WO2023161996A1 - Saddled vehicle - Google Patents

Saddled vehicle Download PDF

Info

Publication number
WO2023161996A1
WO2023161996A1 PCT/JP2022/007240 JP2022007240W WO2023161996A1 WO 2023161996 A1 WO2023161996 A1 WO 2023161996A1 JP 2022007240 W JP2022007240 W JP 2022007240W WO 2023161996 A1 WO2023161996 A1 WO 2023161996A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
battery
vehicle
rotating shaft
distance
Prior art date
Application number
PCT/JP2022/007240
Other languages
French (fr)
Japanese (ja)
Inventor
穣 辻
尚史 松尾
康弘 福吉
将之 福田
正明 川▲崎▼
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2022/007240 priority Critical patent/WO2023161996A1/en
Publication of WO2023161996A1 publication Critical patent/WO2023161996A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M23/00Transmissions characterised by use of other elements; Other transmissions
    • B62M23/02Transmissions characterised by use of other elements; Other transmissions characterised by the use of two or more dissimilar sources of power, e.g. transmissions for hybrid motorcycles

Definitions

  • the present invention relates to a saddle-ride type vehicle.
  • Patent Document 1 discloses a series hybrid straddle-type vehicle having power components such as an engine, a generator, a battery, a drive motor, and a control unit.
  • An object of the present invention is therefore to optimize the weight balance of the power unit and achieve a compact layout in a saddle-riding vehicle equipped with an engine, a drive motor, and a generator motor.
  • a first aspect of the present invention provides a drive motor (M1) that applies a driving force to a drive wheel (4), and a second motor (M2) that is provided separately from the drive motor (M1).
  • the second rotation shaft (251) of the motor (M2) is arranged in parallel with each other in the axial direction, and when viewed from the axial direction, the axis (C1) of the crankshaft (26) and the first rotation shaft (251)
  • the axis (C3) of the shaft (151) and the axis (C4) of the second rotating shaft (251) are arranged side by side in a triangular shape with these as vertices, and the center of gravity (G2) of the battery (37).
  • the center of gravity (G1) of the control device (34), and the center of gravity (C4) of the second rotating shaft (251) are arranged side by side in an inverted triangle with these as vertices. do.
  • the drive motor, the second motor, and the internal combustion engine, which are heavy objects can be arranged close to each other (concentrated) in a triangular shape.
  • the control device, the battery, and the second motor, which are also heavy objects can be placed close to each other (concentrated) in an inverted triangle shape. Therefore, mass concentration of these drive system components can be achieved.
  • the weight balance of the drive system components can be improved.
  • a second aspect of the present invention includes a drive motor (M1) that applies a driving force to a drive wheel (4), a second motor (M2) provided separately from the drive motor (M1), and the drive motor (M1 ) and the second motor (M2), a battery (37) for supplying electric power to the driving motor (M1), and an internal combustion engine for driving the second motor (M2) to generate electricity.
  • (E) wherein the crankshaft (26) of the internal combustion engine (E), the first rotation shaft (151) of the drive motor (M1), and the second motor (M2) of the The two rotating shafts (251) are arranged axially parallel to each other, and the crankshaft (26) and the first rotating shaft (151) are arranged below the second rotating shaft (251).
  • the heavy internal combustion engine, the drive motor, the battery, and the control device are arranged while shifting their positions in the vertical direction and the front-rear direction around the second motor for power generation.
  • System components can be placed closer together (aggregated). Therefore, the mass of the drive system components can be concentrated, and the weight balance of the drive system components can be improved.
  • a wiring (39) connecting the control device (34) and the battery (37) may be provided, and the wiring (39) may be arranged to extend in the longitudinal direction of the vehicle.
  • the wiring between the control device and the battery extends linearly in the vehicle front-rear direction, so the burden on the wiring can be reduced as compared with the case where the wiring is bent. Also, the length of wiring can be shortened to reduce weight and cost.
  • crankshaft (26), the first rotating shaft (151), and the second rotating shaft (251) may be arranged with the axial direction along the vehicle width direction. good.
  • the drive motor, the second motor, and the internal combustion engine can be arranged close to each other when viewed from the side in the vehicle width direction, so that the mass can be concentrated and arranged compactly in the longitudinal and vertical directions. be able to.
  • the transmission mechanism (156) may be arranged offset to the other side in the vehicle width direction.
  • the drive motor and the second motor are distributed and arranged in the vehicle width direction, and the first transmission mechanism and the second transmission mechanism are also distributed and arranged on the same side as the corresponding motors in the vehicle width direction.
  • these drive system components can be arranged in a well-balanced manner in the vehicle width direction.
  • crankshaft (26) is arranged on one side in the vehicle front-rear direction of the second rotating shaft (251), and the battery (37) and the control device (34) are connected to the second rotating shaft (251).
  • a one-side drive system component (34) is positioned on one side in the vehicle front-rear direction of the rotating shaft (251), and the center of gravity (G1) of the one-side drive system component (34) when viewed from the axial direction.
  • the axial center (C4) of the second rotating shaft (251) in the longitudinal direction of the vehicle is defined as a first distance (L1), the axial center (C1) of the crankshaft (26) and the second rotating shaft Assuming that the distance in the longitudinal direction of the vehicle between (251) and the axis (C4) is a second distance (L2), the first distance (L1) is set longer than the second distance (L2).
  • the one-side drive system components are arranged farther away, so that the The one-side drive system components do not have to be arranged, and can be efficiently arranged by being shifted back and forth, and heat from the internal combustion engine is less likely to be transmitted to the one-side drive system components.
  • the first rotating shaft (151) is arranged on the other side in the vehicle front-rear direction of the second rotating shaft (251), and the battery (37) and the control device (34) include the The other side drive system component (37) is positioned on the other side in the vehicle longitudinal direction of the second rotating shaft (251), and the center of gravity (37) of the other side drive system component (37) when viewed from the axial direction G2) and the axial center (C4) of the second rotating shaft (251) in the longitudinal direction of the vehicle are defined as a third distance (L3), and the axial center (C3) of the first rotating shaft (151) and the aforementioned Assuming that a fourth distance (L4) is the distance in the longitudinal direction of the vehicle between the axis (C4) of the second rotating shaft (251), the third distance (L3) is longer than the fourth distance (L4).
  • a long configuration may also be used. According to this configuration, among the other-side drive system components and the first rotating shaft (and thus the drive motor) located on the other side in the vehicle front-rear direction, the other-side drive system components are arranged farther away from each other so that the drive motor is closer to the vehicle. It is not necessary to arrange the other-side drive system parts on top, and these can be efficiently arranged by shifting them back and forth.
  • the battery (37) may be detachable from the vehicle body and may be arranged behind the second motor (M2). According to this configuration, by arranging the detachable battery in the rear portion of the vehicle body, the battery can be accessed from the upper portion, the rear portion, or both the left and right sides of the rear portion of the vehicle body, and the attachment and detachment of the battery can be facilitated.
  • the battery (37) may be arranged above the second motor (M2) and below the seat (21) on which the passenger sits. According to this configuration, the battery can be accessed by opening and closing the seat, and the attachment and detachment of the battery can be further facilitated.
  • FIG. 1 is a left side view schematically showing a motorcycle according to an embodiment of the invention
  • FIG. 2 is a configuration diagram showing an outline of a drive system of the motorcycle
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an EV mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a hybrid mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a regeneration mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an engine drive mode of the drive system
  • It is a block diagram which shows the outline of the control part of the said drive system.
  • Fig. 2 is a plan view showing the outline of the motorcycle; It is a left side view showing the outline of the motorcycle of the reference example of the above-mentioned embodiment.
  • FIG. 1 shows a motorcycle 1 as an example of a straddle-type vehicle according to the present embodiment.
  • the motorcycle 1 comprises a drive system S including an engine (internal combustion engine) E and two electric motors M1 and M2, and runs by cooperating engine power and motor power.
  • the motorcycle 1 is a hybrid vehicle equipped with a so-called two-motor hybrid system. It should be noted that the present invention may be applied to a one-motor hybrid vehicle or an electric vehicle that does not have an internal combustion engine, as long as it does not depart from the gist of the present invention described below.
  • the motorcycle 1 includes front wheels (steered wheels) 3 that are steered by a steering wheel 2 and rear wheels (driving wheels) 4 that are driven by a drive system S.
  • the motorcycle 1 is a saddle type vehicle in which the rider straddles the vehicle body, and the vehicle body can be swung (banked) in the lateral direction (roll direction) with reference to ground contact points of the front and rear wheels 3 and 4 .
  • the handle 2 may be a left and right integrated bar handle or a left and right separate separate handle, and may not be a bar type handle.
  • the motorcycle 1 includes a vehicle body frame 5 that serves as a main frame of the vehicle body.
  • the body frame 5 includes a head pipe 6, a main frame 7, a pivot frame 8 and a rear frame 9.
  • the vehicle body frame 5 steerably supports a front fork 12 of a front wheel suspension 11 at a head pipe 6 positioned in the center of the front end portion in the left-right direction.
  • the vehicle body frame 5 supports a swing arm 16 of a rear wheel suspension device 15 in a pivot frame 8 positioned in the front-rear intermediate portion so as to be capable of swinging up and down.
  • the vehicle body frame 5 is integrally provided from the head pipe 6 to the rear frame 9 behind the pivot frame 8 by a joining means such as welding.
  • a part of the vehicle body frame 5 (for example, the rear frame 9 and the like) may be detachable by bolting or the like.
  • Reference numeral 9a in the drawing denotes a pair of left and right rear frame members provided in the rear frame 9. As shown in FIG.
  • the head pipe 6 has a steering axis (rotational axis) tilted backward with respect to the vertical direction.
  • the head pipe 6 supports the front wheel 3 and the front wheel suspension device 11 so as to be rotatable about the steering axis.
  • the front wheel suspension system 11 includes a pair of left and right front forks 12 . Upper portions of the left and right front forks 12 are supported by the head pipe 6 via a steering stem. Lower ends of the left and right front forks 12 support the axle 3 a of the front wheel 3 .
  • the left and right front forks 12 are of a telescopic type, respectively, and constitute a front suspension of the motorcycle 1 .
  • the front wheel suspension 11 is not limited to constituting a telescopic front suspension, and may constitute, for example, a link-type front suspension.
  • the pivot frame 8 supports the front end of the swing arm 16 via a pivot shaft (swing shaft) 17 extending in the vehicle width direction.
  • a rear end portion of the swing arm 16 supports an axle 4 a of the rear wheel 4 .
  • a rear cushion is interposed between the front portion of the swing arm 16 and the front-rear middle portion of the body frame 5 (for example, the cross frame near the pivot frame 8).
  • the swing arm 16 and the rear cushion constitute a rear suspension of the motorcycle 1.
  • the rear cushion may be interposed between the rear portion of the swing arm 16 and the rear portion of the body frame 5 (for example, the rear frame 9).
  • the entire vehicle body including the vehicle body frame 5 is covered with a vehicle body cover 19 .
  • the vehicle body cover 19 is divided into, for example, a front body cover 19a that covers the front part of the vehicle body and a rear body cover 19b that covers the rear part of the vehicle body, with the front-rear center of the vehicle body as a boundary.
  • the rear frame 9 extends rearward and upward of the pivot frame 8 .
  • a seat 21 for seating an occupant is supported on the rear frame 9 .
  • the rear frame 9 supports the seating load of an occupant seated on the seat 21 .
  • the rear frame 9 receives a reaction force when the cushion expands and contracts.
  • the seat 21 integrally includes a front seating portion on which a driver sits and a rear seating portion on which a rear passenger sits.
  • the periphery of the rear frame 9 is covered with a rear body cover 19b extending from below both sides of the seat 21 to the rear.
  • the seat 21 is attached to, for example, the rear body cover 19b in a detachable or openable manner. By attaching/detaching or opening/closing the seat 21, the upper part of the rear body cover 19b is opened/closed. An occupant can sit on the seat 21 in the closed state in which the seat 21 is attached and the upper portion of the rear body cover 19b is closed. When the seat 21 is removed and the upper portion of the rear body cover 19b is opened, parts and spaces below the seat 21 can be accessed.
  • the seat 21 is lockable in the closed state.
  • the seat 21 may be configured to rotate around a hinge shaft provided at either the front or rear to open and close the upper portion of the rear body cover 19b.
  • a vehicle component 23 having a knee grip portion is supported in front of the seat 21 and above the main frame 7 .
  • the vehicle component parts 23 include, for example, existing vehicle component parts such as a fuel tank and air cleaner for the engine E, a 12V battery for auxiliary equipment, and an article storage section for loading and unloading luggage by the occupant. and PCU 34 may be included.
  • the present invention may be applied to a scooter-type vehicle in which a straddle space is formed in front of the seat 21 without any vehicle components.
  • FIG. 2 is a block diagram showing the configuration of the drive system S.
  • the drive system S includes an engine E, a first motor M1, a second motor M2, a power switching device 31, a PCU 34, and a battery 37.
  • the engine E is, for example, a multi-cylinder engine, and generates rotational driving force for the crankshaft 26 from the reciprocating motion of the piston of each cylinder.
  • the engine E is arranged with the rotation center axis (axis) C1 of the crankshaft 26 along the vehicle width direction (horizontal direction).
  • the crankshaft 26 is housed inside a crankcase 27 .
  • a cylinder block 28 protrudes from the crankcase 27, and a piston corresponding to each cylinder is fitted in the cylinder block 28.
  • Each piston is connected to the crankshaft 26 via a connecting rod.
  • the first motor M1 is arranged behind the engine E, and the second motor M2 is arranged above and behind the engine E.
  • the first motor M1 and the second motor M2 are each brushless three-phase AC motors.
  • the first motor M1 is a driving motor that generates rotational driving force for driving the rear wheels, and regenerates (generates power) when the vehicle decelerates.
  • the second motor M2 is a power generating motor that receives the driving force of the engine E to generate power, and performs at least one of charging the battery 37 and supplying power to the first motor M1.
  • variable speed driving is performed by, for example, VVVF (variable voltage variable frequency) control.
  • VVVF variable voltage variable frequency
  • the first motor M1 is speed-change controlled to have a continuously variable transmission, but is not limited to this, and may be speed-change controlled to have a stepped transmission.
  • the operation of the first motor M1 may include driving as an assist motor that assists the driving of the engine E.
  • Operation of the first motor M1 may include driving the engine E as a starter motor.
  • the second motor M2 generates electricity by rotating the rotor with the rotational power of the crankshaft 26 while the engine E is running.
  • the operation of the second motor M2 may include driving as an assist motor that assists the driving of the engine E.
  • Operation of the second motor M2 may include driving the engine E as a starter motor.
  • the PCU 34 may separately include a first motor control section that controls the first motor M1 and a second motor control section that controls the second motor M2.
  • the power switching device 31 switches the power transmission path between the engine E, the first motor M1 and the second motor M2. Under the control of the power switching device 31, the engine E, the first motor M1 and the second motor M2 cooperate to drive the rear wheel 4 (make the motorcycle 1 run). Under the control of the power switching device 31, the first motor M1 and the second motor M2 can be driven to generate power.
  • the drive system S and the rear wheels 4 are connected by a chain-type transmission mechanism 56, for example.
  • the PCU (Power Control Unit) 34 is an integrated control unit including a PDU (Power Drive Unit) 34a and an ECU (Electric Control Unit) 34b.
  • the PCU 34 mainly controls the operation (driving and power generation) of the first motor M1 and the second motor M2 based on various sensor information.
  • PCU 34 controls the current and voltage between first motor M1 and second motor M2 and battery 37 .
  • the PCU 34 includes a converter that raises and lowers voltage and an inverter that converts DC current to AC current.
  • the inverter includes a bridge circuit using a plurality of switching elements such as transistors, a smoothing capacitor, and the like, and controls energization to each stator winding of the first motor M1 and the second motor M2.
  • the first motor M ⁇ b>1 and the second motor M ⁇ b>2 switch between power running and power generation according to control by the PCU 34 .
  • the battery 37 obtains a predetermined high voltage (eg, 48V to 192V) by connecting a plurality of unit batteries 37a in series, for example.
  • the battery 37 includes a lithium ion battery as chargeable/dischargeable energy storage.
  • the battery 37 supplies electric power to the first motor M1 and can store electric power regenerated by the first motor M1 and electric power generated by the second motor M2.
  • Electric power from the battery 37 is supplied to the PDU 34a, which is a motor driver, via a contactor or the like interlocked with the main switch of the motorcycle 1, for example. Electric power from the battery 37 is converted from direct current to three-phase alternating current by the PDU 34a, and then supplied to the first motor M1 and the second motor M2.
  • the output voltage from the battery 37 is stepped down through a DC-DC converter and used to charge a 12V sub-battery.
  • the sub-battery supplies power to general electrical components such as lamps, meters, locking devices, and control system components such as ECUs. By installing a sub-battery, various electromagnetic locks can be operated even when the battery 37 is removed.
  • the battery 37 is detached from the vehicle body and can be charged by a charger outside the vehicle.
  • the battery 37 may be rechargeable by a charger connected to an external power source while mounted on the vehicle body, for example.
  • the battery 37 has a BMU (Battery Management Unit) that monitors charge/discharge status, temperature, and the like. Information monitored by the BMU is shared with the ECU 34b when the battery 37 is mounted on the vehicle body.
  • the ECU 34b drives and controls the first motor M1 and the second motor M2 via the PDU 34a based on detection information input from various sensors.
  • FIG. 7 is a block diagram showing the configuration of the control section 41 of the drive system S.
  • the control unit 41 includes a PCU 34, an engine ECU 42, and a clutch ECU 43.
  • PCU 34 controls the operation (driving and power generation) of first motor M1 and second motor M2.
  • the engine ECU 42 controls the start, operation and stop of the engine E by activating engine accessories such as an ignition device and a fuel injection device according to the degree of opening of the accelerator.
  • the engine ECU 42 includes an accelerator opening sensor 46 for detecting the amount of operation of an accelerator operator (for example, an accelerator grip), an engine speed sensor 47 for detecting the engine speed, and a vehicle speed (for example, wheel speed) of the motorcycle 1. Detected information from the vehicle speed sensor 48 and the like is input.
  • the engine ECU 42 operates engine accessories such as an ignition device and a fuel injection device based on various types of input detection information.
  • the clutch ECU 43 is a power switching control section, and operates the power switching device 31 based on various sensor information.
  • the clutch ECU 43 switches which of the engine E, the first motor M1 and the second motor M2 should be connected to the rear wheels 4 so as to be able to transmit power.
  • the clutch ECU 43 is connected to a clutch actuator 32 that connects and disconnects a clutch in the power switching device 31, for example.
  • the engine ECU 42 and the clutch ECU 43 may be provided separately or integrally.
  • the control unit 41 includes, for example, a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E, an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger, and a rotational speed of the engine E.
  • a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E
  • an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger
  • a rotational speed of the engine E Various sensors such as an engine rotation speed sensor 47 that detects the vehicle speed of the motorcycle 1, a vehicle speed sensor 48 that detects the vehicle speed of the motorcycle 1, and a remaining battery capacity sensor 49 that detects the remaining capacity of the battery 37 are connected.
  • the control unit 41 is activated, for example, when the main switch of the motorcycle 1 is turned on, and starts controlling the drive system S.
  • the control unit 41 stores, in memory, a map in which the correlation between the vehicle speed and the output (torque) is set for each accelerator opening, for example.
  • the control unit 41 appropriately causes the engine E, the first motor M1 and the second motor M2 to cooperate based on the output from each sensor, a predetermined map, and the like.
  • the control unit 41 applies torque from the drive system S to the rear wheel 4 to run the motorcycle 1 and enables the battery 37 to be charged.
  • the control unit 41 has a plurality of control modes for cooperating the engine E, the first motor M1 and the second motor M2.
  • the control unit 41 functions as a control mode switching unit that switches between a plurality of control modes. Switching of the control mode is functionally realized by processing executed based on a preset computer program.
  • the plurality of control modes of control unit 41 include EV mode, hybrid mode, regeneration mode, and engine drive mode.
  • EV mode the engine E is stopped, the first motor M1 is driven, and the motorcycle 1 is driven by the driving force of the first motor M1.
  • hybrid mode the second motor M2 is driven by the engine E as a generator, and the motorcycle 1 is driven by the driving force of the first motor M1.
  • regeneration mode the kinetic energy of the motorcycle 1 is used to drive the first motor M1 as a generator when the motorcycle 1 decelerates, and the battery 37 is charged with the electric power generated by the first motor M1.
  • the engine drive mode the driving force of the engine E is used to drive the motorcycle 1 .
