WO2023127092A1 - Saddled vehicle - Google Patents

Saddled vehicle Download PDF

Info

Publication number
WO2023127092A1
WO2023127092A1 PCT/JP2021/048779 JP2021048779W WO2023127092A1 WO 2023127092 A1 WO2023127092 A1 WO 2023127092A1 JP 2021048779 W JP2021048779 W JP 2021048779W WO 2023127092 A1 WO2023127092 A1 WO 2023127092A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
engine
drive
battery
pcu
Prior art date
Application number
PCT/JP2021/048779
Other languages
French (fr)
Japanese (ja)
Inventor
慶士 高山
正人 中田
慎司 古田
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2021/048779 priority Critical patent/WO2023127092A1/en
Publication of WO2023127092A1 publication Critical patent/WO2023127092A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a saddle-ride type vehicle.
  • Patent Literature 1 discloses a hybrid motorcycle equipped with a generator-driving engine.
  • the drive motor is arranged in the transmission portion of the existing vehicle, and the drive motor and the rear wheels are connected by a drive chain or the like.
  • Patent Document 2 discloses that a hybrid motorcycle includes a control unit including an inverter that controls power supplied from a generator to a drive motor, and a radiator that cools the drive motor and/or the inverter. ing.
  • the radiator is arranged in front of the engine, and the control unit is arranged in the rear of the engine.
  • hybrid saddle-riding vehicles which are equipped with both an engine and electric parts, are smaller than passenger cars, and there is a demand for optimization of the layout of each component such as the engine and electric parts. That is, it is necessary to lay out each component simply and compactly in a limited space.
  • a drive system including the engine and the two motors in a saddle-ride type vehicle that includes a drive motor that provides driving force to the drive wheels, a second motor for power generation, and the engine. .
  • the present invention provides a drive motor (M1) that applies a driving force to a drive wheel (4), a second motor (M2) that is provided separately from the drive motor (M1), and the second An internal combustion engine (E) that drives a motor (M2) to generate electricity, and a power distribution mechanism (61) that distributes power among the drive motor (M1), the second motor (M2) and the internal combustion engine (E). ) and
  • the power distribution mechanism (61) includes a first element (62) connected to the second motor (M2) and a second element (63) connected to the internal combustion engine (E) via a clutch (71).
  • a straddle-type vehicle is provided in which the second motor (M2) is arranged on the inner peripheral side of a peripheral wall (65) axially connected to the third element (64).
  • the hybrid drive unit can be configured compactly.
  • the drive motor (M1), the second motor (M2) and the power distribution mechanism (61) are arranged coaxially with each other,
  • the second motor (M2) and the power distribution mechanism (61) may be axially adjacent to each other. According to this configuration, by arranging the second motor adjacent to the ring gear on the inner peripheral side of the ring gear, it is possible to suppress the increase in size of the ring gear in the axial direction and to configure the hybrid drive unit more compactly.
  • the rotation shafts (151, 251) of the drive motor (M1) and the second motor (M2) are arranged on separate shafts from the crankshaft (26) of the internal combustion engine (E). may be configured. According to this configuration, the hybrid drive unit can be made more compact in the axial direction than when the drive motor and the second motor are arranged coaxially with the crankshaft.
  • the drive motor (M1) is arranged axially outside a unit (U) including the drive motor (M1), the second motor (M2) and the power distribution mechanism (61),
  • a configuration may be adopted in which a drive control device for controlling the drive motor (M1) is disposed axially outside the drive motor (M1).
  • the drive control device by arranging the drive control device near the drive motor, which is the object to be controlled, the wiring between them can be shortened.
  • the drive control device By arranging the drive control device further axially outside of the drive motor positioned axially outside, the drive control device can be cooled well.
  • the second motor (M2) is arranged axially inside a unit (U) including the drive motor (M1), the second motor (M2) and the power distribution mechanism (61),
  • a power generation control device for controlling the second motor (M2) may be arranged radially outward of the second motor (M2). According to this configuration, by arranging the drive control device near the second motor to be controlled, the wiring between them can be shortened. By arranging the power generation control device radially outward of the second motor located axially inward, the power generation control device can be easily brought closer to the second motor.
  • the drive system that includes the engine and both motors can be made compact.
  • FIG. 1 is a left side view schematically showing a motorcycle according to an embodiment of the invention
  • FIG. 2 is a configuration diagram showing an outline of a drive system of the motorcycle
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an EV mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a hybrid mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a regeneration mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an engine drive mode of the drive system
  • It is a block diagram which shows the outline of the control part of the said drive system.
  • Fig. 2 is a plan view showing the outline of the motorcycle;
  • FIG. 3 is a configuration diagram showing an EV mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a hybrid mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a regeneration mode of the drive system
  • FIG. 2 is an explanatory diagram showing a schematic cross section of the drive unit of the motorcycle.
  • FIG. 5 is a nomographic chart showing the rotation speed of each element of the planetary gear mechanism when traveling in EV mode;
  • FIG. 4 is a collinear diagram of the planetary gear mechanism when traveling while generating power in a hybrid mode;
  • FIG. 4 is a collinear diagram of the planetary gear mechanism when performing regeneration in regeneration mode;
  • FIG. 4 is a collinear diagram of the planetary gear mechanism when traveling in the engine drive mode;
  • FIG. 4 is a left side view showing a modification of the arrangement of the battery and PCU of the motorcycle;
  • FIG. 1 shows a motorcycle 1 as an example of a straddle-type vehicle according to the present embodiment.
  • the motorcycle 1 comprises a drive system S including an engine (internal combustion engine) E and two electric motors M1 and M2, and runs by cooperating engine power and motor power.
  • the motorcycle 1 is a hybrid vehicle equipped with a so-called two-motor hybrid system. It should be noted that the present invention may be applied to a one-motor hybrid vehicle or an electric vehicle that does not have an internal combustion engine, as long as it does not depart from the gist of the present invention described below.
  • the motorcycle 1 includes front wheels (steered wheels) 3 that are steered by a steering wheel 2 and rear wheels (driving wheels) 4 that are driven by a drive system S.
  • the motorcycle 1 is a saddle type vehicle in which the rider straddles the vehicle body, and the vehicle body can be swung (banked) in the lateral direction (roll direction) with reference to ground contact points of the front and rear wheels 3 and 4 .
  • the handle 2 may be a left and right integrated bar handle or a left and right separate separate handle, and may not be a bar type handle.
  • the motorcycle 1 includes a vehicle body frame 5 that serves as a main frame of the vehicle body.
  • the body frame 5 includes a head pipe 6, a main frame 7, a pivot frame 8 and a rear frame 9.
  • the vehicle body frame 5 steerably supports a front fork 12 of a front wheel suspension 11 at a head pipe 6 positioned in the center of the front end portion in the left-right direction.
  • the vehicle body frame 5 supports a swing arm 16 of a rear wheel suspension device 15 in a pivot frame 8 positioned in the front-rear intermediate portion so as to be capable of swinging up and down.
  • the vehicle body frame 5 is integrally provided from the head pipe 6 to the rear frame 9 behind the pivot frame 8 by a joining means such as welding.
  • a part of the vehicle body frame 5 (for example, the rear frame 9 and the like) may be detachable by bolting or the like.
  • reference numeral 7a indicates a pair of left and right main frame members provided in the main frame 7
  • reference numeral 8a indicates a pair of left and right pivot frame members provided in the pivot frame 8
  • reference numeral 9a indicates a pair of left and right rear frame members provided in the rear frame 9, respectively.
  • the pair of left and right frame members are separated from each other in the vehicle width direction.
  • the head pipe 6 has a steering axis tilted backward with respect to the vertical direction.
  • the head pipe 6 supports the front wheel 3 and the front wheel suspension device 11 so as to be rotatable about the steering axis.
  • the front wheel suspension system 11 includes a pair of left and right front forks 12 . Upper portions of the left and right front forks 12 are supported by the head pipe 6 via a steering stem. Lower ends of the left and right front forks 12 support the axle 3 a of the front wheel 3 .
  • the left and right front forks 12 are of a telescopic type, respectively, and constitute a front suspension of the motorcycle 1 .
  • the front wheel suspension 11 is not limited to constituting a telescopic front suspension, and may constitute, for example, a link-type front suspension.
  • the pivot frame 8 supports the front end of the swing arm 16 via a pivot shaft (swing shaft) 17 extending in the vehicle width direction.
  • a rear end portion of the swing arm 16 supports an axle 4 a of the rear wheel 4 .
  • a rear cushion is interposed between the front portion of the swing arm 16 and the front-rear middle portion of the body frame 5 (for example, the cross frame near the pivot frame 8).
  • the swing arm 16 and the rear cushion constitute a rear suspension of the motorcycle 1. As shown in FIG.
  • the rear cushion may be interposed between the rear portion of the swing arm 16 and the rear portion of the body frame 5 (for example, the rear frame 9).
  • the entire vehicle body including the vehicle body frame 5 is covered with a vehicle body cover 19.
  • the vehicle body cover 19 is divided into, for example, a front body cover 19a that covers the front part of the vehicle body and a rear body cover 19b that covers the rear part of the vehicle body, with the front-rear center of the vehicle body as a boundary.
  • the rear frame 9 extends rearward and upward of the pivot frame 8 .
  • a seat 21 for seating an occupant is supported on the rear frame 9 .
  • the rear frame 9 supports the seating load of an occupant seated on the seat 21 .
  • the rear frame 9 receives a reaction force when the cushion expands and contracts.
  • the seat 21 integrally includes, for example, a front seating portion on which the driver sits and a rear seating portion on which the rear passenger sits.
  • the periphery of the rear frame 9 is covered with a rear body cover 19b extending from below both sides of the seat 21 to the rear.
  • the seat 21 is attached to, for example, the rear body cover 19b in a detachable or openable manner. By attaching/detaching or opening/closing the seat 21, the upper part of the rear body cover 19b is opened/closed. An occupant can sit on the seat 21 in the closed state in which the seat 21 is attached and the upper portion of the rear body cover 19b is closed. When the seat 21 is removed and the upper portion of the rear body cover 19b is opened, parts and spaces below the seat 21 can be accessed.
  • the seat 21 is lockable in the closed state.
  • the seat 21 may be configured to rotate around a hinge shaft provided at either the front or rear to open and close the upper portion of the rear body cover 19b.
  • a vehicle component 23 having a knee grip portion is supported in front of the seat 21 and above the main frame 7 .
  • the vehicle component parts 23 include, for example, existing vehicle component parts such as a fuel tank and air cleaner for the engine E, a 12V battery for auxiliary equipment, and an article storage section for loading and unloading luggage by the occupant. and PCU 34 may be included.
  • the present invention may be applied to a scooter-type vehicle in which a straddle space is formed in front of the seat 21 without any vehicle components.
  • FIG. 2 is a block diagram showing the configuration of the drive system S.
  • the drive system S includes an engine E, a first motor M1, a second motor M2, a power switching device 31, a PCU 34, and a battery 37.
  • the engine E is, for example, a multi-cylinder engine, and generates rotational driving force for the crankshaft 26 from the reciprocating motion of the piston of each cylinder.
  • the engine E is arranged with the rotation center axis C1 of the crankshaft 26 along the vehicle width direction (horizontal direction).
  • the crankshaft 26 is housed inside a crankcase 27 .
  • a cylinder block 28 protrudes from the crankcase 27, and a piston corresponding to each cylinder is fitted in the cylinder block 28.
  • Each piston is connected to the crankshaft 26 via a connecting rod.
  • first motor M1 and the second motor M2 are coaxial with each other and arranged in the left-right direction (see FIG. 8), and are arranged behind the engine E.
  • the first motor M1 and the second motor M2 are electric motors independent of each other, with rotors and stators independent of each other.
  • the first motor M1 and the second motor M2 may be configured as an integrated motor assembly using predetermined assembly members (cases, brackets, stays, bolts and nuts, etc.).
  • the first motor M1 and the second motor M2 are brushless three-phase AC motors.
  • the first motor M1 is a driving motor that generates rotational driving force for driving the rear wheels, and regenerates (generates power) when the vehicle decelerates.
  • the second motor M2 is a power generating motor that receives the driving force of the engine E to generate power, and performs at least one of charging the battery 37 and supplying power to the first motor M1.
  • variable speed driving is performed by, for example, VVVF (variable voltage variable frequency) control.
  • VVVF variable voltage variable frequency
  • the first motor M1 is speed-change controlled to have a continuously variable transmission, but is not limited to this, and may be speed-change controlled to have a stepped transmission.
  • the operation of the first motor M1 may include driving as an assist motor that assists the driving of the engine E.
  • Operation of the first motor M1 may include driving the engine E as a starter motor.
  • the second motor M2 generates electricity by rotating the rotor with the rotational power of the crankshaft 26 while the engine E is running.
  • the operation of the second motor M2 may include driving as an assist motor that assists the driving of the engine E.
  • Operation of the second motor M2 may include driving the engine E as a starter motor.
  • the power switching device 31 switches power transmission paths among the engine E, the first motor M1 and the second motor M2. Under the control of the power switching device 31, the engine E, the first motor M1 and the second motor M2 cooperate to drive the rear wheel 4 (make the motorcycle 1 run). Under the control of the power switching device 31, the first motor M1 and the second motor M2 can be driven to generate power.
  • the drive system S and the rear wheels 4 are connected by a chain-type transmission mechanism 56, for example.
  • a hybrid drive unit U of the motorcycle 1 is configured including the power switching device 31, the engine E, the first motor M1 and the second motor M2.
  • the power switching device 31 includes a planetary gear mechanism (power distribution mechanism) 61, which will be described later.
  • the PCU (Power Control Unit) 34 is an integrated control unit including a PDU (Power Drive Unit) 34a and an ECU (Electric Control Unit) 34b.
  • the PCU 34 mainly controls the operation (driving and power generation) of the first motor M1 and the second motor M2 based on various sensor information.
  • PCU 34 controls the current and voltage between first motor M1 and second motor M2 and battery 37 .
  • the PCU 34 includes a converter that raises and lowers voltage and an inverter that converts DC current to AC current.
  • the inverter includes a bridge circuit using a plurality of switching elements such as transistors, a smoothing capacitor, and the like, and controls energization to each stator winding of the first motor M1 and the second motor M2.
  • the first motor M ⁇ b>1 and the second motor M ⁇ b>2 switch between power running and power generation according to control by the PCU 34 .
  • the battery 37 obtains a predetermined high voltage (eg, 48V to 192V) by connecting a plurality of unit batteries 37a in series, for example.
  • the battery 37 includes a lithium ion battery as chargeable/dischargeable energy storage.
  • the battery 37 supplies electric power to the first motor M1 and can store electric power regenerated by the first motor M1 and electric power generated by the second motor M2.
  • Electric power from the battery 37 is supplied to the PDU 34a, which is the motor driver, via a contactor or the like that is interlocked with the main switch of the motorcycle 1, for example. Electric power from the battery 37 is converted from direct current to three-phase alternating current by the PDU 34a, and then supplied to the first motor M1 and the second motor M2.
  • the output voltage from the battery 37 is stepped down through the DC-DC converter and used to charge the 12V sub-battery.
  • the sub-battery supplies power to general electrical components such as lamps, meters, locking devices, and control system components such as ECUs. By installing a sub-battery, various electromagnetic locks can be operated even when the battery 37 is removed.
  • the battery 37 can be charged by a charger connected to an external power supply while mounted on the vehicle body, for example.
  • the battery 37 may be detached from the vehicle body and charged by a charger outside the vehicle.
  • the battery 37 has a BMU (Battery Management Unit) that monitors the charge/discharge status, temperature, and so on. Information monitored by the BMU is shared with the ECU 34b when the battery 37 is mounted on the vehicle body.
  • the ECU 34b drives and controls the first motor M1 and the second motor M2 via the PDU 34a based on detection information input from various sensors.
  • FIG. 7 is a block diagram showing the configuration of the control section 41 of the drive system S.
  • the control unit 41 includes a PCU 34, an engine ECU 42, and a clutch ECU 43.
  • PCU 34 controls the operation (driving and power generation) of first motor M1 and second motor M2.
  • the engine ECU 42 controls the start, operation and stop of the engine E by activating engine accessories such as an ignition device and a fuel injection device according to the degree of opening of the accelerator.
  • the engine ECU 42 includes an accelerator opening sensor 46 for detecting the amount of operation of an accelerator operator (for example, an accelerator grip), an engine speed sensor 47 for detecting the engine speed, and a vehicle speed (for example, wheel speed) of the motorcycle 1. Detected information from the vehicle speed sensor 48 and the like is input.
  • the engine ECU 42 operates engine accessories such as an ignition device and a fuel injection device based on various types of input detection information.
  • the clutch ECU 43 is a power switching control section, and operates the power switching device 31 based on various sensor information.
  • the clutch ECU 43 switches which of the engine E, the first motor M1 and the second motor M2 should be connected to the rear wheels 4 so as to be able to transmit power.
  • the clutch ECU 43 is connected to, for example, a clutch actuator 32 that connects and disconnects a clutch 71 in the power switching device 31, which will be described later.
  • the engine ECU 42 and the clutch ECU 43 may be provided separately or integrally.
  • the control unit 41 includes, for example, a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E, an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger, and a rotational speed of the engine E.
  • a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E
  • an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger
  • a rotational speed of the engine E Various sensors such as an engine rotation speed sensor 47 that detects the vehicle speed of the motorcycle 1, a vehicle speed sensor 48 that detects the vehicle speed of the motorcycle 1, and a remaining battery capacity sensor 49 that detects the remaining capacity of the battery 37 are connected.
  • the control unit 41 is activated, for example, when the main switch of the motorcycle 1 is turned on, and starts controlling the drive system S.
  • the control unit 41 stores, in memory, a map in which the correlation between the vehicle speed and the output (torque) is set for each accelerator opening, for example.
  • the control unit 41 appropriately causes the engine E, the first motor M1 and the second motor M2 to cooperate based on the output from each sensor, a predetermined map, and the like.
  • the control unit 41 applies torque from the drive system S to the rear wheel 4 to run the motorcycle 1 and enables the battery 37 to be charged.
  • the control unit 41 has a plurality of control modes for cooperating the engine E, the first motor M1 and the second motor M2.
  • the control unit 41 functions as a control mode switching unit that switches between a plurality of control modes. Switching of the control mode is functionally realized by processing executed based on a preset computer program.
  • the plurality of control modes of control unit 41 include EV mode, hybrid mode, regeneration mode, and engine drive mode.
  • EV mode the engine E is stopped, the first motor M1 is driven, and the motorcycle 1 is driven by the driving force of the first motor M1.
  • hybrid mode the second motor M2 is driven by the engine E as a generator, and the motorcycle 1 is driven by the driving force of the first motor M1.
  • the kinetic energy of the motorcycle 1 is used to drive the first motor M1 as a generator when the motorcycle 1 decelerates, and the battery 37 is charged with the electric power generated by the first motor M1.
  • the driving force of the engine E is used to drive the motorcycle 1 .
  • Each control mode can be automatically switched according to sensor output or the like, or can be arbitrarily switched by the operation of the passenger.
  • the multiple control modes are described in more detail below.
  • an EV (Electric Vehicle) mode in which the engine E is stopped and the vehicle is driven by the driving force of the first motor M1 will be described.
  • the EV mode is a motor drive mode in which the motorcycle 1 can travel only by the driving force (motor torque) of the first motor M1, for example, when the motorcycle 1 is running at medium to low speeds (especially when cruising).
  • the motorcycle 1 is run with the engine E and the second motor M2 disconnected from the rear wheel 4 .
  • the EV mode it is also possible to drive the engine E and use the driving force of the engine E to generate electricity with the second motor M2 (hybrid mode).
  • the power generated by the second motor M2 is stored in the battery 37, but may be directly supplied to the first motor M1.
  • the hybrid mode is implemented, for example, when the motorcycle 1 starts running until it reaches a specified speed, when traveling uphill, when a sudden acceleration is required, and the like.
  • the hybrid mode is also implemented when the remaining battery capacity is low. Since the motorcycle 1 is smaller than a passenger car and the mounting size (capacity) of the battery 37 is limited, the hybrid mode is more likely to be used than the EV mode.
  • regenerative mode In EV mode and hybrid mode, when the motorcycle 1 decelerates or travels downhill, it shifts to "regenerative mode".
  • the regeneration mode the rotational energy of the rear wheels 4 is input to the first motor M1 to regenerate (generate power), and the generated power is stored in the battery 37 .
  • the connection between the engine E and the rear wheels 4 may be released, and regeneration may be performed efficiently.
  • regenerative braking engine braking
  • the first motor M1 may idle to stop regeneration.
  • the power switching device 31 the engine E and the rear wheels 4 may be connected to generate engine braking.
  • the power switching device 31 connects the engine E and the rear wheels 4 so that power can be transmitted, and the driving force of the engine E drives the motorcycle 1 (engine drive). mode).
  • the driving force of the engine E may be used to drive the second motor M ⁇ b>2 to generate power, which may be stored in the battery 37 .
  • the engine drive mode at least one of the first motor M1 and the second motor M2 may be driven to assist rear wheel drive.
  • the engine E is configured without a transmission behind the crankshaft 26, and the front-to-rear width of the crankcase 27 is narrowed.
  • a cylinder block 28 projects obliquely forward and upward from the front portion of the crankcase 27 .
  • Reference symbol C2 in the drawing indicates an axis (center axis of the cylinder bore, cylinder axis) along the projecting direction of the cylinder block 28 .
  • the cylinder block 28 has the cylinder axis C2 inclined forward with respect to the vertical direction.
  • the forward inclination angle of the cylinder axis C2 with respect to the vertical direction is set to, for example, 45 degrees or more, thereby suppressing the vertical height of the engine E as a whole.
  • the engine E is arranged at a height facing downward of the vehicle body in the vertical direction (a height at which the lower surface of the crankcase 27 is substantially located at the lower end of the vehicle body between the front and rear wheels 3 and 4).
  • the first motor M1 is arranged on the rear left side of the crankcase 27 of the engine E. As shown in FIG. The first motor M1 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction. The first motor M1 is arranged with the rotating shaft 151 extending in the left-right direction. The first motor M ⁇ b>1 is provided on a shaft separate from the crankshaft 26 . Reference symbol C3 in the figure indicates the central axis of the rotating shaft 151 of the first motor M1.
  • the first motor M1 is arranged at a height facing downward of the vehicle body in the vertical direction (a height at which the lower end is substantially located at the lower end of the vehicle body between the front and rear wheels 3 and 4).
  • the first motor M1 is arranged forward of the pivot frame 8 in a side view.
  • the rotation shaft 151 of the first motor M1 is arranged forward and below the pivot shaft 17 in a side view.
  • the rotating shaft 151 of the first motor M1 is arranged behind and below the crankshaft 26 in a side view.
  • an output shaft 55 parallel to the rotating shaft 151 is arranged above the rotating shaft 151 of the first motor M1.
  • the output shaft 55 is an output portion of the drive system S, and outputs drive force (torque) via the power switching device 31 .
  • the output shaft 55 is connected to the rear wheel 4 via a chain-type transmission mechanism 56, for example.
  • a drive sprocket 56a of a transmission mechanism 56 is supported on the right end of the output shaft 55 so as to be integrally rotatable.
  • the second motor M2 is arranged on the rear right side of the crankcase 27 of the engine E.
  • the second motor M2 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction.
  • the second motor M2 is arranged with the rotating shaft 251 extending in the left-right direction.
  • the second motor M2 is provided on a shaft separate from the crankshaft 26 .
  • Reference symbol C4 in the drawing indicates the central axis of the rotating shaft 251 of the second motor M2.
  • the first motor M1 and the second motor M2 are provided coaxially with each other.
  • the first motor M1 and the second motor M2 are adjacent to each other in the left-right direction.
  • the term "adjacent" used in this embodiment means that there is no other component between the two target components, or that only an assembly member (case, bracket, stay, bolt nut, etc.) is present.
  • the first motor M1 and the second motor M2 each have a flat columnar shape with a reduced axial width.
  • the first motor M1 is provided larger in both the radial direction and the axial direction than the second motor M2.
  • the first motor M1 is offset to the left in the vehicle width direction with respect to the left-right center CL of the vehicle body.
  • the second motor M2 is arranged so as to be offset to the right in the vehicle width direction with respect to the left-right center CL of the vehicle body.
  • Displacement to one side in the vehicle width direction with respect to the left-right center CL of the vehicle body means that the entire motors M1 and M2 are arranged to one side of the left-right center CL of the vehicle body. is on one side of the vehicle body left-right center CL.
  • the first motor M1 may be arranged so as to straddle the left and right center CL of the vehicle body. Enlarging the size of the first motor M1 makes it easier to secure the driving force of the motorcycle 1 .
  • the second motor M2 is arranged to be offset to the left side in the vehicle width direction with respect to the left-right center CL of the vehicle body.
  • a battery 37 as a power source for the drive system S is arranged below the seat 21. As shown in FIG. The battery 37 is arranged across the left and right center CL of the vehicle body. As a result, the center of gravity of the completed vehicle can be set near the left and right centers, which improves steering stability.
  • the battery 37 is composed of, for example, a plurality of (for example, a pair of left and right) unit batteries 37a. Each unit battery 37a has the same configuration.
  • Each unit battery 37a has, for example, a prismatic shape (rectangular parallelepiped shape) that has a rectangular cross section and extends in the longitudinal direction.
  • Each unit battery 37a is arranged so that the longitudinal direction thereof is tilted rearward upward, so that it can be easily accommodated in the rearward upward rear body cover 19b as a whole.
  • Each unit battery 37a is accommodated, for example, in an integrated battery box.
  • the battery 37 generates a predetermined high voltage (48-72V) by connecting a plurality of unit batteries 37a in series.
  • Each unit battery 37a is composed of, for example, a lithium ion battery as a chargeable/dischargeable energy storage.
  • Each unit battery 37a is connected to the PCU 34 via a junction box (distributor) and a contactor (electromagnetic switch).
  • a three-phase cable extends from the PCU 34 and is connected to the first motor M1.
  • At least part of the battery 37 is arranged between the left and right rear frame members 9a.
  • the battery 37 is spaced apart in front and above the rear wheel 4 in a side view.
  • the battery 37 is supported by the left and right rear frame members 9a.
  • the battery 37 is positioned below the seat 21 .
  • the battery 37 can be accessed (including attachment/detachment and maintenance such as charging) from an upper opening of the rear body cover 19b by attaching/detaching or opening/closing the seat 21, for example.
  • the PCU 34 has a rectangular parallelepiped outer shape and is arranged with one side along the vehicle width direction.
  • the PCU 34 is arranged with its upper and lower surfaces substantially horizontal.
  • the PCU 34 may be arranged with its upper and lower surfaces inclined when viewed from the side.
  • the PCU 34 is arranged behind the engine E and above the first motor M1 and the second motor M2.
  • the PCU 34 is arranged across the left and right center CL of the vehicle body.
  • a battery 37 is arranged behind the PCU 34 .
  • the PCU 34 overlaps the battery 37 in the vertical direction and overlaps the first motor M1 and the second motor M2 in the front-rear direction.
  • the PCU 34 and the battery 37 approach each other, and the PCU 34 and each of the first motor M1 and the second motor M2 approach each other.
  • the wiring between these electrical components can be shortened.
  • the first motor M1 and the second motor M2 are arranged behind the engine E within the lateral width H1 of the engine E.
  • the first motor M1 and the second motor M2 can be coaxial compact motor assemblies.
  • the first motor M1 and the second motor M2 can be arranged more freely and easily arranged within the lateral width H1 of the engine E.
  • the first motor M1 and the second motor M2 are arranged substantially within the lateral width H1 of the engine E (in this embodiment, simply referred to as "engine E The same applies to the case where it is described as "arranged within the left and right width H1 of .”).
  • At least one of the first motor M1 and the second motor M2 may be arranged within the lateral width H1 of the engine E. At least part of the motor arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
  • the first motor M1 and the second motor M2 By arranging the first motor M1 and the second motor M2 within the lateral width H1 of the engine E, an increase in the lateral width of the drive system S including the engine E and the two motors M1 and M2 is suppressed, and the flexibility of the vehicle body layout is improved. can increase By arranging the first motor M1 and the second motor M2 adjacent to each other, the motors M1 and M2 are brought closer to each other, and the wires connected to the motors M1 and M2 can be shortened. In particular, by arranging the first motor M1 and the second motor M2 as a whole within the lateral width H1 of the engine E, it is possible to increase the lateral width of the drive system S including the engine E and the two motors M1 and M2. It is possible to suppress it reliably and increase the degree of freedom of the body layout.
  • the PCU 34 is arranged above the first motor M1 and the second motor M2.
  • the PCU 34 is arranged within the lateral width H1 of the engine E.
  • the PCU 34 is arranged within the longitudinal width of the motor assembly including the first motor M1 and the second motor M2.
  • the lower end of the PCU 34 is vertically adjacent to the upper ends of the first motor M1 and the second motor M2.
  • the upper end portion of the PCU 34 is arranged above the upper end height Z1 of the engine E.
  • the PCU 34 has a limited width in the left-right direction, a width in the front-rear direction, and a height at the lower end, but by giving flexibility to the height at the upper end, a necessary capacity is obtained.
  • the PCU 34 is not limited to being arranged entirely within the lateral width H1 of the engine E, and may be arranged at least partially within the lateral width H1 of the engine E. 1 and 8, the PCU 34 includes a first motor control unit (drive PCU 34c) that controls the first motor M1, a second motor control unit (power generation PCU 34d) that controls the second motor M2, are provided as an integral unit.
  • drive PCU 34c drives the first motor M1
  • power generation PCU 34d power generation PCU 34d
  • the PCU 34 is divided into a drive PCU 34c and a power generation PCU 34d.
  • the drive PCU 34c and the power generation PCU 34d are provided separately from each other.
  • at least one of the drive PCU 34c and the power generation PCU 34d may be arranged within the lateral width H1 of the engine E.
  • FIG. At least part of the PCU arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
  • Reference numeral 34e in the figure denotes a controller for controlling connection/disengagement of the clutch 71, which will be described later.
  • the drive PCU 34c is arranged adjacent to, for example, the outer side in the left-right direction of the first motor M1.
  • the drive PCU 34c has a flat shape with a reduced lateral width, and suppresses the protrusion of the drive unit U to the outside in the lateral direction.
  • the drive PCU 34c is arranged near the first motor M1 to be controlled, thereby shortening the wiring between it and the first motor M1.
  • the first motor M1 is positioned on the outer side in the axial direction (outer side in the left-right direction).
  • the drive PCU 34c which is the control unit for the first motor M1 frequently requires cooling.
  • the drive PCU 34c is easily exposed to running wind while the motorcycle 1 is running, and the drive PCU 34c is well cooled.
  • the power generation PCU 34d is arranged, for example, adjacent to the rear of the second motor M2.
  • the power generating PCU 34 d has a flat shape with a reduced front-to-rear width, which facilitates its placement between the drive unit U and the rear wheel 4 .
  • the power generation PCU 34d is arranged near the second motor M2 to be controlled, thereby shortening the wiring between it and the second motor M2.
  • the second motor M2 is positioned axially inside (left-right direction inside).
  • a battery 37 is arranged behind the PCU 34 (above and behind the first motor M1 and the second motor M2).
  • the battery 37 is arranged within the lateral width H1 of the engine E, and an increase in the lateral width of the drive system S including the battery 37 can be suppressed.
  • by arranging the entire battery 37 within the lateral width H1 of the engine E it is possible to reliably suppress an increase in the lateral width of the drive system S including the battery 37 .
  • the battery 37 is divided into a pair of left and right unit batteries 37a within the lateral width H1 of the engine E. As shown in FIG. The battery 37 is inclined forward and downward, and the front part of the battery 37 is arranged behind the upper part of the PCU 34 . The rear portion of the battery 37 is arranged above the upper end portion of the PCU 34 . The battery 37 is arranged flat under the seat 21 . The battery 37 has a limited lateral width, a vertical width and a front end position, but the rear end position is made flexible to increase the capacity. By arranging the plurality of unit batteries 37a side by side, the vertical height of the entire battery 37 can be suppressed, and the center of gravity of the battery 37 can be easily brought closer to the center of the vehicle body.
  • the battery 37 is not limited to being arranged entirely within the lateral width H1 of the engine E, and may be arranged at least partially within the lateral width H1 of the engine E.
  • the battery 37 may be configured such that at least one of the plurality of unit batteries 37a is arranged within the lateral width H1 of the engine E. As shown in FIG. At least part of the unit batteries arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
  • FIG. 14 shows a modification of the arrangement of the battery 37 and PCU 34.
  • a battery 37' that is inclined rearwardly upward is arranged in a range extending from above the first motor M1 and the second motor M2 to the upper rear side.
  • the configuration of the battery 37' itself is similar to that of the battery 37 described above.
  • a PCU 34' is arranged below the rear portion of the battery 37' (above and behind the first motor M1 and the second motor M2).
  • the PCU 34' is inclined rearward and upward along the lower surface of the battery 37'. According to this configuration, the battery 37', the PCU 34', the first motor M1 and the second motor M2 are close to each other, and the wiring between them can be easily and simply provided.
  • FIG. 9 the planetary gear mechanism 61 is arranged coaxially with the first motor M1 and the second motor M2. That is, the sun gear 62 and the ring gear 64 of the planetary gear mechanism 61 are arranged coaxially with the first motor M1 and the second motor M2.
  • the planetary gear mechanism 61 is supported by a support shaft 57 coaxial with the first motor M1 and the second motor M2.
  • the sun gear (first element) 62 of the planetary gear mechanism 61 is connected to the rotor of the second motor for power generation so as to rotate integrally, and the pinion carrier (second element) 63 rotates integrally with the primary driven gear 72 via the clutch 71.
  • the ring gear (third element) 64 is connected to the rotor of the first driving motor M1 and the output gear 73 so as to rotate together. 10 to 13). (range of "-" in the graph of FIG. 13). In FIG.
  • reference numeral 72a denotes a primary drive gear that is rotatably provided on the crankshaft 26 and meshes with the primary driven gear 72
  • reference numeral 63a denotes a pinion gear (planetary gear) that is supported by the pinion carrier 63 and meshes with the sun gear 62 and the ring gear 64. each shown.
  • the planetary gear mechanism 61 is arranged behind the engine E coaxially with the primary driven gear 72 .
  • a primary driven gear 72 and a clutch 71 are supported on the right side of the support shaft 57 .
  • the clutch 71 is arranged adjacent to the right side (outside in the vehicle width direction) of the primary driven gear 72 .
  • the clutch 71 is, for example, a multi-plate clutch, and includes a clutch inner and a clutch outer that are connected and disconnected via clutch plates.
  • the clutch outer can rotate integrally with the primary driven gear 72
  • the clutch inner can rotate integrally with the pinion carrier 63 .
  • a first motor M1 is supported on the left side of the support shaft 57.
  • the first motor M1 is, for example, an inner rotor type, and its rotor can rotate integrally with the ring gear 64 and the output gear 73 .
  • a coaxial cylindrical peripheral wall 65 extends axially on the left side of the ring gear 64 .
  • An output gear 73 for power transmission with the rear wheel 4 side is provided on the outer periphery of the left side of the peripheral wall 65 .
  • the output gear 73 meshes with a transmission gear 55a provided on the output shaft 55 so as to rotate integrally therewith.
  • a second motor M2 is arranged on the inner peripheral side of the peripheral wall 65 .
  • the second motor M ⁇ b>2 is, for example, an inner rotor type, and its rotor can rotate together with the sun gear 62 .
  • the motorcycle 1 in the above embodiment includes the first driving motor M1 for applying driving force to the rear wheel 4, the battery 37 for supplying electric power to the first motor M1, and the first motor M1.
  • a second motor M2 for power generation provided separately from the above, an engine E that drives the second motor M2 to generate power, a PCU 34 that controls the first motor M1 and the second motor M2, and the first motor
  • a power distribution mechanism 61 that distributes power among M1, the second motor M2, and the engine E, and the power distribution mechanism 61 includes a first element (sun gear) 62 connected to the second motor M2.
  • the second motor M2 is arranged on the inner peripheral side of the peripheral wall 65 that continues to the third element 64 in the axial direction. According to this configuration, by configuring the power distribution mechanism 61 between the first motor M1, the second motor M2, and the engine E with the planetary gear mechanism 61, motor running, motor running + engine power generation, regeneration, engine running, etc. Switching can be easily realized. Further, by arranging the second motor M2 on the inner peripheral side of the peripheral wall 65 axially connected to the ring gear 64 of the power distribution mechanism 61 (planetary gear mechanism 61), the hybrid drive unit U can be configured compactly. can.
  • the first motor M1, the second motor M2, and the power distribution mechanism 61 are arranged coaxially with each other, and the second motor M2 and the power distribution mechanism 61 are arranged axially relative to each other. Adjacent to. According to this configuration, by arranging the second motor M2 adjacent to the ring gear 64 on the inner peripheral side of the ring gear 64, the size of the ring gear 64 in the axial direction is suppressed, and the hybrid drive unit U is configured more compactly. can do.
  • the rotation shafts 151 and 251 of the first motor M1 and the second motor M2 are arranged on separate shafts from the crankshaft 26 of the engine E. As shown in FIG. According to this configuration, compared to the case where the first motor M1 and the second motor M2 are arranged coaxially with the crankshaft 26, the hybrid drive unit U can be made compact in the axial direction.
  • the first motor M1 is arranged axially outside the drive unit U including the first motor M1, the second motor M2, and the power distribution mechanism 61.
  • a drive PCU 34c for controlling the first motor M1 is arranged further outside in the axial direction. According to this configuration, by arranging the drive PCU 34c near the first motor M1 to be controlled, the wiring between them can be shortened. By arranging the drive PCU 34c axially outside the first motor M1 positioned axially outside, the drive PCU 34c can be cooled well.
  • the second motor M2 is arranged axially inside the drive unit U including the first motor M1, the second motor M2, and the power distribution mechanism 61.
  • a power-generating PCU 34d for controlling the second motor M2 is disposed radially outward of the . According to this configuration, by arranging the driving PCU 34c near the second motor M2 to be controlled, the wiring between them can be shortened. By arranging the power generating PCU 34d radially outward of the second motor M2 located axially inward, the power generating PCU 34d can be easily brought closer to the second motor M2.
  • the saddle-riding type vehicle includes general vehicles in which the driver straddles the vehicle body, motorcycles (motorized bicycles and scooter type vehicles). ), but also include vehicles with three wheels (including vehicles with two front wheels and one rear wheel, as well as vehicles with one front wheel and two rear wheels) or four-wheel vehicles (such as four-wheel buggies).
  • the straddle-type vehicle includes not only a vehicle such as a motorcycle that turns in a direction in which the vehicle body is banked, but also a vehicle that turns by steering the steered wheels without banking the vehicle body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

