100 mol% of pyromellitic dianhydride (PMDA) in the total amount of 100 mol% of the acid dianhydride component, 3,3' , 4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) containing 0 to 50 mol% of at least one, and the diamine component is the diamine 50 to 100 mol% of 4,4'-diaminodiphenyl ether (ODA) and 0 to 50 mol of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) in 100 mol% of the total amount of components %, the 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), the 4,4′- The total content of oxydiphthalic dianhydride (ODPA) and the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 1 to 50 mol%, and the total amount of the polyimide film A method for producing a graphite sheet containing 0.1 to 5.0% by weight of an organophosphorus compound in 100% by weight.
 〔10〕前記グラファイトシート用のポリイミドフィルムは、前記酸二無水物成分として、ピロメリット酸二無水物(PMDA)を100モル%含み、前記ジアミン成分として、4,4’-ジアミノジフェニルエーテル(ODA)を50~99モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を1~50モル%含む、〔9〕に記載のグラファイトシートの製造方法。 [10] The polyimide film for the graphite sheet contains 100 mol% of pyromellitic dianhydride (PMDA) as the acid dianhydride component, and 4,4'-diaminodiphenyl ether (ODA) as the diamine component. and 1 to 50 mol% of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP).
 〔11〕前記グラファイトシート用のポリイミドフィルムは、前記ジアミン成分として、4,4’-ジアミノジフェニルエーテル(ODA)を100モル%含み、前記酸二無水物成分として、ピロメリット酸二無水物(PMDA)を50~99モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを1~50モル%含む、〔9〕に記載のグラファイトシートの製造方法。 [11] The polyimide film for the graphite sheet contains 100 mol% of 4,4'-diaminodiphenyl ether (ODA) as the diamine component, and pyromellitic dianhydride (PMDA) as the acid dianhydride component. 50 to 99 mol%, at least one of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) from 1 to 50 mol %, the method for producing a graphite sheet according to [9].
 〔12〕前記グラファイトシート用のポリイミドフィルムの厚みが80~200μmである、〔9〕~〔11〕のいずれか1つに記載のグラファイトシートの製造方法。 [12] The method for producing a graphite sheet according to any one of [9] to [11], wherein the polyimide film for the graphite sheet has a thickness of 80 to 200 μm.
 〔13〕前記グラファイトシート用のポリイミドフィルムは、前記有機リン系化合物として、リンの価数が5価である有機リン系化合物を含む、〔9〕~〔12〕のいずれか1つに記載のグラファイトシートの製造方法。 [13] The polyimide film for a graphite sheet according to any one of [9] to [12], wherein the organic phosphorus compound contains an organic phosphorus compound in which the valence of phosphorus is pentavalent. A method of manufacturing a graphite sheet.
 〔14〕前記グラファイトシート用のポリイミドフィルムの含む前記有機リン系化合物が、TG-DTAの測定において、重量減少率が5%となる温度が200℃以上である、〔9〕~〔13〕のいずれか1つに記載のグラファイトシートの製造方法。 [14] The temperature at which the weight loss rate of the organic phosphorus compound contained in the polyimide film for the graphite sheet is 5% in TG-DTA measurement is 200 ° C. or higher, [9] to [13] A method for producing a graphite sheet according to any one of the above.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
 以下、実施例により本発明をさらに詳細に説明するが、本発明は下記実施例のみに限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited only to the following examples.
 実施例および比較例における各評価方法について、以下説明する。 Each evaluation method in Examples and Comparative Examples will be described below.
 <圧延前のグラファイトシートの厚み>
 圧延前のグラファイトシートの厚みを、以下の方法によって測定した。圧延前のグラファイトシートにおいて、当該グラファイトシートの角の4箇所および中央の1箇所の厚みを(株)ミツトヨ製マイクロメーターを用いて測定した。ここで、「中央の1箇所」とは、得られたグラファイトシートにおいて、それぞれの角における4点の測定箇所から対角に位置する測定箇所に対角線を引いた際のその交点の位置を示す。そして、得られた計5箇所(角の4箇所、および中央の1箇所)の厚みの測定値の平均値を、圧延前のグラファイトシートの厚さとした。なお、角の4箇所とは、測定対象である圧延前のグラファイトシートが長方形の場合、その頂点を意図する。
<Thickness of graphite sheet before rolling>
The thickness of the graphite sheet before rolling was measured by the following method. In the graphite sheet before rolling, the thickness of the graphite sheet was measured at four corners and one central point using a Mitutoyo micrometer. Here, the "central point" refers to the position of the intersection of diagonal lines drawn from the four measurement points at each corner of the obtained graphite sheet to the diagonal measurement points. Then, the average value of the thickness measurement values obtained at a total of five locations (four corner locations and one center location) was taken as the thickness of the graphite sheet before rolling. Note that the four corners mean the vertices of a rectangular graphite sheet before rolling, which is the object of measurement.