  • Each control mode can be automatically switched according to sensor output or the like, or can be arbitrarily switched by the operation of the passenger.
  • the multiple control modes are described in more detail below.
  • an EV (Electric Vehicle) mode in which the engine E is stopped and the vehicle is driven by the driving force of the first motor M1 will be described.
  • the EV mode is a motor drive mode in which the motorcycle 1 can travel only by the driving force (motor torque) of the first motor M1, for example, when the motorcycle 1 is running at medium to low speeds (especially when cruising).
  • the motorcycle 1 is run with the engine E and the second motor M2 disconnected from the rear wheel 4 .
  • the hybrid mode it is also possible to drive the engine E and use the driving force of the engine E to generate power with the second motor M2 (hybrid mode).
  • the power generated by the second motor M2 is stored in the battery 37, but may be directly supplied to the first motor M1.
  • the hybrid mode is performed, for example, when the motorcycle 1 starts moving until it reaches a specified speed, when traveling uphill, when a sudden acceleration is required, and the like.
  • the hybrid mode is also implemented when the remaining battery capacity is low. Since the motorcycle 1 is smaller than a passenger car and the mounting size (capacity) of the battery 37 is limited, the hybrid mode is more likely to be used than the EV mode.
  • the torque of the engine E and the second motor M2 can assist the driving of the rear wheels. If the remaining battery charge is below the first specified value, the drive assist by the second motor M2 may be restricted. Further, when the remaining battery capacity is lower than a second specified value, the driving by the first motor M1 may be restricted and switched to the engine drive mode. When the remaining capacity of the fuel tank is below a specified value, the proportion of rear wheel drive by the first motor M1 and the second motor M2 may be increased.
  • regenerative mode In EV mode and hybrid mode, when the motorcycle 1 decelerates or travels downhill, it shifts to "regenerative mode".
  • the regeneration mode the rotational energy of the rear wheels 4 is input to the first motor M1 to regenerate (generate power), and the generated power is stored in the battery 37 .
  • the connection between the engine E and the rear wheels 4 may be released, and regeneration may be performed efficiently.
  • regenerative braking engine braking
  • the first motor M1 may idle to stop regeneration.
  • the power switching device 31 the engine E and the rear wheels 4 may be connected to generate engine braking.
  • the power switching device 31 connects the engine E and the rear wheels 4 so that power can be transmitted, and the driving force of the engine E drives the motorcycle 1 (engine drive). mode).
  • the driving force of the engine E may be used to drive the second motor M ⁇ b>2 to generate power, which may be stored in the battery 37 .
  • the engine drive mode at least one of the first motor M1 and the second motor M2 may be driven to assist rear wheel drive.
  • the engine E is configured without a transmission behind the crankshaft 26, and the front-to-rear width of the crankcase 27 is narrowed.
  • a cylinder block 28 projects obliquely forward and upward from the front portion of the crankcase 27 .
  • Reference symbol C2 in the drawing indicates an axis (center axis of the cylinder bore, cylinder axis) along the projecting direction of the cylinder block 28 .
  • the cylinder block 28 has the cylinder axis C2 inclined forward with respect to the vertical direction.
  • the forward inclination angle of the cylinder axis C2 with respect to the vertical direction is set to, for example, 45 degrees or more, thereby suppressing the vertical height of the engine E as a whole.
  • the cylinder block 28 is arranged on the vehicle front side of the crankshaft 26 .
  • the first motor M1 is arranged behind the crankcase 27 of the engine E. As shown in FIG. The first motor M1 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction. The first motor M1 is arranged at a position overlapping the pivot frame 8 in a side view. The first motor M1 is arranged with a rotating shaft (hereinafter referred to as a first rotating shaft) 151 along the left-right direction. The first rotating shaft 151 of the first motor M1 is arranged at a height overlapping the crankshaft 26 in the vertical direction. For example, the first rotating shaft 151 of the first motor M1 is arranged coaxially with the pivot shaft 17 . Reference symbol C3 in the drawing indicates the central axis (axis) of the first rotating shaft 151 and the pivot shaft 17 of the first motor M1.
  • the first motor M1 may be arranged forward of the pivot frame 8. That is, the first rotating shaft 151 of the first motor M1 may be arranged on a separate shaft from the pivot shaft 17 . Further, instead of the illustrated output shaft 55, an output shaft separate from the rotating shaft 151 of the first motor M1 may be provided.
  • the second motor M2 is arranged behind and above the crankcase 27 of the engine E.
  • the second motor M2 is arranged above the crankcase 27 of the engine E in the vertical direction.
  • the second motor M2 is arranged forward of the pivot frame 8 in a side view.
  • the second motor M2 is arranged with a rotating shaft (hereinafter referred to as a second rotating shaft) 251 along the left-right direction.
  • the second rotating shaft 251 of the second motor M2 is arranged rearward of the crankshaft 26 and forward of the first rotating shaft 151 of the first motor M1 in the longitudinal direction of the vehicle.
  • the second rotating shaft 251 of the second motor M2 is arranged above the crankshaft 26 and the first rotating shaft 151 of the first motor M1.
  • Reference symbol C4 in the drawing indicates the central axis (shaft center) of the second rotating shaft 251 of the second motor M2.
  • the first motor M1 is arranged offset to one side (left side) in the vehicle width direction with respect to the vehicle body left-right center CL.
  • the first motor M1 as a whole is arranged on the left side of the left-right center CL of the vehicle body.
  • the second motor M2 is arranged offset to the other side (right side) in the vehicle width direction with respect to the left-right center CL of the vehicle body.
  • the second motor M2 as a whole is arranged on the right side of the left-right center CL of the vehicle body.
  • an output shaft 55 coaxial with the first rotating shaft 151 is arranged on the left side of the first motor M1.
  • the output shaft 55 is an output portion of the drive system S, and outputs drive force (torque) via the power switching device 31 .
  • the output shaft 55 is connected to the rear wheel 4 via a chain-type first transmission mechanism 56, for example.
  • a drive sprocket 56a of a first transmission mechanism 56 is supported on the right end of the output shaft 55 so as to be rotatable therewith.
  • an input shaft 155 coaxial with the second rotating shaft 251 is arranged on the right side of the second motor M2.
  • the driving force (torque) of engine E (crankshaft 26 ) is input to input shaft 155 .
  • the input shaft 155 is connected to the crankshaft 26 via a chain-type second transmission mechanism 156, for example.
  • Each transmission mechanism 56, 156 is offset on the same side as the corresponding motors M1, M2.
  • the first transmission mechanism 56 and the second transmission mechanism 156 are not limited to the chain type, and may be belt type, shaft type, gear type, or the like.
  • a battery 37 as a power source for drive system S is arranged below seat 21 .
  • the battery 37 is arranged across the left and right center CL of the vehicle body (see FIG. 8).
  • the battery 37 is composed of, for example, a plurality of (for example, a pair of left and right) unit batteries 37a.
  • Each unit battery 37a has the same configuration.
  • Each unit battery 37a has, for example, a prismatic shape (rectangular parallelepiped shape) that has a rectangular cross section and extends in the longitudinal direction.
  • Each unit battery 37a is arranged with its longitudinal direction oriented in the vehicle front-rear direction, and its overall vertical width is suppressed.
  • Each unit battery 37a is accommodated, for example, in an integrated battery box. Each unit battery 37a can be attached to and detached from a battery box fixed to the vehicle body without tools. Each unit battery 37a is configured as a mobile battery that can be charged and discharged while removed from the vehicle body.
  • a symbol G2 in the figure indicates the center of gravity position of the battery 37 in a side view (hereinafter simply referred to as the center of gravity).
  • the battery 37 generates a predetermined high voltage (48-72V) by connecting a plurality of unit batteries 37a in series.
  • Each unit battery 37a is composed of, for example, a lithium ion battery as a chargeable/dischargeable energy storage.
  • Each unit battery 37a is connected to the PCU 34 via a junction box (distributor) and a contactor (electromagnetic switch).
  • a three-phase cable extends from the PCU 34 and is connected to the first motor M1.
  • the rear frame 9 has a pair of left and right rear frame members 9a.
  • the left and right rear frame members 9a are arranged apart from each other in the vehicle width direction.
  • At least a portion of the battery 37 is arranged between the left and right rear frame members 9a.
  • the battery 37 is spaced apart in front and above the rear wheel 4 in a side view.
  • the battery 37 is supported by the left and right rear frame members 9a.
  • the battery 37 in the rear body cover 19b can be attached/detached to/from the battery box and the vehicle body by attaching/detaching or opening/closing the seat 21.
  • the rear body cover 19b covering the rear portion of the vehicle body has a smaller overall width in the vehicle width direction than the front body cover 19a covering the front portion of the vehicle body. Therefore, for example, by making the side portion of the rear body cover 19b detachable or openable, it becomes possible to access the battery 37 in the rear body cover 19b from the side of the vehicle body and to attach and detach the battery 37.
  • FIG. also, by making the rear part of the rear body cover 19b detachable or openable/closable, it becomes possible to access the battery 37 from the rear of the vehicle body and to attach/detach the battery 37. As shown in FIG.
  • the PCU 34 has a rectangular parallelepiped outer shape and is arranged with one side extending along the vehicle width direction.
  • the PCU 34 in FIG. 1 is arranged with its upper and lower surfaces substantially horizontal when viewed from the vehicle width direction (side view).
  • the PCU 34 is arranged across the left and right center CL of the vehicle body (see FIG. 8).
  • the PCU 34 is arranged behind the head pipe 6 .
  • the PCU 34 is arranged inside the front body cover 19a.
  • the PCU 34 may be configured to receive running air through a prescribed air guide duct or the like.
  • a symbol G1 in the drawing indicates the position of the center of gravity of the PCU 34 in a side view (hereinafter simply referred to as the center of gravity).
  • the PCU 34 of this embodiment is included in the vehicle component 23 in front of the seat 21 .
  • the main frame 7 includes a pair of left and right main frame members 7a.
  • the left and right main frame members 7a extend rearward from the head pipe 6 while spreading out to the left and right.
  • the left and right main frame members 7a are arranged apart from each other in the vehicle width direction.
  • At least a portion of the PCU 34 is arranged between the left and right main frame members 7a.
  • the PCU 34 is supported by the left and right main frame members 7a.
  • the PCU 34 is arranged above the engine E.
  • the cylinder block 28 is greatly tilted forward to reduce the height, and the PCU 34 can be easily arranged. It is conceivable to dispose a battery 37 above the engine E instead of the PCU 34 (or together with the PCU 34).
  • the axis C1 of the crankshaft 26, the axis C3 of the first rotation shaft 151, and the axis C4 of the second rotation shaft 251 are triangles having these vertices. They are arranged side by side in a shape.
  • the axis C1 of the crankshaft 26 and the axis C3 of the first rotating shaft 151 are arranged below the axis C4 of the second rotating shaft 251 and aligned with the axis C4 of the second rotating shaft 251 in the longitudinal direction of the vehicle. are arranged in front of and behind the .
  • the center of gravity G2 of the battery 37, the center of gravity G1 of the PCU 34, and the center of gravity C4 of the second rotation shaft 251 are arranged side by side in an inverted triangle shape with these as vertices.
  • the center of gravity G2 of the battery 37 and the center of gravity G1 of the PCU 34 are arranged above the center C4 of the second rotation shaft 251, and are distributed in the longitudinal direction of the vehicle to the front and rear of the center C4 of the second rotation shaft 251. ing.
  • An inverted triangle connecting the center of gravity G2 of the battery 37, the center of gravity G1 of the PCU 34, and the center of gravity C4 of the second rotation shaft 251 is the center of gravity C1 of the crankshaft 26, the center of gravity C3 of the first rotation shaft 151, and the second rotation shaft 251.
  • the width in the vehicle front-rear direction is larger than the triangular shape connecting the axis C4.
  • the distance in the longitudinal direction of the vehicle between the center of gravity G1 of the PCU 34 and the center of gravity C4 of the second rotation shaft 251 (hereinafter referred to as the first distance L1) is the center of gravity C1 of the crankshaft 26 and the second rotation It is longer than the distance in the longitudinal direction of the vehicle between the axis C4 of the shaft 251 (hereinafter referred to as the second distance L2).
  • third distance L3 is the same as the center of gravity C3 of the first rotation shaft 151 and the second It is longer than the distance in the longitudinal direction of the vehicle (hereinafter referred to as the fourth distance L4) between the rotation shaft 251 and the axis C4.
  • the engine E, the first motor M1 for driving, the battery 37 and the PCU 34 are positioned around the second motor M2 for power generation while their positions are shifted in the vertical direction and the front-rear direction. They are arranged side by side around the two motors M2. Specifically, the PCU 34 is arranged above and in front of the second motor M2, the battery 37 is arranged above and behind the second motor M2, and the engine E is arranged below and in front of the second motor M2. A drive motor is arranged in the rear lower part.
  • the arrangement of drive system components is not limited to the arrangement described above.
  • the engine E and the drive motor may be arranged above the second motor M2, or the PCU 34 and the battery 37 may be arranged below the second motor M2.
  • the battery 37 and the drive motor may be arranged in front of the second motor M2, or the PCU 34 and the engine E may be arranged in the rear of the second motor M2.
  • the PCU 34 and the battery 37 are arranged so that at least a part of them overlap each other in the vertical direction.
  • the PCU 34 and the battery 37 are connected to each other via a high voltage line (wiring) 39 .
  • the high voltage line 39 is arranged so as to extend linearly in the vehicle front-rear direction.
  • extends linearly means that the PCU 34 and the battery 37 may be allowed to sway (curve less than 90 degrees) within the vertical width, in addition to extending along the vehicle width direction.
  • the motorcycle 1 in the above embodiment includes the first driving motor M1 for applying driving force to the rear wheel 4 and the second electric power generating motor M2 provided separately from the first motor M1. , a PCU 34 that controls the first motor M1 and the second motor M2, a battery 37 that supplies power to the first motor M1, and an engine E that drives the second motor M2 to generate electricity. .
  • the motorcycle 1 is configured as a series hybrid vehicle. In the motorcycle 1, the crankshaft 26 of the engine E, the first rotating shaft 151 of the first motor M1, and the second rotating shaft 251 of the second motor M2 are axially parallel to each other. are placed. The axial direction is oriented in the vehicle width direction (vehicle left-right direction).
  • the axial center C1 of the crankshaft 26, the axial center C3 of the first rotating shaft 151, and the axial center C4 of the second rotating shaft 251 are arranged in a triangular shape with these vertices. are placed in When viewed from the axial direction, the center of gravity G2 of the battery 37, the center of gravity G1 of the PCU 34, and the center of gravity C4 of the second rotating shaft 251 are arranged side by side in an inverted triangle shape with these vertices.
  • the first motor M1, the second motor M2, and the engine E which are heavy objects, can be arranged close to each other (concentrated) in a triangular shape.
  • the PCU 34, the battery 37, and the second motor M2 which are also heavy objects, can be placed close to each other (concentrated) in an inverted triangle shape. Therefore, mass concentration of these drive system components can be achieved.
  • the engine E, the first motor M1, the battery 37, and the PCU 34 are arranged vertically with the second motor M2 for power generation as a boundary, so that the weight balance of the drive system components can be improved.
  • the axial center C1 of the crankshaft 26 and the axial center C3 of the first rotating shaft 151 are arranged below the axial center C4 of the second rotating shaft 251, and are arranged in the longitudinal direction of the vehicle. They are distributed to the front and back of the axis C4 of the two rotating shafts 251 and arranged.
  • the center of gravity G2 of the battery 37 and the center of gravity G1 of the PCU 34 are arranged above the center C4 of the second rotation shaft 251, and are located above the center C4 of the second rotation shaft 251 in the longitudinal direction of the vehicle. They are arranged in front and back.
  • the engine E, the first motor M1, the battery 37, and the PCU 34 which are heavy objects, are arranged with their positions shifted in the vertical direction and the front-rear direction around the second motor M2 for power generation.
  • Drive system components can be placed closer together (clumped). Therefore, the mass of the drive system components can be concentrated, and the weight balance of the drive system components can be improved.
  • the crankshaft 26 and the PCU 34 are arranged on one side (the front side) in the vehicle front-rear direction of the second rotation shaft 251, and the center of gravity G1 of the PCU 34 is arranged when viewed from the axial direction. and the axis C4 of the second rotating shaft 251 in the longitudinal direction of the vehicle is defined as a first distance L1;
  • the first distance L1 is set longer than the second distance L2 when the distance in the front-rear direction is the second distance L2. That is, the PCU 34 is arranged on the front side of the crankshaft 26 .
  • the first rotating shaft 151 and the battery 37 are arranged on one side (rear side) of the second rotating shaft 251 in the longitudinal direction of the vehicle.
  • 37 and the axis C4 of the second rotation shaft 251 in the longitudinal direction of the vehicle is defined as a third distance L3;
  • the third distance L3 is set longer than the fourth distance L4 when the distance in the vehicle front-rear direction between C4 is a fourth distance L4. That is, the battery 37 is arranged on the rear side of the first rotating shaft 151 .
  • the battery 37 can be arranged on the rear side of the first motor M1.
  • the battery 37 right above the first motor M1.
  • the first motor M ⁇ b>1 and the battery 37 can be staggered forward and backward to be efficiently arranged, and the heat from the first motor M ⁇ b>1 can be made difficult to be transmitted to the battery 37 .
  • the motorcycle 1 further includes a high-voltage line 39 that connects the PCU 34 and the battery 37, and the high-voltage line 39 extends linearly in the longitudinal direction of the vehicle.
  • the high-voltage wire 39 between the PCU 34 and the battery 37 extends linearly in the longitudinal direction of the vehicle, so that the load on the high-voltage wire 39 is reduced compared to when the high-voltage wire 39 is bent. be able to.
  • the length of the high voltage line 39 can be shortened to reduce weight and cost.
  • the crankshaft 26 of the engine E, the first rotation shaft 151 of the first motor M1, and the second rotation shaft 251 of the second motor M2 are arranged along the vehicle width direction. are placed. According to this configuration, the first motor M1, the second motor M2, and the engine E can be arranged close to each other when viewed from the side in the vehicle width direction. It is possible to suppress
  • the first transmission mechanism 56 that connects the first motor M1 and the rear wheel 4 and the second transmission mechanism 156 that connects the engine E and the second motor M2 are provided.
  • the first motor M1 and the first transmission mechanism 56 are offset on one side (left side) in the vehicle width direction, and the second motor M2 and the second transmission mechanism 156 are arranged on the other side in the vehicle width direction. (right side) are offset.
  • the first motor M1 and the second motor M2 are arranged separately in the vehicle width direction, and the first transmission mechanism 56 and the second transmission mechanism 156 are also arranged separately on the same side as the corresponding motors.
  • the drive system components can be arranged in a well-balanced manner in the vehicle width direction.
  • the battery 37 is detachable from the vehicle body, and is arranged behind the second motor M2. According to this configuration, the detachable battery 37 is arranged at the rear part of the vehicle body, so that the battery 37 can be accessed from the upper side, the rear side, or both the left and right sides of the rear part of the vehicle body, and the battery 37 can be easily attached and detached. .
  • the battery 37 is arranged above the second motor M2 and below the seat 21 on which the rider sits. According to this configuration, the battery 37 can be accessed by opening and closing the seat 21, and the attachment and detachment of the battery 37 can be further facilitated.
  • FIG. 9 shows a reference example for explaining the effects of the embodiment.
  • the motorcycle 101 of FIG. 9 does not include the engine E and the second motor M2 (motor for power generation), but is configured as a pure EV that runs only on the power stored in the batteries 37, 37'.
  • the same reference numerals are assigned to the same configurations as those of the above-described embodiment, and detailed description thereof will be omitted.
  • the motorcycle 101 further mounts a plurality of batteries 37' (hereinafter referred to as additional batteries 37') at the mounting portions of the engine E and the second motor M2 of the embodiment.
  • the additional battery 37' includes a plurality of unit batteries 37a, like the battery 37 of the embodiment.
  • the additional battery 37' is arranged below the PCU 34 and in front of the first motor M1.
  • the additional battery 37' is connected to the PCU 34 by a high voltage line (wiring) 39' extending linearly in the vertical direction.
  • the distance between the PCU 34 and the additional battery 37' is short, and the shortening of the high-voltage line 39' facilitates connection, easy protection, and reduction in weight and cost.
  • the saddle-riding type vehicle includes general vehicles in which the driver straddles the vehicle body, motorcycles (motorized bicycles and scooter type vehicles). ), but also include vehicles with three wheels (including vehicles with two front wheels and one rear wheel, as well as vehicles with one front wheel and two rear wheels) or four-wheel vehicles (such as four-wheel buggies).
  • the straddle-type vehicle includes not only a vehicle such as a motorcycle that turns in a direction in which the vehicle body is banked, but also a vehicle that turns by steering the steered wheels without banking the vehicle body.
  • the present invention is not limited to this, and may be applied to various types of saddle-riding vehicles including two-wheel, three-wheel and four-wheel drive motors. Further, the present invention is not limited to a hybrid vehicle having an internal combustion engine, and may be applied to an electric vehicle that runs only with a drive motor.
  • the configuration in the above embodiment is an example of the present invention, and various modifications, such as replacing the constituent elements of the embodiment with known constituent elements, are possible without departing from the gist of the present invention.