This saddled vehicle comprises: a drive motor (M1) that provides driving force to a drive wheel (4); a second motor (M2) that is installed separately from the drive motor (M1); an internal combustion engine (E) that drives the second motor (M2) to generate electricity; and a power distribution mechanism (61) that distributes power among the drive motor (M1), the second motor (M2), and the internal combustion engine (E). The power distribution mechanism (61) is equipped with a first element (62) connected to the second motor (M2), a second element (63) connected to the internal combustion engine (E) via a clutch (71), and a third element (64) connected to the drive motor (M1) to constitute a planetary gear mechanism (61). The second motor (M2) is disposed on the inner peripheral side of a peripheral wall (65) that is axially continuous with the third element (64).

Description

鞍乗り型車両saddle-riding vehicle
 本発明は、鞍乗り型車両に関する。 The present invention relates to a saddle-ride type vehicle.
 例えば特許文献1には、発電機駆動用エンジンが搭載されたハイブリッド式自動二輪車が開示されている。この自動二輪車では、既存車両の変速機部分に駆動モータを配置し、この駆動モータと後輪とをドライブチェーン等で連結している。
 例えば特許文献2には、ハイブリッド式自動二輪車において、発電機から駆動モータに供給する電力を制御するインバータを含むコントロールユニットと、駆動モータ及び/又はインバータを冷却するラジエータと、を備えることが開示されている。この自動二輪車では、ラジエータはエンジン前方に配置され、コントロールユニットはエンジン後方に配置されている。
For example, Patent Literature 1 discloses a hybrid motorcycle equipped with a generator-driving engine. In this motorcycle, the drive motor is arranged in the transmission portion of the existing vehicle, and the drive motor and the rear wheels are connected by a drive chain or the like.
For example, Patent Document 2 discloses that a hybrid motorcycle includes a control unit including an inverter that controls power supplied from a generator to a drive motor, and a radiator that cools the drive motor and/or the inverter. ing. In this motorcycle, the radiator is arranged in front of the engine, and the control unit is arranged in the rear of the engine.
特開2019-173622号公報JP 2019-173622 A 特開2020-175822号公報JP 2020-175822 A
 ところで、エンジンおよび電動部品の両方が搭載されるハイブリッド式鞍乗り型車両では、乗用車に比べて小型であることもあり、エンジンおよび電動部品等の各コンポーネントのレイアウトの最適化が要望されている。すなわち、限られたスペースの中で各コンポーネントをシンプル且つコンパクトにレイアウトする必要がある。 By the way, hybrid saddle-riding vehicles, which are equipped with both an engine and electric parts, are smaller than passenger cars, and there is a demand for optimization of the layout of each component such as the engine and electric parts. That is, it is necessary to lay out each component simply and compactly in a limited space.
 そこで本発明は、駆動輪に駆動力を与える駆動モータ、ならびに発電用の第二モータおよびエンジンを備える鞍乗り型車両において、エンジンおよび両モータを含む駆動システムのコンパクト化を図ることを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to reduce the size of a drive system including the engine and the two motors in a saddle-ride type vehicle that includes a drive motor that provides driving force to the drive wheels, a second motor for power generation, and the engine. .
 上記課題の解決手段として、本発明は、駆動輪(4)に駆動力を与える駆動モータ(M1)と、前記駆動モータ(M1)とは別に設けられる第二モータ(M2)と、前記第二モータ(M2)を駆動して発電させる内燃機関(E)と、前記駆動モータ(M1)、前記第二モータ(M2)および前記内燃機関(E)の間で動力を分配する動力分配機構(61)と、を備え、
前記動力分配機構(61)は、前記第二モータ(M2)と連結する第1要素(62)と、前記内燃機関(E)とクラッチ(71)を介して連結する第2要素(63)と、前記駆動モータ(M1)と連結する第3要素(64)と、を備えてプラネタリギヤ機構(61)を構成し、
前記第3要素(64)に軸方向で連なる周壁(65)の内周側に、前記第二モータ(M2)が配置されている鞍乗り型車両を提供する。
 この構成によれば、駆動モータ、第二モータおよび内燃機関の間の動力分配機構をプラネタリギヤ機構で構成することで、モータ走行、モータ走行+エンジン発電、回生、エンジン走行等の切り替えを簡易に実現することができる。また、動力分配機構(プラネタリギヤ機構)のリングギヤと軸方向で連なる周壁の内周側に、第二モータを配置することで、ハイブリッド式の駆動ユニットをコンパクトに構成することができる。
As means for solving the above problems, the present invention provides a drive motor (M1) that applies a driving force to a drive wheel (4), a second motor (M2) that is provided separately from the drive motor (M1), and the second An internal combustion engine (E) that drives a motor (M2) to generate electricity, and a power distribution mechanism (61) that distributes power among the drive motor (M1), the second motor (M2) and the internal combustion engine (E). ) and
The power distribution mechanism (61) includes a first element (62) connected to the second motor (M2) and a second element (63) connected to the internal combustion engine (E) via a clutch (71). , and a third element (64) connected to the drive motor (M1), forming a planetary gear mechanism (61),
A straddle-type vehicle is provided in which the second motor (M2) is arranged on the inner peripheral side of a peripheral wall (65) axially connected to the third element (64).
According to this configuration, by configuring the power distribution mechanism between the drive motor, the second motor, and the internal combustion engine with a planetary gear mechanism, it is possible to easily switch between motor running, motor running + engine power generation, regeneration, engine running, etc. can do. Further, by arranging the second motor on the inner peripheral side of the peripheral wall axially connected to the ring gear of the power distribution mechanism (planetary gear mechanism), the hybrid drive unit can be configured compactly.
 本発明において、前記駆動モータ(M1)、前記第二モータ(M2)および前記動力分配機構(61)は、相互に同軸に配置され、
前記第二モータ(M2)および前記動力分配機構(61)は、互いに軸方向で隣接している構成でもよい。
 この構成によれば、リングギヤに隣接する第二モータをリングギヤの内周側に配置することで、リングギヤの軸方向の大型化を抑え、ハイブリッド式の駆動ユニットをよりコンパクトに構成することができる。
In the present invention, the drive motor (M1), the second motor (M2) and the power distribution mechanism (61) are arranged coaxially with each other,
The second motor (M2) and the power distribution mechanism (61) may be axially adjacent to each other.
According to this configuration, by arranging the second motor adjacent to the ring gear on the inner peripheral side of the ring gear, it is possible to suppress the increase in size of the ring gear in the axial direction and to configure the hybrid drive unit more compactly.
 本発明において、前記駆動モータ(M1)および前記第二モータ(M2)の各回転軸(151,251)は、前記内燃機関(E)のクランクシャフト(26)とは別軸に配置されている構成でもよい。
 この構成によれば、駆動モータおよび第二モータをクランクシャフトと同軸に配置する場合に比べて、ハイブリッド式の駆動ユニットを軸方向でコンパクトにすることができる。
In the present invention, the rotation shafts (151, 251) of the drive motor (M1) and the second motor (M2) are arranged on separate shafts from the crankshaft (26) of the internal combustion engine (E). may be configured.
According to this configuration, the hybrid drive unit can be made more compact in the axial direction than when the drive motor and the second motor are arranged coaxially with the crankshaft.
 本発明において、前記駆動モータ(M1)は、前記駆動モータ(M1)、前記第二モータ(M2)および前記動力分配機構(61)を含むユニット(U)の軸方向外側に配置され、
前記駆動モータ(M1)のさらに軸方向外側には、前記駆動モータ(M1)を制御する駆動制御装置が配置されている構成でもよい。
 この構成によれば、制御対象である駆動モータの近くに駆動制御装置を配置することで、これらの間の配線を短くすることができる。軸方向外側に位置する駆動モータのさらに軸方向外側に駆動制御装置を配置することで、駆動制御装置を良好に冷却することができる。
In the present invention, the drive motor (M1) is arranged axially outside a unit (U) including the drive motor (M1), the second motor (M2) and the power distribution mechanism (61),
A configuration may be adopted in which a drive control device for controlling the drive motor (M1) is disposed axially outside the drive motor (M1).
According to this configuration, by arranging the drive control device near the drive motor, which is the object to be controlled, the wiring between them can be shortened. By arranging the drive control device further axially outside of the drive motor positioned axially outside, the drive control device can be cooled well.
 本発明において、前記第二モータ(M2)は、前記駆動モータ(M1)、前記第二モータ(M2)および前記動力分配機構(61)を含むユニット(U)の軸方向内側に配置され、
前記第二モータ(M2)の径方向外側には、前記第二モータ(M2)を制御する発電制御装置が配置されている構成でもよい。
 この構成によれば、制御対象である第二モータの近くに駆動制御装置を配置することで、これらの間の配線を短くすることができる。軸方向内側に位置する第二モータの径方向外側に発電制御装置を配置することで、発電制御装置を第二モータに近づけやすくすることができる。
In the present invention, the second motor (M2) is arranged axially inside a unit (U) including the drive motor (M1), the second motor (M2) and the power distribution mechanism (61),
A power generation control device for controlling the second motor (M2) may be arranged radially outward of the second motor (M2).
According to this configuration, by arranging the drive control device near the second motor to be controlled, the wiring between them can be shortened. By arranging the power generation control device radially outward of the second motor located axially inward, the power generation control device can be easily brought closer to the second motor.
 本発明によれば、駆動輪に駆動力を与える駆動モータ、ならびに発電用の第二モータおよびエンジンを備える鞍乗り型車両において、エンジンおよび両モータを含む駆動システムのコンパクト化を図ることができる。 According to the present invention, in a straddle-type vehicle that includes a drive motor that applies drive force to drive wheels, a second motor for power generation, and an engine, the drive system that includes the engine and both motors can be made compact.
本発明の実施形態における自動二輪車の概略を示す左側面図である。1 is a left side view schematically showing a motorcycle according to an embodiment of the invention; FIG. 上記自動二輪車の駆動システムの概略を示す構成図である。2 is a configuration diagram showing an outline of a drive system of the motorcycle; FIG. 上記駆動システムのEVモードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an EV mode of the drive system; 上記駆動システムのハイブリッドモードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a hybrid mode of the drive system; 上記駆動システムの回生モードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a regeneration mode of the drive system; 上記駆動システムのエンジンドライブモードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an engine drive mode of the drive system; 上記駆動システムの制御部の概略を示す構成図である。It is a block diagram which shows the outline of the control part of the said drive system. 上記自動二輪車の概略を示す平面図である。Fig. 2 is a plan view showing the outline of the motorcycle; 上記自動二輪車の駆動ユニットの概略を断面で示す説明図である。FIG. 2 is an explanatory diagram showing a schematic cross section of the drive unit of the motorcycle. EVモードで走行する際のプラネタリギヤ機構の各要素の回転速度を示す共線図である。FIG. 5 is a nomographic chart showing the rotation speed of each element of the planetary gear mechanism when traveling in EV mode; ハイブリッドモードで発電しながら走行する際のプラネタリギヤ機構の共線図である。FIG. 4 is a collinear diagram of the planetary gear mechanism when traveling while generating power in a hybrid mode; 回生モードで回生を行う際のプラネタリギヤ機構の共線図である。FIG. 4 is a collinear diagram of the planetary gear mechanism when performing regeneration in regeneration mode; エンジンドライブモードで走行する際のプラネタリギヤ機構の共線図である。FIG. 4 is a collinear diagram of the planetary gear mechanism when traveling in the engine drive mode; 上記自動二輪車のバッテリおよびPCUの配置の変形例を示す左側面図である。FIG. 4 is a left side view showing a modification of the arrangement of the battery and PCU of the motorcycle;
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。また以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UP、車体左右中央を示す線CLが示されている。本実施形態で用いる「中間」とは、対象の両端間の中央のみならず、対象の両端間の内側の範囲を含む意とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the directions such as front, back, left, and right in the following description are the same as the directions of the vehicle described below unless otherwise specified. An arrow FR indicating the front of the vehicle, an arrow LH indicating the left of the vehicle, an arrow UP indicating the upper side of the vehicle, and a line CL indicating the left-right center of the vehicle are shown at appropriate locations in the drawings used in the following description. The term "intermediate" used in this embodiment is intended to include not only the center between the two ends of the target, but also the inner range between the two ends of the target.
<車両全体>
 図1は、本実施形態の鞍乗り型車両の一例としての自動二輪車1を示す。自動二輪車1は、エンジン(内燃機関)Eおよび二つの電気モータM1,M2を含む駆動システムSを構成し、エンジン動力とモータ動力とを協働させて走行する。自動二輪車1は、いわゆる2モータハイブリッドシステムを搭載したハイブリッド車両である。なお、以下に説明する本発明の要旨を逸脱しない範囲であれば、1モータ式のハイブリッド車両や内燃機関を有さない電動車両に適用してもよい。
<Whole vehicle>
FIG. 1 shows a motorcycle 1 as an example of a straddle-type vehicle according to the present embodiment. The motorcycle 1 comprises a drive system S including an engine (internal combustion engine) E and two electric motors M1 and M2, and runs by cooperating engine power and motor power. The motorcycle 1 is a hybrid vehicle equipped with a so-called two-motor hybrid system. It should be noted that the present invention may be applied to a one-motor hybrid vehicle or an electric vehicle that does not have an internal combustion engine, as long as it does not depart from the gist of the present invention described below.
 自動二輪車1は、ハンドル2によって操舵される前輪(操舵輪)3と、駆動システムSによって駆動される後輪(駆動輪)4と、を備えている。自動二輪車1は、運転者が車体を跨いで乗車する鞍乗り型車両であり、前後輪3,4の接地点を基準に車体を左右方向(ロール方向)に揺動(バンク)可能である。ハンドル2は、左右一体のバーハンドルでも左右別体のセパレートハンドルでもよく、かつバータイプのハンドルでなくてもよい。 The motorcycle 1 includes front wheels (steered wheels) 3 that are steered by a steering wheel 2 and rear wheels (driving wheels) 4 that are driven by a drive system S. The motorcycle 1 is a saddle type vehicle in which the rider straddles the vehicle body, and the vehicle body can be swung (banked) in the lateral direction (roll direction) with reference to ground contact points of the front and rear wheels 3 and 4 . The handle 2 may be a left and right integrated bar handle or a left and right separate separate handle, and may not be a bar type handle.
 自動二輪車1は、車体の主要骨格となる車体フレーム5を備えている。車体フレーム5は、ヘッドパイプ6、メインフレーム7、ピボットフレーム8、リヤフレーム9を備えている。
 車体フレーム5は、前端部の左右中央に位置するヘッドパイプ6において、前輪懸架装置11のフロントフォーク12を転舵可能に支持する。車体フレーム5は、前後中間部に位置するピボットフレーム8において、後輪懸架装置15のスイングアーム16を上下揺動可能に支持する。車体フレーム5は、ヘッドパイプ6からピボットフレーム8よりも後方のリヤフレーム9に渡って、溶接等の結合手段によって一体に設けられている。車体フレーム5は、一部(例えばリヤフレーム9等)をボルト締結等で着脱可能としてもよい。
The motorcycle 1 includes a vehicle body frame 5 that serves as a main frame of the vehicle body. The body frame 5 includes a head pipe 6, a main frame 7, a pivot frame 8 and a rear frame 9.
The vehicle body frame 5 steerably supports a front fork 12 of a front wheel suspension 11 at a head pipe 6 positioned in the center of the front end portion in the left-right direction. The vehicle body frame 5 supports a swing arm 16 of a rear wheel suspension device 15 in a pivot frame 8 positioned in the front-rear intermediate portion so as to be capable of swinging up and down. The vehicle body frame 5 is integrally provided from the head pipe 6 to the rear frame 9 behind the pivot frame 8 by a joining means such as welding. A part of the vehicle body frame 5 (for example, the rear frame 9 and the like) may be detachable by bolting or the like.
 図中符号7aはメインフレーム7が備える左右一対のメインフレーム部材、符号8aはピボットフレーム8が備える左右一対のピボットフレーム部材、符号9aはリヤフレーム9が備える左右一対のリヤフレーム部材をそれぞれ示す。左右一対のフレーム部材は、それぞれ車幅方向で互いに離隔している。 In the figure, reference numeral 7a indicates a pair of left and right main frame members provided in the main frame 7, reference numeral 8a indicates a pair of left and right pivot frame members provided in the pivot frame 8, and reference numeral 9a indicates a pair of left and right rear frame members provided in the rear frame 9, respectively. The pair of left and right frame members are separated from each other in the vehicle width direction.
 ヘッドパイプ6は、鉛直方向に対して後傾したステアリング軸線を有している。ヘッドパイプ6は、前輪3および前輪懸架装置11をステアリング軸線回りに回動可能に支持している。例えば、前輪懸架装置11は、左右一対のフロントフォーク12を備えている。左右フロントフォーク12の上部は、ステアリングステムを介してヘッドパイプ6に支持されている。左右フロントフォーク12の下端部は、前輪3の車軸3aを支持している。左右フロントフォーク12は、それぞれテレスコピック式とされ、自動二輪車1のフロントサスペンションを構成している。前輪懸架装置11は、テレスコピック式のフロントサスペンションを構成するものに限らず、例えばリンク式のフロントサスペンションを構成してもよい。 The head pipe 6 has a steering axis tilted backward with respect to the vertical direction. The head pipe 6 supports the front wheel 3 and the front wheel suspension device 11 so as to be rotatable about the steering axis. For example, the front wheel suspension system 11 includes a pair of left and right front forks 12 . Upper portions of the left and right front forks 12 are supported by the head pipe 6 via a steering stem. Lower ends of the left and right front forks 12 support the axle 3 a of the front wheel 3 . The left and right front forks 12 are of a telescopic type, respectively, and constitute a front suspension of the motorcycle 1 . The front wheel suspension 11 is not limited to constituting a telescopic front suspension, and may constitute, for example, a link-type front suspension.