 <圧延後のグラファイトシートの厚み>
 圧延後のグラファイトシートの厚みを、以下の方法によって測定した。圧延後のグラファイトシートにおいて、当該グラファイトシートの角の4箇所および中央の1箇所の厚みを(株)ミツトヨ製マイクロメーターを用いて測定した。ここで、「中央の1箇所」とは、得られたグラファイトシートにおいて、それぞれの角における4点の測定箇所から対角に位置する測定箇所に対角線を引いた際のその交点の位置を示す。そして、得られた計5箇所(角の4箇所、および中央の1箇所)の厚みの測定値の平均値を、圧延後のグラファイトシートの厚さとした。なお、角の4箇所とは、測定対象である圧延後のグラファイトシートが長方形の場合、その頂点を意図する。
<Thickness of graphite sheet after rolling>
The thickness of the graphite sheet after rolling was measured by the following method. In the rolled graphite sheet, the thickness of the graphite sheet was measured at four corners and one central point using a Mitutoyo micrometer. Here, the "central point" refers to the position of the intersection of diagonal lines drawn from the four measurement points at each corner of the obtained graphite sheet to the diagonal measurement points. Then, the average value of the thickness measurement values obtained at a total of five locations (four locations at the corners and one location at the center) was taken as the thickness of the graphite sheet after rolling. It should be noted that the four corners are intended to be the vertices when the rolled graphite sheet to be measured is rectangular.
 <圧延後のグラファイトシート熱拡散率>
 圧延後のグラファイトシートの熱拡散率を、以下の方法によって測定した。30mm×30mmの正方形状に切り取った、圧延後のグラファイトシートのサンプルについて、(株)ベテル社の「サーモウェーブアナライザ TA3」を用い、25℃の雰囲気下、周波数75Hzの条件下で、熱拡散率を測定することにより求めた。なおサンプルは、測定対象である圧延後のグラファイトシートの中央部をトムソン刃で打ち抜き、作製した。ここで、「中央部」とは、圧延後のグラファイトシートにおいて、幅方向において中央であって、かつ、長手方向においても中央である部分を意図する。
<Thermal diffusivity of graphite sheet after rolling>
The thermal diffusivity of the graphite sheet after rolling was measured by the following method. A sample of a graphite sheet after rolling cut into a square of 30 mm × 30 mm was measured using a "Thermo Wave Analyzer TA3" manufactured by Bethel Co., Ltd. under the conditions of an atmosphere of 25 ° C. and a frequency of 75 Hz to determine the thermal diffusivity. was obtained by measuring The sample was prepared by punching out the center portion of the graphite sheet after rolling, which is the object of measurement, with a Thomson blade. Here, the “central portion” means the central portion of the rolled graphite sheet in the width direction and also in the longitudinal direction.
 <圧延後のグラファイトシートの密度>
 圧延後のグラファイトシートの密度を、以下の方法によって測定した。圧延後のグラファイトシートの中央部を30mm×30mmの正方形状に打ち抜き、サンプルを得た。その後、前記サンプルの重量を測定した。その重量の測定値および前記<圧延後のグラファイトシートの厚み>項に記載の方法に基づき測定した、前記サンプルの厚みに基づき、下記式により、圧延後のグラファイトシートの密度を算出した:
圧延後のグラファイトシートの密度(g/cm)=圧延後のグラファイトシートの重量(g)/(圧延後のグラファイトシートの面積(cm)×圧延後のグラファイトシートの厚み(cm))。
<Density of graphite sheet after rolling>
The density of the graphite sheet after rolling was measured by the following method. A square of 30 mm×30 mm was punched out from the center of the rolled graphite sheet to obtain a sample. The samples were then weighed. Based on the measured weight and the thickness of the sample measured according to the method described in <Thickness of graphite sheet after rolling>, the density of the graphite sheet after rolling was calculated by the following formula:
Density of graphite sheet after rolling (g/cm 3 )=weight of graphite sheet after rolling (g)/(area of graphite sheet after rolling (cm 2 )×thickness of graphite sheet after rolling (cm)).