Abstract

This saddled vehicle comprises a drive motor (M1), a second motor (M2), a control device (34), a battery (37), and an internal combustion engine (E). A crankshaft (26) provided in the internal combustion engine (E), a first rotation shaft (151) provided in the drive motor (M1), and a second rotation shaft (251) provided in the second motor (M2) are disposed in parallel with each other in the axial direction. As viewed in the axial direction, an axial center (C1) of the crankshaft (26), an axial center (C3) of the first rotation shaft (151), and an axial center (C4) of the second rotation shaft (251) are disposed in a triangular shape having these as vertices, and a gravity center (G2) of the battery (37), a gravity center (G1) of the control device (34), and the axial center (C4) of the second rotation shaft (251) are disposed in an inverted triangular shape having these as vertices.

Description

鞍乗り型車両saddle-riding vehicle
 本発明は、鞍乗り型車両に関する。 The present invention relates to a saddle-ride type vehicle.
 例えば特許文献1には、エンジン、発電機、バッテリ、駆動モータ、及びコントロールユニット等の動力用部品を有するシリーズハイブリッド式鞍乗り型車両が開示されている。 For example, Patent Document 1 discloses a series hybrid straddle-type vehicle having power components such as an engine, a generator, a battery, a drive motor, and a control unit.
特開2020-175822号公報JP 2020-175822 A
 ところで、ハイブリッド式鞍乗り型車両においては、エンジン、駆動モータ、発電モータ等の重量物が多く搭載されるため、動力ユニットの重量バランスの最適化およびコンパクトな配置を両立するような構成が要望されている。 By the way, in a hybrid straddle-type vehicle, many heavy objects such as an engine, a drive motor, and a generator motor are mounted. ing.
 そこで本発明は、エンジン、駆動モータ、発電モータを備える鞍乗り型車両において、動力ユニットの重量バランスの最適化およびコンパクトな配置を図ることを目的とする。 An object of the present invention is therefore to optimize the weight balance of the power unit and achieve a compact layout in a saddle-riding vehicle equipped with an engine, a drive motor, and a generator motor.
 上記課題の解決手段として、本発明の第一の態様は、駆動輪(4)に駆動力を与える駆動モータ(M1)と、前記駆動モータ(M1)とは別に設けられる第二モータ(M2)と、前記駆動モータ(M1)および前記第二モータ(M2)を制御する制御装置(34)と、前記駆動モータ(M1)に電力を与えるバッテリ(37)と、前記第二モータ(M2)を駆動して発電させる内燃機関(E)と、を備え、前記内燃機関(E)が有するクランク軸(26)と、前記駆動モータ(M1)が有する第一回転軸(151)と、前記第二モータ(M2)が有する第二回転軸(251)とは、互いに軸方向を平行にして配置され、前記軸方向から見て、前記クランク軸(26)の軸心(C1)、前記第一回転軸(151)の軸心(C3)、前記第二回転軸(251)の軸心(C4)は、これらを頂点とした三角形状に並んで配置され、前記バッテリ(37)の重心(G2)、前記制御装置(34)の重心(G1)、前記第二回転軸(251)の軸心(C4)は、これらを頂点とした逆三角形状に並んで配置されている鞍乗り型車両を提供する。
 この構成によれば、重量物である駆動モータ、第二モータおよび内燃機関を互いに三角形状に近付けて(集約して)配置可能となる。また、同様に重量物である制御装置、バッテリおよび第二モータを互いに逆三角形状に近付けて(集約して)配置可能となる。したがって、これら駆動システム部品のマスの集中を図ることができる。また、発電用の第二モータを境に、内燃機関および駆動モータとバッテリおよび制御装置とを上下に振り分けて配置することで、駆動システム部品の重量バランスを良好にすることができる。
As means for solving the above problems, a first aspect of the present invention provides a drive motor (M1) that applies a driving force to a drive wheel (4), and a second motor (M2) that is provided separately from the drive motor (M1). a controller (34) for controlling the drive motor (M1) and the second motor (M2); a battery (37) for supplying power to the drive motor (M1); and the second motor (M2). An internal combustion engine (E) that drives and generates power, the crankshaft (26) of the internal combustion engine (E), the first rotation shaft (151) of the drive motor (M1), and the second The second rotation shaft (251) of the motor (M2) is arranged in parallel with each other in the axial direction, and when viewed from the axial direction, the axis (C1) of the crankshaft (26) and the first rotation shaft (251) The axis (C3) of the shaft (151) and the axis (C4) of the second rotating shaft (251) are arranged side by side in a triangular shape with these as vertices, and the center of gravity (G2) of the battery (37). , the center of gravity (G1) of the control device (34), and the center of gravity (C4) of the second rotating shaft (251) are arranged side by side in an inverted triangle with these as vertices. do.
According to this configuration, the drive motor, the second motor, and the internal combustion engine, which are heavy objects, can be arranged close to each other (concentrated) in a triangular shape. In addition, the control device, the battery, and the second motor, which are also heavy objects, can be placed close to each other (concentrated) in an inverted triangle shape. Therefore, mass concentration of these drive system components can be achieved. In addition, by arranging the internal combustion engine, the drive motor, the battery, and the control device vertically with the second motor for power generation as a boundary, the weight balance of the drive system components can be improved.
 本発明の第二の態様は、駆動輪(4)に駆動力を与える駆動モータ(M1)と、前記駆動モータ(M1)とは別に設けられる第二モータ(M2)と、前記駆動モータ(M1)および前記第二モータ(M2)を制御する制御装置(34)と、前記駆動モータ(M1)に電力を与えるバッテリ(37)と、前記第二モータ(M2)を駆動して発電させる内燃機関(E)と、を備え、前記内燃機関(E)が有するクランク軸(26)と、前記駆動モータ(M1)が有する第一回転軸(151)と、前記第二モータ(M2)が有する第二回転軸(251)とは、互いに軸方向を平行にして配置され、前記クランク軸(26)と前記第一回転軸(151)とは、前記第二回転軸(251)よりも下方に配置され、かつ車両前後方向で前記第二回転軸(251)の前後に振り分けて配置され、前記バッテリ(37)と前記制御装置(34)とは、前記第二回転軸(251)よりも上方に配置され、かつ車両前後方向で前記第二回転軸(251)の前後に振り分けて配置されている鞍乗り型車両を提供する。
 この構成によれば、発電用の第二モータを中心に、重量物である内燃機関、駆動モータ、バッテリおよび制御装置が、上下方向および前後方向で位置をずらしながら配置されることで、これら駆動システム部品を互いに近付けて(集約して)配置可能となる。したがって、駆動システム部品のマスの集中を図るとともに、駆動システム部品の重量バランスを良好にすることができる。
A second aspect of the present invention includes a drive motor (M1) that applies a driving force to a drive wheel (4), a second motor (M2) provided separately from the drive motor (M1), and the drive motor (M1 ) and the second motor (M2), a battery (37) for supplying electric power to the driving motor (M1), and an internal combustion engine for driving the second motor (M2) to generate electricity. (E), wherein the crankshaft (26) of the internal combustion engine (E), the first rotation shaft (151) of the drive motor (M1), and the second motor (M2) of the The two rotating shafts (251) are arranged axially parallel to each other, and the crankshaft (26) and the first rotating shaft (151) are arranged below the second rotating shaft (251). and arranged in the front and rear of the second rotation shaft (251) in the longitudinal direction of the vehicle, and the battery (37) and the control device (34) are arranged above the second rotation shaft (251). To provide a saddle-riding type vehicle that is arranged and distributed to the front and rear of the second rotating shaft (251) in the longitudinal direction of the vehicle.
According to this configuration, the heavy internal combustion engine, the drive motor, the battery, and the control device are arranged while shifting their positions in the vertical direction and the front-rear direction around the second motor for power generation. System components can be placed closer together (aggregated). Therefore, the mass of the drive system components can be concentrated, and the weight balance of the drive system components can be improved.
 上記態様において、前記制御装置(34)と前記バッテリ(37)とを接続する配線(39)を備え、前記配線(39)は、車両前後方向に延びて配置されている構成でもよい。
 この構成によれば、制御装置およびバッテリ間の配線が車両前後方向で直線状に延びるので、配線が屈曲して配置される場合に比べて、配線に掛かる負担を少なくすることができる。また、配線の長さを短縮して重量およびコストを低減することができる。
In the above aspect, a wiring (39) connecting the control device (34) and the battery (37) may be provided, and the wiring (39) may be arranged to extend in the longitudinal direction of the vehicle.
According to this configuration, the wiring between the control device and the battery extends linearly in the vehicle front-rear direction, so the burden on the wiring can be reduced as compared with the case where the wiring is bent. Also, the length of wiring can be shortened to reduce weight and cost.
 上記態様において、前記クランク軸(26)と、前記第一回転軸(151)と、前記第二回転軸(251)とは、前記軸方向を車幅方向に沿わせて配置されている構成でもよい。
 この構成によれば、駆動モータ、第二モータおよび内燃機関が、車幅方向から見た側面視で互いに近付いて配置可能となり、マスの集中を図るとともに、前後方向および上下方向でコンパクトに配置することができる。
In the above aspect, the crankshaft (26), the first rotating shaft (151), and the second rotating shaft (251) may be arranged with the axial direction along the vehicle width direction. good.
According to this configuration, the drive motor, the second motor, and the internal combustion engine can be arranged close to each other when viewed from the side in the vehicle width direction, so that the mass can be concentrated and arranged compactly in the longitudinal and vertical directions. be able to.
 上記態様において、前記駆動モータ(M1)と前記駆動輪(4)とを連結する第一伝動機構(56)と、前記内燃機関(E)と前記第二モータ(M2)とを連結する第二伝動機構(156)と、を備え、前記駆動モータ(M1)および前記第一伝動機構(56)は、車幅方向一側にオフセットして配置され、前記第二モータ(M2)および前記第二伝動機構(156)は、車幅方向他側にオフセットして配置されている構成でもよい。
 この構成によれば、駆動モータおよび第二モータが車幅方向で振り分けて配置されるとともに、第一伝動機構および第二伝動機構も車幅方向で対応するモータと同側に振り分けて配置されることで、これら駆動システム部品を車幅方向でバランスよく配置することができる。
In the above aspect, a first transmission mechanism (56) connecting the drive motor (M1) and the drive wheels (4), and a second transmission mechanism (56) connecting the internal combustion engine (E) and the second motor (M2) a transmission mechanism (156), wherein the drive motor (M1) and the first transmission mechanism (56) are offset to one side in the vehicle width direction, and the second motor (M2) and the second The transmission mechanism (156) may be arranged offset to the other side in the vehicle width direction.
According to this configuration, the drive motor and the second motor are distributed and arranged in the vehicle width direction, and the first transmission mechanism and the second transmission mechanism are also distributed and arranged on the same side as the corresponding motors in the vehicle width direction. Thus, these drive system components can be arranged in a well-balanced manner in the vehicle width direction.
 上記態様において、前記第二回転軸(251)よりも車両前後方向一側には、前記クランク軸(26)が配置され、前記バッテリ(37)および前記制御装置(34)の内、前記第二回転軸(251)よりも車両前後方向一側に位置するものを一側駆動システム部品(34)とし、かつ、前記軸方向から見て、前記一側駆動システム部品(34)の重心(G1)と前記第二回転軸(251)の軸心(C4)との間の車両前後方向の距離を第一距離(L1)、前記クランク軸(26)の軸心(C1)と前記第二回転軸(251)の軸心(C4)との間の車両前後方向の距離を第二距離(L2)とすると、前記第一距離(L1)は、前記第二距離(L2)よりも長く設定されている構成でもよい。
 この構成によれば、車両前後方向一側に位置する一側駆動システム部品およびクランク軸(ひいては内燃機関)の内、一側駆動システム部品をより遠くに配置することで、内燃機関の真上に一側駆動システム部品を配置しなくて済み、これらを前後にずらして効率よく配置することができるとともに、内燃機関からの熱が一側駆動システム部品に伝わり難くすることができる。
In the above aspect, the crankshaft (26) is arranged on one side in the vehicle front-rear direction of the second rotating shaft (251), and the battery (37) and the control device (34) are connected to the second rotating shaft (251). A one-side drive system component (34) is positioned on one side in the vehicle front-rear direction of the rotating shaft (251), and the center of gravity (G1) of the one-side drive system component (34) when viewed from the axial direction. and the axial center (C4) of the second rotating shaft (251) in the longitudinal direction of the vehicle is defined as a first distance (L1), the axial center (C1) of the crankshaft (26) and the second rotating shaft Assuming that the distance in the longitudinal direction of the vehicle between (251) and the axis (C4) is a second distance (L2), the first distance (L1) is set longer than the second distance (L2). It may be a configuration with
According to this configuration, among the one-side drive system components and the crankshaft (and thus the internal combustion engine) positioned on one side in the longitudinal direction of the vehicle, the one-side drive system components are arranged farther away, so that the The one-side drive system components do not have to be arranged, and can be efficiently arranged by being shifted back and forth, and heat from the internal combustion engine is less likely to be transmitted to the one-side drive system components.
 上記態様において、前記第二回転軸(251)よりも車両前後方向他側には、前記第一回転軸(151)が配置され、前記バッテリ(37)および前記制御装置(34)の内、前記第二回転軸(251)よりも車両前後方向他側に位置するものを他側駆動システム部品(37)とし、かつ、前記軸方向から見て、前記他側駆動システム部品(37)の重心(G2)と前記第二回転軸(251)の軸心(C4)との間の車両前後方向の距離を第三距離(L3)、前記第一回転軸(151)の軸心(C3)と前記第二回転軸(251)の軸心(C4)との間の車両前後方向の距離を第四距離(L4)とすると、前記第三距離(L3)は、前記第四距離(L4)よりも長く設定されている構成でもよい。
 この構成によれば、車両前後方向他側に位置する他側駆動システム部品および第一回転軸(ひいては駆動モータ)の内、他側駆動システム部品をより遠くに配置することで、駆動モータの真上に他側駆動システム部品を配置しなくて済み、これらを前後にずらして効率よく配置することができるとともに、駆動モータからの熱が他側駆動システム部品に伝わり難くすることができる。
In the above aspect, the first rotating shaft (151) is arranged on the other side in the vehicle front-rear direction of the second rotating shaft (251), and the battery (37) and the control device (34) include the The other side drive system component (37) is positioned on the other side in the vehicle longitudinal direction of the second rotating shaft (251), and the center of gravity (37) of the other side drive system component (37) when viewed from the axial direction G2) and the axial center (C4) of the second rotating shaft (251) in the longitudinal direction of the vehicle are defined as a third distance (L3), and the axial center (C3) of the first rotating shaft (151) and the aforementioned Assuming that a fourth distance (L4) is the distance in the longitudinal direction of the vehicle between the axis (C4) of the second rotating shaft (251), the third distance (L3) is longer than the fourth distance (L4). A long configuration may also be used.
According to this configuration, among the other-side drive system components and the first rotating shaft (and thus the drive motor) located on the other side in the vehicle front-rear direction, the other-side drive system components are arranged farther away from each other so that the drive motor is closer to the vehicle. It is not necessary to arrange the other-side drive system parts on top, and these can be efficiently arranged by shifting them back and forth.
 上記態様において、前記バッテリ(37)は、車体に対して着脱可能であり、前記第二モータ(M2)よりも後方に配置されている構成でもよい。
 この構成によれば、着脱式のバッテリが車体後部に配置されることで、車体後部の上方、後方または左右両側等からバッテリにアクセス可能となり、バッテリの着脱を容易にすることができる。
In the above aspect, the battery (37) may be detachable from the vehicle body and may be arranged behind the second motor (M2).
According to this configuration, by arranging the detachable battery in the rear portion of the vehicle body, the battery can be accessed from the upper portion, the rear portion, or both the left and right sides of the rear portion of the vehicle body, and the attachment and detachment of the battery can be facilitated.
 上記態様において、前記バッテリ(37)は、前記第二モータ(M2)よりも上方に配置され、かつ乗員が着座するシート(21)の下方に配置されている構成でもよい。
 この構成によれば、シートの開閉等によってバッテリにアクセス可能となり、バッテリの着脱をより一層容易にすることができる。
In the above aspect, the battery (37) may be arranged above the second motor (M2) and below the seat (21) on which the passenger sits.
According to this configuration, the battery can be accessed by opening and closing the seat, and the attachment and detachment of the battery can be further facilitated.
 本発明によれば、エンジン、駆動モータ、発電モータを備える鞍乗り型車両において、動力ユニットの重量バランスの最適化およびコンパクトな配置を図ることができる。 According to the present invention, in a saddle type vehicle equipped with an engine, a drive motor, and a generator motor, it is possible to optimize the weight balance of the power unit and achieve a compact layout.
本発明の実施形態における自動二輪車の概略を示す左側面図である。1 is a left side view schematically showing a motorcycle according to an embodiment of the invention; FIG. 上記自動二輪車の駆動システムの概略を示す構成図である。2 is a configuration diagram showing an outline of a drive system of the motorcycle; FIG. 上記駆動システムのEVモードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an EV mode of the drive system; 上記駆動システムのハイブリッドモードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a hybrid mode of the drive system; 上記駆動システムの回生モードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a regeneration mode of the drive system; 上記駆動システムのエンジンドライブモードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an engine drive mode of the drive system; 上記駆動システムの制御部の概略を示す構成図である。It is a block diagram which shows the outline of the control part of the said drive system. 上記自動二輪車の概略を示す平面図である。Fig. 2 is a plan view showing the outline of the motorcycle; 上記実施形態の参考例の自動二輪車の概略を示す左側面図である。It is a left side view showing the outline of the motorcycle of the reference example of the above-mentioned embodiment.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。また以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UP、車体左右中央を示す線CLが示されている。本実施形態で用いる「中間」とは、対象の両端間の中央のみならず、対象の両端間の内側の範囲を含む意とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the directions such as front, back, left, and right in the following description are the same as the directions of the vehicle described below unless otherwise specified. An arrow FR indicating the front of the vehicle, an arrow LH indicating the left of the vehicle, an arrow UP indicating the upper side of the vehicle, and a line CL indicating the left-right center of the vehicle are shown at appropriate locations in the drawings used in the following description. The term "intermediate" used in this embodiment is intended to include not only the center between the two ends of the target, but also the inner range between the two ends of the target.
<車両全体>
 図1は、本実施形態の鞍乗り型車両の一例としての自動二輪車1を示す。自動二輪車1は、エンジン(内燃機関)Eおよび二つの電気モータM1,M2を含む駆動システムSを構成し、エンジン動力とモータ動力とを協働させて走行する。自動二輪車1は、いわゆる2モータハイブリッドシステムを搭載したハイブリッド車両である。なお、以下に説明する本発明の要旨を逸脱しない範囲であれば、1モータ式のハイブリッド車両や内燃機関を有さない電動車両に適用してもよい。
<Whole vehicle>
FIG. 1 shows a motorcycle 1 as an example of a straddle-type vehicle according to the present embodiment. The motorcycle 1 comprises a drive system S including an engine (internal combustion engine) E and two electric motors M1 and M2, and runs by cooperating engine power and motor power. The motorcycle 1 is a hybrid vehicle equipped with a so-called two-motor hybrid system. It should be noted that the present invention may be applied to a one-motor hybrid vehicle or an electric vehicle that does not have an internal combustion engine, as long as it does not depart from the gist of the present invention described below.
 自動二輪車1は、ハンドル2によって操舵される前輪(操舵輪)3と、駆動システムSによって駆動される後輪(駆動輪)4と、を備えている。自動二輪車1は、運転者が車体を跨いで乗車する鞍乗り型車両であり、前後輪3,4の接地点を基準に車体を左右方向(ロール方向)に揺動(バンク)可能である。ハンドル2は、左右一体のバーハンドルでも左右別体のセパレートハンドルでもよく、かつバータイプのハンドルでなくてもよい。 The motorcycle 1 includes front wheels (steered wheels) 3 that are steered by a steering wheel 2 and rear wheels (driving wheels) 4 that are driven by a drive system S. The motorcycle 1 is a saddle type vehicle in which the rider straddles the vehicle body, and the vehicle body can be swung (banked) in the lateral direction (roll direction) with reference to ground contact points of the front and rear wheels 3 and 4 . The handle 2 may be a left and right integrated bar handle or a left and right separate separate handle, and may not be a bar type handle.
 自動二輪車1は、車体の主要骨格となる車体フレーム5を備えている。車体フレーム5は、ヘッドパイプ6、メインフレーム7、ピボットフレーム8、リヤフレーム9を備えている。
 車体フレーム5は、前端部の左右中央に位置するヘッドパイプ6において、前輪懸架装置11のフロントフォーク12を転舵可能に支持する。車体フレーム5は、前後中間部に位置するピボットフレーム8において、後輪懸架装置15のスイングアーム16を上下揺動可能に支持する。車体フレーム5は、ヘッドパイプ6からピボットフレーム8よりも後方のリヤフレーム9に渡って、溶接等の結合手段によって一体に設けられている。車体フレーム5は、一部(例えばリヤフレーム9等)をボルト締結等で着脱可能としてもよい。図中符号9aはリヤフレーム9が備える左右一対のリヤフレーム部材を示す。
The motorcycle 1 includes a vehicle body frame 5 that serves as a main frame of the vehicle body. The body frame 5 includes a head pipe 6, a main frame 7, a pivot frame 8 and a rear frame 9.
The vehicle body frame 5 steerably supports a front fork 12 of a front wheel suspension 11 at a head pipe 6 positioned in the center of the front end portion in the left-right direction. The vehicle body frame 5 supports a swing arm 16 of a rear wheel suspension device 15 in a pivot frame 8 positioned in the front-rear intermediate portion so as to be capable of swinging up and down. The vehicle body frame 5 is integrally provided from the head pipe 6 to the rear frame 9 behind the pivot frame 8 by a joining means such as welding. A part of the vehicle body frame 5 (for example, the rear frame 9 and the like) may be detachable by bolting or the like. Reference numeral 9a in the drawing denotes a pair of left and right rear frame members provided in the rear frame 9. As shown in FIG.