 ピボットフレーム8は、車幅方向に延びるピボット軸(揺動軸)17を介して、スイングアーム16の前端部を支持している。スイングアーム16の後端部には、後輪4の車軸4aが支持されている。例えば、スイングアーム16の前部と車体フレーム5の前後中間部(例えばピボットフレーム8近傍のクロスフレーム)との間には、リヤクッションが介装されている。スイングアーム16およびリヤクッションは、自動二輪車1のリヤサスペンションを構成している。リヤクッションは、スイングアーム16の後部と車体フレーム5の後部(例えばリヤフレーム9)との間に介装されてもよい。 The pivot frame 8 supports the front end of the swing arm 16 via a pivot shaft (swing shaft) 17 extending in the vehicle width direction. A rear end portion of the swing arm 16 supports an axle 4 a of the rear wheel 4 . For example, a rear cushion is interposed between the front portion of the swing arm 16 and the front-rear middle portion of the body frame 5 (for example, the cross frame near the pivot frame 8). The swing arm 16 and the rear cushion constitute a rear suspension of the motorcycle 1. As shown in FIG. The rear cushion may be interposed between the rear portion of the swing arm 16 and the rear portion of the body frame 5 (for example, the rear frame 9).
 車体フレーム5を含む車体の全体は、車体カバー19で覆われている。車体カバー19は、例えば車体前後中央を境に、車体前部を覆うフロントボディカバー19aと、車体後部を覆うリヤボディカバー19bと、に分けられる。 The entire vehicle body including the vehicle body frame 5 is covered with a vehicle body cover 19. The vehicle body cover 19 is divided into, for example, a front body cover 19a that covers the front part of the vehicle body and a rear body cover 19b that covers the rear part of the vehicle body, with the front-rear center of the vehicle body as a boundary.
 リヤフレーム9は、ピボットフレーム8の後上方へ延びている。リヤフレーム9上には、乗員着座用のシート21が支持されている。リヤフレーム9は、シート21に着座した乗員の着座荷重を支持する。リヤフレーム9は、リヤクッションが連結される場合はクッション伸縮時の反力を受ける。 The rear frame 9 extends rearward and upward of the pivot frame 8 . A seat 21 for seating an occupant is supported on the rear frame 9 . The rear frame 9 supports the seating load of an occupant seated on the seat 21 . When the rear cushion is connected, the rear frame 9 receives a reaction force when the cushion expands and contracts.
 シート21は、例えば運転者が座る前着座部と後部同乗者が座る後着座部とを一体に備えている。リヤフレーム9の周囲は、シート21の両側部の下方から後方に渡るリヤボディカバー19bで覆われている。 The seat 21 integrally includes, for example, a front seating portion on which the driver sits and a rear seating portion on which the rear passenger sits. The periphery of the rear frame 9 is covered with a rear body cover 19b extending from below both sides of the seat 21 to the rear.
 シート21は、例えばリヤボディカバー19b側に着脱可能あるいは開閉可能に取り付けられている。シート21を着脱あるいは開閉することで、リヤボディカバー19bの上部が開閉される。シート21を取り付けてリヤボディカバー19bの上部を閉塞した閉状態において、乗員がシート21に着座可能となる。シート21を取り外してリヤボディカバー19bの上部を開放した開状態において、シート21下方の部品や空間にアクセス可能となる。シート21は、閉状態で施錠可能である。シート21は、例えば前後何れかに設けたヒンジ軸を中心に回動してリヤボディカバー19bの上部を開閉する構成でもよい。 The seat 21 is attached to, for example, the rear body cover 19b in a detachable or openable manner. By attaching/detaching or opening/closing the seat 21, the upper part of the rear body cover 19b is opened/closed. An occupant can sit on the seat 21 in the closed state in which the seat 21 is attached and the upper portion of the rear body cover 19b is closed. When the seat 21 is removed and the upper portion of the rear body cover 19b is opened, parts and spaces below the seat 21 can be accessed. The seat 21 is lockable in the closed state. For example, the seat 21 may be configured to rotate around a hinge shaft provided at either the front or rear to open and close the upper portion of the rear body cover 19b.
 シート21の前方でメインフレーム7の上方には、ニーグリップ部を有する車両構成部品23が支持されている。車両構成部品23は、例えばエンジンE用の燃料タンクやエアクリーナ、補機用の12Vバッテリ、乗員が荷物を出し入れする物品収納部、等の既存の車両構成部品を含む他、駆動システムSのバッテリ37やPCU34を含んでもよい。
 なお、本発明は、シート21の前方に車両構成部品を有さず跨ぎ空間を形成したスクータ型車両に適用してもよい。
A vehicle component 23 having a knee grip portion is supported in front of the seat 21 and above the main frame 7 . The vehicle component parts 23 include, for example, existing vehicle component parts such as a fuel tank and air cleaner for the engine E, a 12V battery for auxiliary equipment, and an article storage section for loading and unloading luggage by the occupant. and PCU 34 may be included.
The present invention may be applied to a scooter-type vehicle in which a straddle space is formed in front of the seat 21 without any vehicle components.
<駆動システム>
 図2は、駆動システムSの構成を示すブロック図である。
 駆動システムSは、エンジンEと、第一モータM1と、第二モータM2と、動力切替装置31と、PCU34と、バッテリ37と、を備えている。
<Drive system>
FIG. 2 is a block diagram showing the configuration of the drive system S. As shown in FIG.
The drive system S includes an engine E, a first motor M1, a second motor M2, a power switching device 31, a PCU 34, and a battery 37.
 エンジンEは、例えば複数気筒エンジンであり、各気筒のピストンの往復動からクランクシャフト26の回転駆動力を生成する。
 図1を併せて参照し、エンジンEは、クランクシャフト26の回転中心軸線C1を車幅方向(左右方向)に沿わせて配置されている。クランクシャフト26は、クランクケース27内に収容されている。クランクケース27からはシリンダブロック28が突出し、シリンダブロック28内には各気筒に対応するピストンが嵌装されている。各ピストンは、コネクティングロッドを介してクランクシャフト26に連結されている。
The engine E is, for example, a multi-cylinder engine, and generates rotational driving force for the crankshaft 26 from the reciprocating motion of the piston of each cylinder.
Referring also to FIG. 1, the engine E is arranged with the rotation center axis C1 of the crankshaft 26 along the vehicle width direction (horizontal direction). The crankshaft 26 is housed inside a crankcase 27 . A cylinder block 28 protrudes from the crankcase 27, and a piston corresponding to each cylinder is fitted in the cylinder block 28. As shown in FIG. Each piston is connected to the crankshaft 26 via a connecting rod.
 本実施形態において、第一モータM1および第二モータM2は、互いに同軸をなして左右方向に並び(図8参照)、エンジンEの後方に配置されている。第一モータM1および第二モータM2は、互いに独立した電気モータであり、互いに別個のロータおよびステータを備えている。例えば、第一モータM1および第二モータM2は、所定の組み付け部材(ケース、ブラケット、ステー、ボルトナット等)を用いて、一体のモータ組体として構成されてもよい。 In this embodiment, the first motor M1 and the second motor M2 are coaxial with each other and arranged in the left-right direction (see FIG. 8), and are arranged behind the engine E. The first motor M1 and the second motor M2 are electric motors independent of each other, with rotors and stators independent of each other. For example, the first motor M1 and the second motor M2 may be configured as an integrated motor assembly using predetermined assembly members (cases, brackets, stays, bolts and nuts, etc.).
 第一モータM1および第二モータM2は、それぞれブラシレスの三相交流モータである。第一モータM1は、後輪駆動用の回転駆動力を発生する駆動用モータであり、車両減速時等には回生(発電)を行う。第二モータM2は、エンジンEの駆動力を受けて発電を行う発電用モータであり、バッテリ37の充電および第一モータM1への電力供給の少なくとも一方を行う。 The first motor M1 and the second motor M2 are brushless three-phase AC motors. The first motor M1 is a driving motor that generates rotational driving force for driving the rear wheels, and regenerates (generates power) when the vehicle decelerates. The second motor M2 is a power generating motor that receives the driving force of the engine E to generate power, and performs at least one of charging the battery 37 and supplying power to the first motor M1.
 第一モータM1は、後輪4を駆動させて自動二輪車1を走行させるとき、例えばVVVF(variable voltage variable frequency)制御による可変速駆動がなされる。第一モータM1は、無段変速機を有する如く変速制御されるが、これに限らず、有段変速機を有する如く変速制御されてもよい。第一モータM1の作動は、エンジンEの駆動補助を行うアシストモータとしての駆動を含んでもよい。第一モータM1の作動は、エンジンEのスタータモータとしての駆動を含んでもよい。 When the first motor M1 drives the rear wheels 4 and causes the motorcycle 1 to travel, variable speed driving is performed by, for example, VVVF (variable voltage variable frequency) control. The first motor M1 is speed-change controlled to have a continuously variable transmission, but is not limited to this, and may be speed-change controlled to have a stepped transmission. The operation of the first motor M1 may include driving as an assist motor that assists the driving of the engine E. Operation of the first motor M1 may include driving the engine E as a starter motor.
 第一モータM1の駆動時、バッテリ37からの電力は、PCU34に供給され、直流から三相交流に変換されて、第一モータM1に供給される。第一モータM1の発電時、第一モータM1の発電電力は、レギュレータの整流回路等を経て、バッテリ37に蓄電される。 When driving the first motor M1, power from the battery 37 is supplied to the PCU 34, converted from direct current to three-phase alternating current, and supplied to the first motor M1. When the first motor M1 generates power, the power generated by the first motor M1 is stored in the battery 37 through the rectifier circuit of the regulator and the like.
 第二モータM2は、エンジンEの運転中にクランクシャフト26の回転動力でロータを回転させて発電を行う。第二モータM2の作動は、エンジンEの駆動補助を行うアシストモータとしての駆動を含んでもよい。第二モータM2の作動は、エンジンEのスタータモータとしての駆動を含んでもよい。 The second motor M2 generates electricity by rotating the rotor with the rotational power of the crankshaft 26 while the engine E is running. The operation of the second motor M2 may include driving as an assist motor that assists the driving of the engine E. Operation of the second motor M2 may include driving the engine E as a starter motor.
 第二モータM2の駆動時、バッテリ37からの電力は、PCU34に供給され、直流から三相交流に変換されて、第二モータM2に供給される。第二モータM2の発電時、第二モータM2の発電電力は、レギュレータの整流回路等を経て、バッテリ37に蓄電される。 When the second motor M2 is driven, power from the battery 37 is supplied to the PCU 34, converted from direct current to three-phase alternating current, and supplied to the second motor M2. When the second motor M2 generates power, the power generated by the second motor M2 is stored in the battery 37 through the rectifier circuit of the regulator and the like.
 動力切替装置31は、エンジンE、第一モータM1および第二モータM2の間の動力伝達経路を切り替える。動力切替装置31の制御により、エンジンE、第一モータM1および第二モータM2が協働して後輪4を駆動させる(自動二輪車1を走行させる)。動力切替装置31の制御により、第一モータM1および第二モータM2が駆動して発電可能である。駆動システムSと後輪4との間は、例えばチェーン式の伝動機構56で連結されている。
 動力切替装置31、エンジンE、第一モータM1および第二モータM2を含んで、自動二輪車1のハイブリッド式の駆動ユニットUが構成されている。動力切替装置31は、後述するプラネタリギヤ機構(動力分配機構)61を備えている。
The power switching device 31 switches power transmission paths among the engine E, the first motor M1 and the second motor M2. Under the control of the power switching device 31, the engine E, the first motor M1 and the second motor M2 cooperate to drive the rear wheel 4 (make the motorcycle 1 run). Under the control of the power switching device 31, the first motor M1 and the second motor M2 can be driven to generate power. The drive system S and the rear wheels 4 are connected by a chain-type transmission mechanism 56, for example.
A hybrid drive unit U of the motorcycle 1 is configured including the power switching device 31, the engine E, the first motor M1 and the second motor M2. The power switching device 31 includes a planetary gear mechanism (power distribution mechanism) 61, which will be described later.
 図7を併せて参照し、PCU(Power Control Unit)34は、PDU(Power Drive Unit)34aおよびECU(Electric Control Unit)34bを備えた一体の制御ユニットである。PCU34は、各種センサ情報に基づいて、主に第一モータM1および第二モータM2の作動(駆動および発電)を制御する。PCU34は、第一モータM1および第二モータM2とバッテリ37との間の電流および電圧をコントロールする。 Also referring to FIG. 7, the PCU (Power Control Unit) 34 is an integrated control unit including a PDU (Power Drive Unit) 34a and an ECU (Electric Control Unit) 34b. The PCU 34 mainly controls the operation (driving and power generation) of the first motor M1 and the second motor M2 based on various sensor information. PCU 34 controls the current and voltage between first motor M1 and second motor M2 and battery 37 .
 PCU34は、電圧を昇降させるコンバータと、DC電流をAC電流に変換するインバータと、を備えている。インバータは、トランジスタ等のスイッチング素子を複数用いたブリッジ回路及び平滑コンデンサ等を具備し、第一モータM1および第二モータM2の各ステータ巻線に対する通電を制御する。第一モータM1および第二モータM2は、PCU34による制御に応じて、力行運転と発電とを切り替える。 The PCU 34 includes a converter that raises and lowers voltage and an inverter that converts DC current to AC current. The inverter includes a bridge circuit using a plurality of switching elements such as transistors, a smoothing capacitor, and the like, and controls energization to each stator winding of the first motor M1 and the second motor M2. The first motor M<b>1 and the second motor M<b>2 switch between power running and power generation according to control by the PCU 34 .
 バッテリ37は、例えば複数の単位バッテリ37aを直列に結線して所定の高電圧(例えば48V~192V)を得る。バッテリ37は、充放電が可能なエネルギーストレージとしてリチウムイオンバッテリを備えている。バッテリ37は、第一モータM1に電力を供給するとともに、第一モータM1による回生電力および第二モータM2による発電電力を蓄電可能である。 The battery 37 obtains a predetermined high voltage (eg, 48V to 192V) by connecting a plurality of unit batteries 37a in series, for example. The battery 37 includes a lithium ion battery as chargeable/dischargeable energy storage. The battery 37 supplies electric power to the first motor M1 and can store electric power regenerated by the first motor M1 and electric power generated by the second motor M2.
 バッテリ37からの電力は、例えば自動二輪車1のメインスイッチと連動するコンタクタ等を介して、モータドライバたるPDU34aに供給される。バッテリ37からの電力は、PDU34aにて直流から三相交流に変換された後、第一モータM1および第二モータM2に供給される。 Electric power from the battery 37 is supplied to the PDU 34a, which is the motor driver, via a contactor or the like that is interlocked with the main switch of the motorcycle 1, for example. Electric power from the battery 37 is converted from direct current to three-phase alternating current by the PDU 34a, and then supplied to the first motor M1 and the second motor M2.
 バッテリ37からの出力電圧は、DC-DCコンバータを介して降圧され、12Vのサブバッテリの充電に供される。サブバッテリは、灯火器等の一般電装部品、メーターおよび施錠装置、ならびにECU等の制御系部品に電力を供給する。サブバッテリを搭載することで、バッテリ37を取り外した状態等でも各種電磁ロック等を操作可能である。 The output voltage from the battery 37 is stepped down through the DC-DC converter and used to charge the 12V sub-battery. The sub-battery supplies power to general electrical components such as lamps, meters, locking devices, and control system components such as ECUs. By installing a sub-battery, various electromagnetic locks can be operated even when the battery 37 is removed.
 バッテリ37は、例えば車体に搭載された状態で、外部電源に接続したチャージャーによって充電可能である。バッテリ37は、車体から取り外した状態で、車外の充電器によって充電可能でもよい。 The battery 37 can be charged by a charger connected to an external power supply while mounted on the vehicle body, for example. The battery 37 may be detached from the vehicle body and charged by a charger outside the vehicle.
 バッテリ37は、充放電状況や温度等を監視するBMU(Battery Management Unit)を備えている。BMUが監視した情報は、バッテリ37を車体に搭載した際にECU34bに共有される。ECU34bは、各種センサから入力された検知情報に基づき、PDU34aを介して第一モータM1および第二モータM2を駆動制御する。 The battery 37 has a BMU (Battery Management Unit) that monitors the charge/discharge status, temperature, and so on. Information monitored by the BMU is shared with the ECU 34b when the battery 37 is mounted on the vehicle body. The ECU 34b drives and controls the first motor M1 and the second motor M2 via the PDU 34a based on detection information input from various sensors.
<制御部>
 図7は、駆動システムSの制御部41の構成を示すブロック図である。
 制御部41は、PCU34と、エンジンECU42と、クラッチECU43と、を備えている。
 PCU34は、第一モータM1および第二モータM2の作動(駆動および発電)を制御する。
<Control part>
FIG. 7 is a block diagram showing the configuration of the control section 41 of the drive system S. As shown in FIG.
The control unit 41 includes a PCU 34, an engine ECU 42, and a clutch ECU 43.
PCU 34 controls the operation (driving and power generation) of first motor M1 and second motor M2.
 エンジンECU42は、アクセル開度等に応じて点火装置および燃料噴射装置といったエンジン補機を作動させて、エンジンEの始動、運転および停止を制御する。エンジンECU42には、アクセル操作子(例えばアクセルグリップ)の操作量を検出するアクセル開度センサ46、エンジン回転数を検出するエンジン回転数センサ47、自動二輪車1の車速(例えば車輪速度)を検出する車速センサ48、等の検出情報が入力される。エンジンECU42は、入力された各種の検出情報に基づき、点火装置および燃料噴射装置といったエンジン補機を作動させる。 The engine ECU 42 controls the start, operation and stop of the engine E by activating engine accessories such as an ignition device and a fuel injection device according to the degree of opening of the accelerator. The engine ECU 42 includes an accelerator opening sensor 46 for detecting the amount of operation of an accelerator operator (for example, an accelerator grip), an engine speed sensor 47 for detecting the engine speed, and a vehicle speed (for example, wheel speed) of the motorcycle 1. Detected information from the vehicle speed sensor 48 and the like is input. The engine ECU 42 operates engine accessories such as an ignition device and a fuel injection device based on various types of input detection information.
 クラッチECU43は、動力切替制御部であり、各種センサ情報に基づいて動力切替装置31を作動させる。クラッチECU43は、エンジンE、第一モータM1および第二モータM2の何れを、後輪4と動力伝達可能に連結するかを切り替える。クラッチECU43には、例えば動力切替装置31内の後述するクラッチ71を断接させるクラッチアクチュエータ32が接続されている。
 エンジンECU42とクラッチECU43とは、互いに別体に設けられても一体に設けられてもよい。