 (実施例1)
 <ポリイミドフィルムの製造>
 4,4’-ジアミノジフェニルエーテル(ODA)100モル%を溶解したジメチルホルムアミド溶液に、ピロメリット酸二無水物(PMDA)90モル%と、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)10モル%と、溶解して、ポリアミド酸を18.5重量%含むポリアミド酸溶液を得た。得られたポリアミド酸溶液に、有機リン系化合物であるリン酸トリフェニル(TPP、リンの価数5価、TG-DTAの測定において、重量減少率が5%となる温度220℃)を、当該リン酸トリフェニルの濃度が、ポリアミド酸溶液の固形分(ポリアミド酸)100重量%に対して0.3重量%となるように添加し、さらに、平均粒径2.2μmのリン酸水素カルシウム(無機粒子)を、当該リン酸水素カルシウムの濃度が、ポリアミド酸溶液の固形分(ポリアミド酸)100重量%に対して0.08重量%となるように添加した。このポリアミド酸溶液を冷却しながら、ポリアミド酸に含まれるカルボン酸基に対して、1当量の無水酢酸、1当量のイソキノリンおよび1当量のジメチルホルムアミドを含むイミド化触媒を添加し、脱泡することにより、イミド化触媒を含むポリアミド酸溶液(混合溶液)を得た。
(Example 1)
<Production of polyimide film>
90 mol% of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic acid di 10 mol % of anhydride (BTDA) was dissolved to obtain a polyamic acid solution containing 18.5% by weight of polyamic acid. To the obtained polyamic acid solution, triphenyl phosphate (TPP, pentavalence of phosphorus, temperature 220 ° C. at which the weight loss rate becomes 5% in the measurement of TG-DTA), which is an organic phosphorus compound, was added. Triphenyl phosphate was added so that the concentration of triphenyl phosphate was 0.3% by weight with respect to 100% by weight of the solid content (polyamic acid) of the polyamic acid solution, and calcium hydrogen phosphate having an average particle size of 2.2 μm ( Inorganic particles) were added so that the concentration of the calcium hydrogen phosphate was 0.08% by weight with respect to 100% by weight of the solid content (polyamic acid) in the polyamic acid solution. While cooling the polyamic acid solution, an imidization catalyst containing 1 equivalent of acetic anhydride, 1 equivalent of isoquinoline and 1 equivalent of dimethylformamide is added to the carboxylic acid groups contained in the polyamic acid, and defoaming. Thus, a polyamic acid solution (mixed solution) containing an imidization catalyst was obtained.
 次に、前記混合溶液を、乾燥後の厚さが135μmになるようにアルミ箔上に塗布し、混合溶液層を得た。アルミ箔上の混合溶液層を、熱風オーブンおよび遠赤外線ヒーターを用いて乾燥した。乾燥条件は以下のとおりである。まず、アルミ箔上の混合溶液層を、熱風オーブンで120℃において440秒乾燥して、自己支持性を有するゲルフィルムにした。そのゲルフィルムをアルミ箔から引き剥がし、フレームに固定した。さらに、ゲルフィルムを、熱風オーブンにて120℃で60秒、275℃で72秒、400℃で77秒、450℃で93秒、および遠赤外線ヒーターにて460℃で40秒と段階的に加熱して乾燥し、厚さ135μmのポリイミドフィルム(A)を作製した。 Next, the mixed solution was applied onto an aluminum foil so that the thickness after drying was 135 μm to obtain a mixed solution layer. The mixed solution layer on the aluminum foil was dried using a hot air oven and a far infrared heater. The drying conditions are as follows. First, the mixed solution layer on the aluminum foil was dried in a hot air oven at 120° C. for 440 seconds to form a self-supporting gel film. The gel film was peeled off from the aluminum foil and fixed to the frame. Further, the gel film was heated stepwise in a hot air oven at 120°C for 60 seconds, 275°C for 72 seconds, 400°C for 77 seconds, 450°C for 93 seconds, and a far infrared heater at 460°C for 40 seconds. and dried to produce a polyimide film (A) having a thickness of 135 μm.
 <グラファイトシートの製造>
 サイズ200mm×200mmに切り出したポリイミドフィルム(A)を、サイズ220mm×220mmの黒鉛シートで挟み(ポリイミドフィルム1枚と、黒鉛シート1枚と、を交互に積層し)積層体を得た。当該積層体を、炭化装置(倉田技研社製炭化装置)内(加熱空間内)に設置した。真空雰囲気下、0.4℃/minの昇温速度で、前記積層体を設置した炭化装置内の加熱空間を600℃まで昇温した後、600℃で1時間保持した。その後、0.4℃/minの昇温速度で、炭化装置内の加熱空間を1000℃まで昇温した後、1000℃で30分間、前記積層体(積層体内のポリイミドフィルム)を熱処理(炭化)し、炭素質フィルムを得た。
<Manufacture of graphite sheet>
A polyimide film (A) cut into a size of 200 mm×200 mm was sandwiched between graphite sheets of size 220 mm×220 mm (one polyimide film and one graphite sheet were alternately laminated) to obtain a laminate. The laminate was placed in a carbonization device (a carbonization device manufactured by Kurata Giken Co., Ltd.) (inside a heating space). In a vacuum atmosphere, the heating space in the carbonization apparatus in which the laminate was installed was heated to 600° C. at a heating rate of 0.4° C./min, and then held at 600° C. for 1 hour. After that, the heating space in the carbonization device is heated to 1000° C. at a heating rate of 0.4° C./min, and then the laminate (polyimide film in the laminate) is heat-treated (carbonized) at 1000° C. for 30 minutes. to obtain a carbonaceous film.