 ヘッドパイプ6は、鉛直方向に対して後傾したステアリング軸線(回動軸線)を有している。ヘッドパイプ6は、前輪3および前輪懸架装置11をステアリング軸線回りに回動可能に支持している。例えば、前輪懸架装置11は、左右一対のフロントフォーク12を備えている。左右フロントフォーク12の上部は、ステアリングステムを介してヘッドパイプ6に支持されている。左右フロントフォーク12の下端部は、前輪3の車軸3aを支持している。左右フロントフォーク12は、それぞれテレスコピック式とされ、自動二輪車1のフロントサスペンションを構成している。前輪懸架装置11は、テレスコピック式のフロントサスペンションを構成するものに限らず、例えばリンク式のフロントサスペンションを構成してもよい。 The head pipe 6 has a steering axis (rotational axis) tilted backward with respect to the vertical direction. The head pipe 6 supports the front wheel 3 and the front wheel suspension device 11 so as to be rotatable about the steering axis. For example, the front wheel suspension system 11 includes a pair of left and right front forks 12 . Upper portions of the left and right front forks 12 are supported by the head pipe 6 via a steering stem. Lower ends of the left and right front forks 12 support the axle 3 a of the front wheel 3 . The left and right front forks 12 are of a telescopic type, respectively, and constitute a front suspension of the motorcycle 1 . The front wheel suspension 11 is not limited to constituting a telescopic front suspension, and may constitute, for example, a link-type front suspension.
 ピボットフレーム8は、車幅方向に延びるピボット軸(揺動軸)17を介して、スイングアーム16の前端部を支持している。スイングアーム16の後端部には、後輪4の車軸4aが支持されている。例えば、スイングアーム16の前部と車体フレーム5の前後中間部(例えばピボットフレーム8近傍のクロスフレーム)との間には、リヤクッションが介装されている。スイングアーム16およびリヤクッションは、自動二輪車1のリヤサスペンションを構成している。リヤクッションは、スイングアーム16の後部と車体フレーム5の後部(例えばリヤフレーム9)との間に介装されてもよい。
 車体フレーム5を含む車体の全体は、車体カバー19で覆われている。車体カバー19は、例えば車体前後中央を境に、車体前部を覆うフロントボディカバー19aと、車体後部を覆うリヤボディカバー19bと、に分けられる。
The pivot frame 8 supports the front end of the swing arm 16 via a pivot shaft (swing shaft) 17 extending in the vehicle width direction. A rear end portion of the swing arm 16 supports an axle 4 a of the rear wheel 4 . For example, a rear cushion is interposed between the front portion of the swing arm 16 and the front-rear middle portion of the body frame 5 (for example, the cross frame near the pivot frame 8). The swing arm 16 and the rear cushion constitute a rear suspension of the motorcycle 1. As shown in FIG. The rear cushion may be interposed between the rear portion of the swing arm 16 and the rear portion of the body frame 5 (for example, the rear frame 9).
The entire vehicle body including the vehicle body frame 5 is covered with a vehicle body cover 19 . The vehicle body cover 19 is divided into, for example, a front body cover 19a that covers the front part of the vehicle body and a rear body cover 19b that covers the rear part of the vehicle body, with the front-rear center of the vehicle body as a boundary.
 リヤフレーム9は、ピボットフレーム8の後上方へ延びている。リヤフレーム9上には、乗員着座用のシート21が支持されている。リヤフレーム9は、シート21に着座した乗員の着座荷重を支持する。リヤフレーム9は、リヤクッションが連結される場合はクッション伸縮時の反力を受ける。
 シート21は、運転者が座る前着座部と後部同乗者が座る後着座部とを一体に備えている。リヤフレーム9の周囲は、シート21の両側部の下方から後方に渡るリヤボディカバー19bで覆われている。
The rear frame 9 extends rearward and upward of the pivot frame 8 . A seat 21 for seating an occupant is supported on the rear frame 9 . The rear frame 9 supports the seating load of an occupant seated on the seat 21 . When the rear cushion is connected, the rear frame 9 receives a reaction force when the cushion expands and contracts.
The seat 21 integrally includes a front seating portion on which a driver sits and a rear seating portion on which a rear passenger sits. The periphery of the rear frame 9 is covered with a rear body cover 19b extending from below both sides of the seat 21 to the rear.
 シート21は、例えばリヤボディカバー19b側に着脱可能あるいは開閉可能に取り付けられている。シート21を着脱あるいは開閉することで、リヤボディカバー19bの上部が開閉される。シート21を取り付けてリヤボディカバー19bの上部を閉塞した閉状態において、乗員がシート21に着座可能となる。シート21を取り外してリヤボディカバー19bの上部を開放した開状態において、シート21下方の部品や空間にアクセス可能となる。シート21は、閉状態で施錠可能である。シート21は、例えば前後何れかに設けたヒンジ軸を中心に回動してリヤボディカバー19bの上部を開閉する構成でもよい。 The seat 21 is attached to, for example, the rear body cover 19b in a detachable or openable manner. By attaching/detaching or opening/closing the seat 21, the upper part of the rear body cover 19b is opened/closed. An occupant can sit on the seat 21 in the closed state in which the seat 21 is attached and the upper portion of the rear body cover 19b is closed. When the seat 21 is removed and the upper portion of the rear body cover 19b is opened, parts and spaces below the seat 21 can be accessed. The seat 21 is lockable in the closed state. For example, the seat 21 may be configured to rotate around a hinge shaft provided at either the front or rear to open and close the upper portion of the rear body cover 19b.
 シート21の前方でメインフレーム7の上方には、ニーグリップ部を有する車両構成部品23が支持されている。車両構成部品23は、例えばエンジンE用の燃料タンクやエアクリーナ、補機用の12Vバッテリ、乗員が荷物を出し入れする物品収納部、等の既存の車両構成部品を含む他、駆動システムSのバッテリ37やPCU34を含んでもよい。
 なお、本発明は、シート21の前方に車両構成部品を有さず跨ぎ空間を形成したスクータ型車両に適用してもよい。
A vehicle component 23 having a knee grip portion is supported in front of the seat 21 and above the main frame 7 . The vehicle component parts 23 include, for example, existing vehicle component parts such as a fuel tank and air cleaner for the engine E, a 12V battery for auxiliary equipment, and an article storage section for loading and unloading luggage by the occupant. and PCU 34 may be included.
The present invention may be applied to a scooter-type vehicle in which a straddle space is formed in front of the seat 21 without any vehicle components.
<駆動システム>
 図2は、駆動システムSの構成を示すブロック図である。
 駆動システムSは、エンジンEと、第一モータM1と、第二モータM2と、動力切替装置31と、PCU34と、バッテリ37と、を備えている。
<Drive system>
FIG. 2 is a block diagram showing the configuration of the drive system S. As shown in FIG.
The drive system S includes an engine E, a first motor M1, a second motor M2, a power switching device 31, a PCU 34, and a battery 37.
 エンジンEは、例えば複数気筒エンジンであり、各気筒のピストンの往復動からクランクシャフト26の回転駆動力を生成する。
 図1を併せて参照し、エンジンEは、クランクシャフト26の回転中心軸線(軸心)C1を車幅方向(左右方向)に沿わせて配置されている。クランクシャフト26は、クランクケース27内に収容されている。クランクケース27からはシリンダブロック28が突出し、シリンダブロック28内には各気筒に対応するピストンが嵌装されている。各ピストンは、コネクティングロッドを介してクランクシャフト26に連結されている。
The engine E is, for example, a multi-cylinder engine, and generates rotational driving force for the crankshaft 26 from the reciprocating motion of the piston of each cylinder.
Referring also to FIG. 1, the engine E is arranged with the rotation center axis (axis) C1 of the crankshaft 26 along the vehicle width direction (horizontal direction). The crankshaft 26 is housed inside a crankcase 27 . A cylinder block 28 protrudes from the crankcase 27, and a piston corresponding to each cylinder is fitted in the cylinder block 28. As shown in FIG. Each piston is connected to the crankshaft 26 via a connecting rod.
 本実施形態において、第一モータM1は、エンジンEの後方に配置され、第二モータM2は、エンジンEの後上方に配置されている。第一モータM1および第二モータM2は、それぞれブラシレスの三相交流モータである。第一モータM1は、後輪駆動用の回転駆動力を発生する駆動用モータであり、車両減速時等には回生(発電)を行う。第二モータM2は、エンジンEの駆動力を受けて発電を行う発電用モータであり、バッテリ37の充電および第一モータM1への電力供給の少なくとも一方を行う。 In this embodiment, the first motor M1 is arranged behind the engine E, and the second motor M2 is arranged above and behind the engine E. The first motor M1 and the second motor M2 are each brushless three-phase AC motors. The first motor M1 is a driving motor that generates rotational driving force for driving the rear wheels, and regenerates (generates power) when the vehicle decelerates. The second motor M2 is a power generating motor that receives the driving force of the engine E to generate power, and performs at least one of charging the battery 37 and supplying power to the first motor M1.
 第一モータM1は、後輪4を駆動させて自動二輪車1を走行させるとき、例えばVVVF(variable voltage variable frequency)制御による可変速駆動がなされる。第一モータM1は、無段変速機を有する如く変速制御されるが、これに限らず、有段変速機を有する如く変速制御されてもよい。第一モータM1の作動は、エンジンEの駆動補助を行うアシストモータとしての駆動を含んでもよい。第一モータM1の作動は、エンジンEのスタータモータとしての駆動を含んでもよい。 When the first motor M1 drives the rear wheels 4 and causes the motorcycle 1 to travel, variable speed driving is performed by, for example, VVVF (variable voltage variable frequency) control. The first motor M1 is speed-change controlled to have a continuously variable transmission, but is not limited to this, and may be speed-change controlled to have a stepped transmission. The operation of the first motor M1 may include driving as an assist motor that assists the driving of the engine E. Operation of the first motor M1 may include driving the engine E as a starter motor.
 第一モータM1の駆動時、バッテリ37からの電力は、PCU34に供給され、直流から三相交流に変換されて、第一モータM1に供給される。第一モータM1の発電時、第一モータM1の発電電力は、レギュレータの整流回路等を経て、バッテリ37に蓄電される。 When driving the first motor M1, power from the battery 37 is supplied to the PCU 34, converted from direct current to three-phase alternating current, and supplied to the first motor M1. When the first motor M1 generates power, the power generated by the first motor M1 is stored in the battery 37 through the rectifier circuit of the regulator and the like.
 第二モータM2は、エンジンEの運転中にクランクシャフト26の回転動力でロータを回転させて発電を行う。第二モータM2の作動は、エンジンEの駆動補助を行うアシストモータとしての駆動を含んでもよい。第二モータM2の作動は、エンジンEのスタータモータとしての駆動を含んでもよい。 The second motor M2 generates electricity by rotating the rotor with the rotational power of the crankshaft 26 while the engine E is running. The operation of the second motor M2 may include driving as an assist motor that assists the driving of the engine E. Operation of the second motor M2 may include driving the engine E as a starter motor.
 第二モータM2の駆動時、バッテリ37からの電力は、PCU34に供給され、直流から三相交流に変換されて、第二モータM2に供給される。第二モータM2の発電時、第二モータM2の発電電力は、レギュレータの整流回路等を経て、バッテリ37に蓄電される。
 PCU34は、第一モータM1を制御する第一モータ制御部と、第二モータM2を制御する第二モータ制御部と、を別体に備えてもよい。
When the second motor M2 is driven, power from the battery 37 is supplied to the PCU 34, converted from direct current to three-phase alternating current, and supplied to the second motor M2. When the second motor M2 generates power, the power generated by the second motor M2 is stored in the battery 37 through the rectifier circuit of the regulator and the like.
The PCU 34 may separately include a first motor control section that controls the first motor M1 and a second motor control section that controls the second motor M2.
 動力切替装置31は、エンジンE、第一モータM1および第二モータM2の間の動力伝達経路を切り替える。動力切替装置31の制御により、エンジンE、第一モータM1および第二モータM2が協働して後輪4を駆動させる(自動二輪車1を走行させる)。動力切替装置31の制御により、第一モータM1および第二モータM2が駆動して発電可能である。駆動システムSと後輪4との間は、例えばチェーン式の伝動機構56で連結されている。 The power switching device 31 switches the power transmission path between the engine E, the first motor M1 and the second motor M2. Under the control of the power switching device 31, the engine E, the first motor M1 and the second motor M2 cooperate to drive the rear wheel 4 (make the motorcycle 1 run). Under the control of the power switching device 31, the first motor M1 and the second motor M2 can be driven to generate power. The drive system S and the rear wheels 4 are connected by a chain-type transmission mechanism 56, for example.
 図7を併せて参照し、PCU(Power Control Unit)34は、PDU(Power Drive Unit)34aおよびECU(Electric Control Unit)34bを備えた一体の制御ユニットである。PCU34は、各種センサ情報に基づいて、主に第一モータM1および第二モータM2の作動(駆動および発電)を制御する。PCU34は、第一モータM1および第二モータM2とバッテリ37との間の電流および電圧をコントロールする。 Also referring to FIG. 7, the PCU (Power Control Unit) 34 is an integrated control unit including a PDU (Power Drive Unit) 34a and an ECU (Electric Control Unit) 34b. The PCU 34 mainly controls the operation (driving and power generation) of the first motor M1 and the second motor M2 based on various sensor information. PCU 34 controls the current and voltage between first motor M1 and second motor M2 and battery 37 .
 PCU34は、電圧を昇降させるコンバータと、DC電流をAC電流に変換するインバータと、を備えている。インバータは、トランジスタ等のスイッチング素子を複数用いたブリッジ回路及び平滑コンデンサ等を具備し、第一モータM1および第二モータM2の各ステータ巻線に対する通電を制御する。第一モータM1および第二モータM2は、PCU34による制御に応じて、力行運転と発電とを切り替える。 The PCU 34 includes a converter that raises and lowers voltage and an inverter that converts DC current to AC current. The inverter includes a bridge circuit using a plurality of switching elements such as transistors, a smoothing capacitor, and the like, and controls energization to each stator winding of the first motor M1 and the second motor M2. The first motor M<b>1 and the second motor M<b>2 switch between power running and power generation according to control by the PCU 34 .
 バッテリ37は、例えば複数の単位バッテリ37aを直列に結線して所定の高電圧(例えば48V~192V)を得る。バッテリ37は、充放電が可能なエネルギーストレージとしてリチウムイオンバッテリを備えている。バッテリ37は、第一モータM1に電力を供給するとともに、第一モータM1による回生電力および第二モータM2による発電電力を蓄電可能である。 The battery 37 obtains a predetermined high voltage (eg, 48V to 192V) by connecting a plurality of unit batteries 37a in series, for example. The battery 37 includes a lithium ion battery as chargeable/dischargeable energy storage. The battery 37 supplies electric power to the first motor M1 and can store electric power regenerated by the first motor M1 and electric power generated by the second motor M2.
 バッテリ37からの電力は、例えば自動二輪車1のメインスイッチと連動するコンタクタ等を介して、モータドライバたるPDU34aに供給される。バッテリ37からの電力は、PDU34aにて直流から三相交流に変換された後、第一モータM1および第二モータM2に供給される。
 バッテリ37からの出力電圧は、DC-DCコンバータを介して降圧され、12Vのサブバッテリの充電に供される。サブバッテリは、灯火器等の一般電装部品、メーターおよび施錠装置、ならびにECU等の制御系部品に電力を供給する。サブバッテリを搭載することで、バッテリ37を取り外した状態等でも各種電磁ロック等を操作可能である。
Electric power from the battery 37 is supplied to the PDU 34a, which is a motor driver, via a contactor or the like interlocked with the main switch of the motorcycle 1, for example. Electric power from the battery 37 is converted from direct current to three-phase alternating current by the PDU 34a, and then supplied to the first motor M1 and the second motor M2.
The output voltage from the battery 37 is stepped down through a DC-DC converter and used to charge a 12V sub-battery. The sub-battery supplies power to general electrical components such as lamps, meters, locking devices, and control system components such as ECUs. By installing a sub-battery, various electromagnetic locks can be operated even when the battery 37 is removed.
 バッテリ37は、車体から取り外した状態で、車外の充電器によって充電可能である。バッテリ37は、例えば車体に搭載された状態で、外部電源に接続したチャージャーによって充電可能であってもよい。
 バッテリ37は、充放電状況や温度等を監視するBMU(Battery Management Unit)を備えている。BMUが監視した情報は、バッテリ37を車体に搭載した際にECU34bに共有される。ECU34bは、各種センサから入力された検知情報に基づき、PDU34aを介して第一モータM1および第二モータM2を駆動制御する。
The battery 37 is detached from the vehicle body and can be charged by a charger outside the vehicle. The battery 37 may be rechargeable by a charger connected to an external power source while mounted on the vehicle body, for example.
The battery 37 has a BMU (Battery Management Unit) that monitors charge/discharge status, temperature, and the like. Information monitored by the BMU is shared with the ECU 34b when the battery 37 is mounted on the vehicle body. The ECU 34b drives and controls the first motor M1 and the second motor M2 via the PDU 34a based on detection information input from various sensors.
<制御部>
 図7は、駆動システムSの制御部41の構成を示すブロック図である。
 制御部41は、PCU34と、エンジンECU42と、クラッチECU43と、を備えている。
 PCU34は、第一モータM1および第二モータM2の作動(駆動および発電)を制御する。
<Control part>
FIG. 7 is a block diagram showing the configuration of the control section 41 of the drive system S. As shown in FIG.
The control unit 41 includes a PCU 34, an engine ECU 42, and a clutch ECU 43.
PCU 34 controls the operation (driving and power generation) of first motor M1 and second motor M2.
 エンジンECU42は、アクセル開度等に応じて点火装置および燃料噴射装置といったエンジン補機を作動させて、エンジンEの始動、運転および停止を制御する。エンジンECU42には、アクセル操作子(例えばアクセルグリップ)の操作量を検出するアクセル開度センサ46、エンジン回転数を検出するエンジン回転数センサ47、自動二輪車1の車速(例えば車輪速度)を検出する車速センサ48、等の検出情報が入力される。エンジンECU42は、入力された各種の検出情報に基づき、点火装置および燃料噴射装置といったエンジン補機を作動させる。 The engine ECU 42 controls the start, operation and stop of the engine E by activating engine accessories such as an ignition device and a fuel injection device according to the degree of opening of the accelerator. The engine ECU 42 includes an accelerator opening sensor 46 for detecting the amount of operation of an accelerator operator (for example, an accelerator grip), an engine speed sensor 47 for detecting the engine speed, and a vehicle speed (for example, wheel speed) of the motorcycle 1. Detected information from the vehicle speed sensor 48 and the like is input. The engine ECU 42 operates engine accessories such as an ignition device and a fuel injection device based on various types of input detection information.
 クラッチECU43は、動力切替制御部であり、各種センサ情報に基づいて動力切替装置31を作動させる。クラッチECU43は、エンジンE、第一モータM1および第二モータM2の何れを、後輪4と動力伝達可能に連結するかを切り替える。クラッチECU43には、例えば動力切替装置31内のクラッチを断接させるクラッチアクチュエータ32が接続されている。
 エンジンECU42とクラッチECU43とは、互いに別体に設けられても一体に設けられてもよい。
The clutch ECU 43 is a power switching control section, and operates the power switching device 31 based on various sensor information. The clutch ECU 43 switches which of the engine E, the first motor M1 and the second motor M2 should be connected to the rear wheels 4 so as to be able to transmit power. The clutch ECU 43 is connected to a clutch actuator 32 that connects and disconnects a clutch in the power switching device 31, for example.
The engine ECU 42 and the clutch ECU 43 may be provided separately or integrally.
 制御部41には、例えばエンジンEの燃料タンクの残容量を検知する燃料残容量センサ45、乗員のアクセル開度(出力要求量)を検知するアクセル開度センサ46、エンジンEの回転数を検知するエンジン回転数センサ47、自動二輪車1の車速を検知する車速センサ48、バッテリ37の残容量を検知するバッテリ残容量センサ49、等の各種センサが接続されている。 The control unit 41 includes, for example, a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E, an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger, and a rotational speed of the engine E. Various sensors such as an engine rotation speed sensor 47 that detects the vehicle speed of the motorcycle 1, a vehicle speed sensor 48 that detects the vehicle speed of the motorcycle 1, and a remaining battery capacity sensor 49 that detects the remaining capacity of the battery 37 are connected.
 制御部41は、例えば自動二輪車1のメインスイッチがオンになると起動し、駆動システムSの制御を開始する。制御部41は、例えばアクセル開度毎に車速と出力(トルク)との相関を設定したマップを、メモリに記憶している。制御部41は、各センサからの出力および予め定められたマップ等に基づいて、エンジンE、第一モータM1および第二モータM2を適宜協働させる。制御部41は、駆動システムSから後輪4にトルクを付与して自動二輪車1を走行させるとともに、バッテリ37を充電可能とする。 The control unit 41 is activated, for example, when the main switch of the motorcycle 1 is turned on, and starts controlling the drive system S. The control unit 41 stores, in memory, a map in which the correlation between the vehicle speed and the output (torque) is set for each accelerator opening, for example. The control unit 41 appropriately causes the engine E, the first motor M1 and the second motor M2 to cooperate based on the output from each sensor, a predetermined map, and the like. The control unit 41 applies torque from the drive system S to the rear wheel 4 to run the motorcycle 1 and enables the battery 37 to be charged.
 制御部41は、エンジンE、第一モータM1および第二モータM2を協働させる複数の制御モードを有している。制御部41は、複数の制御モードを切り替える制御モード切替部として機能する。制御モードの切り替えは、予め設定されたコンピュータプログラムに基づいて実行される処理によって、機能的に実現される。 The control unit 41 has a plurality of control modes for cooperating the engine E, the first motor M1 and the second motor M2. The control unit 41 functions as a control mode switching unit that switches between a plurality of control modes. Switching of the control mode is functionally realized by processing executed based on a preset computer program.
<制御モード>
 制御部41の複数の制御モードは、EVモードと、ハイブリッドモードと、回生モードと、エンジンドライブモードと、を含む。
 図3を参照し、EVモードは、エンジンEを停止して第一モータM1を駆動させ、第一モータM1の駆動力で自動二輪車1を走行させる。
 図4を参照し、ハイブリッドモードは、エンジンEにより第二モータM2を発電機として駆動させつつ、第一モータM1の駆動力で自動二輪車1を走行させる。
 図5を参照し、回生モードは、自動二輪車1の減速時等に自動二輪車1の運動エネルギーによって第一モータM1を発電機として駆動させ、第一モータM1の発電電力でバッテリ37を充電する。
 図6を参照し、エンジンドライブモードは、エンジンEの駆動力で自動二輪車1を走行させる。
 各制御モードは、センサ出力等に応じて自動的に切り替え可能、または乗員の操作によって任意に切り替え可能である。
<Control mode>
The plurality of control modes of control unit 41 include EV mode, hybrid mode, regeneration mode, and engine drive mode.
Referring to FIG. 3, in the EV mode, the engine E is stopped, the first motor M1 is driven, and the motorcycle 1 is driven by the driving force of the first motor M1.
Referring to FIG. 4, in the hybrid mode, the second motor M2 is driven by the engine E as a generator, and the motorcycle 1 is driven by the driving force of the first motor M1.
Referring to FIG. 5, in the regeneration mode, the kinetic energy of the motorcycle 1 is used to drive the first motor M1 as a generator when the motorcycle 1 decelerates, and the battery 37 is charged with the electric power generated by the first motor M1.
Referring to FIG. 6 , in the engine drive mode, the driving force of the engine E is used to drive the motorcycle 1 .
Each control mode can be automatically switched according to sensor output or the like, or can be arbitrarily switched by the operation of the passenger.