The clutch ECU 43 is a power switching control section, and operates the power switching device 31 based on various sensor information. The clutch ECU 43 switches which of the engine E, the first motor M1 and the second motor M2 should be connected to the rear wheels 4 so as to be able to transmit power. The clutch ECU 43 is connected to, for example, a clutch actuator 32 that connects and disconnects a clutch 71 in the power switching device 31, which will be described later.
The engine ECU 42 and the clutch ECU 43 may be provided separately or integrally.
 制御部41には、例えばエンジンEの燃料タンクの残容量を検知する燃料残容量センサ45、乗員のアクセル開度(出力要求量)を検知するアクセル開度センサ46、エンジンEの回転数を検知するエンジン回転数センサ47、自動二輪車1の車速を検知する車速センサ48、バッテリ37の残容量を検知するバッテリ残容量センサ49、等の各種センサが接続されている。 The control unit 41 includes, for example, a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E, an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger, and a rotational speed of the engine E. Various sensors such as an engine rotation speed sensor 47 that detects the vehicle speed of the motorcycle 1, a vehicle speed sensor 48 that detects the vehicle speed of the motorcycle 1, and a remaining battery capacity sensor 49 that detects the remaining capacity of the battery 37 are connected.
 制御部41は、例えば自動二輪車1のメインスイッチがオンになると起動し、駆動システムSの制御を開始する。制御部41は、例えばアクセル開度毎に車速と出力(トルク)との相関を設定したマップを、メモリに記憶している。制御部41は、各センサからの出力および予め定められたマップ等に基づいて、エンジンE、第一モータM1および第二モータM2を適宜協働させる。制御部41は、駆動システムSから後輪4にトルクを付与して自動二輪車1を走行させるとともに、バッテリ37を充電可能とする。 The control unit 41 is activated, for example, when the main switch of the motorcycle 1 is turned on, and starts controlling the drive system S. The control unit 41 stores, in memory, a map in which the correlation between the vehicle speed and the output (torque) is set for each accelerator opening, for example. The control unit 41 appropriately causes the engine E, the first motor M1 and the second motor M2 to cooperate based on the output from each sensor, a predetermined map, and the like. The control unit 41 applies torque from the drive system S to the rear wheel 4 to run the motorcycle 1 and enables the battery 37 to be charged.
 制御部41は、エンジンE、第一モータM1および第二モータM2を協働させる複数の制御モードを有している。制御部41は、複数の制御モードを切り替える制御モード切替部として機能する。制御モードの切り替えは、予め設定されたコンピュータプログラムに基づいて実行される処理によって、機能的に実現される。 The control unit 41 has a plurality of control modes for cooperating the engine E, the first motor M1 and the second motor M2. The control unit 41 functions as a control mode switching unit that switches between a plurality of control modes. Switching of the control mode is functionally realized by processing executed based on a preset computer program.
<制御モード>
 制御部41の複数の制御モードは、EVモードと、ハイブリッドモードと、回生モードと、エンジンドライブモードと、を含む。
 図3を参照し、EVモードは、エンジンEを停止して第一モータM1を駆動させ、第一モータM1の駆動力で自動二輪車1を走行させる。
 図4を参照し、ハイブリッドモードは、エンジンEにより第二モータM2を発電機として駆動させつつ、第一モータM1の駆動力で自動二輪車1を走行させる。
<Control mode>
The plurality of control modes of control unit 41 include EV mode, hybrid mode, regeneration mode, and engine drive mode.
Referring to FIG. 3, in the EV mode, the engine E is stopped, the first motor M1 is driven, and the motorcycle 1 is driven by the driving force of the first motor M1.
Referring to FIG. 4, in the hybrid mode, the second motor M2 is driven by the engine E as a generator, and the motorcycle 1 is driven by the driving force of the first motor M1.
 図5を参照し、回生モードは、自動二輪車1の減速時等に自動二輪車1の運動エネルギーによって第一モータM1を発電機として駆動させ、第一モータM1の発電電力でバッテリ37を充電する。
 図6を参照し、エンジンドライブモードは、エンジンEの駆動力で自動二輪車1を走行させる。
 各制御モードは、センサ出力等に応じて自動的に切り替え可能、または乗員の操作によって任意に切り替え可能である。
Referring to FIG. 5, in the regeneration mode, the kinetic energy of the motorcycle 1 is used to drive the first motor M1 as a generator when the motorcycle 1 decelerates, and the battery 37 is charged with the electric power generated by the first motor M1.
Referring to FIG. 6 , in the engine drive mode, the driving force of the engine E is used to drive the motorcycle 1 .
Each control mode can be automatically switched according to sensor output or the like, or can be arbitrarily switched by the operation of the passenger.
 以下、複数の制御モードについてより詳細に説明する。
 まず、エンジンEを停止して第一モータM1の駆動力で車両を走行させるEV(Electric Vehicle)モードについて説明する。EVモードは、例えば自動二輪車1の発進時から中低速の走行時(特にクルーズ走行時)等において、第一モータM1の駆動力(モータトルク)のみによって走行可能なモータドライブモードである。EVモードでは、エンジンEおよび第二モータM2と後輪4との連結を解除した状態で自動二輪車1を走行させる。
The multiple control modes are described in more detail below.
First, an EV (Electric Vehicle) mode in which the engine E is stopped and the vehicle is driven by the driving force of the first motor M1 will be described. The EV mode is a motor drive mode in which the motorcycle 1 can travel only by the driving force (motor torque) of the first motor M1, for example, when the motorcycle 1 is running at medium to low speeds (especially when cruising). In the EV mode, the motorcycle 1 is run with the engine E and the second motor M2 disconnected from the rear wheel 4 .
 EVモードにおいて、エンジンEを駆動し、エンジンEの駆動力によって第二モータM2で発電を行うことも可能である(ハイブリッドモード)。ハイブリッドモードにおいて、第二モータM2の発電電力は、バッテリ37に蓄電されるが、第一モータM1に直接供給されてもよい。 In the EV mode, it is also possible to drive the engine E and use the driving force of the engine E to generate electricity with the second motor M2 (hybrid mode). In the hybrid mode, the power generated by the second motor M2 is stored in the battery 37, but may be directly supplied to the first motor M1.
 ハイブリッドモードは、例えば自動二輪車1の発進時から規定速度に達するまでの間、上り坂走行時、急加速要求時等に実施される。ハイブリッドモードは、バッテリ残容量が少ない場合にも実施される。自動二輪車1は乗用車に比べて小型であり、バッテリ37の搭載サイズ(容量)も制限されるため、EVモードよりもハイブリッドモードとなる機会が多い。 The hybrid mode is implemented, for example, when the motorcycle 1 starts running until it reaches a specified speed, when traveling uphill, when a sudden acceleration is required, and the like. The hybrid mode is also implemented when the remaining battery capacity is low. Since the motorcycle 1 is smaller than a passenger car and the mounting size (capacity) of the battery 37 is limited, the hybrid mode is more likely to be used than the EV mode.
 ハイブリッドモードにおいて、エンジンEおよび第二モータM2の駆動力の少なくとも一部を、駆動システムSの出力部に供給することも可能である。これにより、エンジンEおよび第二モータM2のトルクで後輪駆動をアシストすることが可能である。バッテリ残容量が第一の規定値を下回っている場合は、第二モータM2による駆動アシストを制限してもよい。また、バッテリ残容量がさらに低い第二の規定値を下回る場合は、第一モータM1による駆動を制限してエンジンドライブモードに切り替えてもよい。燃料タンクの残容量が規定値を下回る場合は、第一モータM1および第二モータM2による後輪駆動の割合を増やしてもよい。 It is also possible to supply at least part of the drive power of the engine E and the second motor M2 to the output of the drive system S in the hybrid mode. As a result, it is possible to assist the driving of the rear wheels with the torque of the engine E and the second motor M2. If the remaining battery charge is below the first specified value, the drive assist by the second motor M2 may be restricted. Further, when the remaining battery capacity is lower than a second specified value, the driving by the first motor M1 may be restricted and switched to the engine drive mode. When the remaining capacity of the fuel tank is below a specified value, the proportion of rear wheel drive by the first motor M1 and the second motor M2 may be increased.
 EVモードおよびハイブリッドモードにおいて、自動二輪車1の減速時や下り坂走行時には、「回生モード」に移行する。回生モードでは、後輪4の回転エネルギーを第一モータM1に入力して回生(発電)を行い、この発電電力をバッテリ37に蓄電する。このとき、動力切替装置31の切り替えによって、エンジンEと後輪4との連結を解除し、効率よく回生を行う構成としてもよい。回生モードでは、後輪4に回生ブレーキ(機関ブレーキ)を発生させる。バッテリ37の充電量が規定値以上の場合には、第一モータM1を空転させて回生を停止してもよい。このとき、動力切替装置31の切り替えによって、エンジンEと後輪4とを連結し、エンジンブレーキを発生させてもよい。 In EV mode and hybrid mode, when the motorcycle 1 decelerates or travels downhill, it shifts to "regenerative mode". In the regeneration mode, the rotational energy of the rear wheels 4 is input to the first motor M1 to regenerate (generate power), and the generated power is stored in the battery 37 . At this time, by switching the power switching device 31, the connection between the engine E and the rear wheels 4 may be released, and regeneration may be performed efficiently. In the regenerative mode, regenerative braking (engine braking) is generated on the rear wheels 4 . When the amount of charge in the battery 37 is equal to or greater than a specified value, the first motor M1 may idle to stop regeneration. At this time, by switching the power switching device 31, the engine E and the rear wheels 4 may be connected to generate engine braking.
 高速走行時(特に定速走行時)等では、動力切替装置31においてエンジンEと後輪4との間を動力伝達可能に連結し、エンジンEの駆動力によって自動二輪車1を走行させる(エンジンドライブモード)。エンジンドライブモードにおいて、エンジンEの駆動力によって第二モータM2を駆動して発電を行い、バッテリ37に蓄電してもよい。エンジンドライブモードにおいて、第一モータM1および第二モータM2の少なくとも一方を駆動させ、後輪駆動をアシストしてもよい。 During high-speed running (particularly during constant-speed running), etc., the power switching device 31 connects the engine E and the rear wheels 4 so that power can be transmitted, and the driving force of the engine E drives the motorcycle 1 (engine drive). mode). In the engine drive mode, the driving force of the engine E may be used to drive the second motor M<b>2 to generate power, which may be stored in the battery 37 . In the engine drive mode, at least one of the first motor M1 and the second motor M2 may be driven to assist rear wheel drive.
<エンジン配置>
 図1を参照し、例えば、エンジンEは、クランクシャフト26の後方にトランスミッションを有さない構成であり、クランクケース27の前後幅を狭めている。本実施形態のエンジンEは、クランクケース27の前部から斜め前上方へシリンダブロック28を突出させている。図中符号C2はシリンダブロック28の突出方向に沿う軸線(シリンダボアの中心軸線、シリンダ軸線)を示す。シリンダブロック28は、シリンダ軸線C2を垂直方向に対して前方へ傾斜させている。シリンダ軸線C2の垂直方向に対する前傾角度は、例えば45度以上とされており、エンジンE全体の上下高さを抑えている。エンジンEは、上下方向で車体下方に臨む高さ(クランクケース27の下面が実質的に前後輪3,4間の車体下端に位置する高さ)に配置されている。
<Engine placement>
Referring to FIG. 1, for example, the engine E is configured without a transmission behind the crankshaft 26, and the front-to-rear width of the crankcase 27 is narrowed. In the engine E of this embodiment, a cylinder block 28 projects obliquely forward and upward from the front portion of the crankcase 27 . Reference symbol C2 in the drawing indicates an axis (center axis of the cylinder bore, cylinder axis) along the projecting direction of the cylinder block 28 . The cylinder block 28 has the cylinder axis C2 inclined forward with respect to the vertical direction. The forward inclination angle of the cylinder axis C2 with respect to the vertical direction is set to, for example, 45 degrees or more, thereby suppressing the vertical height of the engine E as a whole. The engine E is arranged at a height facing downward of the vehicle body in the vertical direction (a height at which the lower surface of the crankcase 27 is substantially located at the lower end of the vehicle body between the front and rear wheels 3 and 4).
<モータ配置>
 図1、図8を参照し、第一モータM1は、エンジンEのクランクケース27の後方左側に配置されている。第一モータM1は、上下方向でエンジンEのクランクケース27と重なる高さに配置されている。第一モータM1は、回転軸151を左右方向に沿わせて配置されている。第一モータM1は、クランクシャフト26とは別軸に設けられている。図中符号C3は第一モータM1の回転軸151の中心軸線を示す。
<Motor arrangement>
1 and 8, the first motor M1 is arranged on the rear left side of the crankcase 27 of the engine E. As shown in FIG. The first motor M1 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction. The first motor M1 is arranged with the rotating shaft 151 extending in the left-right direction. The first motor M<b>1 is provided on a shaft separate from the crankshaft 26 . Reference symbol C3 in the figure indicates the central axis of the rotating shaft 151 of the first motor M1.
 第一モータM1は、上下方向で車体下方に臨む高さ(下端が実質的に前後輪3,4間の車体下端に位置する高さ)に配置されている。第一モータM1は、側面視でピボットフレーム8よりも前方に配置されている。第一モータM1の回転軸151は、側面視でピボット軸17よりも前方かつ下方に配置されている。第一モータM1の回転軸151は、側面視でクランクシャフト26よりも後方かつ下方に配置されている。 The first motor M1 is arranged at a height facing downward of the vehicle body in the vertical direction (a height at which the lower end is substantially located at the lower end of the vehicle body between the front and rear wheels 3 and 4). The first motor M1 is arranged forward of the pivot frame 8 in a side view. The rotation shaft 151 of the first motor M1 is arranged forward and below the pivot shaft 17 in a side view. The rotating shaft 151 of the first motor M1 is arranged behind and below the crankshaft 26 in a side view.
 例えば、第一モータM1の回転軸151の上方には、回転軸151と平行な出力軸55が配置されている。出力軸55は、駆動システムSの出力部であり、動力切替装置31を介して駆動力(トルク)が出力される。出力軸55は、例えばチェーン式の伝動機構56を介して後輪4と連結されている。出力軸55の右端部には、伝動機構56のドライブスプロケット56aが一体回転可能に支持されている。 For example, an output shaft 55 parallel to the rotating shaft 151 is arranged above the rotating shaft 151 of the first motor M1. The output shaft 55 is an output portion of the drive system S, and outputs drive force (torque) via the power switching device 31 . The output shaft 55 is connected to the rear wheel 4 via a chain-type transmission mechanism 56, for example. A drive sprocket 56a of a transmission mechanism 56 is supported on the right end of the output shaft 55 so as to be integrally rotatable.
 図1、図8を参照し、第二モータM2は、エンジンEのクランクケース27の後方右側に配置されている。第二モータM2は、上下方向でエンジンEのクランクケース27と重なる高さに配置されている。第二モータM2は、回転軸251を左右方向に沿わせて配置されている。第二モータM2は、クランクシャフト26とは別軸に設けられている。図中符号C4は第二モータM2の回転軸251の中心軸線を示す。  1 and 8, the second motor M2 is arranged on the rear right side of the crankcase 27 of the engine E. The second motor M2 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction. The second motor M2 is arranged with the rotating shaft 251 extending in the left-right direction. The second motor M2 is provided on a shaft separate from the crankshaft 26 . Reference symbol C4 in the drawing indicates the central axis of the rotating shaft 251 of the second motor M2.
 第一モータM1と第二モータM2とは、互いに同軸に設けられている。第一モータM1と第二モータM2とは、互いに左右方向で隣接している。本実施形態で用いる「隣接」とは、対象の二部品間に他部品が存在しないか、あるいは組み付け部材(ケース、ブラケット、ステー、ボルトナット等)のみが存在する意とする。第一モータM1と第二モータM2とは、それぞれ軸方向幅を抑えた偏平の円柱状をなしている。例えば、第一モータM1は、第二モータM2と比べて、径方向および軸方向の各々で大型に設けられている。 The first motor M1 and the second motor M2 are provided coaxially with each other. The first motor M1 and the second motor M2 are adjacent to each other in the left-right direction. The term "adjacent" used in this embodiment means that there is no other component between the two target components, or that only an assembly member (case, bracket, stay, bolt nut, etc.) is present. The first motor M1 and the second motor M2 each have a flat columnar shape with a reduced axial width. For example, the first motor M1 is provided larger in both the radial direction and the axial direction than the second motor M2.
 例えば、第一モータM1は、車体左右中央CLに対して、車幅方向で左側にオフセットして配置されている。第二モータM2は、車体左右中央CLに対して、車幅方向で右側にオフセットして配置されている。車体左右中央CLに対して車幅方向一側にずれて配置されるとは、各モータM1,M2の全体が車体左右中央CLよりも一側に配置されることの他、各モータM1,M2の左右中央が車体左右中央CLよりも一側にあることを含む。第一モータM1は、車体左右中央CLを左右に跨ぐように配置されてもよい。第一モータM1を大型にすることで、自動二輪車1の駆動力を確保しやすくなる。
 ここで、リヤタイヤ幅が太い場合、チェーンラインに合わせて第一モータM1が車体左側に大きく寄る場合は、第二モータM2が車体左右中央CLに対して、車幅方向で左側にオフセットして配置されてもよい。
For example, the first motor M1 is offset to the left in the vehicle width direction with respect to the left-right center CL of the vehicle body. The second motor M2 is arranged so as to be offset to the right in the vehicle width direction with respect to the left-right center CL of the vehicle body. Displacement to one side in the vehicle width direction with respect to the left-right center CL of the vehicle body means that the entire motors M1 and M2 are arranged to one side of the left-right center CL of the vehicle body. is on one side of the vehicle body left-right center CL. The first motor M1 may be arranged so as to straddle the left and right center CL of the vehicle body. Enlarging the size of the first motor M1 makes it easier to secure the driving force of the motorcycle 1 .
Here, when the width of the rear tire is large, and when the first motor M1 is greatly shifted to the left side of the vehicle body in line with the chain line, the second motor M2 is arranged to be offset to the left side in the vehicle width direction with respect to the left-right center CL of the vehicle body. may be
<バッテリ配置>