 得られた炭素質フィルムを、室温(23℃)まで冷却し、内径100mmのロール状にして、炭素質フィルムの巻物を得た。幅方向が垂直になるように、前記炭素質フィルムの巻物を、黒鉛化炉(倉田技研社製黒鉛化炉)の炉床に配置し、2200℃以下の温度領域では減圧下、2200℃よりも高い温度領域ではアルゴン雰囲気下で、昇温速度0.5℃/minで2900℃(黒鉛化最高温度)まで昇温した後、2900℃で30分保持して、黒鉛化フィルム(圧延前のグラファイトシート)を作製した。得られた圧延前のグラファイトシートの厚みの測定結果を表1に示す。 The obtained carbonaceous film was cooled to room temperature (23°C) and formed into a roll having an inner diameter of 100 mm to obtain a roll of carbonaceous film. The carbonaceous film roll is placed on the hearth of a graphitization furnace (graphitization furnace manufactured by Kurata Giken Co., Ltd.) so that the width direction is vertical. In the high temperature range, under an argon atmosphere, the temperature was raised to 2900 ° C. (maximum graphitization temperature) at a heating rate of 0.5 ° C./min, and then held at 2900 ° C. for 30 minutes to obtain a graphitized film (graphite before rolling). sheet) was prepared. Table 1 shows the measurement results of the thickness of the obtained graphite sheet before rolling.
 得られた黒鉛化フィルムを室温まで冷却し、株式会社サンクメタル製2ton精密ロールプレス(クリアランス式)にて圧延処理を実施し、グラファイトシート(圧延後のグラファイトシート)を得た。得られた圧延後のグラファイトシートについて、厚み、熱拡散率および密度を測定、評価した。結果を表1に示す。 The resulting graphitized film was cooled to room temperature and rolled by a 2-ton precision roll press (clearance type) manufactured by Thank Metal Co., Ltd. to obtain a graphite sheet (graphite sheet after rolling). The thickness, thermal diffusivity and density of the obtained graphite sheet after rolling were measured and evaluated. Table 1 shows the results.
 (実施例2~3、比較例1)
 有機リン系化合物の添加量、および/または、無機粒子の平均粒子径を、表1に記載の通りに変更したこと以外は、実施例1と同様に、ポリイミドフィルムを作製し、これを熱処理してグラファイトシートを得た。得られたグラファイトシートについて、各物性を測定、評価した。結果を表1に示す。
(Examples 2-3, Comparative Example 1)
A polyimide film was prepared and heat-treated in the same manner as in Example 1, except that the amount of the organic phosphorus compound added and/or the average particle size of the inorganic particles was changed as shown in Table 1. to obtain a graphite sheet. Each physical property of the obtained graphite sheet was measured and evaluated. Table 1 shows the results.
 (実施例4)
 ポリイミドフィルムの製造において、4,4’-ジアミノジフェニルエーテル(ODA)85モル%と、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)15モル%と、を溶解したジメチルホルムアミド溶液に、ピロメリット酸二無水物(PMDA)100モル%を溶解して、ポリアミド酸を18.5重量%含むポリアミド酸溶液を得た。得られたポリアミド酸溶液に、有機リン系化合物であるリン酸トリフェニル(TPP)を、当該リン酸トリフェニルの濃度が、ポリアミド酸溶液の固形分(ポリアミド酸)100重量%に対して0.3重量%となるように添加し、さらに、平均粒径2.2μmのリン酸水素カルシウム(無機粒子)を、当該リン酸水素カルシウムの濃度が、ポリアミド酸溶液の固形分(ポリアミド酸)100重量%に対して0.08重量%となるように添加した。
(Example 4)
In the production of polyimide film, 4,4'-diaminodiphenyl ether (ODA) 85 mol% and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) 15 mol% dissolved in dimethyl 100 mol % of pyromellitic dianhydride (PMDA) was dissolved in a formamide solution to obtain a polyamic acid solution containing 18.5% by weight of polyamic acid. Triphenyl phosphate (TPP), which is an organic phosphorous compound, was added to the obtained polyamic acid solution so that the concentration of the triphenyl phosphate was 0.00% relative to 100% by weight of the solid content (polyamic acid) in the polyamic acid solution. Add so as to be 3% by weight, further calcium hydrogen phosphate (inorganic particles) with an average particle size of 2.2 μm, the concentration of the calcium hydrogen phosphate is the solid content of the polyamic acid solution (polyamic acid) 100 weight % to 0.08% by weight.
 (実施例5~6、比較例2)
 有機リン系化合物の添加量、および/または、無機粒子の平均粒子径を、表2に記載の通りに変更したこと以外は、実施例4と同様に、ポリイミドフィルムを作製し、これを熱処理してグラファイトシートを得た。得られたグラファイトシートについて、各物性を測定、評価した。結果を表1に示す。
(Examples 5-6, Comparative Example 2)
A polyimide film was prepared and heat-treated in the same manner as in Example 4, except that the amount of the organic phosphorus compound added and/or the average particle size of the inorganic particles was changed as shown in Table 2. to obtain a graphite sheet. Each physical property of the obtained graphite sheet was measured and evaluated. Table 1 shows the results.
 (比較例3)
 ピロメリット酸二無水物(PMDA)90モル%に変えて、PMDA100モル%を使用し、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)を使用しなかったこと以外は、実施例2と同様に、ポリイミドフィルムを作製し、これを熱処理してグラファイトシートを得た。得られたグラファイトシートについて、各物性を測定、評価した。結果を表1に示す。
(Comparative Example 3)
Except for using 100 mol% of PMDA instead of 90 mol% of pyromellitic dianhydride (PMDA) and not using 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) A polyimide film was prepared in the same manner as in Example 2 and heat-treated to obtain a graphite sheet. Each physical property of the obtained graphite sheet was measured and evaluated. Table 1 shows the results.