 以下、複数の制御モードについてより詳細に説明する。
 まず、エンジンEを停止して第一モータM1の駆動力で車両を走行させるEV(Electric Vehicle)モードについて説明する。EVモードは、例えば自動二輪車1の発進時から中低速の走行時(特にクルーズ走行時)等において、第一モータM1の駆動力(モータトルク)のみによって走行可能なモータドライブモードである。EVモードでは、エンジンEおよび第二モータM2と後輪4との連結を解除した状態で自動二輪車1を走行させる。
The multiple control modes are described in more detail below.
First, an EV (Electric Vehicle) mode in which the engine E is stopped and the vehicle is driven by the driving force of the first motor M1 will be described. The EV mode is a motor drive mode in which the motorcycle 1 can travel only by the driving force (motor torque) of the first motor M1, for example, when the motorcycle 1 is running at medium to low speeds (especially when cruising). In the EV mode, the motorcycle 1 is run with the engine E and the second motor M2 disconnected from the rear wheel 4 .
 EVモードにおいて、エンジンEを駆動し、エンジンEの駆動力によって第二モータM2で発電を行うことも可能である(ハイブリッドモード)。ハイブリッドモードにおいて、第二モータM2の発電電力は、バッテリ37に蓄電されるが、第一モータM1に直接供給されてもよい。
 ハイブリッドモードは、例えば自動二輪車1の発進時から規定速度に達するまでの間、上り坂走行時、急加速要求時等に実施される。ハイブリッドモードは、バッテリ残容量が少ない場合にも実施される。自動二輪車1は乗用車に比べて小型であり、バッテリ37の搭載サイズ(容量)も制限されるため、EVモードよりもハイブリッドモードとなる機会が多い。
In the EV mode, it is also possible to drive the engine E and use the driving force of the engine E to generate power with the second motor M2 (hybrid mode). In the hybrid mode, the power generated by the second motor M2 is stored in the battery 37, but may be directly supplied to the first motor M1.
The hybrid mode is performed, for example, when the motorcycle 1 starts moving until it reaches a specified speed, when traveling uphill, when a sudden acceleration is required, and the like. The hybrid mode is also implemented when the remaining battery capacity is low. Since the motorcycle 1 is smaller than a passenger car and the mounting size (capacity) of the battery 37 is limited, the hybrid mode is more likely to be used than the EV mode.
 ハイブリッドモードにおいて、エンジンEおよび第二モータM2の駆動力の少なくとも一部を、駆動システムSの出力部に供給することも可能である。これにより、エンジンEおよび第二モータM2のトルクで後輪駆動をアシストすることが可能である。バッテリ残容量が第一の規定値を下回っている場合は、第二モータM2による駆動アシストを制限してもよい。また、バッテリ残容量がさらに低い第二の規定値を下回る場合は、第一モータM1による駆動を制限してエンジンドライブモードに切り替えてもよい。燃料タンクの残容量が規定値を下回る場合は、第一モータM1および第二モータM2による後輪駆動の割合を増やしてもよい。 It is also possible to supply at least part of the drive power of the engine E and the second motor M2 to the output of the drive system S in the hybrid mode. As a result, the torque of the engine E and the second motor M2 can assist the driving of the rear wheels. If the remaining battery charge is below the first specified value, the drive assist by the second motor M2 may be restricted. Further, when the remaining battery capacity is lower than a second specified value, the driving by the first motor M1 may be restricted and switched to the engine drive mode. When the remaining capacity of the fuel tank is below a specified value, the proportion of rear wheel drive by the first motor M1 and the second motor M2 may be increased.
 EVモードおよびハイブリッドモードにおいて、自動二輪車1の減速時や下り坂走行時には、「回生モード」に移行する。回生モードでは、後輪4の回転エネルギーを第一モータM1に入力して回生(発電)を行い、この発電電力をバッテリ37に蓄電する。このとき、動力切替装置31の切り替えによって、エンジンEと後輪4との連結を解除し、効率よく回生を行う構成としてもよい。回生モードでは、後輪4に回生ブレーキ(機関ブレーキ)を発生させる。バッテリ37の充電量が規定値以上の場合には、第一モータM1を空転させて回生を停止してもよい。このとき、動力切替装置31の切り替えによって、エンジンEと後輪4とを連結し、エンジンブレーキを発生させてもよい。 In EV mode and hybrid mode, when the motorcycle 1 decelerates or travels downhill, it shifts to "regenerative mode". In the regeneration mode, the rotational energy of the rear wheels 4 is input to the first motor M1 to regenerate (generate power), and the generated power is stored in the battery 37 . At this time, by switching the power switching device 31, the connection between the engine E and the rear wheels 4 may be released, and regeneration may be performed efficiently. In the regenerative mode, regenerative braking (engine braking) is generated on the rear wheels 4 . When the amount of charge in the battery 37 is equal to or greater than a specified value, the first motor M1 may idle to stop regeneration. At this time, by switching the power switching device 31, the engine E and the rear wheels 4 may be connected to generate engine braking.
 高速走行時(特に定速走行時)等では、動力切替装置31においてエンジンEと後輪4との間を動力伝達可能に連結し、エンジンEの駆動力によって自動二輪車1を走行させる(エンジンドライブモード)。エンジンドライブモードにおいて、エンジンEの駆動力によって第二モータM2を駆動して発電を行い、バッテリ37に蓄電してもよい。エンジンドライブモードにおいて、第一モータM1および第二モータM2の少なくとも一方を駆動させ、後輪駆動をアシストしてもよい。 During high-speed running (particularly during constant-speed running), etc., the power switching device 31 connects the engine E and the rear wheels 4 so that power can be transmitted, and the driving force of the engine E drives the motorcycle 1 (engine drive). mode). In the engine drive mode, the driving force of the engine E may be used to drive the second motor M<b>2 to generate power, which may be stored in the battery 37 . In the engine drive mode, at least one of the first motor M1 and the second motor M2 may be driven to assist rear wheel drive.
<エンジン配置>
 図1を参照し、例えば、エンジンEは、クランクシャフト26の後方にトランスミッションを有さない構成であり、クランクケース27の前後幅を狭めている。本実施形態のエンジンEは、クランクケース27の前部から斜め前上方へシリンダブロック28を突出させている。図中符号C2はシリンダブロック28の突出方向に沿う軸線(シリンダボアの中心軸線、シリンダ軸線)を示す。シリンダブロック28は、シリンダ軸線C2を垂直方向に対して前方へ傾斜させている。シリンダ軸線C2の垂直方向に対する前傾角度は、例えば45度以上とされており、エンジンE全体の上下高さを抑えている。シリンダブロック28は、クランクシャフト26よりも車両前方側に配置されている。
<Engine placement>
Referring to FIG. 1, for example, the engine E is configured without a transmission behind the crankshaft 26, and the front-to-rear width of the crankcase 27 is narrowed. In the engine E of this embodiment, a cylinder block 28 projects obliquely forward and upward from the front portion of the crankcase 27 . Reference symbol C2 in the drawing indicates an axis (center axis of the cylinder bore, cylinder axis) along the projecting direction of the cylinder block 28 . The cylinder block 28 has the cylinder axis C2 inclined forward with respect to the vertical direction. The forward inclination angle of the cylinder axis C2 with respect to the vertical direction is set to, for example, 45 degrees or more, thereby suppressing the vertical height of the engine E as a whole. The cylinder block 28 is arranged on the vehicle front side of the crankshaft 26 .
<モータ配置>
 図1を参照し、第一モータM1は、エンジンEのクランクケース27の後方に配置されている。第一モータM1は、上下方向でエンジンEのクランクケース27と重なる高さに配置されている。第一モータM1は、側面視でピボットフレーム8と重なる位置に配置されている。第一モータM1は、回転軸(以下、第一回転軸という。)151を左右方向に沿わせて配置されている。第一モータM1の第一回転軸151は、上下方向でクランクシャフト26と重なる高さに配置されている。例えば、第一モータM1の第一回転軸151は、ピボット軸17と同軸に配置されている。図中符号C3は第一モータM1の第一回転軸151およびピボット軸17の中心軸線(軸心)を示す。
<Motor arrangement>
Referring to FIG. 1, the first motor M1 is arranged behind the crankcase 27 of the engine E. As shown in FIG. The first motor M1 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction. The first motor M1 is arranged at a position overlapping the pivot frame 8 in a side view. The first motor M1 is arranged with a rotating shaft (hereinafter referred to as a first rotating shaft) 151 along the left-right direction. The first rotating shaft 151 of the first motor M1 is arranged at a height overlapping the crankshaft 26 in the vertical direction. For example, the first rotating shaft 151 of the first motor M1 is arranged coaxially with the pivot shaft 17 . Reference symbol C3 in the drawing indicates the central axis (axis) of the first rotating shaft 151 and the pivot shaft 17 of the first motor M1.
 例えば、第一モータM1は、ピボットフレーム8よりも前方に配置されてもよい。すなわち、第一モータM1の第一回転軸151は、ピボット軸17と別軸に配置されてもよい。また、図示の出力軸55に代わり、第一モータM1の回転軸151とは別軸の出力軸が備えられてもよい。 For example, the first motor M1 may be arranged forward of the pivot frame 8. That is, the first rotating shaft 151 of the first motor M1 may be arranged on a separate shaft from the pivot shaft 17 . Further, instead of the illustrated output shaft 55, an output shaft separate from the rotating shaft 151 of the first motor M1 may be provided.
 第二モータM2は、エンジンEのクランクケース27の後上方に配置されている。第二モータM2は、上下方向でエンジンEのクランクケース27よりも上方に配置されている。第二モータM2は、側面視でピボットフレーム8よりも前方に配置されている。第二モータM2は、回転軸(以下、第二回転軸という。)251を左右方向に沿わせて配置されている。第二モータM2の第二回転軸251は、車両前後方向でクランクシャフト26よりも後方かつ第一モータM1の第一回転軸151よりも前方に配置されている。第二モータM2の第二回転軸251は、クランクシャフト26および第一モータM1の第一回転軸151よりも上方に配置されている。図中符号C4は第二モータM2の第二回転軸251の中心軸線(軸心)を示す。 The second motor M2 is arranged behind and above the crankcase 27 of the engine E. The second motor M2 is arranged above the crankcase 27 of the engine E in the vertical direction. The second motor M2 is arranged forward of the pivot frame 8 in a side view. The second motor M2 is arranged with a rotating shaft (hereinafter referred to as a second rotating shaft) 251 along the left-right direction. The second rotating shaft 251 of the second motor M2 is arranged rearward of the crankshaft 26 and forward of the first rotating shaft 151 of the first motor M1 in the longitudinal direction of the vehicle. The second rotating shaft 251 of the second motor M2 is arranged above the crankshaft 26 and the first rotating shaft 151 of the first motor M1. Reference symbol C4 in the drawing indicates the central axis (shaft center) of the second rotating shaft 251 of the second motor M2.
 図8を併せて参照し、例えば、第一モータM1は、車体左右中央CLに対して、車幅方向一側(左側)にオフセットして配置されている。第一モータM1は、全体が車体左右中央CLよりも左側に配置されている。一方、第二モータM2は、車体左右中央CLに対して、車幅方向他側(右側)にオフセットして配置されている。第二モータM2は、全体が車体左右中央CLよりも右側に配置されている。第一モータM1および第二モータM2が左右に振り分けて配置されることで、各モータM1,M2を含む駆動システム部品の左右重量バランスが良好になる。第一モータM1および第二モータM2の少なくとも一方は、平面視で車体左右中央CLと重なるように配置されてもよい。 Also referring to FIG. 8, for example, the first motor M1 is arranged offset to one side (left side) in the vehicle width direction with respect to the vehicle body left-right center CL. The first motor M1 as a whole is arranged on the left side of the left-right center CL of the vehicle body. On the other hand, the second motor M2 is arranged offset to the other side (right side) in the vehicle width direction with respect to the left-right center CL of the vehicle body. The second motor M2 as a whole is arranged on the right side of the left-right center CL of the vehicle body. By distributing the first motor M1 and the second motor M2 to the left and right and arranging them, the left and right weight balance of the drive system components including the motors M1 and M2 is improved. At least one of the first motor M1 and the second motor M2 may be arranged so as to overlap the vehicle body left-right center CL in a plan view.
 図1、図8を参照し、例えば、第一モータM1の左側には、第一回転軸151と同軸の出力軸55が配置されている。出力軸55は、駆動システムSの出力部であり、動力切替装置31を介して駆動力(トルク)が出力される。
 出力軸55は、例えばチェーン式の第一伝動機構56を介して後輪4と連結されている。出力軸55の右端部には、第一伝動機構56のドライブスプロケット56aが一体回転可能に支持されている。
1 and 8, for example, an output shaft 55 coaxial with the first rotating shaft 151 is arranged on the left side of the first motor M1. The output shaft 55 is an output portion of the drive system S, and outputs drive force (torque) via the power switching device 31 .
The output shaft 55 is connected to the rear wheel 4 via a chain-type first transmission mechanism 56, for example. A drive sprocket 56a of a first transmission mechanism 56 is supported on the right end of the output shaft 55 so as to be rotatable therewith.
 例えば、第二モータM2の右側には、第二回転軸251と同軸の入力軸155が配置されている。入力軸155には、エンジンE(クランクシャフト26)の駆動力(トルク)が入力される。入力軸155は、例えばチェーン式の第二伝動機構156を介してクランクシャフト26と連結されている。 For example, an input shaft 155 coaxial with the second rotating shaft 251 is arranged on the right side of the second motor M2. The driving force (torque) of engine E (crankshaft 26 ) is input to input shaft 155 . The input shaft 155 is connected to the crankshaft 26 via a chain-type second transmission mechanism 156, for example.
 第一伝動機構56および第二伝動機構156が左右に振り分けて配置されることで、駆動システム部品の左右重量バランスがより一層良好になる。各伝動機構56,156は、各々対応するモータM1,M2と同側にオフセットして配置されている。なお、第一伝動機構56および第二伝動機構156はチェーン式に限らず、ベルト式、シャフト式およびギヤ式等であってもよい。 By distributing the first transmission mechanism 56 and the second transmission mechanism 156 to the left and right, the left and right weight balance of the drive system components is further improved. Each transmission mechanism 56, 156 is offset on the same side as the corresponding motors M1, M2. The first transmission mechanism 56 and the second transmission mechanism 156 are not limited to the chain type, and may be belt type, shaft type, gear type, or the like.
<バッテリ配置>
 図1を参照し、シート21の下方には、駆動システムSの電源であるバッテリ37が配置されている。バッテリ37は、車体左右中央CLを左右に跨いで配置されている(図8参照)。バッテリ37は、例えば複数(例えば左右一対)の単位バッテリ37aで構成されている。各単位バッテリ37aは、互いに同一構成である。各単位バッテリ37aは、例えば断面矩形状をなして長手方向に延びる角柱状(直方体状)をなしている。各単位バッテリ37aは、長手方向を車両前後方向に向けて配置され、全体的に上下幅を抑えている。
<Battery placement>
Referring to FIG. 1, a battery 37 as a power source for drive system S is arranged below seat 21 . The battery 37 is arranged across the left and right center CL of the vehicle body (see FIG. 8). The battery 37 is composed of, for example, a plurality of (for example, a pair of left and right) unit batteries 37a. Each unit battery 37a has the same configuration. Each unit battery 37a has, for example, a prismatic shape (rectangular parallelepiped shape) that has a rectangular cross section and extends in the longitudinal direction. Each unit battery 37a is arranged with its longitudinal direction oriented in the vehicle front-rear direction, and its overall vertical width is suppressed.
 各単位バッテリ37aは、例えば一体のバッテリボックスに収容されている。各単位バッテリ37aは、車体に固定されたバッテリボックスに対して、工具不要で着脱可能である。各単位バッテリ37aは、車体から取り外した状態で充放電可能なモバイルバッテリとして構成されている。図中符号G2は側面視におけるバッテリ37の重心位置(以下、単に重心という。)を示す。 Each unit battery 37a is accommodated, for example, in an integrated battery box. Each unit battery 37a can be attached to and detached from a battery box fixed to the vehicle body without tools. Each unit battery 37a is configured as a mobile battery that can be charged and discharged while removed from the vehicle body. A symbol G2 in the figure indicates the center of gravity position of the battery 37 in a side view (hereinafter simply referred to as the center of gravity).
 バッテリ37は、複数の単位バッテリ37aを直列に結線することで、所定の高電圧(48~72V)を発生させている。各単位バッテリ37aは、それぞれ充放電可能なエネルギーストレージとして、例えばリチウムイオンバッテリで構成されている。各単位バッテリ37aは、ジャンクションボックス(分配器)およびコンタクタ(電磁開閉器)を介して、PCU34に接続されている。PCU34からは三相ケーブルが延び、この三相ケーブルが第一モータM1に接続されている。 The battery 37 generates a predetermined high voltage (48-72V) by connecting a plurality of unit batteries 37a in series. Each unit battery 37a is composed of, for example, a lithium ion battery as a chargeable/dischargeable energy storage. Each unit battery 37a is connected to the PCU 34 via a junction box (distributor) and a contactor (electromagnetic switch). A three-phase cable extends from the PCU 34 and is connected to the first motor M1.
 リヤフレーム9は、左右一対のリヤフレーム部材9aを備えている。左右リヤフレーム部材9aは、互いに車幅方向に離隔して配置されている。バッテリ37は、少なくとも一部が左右リヤフレーム部材9aの間に配置されている。バッテリ37は、側面視で後輪4の前上方に離間して配置されている。バッテリ37は、左右リヤフレーム部材9aに両持ち支持されている。 The rear frame 9 has a pair of left and right rear frame members 9a. The left and right rear frame members 9a are arranged apart from each other in the vehicle width direction. At least a portion of the battery 37 is arranged between the left and right rear frame members 9a. The battery 37 is spaced apart in front and above the rear wheel 4 in a side view. The battery 37 is supported by the left and right rear frame members 9a.
 リヤボディカバー19b内のバッテリ37は、シート21を着脱あるいは開閉することで、バッテリボックスひいては車体に対して着脱可能である。
 車体後部を覆うリヤボディカバー19bは、車体前部を覆うフロントボディカバー19aよりも、車幅方向の全幅が狭い。そこで、例えばリヤボディカバー19bの側部を着脱あるいは開閉可能とすることで、車体側方からリヤボディカバー19b内のバッテリ37へのアクセスおよびバッテリ37の着脱が可能となる。また、リヤボディカバー19bの後部を着脱あるいは開閉可能とすることで、車体後方からバッテリ37へのアクセスおよびバッテリ37の着脱が可能となる。
The battery 37 in the rear body cover 19b can be attached/detached to/from the battery box and the vehicle body by attaching/detaching or opening/closing the seat 21. As shown in FIG.
The rear body cover 19b covering the rear portion of the vehicle body has a smaller overall width in the vehicle width direction than the front body cover 19a covering the front portion of the vehicle body. Therefore, for example, by making the side portion of the rear body cover 19b detachable or openable, it becomes possible to access the battery 37 in the rear body cover 19b from the side of the vehicle body and to attach and detach the battery 37. FIG. Also, by making the rear part of the rear body cover 19b detachable or openable/closable, it becomes possible to access the battery 37 from the rear of the vehicle body and to attach/detach the battery 37. As shown in FIG.
<PCU配置>
 図1を参照し、PCU34は、直方体状の外形をなし、一辺の方向を車幅方向に沿わせて配置されている。
 図1のPCU34は、車幅方向から見て(側面視で)、上下面を略水平にして配置されている。PCU34は、車体左右中央CLを左右に跨いで配置されている(図8参照)。PCU34は、ヘッドパイプ6の後方に配置されている。PCU34は、フロントボディカバー19aの内側に配置に配置されている。このようなPCU34に対し、規定の導風ダクト等を通じて走行風を当てる構成としてもよい。図中符号G1は側面視におけるPCU34の重心位置(以下、単に重心という。)を示す。
<PCU placement>
Referring to FIG. 1, the PCU 34 has a rectangular parallelepiped outer shape and is arranged with one side extending along the vehicle width direction.
The PCU 34 in FIG. 1 is arranged with its upper and lower surfaces substantially horizontal when viewed from the vehicle width direction (side view). The PCU 34 is arranged across the left and right center CL of the vehicle body (see FIG. 8). The PCU 34 is arranged behind the head pipe 6 . The PCU 34 is arranged inside the front body cover 19a. The PCU 34 may be configured to receive running air through a prescribed air guide duct or the like. A symbol G1 in the drawing indicates the position of the center of gravity of the PCU 34 in a side view (hereinafter simply referred to as the center of gravity).
 本実施形態のPCU34は、シート21の前方の車両構成部品23に含まれる。メインフレーム7は、左右一対のメインフレーム部材7aを備えている。左右メインフレーム部材7aは、ヘッドパイプ6から後方へ、左右外側へ広がりながら延びている。左右メインフレーム部材7aは、互いに車幅方向に離隔して配置されている。PCU34は、少なくとも一部が左右メインフレーム部材7aの間に配置されている。PCU34は、左右メインフレーム部材7aに両持ち支持されている。 The PCU 34 of this embodiment is included in the vehicle component 23 in front of the seat 21 . The main frame 7 includes a pair of left and right main frame members 7a. The left and right main frame members 7a extend rearward from the head pipe 6 while spreading out to the left and right. The left and right main frame members 7a are arranged apart from each other in the vehicle width direction. At least a portion of the PCU 34 is arranged between the left and right main frame members 7a. The PCU 34 is supported by the left and right main frame members 7a.
 PCU34は、エンジンEの上方に配置されている。エンジンEは、シリンダブロック28を大きく前傾させて高さを抑えており、PCU34を配置しやすくしている。このようなエンジンEの上方には、PCU34に代わり(あるいはPCU34とともに)、バッテリ37を配置することが考えられる。 The PCU 34 is arranged above the engine E. In the engine E, the cylinder block 28 is greatly tilted forward to reduce the height, and the PCU 34 can be easily arranged. It is conceivable to dispose a battery 37 above the engine E instead of the PCU 34 (or together with the PCU 34).
<駆動システム部品の配置>
 図1を参照し、実施形態では、車両側面視において、クランクシャフト26の軸心C1、第一回転軸151の軸心C3、第二回転軸251の軸心C4は、これらを頂点とした三角形状に並んで配置されている。クランクシャフト26の軸心C1と第一回転軸151の軸心C3とは、第二回転軸251の軸心C4よりも下方に配置され、かつ車両前後方向で第二回転軸251の軸心C4の前後に振り分けて配置されている。
<Placement of drive system parts>
Referring to FIG. 1, in the embodiment, when viewed from the side of the vehicle, the axis C1 of the crankshaft 26, the axis C3 of the first rotation shaft 151, and the axis C4 of the second rotation shaft 251 are triangles having these vertices. They are arranged side by side in a shape. The axis C1 of the crankshaft 26 and the axis C3 of the first rotating shaft 151 are arranged below the axis C4 of the second rotating shaft 251 and aligned with the axis C4 of the second rotating shaft 251 in the longitudinal direction of the vehicle. are arranged in front of and behind the .
 また、車両側面視において、バッテリ37の重心G2、PCU34の重心G1、第二回転軸251の軸心C4は、これらを頂点とした逆三角形状に並んで配置されている。バッテリ37の重心G2とPCU34の重心G1とは、第二回転軸251の軸心C4よりも上方に配置され、かつ車両前後方向で第二回転軸251の軸心C4の前後に振り分けて配置されている。 In addition, when viewed from the side of the vehicle, the center of gravity G2 of the battery 37, the center of gravity G1 of the PCU 34, and the center of gravity C4 of the second rotation shaft 251 are arranged side by side in an inverted triangle shape with these as vertices. The center of gravity G2 of the battery 37 and the center of gravity G1 of the PCU 34 are arranged above the center C4 of the second rotation shaft 251, and are distributed in the longitudinal direction of the vehicle to the front and rear of the center C4 of the second rotation shaft 251. ing.