 図1、図8を参照し、シート21の下方には、駆動システムSの電源であるバッテリ37が配置されている。バッテリ37は、車体左右中央CLを左右に跨いで配置されている。これにより、完成車重心を左右センター付近に設定できるため、操安性能を高めることができる。バッテリ37は、例えば複数(例えば左右一対)の単位バッテリ37aで構成されている。各単位バッテリ37aは、互いに同一構成である。各単位バッテリ37aは、例えば断面矩形状をなして長手方向に延びる角柱状(直方体状)をなしている。各単位バッテリ37aは、長手方向を後上がりに傾斜させて配置され、全体的に後上がりのリヤボディカバー19b内に収まりやすくしている。各単位バッテリ37aは、例えば一体のバッテリボックスに収容されている。
<Battery placement>
1 and 8, a battery 37 as a power source for the drive system S is arranged below the seat 21. As shown in FIG. The battery 37 is arranged across the left and right center CL of the vehicle body. As a result, the center of gravity of the completed vehicle can be set near the left and right centers, which improves steering stability. The battery 37 is composed of, for example, a plurality of (for example, a pair of left and right) unit batteries 37a. Each unit battery 37a has the same configuration. Each unit battery 37a has, for example, a prismatic shape (rectangular parallelepiped shape) that has a rectangular cross section and extends in the longitudinal direction. Each unit battery 37a is arranged so that the longitudinal direction thereof is tilted rearward upward, so that it can be easily accommodated in the rearward upward rear body cover 19b as a whole. Each unit battery 37a is accommodated, for example, in an integrated battery box.
 バッテリ37は、複数の単位バッテリ37aを直列に結線することで、所定の高電圧(48~72V)を発生させている。各単位バッテリ37aは、それぞれ充放電可能なエネルギーストレージとして、例えばリチウムイオンバッテリで構成されている。各単位バッテリ37aは、ジャンクションボックス(分配器)およびコンタクタ(電磁開閉器)を介して、PCU34に接続されている。PCU34からは三相ケーブルが延び、この三相ケーブルが第一モータM1に接続されている。 The battery 37 generates a predetermined high voltage (48-72V) by connecting a plurality of unit batteries 37a in series. Each unit battery 37a is composed of, for example, a lithium ion battery as a chargeable/dischargeable energy storage. Each unit battery 37a is connected to the PCU 34 via a junction box (distributor) and a contactor (electromagnetic switch). A three-phase cable extends from the PCU 34 and is connected to the first motor M1.
 バッテリ37は、少なくとも一部が左右リヤフレーム部材9aの間に配置されている。バッテリ37は、側面視で後輪4の前上方に離間して配置されている。バッテリ37は、左右リヤフレーム部材9aに両持ち支持されている。バッテリ37は、シート21の下方に位置している。バッテリ37は、例えばシート21の着脱あるいは開閉により、リヤボディカバー19bの上部開口からアクセス(着脱および充電等のメンテナンスを含む)可能である。 At least part of the battery 37 is arranged between the left and right rear frame members 9a. The battery 37 is spaced apart in front and above the rear wheel 4 in a side view. The battery 37 is supported by the left and right rear frame members 9a. The battery 37 is positioned below the seat 21 . The battery 37 can be accessed (including attachment/detachment and maintenance such as charging) from an upper opening of the rear body cover 19b by attaching/detaching or opening/closing the seat 21, for example.
<PCU配置>
 図1、図8を参照し、PCU34は、直方体状の外形をなし、一辺の方向を車幅方向に沿わせて配置されている。PCU34は、上下面を略水平にして配置されている。PCU34は、上下面を側面視で傾斜させて配置されてもよい。
<PCU placement>
Referring to FIGS. 1 and 8, the PCU 34 has a rectangular parallelepiped outer shape and is arranged with one side along the vehicle width direction. The PCU 34 is arranged with its upper and lower surfaces substantially horizontal. The PCU 34 may be arranged with its upper and lower surfaces inclined when viewed from the side.
 PCU34は、エンジンEの後方かつ第一モータM1および第二モータM2の上方に配置されている。PCU34は、車体左右中央CLを左右に跨いで配置されている。PCU34の後方には、バッテリ37が配置されている。PCU34は、バッテリ37と上下方向位置をラップさせるとともに、第一モータM1および第二モータM2と前後方向位置をラップさせている。これにより、PCU34とバッテリ37とが互いに近付くとともに、PCU34と第一モータM1および第二モータM2の各々とが互いに近付く。これにより、これら各電装部品間の配線の短縮化が図られる。 The PCU 34 is arranged behind the engine E and above the first motor M1 and the second motor M2. The PCU 34 is arranged across the left and right center CL of the vehicle body. A battery 37 is arranged behind the PCU 34 . The PCU 34 overlaps the battery 37 in the vertical direction and overlaps the first motor M1 and the second motor M2 in the front-rear direction. As a result, the PCU 34 and the battery 37 approach each other, and the PCU 34 and each of the first motor M1 and the second motor M2 approach each other. As a result, the wiring between these electrical components can be shortened.
 図8を参照し、第一モータM1および第二モータM2は、エンジンEの後方でエンジンEの左右幅H1内に配置されている。第一モータM1および第二モータM2は、互いに同軸のコンパクトなモータ組体とすることが可能である。これにより、第一モータM1および第二モータM2の配置自由度が高まり、エンジンEの左右幅H1内に配置しやすくされている。第一モータM1および第二モータM2は、外装部や各種接続部等の部分的な突起を除き、実質的にエンジンEの左右幅H1内に配置されている(本実施形態で単に「エンジンEの左右幅H1内に配置」と記載した場合も同様の意とする。)。第一モータM1および第二モータM2の少なくとも一方が、エンジンEの左右幅H1内に配置される構成でもよい。エンジンEの左右幅H1内に配置されるモータの少なくとも一部が、エンジンEの左右幅H1内に配置される構成でもよい。 Referring to FIG. 8, the first motor M1 and the second motor M2 are arranged behind the engine E within the lateral width H1 of the engine E. As shown in FIG. The first motor M1 and the second motor M2 can be coaxial compact motor assemblies. As a result, the first motor M1 and the second motor M2 can be arranged more freely and easily arranged within the lateral width H1 of the engine E. As shown in FIG. The first motor M1 and the second motor M2 are arranged substantially within the lateral width H1 of the engine E (in this embodiment, simply referred to as "engine E The same applies to the case where it is described as "arranged within the left and right width H1 of ."). At least one of the first motor M1 and the second motor M2 may be arranged within the lateral width H1 of the engine E. At least part of the motor arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
 第一モータM1および第二モータM2がエンジンEの左右幅H1内に配置されることで、エンジンEおよび両モータM1,M2を含む駆動システムSの左右幅の増大を抑え、車体レイアウトの自由度を高めることができる。第一モータM1および第二モータM2が互いに隣接して配置されることで、各モータM1,M2が互いに接近してまとめられ、各モータM1,M2に接続される配線を短くすることができる。
 特に、第一モータM1および第二モータM2の全体がエンジンEの左右幅H1内に収まるように配置されることで、エンジンEおよび両モータM1,M2を含む駆動システムSの左右幅の増大を確実に抑え、車体レイアウトの自由度を高めることができる。
By arranging the first motor M1 and the second motor M2 within the lateral width H1 of the engine E, an increase in the lateral width of the drive system S including the engine E and the two motors M1 and M2 is suppressed, and the flexibility of the vehicle body layout is improved. can increase By arranging the first motor M1 and the second motor M2 adjacent to each other, the motors M1 and M2 are brought closer to each other, and the wires connected to the motors M1 and M2 can be shortened.
In particular, by arranging the first motor M1 and the second motor M2 as a whole within the lateral width H1 of the engine E, it is possible to increase the lateral width of the drive system S including the engine E and the two motors M1 and M2. It is possible to suppress it reliably and increase the degree of freedom of the body layout.
 図1、図8の例において、第一モータM1および第二モータM2の上方には、PCU34が配置されている。PCU34は、エンジンEの左右幅H1内に配置されている。PCU34は、第一モータM1および第二モータM2を含むモータ組体の前後幅内に配置されている。PCU34の下端部は、第一モータM1および第二モータM2の上端部に上下方向で隣接している。PCU34の上端部は、エンジンEの上端高さZ1よりも上方に配置されている。PCU34は、左右幅および前後幅ならびに下端高さが制限されているが、上端高さに自由度を持たせることで、必要な容量を稼いでいる。 In the examples of FIGS. 1 and 8, the PCU 34 is arranged above the first motor M1 and the second motor M2. The PCU 34 is arranged within the lateral width H1 of the engine E. As shown in FIG. The PCU 34 is arranged within the longitudinal width of the motor assembly including the first motor M1 and the second motor M2. The lower end of the PCU 34 is vertically adjacent to the upper ends of the first motor M1 and the second motor M2. The upper end portion of the PCU 34 is arranged above the upper end height Z1 of the engine E. As shown in FIG. The PCU 34 has a limited width in the left-right direction, a width in the front-rear direction, and a height at the lower end, but by giving flexibility to the height at the upper end, a necessary capacity is obtained.
 第一モータM1および第二モータM2の上方にPCU34が重なるように配置されることで、PCU34を含む駆動システムSの左右幅の増大を抑えることができる。
 特に、PCU34の全体がエンジンEの左右幅H1内に収まるように配置されることで、PCU34を含む駆動システムSの左右幅の増大を確実に抑えることができる。
By arranging the PCU 34 over the first motor M1 and the second motor M2, an increase in the lateral width of the drive system S including the PCU 34 can be suppressed.
In particular, by disposing the entire PCU 34 within the lateral width H1 of the engine E, it is possible to reliably suppress an increase in the lateral width of the drive system S including the PCU 34 .
 PCU34は、全体がエンジンEの左右幅H1内に配置される構成に限らず、少なくとも一部がエンジンEの左右幅H1内に配置される構成でもよい。
 図1、図8の例では、PCU34は、第一モータM1を制御する第一モータ制御部(駆動用PCU34c)と、第二モータM2を制御する第二モータ制御部(発電用PCU34d)と、が一体のユニットとして設けられている。
The PCU 34 is not limited to being arranged entirely within the lateral width H1 of the engine E, and may be arranged at least partially within the lateral width H1 of the engine E.
1 and 8, the PCU 34 includes a first motor control unit (drive PCU 34c) that controls the first motor M1, a second motor control unit (power generation PCU 34d) that controls the second motor M2, are provided as an integral unit.
 一方、図9の例では、PCU34は、駆動用PCU34cと発電用PCU34dとに分割されている。駆動用PCU34cと発電用PCU34dとは、互いに別体に設けられている。この場合、駆動用PCU34cおよび発電用PCU34dの少なくとも一方(図9では発電用PCU34d)が、エンジンEの左右幅H1内に配置される構成でもよい。また、エンジンEの左右幅H1内に配置されるPCUの少なくとも一部が、エンジンEの左右幅H1内に配置される構成でもよい。図中符号34eは後述するクラッチ71の断接を制御するコントローラを示す。 On the other hand, in the example of FIG. 9, the PCU 34 is divided into a drive PCU 34c and a power generation PCU 34d. The drive PCU 34c and the power generation PCU 34d are provided separately from each other. In this case, at least one of the drive PCU 34c and the power generation PCU 34d (the power generation PCU 34d in FIG. 9) may be arranged within the lateral width H1 of the engine E. FIG. At least part of the PCU arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E. Reference numeral 34e in the figure denotes a controller for controlling connection/disengagement of the clutch 71, which will be described later.
 例えば、駆動用PCU34cは、第一モータM1の左右方向外側に例えば隣接して配置されている。駆動用PCU34cは、左右幅を抑えた偏平状をなし、駆動ユニットUの左右方向外側への張り出しを抑えている。駆動用PCU34cは、制御対象である第一モータM1の近くに配置されることで、第一モータM1との間の配線を短縮している。
 同軸に並ぶ第一モータM1、第二モータM2および動力分配機構61の内、第一モータM1は軸方向外側(左右方向外側)に位置している。この第一モータM1のさらに軸方向外側に駆動用PCU34cが配置されることで、駆動用PCU34cの冷却性が高まる。
For example, the drive PCU 34c is arranged adjacent to, for example, the outer side in the left-right direction of the first motor M1. The drive PCU 34c has a flat shape with a reduced lateral width, and suppresses the protrusion of the drive unit U to the outside in the lateral direction. The drive PCU 34c is arranged near the first motor M1 to be controlled, thereby shortening the wiring between it and the first motor M1.
Of the first motor M1, the second motor M2, and the power distribution mechanism 61 that are coaxially arranged, the first motor M1 is positioned on the outer side in the axial direction (outer side in the left-right direction). By arranging the drive PCU 34c axially outside the first motor M1, the cooling performance of the drive PCU 34c is enhanced.
 シリーズハイブリッド式の自動二輪車1において、第一モータM1は、走行中の駆動頻度が高い。したがって、第一モータM1のコントロールユニットである駆動用PCU34cは、冷却を要する頻度が高い。この駆動用PCU34cを駆動ユニットUの車幅方向外側に配置することで、自動二輪車1の走行中は駆動用PCU34cに走行風が当たりやすく、駆動用PCU34cが良好に冷却される。 In the series hybrid motorcycle 1, the first motor M1 is driven frequently during travel. Therefore, the drive PCU 34c, which is the control unit for the first motor M1, frequently requires cooling. By arranging the drive PCU 34c outside the drive unit U in the vehicle width direction, the drive PCU 34c is easily exposed to running wind while the motorcycle 1 is running, and the drive PCU 34c is well cooled.
 発電用PCU34dは、第二モータM2の後方に例えば隣接して配置されている。発電用PCU34dは、前後幅を抑えた偏平状をなし、駆動ユニットUと後輪4との間への配置を容易にしている。発電用PCU34dは、制御対象である第二モータM2の近くに配置されることで、第二モータM2との間の配線を短縮している。
 同軸に並ぶ第一モータM1、第二モータM2および動力分配機構61の内、第二モータM2は軸方向内側(左右方向内側)に位置している。この第二モータM2の後方(径方向外側)に発電用PCU34dが配置されることで、発電用PCU34dを第二モータM2に近付けやすくなる。
The power generation PCU 34d is arranged, for example, adjacent to the rear of the second motor M2. The power generating PCU 34 d has a flat shape with a reduced front-to-rear width, which facilitates its placement between the drive unit U and the rear wheel 4 . The power generation PCU 34d is arranged near the second motor M2 to be controlled, thereby shortening the wiring between it and the second motor M2.
Of the first motor M1, the second motor M2, and the power distribution mechanism 61 that are coaxially arranged, the second motor M2 is positioned axially inside (left-right direction inside). By arranging the power generation PCU 34d behind the second motor M2 (outside in the radial direction), the power generation PCU 34d can be easily brought closer to the second motor M2.
 図1、図8に戻り、PCU34の後方(第一モータM1および第二モータM2の上後方)には、バッテリ37が配置されている。バッテリ37は、エンジンEの左右幅H1内に配置されており、バッテリ37を含む駆動システムSの左右幅の増大を抑えることができる。
 特に、バッテリ37の全体がエンジンEの左右幅H1内に収まるように配置されることで、バッテリ37を含む駆動システムSの左右幅の増大を確実に抑えることができる。
Returning to FIGS. 1 and 8, a battery 37 is arranged behind the PCU 34 (above and behind the first motor M1 and the second motor M2). The battery 37 is arranged within the lateral width H1 of the engine E, and an increase in the lateral width of the drive system S including the battery 37 can be suppressed.
In particular, by arranging the entire battery 37 within the lateral width H1 of the engine E, it is possible to reliably suppress an increase in the lateral width of the drive system S including the battery 37 .
 バッテリ37は、エンジンEの左右幅H1内で、左右一対の単位バッテリ37aに分割されている。バッテリ37は、前下がりに傾斜しており、このバッテリ37の前部がPCU34の上部の後方に配置されている。バッテリ37の後部は、PCU34の上端部よりも上方に配置されている。バッテリ37は、シート21の下方で平坦状に配置されている。バッテリ37は、左右幅および上下幅ならびに前端位置が制限されているが、後端位置に自由度を持たせて容量を稼いでいる。
 複数の単位バッテリ37aが左右に並んで配置されることで、バッテリ37全体の上下方向の高さを抑え、バッテリ37の重心位置を車体中心に近づけやすくすることができる。
The battery 37 is divided into a pair of left and right unit batteries 37a within the lateral width H1 of the engine E. As shown in FIG. The battery 37 is inclined forward and downward, and the front part of the battery 37 is arranged behind the upper part of the PCU 34 . The rear portion of the battery 37 is arranged above the upper end portion of the PCU 34 . The battery 37 is arranged flat under the seat 21 . The battery 37 has a limited lateral width, a vertical width and a front end position, but the rear end position is made flexible to increase the capacity.
By arranging the plurality of unit batteries 37a side by side, the vertical height of the entire battery 37 can be suppressed, and the center of gravity of the battery 37 can be easily brought closer to the center of the vehicle body.
 バッテリ37は、全体がエンジンEの左右幅H1内に配置される構成に限らず、少なくとも一部がエンジンEの左右幅H1内に配置される構成でもよい。バッテリ37は、複数の単位バッテリ37aの少なくとも一つが、エンジンEの左右幅H1内に配置される構成でもよい。エンジンEの左右幅H1内に配置される単位バッテリの少なくとも一部が、エンジンEの左右幅H1内に配置される構成でもよい。 The battery 37 is not limited to being arranged entirely within the lateral width H1 of the engine E, and may be arranged at least partially within the lateral width H1 of the engine E. The battery 37 may be configured such that at least one of the plurality of unit batteries 37a is arranged within the lateral width H1 of the engine E. As shown in FIG. At least part of the unit batteries arranged within the lateral width H1 of the engine E may be arranged within the lateral width H1 of the engine E.
 図14は、バッテリ37およびPCU34の配置の変形例を示す。
 この変形例の自動二輪車1’では、第一モータM1および第二モータM2の上方から上後方に渡る範囲に、後上がりに傾斜したバッテリ37’が配置されている。バッテリ37’自体の構成は上記バッテリ37と同様である。
FIG. 14 shows a modification of the arrangement of the battery 37 and PCU 34. In FIG.
In the motorcycle 1' of this modified example, a battery 37' that is inclined rearwardly upward is arranged in a range extending from above the first motor M1 and the second motor M2 to the upper rear side. The configuration of the battery 37' itself is similar to that of the battery 37 described above.
 バッテリ37’の後部の下方(第一モータM1および第二モータM2の上後方)には、PCU34’が配置されている。PCU34’は、バッテリ37’の下面に沿うように後上がりに傾斜している。
 この構成によれば、バッテリ37’、PCU34’、第一モータM1および第二モータM2が相互に近接し、相互間の配線を容易かつ簡単に設けることができる。
A PCU 34' is arranged below the rear portion of the battery 37' (above and behind the first motor M1 and the second motor M2). The PCU 34' is inclined rearward and upward along the lower surface of the battery 37'.
According to this configuration, the battery 37', the PCU 34', the first motor M1 and the second motor M2 are close to each other, and the wiring between them can be easily and simply provided.