 〔まとめ〕
 表1より、以下のことが明らかに分かる。
〔summary〕
Table 1 clearly shows the following.
 実施例1~3より、ポリイミドフィルムが、酸二無水物成分として、PMDAを90モル%(50~100モル%の範囲内)と、BTDAを10モル%(0~50モル%の範囲内)と、ジアミン成分として、ODAを100モル%(50~100モル%の範囲内)と、を含み、かつ、有機リン系化合物を0.3~1.1重量%(0.1~5.0重量%の範囲内)含むポリイミドフィルムを熱処理してなるグラファイトシートは、熱処理前の厚みが135μmと、厚みが大きいにも関わらず、得られるグラファイトシートの圧延前の厚みが十分に薄く、生産性に優れるグラファイトシートであることが分かる。また、実施例1~3と、比較例1との比較より、ポリイミドフィルムが有機リン系化合物を含むことにより、より高い密度を有するグラファイトシートを提供できることが分かる。 From Examples 1 to 3, the polyimide film contains 90 mol% (within the range of 50 to 100 mol%) of PMDA and 10 mol% (within the range of 0 to 50 mol%) of BTDA as the acid dianhydride component. and 100 mol% (within the range of 50 to 100 mol%) of ODA as a diamine component, and 0.3 to 1.1% by weight (0.1 to 5.0 The graphite sheet obtained by heat-treating a polyimide film containing 135 μm in thickness before heat treatment has a thickness of 135 μm before heat treatment. It can be seen that the graphite sheet is excellent in Also, from a comparison between Examples 1 to 3 and Comparative Example 1, it can be seen that a graphite sheet having a higher density can be provided by including an organophosphorus compound in the polyimide film.
 実施例4~6より、ポリイミドフィルムが、酸二無水物成分として、PMDAを100モル%(50~100モル%の範囲内)と、ジアミン成分として、ODAを85モル%(50~100モル%の範囲内)と、BAPPを15モル%(0~50モル%の範囲内)と、を含み、かつ、有機リン系化合物を0.3~1.1重量%(0.1~5.0重量%の範囲内)含むポリイミドフィルムを熱処理してなるグラファイトシートは、熱処理前の厚みが135μmと、厚みが大きいにも関わらず、0.5℃/minという比較的高い昇温速度で熱処理して得られるグラファイトシートの圧延前の厚みが十分に薄い。すなわち、比較的高い昇温速度で熱処理しても過剰な発泡等が生じない、生産性に優れるグラファイトシートであることが分かる。また、実施例4~6と、比較例2との比較より、ポリイミドフィルムが有機リン系化合物を含むことにより、より高い密度を有するグラファイトシートを提供できることが分かる。 From Examples 4 to 6, the polyimide film contains 100 mol% PMDA (within the range of 50 to 100 mol%) as the acid dianhydride component and 85 mol% ODA as the diamine component (50 to 100 mol% ), 15 mol% (within the range of 0 to 50 mol%) of BAPP, and 0.3 to 1.1% by weight (0.1 to 5.0 The graphite sheet obtained by heat-treating the polyimide film containing 135 μm in thickness before the heat treatment was heat-treated at a relatively high heating rate of 0.5° C./min. The thickness of the graphite sheet obtained by rolling is sufficiently thin. That is, it can be seen that the graphite sheet is excellent in productivity, in which excessive foaming does not occur even when heat-treated at a relatively high rate of temperature rise. Further, from a comparison between Examples 4 to 6 and Comparative Example 2, it can be seen that a graphite sheet having a higher density can be provided by including an organophosphorus compound in the polyimide film.
 また、比較例3より、BTDA、ODPA、BAPPといった、ポリイミドフィルムの配向性を乱す作用のあるモノマーを原料として使用しなかったポリイミドフィルムは、0.5℃/minという比較的高い昇温速度で昇温した場合、得られるグラファイトシートの表面が大きく発泡し、圧延前の厚みが過剰に大きくなっていることから、実質的にこのような比較的高い昇温速度で熱処理することができないことが分かる。また、得られるグラファイトシートの密度も低く、高い密度を有するグラファイトシートを提供できないことも分かる。 Further, from Comparative Example 3, a polyimide film that did not use, as a raw material, a monomer that disturbs the orientation of the polyimide film, such as BTDA, ODPA, or BAPP, was heated at a relatively high heating rate of 0.5° C./min. When the temperature is raised, the surface of the graphite sheet to be obtained is greatly foamed, and the thickness before rolling is excessively large. I understand. Moreover, the density of the resulting graphite sheet is also low, and it can be seen that a graphite sheet having a high density cannot be provided.
 以上の結果より、本発明の一実施形態に係るポリイミドフィルムによれば、密度が高いグラファイトシート、特に、密度が高い厚物のグラファイトシートを、生産性よく提供できることが示された。 From the above results, it was shown that the polyimide film according to one embodiment of the present invention can provide a high-density graphite sheet, particularly a high-density thick graphite sheet, with good productivity.