 バッテリ37の重心G2、PCU34の重心G1、第二回転軸251の軸心C4を結ぶ逆三角形状は、クランクシャフト26の軸心C1、第一回転軸151の軸心C3、第二回転軸251の軸心C4を結ぶ三角形状よりも車両前後方向の幅が大きい。
 具体的に、PCU34の重心G1と第二回転軸251の軸心C4との間の車両前後方向の距離(以下、第一距離L1という。)は、クランクシャフト26の軸心C1と第二回転軸251の軸心C4との間の車両前後方向の距離(以下、第二距離L2という。)よりも長い。
 また、バッテリ37の重心G2と第二回転軸251の軸心C4との間の車両前後方向の距離(以下、第三距離L3という。)は、第一回転軸151の軸心C3と第二回転軸251の軸心C4との間の車両前後方向の距離(以下、第四距離L4という。)よりも長い。
An inverted triangle connecting the center of gravity G2 of the battery 37, the center of gravity G1 of the PCU 34, and the center of gravity C4 of the second rotation shaft 251 is the center of gravity C1 of the crankshaft 26, the center of gravity C3 of the first rotation shaft 151, and the second rotation shaft 251. The width in the vehicle front-rear direction is larger than the triangular shape connecting the axis C4.
Specifically, the distance in the longitudinal direction of the vehicle between the center of gravity G1 of the PCU 34 and the center of gravity C4 of the second rotation shaft 251 (hereinafter referred to as the first distance L1) is the center of gravity C1 of the crankshaft 26 and the second rotation It is longer than the distance in the longitudinal direction of the vehicle between the axis C4 of the shaft 251 (hereinafter referred to as the second distance L2).
Further, the distance in the longitudinal direction of the vehicle between the center of gravity G2 of the battery 37 and the center of gravity C4 of the second rotation shaft 251 (hereinafter referred to as third distance L3) is the same as the center of gravity C3 of the first rotation shaft 151 and the second It is longer than the distance in the longitudinal direction of the vehicle (hereinafter referred to as the fourth distance L4) between the rotation shaft 251 and the axis C4.
 実施形態では、車両側面視において、発電用の第二モータM2を中心に、エンジンE、駆動用の第一モータM1、バッテリ37およびPCU34が、上下方向および前後方向で互いに位置をずらしながら、第二モータM2の周囲に並んで配置されている。具体的に、第二モータM2の前上方にPCU34が配置され、第二モータM2の後上方にバッテリ37が配置され、第二モータM2の前下方にエンジンEが配置され、第二モータM2の後下方に駆動モータが配置されている。 In the embodiment, when viewed from the side of the vehicle, the engine E, the first motor M1 for driving, the battery 37 and the PCU 34 are positioned around the second motor M2 for power generation while their positions are shifted in the vertical direction and the front-rear direction. They are arranged side by side around the two motors M2. Specifically, the PCU 34 is arranged above and in front of the second motor M2, the battery 37 is arranged above and behind the second motor M2, and the engine E is arranged below and in front of the second motor M2. A drive motor is arranged in the rear lower part.
 なお、駆動システム部品の配置は上記した配置に限らない。例えば、第二モータM2の上方にエンジンEおよび駆動モータが配置されたり、第二モータM2の下方にPCU34およびバッテリ37が配置されたりしてもよい。また、第二モータM2の前方にバッテリ37および駆動モータが配置されたり、第二モータM2の後方にPCU34およびエンジンEが配置されたりしてもよい。 The arrangement of drive system components is not limited to the arrangement described above. For example, the engine E and the drive motor may be arranged above the second motor M2, or the PCU 34 and the battery 37 may be arranged below the second motor M2. Also, the battery 37 and the drive motor may be arranged in front of the second motor M2, or the PCU 34 and the engine E may be arranged in the rear of the second motor M2.
 PCU34とバッテリ37とは、少なくとも一部の上下方向位置が互いに重なるように配置されている。PCU34とバッテリ37とは、高圧線(配線)39を介して互いに接続されている。高圧線39は、車両前後方向で直線状に延びるように配置されている。前記「直線状に延びる」とは、車幅方向に沿って延びることの他、例えばPCU34およびバッテリ37の上下幅内での振れ(曲がりは90度未満とする。)を許容してもよい。 The PCU 34 and the battery 37 are arranged so that at least a part of them overlap each other in the vertical direction. The PCU 34 and the battery 37 are connected to each other via a high voltage line (wiring) 39 . The high voltage line 39 is arranged so as to extend linearly in the vehicle front-rear direction. The term "extends linearly" means that the PCU 34 and the battery 37 may be allowed to sway (curve less than 90 degrees) within the vertical width, in addition to extending along the vehicle width direction.
 以上説明したように、上記実施形態における自動二輪車1は、後輪4に駆動力を与える駆動用の第一モータM1と、前記第一モータM1とは別に設けられる発電用の第二モータM2と、前記第一モータM1および前記第二モータM2を制御するPCU34と、前記第一モータM1に電力を与えるバッテリ37と、前記第二モータM2を駆動して発電させるエンジンEと、を備えている。自動二輪車1は、シリーズハイブリッド式車両として構成されている。自動二輪車1において、前記エンジンEが有するクランクシャフト26と、前記第一モータM1が有する第一回転軸151と、前記第二モータM2が有する第二回転軸251と、は互いに軸方向を平行にして配置されている。前記軸方向は、車幅方向(車両左右方向)を向いている。そして、前記軸方向から見て、前記クランクシャフト26の軸心C1、前記第一回転軸151の軸心C3および前記第二回転軸251の軸心C4は、これらを頂点とした三角形状に並んで配置されている。また、前記軸方向から見て、前記バッテリ37の重心G2、前記PCU34の重心G1および前記第二回転軸251の軸心C4は、これらを頂点とした逆三角形状に並んで配置されている。
 この構成によれば、重量物である第一モータM1、第二モータM2およびエンジンEを互いに三角形状に近付けて(集約して)配置可能となる。また、同様に重量物であるPCU34、バッテリ37および第二モータM2を互いに逆三角形状に近付けて(集約して)配置可能となる。したがって、これら駆動システム部品のマスの集中を図ることができる。また、発電用の第二モータM2を境に、エンジンEおよび第一モータM1とバッテリ37およびPCU34とを上下に振り分けて配置することで、駆動システム部品の重量バランスを良好にすることができる。
As described above, the motorcycle 1 in the above embodiment includes the first driving motor M1 for applying driving force to the rear wheel 4 and the second electric power generating motor M2 provided separately from the first motor M1. , a PCU 34 that controls the first motor M1 and the second motor M2, a battery 37 that supplies power to the first motor M1, and an engine E that drives the second motor M2 to generate electricity. . The motorcycle 1 is configured as a series hybrid vehicle. In the motorcycle 1, the crankshaft 26 of the engine E, the first rotating shaft 151 of the first motor M1, and the second rotating shaft 251 of the second motor M2 are axially parallel to each other. are placed. The axial direction is oriented in the vehicle width direction (vehicle left-right direction). When viewed from the axial direction, the axial center C1 of the crankshaft 26, the axial center C3 of the first rotating shaft 151, and the axial center C4 of the second rotating shaft 251 are arranged in a triangular shape with these vertices. are placed in When viewed from the axial direction, the center of gravity G2 of the battery 37, the center of gravity G1 of the PCU 34, and the center of gravity C4 of the second rotating shaft 251 are arranged side by side in an inverted triangle shape with these vertices.
According to this configuration, the first motor M1, the second motor M2, and the engine E, which are heavy objects, can be arranged close to each other (concentrated) in a triangular shape. Also, the PCU 34, the battery 37, and the second motor M2, which are also heavy objects, can be placed close to each other (concentrated) in an inverted triangle shape. Therefore, mass concentration of these drive system components can be achieved. In addition, the engine E, the first motor M1, the battery 37, and the PCU 34 are arranged vertically with the second motor M2 for power generation as a boundary, so that the weight balance of the drive system components can be improved.
 上記構成では、前記クランクシャフト26の軸心C1と前記第一回転軸151の軸心C3とは、前記第二回転軸251の軸心C4よりも下方に配置され、かつ車両前後方向で前記第二回転軸251の軸心C4の前後に振り分けて配置されている。また、前記バッテリ37の重心G2と前記PCU34の重心G1とは、前記第二回転軸251の軸心C4よりも上方に配置され、かつ車両前後方向で前記第二回転軸251の軸心C4の前後に振り分けて配置されている。
 このように、発電用の第二モータM2を中心に、重量物であるエンジンE、第一モータM1、バッテリ37およびPCU34が、上下方向および前後方向で位置をずらしながら配置されることで、これら駆動システム部品を互いに近付けて(集約して)配置可能となる。したがって、駆動システム部品のマスの集中を図るとともに、駆動システム部品の重量バランスを良好にすることができる。
In the above configuration, the axial center C1 of the crankshaft 26 and the axial center C3 of the first rotating shaft 151 are arranged below the axial center C4 of the second rotating shaft 251, and are arranged in the longitudinal direction of the vehicle. They are distributed to the front and back of the axis C4 of the two rotating shafts 251 and arranged. In addition, the center of gravity G2 of the battery 37 and the center of gravity G1 of the PCU 34 are arranged above the center C4 of the second rotation shaft 251, and are located above the center C4 of the second rotation shaft 251 in the longitudinal direction of the vehicle. They are arranged in front and back.
In this way, the engine E, the first motor M1, the battery 37, and the PCU 34, which are heavy objects, are arranged with their positions shifted in the vertical direction and the front-rear direction around the second motor M2 for power generation. Drive system components can be placed closer together (clumped). Therefore, the mass of the drive system components can be concentrated, and the weight balance of the drive system components can be improved.
 また、上記自動二輪車1において、前記第二回転軸251よりも車両前後方向一側(前方側)には、前記クランク軸26およびPCU34が配置され、前記軸方向から見て、前記PCU34の重心G1と前記第二回転軸251の軸心C4との間の車両前後方向の距離を第一距離L1、前記クランクシャフト26の軸心C1と前記第二回転軸251の軸心C4との間の車両前後方向の距離を第二距離L2としたとき、前記第一距離L1は、前記第二距離L2よりも長く設定されている。すなわち、PCU34がクランクシャフト26よりも前方側に配置されている。
 この構成によれば、第二モータM2よりも前方側に位置するPCU34およびクランクシャフト26(ひいてはエンジンE)の内、PCU34をクランクシャフト26よりも前方側に配置することで、エンジンEの真上にPCU34を配置しなくて済む。これにより、エンジンEおよびPCU34を前後にずらして効率よく配置することができるとともに、エンジンEからの熱がPCU34に伝わり難くすることができる。
Further, in the motorcycle 1, the crankshaft 26 and the PCU 34 are arranged on one side (the front side) in the vehicle front-rear direction of the second rotation shaft 251, and the center of gravity G1 of the PCU 34 is arranged when viewed from the axial direction. and the axis C4 of the second rotating shaft 251 in the longitudinal direction of the vehicle is defined as a first distance L1; The first distance L1 is set longer than the second distance L2 when the distance in the front-rear direction is the second distance L2. That is, the PCU 34 is arranged on the front side of the crankshaft 26 .
According to this configuration, among the PCU 34 and the crankshaft 26 (and thus the engine E) positioned on the front side of the second motor M2, by arranging the PCU 34 on the front side of the crankshaft 26, It is not necessary to arrange the PCU 34 in the As a result, the engine E and the PCU 34 can be staggered forward and backward to be efficiently arranged, and the heat from the engine E can be made difficult to be transmitted to the PCU 34 .
 また、上記自動二輪車1において、前記第二回転軸251よりも車両前後方向一側(後方側)には、前記第一回転軸151およびバッテリ37が配置され、前記軸方向から見て、前記バッテリ37の重心G2と前記第二回転軸251の軸心C4との間の車両前後方向の距離を第三距離L3、前記第一回転軸151の軸心C3と前記第二回転軸251の軸心C4との間の車両前後方向の距離を第四距離L4としたとき、前記第三距離L3は、前記第四距離L4よりも長く設定されている。すなわち、バッテリ37が第一回転軸151よりも後方側に配置されている。
 この構成によれば、第二モータM2よりも後方側に位置するバッテリ37および第一回転軸151(ひいては第一モータM1)の内、バッテリ37を第一モータM1よりも後方側に配置することで、第一モータM1の真上にバッテリ37を配置しなくて済む。これにより、第一モータM1およびバッテリ37を前後にずらして効率よく配置することができるとともに、第一モータM1からの熱がバッテリ37に伝わり難くすることができる。
In the motorcycle 1, the first rotating shaft 151 and the battery 37 are arranged on one side (rear side) of the second rotating shaft 251 in the longitudinal direction of the vehicle. 37 and the axis C4 of the second rotation shaft 251 in the longitudinal direction of the vehicle is defined as a third distance L3; The third distance L3 is set longer than the fourth distance L4 when the distance in the vehicle front-rear direction between C4 is a fourth distance L4. That is, the battery 37 is arranged on the rear side of the first rotating shaft 151 .
According to this configuration, among the battery 37 and the first rotating shaft 151 (and thus the first motor M1) positioned on the rear side of the second motor M2, the battery 37 can be arranged on the rear side of the first motor M1. Therefore, it is not necessary to arrange the battery 37 right above the first motor M1. As a result, the first motor M<b>1 and the battery 37 can be staggered forward and backward to be efficiently arranged, and the heat from the first motor M<b>1 can be made difficult to be transmitted to the battery 37 .
 また、上記自動二輪車1において、前記PCU34と前記バッテリ37とを接続する高圧線39を備え、前記高圧線39は、車両前後方向で直線状に延びて配置されている。
 この構成によれば、PCU34およびバッテリ37間の高圧線39が車両前後方向で直線状に延びるので、高圧線39が屈曲して配置される場合に比べて、高圧線39に掛かる負担を少なくすることができる。また、高圧線39の長さを短縮して重量およびコストを低減することができる。
The motorcycle 1 further includes a high-voltage line 39 that connects the PCU 34 and the battery 37, and the high-voltage line 39 extends linearly in the longitudinal direction of the vehicle.
According to this configuration, the high-voltage wire 39 between the PCU 34 and the battery 37 extends linearly in the longitudinal direction of the vehicle, so that the load on the high-voltage wire 39 is reduced compared to when the high-voltage wire 39 is bent. be able to. Also, the length of the high voltage line 39 can be shortened to reduce weight and cost.
 また、上記自動二輪車1において、前記エンジンEのクランクシャフト26と、前記第一モータM1の第一回転軸151と、前記第二モータM2の第二回転軸251と、は車幅方向に沿って配置されている。
 この構成によれば、第一モータM1、第二モータM2およびエンジンEを、車幅方向から見た側面視で互いに近付けて配置可能となり、マスの集中を図るとともに、前後方向および上下方向の大型化を抑制することができる。
In the motorcycle 1, the crankshaft 26 of the engine E, the first rotation shaft 151 of the first motor M1, and the second rotation shaft 251 of the second motor M2 are arranged along the vehicle width direction. are placed.
According to this configuration, the first motor M1, the second motor M2, and the engine E can be arranged close to each other when viewed from the side in the vehicle width direction. It is possible to suppress
 また、上記自動二輪車1において、前記第一モータM1と前記後輪4とを連結する第一伝動機構56と、前記エンジンEと前記第二モータM2とを連結する第二伝動機構156と、を備え、前記第一モータM1および前記第一伝動機構56は、車幅方向一側(左側)にオフセットして配置され、前記第二モータM2および前記第二伝動機構156は、車幅方向他側(右側)にオフセットして配置されている。
 この構成によれば、車幅方向において、第一モータM1および第二モータM2が振り分けて配置されるとともに、第一伝動機構56および第二伝動機構156も対応するモータと同側に振り分けて配置されることで、駆動システム部品を車幅方向でバランスよく配置することができる。
Further, in the motorcycle 1, the first transmission mechanism 56 that connects the first motor M1 and the rear wheel 4 and the second transmission mechanism 156 that connects the engine E and the second motor M2 are provided. The first motor M1 and the first transmission mechanism 56 are offset on one side (left side) in the vehicle width direction, and the second motor M2 and the second transmission mechanism 156 are arranged on the other side in the vehicle width direction. (right side) are offset.
According to this configuration, the first motor M1 and the second motor M2 are arranged separately in the vehicle width direction, and the first transmission mechanism 56 and the second transmission mechanism 156 are also arranged separately on the same side as the corresponding motors. By doing so, the drive system components can be arranged in a well-balanced manner in the vehicle width direction.
 また、上記自動二輪車1において、前記バッテリ37は、車体に対して着脱可能であり、前記第二モータM2よりも後方に配置されている。
 この構成によれば、着脱式のバッテリ37が車体後部に配置されることで、車体後部の上方、後方または左右両側等からバッテリ37にアクセス可能となり、バッテリ37の着脱を容易にすることができる。
Further, in the motorcycle 1, the battery 37 is detachable from the vehicle body, and is arranged behind the second motor M2.
According to this configuration, the detachable battery 37 is arranged at the rear part of the vehicle body, so that the battery 37 can be accessed from the upper side, the rear side, or both the left and right sides of the rear part of the vehicle body, and the battery 37 can be easily attached and detached. .
 また、上記自動二輪車1において、前記バッテリ37は、前記第二モータM2よりも上方に配置され、かつ乗員が着座するシート21の下方に配置されている。
 この構成によれば、シート21の開閉等によってバッテリ37にアクセス可能となり、バッテリ37の着脱をより一層容易にすることができる。
In the motorcycle 1, the battery 37 is arranged above the second motor M2 and below the seat 21 on which the rider sits.
According to this configuration, the battery 37 can be accessed by opening and closing the seat 21, and the attachment and detachment of the battery 37 can be further facilitated.
<参考例>
 図9は、実施形態の効果を説明するための参考例を示す。
 図9の自動二輪車101は、上記実施形態に対し、エンジンEおよび第二モータM2(発電用モータ)を備えず、バッテリ37,37’の畜電力のみで走行する純EVとして構成されている。上記実施形態と同等の構成には同一符号を付して詳細説明は省略する。
<Reference example>
FIG. 9 shows a reference example for explaining the effects of the embodiment.
The motorcycle 101 of FIG. 9 does not include the engine E and the second motor M2 (motor for power generation), but is configured as a pure EV that runs only on the power stored in the batteries 37, 37'. The same reference numerals are assigned to the same configurations as those of the above-described embodiment, and detailed description thereof will be omitted.
 自動二輪車101は、実施形態のエンジンEおよび第二モータM2の搭載部位に、さらに複数のバッテリ37’(以下、追加バッテリ37’という。)を搭載している。例えば、追加バッテリ37’は、実施形態のバッテリ37と同様、複数の単位バッテリ37aを備えている。追加バッテリ37’は、PCU34の下方かつ第一モータM1の前方に配置されている。追加バッテリ37’は、PCU34に対し、上下方向に直線状に延びる高圧線(配線)39’で接続されている。PCU34と追加バッテリ37’との距離は近く、高圧線39’の短縮による接続容易、保護容易、重量及びコストの低減を図ることができる。エンジンEおよび第二モータM2に代わり追加バッテリ37’を搭載することで、追加バッテリ37’の容量を十分に確保しながら、実施形態のハイブリッド車両と同様の重量バランスを維持することができ、車体各部の共通化を図ることができる。 The motorcycle 101 further mounts a plurality of batteries 37' (hereinafter referred to as additional batteries 37') at the mounting portions of the engine E and the second motor M2 of the embodiment. For example, the additional battery 37' includes a plurality of unit batteries 37a, like the battery 37 of the embodiment. The additional battery 37' is arranged below the PCU 34 and in front of the first motor M1. The additional battery 37' is connected to the PCU 34 by a high voltage line (wiring) 39' extending linearly in the vertical direction. The distance between the PCU 34 and the additional battery 37' is short, and the shortening of the high-voltage line 39' facilitates connection, easy protection, and reduction in weight and cost. By installing the additional battery 37' instead of the engine E and the second motor M2, it is possible to maintain a weight balance similar to that of the hybrid vehicle of the embodiment while sufficiently securing the capacity of the additional battery 37'. Each part can be shared.
 なお、本発明は上記実施形態に限られるものではなく、例えば、鞍乗り型車両には、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)又は四輪(四輪バギー等)の車両も含まれる。鞍乗り型車両には、自動二輪車のように車体をバンクさせた方向に旋回する車両のみならず、車体をバンクさせずに操舵輪の転舵によって旋回する車両も含まれる。 The present invention is not limited to the above-described embodiments. For example, the saddle-riding type vehicle includes general vehicles in which the driver straddles the vehicle body, motorcycles (motorized bicycles and scooter type vehicles). ), but also include vehicles with three wheels (including vehicles with two front wheels and one rear wheel, as well as vehicles with one front wheel and two rear wheels) or four-wheel vehicles (such as four-wheel buggies). The straddle-type vehicle includes not only a vehicle such as a motorcycle that turns in a direction in which the vehicle body is banked, but also a vehicle that turns by steering the steered wheels without banking the vehicle body.
 上記実施形態では、ハイブリッド式自動二輪車への適用例を示したが、これに限らず、駆動用モータを備える二輪、三輪および四輪の各種の鞍乗り型車両に適用してもよい。また、内燃機関を有するハイブリッド車両に限らず、駆動用モータのみで走行する電動車両に適用してもよい。
 そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
In the above embodiment, an example of application to a hybrid motorcycle has been shown, but the present invention is not limited to this, and may be applied to various types of saddle-riding vehicles including two-wheel, three-wheel and four-wheel drive motors. Further, the present invention is not limited to a hybrid vehicle having an internal combustion engine, and may be applied to an electric vehicle that runs only with a drive motor.
The configuration in the above embodiment is an example of the present invention, and various modifications, such as replacing the constituent elements of the embodiment with known constituent elements, are possible without departing from the gist of the present invention.
1 自動二輪車(鞍乗り型車両)
21 シート
4 後輪(駆動輪)
26 クランクシャフト(クランク軸)
34 PCU(制御装置)
37 バッテリ
39 高圧線(配線)
56 第一伝動機構
151 第一回転軸
156 第二伝動機構
251 第二回転軸
E エンジン(内燃機関)
M1 第一モータ(駆動モータ)
M2 第二モータ
C1,C3,C4 中心軸線(軸心)
CL 車体左右中央
G1,G2 重心
L1 第一距離
L2 第二距離
L3 第三距離
L4 第四距離
T 直線
1 Motorcycle (saddle type vehicle)
21 seat 4 rear wheel (drive wheel)
26 crankshaft (crankshaft)
34 PCU (control unit)
37 battery 39 high voltage line (wiring)
56 first transmission mechanism 151 first rotation shaft 156 second transmission mechanism 251 second rotation shaft E engine (internal combustion engine)
M1 first motor (drive motor)
M2 Second motor C1, C3, C4 Central axis (axis center)
CL Vehicle body left and right center G1, G2 Center of gravity L1 First distance L2 Second distance L3 Third distance L4 Fourth distance T Straight line