<プラネタリギヤ機構>
 次に、動力切替装置31のプラネタリギヤ機構(動力分配機構)61について、図9~図13を参照して説明する。
 図9に示すように、プラネタリギヤ機構61は、第一モータM1および第二モータM2と同軸に配置されている。すなわち、プラネタリギヤ機構61のサンギヤ62およびリングギヤ64が第一モータM1および第二モータM2と同軸に配置されている。プラネタリギヤ機構61は、第一モータM1および第二モータM2と同軸の支持軸57に支持されている。
<Planetary gear mechanism>
Next, the planetary gear mechanism (power distribution mechanism) 61 of the power switching device 31 will be described with reference to FIGS. 9 to 13. FIG.
As shown in FIG. 9, the planetary gear mechanism 61 is arranged coaxially with the first motor M1 and the second motor M2. That is, the sun gear 62 and the ring gear 64 of the planetary gear mechanism 61 are arranged coaxially with the first motor M1 and the second motor M2. The planetary gear mechanism 61 is supported by a support shaft 57 coaxial with the first motor M1 and the second motor M2.
 プラネタリギヤ機構61のサンギヤ(第一要素)62は、発電用の第二モータのロータに一体回転可能に連結され、ピニオンキャリア(第二要素)63は、プライマリドリブンギヤ72にクラッチ71を介して一体回転可能に連結され、リングギヤ(第三要素)64は、駆動用の第一モータM1のロータおよび出力ギヤ73に一体回転可能に連結されている。以下、支持軸57中心の回転方向で車両走行時(前進時)の回転方向を正転方向(図10~図13のグラフ中「+」の範囲)、その逆方向を逆転方向(図10~図13のグラフ中「-」の範囲)という。図9中符号72aはクランクシャフト26に一体回転可能に設けられてプライマリドリブンギヤ72に噛み合うプライマリドライブギヤ、符号63aはピニオンキャリア63に支持されてサンギヤ62およびリングギヤ64にそれぞれ噛み合うピニオンギヤ(プラネタリギヤ)、をそれぞれ示す。 The sun gear (first element) 62 of the planetary gear mechanism 61 is connected to the rotor of the second motor for power generation so as to rotate integrally, and the pinion carrier (second element) 63 rotates integrally with the primary driven gear 72 via the clutch 71. The ring gear (third element) 64 is connected to the rotor of the first driving motor M1 and the output gear 73 so as to rotate together. 10 to 13). (range of "-" in the graph of FIG. 13). In FIG. 9, reference numeral 72a denotes a primary drive gear that is rotatably provided on the crankshaft 26 and meshes with the primary driven gear 72, and reference numeral 63a denotes a pinion gear (planetary gear) that is supported by the pinion carrier 63 and meshes with the sun gear 62 and the ring gear 64. each shown.
 プラネタリギヤ機構61は、エンジンEの後方でプライマリドリブンギヤ72と同軸に配置されている。支持軸57の右側部には、プライマリドリブンギヤ72およびクラッチ71が支持されている。クラッチ71は、プライマリドリブンギヤ72の右側(車幅方向外側)に隣接して配置されている。クラッチ71は、例えば多板クラッチであり、クラッチ板を介して断接するクラッチインナおよびクラッチアウタを備えている。クラッチアウタは、プライマリドリブンギヤ72と一体回転可能であり、クラッチインナは、ピニオンキャリア63と一体回転可能である。 The planetary gear mechanism 61 is arranged behind the engine E coaxially with the primary driven gear 72 . A primary driven gear 72 and a clutch 71 are supported on the right side of the support shaft 57 . The clutch 71 is arranged adjacent to the right side (outside in the vehicle width direction) of the primary driven gear 72 . The clutch 71 is, for example, a multi-plate clutch, and includes a clutch inner and a clutch outer that are connected and disconnected via clutch plates. The clutch outer can rotate integrally with the primary driven gear 72 , and the clutch inner can rotate integrally with the pinion carrier 63 .
 支持軸57の左側部には、第一モータM1が支持されている。第一モータM1は、例えばインナーロータ型であり、そのロータがリングギヤ64および出力ギヤ73と一体回転可能である。リングギヤ64の左側方には、同軸円筒状の周壁65が軸方向に延びている。周壁65の左側部外周には、後輪4側との間の動力伝達を行うための出力ギヤ73が設けられている。出力ギヤ73は、出力軸55に一体回転可能に設けた伝動ギヤ55aに噛み合っている。周壁65の内周側には、第二モータM2が配置されている。第二モータM2は、例えばインナーロータ型であり、そのロータがサンギヤ62と一体回転可能である。 A first motor M1 is supported on the left side of the support shaft 57. The first motor M1 is, for example, an inner rotor type, and its rotor can rotate integrally with the ring gear 64 and the output gear 73 . A coaxial cylindrical peripheral wall 65 extends axially on the left side of the ring gear 64 . An output gear 73 for power transmission with the rear wheel 4 side is provided on the outer periphery of the left side of the peripheral wall 65 . The output gear 73 meshes with a transmission gear 55a provided on the output shaft 55 so as to rotate integrally therewith. A second motor M2 is arranged on the inner peripheral side of the peripheral wall 65 . The second motor M<b>2 is, for example, an inner rotor type, and its rotor can rotate together with the sun gear 62 .
 係る構成において、自動二輪車1がエンジンEを停止させて第一モータM1の駆動力で走行するときは(EVモード)、クラッチ71を開放して第一モータM1を正転駆動させる。これにより、第一モータM1が出力ギヤ73を正転駆動させ、出力軸およびチェーン式伝動機構を介して後輪4を駆動させる。 In this configuration, when the motorcycle 1 stops the engine E and runs with the driving force of the first motor M1 (EV mode), the clutch 71 is released and the first motor M1 is driven forward. As a result, the first motor M1 rotates the output gear 73 forward and drives the rear wheels 4 via the output shaft and the chain transmission mechanism.
 図10を併せて参照し、EVモードにおいて、リングギヤ64(図中「R」)を正転させると、ピニオンキャリア63(図中「C」)も共回りし、サンギヤ62(図中「S」)および第二モータM2を正転(空転)させる(図10中線t1参照)。あるいは、EVモードにおいて、リングギヤ64が正転してもピニオンキャリア63を停止させることで、サンギヤ62および第二モータM2を逆転(空転)させる(図10中線t2参照)。ピニオンキャリア63の回転は、クラッチ71の断接で制御される。 Also referring to FIG. 10, in the EV mode, when the ring gear 64 (“R” in the figure) is rotated forward, the pinion carrier 63 (“C” in the figure) also rotates, causing the sun gear 62 (“S” in the figure) to rotate. ) and rotates the second motor M2 forward (idling) (see line t1 in FIG. 10). Alternatively, in the EV mode, the pinion carrier 63 is stopped even if the ring gear 64 rotates forward, thereby causing the sun gear 62 and the second motor M2 to reverse (idle) (see line t2 in FIG. 10). The rotation of the pinion carrier 63 is controlled by connecting and disconnecting the clutch 71 .
 図9、図11を参照し、EVモードにおいて、エンジンEを駆動させて第二モータM2で発電を行うときは(ハイブリッドモード)、クラッチ71を係合させてピニオンキャリア63を回転(正転)させる(図11中線t3参照)。これにより、第二モータM2を正転駆動させて発電を行う。このとき、第一モータM1には、第二モータM2およびバッテリの少なくとも一方から電力が供給される。 9 and 11, in the EV mode, when the engine E is driven to generate power by the second motor M2 (hybrid mode), the clutch 71 is engaged to rotate the pinion carrier 63 (normal rotation). (See line t3 in FIG. 11). As a result, the second motor M2 is driven forward to generate power. At this time, power is supplied to the first motor M1 from at least one of the second motor M2 and the battery.
 図9、図12を参照し、自動二輪車1の減速時や下り坂走行時等に回生を行うときは(回生モード)、クラッチ71を開放し、後輪4の回転エネルギーを第一モータM1に入力して、第一モータM1を正転駆動させる。
 回生モードにおいて、後輪4の回転エネルギーでリングギヤ64が正転すると、EVモードと同様、ピニオンキャリア63が共回りしてサンギヤ62および第二モータM2を正転(空転)させる(図12中線t4参照)。あるいはピニオンキャリア63を停止させてサンギヤ62および第二モータM2を逆転(空転)させる(図中線t5参照)。
9 and 12, when regenerating the motorcycle 1 during deceleration or running downhill (regeneration mode), the clutch 71 is released and the rotational energy of the rear wheels 4 is transferred to the first motor M1. input to drive the first motor M1 forward.
In the regenerative mode, when the ring gear 64 rotates forward with the rotational energy of the rear wheel 4, the pinion carrier 63 rotates with it to rotate the sun gear 62 and the second motor M2 forward (idling), as in the EV mode (center line in FIG. 12). t4). Alternatively, the pinion carrier 63 is stopped and the sun gear 62 and the second motor M2 are reversed (idled) (see line t5 in the figure).
 図9、図13を参照し、自動二輪車1の高速走行時等にエンジンEの駆動力によって走行するときは(エンジンドライブモード)、クラッチ71を係合させるとともに、例えば第二モータM2を停止状態としてピニオンキャリア63を回転(正転)させる(図13中線t6参照)。これにより、リングギヤ64および出力ギヤ73がピニオンキャリア63に対して増速して回転(正転)する。
 エンジンドライブモードにおいて、例えば第二モータM2を回転(逆転)させると、第二モータM2が停止状態の場合に比べて、リングギヤ64および出力ギヤ73がさらに増速して回転(正転)可能である(図中線t7参照)。すなわち、第二モータM2の回転数によって変速が可能である。
9 and 13, when the motorcycle 1 is driven by the driving force of the engine E (engine drive mode) during high-speed driving, the clutch 71 is engaged and, for example, the second motor M2 is stopped. to rotate (forward) the pinion carrier 63 (see line t6 in FIG. 13). As a result, the ring gear 64 and the output gear 73 rotate (forward) at an increased speed with respect to the pinion carrier 63 .
In the engine drive mode, for example, when the second motor M2 is rotated (reverse rotation), the ring gear 64 and the output gear 73 can rotate (forward rotation) at a higher speed than when the second motor M2 is stopped. (see line t7 in the figure). That is, it is possible to change the speed by changing the rotation speed of the second motor M2.
 以上説明したように、上記実施形態における自動二輪車1は、後輪4に駆動力を与える駆動用の第一モータM1と、前記第一モータM1に電力を与えるバッテリ37と、前記第一モータM1とは別に設けられる発電用の第二モータM2と、前記第二モータM2を駆動して発電させるエンジンEと、前記第一モータM1および前記第二モータM2を制御するPCU34と、前記第一モータM1、前記第二モータM2および前記エンジンEの間で動力を分配する動力分配機構61と、を備え、前記動力分配機構61は、前記第二モータM2と連結する第1要素(サンギヤ)62と、前記エンジンEとクラッチ71を介して連結する第2要素(ピニオンキャリア)63と、前記第一モータM1と連結する第3要素(リングギヤ)64と、を備えてプラネタリギヤ機構61を構成し、前記第3要素64に軸方向で連なる周壁65の内周側に、前記第二モータM2が配置されている。
 この構成によれば、第一モータM1、第二モータM2およびエンジンEの間の動力分配機構61をプラネタリギヤ機構61で構成することで、モータ走行、モータ走行+エンジン発電、回生、エンジン走行等の切り替えを簡易に実現することができる。また、動力分配機構61(プラネタリギヤ機構61)のリングギヤ64と軸方向で連なる周壁65の内周側に、第二モータM2を配置することで、ハイブリッド式の駆動ユニットUをコンパクトに構成することができる。
As described above, the motorcycle 1 in the above embodiment includes the first driving motor M1 for applying driving force to the rear wheel 4, the battery 37 for supplying electric power to the first motor M1, and the first motor M1. A second motor M2 for power generation provided separately from the above, an engine E that drives the second motor M2 to generate power, a PCU 34 that controls the first motor M1 and the second motor M2, and the first motor A power distribution mechanism 61 that distributes power among M1, the second motor M2, and the engine E, and the power distribution mechanism 61 includes a first element (sun gear) 62 connected to the second motor M2. , a second element (pinion carrier) 63 connected to the engine E via a clutch 71, and a third element (ring gear) 64 connected to the first motor M1 to constitute a planetary gear mechanism 61, The second motor M2 is arranged on the inner peripheral side of the peripheral wall 65 that continues to the third element 64 in the axial direction.
According to this configuration, by configuring the power distribution mechanism 61 between the first motor M1, the second motor M2, and the engine E with the planetary gear mechanism 61, motor running, motor running + engine power generation, regeneration, engine running, etc. Switching can be easily realized. Further, by arranging the second motor M2 on the inner peripheral side of the peripheral wall 65 axially connected to the ring gear 64 of the power distribution mechanism 61 (planetary gear mechanism 61), the hybrid drive unit U can be configured compactly. can.
 また、上記自動二輪車1において、前記第一モータM1、前記第二モータM2および前記動力分配機構61は、相互に同軸に配置され、前記第二モータM2および前記動力分配機構61は、互いに軸方向で隣接している。
 この構成によれば、リングギヤ64に隣接する第二モータM2をリングギヤ64の内周側に配置することで、リングギヤ64の軸方向の大型化を抑え、ハイブリッド式の駆動ユニットUをよりコンパクトに構成することができる。
Further, in the motorcycle 1, the first motor M1, the second motor M2, and the power distribution mechanism 61 are arranged coaxially with each other, and the second motor M2 and the power distribution mechanism 61 are arranged axially relative to each other. Adjacent to.
According to this configuration, by arranging the second motor M2 adjacent to the ring gear 64 on the inner peripheral side of the ring gear 64, the size of the ring gear 64 in the axial direction is suppressed, and the hybrid drive unit U is configured more compactly. can do.
 また、上記自動二輪車1において、前記第一モータM1および前記第二モータM2の各回転軸151,251は、前記エンジンEのクランクシャフト26とは別軸に配置されている。
 この構成によれば、第一モータM1および第二モータM2をクランクシャフト26と同軸に配置する場合に比べて、ハイブリッド式の駆動ユニットUを軸方向でコンパクトにすることができる。
Further, in the motorcycle 1, the rotation shafts 151 and 251 of the first motor M1 and the second motor M2 are arranged on separate shafts from the crankshaft 26 of the engine E. As shown in FIG.
According to this configuration, compared to the case where the first motor M1 and the second motor M2 are arranged coaxially with the crankshaft 26, the hybrid drive unit U can be made compact in the axial direction.
 また、上記自動二輪車1において、前記第一モータM1は、前記第一モータM1、前記第二モータM2および前記動力分配機構61を含む駆動ユニットUの軸方向外側に配置され、前記第一モータM1のさらに軸方向外側には、前記第一モータM1を制御する駆動用PCU34cが配置されている。
 この構成によれば、制御対象である第一モータM1の近くに駆動用PCU34cを配置することで、これらの間の配線を短くすることができる。軸方向外側に位置する第一モータM1のさらに軸方向外側に駆動用PCU34cを配置することで、駆動用PCU34cを良好に冷却することができる。
Further, in the motorcycle 1, the first motor M1 is arranged axially outside the drive unit U including the first motor M1, the second motor M2, and the power distribution mechanism 61. A drive PCU 34c for controlling the first motor M1 is arranged further outside in the axial direction.
According to this configuration, by arranging the drive PCU 34c near the first motor M1 to be controlled, the wiring between them can be shortened. By arranging the drive PCU 34c axially outside the first motor M1 positioned axially outside, the drive PCU 34c can be cooled well.
 また、上記自動二輪車1において、前記第二モータM2は、前記第一モータM1、前記第二モータM2および前記動力分配機構61を含む駆動ユニットUの軸方向内側に配置され、前記第二モータM2の径方向外側には、前記第二モータM2を制御する発電用PCU34dが配置されている。
 この構成によれば、制御対象である第二モータM2の近くに駆動用PCU34cを配置することで、これらの間の配線を短くすることができる。軸方向内側に位置する第二モータM2の径方向外側に発電用PCU34dを配置することで、発電用PCU34dを第二モータM2に近づけやすくすることができる。
Further, in the motorcycle 1, the second motor M2 is arranged axially inside the drive unit U including the first motor M1, the second motor M2, and the power distribution mechanism 61. A power-generating PCU 34d for controlling the second motor M2 is disposed radially outward of the .
According to this configuration, by arranging the driving PCU 34c near the second motor M2 to be controlled, the wiring between them can be shortened. By arranging the power generating PCU 34d radially outward of the second motor M2 located axially inward, the power generating PCU 34d can be easily brought closer to the second motor M2.
 なお、本発明は上記実施形態に限られるものではなく、例えば、鞍乗り型車両には、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)又は四輪(四輪バギー等)の車両も含まれる。鞍乗り型車両には、自動二輪車のように車体をバンクさせた方向に旋回する車両のみならず、車体をバンクさせずに操舵輪の転舵によって旋回する車両も含まれる。 The present invention is not limited to the above-described embodiments. For example, the saddle-riding type vehicle includes general vehicles in which the driver straddles the vehicle body, motorcycles (motorized bicycles and scooter type vehicles). ), but also include vehicles with three wheels (including vehicles with two front wheels and one rear wheel, as well as vehicles with one front wheel and two rear wheels) or four-wheel vehicles (such as four-wheel buggies). The straddle-type vehicle includes not only a vehicle such as a motorcycle that turns in a direction in which the vehicle body is banked, but also a vehicle that turns by steering the steered wheels without banking the vehicle body.
 上記実施形態では、ハイブリッド式自動二輪車への適用例を示したが、これに限らず、駆動用モータを備える二輪、三輪および四輪の各種の鞍乗り型車両に適用してもよい。
 そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
In the above embodiment, an example of application to a hybrid motorcycle has been shown, but the present invention is not limited to this, and may be applied to various types of saddle-riding vehicles including two-wheel, three-wheel and four-wheel drive motors.
The configuration in the above embodiment is an example of the present invention, and various modifications, such as replacing the constituent elements of the embodiment with known constituent elements, are possible without departing from the gist of the present invention.
1,1’ 自動二輪車(鞍乗り型車両)
4 後輪(駆動輪)
26 クランクシャフト
34,34’ PCU(制御装置)
34c 駆動用PCU(駆動制御装置)
34d 発電用PCU(発電制御装置)
37,37’ バッテリ
37a 単位バッテリ
61 動力分配機構、プラネタリギヤ機構
62 サンギヤ(第1要素)
63 ピニオンキャリア(第2要素)
64 リングギヤ(第3要素)
65 周壁
71 クラッチ
151,251 回転軸
E エンジン(内燃機関)
U 駆動ユニット
H1 左右幅
M1 第一モータ(駆動モータ)
M2 第二モータ
1, 1' motorcycle (saddle type vehicle)
4 rear wheels (drive wheels)
26 crankshaft 34, 34' PCU (control unit)
34c drive PCU (drive control unit)
34d power generation PCU (power generation control unit)
37, 37' battery 37a unit battery 61 power distribution mechanism, planetary gear mechanism 62 sun gear (first element)
63 pinion carrier (second element)
64 ring gear (third element)
65 Peripheral wall 71 Clutch 151, 251 Rotating shaft E Engine (internal combustion engine)
U drive unit H1 lateral width M1 first motor (drive motor)
M2 second motor