 本発明の一実施形態に係るポリイミドフィルムによれば、密度が高いグラファイトシートを生産性よく提供することができる。このような密度が高いグラファイトシートは、電子機器、特に薄型の電子機器の放熱部材として好適に利用することができる。

 
According to the polyimide film according to one embodiment of the present invention, a graphite sheet with high density can be provided with good productivity. A graphite sheet with such a high density can be suitably used as a heat dissipation member for electronic devices, particularly thin electronic devices.

Claims (14)

  1.  酸二無水物成分と、ジアミン成分と、を原料とするポリイミドフィルムであって、
     前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、
     前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、
     前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%であり、
     前記ポリイミドフィルムの全量100重量%中、有機リン系化合物を、0.1~5.0重量%含む、グラファイトシート用のポリイミドフィルム。
    A polyimide film made from an acid dianhydride component and a diamine component,
    The acid dianhydride component contains 50 to 100 mol% of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic acid in 100 mol% of the total amount of the dianhydride component. 0 to 50 mol% of at least one of acid dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA),
    The diamine component contains 50 to 100 mol% of 4,4′-diaminodiphenyl ether (ODA), 2,2-bis[4-(4-aminophenoxy)phenyl]propane ( BAPP) containing 0 to 50 mol%,
    The 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and the 4,4′-oxydiphthalic acid dianhydride with respect to 200 mol % of the total amount of the acid dianhydride component and the diamine component The total content of anhydride (ODPA) and the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 1 to 50 mol%,
    A polyimide film for a graphite sheet, containing 0.1 to 5.0% by weight of an organic phosphorus compound in 100% by weight of the total amount of the polyimide film.
  2.  前記酸二無水物成分として、ピロメリット酸二無水物(PMDA)を100モル%含み、前記ジアミン成分として、4,4’-ジアミノジフェニルエーテル(ODA)を50~99モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を1~50モル%含む、請求項1に記載のグラファイトシート用のポリイミドフィルム。 The acid dianhydride component contains 100 mol% pyromellitic dianhydride (PMDA), and the diamine component contains 4,4′-diaminodiphenyl ether (ODA) in an amount of 50 to 99 mol%, 2,2-bis The polyimide film for a graphite sheet according to claim 1, containing 1 to 50 mol% of [4-(4-aminophenoxy)phenyl]propane (BAPP).
  3.  前記ジアミン成分として、4,4’-ジアミノジフェニルエーテル(ODA)を100モル%含み、前記酸二無水物成分として、ピロメリット酸二無水物(PMDA)を50~99モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを1~50モル%含む、請求項1に記載のグラファイトシート用のポリイミドフィルム。 As the diamine component, 4,4'-diaminodiphenyl ether (ODA) is contained in an amount of 100 mol%, and as the acid dianhydride component, pyromellitic dianhydride (PMDA) is contained in an amount of 50 to 99 mol%, 3,3', The graphite sheet according to claim 1, containing 1 to 50 mol% of at least one of 4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA). polyimide film for
  4.  厚みが80~200μmである、請求項1に記載のグラファイトシート用のポリイミドフィルム。 The polyimide film for graphite sheets according to claim 1, which has a thickness of 80 to 200 μm.
  5.  前記有機リン系化合物として、リンの価数が5価である有機リン系化合物を含む、請求項1に記載のグラファイトシート用のポリイミドフィルム。 The polyimide film for a graphite sheet according to claim 1, wherein the organophosphorus compound contains an organophosphorus compound in which the valence of phosphorus is pentavalent.
  6.  前記有機リン系化合物が、TG-DTAの測定において、重量減少率が5%となる温度が200℃以上である、請求項1に記載のグラファイトシート用のポリイミドフィルム。 The polyimide film for a graphite sheet according to claim 1, wherein the organophosphorus compound has a temperature of 200°C or higher at which the weight loss rate becomes 5% in TG-DTA measurement.
  7.  請求項1~6のいずれか1項に記載のグラファイトシート用のポリイミドフィルムを原料として含むグラファイトシート。 A graphite sheet containing the polyimide film for a graphite sheet according to any one of claims 1 to 6 as a raw material.
  8.  酸二無水物成分とジアミン成分とを混合し、ポリアミド酸を得る工程、および、
     前記ポリアミド酸100重量%に対して、0.1~5.0重量%の有機リン系化合物を添加する工程を含む、ポリイミドフィルムの製造方法であって、
     前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、
     前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、
     前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%である、
    ポリイミドフィルムの製造方法。
    A step of mixing an acid dianhydride component and a diamine component to obtain a polyamic acid, and
    A method for producing a polyimide film, comprising a step of adding 0.1 to 5.0% by weight of an organic phosphorus compound with respect to 100% by weight of the polyamic acid,
    The acid dianhydride component contains 50 to 100 mol% of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic acid in 100 mol% of the total amount of the dianhydride component. 0 to 50 mol% of at least one of acid dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA),
    The diamine component contains 50 to 100 mol% of 4,4′-diaminodiphenyl ether (ODA), 2,2-bis[4-(4-aminophenoxy)phenyl]propane ( BAPP) containing 0 to 50 mol%,
    The 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and the 4,4′-oxydiphthalic acid dianhydride with respect to 200 mol % of the total amount of the acid dianhydride component and the diamine component the total content of anhydride (ODPA) and the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 1 to 50 mol%;
    A method for producing a polyimide film.