Claims (9)

  1.  駆動輪(4)に駆動力を与える駆動モータ(M1)と、
     前記駆動モータ(M1)とは別に設けられる第二モータ(M2)と、
     前記駆動モータ(M1)および前記第二モータ(M2)を制御する制御装置(34)と、
     前記駆動モータ(M1)に電力を与えるバッテリ(37)と、
     前記第二モータ(M2)を駆動して発電させる内燃機関(E)と、を備え、
     前記内燃機関(E)が有するクランク軸(26)と、前記駆動モータ(M1)が有する第一回転軸(151)と、前記第二モータ(M2)が有する第二回転軸(251)とは、互いに軸方向を平行にして配置され、
     前記軸方向から見て、前記クランク軸(26)の軸心(C1)、前記第一回転軸(151)の軸心(C3)、前記第二回転軸(251)の軸心(C4)は、これらを頂点とした三角形状に並んで配置され、
     前記バッテリ(37)の重心(G2)、前記制御装置(34)の重心(G1)、前記第二回転軸(251)の軸心(C4)は、これらを頂点とした逆三角形状に並んで配置されている鞍乗り型車両。
    a driving motor (M1) for applying driving force to the driving wheels (4);
    a second motor (M2) provided separately from the drive motor (M1);
    a controller (34) for controlling the drive motor (M1) and the second motor (M2);
    a battery (37) for powering said drive motor (M1);
    An internal combustion engine (E) that drives the second motor (M2) to generate electricity,
    A crankshaft (26) of the internal combustion engine (E), a first rotation shaft (151) of the drive motor (M1), and a second rotation shaft (251) of the second motor (M2) are , arranged axially parallel to each other,
    When viewed from the axial direction, the axial center (C1) of the crankshaft (26), the axial center (C3) of the first rotating shaft (151), and the axial center (C4) of the second rotating shaft (251) are , are arranged side by side in a triangular shape with these as vertices,
    The center of gravity (G2) of the battery (37), the center of gravity (G1) of the control device (34), and the center of axis (C4) of the second rotating shaft (251) are arranged in an inverted triangle with these as vertices. The saddle-riding type vehicle that is arranged.
  2.  駆動輪(4)に駆動力を与える駆動モータ(M1)と、
     前記駆動モータ(M1)とは別に設けられる第二モータ(M2)と、
     前記駆動モータ(M1)および前記第二モータ(M2)を制御する制御装置(34)と、
     前記駆動モータ(M1)に電力を与えるバッテリ(37)と、
     前記第二モータ(M2)を駆動して発電させる内燃機関(E)と、を備え、
     前記内燃機関(E)が有するクランク軸(26)と、前記駆動モータ(M1)が有する第一回転軸(151)と、前記第二モータ(M2)が有する第二回転軸(251)とは、互いに軸方向を平行にして配置され、
     前記クランク軸(26)と前記第一回転軸(151)とは、前記第二回転軸(251)よりも下方に配置され、かつ車両前後方向で前記第二回転軸(251)の前後に振り分けて配置され、
     前記バッテリ(37)と前記制御装置(34)とは、前記第二回転軸(251)よりも上方に配置され、かつ車両前後方向で前記第二回転軸(251)の前後に振り分けて配置されている鞍乗り型車両。
    a driving motor (M1) for applying driving force to the driving wheels (4);
    a second motor (M2) provided separately from the drive motor (M1);
    a controller (34) for controlling the drive motor (M1) and the second motor (M2);
    a battery (37) for powering said drive motor (M1);
    An internal combustion engine (E) that drives the second motor (M2) to generate electricity,
    A crankshaft (26) of the internal combustion engine (E), a first rotation shaft (151) of the drive motor (M1), and a second rotation shaft (251) of the second motor (M2) are , arranged axially parallel to each other,
    The crankshaft (26) and the first rotating shaft (151) are arranged below the second rotating shaft (251) and distributed to the front and rear of the second rotating shaft (251) in the longitudinal direction of the vehicle. are placed in the
    The battery (37) and the control device (34) are arranged above the second rotation shaft (251), and are arranged in the front and rear direction of the second rotation shaft (251) in the longitudinal direction of the vehicle. A saddle-riding vehicle.
  3.  前記制御装置(34)と前記バッテリ(37)とを接続する配線(39)を備え、
     前記配線(39)は、車両前後方向に延びて配置されている請求項1又は2に記載の鞍乗り型車両。
    A wiring (39) connecting the control device (34) and the battery (37),
    The straddle-type vehicle according to claim 1 or 2, wherein the wiring (39) is arranged to extend in the longitudinal direction of the vehicle.
  4.  前記クランク軸(26)と、前記第一回転軸(151)と、前記第二回転軸(251)とは、前記軸方向を車幅方向に沿わせて配置されている請求項1から3の何れか一項に記載の鞍乗り型車両。 The crankshaft (26), the first rotating shaft (151), and the second rotating shaft (251) are arranged with the axial direction along the vehicle width direction. A straddle-type vehicle according to any one of the items.
  5.  前記駆動モータ(M1)と前記駆動輪(4)とを連結する第一伝動機構(56)と、
     前記内燃機関(E)と前記第二モータ(M2)とを連結する第二伝動機構(156)と、を備え、
     前記駆動モータ(M1)および前記第一伝動機構(56)は、車幅方向一側にオフセットして配置され、
     前記第二モータ(M2)および前記第二伝動機構(156)は、車幅方向他側にオフセットして配置されている請求項1から4の何れか一項に記載の鞍乗り型車両。
    a first transmission mechanism (56) connecting the drive motor (M1) and the drive wheels (4);
    a second transmission mechanism (156) that connects the internal combustion engine (E) and the second motor (M2);
    The drive motor (M1) and the first transmission mechanism (56) are arranged offset to one side in the vehicle width direction,
    The saddle-ride type vehicle according to any one of claims 1 to 4, wherein the second motor (M2) and the second transmission mechanism (156) are offset to the other side in the vehicle width direction.
  6.  前記第二回転軸(251)よりも車両前後方向一側には、前記クランク軸(26)が配置され、
     前記バッテリ(37)および前記制御装置(34)の内、前記第二回転軸(251)よりも車両前後方向一側に位置するものを一側駆動システム部品(34)とし、かつ、
     前記軸方向から見て、前記一側駆動システム部品(34)の重心(G1)と前記第二回転軸(251)の軸心(C4)との間の車両前後方向の距離を第一距離(L1)、前記クランク軸(26)の軸心(C1)と前記第二回転軸(251)の軸心(C4)との間の車両前後方向の距離を第二距離(L2)とすると、
     前記第一距離(L1)は、前記第二距離(L2)よりも長く設定されている請求項1から5の何れか一項に記載の鞍乗り型車両。
    The crankshaft (26) is arranged on one side in the vehicle front-rear direction of the second rotating shaft (251),
    Of the battery (37) and the control device (34), the one located on one side in the vehicle front-rear direction of the second rotating shaft (251) is defined as a one-side drive system component (34), and
    A first distance ( L1), and the distance in the longitudinal direction of the vehicle between the axis (C1) of the crankshaft (26) and the axis (C4) of the second rotating shaft (251) is defined as a second distance (L2),
    The straddle-type vehicle according to any one of claims 1 to 5, wherein the first distance (L1) is set longer than the second distance (L2).
  7.  前記第二回転軸(251)よりも車両前後方向他側には、前記第一回転軸(151)が配置され、
     前記バッテリ(37)および前記制御装置(34)の内、前記第二回転軸(251)よりも車両前後方向他側に位置するものを他側駆動システム部品(37)とし、かつ、
     前記軸方向から見て、前記他側駆動システム部品(37)の重心(G2)と前記第二回転軸(251)の軸心(C4)との間の車両前後方向の距離を第三距離(L3)、前記第一回転軸(151)の軸心(C3)と前記第二回転軸(251)の軸心(C4)との間の車両前後方向の距離を第四距離(L4)とすると、
     前記第三距離(L3)は、前記第四距離(L4)よりも長く設定されている請求項6に記載の鞍乗り型車両。
    The first rotating shaft (151) is arranged on the other side in the vehicle front-rear direction of the second rotating shaft (251),
    Of the battery (37) and the control device (34), the one located on the other side in the vehicle front-rear direction of the second rotating shaft (251) is defined as the other side drive system component (37), and
    A third distance ( L3), and a fourth distance (L4) is the distance in the longitudinal direction of the vehicle between the axis (C3) of the first rotation shaft (151) and the axis (C4) of the second rotation shaft (251). ,
    The straddle-type vehicle according to claim 6, wherein the third distance (L3) is set longer than the fourth distance (L4).
  8.  前記バッテリ(37)は、車体に対して着脱可能であり、前記第二モータ(M2)よりも後方に配置されている請求項1から7の何れか一項に記載の鞍乗り型車両。 The saddle-ride type vehicle according to any one of claims 1 to 7, wherein the battery (37) is detachable from the vehicle body and arranged behind the second motor (M2).
  9.  前記バッテリ(37)は、前記第二モータ(M2)よりも上方に配置され、かつ乗員が着座するシート(21)の下方に配置されている請求項8に記載の鞍乗り型車両。 The straddle-type vehicle according to claim 8, wherein the battery (37) is arranged above the second motor (M2) and below the seat (21) on which the passenger sits.
PCT/JP2022/007240 2022-02-22 2022-02-22 Saddled vehicle WO2023161996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007240 WO2023161996A1 (en) 2022-02-22 2022-02-22 Saddled vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007240 WO2023161996A1 (en) 2022-02-22 2022-02-22 Saddled vehicle