Claims (5)

  1.  駆動輪(4)に駆動力を与える駆動モータ(M1)と、
     前記駆動モータ(M1)とは別に設けられる第二モータ(M2)と、
     前記第二モータ(M2)を駆動して発電させる内燃機関(E)と、
     前記駆動モータ(M1)、前記第二モータ(M2)および前記内燃機関(E)の間で動力を分配する動力分配機構(61)と、を備え、
     前記動力分配機構(61)は、前記第二モータ(M2)と連結する第1要素(62)と、前記内燃機関(E)とクラッチ(71)を介して連結する第2要素(63)と、前記駆動モータ(M1)と連結する第3要素(64)と、を備えてプラネタリギヤ機構(61)を構成し、
     前記第3要素(64)に軸方向で連なる周壁(65)の内周側に、前記第二モータ(M2)が配置されている鞍乗り型車両。
    a driving motor (M1) for applying driving force to the driving wheels (4);
    a second motor (M2) provided separately from the drive motor (M1);
    an internal combustion engine (E) that drives the second motor (M2) to generate electricity;
    a power distribution mechanism (61) that distributes power among the drive motor (M1), the second motor (M2) and the internal combustion engine (E);
    The power distribution mechanism (61) includes a first element (62) connected to the second motor (M2) and a second element (63) connected to the internal combustion engine (E) via a clutch (71). , and a third element (64) connected to the drive motor (M1), forming a planetary gear mechanism (61),
    A straddle-type vehicle in which the second motor (M2) is arranged on the inner peripheral side of a peripheral wall (65) axially connected to the third element (64).
  2.  前記駆動モータ(M1)、前記第二モータ(M2)および前記動力分配機構(61)は、相互に同軸に配置され、
     前記第二モータ(M2)および前記動力分配機構(61)は、互いに軸方向で隣接している請求項1に記載の鞍乗り型車両。
    the drive motor (M1), the second motor (M2) and the power distribution mechanism (61) are arranged coaxially with each other,
    A straddle-type vehicle according to claim 1, wherein said second motor (M2) and said power distribution mechanism (61) are axially adjacent to each other.
  3.  前記駆動モータ(M1)および前記第二モータ(M2)の各回転軸(151,251)は、前記内燃機関(E)のクランクシャフト(26)とは別軸に配置されている請求項2に記載の鞍乗り型車両。 3. The driving motor (M1) and the second motor (M2) each rotating shaft (151, 251) are arranged on separate shafts from the crankshaft (26) of the internal combustion engine (E). A saddle-riding vehicle as described.
  4.  前記駆動モータ(M1)は、前記駆動モータ(M1)、前記第二モータ(M2)および前記動力分配機構(61)を含むユニット(U)の軸方向外側に配置され、
     前記駆動モータ(M1)のさらに軸方向外側には、前記駆動モータ(M1)を制御する駆動制御装置が配置されている請求項2又は3に記載の鞍乗り型車両。
    The drive motor (M1) is arranged axially outside a unit (U) including the drive motor (M1), the second motor (M2) and the power distribution mechanism (61),
    A straddle-type vehicle according to claim 2 or 3, wherein a drive control device for controlling said drive motor (M1) is arranged axially outside said drive motor (M1).
  5.  前記第二モータ(M2)は、前記駆動モータ(M1)、前記第二モータ(M2)および前記動力分配機構(61)を含むユニット(U)の軸方向内側に配置され、
     前記第二モータ(M2)の径方向外側には、前記第二モータ(M2)を制御する発電制御装置が配置されている請求項2から4の何れか一項に記載の鞍乗り型車両。
    The second motor (M2) is arranged axially inside a unit (U) including the drive motor (M1), the second motor (M2) and the power distribution mechanism (61),
    The straddle-type vehicle according to any one of claims 2 to 4, wherein a power generation control device for controlling the second motor (M2) is arranged radially outside the second motor (M2).
PCT/JP2021/048779 2021-12-28 2021-12-28 Saddled vehicle WO2023127092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048779 WO2023127092A1 (en) 2021-12-28 2021-12-28 Saddled vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048779 WO2023127092A1 (en) 2021-12-28 2021-12-28 Saddled vehicle