  9.  グラファイトシート用のポリイミドフィルムを2400℃以上に熱処理する工程を含む、グラファイトシートの製造方法であって、
     前記グラファイトシート用のポリイミドフィルムは、酸二無水物成分と、ジアミン成分と、を原料とするポリイミドフィルムであって、
     前記酸二無水物成分は、前記酸二無水物成分の総量100モル%中、ピロメリット酸二無水物(PMDA)を50~100モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを0~50モル%含み、
     前記ジアミン成分は、前記ジアミン成分の総量100モル%中、4,4’-ジアミノジフェニルエーテル(ODA)を50~100モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を0~50モル%含み、
     前記酸二無水物成分と前記ジアミン成分との合計量200モル%に対する、前記3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、前記4,4’-オキシジフタル酸二無水物(ODPA)および前記2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)の合計の含有量は、1~50モル%であり、
     前記ポリイミドフィルムの全量100重量%中、有機リン系化合物を、0.1~5.0重量%含むポリイミドフィルムである、グラファイトシートの製造方法。
    A method for producing a graphite sheet, comprising a step of heat-treating a polyimide film for a graphite sheet at 2400° C. or higher,
    The polyimide film for the graphite sheet is a polyimide film made from an acid dianhydride component and a diamine component,
    The acid dianhydride component contains 50 to 100 mol% of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic acid in 100 mol% of the total amount of the dianhydride component. 0 to 50 mol% of at least one of acid dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA),
    The diamine component contains 50 to 100 mol% of 4,4′-diaminodiphenyl ether (ODA), 2,2-bis[4-(4-aminophenoxy)phenyl]propane ( BAPP) containing 0 to 50 mol%,
    The 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and the 4,4′-oxydiphthalic acid dianhydride with respect to 200 mol % of the total amount of the acid dianhydride component and the diamine component The total content of anhydride (ODPA) and the 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is 1 to 50 mol%,
    A method for producing a graphite sheet, which is a polyimide film containing 0.1 to 5.0% by weight of an organic phosphorus compound in 100% by weight of the total amount of the polyimide film.
  10.  前記グラファイトシート用のポリイミドフィルムは、前記酸二無水物成分として、ピロメリット酸二無水物(PMDA)を100モル%含み、前記ジアミン成分として、4,4’-ジアミノジフェニルエーテル(ODA)を50~99モル%、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を1~50モル%含む、請求項9に記載のグラファイトシートの製造方法。 The polyimide film for the graphite sheet contains 100 mol% of pyromellitic dianhydride (PMDA) as the acid dianhydride component, and 50 to 4,4'-diaminodiphenyl ether (ODA) as the diamine component. 10. The method for producing a graphite sheet according to claim 9, comprising 99 mol% and 1 to 50 mol% of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP).
  11.  前記グラファイトシート用のポリイミドフィルムは、前記ジアミン成分として、4,4’-ジアミノジフェニルエーテル(ODA)を100モル%含み、前記酸二無水物成分として、ピロメリット酸二無水物(PMDA)を50~99モル%、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)および4,4’-オキシジフタル酸二無水物(ODPA)のうち少なくともいずれかを1~50モル%含む、請求項9に記載のグラファイトシートの製造方法。 The polyimide film for the graphite sheet contains 100 mol% of 4,4'-diaminodiphenyl ether (ODA) as the diamine component, and pyromellitic dianhydride (PMDA) as the acid dianhydride component from 50 to 99 mol%, containing 1 to 50 mol% of at least one of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic dianhydride (ODPA) 10. The method for producing a graphite sheet according to claim 9.
  12.  前記グラファイトシート用のポリイミドフィルムの厚みが80~200μmである、請求項9に記載のグラファイトシートの製造方法。 The method for producing a graphite sheet according to claim 9, wherein the polyimide film for the graphite sheet has a thickness of 80 to 200 µm.
  13.  前記グラファイトシート用のポリイミドフィルムは、前記有機リン系化合物として、リンの価数が5価である有機リン系化合物を含む、請求項9に記載のグラファイトシートの製造方法。 The method for producing a graphite sheet according to claim 9, wherein the polyimide film for the graphite sheet contains, as the organic phosphorus compound, an organic phosphorus compound in which the valence of phosphorus is pentavalent.
  14.  前記グラファイトシート用のポリイミドフィルムの含む前記有機リン系化合物が、TG-DTAの測定において、重量減少率が5%となる温度が200℃以上である、請求項9に記載のグラファイトシートの製造方法。 10. The method for producing a graphite sheet according to claim 9, wherein the organophosphorus compound contained in the polyimide film for the graphite sheet has a temperature of 200° C. or higher at which the weight loss rate is 5% in TG-DTA measurement. .
PCT/JP2023/003690 2022-02-25 2023-02-06 Polyimide film for graphite sheet, graphite sheet, and production methods therefor WO2023162643A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022028399 2022-02-25
JP2022-028399 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023162643A1 true WO2023162643A1 (en) 2023-08-31

Family

ID=87765626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003690 WO2023162643A1 (en) 2022-02-25 2023-02-06 Polyimide film for graphite sheet, graphite sheet, and production methods therefor

Country Status (1)

Country Link
WO (1) WO2023162643A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040003A (en) * 2010-12-14 2014-03-06 Kaneka Corp Method for producing multilayer coextrusion polyimide film
CN105368048A (en) * 2015-12-11 2016-03-02 桂林电器科学研究院有限公司 Electrostatic adsorption resistant polyimide film and preparation method thereof
WO2021040127A1 (en) * 2019-08-29 2021-03-04 피아이첨단소재 주식회사 Polyimide film and manufacturing method for same
WO2021095976A1 (en) * 2019-11-13 2021-05-20 피아이첨단소재 주식회사 Highly elastic and heat-resistant polyimide film and method for producing same
WO2022009971A1 (en) * 2020-07-09 2022-01-13 株式会社カネカ Production method for graphite sheet, and polyimide film for graphite sheet
WO2022009972A1 (en) * 2020-07-09 2022-01-13 株式会社カネカ Production method for graphite sheet, and polyimide film for graphite sheet
WO2023008033A1 (en) * 2021-07-30 2023-02-02 株式会社カネカ Polyimide film for graphite sheet, graphite sheet, and method for manufacturing these

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040003A (en) * 2010-12-14 2014-03-06 Kaneka Corp Method for producing multilayer coextrusion polyimide film
CN105368048A (en) * 2015-12-11 2016-03-02 桂林电器科学研究院有限公司 Electrostatic adsorption resistant polyimide film and preparation method thereof
WO2021040127A1 (en) * 2019-08-29 2021-03-04 피아이첨단소재 주식회사 Polyimide film and manufacturing method for same
WO2021095976A1 (en) * 2019-11-13 2021-05-20 피아이첨단소재 주식회사 Highly elastic and heat-resistant polyimide film and method for producing same
WO2022009971A1 (en) * 2020-07-09 2022-01-13 株式会社カネカ Production method for graphite sheet, and polyimide film for graphite sheet
WO2022009972A1 (en) * 2020-07-09 2022-01-13 株式会社カネカ Production method for graphite sheet, and polyimide film for graphite sheet
WO2023008033A1 (en) * 2021-07-30 2023-02-02 株式会社カネカ Polyimide film for graphite sheet, graphite sheet, and method for manufacturing these

Similar Documents

Publication Publication Date Title
KR101972668B1 (en) Graphite Sheet Having Excellent Thermal Conductivity and Method for Preparing The Same
TWI690487B (en) Method for manufacturing graphite sheet and polyimide film for graphite sheet
CN111788259B (en) Graphene sheet polyimide film comprising graphene-containing spherical PI-based filler, method for manufacturing same, and graphite sheet manufactured using same
JP6121168B2 (en) Polyimide film and method for producing the same
WO2023008033A1 (en) Polyimide film for graphite sheet, graphite sheet, and method for manufacturing these
TWI613149B (en) Manufacturing method of polyimide film and manufacturing method of graphite film using the same
KR20170112329A (en) Manufacturing method for graphite sheet
KR102286058B1 (en) Polyimide film for graphite sheet and manufacturing method for the polyimide film
WO2022085619A1 (en) Non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminated plate
WO2015080264A1 (en) Method for producing graphite film
JP5615627B2 (en) Method for producing graphite film
KR101232587B1 (en) Polyimde Film and Method for Preparing the Same
CN111655617A (en) Graphite sheet and method for producing same
JP7367221B2 (en) Graphite sheet manufacturing method and polyimide film for graphite sheet
JP7367220B2 (en) Graphite sheet manufacturing method and polyimide film for graphite sheet
KR20190089397A (en) High Thermal Conductive Polyimide Film Comprising At Least Two Kinds of Fillers
WO2023162643A1 (en) Polyimide film for graphite sheet, graphite sheet, and production methods therefor
WO2023162644A1 (en) Polyimide film for graphite sheet, graphite sheet, and production methods therefor
WO2023080047A1 (en) Graphite film and method for manufacturing graphite film
JP2024085847A (en) Resin film, graphite sheet and manufacturing method thereof
CN118205275A (en) Resin film, graphite sheet, and method for producing same
KR102414419B1 (en) Method for preparing polyimide film for graphite sheet and method for preparing graphite sheet
KR102286059B1 (en) Graphite sheet and manufacturing method for the same
JP2023174334A (en) Graphite sheet, polyimide film for graphite sheet and method for manufacturing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759648

Country of ref document: EP

Kind code of ref document: A1