Publications (1)

Publication Number Publication Date
WO2023161996A1 true WO2023161996A1 (en) 2023-08-31

Family

ID=87765195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007240 WO2023161996A1 (en) 2022-02-22 2022-02-22 Saddled vehicle

Country Status (1)

Country Link
WO (1) WO2023161996A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106159A (en) * 1999-10-08 2001-04-17 Yamaha Motor Co Ltd Series hybrid type electric two wheeler
JP2001106162A (en) * 1999-10-14 2001-04-17 Yamaha Motor Co Ltd Series hybrid type electric two wheeler
JP2005247247A (en) * 2004-03-08 2005-09-15 Yamaha Motor Co Ltd Motorcycle
JP3159814U (en) * 2010-03-16 2010-06-03 ヤマハ発動機株式会社 Hybrid straddle-type vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106159A (en) * 1999-10-08 2001-04-17 Yamaha Motor Co Ltd Series hybrid type electric two wheeler
JP2001106162A (en) * 1999-10-14 2001-04-17 Yamaha Motor Co Ltd Series hybrid type electric two wheeler
JP2005247247A (en) * 2004-03-08 2005-09-15 Yamaha Motor Co Ltd Motorcycle
JP3159814U (en) * 2010-03-16 2010-06-03 ヤマハ発動機株式会社 Hybrid straddle-type vehicle

Similar Documents

Publication Publication Date Title
US8833495B2 (en) Saddle-ride type electric vehicle
JP5474737B2 (en) Saddle riding type electric vehicle
US9327586B2 (en) Saddle-type electric vehicle
JP5914337B2 (en) How to convert a vehicle to a hybrid vehicle
JP5759012B2 (en) Motorcycle and driving method of the motorcycle
US20120103706A1 (en) Electric vehicle
JP5525998B2 (en) Saddle riding type electric vehicle
AU2012239991A1 (en) Electric vehicle with range extender
JP2013504488A (en) Hybrid drive system with reduced vehicle power requirements
JP2013504491A (en) Hybrid drive system for a vehicle having an engine as a prime mover
CN113365907B (en) Saddle-ride type electric vehicle
JP5492742B2 (en) Cooling duct routing structure for saddle-ride type electric vehicles
JP3942772B2 (en) Series hybrid electric motorcycle
WO2023161996A1 (en) Saddled vehicle
JP2012153327A (en) Saddle-ride type vehicle
WO2023127133A1 (en) Saddled vehicle
WO2023127088A1 (en) Saddled vehicle
WO2023127077A1 (en) Saddled vehicle
WO2023127108A1 (en) Saddled vehicle
WO2023127080A1 (en) Saddle-ride vehicle
WO2023127092A1 (en) Saddled vehicle
WO2023127107A1 (en) Saddled vehicle
WO2023162024A1 (en) Saddled vehicle
WO2023127117A1 (en) Saddled vehicle
WO2023127076A1 (en) Saddled vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928527

Country of ref document: EP

Kind code of ref document: A1