Publications (1)

Publication Number Publication Date
WO2023127092A1 true WO2023127092A1 (en) 2023-07-06

Family

ID=86998428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048779 WO2023127092A1 (en) 2021-12-28 2021-12-28 Saddled vehicle

Country Status (1)

Country Link
WO (1) WO2023127092A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182034A (en) * 2002-12-02 2004-07-02 Toyota Motor Corp Power transmission device for vehicle
JP2006256468A (en) * 2005-03-16 2006-09-28 Yamaha Motor Co Ltd Driving unit for hybrid vehicle, hybrid vehicle, and motor bicycle
JP2010120597A (en) * 2008-11-21 2010-06-03 Yamaha Motor Co Ltd Vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182034A (en) * 2002-12-02 2004-07-02 Toyota Motor Corp Power transmission device for vehicle
JP2006256468A (en) * 2005-03-16 2006-09-28 Yamaha Motor Co Ltd Driving unit for hybrid vehicle, hybrid vehicle, and motor bicycle
JP2010120597A (en) * 2008-11-21 2010-06-03 Yamaha Motor Co Ltd Vehicle

Similar Documents

Publication Publication Date Title
JP5914337B2 (en) How to convert a vehicle to a hybrid vehicle
US9975425B2 (en) Electric off-road wheeled vehicle
US9327586B2 (en) Saddle-type electric vehicle
JP5474737B2 (en) Saddle riding type electric vehicle
JP5595228B2 (en) Electric vehicle
WO2013061484A1 (en) Saddle-type electric vehicle
US20120255799A1 (en) Electric vehicle with range extender
JP2013504488A (en) Hybrid drive system with reduced vehicle power requirements
JP2009532277A (en) Electric propulsion system
JP5525998B2 (en) Saddle riding type electric vehicle
JP2013504491A (en) Hybrid drive system for a vehicle having an engine as a prime mover
JP2013067252A (en) Hybrid motorcycle
WO2023127092A1 (en) Saddled vehicle
WO2023127107A1 (en) Saddled vehicle
WO2023127088A1 (en) Saddled vehicle
WO2023161996A1 (en) Saddled vehicle
WO2023127077A1 (en) Saddled vehicle
WO2023127080A1 (en) Saddle-ride vehicle
WO2023127133A1 (en) Saddled vehicle
JP2012101701A (en) Cooling duct laying structure of saddle riding type electric vehicle
JPWO2020044684A1 (en) Saddle-riding vehicle
WO2023127108A1 (en) Saddled vehicle
WO2023127117A1 (en) Saddled vehicle
WO2023127076A1 (en) Saddled vehicle
WO2023162024A1 (en) Saddled vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969974

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE