WO2023161172A1 - Substituted n-benzoic acid uracils and salts thereof, and use thereof as herbicidal active substances - Google Patents

Substituted n-benzoic acid uracils and salts thereof, and use thereof as herbicidal active substances Download PDF

Info

Publication number
WO2023161172A1
WO2023161172A1 PCT/EP2023/054143 EP2023054143W WO2023161172A1 WO 2023161172 A1 WO2023161172 A1 WO 2023161172A1 EP 2023054143 W EP2023054143 W EP 2023054143W WO 2023161172 A1 WO2023161172 A1 WO 2023161172A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
aryl
alkoxy
heteroaryl
bis
Prior art date
Application number
PCT/EP2023/054143
Other languages
German (de)
French (fr)
Inventor
Hendrik Helmke
Jens Frackenpohl
Ines Heinemann
Harald Jakobi
Elmar Gatzweiler
Birgit BOLLENBACH-WAHL
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Publication of WO2023161172A1 publication Critical patent/WO2023161172A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P13/00Herbicides; Algicides
    • A01P13/02Herbicides; Algicides selective
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/02Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/06Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing isoquinuclidine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems

Definitions

  • Substituted N-benzoic acid uracils and their salts and their use as herbicidally active compounds relates to the technical field of crop protection agents, in particular that of herbicides for the selective control of weeds and weed grasses in crops of useful plants. Specifically, this invention relates to substituted N-benzoic acid uracils and their salts, processes for their preparation and their use as herbicides, in particular for controlling weeds and/or weed grasses in crops of useful plants and/or as plant growth regulators for influencing the growth of crops of useful plants.
  • Previously known crop protection agents for the selective control of harmful plants in crops of useful plants or active ingredients for controlling unwanted plant growth sometimes have disadvantages when they are used, be it that they (a) have no or insufficient herbicidal action against certain harmful plants, (b) too little Spectrum of harmful plants that can be controlled with an active ingredient, (c) have insufficient selectivity in crops of useful plants and/or (d) have a toxicologically unfavorable profile.
  • some active compounds which can be used as plant growth regulators in some useful plants lead to undesirably reduced crop yields in other useful plants or are not compatible with the crop plant or only in a narrow application rate range.
  • the known aryluracils have a number of gaps in their effectiveness, in particular against monocotyledonous weeds.
  • a number of herbicidal active ingredient combinations based on N-linked aryluracils are also known (cf.
  • N-aryluracils with optionally further substituted lactic acid groups can also be used as herbicidal active ingredients (cf. JP2000/302764, JP2001/172265, US Pat. No. 6,403,534, EP408382). It is also known that N-aryluracils with special, optionally further substituted, thiolactic acid groups also exhibit herbicidal effects (cf. WO2010/038953, KR2011110420).
  • N-benzoic acid uracils with an aminosulfonylaminocarbonylalkoxy side chain are also known (cf. WO2004/009561). It is also known that certain substituted N-benzoic acid thiobarbiturates can be used as herbicidal active ingredients (cf. WO2021/259224).
  • WO88/10254 A1 describes and includes special N-benzoic acid uracils with bromine substituents in the benzoic acid unit which are para to the uracil group.
  • N-benzoic acid uracils of the general formula (I) substituted with them or their salts wherein R 1 is hydrogen, methyl, R 2 is hydrogen, halogen, trifluoromethyl, R 3 is NR 7 R 15 , (C 1 -C 8 )-alkyl, R 4 is bromo, iodo, G is a radical the following formula is, Q is hydroxy or a radical of the formulas below R 5 and R 6 are independently hydrogen, (C 1 -C 8 )alkyl, (C 1 -C 8 )haloalkyl, (C 1 -C 8 )alkoxy-(C 1 -C 8 )- alkyl, or R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 7-membered carbocycle, R 8 is hydrogen, (C 1 -C 8 )-alkyl, (C 1 -C 8 )haloalkyl, aryl,
  • the compounds of general formula (I) can be synthesized by addition of a suitable inorganic or organic acid, such as mineral acids such as HCl, HBr, H 2 SO 4 , H 3 PO 4 or HNO 3 , or organic acids, eg. B. carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid, lactic acid or salicylic acid or sulfonic acids such as p-toluenesulfonic acid to a basic group such as amino, alkylamino, dialkylamino, piperidino, morpholino or pyridino. These salts then contain the conjugate base of the acid as an anion.
  • a suitable inorganic or organic acid such as mineral acids such as HCl, HBr, H 2 SO 4 , H 3 PO 4 or HNO 3
  • organic acids eg. B.
  • carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid
  • Suitable substituents which are in deprotonated form can form inner salts with groups which in turn can be protonated, such as amino groups. Salt formation can also take place by the action of a base on compounds of the general formula (I).
  • Suitable bases are, for example, organic amines such as trialkylamines, morpholine, piperidine and pyridine and ammonium, alkali metal or alkaline earth metal hydroxides, carbonates and bicarbonates, in particular sodium and potassium hydroxide, sodium and potassium carbonate and sodium and potassium bicarbonate.
  • salts are compounds in which the acidic hydrogen is replaced by an agriculturally suitable cation, for example metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or else ammonium salts, salts with organic amines or quaternary ammonium salts, for example with cations of the formula [NR a R b R c R d ] + , in which R a to R d each independently represent an organic radical, in particular alkyl, aryl, aralkyl or alkylaryl.
  • an agriculturally suitable cation for example metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or else ammonium salts, salts with organic amines or quaternary ammonium salts, for example with cations of the formula [NR a R b R c R d ] + , in which R a to R d each independently represent an organic radical, in particular al
  • alkylsulfonium and alkylsulfoxonium salts such as (C 1 -C 4 )-trialkylsulfonium and (C 1 -C 4 )-trialkylsulfoxonium salts.
  • alkylsulfonium and alkylsulfoxonium salts such as (C 1 -C 4 )-trialkylsulfonium and (C 1 -C 4 )-trialkylsulfoxonium salts.
  • a preferred subject of the invention are compounds of the general formula (I) in which R 1 is hydrogen, R 2 is hydrogen, fluorine, chlorine, bromine or iodine, R 3 is NR 7 R 15 , (C 1 -C 7 )-alkyl , R 4 is bromo, iodo, G is a radical of the formula below stands, Q stands for hydroxy or a radical of the following formulas, R 5 and R 6 are independently hydrogen, (C 1 -C 7 )-alkyl, or R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle, R 8 is hydrogen, (C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkyl, aryl, aryl(C 1 -C 7 )alkyl, heteroaryl, (C 2 -C 7 )alkynyl , (C 2 -C 7 )alkenyl, C(O)
  • C 7 )alkyl (C 1 -C 7 )alkylthio(C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkylthio(C 1 -C 7 )alkyl, (C 1 -C 7 )-Alkoxy(C 1 -C 7 )haloalkyl, aryl, aryl(C 1 -C 7 )alkyl, heteroaryl, heteroaryl(C 1 -C 7 )alkyl, (C 3 -C 7 ) -Cycloalkyl-(C 1 -C 7 )alkyl, (C 4 -C 10 )cycloalkenyl-(C 1 -C 7 )alkyl, C(O)R 13 , SO 2 R 14 , heterocyclyl, (C 1 -C 7 )-Alkoxycarbonyl, bis[(C 1 -C 7 )alkyl]aminocarbonyl-(C 1
  • a particularly preferred subject of the invention are compounds of the general formula (I) in which R 1 is hydrogen, R 2 is hydrogen, fluorine, chlorine or bromine, R 3 is amino, (C 1 -C 6 )-alkyl, R 4 is bromo, iodo, G is a radical of the following formula stands, Q is hydroxy or a radical of the formulas below R 5 and R 6 are independently hydrogen, (C 1 -C 6 )alkyl, R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle , R 8 is hydrogen, (C 1 -C 6 )-alkyl, (C 1 -C 6 )-haloalkyl, aryl, aryl-(C 1 -C 6 )-alkyl, heteroaryl, (C 2 -C 6 )- alkynyl, (C 2 -C 6 )alkenyl, C(O)R 13 , C(O)OR 13
  • a very particularly preferred subject of the invention are compounds of the general formula (I) in which R 1 is hydrogen, R 2 is hydrogen, fluorine or chlorine, R 3 is amino, methyl, ethyl, prop-1-yl, 1-methylethyl, but -1-yl, 1-methylpropyl, 2-methylpropyl, R 4 is bromo, iodo, G is a radical of the following formula, R 5 and R 6 are independently hydrogen, methyl, ethyl, prop-1-yl, 1-methylethyl, but-1-yl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, n-pentyl, 1- Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n- hexyl, 1-methylpentyl, 2-methyl
  • a particularly preferred subject of the invention are compounds of the general formula (I) in which R 1 represents hydrogen, R 2 represents hydrogen, fluorine, chlorine, R 3 represents amino, methyl, R 4 represents bromine, iodine, G for a radical of the following formula R 5 and R 6 are independently hydrogen, methyl, ethyl, preferably methyl, or R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle and Q stands for one of the groups Q-1 to Q-500 specifically mentioned above.
  • preferred subject matter of the invention are compounds of the general formula (I) in which R 1 is hydrogen, R 2 is hydrogen, fluorine, chlorine, R 3 is amino, methyl, R 4 is bromine, iodine, G is one remainder of the formula below, R 5 and R 6 are methyl and Q is one of the groups Q-1, Q-2, Q-23, Q-24, Q-26, Q-31, Q-71, Q-72, Q-115, Q-127, Q-152, Q-176, Q-231, Q-237, Q-286, Q-301, Q-302, Q-441, Q- 442, Q-454, Q-472, Q-481, Q-489, Q-490, Q-491, Q-496, Q-499, Q-500.
  • radicals given above in general or in preferred ranges apply both to the end products of the formula (I) and correspondingly to the starting materials or intermediates required in each case for the preparation. These radical definitions can be combined with one another as desired, ie also between the specified preferred ranges. With regard to the compounds according to the invention, the designations used above and below are explained.
  • heterocyclyl C 1 -C 8 alkyl or R 13 O (O) C - (C 1 -C 8 ) alkyl
  • alkyl therefore also stands for an alkylene group.
  • alkylsulfonyl on its own or as part of a chemical group—is straight-chain or branched alkylsulfonyl, preferably having 1 to 8 or 1 to 6 carbon atoms, eg (but not limited to) (C 1 -C 6 )-alkylsulfonyl such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1,1-dimethylethylsulfonyl, pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl, 3-methylbutylsulfonyl, 1,1 -dimethylpropylsulfonyl, 1,2-di
  • heteroarylsulfonyl represents optionally substituted pyridylsulfonyl, pyrimidinylsulfonyl, pyrazinylsulfonyl or optionally substituted polycyclic heteroarylsulfonyl, here in particular optionally substituted quinolinylsulfonyl, for example substituted by fluoro, chloro, bromo, iodo, cyano, nitro, alkyl, haloalkyl, haloalkoxy, amino, alkylamino, alkylcarbonylamino, dialkylamino, or alkoxy groups.
  • alkylthio on its own or as part of a chemical group—is straight-chain or branched S-alkyl, preferably having 1 to 8 or 1 to 6 carbon atoms, such as (C 1 -C 10 )-, (C 1 - C 6 )- or (C 1 -C 4 )-alkylthio, for example (but not limited to) (C 1 -C 6 )-alkylthio such as methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2- methylpropylthio, 1,1-dimethylethylthio, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 1,1-dimethylpropylthio, 1,2-dimethylpropylthio, 2,2-dimethylpropylthio, 1-ethylpropy
  • alkenylthio means an alkenyl radical bonded via a sulfur atom
  • alkynylthio means an alkynyl radical bonded via a sulfur atom
  • cycloalkylthio means a cycloalkyl radical bonded via a sulfur atom
  • cycloalkenylthio means a cycloalkenyl radical bonded via a sulfur atom
  • (but not limited to) (C 1 -C 6 )-alkylsulphinyl such as methylsulphinyl, ethylsulphinyl, propylsulphinyl, 1-methylethylsulphinyl, butylsulphinyl, 1-methylpropylsulphinyl, 2-methylpropylsulphinyl, 1,1-dimethylethylsulphinyl, pentylsulphinyl, 1-methylbutylsulphinyl, 2-Methylbutylsulphinyl, 3-Methylbutylsulphinyl, 1,1-dimethylpropylsulphinyl, 1,2-dimethylpropylsulphinyl, 2,2-dimethylpropylsulphinyl, 1-ethylpropylsulphinyl, hexylsulphinyl, 1-methylpentylsulphinyl, 2-methylpentylsulphinyl,
  • Alkoxy means an alkyl radical bonded through an oxygen atom, e.g. B.
  • Alkenyloxy means an alkenyl radical bonded via an oxygen atom
  • alkynyloxy means an alkynyl radical bonded via an oxygen atom, such as (C 2 -C 10 )-, (C 2 -C 6 )- or (C 2 -C 4 )-alkenoxy or (C 3 -C 10 ), (C 3 -C 6 ) or (C 3 -C 4 ) alkynoxy.
  • Cycloalkyloxy means an oxygen-bonded cycloalkyl radical and cycloalkenyloxy means an oxygen-bonded cycloalkenyl radical.
  • the number of carbon atoms refers to the alkyl radical in the alkylcarbonyl group.
  • alkenylcarbonyl and “alkynylcarbonyl”, unless otherwise defined elsewhere, stand for alkenyl or alkynyl radicals which are bonded to the skeleton via -C( O)-, such as (C 2 -C 10 )- , (C 2 -C 6 )- or (C 2 -C 4 )-alkenylcarbonyl or (C 2 -C 10 )-, (C 2 -C 6 )- or (C 2 -C 4 )- alkynylcarbonyl.
  • the number of carbon atoms refers to the alkenyl or alkynyl radical in the alkenyl or alkynylcarbonyl group.
  • the number of carbon atoms refers to the alkyl radical in the alkoxycarbonyl group.
  • alkenyloxycarbonyl and “alkynyloxycarbonyl”, unless otherwise defined elsewhere, stand for alkenyl or alkynyl radicals which are bonded to the skeleton via -OC( O)-, such as (C 2 -C 10 )-. , (C 2 -C 6 )- or (C 2 -C 4 )-alkenyloxycarbonyl or (C 3 -C 10 )-, (C 3 -C 6 )- or (C 3 -C 4 )- alkynyloxycarbonyl.
  • the number of carbon atoms refers to the alkenyl or alkynyl radical in the alkene or alkynyloxycarbonyl group.
  • the number of carbon atoms refers to the alkyl radical in the alkylcarbonyloxy group.
  • the number of carbon atoms refers to the alkenyl or alkynyl radical in the alkenyl or alkynylcarbonyloxy group.
  • C(O)R 13 , C(O)OR 13 , OC(O)NR 11 R 12 , or C(O)NR 11 R 12 the short form O in brackets stands for a via a double bond to the adjacent carbon atom bonded oxygen atom.
  • OC(S)OR 13 , OC(S)SR 14 , OC(S)NR 11 R 12 the short form S given in brackets stands for a sulfur atom bonded to the adjacent carbon atom via a double bond.
  • aryl means an optionally substituted mono-, bi- or polycyclic aromatic system with preferably 6 to 14, in particular 6 to 10, ring carbon atoms, for example phenyl, naphthyl, anthryl, phenanthrenyl and the like, preferably phenyl.
  • optionally substituted aryl also includes polycyclic systems such as tetrahydronaphthyl, indenyl, indanyl, fluorenyl, biphenylyl, where the binding site is on the aromatic system. Systematically, “aryl” is generally also included in the term “optionally substituted phenyl”.
  • Preferred aryl substituents here are, for example, hydrogen, halogen, alkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, halocycloalkyl, alkenyl, alkynyl, aryl, arylalkyl, arylalkenyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, alkoxyalkyl, alkylthio, haloalkylthio, haloalkyl, alkoxy, Haloalkoxy, cycloalkoxy, cycloalkylalkoxy, aryloxy, heteroaryloxy, alkoxyalkoxy, alkynylalkoxy, alkenyloxy, bis-alkylaminoalkoxy, tris-[alkyl]silyl, bis-[alkyl]arylsilyl, bis-[alkyl]alkylsilyl, tris-[
  • heterocyclyl radical or heterocyclic ring is optionally substituted, it may be fused to other carbocyclic or heterocyclic rings.
  • polycyclic systems are also included, such as, for example, 8-azabicyclo[3.2.1]octanyl, 8-azabicyclo[2.2.2]octanyl or 1-azabicyclo[2.2.1]heptyl.
  • spirocyclic systems are also included, such as 1-oxa-5-azaspiro[2.3]hexyl.
  • the heterocyclic ring preferably contains 3 to 9 ring atoms, in particular 3 to 6 ring atoms, and one or more, preferably 1 to 4, in particular 1, 2 or 3 heteroatoms in the heterocyclic ring, preferably from the group N, O, and S, but not two oxygen atoms should be directly adjacent, such as with a heteroatom from the group N, O and S 1- or 2- or 3-pyrrolidinyl, 3,4-dihydro-2H-pyrrole-2- or 3 -yl, 2,3-dihydro-1H-pyrrol-1- or 2- or 3- or 4- or 5-yl; 2,5-dihydro-1H-pyrrole-1- or 2- or 3-yl, 1- or 2- or 3- or 4-piperidinyl; 2,3,4,5-tetrahydropyridin-2- or 3- or 4- or 5-yl or 6-yl; 1,2,3,6-tetrahydropyridin-1- or 2- or 3- or 4- or 5- or 6-yl; 1,2,3,4-t
  • 3-ring and 4-ring heterocycles are 1- or 2-aziridinyl, oxiranyl, thiiranyl, 1- or 2- or 3-azetidinyl, 2- or 3-oxetanyl, 2- or 3-thietanyl, 1,3 -dioxetan-2-yl.
  • heterocyclyl are a partially or fully hydrogenated heterocyclic radical having two heteroatoms from the group N, O and S, such as 1- or 2- or 3- or 4-pyrazolidinyl; 4,5-dihydro-3H-pyrazol-3- or 4- or 5-yl; 4,5-dihydro-1H-pyrazol-1- or 3- or 4- or 5-yl; 2,3-dihydro-1H-pyrazol-1- or 2- or 3- or 4- or 5-yl; 1- or 2- or 3- or 4-imidazolidinyl; 2,3-dihydro-1H-imidazol-1- or 2- or 3- or 4-yl; 2,5-dihydro-1H-imidazol-1- or 2- or 4- or 5-yl; 4,5-dihydro-1H-imidazol-1- or 2- or 4- or 5-yl; hexahydropyridazin-1- or 2- or 3- or 4-yl; 1,2,3,4-tetrahydropyridazin-1- or
  • heterocyclyl are a partially or fully hydrogenated heterocyclic radical with 3 heteroatoms from the group N, O and S, such as 1,4,2-dioxazolidin-2- or 3- or 5-yl; 1,4,2-dioxazol-3- or 5-yl; 1,4,2-dioxazinan-2- or -3- or 5- or 6-yl; 5,6-dihydro-1,4,2-dioxazin-3- or 5- or 6-yl; 1,4,2-dioxazin-3- or 5- or 6-yl; 1,4,2-dioxazepan-2- or 3- or 5- or 6- or 7-yl; 6,7-dihydro-5H-1,4,2-dioxazepin-3- or 5- or 6- or 7-yl; 2,3-dihydro-7H-1,4,2-dioxazepine-2- or 3- or 5- or 6- or 7-yl; 2,3-dihydro-5H-1,4,2-dioxazepine-2- or 3- or 5- or 6-
  • heterocycles listed above are preferably substituted, for example, by hydrogen, halogen, alkyl, haloalkyl, hydroxy, alkoxy, cycloalkoxy, aryloxy, alkoxyalkyl, alkoxyalkoxy, cycloalkyl, halocycloalkyl, aryl, arylalkyl, heteroaryl, heterocyclyl, alkenyl, alkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, Alkoxycarbonyl, Hydroxycarbonyl, Cycloalkoxycarbonyl, Cycloalkylalkoxycarbonyl, Alkoxycarbonylalkyl, Arylalkoxycarbonyl, Arylalkoxycarbonyl, Arylalkoxycarbonylalkyl, Alkynyl, Alkynylalkyl, Alkylalkynyl, Tris-alkylsilylalkynyl, Nitro, Amin
  • Suitable substituents for a substituted heterocyclic radical are the substituents mentioned below, as well as oxo and thioxo.
  • the oxo group as a substituent on a ring C atom then means, for example, a carbonyl group in the heterocyclic ring. This preferably also includes lactones and lactams.
  • the oxo group can also occur on the hetero ring atoms, which can exist in different oxidation states, e.g. with N and S, and then form, for example, the divalent groups N(O), S(O) (also short SO) and S(O) 2 (also short SO 2 ) in the heterocyclic ring.
  • N(O), S(O) (also short SO) and S(O) 2 (also short SO 2 ) in the heterocyclic ring.
  • -N(O)- and -S(O)- groups both enantiomers are included.
  • heteroaryl stands for heteroaromatic compounds, i. H. completely unsaturated aromatic heterocyclic compounds, preferably 5- to 7-membered rings having 1 to 4, preferably 1 or 2, identical or different heteroatoms, preferably O, S or N.
  • heteroaryls are 1H-pyrrol-1-yl; 1H-pyrrol-2-yl; 1H-pyrrol-3-yl; furan-2-yl; furan-3-yl; thien-2-yl; thien-3-yl, 1H-imidazol-1-yl; 1H-imidazol-2-yl; 1H-imidazol-4-yl; 1H-imidazol-5-yl; 1H-pyrazol-1-yl; 1H-pyrazol-3-yl; 1H-pyrazol-4-yl; 1H-pyrazol-5-yl, 1H-1,2,3-triazol-1-yl, 1H-1,2,3-triazol-4-yl, 1H-1,2,3-triazol-5-yl, 2H-1,2,3-triazol-2-yl, 2H-1,2,3-triazol-4-yl, 1H-1,2,4-triazol-1-yl, 1H-pyrrol-1-
  • heteroaryl groups according to the invention can also be substituted with one or more identical or different radicals. If two adjacent carbon atoms are part of another aromatic ring, these are fused heteroaromatic systems, such as benzo-fused or multiply fused heteroaromatics.
  • fused heteroaromatic systems such as benzo-fused or multiply fused heteroaromatics.
  • Preferred are, for example, quinolines (e.g. quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-5-yl, quinolin-6-yl, quinolin-7-yl, quinolin-8-yl ); isoquinolines (e.g.
  • heteroaryl are also 5- or 6-membered benzo-fused rings from the group 1H-indol-1-yl, 1H-indol-2-yl, 1H-indol-3-yl, 1H-indol-4-yl, 1H- Indol-5-yl, 1H-indol-6-yl, 1H-indol-7-yl, 1-benzofuran-2-yl, 1-benzofuran-3-yl, 1-benzofuran-4-yl, 1-benzofuran- 5-yl, 1-benzofuran-6-yl, 1-benzofuran-7-yl, 1-benzothiophen-2-yl, 1-benzothiophen-3-yl, 1-benzothiophen-4-yl, 1-benzothiophen-5- yl, 1-benzothiophen-6-yl, 1-benzothiophen-7-yl, 1H-indazol-1-yl, 1H-indazol-3-yl, 1
  • halogen means, for example, fluorine, chlorine, bromine or iodine.
  • halo means, for example, fluoro, chloro, bromo or iodo.
  • alkyl means a straight-chain or branched, open-chain, saturated hydrocarbon radical which is optionally mono- or polysubstituted and, in the latter case, is referred to as “substituted alkyl”.
  • Preferred substituents are halogen atoms, alkoxy, haloalkoxy, cyano, alkylthio, haloalkylthio, amino or nitro groups, particularly preferred are methoxy, methyl, fluoroalkyl, cyano, nitro, fluorine, chlorine, bromine or iodine.
  • bis also includes the combination of different alkyl radicals, e.g. methyl(ethyl) or ethyl(methyl).
  • "Haloalkyl”, "-alkenyl” and “alkynyl” mean alkyl, alkenyl or alkynyl, e.g.
  • perhaloalkyl such as e.g. B.CCl 3 , CCIF 2 , CFCl 2 , CF 2 CCIF 2 , CF 2 CCIFCF 3 ; polyhaloalkyl such as e.g. B.CH 2 CHFCl, CF 2 CCFH, CF 2 CBrFH, CH 2 CF 3 ;
  • perhaloalkyl also includes the term “perfluoroalkyl”.
  • Partially fluorinated alkyl means a straight-chain or branched, saturated hydrocarbon which is mono- or poly-substituted by fluorine, where the corresponding fluorine atoms are as Substituents may be on one or more different carbon atoms of the straight or branched hydrocarbon chain, such as. B.CHFCH 3 , CH 2 CH 2 F, CH 2 CH 2 CF 3 , CHF 2 , CH 2 F, CHFCF 2 CF 3 .
  • Partially fluorinated haloalkyl means a straight-chain or branched, saturated hydrocarbon substituted by various halogen atoms having at least one fluorine atom, with all other optionally present halogen atoms being selected from the group consisting of fluorine, chlorine or bromine, iodine.
  • the corresponding halogen atoms can be present as substituents on one or more different carbon atoms of the straight-chain or branched hydrocarbon chain.
  • Partially fluorinated haloalkyl also includes full substitution of the straight or branched chain with halogen involving at least one fluorine atom.
  • haloalkoxy is OCF 3 , OCHF 2 , OH 2 F, OCF 2 CF 3 , OH 2 CF 3 and OCH 2 CH 2 Cl;
  • haloalkenyl and other radicals substituted by halogen are OCF 3 , OCHF 2 , OH 2 F, OCF 2 CF 3 , OH 2 CF 3 and OCH 2 CH 2 Cl;
  • (C 1 -C 4 )-Alkyl means an abbreviation for straight-chain or branched alkyl with one to 4 carbon atoms corresponding to the range specified for carbon atoms, i.e. includes the radicals methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2 -methylpropyl or tert-butyl.
  • hydrocarbon radicals such as alkyl, alkenyl and alkynyl radicals, also in compound radicals, which preferably have lower carbon structures, for example with 1 to 6 carbon atoms or, in the case of unsaturated groups, with 2 to 6 carbon atoms e.g., methyl, ethyl, n- or i-propyl, n-, i-, t- or 2-butyl, pentyls, hexyls such as n-hexyl, i-hexyl and 1,3-dimethylbutyl, heptyls such as n-heptyl , 1-methylhexyl and 1,4-dimethylpentyl; alkenyl and alkynyl radicals have the meaning of the possible unsaturated radicals corresponding to the alkyl radicals, where at least one double bond or triple bond is present.
  • radicals having a double bond or triple bond Preference is given to radicals having a double bond or triple bond.
  • alkenyl “Includes in particular straight-chain or branched open-chain hydrocarbon radicals with more than one double bond, such as 1,3-butadienyl and 1,4-pentadienyl, but also allenyl or cumulenyl radicals with one or more cumulative double bonds, such as for example allenyl (1,2-propadienyl), 1,2-butadienyl and 1,2,3-pentatrienyl.
  • Alkenyl means, for example, vinyl, which can optionally be substituted by further alkyl radicals, for example (but not limited to) (C 2 -C 6 )-alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl- 2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1- butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl
  • alkynyl also includes in particular straight-chain or branched open-chain hydrocarbon radicals with more than one triple bond or with one or more triple bonds and one or more double bonds, such as 1,3-butatrienyl or 3-pentene-1-in-1 -yl.
  • (C 2 -C 6 )-Alkynyl means, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl , 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 3-methyl-1-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl , 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 1-methyl-4-pentynyl, 2-methyl-3 -p
  • cycloalkyl means a carbocyclic, saturated ring system preferably having 3-8 ring carbon atoms, e.g. cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, which is optionally further substituted, preferably by hydrogen, alkyl, alkoxy, cyano, nitro, alkylthio , haloalkylthio, halogen, alkenyl, alkynyl, haloalkyl, amino, alkylamino, bisalkylamino, alcocycarbonyl, hydroxycarbonyl, arylalkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, cycloalkylaminocarbonyl.
  • cyclic Systems with substituents, with substituents having a double bond on the cycloalkyl radical, e.g. an alkylidene group such as methylidene e.g. an alkylidene group such as methylidene.
  • polycyclic aliphatic systems are also included, such as bicyclo[1.1.0]butan-1-yl, bicyclo[1.1.0]butan-2-yl, bicyclo[2.1.0]pentan-1-yl , bicyclo[1.1.1]pentan-1-yl, bicyclo[2.1.0]pentan-2-yl, bicyclo[2.1.0]pentan-5-yl, bicyclo[2.1.1]hexyl, bicyclo[2.2.1 ]hept-2-yl, bicyclo[2.2.2]octan-2-yl, bicyclo[3.2.1]octan-2-yl, bicyclo[3.2.2]nonan-2-yl,
  • spirocyclic aliphatic systems are also included, such as spiro[2.2]pent-1-yl, spiro[2.3] hex-1-yl, spiro[2.3]hex-4-yl, 3-spiro[2.3]hex-5-yl, spiro[3.3]hept-1-yl, spiro[3.3]hept-2-yl "means a carbocyclic, non-aromatic, partially unsaturated ring system preferably having 4-8 carbon atoms, e.g.
  • C 1 -C 10 )-Alkylidene means the radical of a straight-chain or branched open-chain hydrocarbon radical which is bonded via a double bond.
  • Cycloalkylidene means a carbocyclic radical bonded via a double bond.
  • Cycloalkylalkyloxy means an oxygen-bonded cycloalkylalkyl radical and "arylalkyloxy” means an oxygen-bonded arylalkyl radical.
  • Alkoxyalkyl means an alkoxy radical bonded through an alkyl group and "alkoxyalkoxy” means an alkoxyalkyl radical bonded through an oxygen atom, such as (but not limited to) methoxymethoxy, methoxyethoxy, ethoxyethoxy, methoxy-n-propyloxy.
  • Alkylthioalkyl means an alkylthio radical bonded through an alkyl group and “alkylthioalkylthio” means an alkylthioalkyl radical bonded through an oxygen atom.
  • Arylalkoxyalkyl means an aryloxy radical bonded through an alkyl group and “heteroaryloxyalkyl” means a heteroaryloxy radical bonded through an alkyl group.
  • Haloalkoxyalkyl means a linked haloalkoxy radical and "haloalkylthioalkyl” means a haloalkylthio radical linked through an alkyl group.
  • Arylalkyl means an aryl radical bonded through an alkyl group
  • heteroarylalkyl means a heteroaryl radical bonded through an alkyl group
  • heterocyclylalkyl means a heterocyclyl radical bonded through an alkyl group.
  • Cycloalkylalkyl represents a cycloalkyl radical bonded via an alkyl group, e.g. B.
  • Arylalkenyl means an aryl radical bonded through an alkenyl group
  • heteroarylalkenyl means a heteroaryl radical bonded through an alkenyl group
  • heterocyclylalkenyl means a heterocyclyl radical bonded through an alkenyl group
  • Arylalkynyl means an aryl radical bonded through an alkynyl group
  • heteroarylalkynyl means a heteroaryl radical bonded through an alkynyl group
  • heterocyclylalkynyl means a heterocyclyl radical bonded through an alkynyl group
  • haloalkylthio on its own or as part of a chemical group—is straight-chain or branched S-haloalkyl, preferably having 1 to 8 or 1 to 6 carbon atoms, such as (C 1 -C 8th )-, (C 1 -C 6 )- or (C 1 -C 4 )-haloalkylthio such as (but not limited to) trifluoromethylthio, pentafluoroethylthio, difluoromethyl, 2,2-difluoroeth-1-ylthio, 2,2,2-difluoroeth-1-ylthio, 3,3,3-prop-1-ylthio .
  • Halocycloalkyl and halocycloalkenyl denote identical or different halogen atoms, such as e.g. B. F, Cl and Br, or by haloalkyl, such as. B. trifluoromethyl or difluoromethyl partially or fully substituted cycloalkyl or cycloalkenyl, e.g.
  • Trialkylsilylalkynyl represents a trialkylsilyl radical bonded through an alkynyl group. If the compounds can form tautomers by hydrogen shift, which would not be formally covered by the formula (I) structurally, these tautomers are nevertheless included in the definition of the compounds of the formula (I) according to the invention, unless a specific tautomer is the subject of consideration. For example, many carbonyl compounds can exist in both the keto form and the enol form, both forms being encompassed by the definition of the compound of formula (I). Depending on the type and linkage of the substituents, the compounds of the general formula (I) can be present as stereoisomers.
  • stereoisomers defined by their specific spatial form such as enantiomers, diastereomers, Z and E isomers are all encompassed by the formula (I). If, for example, one or more alkenyl groups are present, diastereomers (Z and E isomers) can occur. For example, if one or more asymmetric carbon atoms are present, enantiomers and diastereomers can occur.
  • Stereoisomers can be obtained from the mixtures obtained in the preparation by customary separation methods. The chromatographic separation can be carried out both on an analytical scale to determine the enantiomeric excess or diastereomeric excess and on a preparative scale to produce test specimens for biological testing.
  • stereoisomers can be prepared selectively by using stereoselective reactions using optically active starting materials and/or auxiliaries.
  • the invention thus also relates to all stereoisomers which are covered by the general formula (I) but are not specified with their specific stereo form, and mixtures thereof. If the compounds are obtained as solids, they can also be purified by recrystallization or digestion. If individual compounds (I) are not satisfactorily accessible by the routes described below, they can be prepared by derivatizing other compounds (I). Suitable methods for isolating, purifying and separating stereoisomers of compounds of the general formula (I) are methods which are generally known to the person skilled in the art from analogous cases, e.g.
  • nitrobenzoic acid esters (IV) can be converted by means of suitable coupling reagents (e.g.
  • HOBt 1-hydroxybenzotriazole
  • EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • HATU O-(7-azabenzotriazol-1-yl) -N,N,N',N'-tetramethyluronium hexafluorophosphate
  • T3P 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide) and suitable bases (e.g. diisopropylethylamine, triethylamine) in a suitable polar-aprotic solvent (e.g. dichloromethane, chloroform).
  • suitable bases e.g. diisopropylethylamine, triethylamine
  • a suitable polar-aprotic solvent e.g. dichloromethane, chloroform
  • HOBt 1-hydroxybenzotriazole
  • EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • HATU O- (7-Azabenzotriazol-1-yl)-N,N,N′,N′- tetramethyluronium hexafluorophosphate
  • T3P 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2, 4,6-trioxide
  • suitable bases e.g. diisopropylethylamine, triethylamine
  • a suitable polar aprotic solvent e.g. dichloromethane, chloroform
  • the esterification can be carried out via transformation into the acid chloride using thionyl chloride and subsequent reaction with the alcohol R-OH, using a suitable polar aprotic solvent (e.g. dichloromethane (DCM), chloroform, N,N-dimethylacetamide (DMA) or N ,N-dimethylformamide (DMF)) is used.
  • a suitable polar aprotic solvent e.g. dichloromethane (DCM), chloroform, N,N-dimethylacetamide (DMA) or N ,N-dimethylformamide (DMF)
  • DCM dichloromethane
  • DMA N,N-dimethylacetamide
  • DMF N ,N-dimethylformamide
  • the N-amino-N'-benzoic acid uracil (Id) is synthesized by N-amination starting from the uracil (VIII) described above, as shown in Scheme 2 below.
  • the N-amination is carried
  • a suitable base e.g. sodium hydride, potassium tert -butoxide or potassium carbonate
  • a suitable polar-aprotic solvent e.g. dichloromethane, chloroform, N,N-dimethylacetamide or N,N-dimethylformamide.
  • EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • HATU O-(7 -Azabenzotriazol-1-yl)-N,N,N′,N′-
  • esterification can be carried out via transformation into the acid chloride using thionyl chloride and subsequent reaction with the alcohol R-OH, using a suitable polar aprotic solvent (e.g. dichloromethane (DCM), chloroform, N,N-dimethylacetamide (DMA) or N ,N-dimethylformamide (DMF)) is used.
  • a suitable polar aprotic solvent e.g. dichloromethane (DCM), chloroform, N,N-dimethylacetamide (DMA) or N ,N-dimethylformamide (DMF)
  • I.4-1 1-(2-Methoxyethoxy)-2-methyl-1-oxopropan-2-yl-5-[3-amino-4-(difluoromethyl)-2,6-dioxo-3,6 -dihydropyrimidin-1(2H)-yl]-2-bromo-4-fluorobenzoate 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-2-bromo-5-[2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl] -4-fluorobenzoate (1280 mg, 2.44 mmol) was dissolved in abs.
  • Methyl 3-amino-4-fluorobenzoate 60 g, 352.94 mmol was dissolved in acetic acid (600 mL), and sodium periodate (75 g, 352.94 mmol) and sodium chloride (40 g, 705.88 mmol) were added. After stirring at room temperature for 5 min, a solution of potassium iodide (58.5 g, 352.94 mmol) in water (180 mL) was slowly added. The resulting reaction mixture was then stirred at room temperature for 24 hours, checking the progress of the reaction by thin layer chromatography (30% EtOAc in petroleum ether (Rf: 0.5).
  • the resulting reaction mixture was stirred at room temperature for 4 h, then added to ice-water (1.5 L) and stirred at room temperature for 30 minutes. After addition of ethyl acetate, it was thoroughly extracted several times with ethyl acetate. The combined organic phases were washed with sat. Washed NaCl solution, dried over sodium sulfate, filtered off and concentrated under reduced pressure.
  • the resulting reaction mixture was then stirred at 10-20 °C for 4 h, then treated with water (100 mL) and then washed with sat.
  • Sodium bicarbonate solution brought to a pH of about 8.
  • dichloromethane was added and, after phase separation, the aqueous phase was adjusted to a pH of 4-5 using 2N HCl and thoroughly extracted several times with dichloromethane.
  • the combined organic phases were washed with sat. Washed NaCl solution, dried over sodium sulfate, filtered off and concentrated under reduced pressure.
  • Tetrahydrofuran 400 mL dissolved, cooled to a temperature of 0 °C and NaH (60% in mineral oil, 1.11 g, 49.2 mmol) was carefully added in portions. After stirring at 0° C. for 30 minutes, O-diphenylphosphinylhydroxylamine (22.9 g, 98.41 mmol) was added in portions. Thereafter, the resulting reaction mixture was stirred at a temperature of 40° C. for 6 h and then treated with ice water (500 mL). After addition of ethyl acetate and a first extraction, the aqueous phase was extracted several times with ethyl acetate.
  • the resulting reaction mixture was then stirred at room temperature for 3 h, then treated with water (100 mL) and then washed with sat.
  • Sodium bicarbonate solution brought to a pH of about 8.
  • dichloromethane was added and, after phase separation, the aqueous phase was adjusted to a pH of 4-5 using 2N HCl and thoroughly extracted several times with dichloromethane.
  • the combined organic phases were washed with sat. Washed NaCl solution, dried over sodium sulfate, filtered off and concentrated under reduced pressure.
  • the reaction mixture was separated from the aqueous phase using a separator cartridge and, after collecting the organic phase, the solvent was removed in vacuo.
  • the crude product obtained was purified by column chromatography to give 1-(cyanomethoxy)-2-methyl-1-oxopropan-2-yl-2-bromo-4-fluoro-5-[3-amino-2,6-dioxo-4-(trifluoromethyl )-3,6-dihydropyrimidin-1(2H)-yl]benzoate (51 mg, 57% of theory) as a colorless solid.
  • Table I.1 Preferred compounds of the formula (I.1) are the compounds I.1-1 to I.1-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.1-1 to I.1-500 in Table I.1 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table 1: Table I.2: Preferred compounds of the formula (I.2) are the compounds I.2-1 to I.2-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.2-1 to I.2-500 in Table I.2 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.3: Preferred compounds of the formula (I.3) are the compounds I.3-1 to I.3-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.3-1 to I.3-500 in Table I.3 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.4: Preferred compounds of the formula (I.4) are the compounds I.4-1 to I.4-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.4-1 to I.4-500 in Table I.4 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.5 Preferred compounds of the formula (I.5) are the compounds I.5-1 to I.5-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.5-1 to I.5-500 in Table I.5 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.6 Preferred compounds of the formula (I.6) are the compounds I.6-1 to I.6-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.6-1 to I.6-500 in Table I.6 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.7: Preferred compounds of the formula (I.7) are the compounds I.7-1 to I.7-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.7-1 to I.7-500 in Table I.7 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.8: Preferred compounds of the formula (I.8) are the compounds I.8-1 to I.8-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.8-1 to I.8-500 in Table I.8 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.9: Preferred compounds of the formula (I.9) are the compounds I.9-1 to I.9-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.9-1 to I.9-500 in Table I.9 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.10 Preferred compounds of the formula (I.10) are the compounds I.10-1 to I.10-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.10-1 to I.10-500 in Table I.10 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.11 Preferred compounds of the formula (I.11) are the compounds I.11-1 to I.11-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.11-1 to I.11-500 in Table I.11 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.12 Preferred compounds of the formula (I.12) are the compounds I.12-1 to I.12-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.12-1 to I.12-500 in Table I.12 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.13 Preferred compounds of the formula (I.13) are the compounds I.13-1 to I.13-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.13-1 to I.13-500 in Table I.13 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.14 Preferred compounds of the formula (I.14) are the compounds I.14-1 to I.14-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.14-1 to I.14-500 in Table I.14 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.15 Preferred compounds of the formula (I.15) are the compounds I.15-1 to I.15-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.15.-1 to I.15-500 in Table I.15 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.16 Preferred compounds of the formula (I.16) are the compounds I.16-1 to I.16-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.16-1 to I.16-500 in Table I.16 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.17 Preferred compounds of the formula (I.17) are the compounds I.17-1 to I.17-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.17-1 to I.17-500 in Table I.17 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.18 Preferred compounds of the formula (I.18) are the compounds I.18-1 to I.18-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.18-1 to I.18-500 in Table I.18 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.19: Preferred compounds of the formula (I.19) are the compounds I.19-1 to I.19-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.19-1 to I.19-500 in Table I.19 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.20 Preferred compounds of the formula (I.20) are the compounds I.20-1 to I.20-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.20-1 to I.20-500 in Table I.20 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.21: Preferred compounds of the formula (I.21) are the compounds I.21-1 to I.21-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.21-1 to I.21-500 in Table I.21 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.22 Preferred compounds of the formula (I.22) are the compounds I.22-1 to I.22-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.22-1 to I.22-500 in Table I.22 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.23 Preferred compounds of the formula (I.23) are the compounds I.23-1 to I.23-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.23-1 to I.23-500 in Table I.23 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.24 Preferred compounds of the formula (I.24) are the compounds I.24-1 to I.24-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.24-1 to I.24-500 in Table I.24 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.25 Preferred compounds of the formula (I.25) are the compounds I.25-1 to I.25-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.25-1 to I.25-500 in Table I.25 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.26 Preferred compounds of the formula (I.26) are the compounds I.26-1 to I.26-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.26-1 to I.26-500 in Table I.26 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.27 Preferred compounds of the formula (I.27) are the compounds I.27-1 to I.27-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.27.-1 to I.27-500 in Table I.27 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.28 Preferred compounds of the formula (I.28) are the compounds I.28-1 to I.28-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.28-1 to I.28-500 in Table I.28 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.29 Preferred compounds of the formula (I.29) are the compounds I.29-1 to I.29-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.29-1 to I.29-500 in Table I.29 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.30 Preferred compounds of the formula (I.30) are the compounds I.30-1 to I.30-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.30-1 to I.30-500 in Table I.30 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.31 Preferred compounds of the formula (I.31) are the compounds I.31-1 to I.31-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.31-1 to I.31-500 in Table I.31 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.32 Preferred compounds of the formula (I.32) are the compounds I.32-1 to I.32-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.32-1 to I.32-500 in Table I.32 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.33 Preferred compounds of the formula (I.33) are the compounds I.33-1 to I.33-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.33-1 to I.33-500 in Table I.33 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.34 Preferred compounds of the formula (I.34) are the compounds I.34-1 to I.34-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.34-1 to I.34-500 in Table I.34 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.35 Preferred compounds of the formula (I.35) are the compounds I.35-1 to I.35-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.35-1 to I.35-500 in Table I.35 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.36 Preferred compounds of the formula (I.36) are the compounds I.36-1 to I.36-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.36-1 to I.36-500 in Table I.36 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.37 Preferred compounds of the formula (I.37) are the compounds I.37-1 to I.37-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.37-1 to I.37-500 in Table I.37 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.38 Preferred compounds of the formula (I.38) are the compounds I.38-1 to I.38-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.38-1 to I.38-500 in Table I.38 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.39: Preferred compounds of the formula (I.39) are the compounds I.39-1 to I.39-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.39-1 to I.39-500 in Table I.39 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.40 Preferred compounds of the formula (I.40) are the compounds I.40-1 to I.40-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.40-1 to I.40-500 in Table I.40 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.41: Preferred compounds of the formula (I.41) are the compounds I.41-1 to I.41-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.41-1 to I.41-500 in Table I.41 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.42 Preferred compounds of the formula (I.42) are the compounds I.42-1 to I.42-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.42-1 to I.42-500 in Table I.42 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.43 Preferred compounds of the formula (I.43) are the compounds I.43-1 to I.43-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.43-1 to I.43-500 in Table I.43 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.44 Preferred compounds of the formula (I.44) are the compounds I.44-1 to I.44-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.44-1 to I.44-500 of Table I.44 are thus defined by the meaning of the respective entries No.1 to 500 for Q of Table 1.
  • Table I.45 Preferred compounds of the formula (I.45) are the compounds I.45-1 to I.45-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the compounds I.45.-1 to I.45-500 in Table I.45 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.46 Preferred compounds of the formula (I.46) are the compounds I.46-1 to I.46-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.46-1 to I.46-500 in Table I.46 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
  • Table I.47: Preferred compounds of the formula (I.47) are the compounds I.47-1 to I.47-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the connections I.47-1 to I.47-500 of Table I.47 are thus defined by the meaning of the respective entries No.1 to 500 for Q of Table 1.
  • Table I.48 Preferred compounds of the formula (I.48) are the compounds I.48-1 to I.48-500, in which the radical Q has the meanings of Table 1 given in the respective line.
  • the ⁇ value – signal intensity number pairs from different signal peaks are listed separated by semicolons.
  • the peak list of an example therefore has the form: ⁇ 1 (intensity1 ) ; ⁇ 2 (intensity2);........; ⁇ i (intensityi ) ; whil; ⁇ n (intensitiesn)
  • the intensity of sharp signals correlates with the height of the signals in a printed example of an NMR spectrum in cm and shows the true ratios of the signal intensities. For broad signals, multiple peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum can be shown.
  • the present invention is also a method for controlling harmful plants and / or for regulating the growth of plants, characterized in that an effective amount - one or more compounds of the general formula (I) according to the invention and / or their salts, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular one or more compounds of the formulas (I.1-1) to (I.48-500) and/or their salts, each as defined above, or - an agent according to the invention , as defined below, is applied to the (harmful) plants, (harmful) plant seeds, the soil in or on which the (harmful) plants are growing, or the area under cultivation.
  • the present invention also relates to a method for controlling unwanted plants, preferably in crops of useful plants, characterized in that an effective amount - of one or more compounds of the general formula (I) and/or salts thereof, as defined above, preferably in one of as preferred or particularly preferred embodiment, in particular one or more compounds of the formulas (I.1-1) to (I.48-500) and / or their salts, each as defined above, or - an agent according to the invention, as below defined, on undesired plants (e.g. harmful plants such as monocotyledonous or dicotyledon weeds or undesired cultivated plants), the seeds of the undesired plants (i.e. plant seeds, e.g.
  • undesired plants e.g. harmful plants such as monocotyledonous or dicotyledon weeds or undesired cultivated plants
  • the seeds of the undesired plants i.e. plant seeds, e.g.
  • the soil in which or on where the unwanted plants are growing e.g. the soil of cultivated land or non-cultivated land
  • the cultivated area i.e. area where unwanted plants will grow
  • the present invention is also a method for controlling the growth regulation of plants, preferably useful plants, characterized in that an effective amount - of one or more compounds of the general formula (I) and / or their salts, as defined above, preferably in a the preferred or particularly preferred characterized configuration, in particular one or more compounds of the formulas (I.1-1) to (I.48-500) and / or their salts, each as defined above, or - a composition according to the invention, as defined below, on the plant, the seed of the plant (i.e. plant seeds, e.g. grains, seeds or vegetative propagating organs such as tubers or parts of shoots with buds), the soil in or on which the plants grow (e.g.
  • the compounds of the general formula (I) according to the invention or the compositions according to the invention can be applied, for example, pre-sowing (possibly also by incorporation into the soil), pre-emergence and/or post-emergence.
  • some representatives of the monocotyledonous and dicotyledonous weed flora that can be controlled by the compounds according to the invention may be mentioned by way of example, without the naming of a restriction to specific species.
  • one or more compounds of the general formula (I) and/or salts thereof are preferably used for controlling harmful plants or for regulating growth in crops of useful plants or ornamental plants, the useful plants or ornamental plants in a preferred embodiment are transgenic plants.
  • the compounds of the general formula (I) according to the invention and/or their salts are suitable for controlling the following genera of monocotyledonous and dicotyledonous harmful plants: monocotyledonous harmful plants of the genera: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.
  • the compounds of the general formula (I) according to the invention are applied to the surface of the soil before the harmful plants (grasses and/or weeds) germinate (pre-emergence method), then either the emergence of the weed or weed seedlings is completely prevented or they grow up to the cotyledon stage , but then stop growing and finally die off completely after three to four weeks.
  • the active ingredients are applied to the green parts of the plant post-emergence, growth stops after the treatment and the harmful plants remain in the growth stage present at the time of application or die off completely after a certain time, so that weed competition that is harmful to the crop plants occurs very early and is permanently eliminated.
  • the compounds of the general formula (I) according to the invention have excellent herbicidal activity against monocotyledonous and dicotyledon weeds, crop plants of economically important crops, e.g. dicotyledonous crops of the genera Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Miscanthus, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledonous cultures of the genera Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, Triticale, Triticum, Zea , Depending on the structure of the respective compound according to the invention and the amount applied, only insignificant damage or no damage at all.
  • the present compounds are very suitable for the selective control of undesired plant growth in crops such as agricultural crops or ornamental plants.
  • the compounds of the general formula (I) according to the invention (depending on their particular structure and the application rate applied) have excellent growth-regulating properties in crop plants. They intervene to regulate the plant's own metabolism and can therefore be used to specifically influence plant constituents and to facilitate harvesting, e.g. by triggering desiccation and growth stunted growth.
  • they are also suitable for the general control and inhibition of unwanted vegetative growth without killing the plants. Inhibition of vegetative growth plays a major role in many monocotyledonous and dicotyledonous crops, since this can reduce or completely prevent the formation of beds.
  • the active compounds can also be used for combating harmful plants in crops of plants modified by genetic engineering or by conventional mutagenesis.
  • the transgenic plants are characterized in the Usually characterized by particularly advantageous properties, for example resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties relate, for example, to the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known.
  • transgenic crops preference is given to using the compounds according to the invention and/or their salts in economically important transgenic crops of useful and ornamental plants, e.g. of cereals such as wheat, barley, rye, oats, millet, rice and corn or also crops of sugar beets, cotton, Soy, rapeseed, potato, tomato, pea and other vegetables.
  • the compounds according to the invention can preferably also be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or have been made resistant by genetic engineering. Because of their herbicidal and plant growth-regulating properties, the active compounds can also be used to control harmful plants in crops of known or genetically modified plants that are still to be developed.
  • the transgenic plants are generally distinguished by particularly advantageous properties, for example resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties relate, for example, to the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known.
  • Other special properties can be tolerance or resistance to abiotic stressors such as heat, cold, drought, salt and ultraviolet radiation. Preference is given to using the compounds of the formula (I) according to the invention or their salts in economically important transgenic crops of useful and ornamental plants, e.g.
  • the compounds of the general formula (I) can preferably be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or have been made resistant by genetic engineering.
  • Conventional ways of producing new plants that have modified properties compared to previously existing plants include, for example, classical breeding methods and the generation of mutants.
  • new plants with modified properties can be created using genetic engineering methods. Numerous molecular biological techniques with which new transgenic plants with modified properties can be produced are known to the person skilled in the art.
  • nucleic acid molecules can be introduced into plasmids, which allow mutagenesis or sequence modification by recombination of DNA sequences.
  • base exchanges can be made, partial sequences can be removed or natural or synthetic sequences can be added.
  • adapters or linkers can be attached to the fragments.
  • the production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, a sense RNA to achieve a co-suppression effect or the expression of at least one correspondingly constructed ribozyme that specifically cleaves transcripts of the above gene product .
  • DNA molecules can be used which include the entire coding sequence of a gene product, including any flanking sequences present, as well as DNA molecules which only include parts of the coding sequence, these parts having to be long enough to enter the cells produce an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product but are not completely identical.
  • the synthesized protein can be located in any compartment of the plant cell. However, in order to achieve localization in a specific compartment, for example the coding region can be linked to DNA sequences which ensure localization in a specific compartment.
  • transgenic plant cells can be regenerated into whole plants using known techniques.
  • the compounds of the general formula (I) according to the invention can preferably be used in transgenic crops which are active against growth substances, such as dicamba, or against herbicides which contain essential plant enzymes, e.g. acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate dioxygenases (HPPD ) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosate, glufosinate or benzoylisoxazoles and analogous active ingredients.
  • ALS acetolactate synthases
  • EPSP synthases glutamine synthases
  • HPPD hydroxyphenylpyruvate dioxygenases
  • the active compounds of the general formula (I) according to the invention are used in transgenic crops, in addition to the effects on harmful plants that can be observed in other crops, there are often effects that are specific to the application in the respective transgenic crop, for example a modified or specially expanded spectrum of weeds, that can be combated, changed application rates that can be used for the application, preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing the growth and yield of the transgenic crop plants.
  • the invention therefore also relates to the use of the compounds of the general formula (I) according to the invention and/or their salts as herbicides for controlling harmful plants in crops of useful or ornamental plants, optionally in transgenic crop plants.
  • the use according to the invention for controlling harmful plants or for regulating the growth of plants also includes the case in which compounds of the general formula (I) or salts thereof are derived from a precursor substance ("prodrug ") is formed.
  • the invention also relates to the use of one or more compounds of the general formula (I) or salts thereof or an agent according to the invention (as defined below) (in a method) for controlling harmful plants or for regulating the growth of plants, characterized in that an effective amount of one or more compounds of the general formula (I) or salts thereof to the plants (harmful plants, optionally together with the useful plants), plant seeds, the soil in which or on which the plants grow, or the area under cultivation applied.
  • the invention also relates to a herbicidal and/or plant growth-regulating agent, characterized in that the agent (a) contains one or more compounds of the general formula (I) and/or salts thereof as defined above, preferably in one of the preferred or particularly preferred embodiment, in particular one or more compounds of the formulas (I.1-1) to (I.48-500) and / or their salts, each as defined above, and (b) one or more other substances selected from the Groups (i) and/or (ii): (i) one or more other agrochemically active substances, preferably selected from the group consisting of insecticides, acaricides, nematicides, other herbicides (i.e.
  • component (i) of a composition according to the invention are preferably selected from the group of substances that are listed in "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012.
  • a herbicidal or plant growth-regulating agent according to the invention preferably comprises one, two, three or more formulation auxiliaries (ii) customary in crop protection selected from the group consisting of surfactants, emulsifiers, dispersants, film formers, thickeners, inorganic salts, dusts, at 25 ° C and 1013 mbar solid carriers, preferably adsorptive, granulated inert materials, wetting agents, antioxidants, stabilizers, Buffer substances, antifoam agents, water, organic solvents, preferably organic solvents miscible with water in any ratio at 25° C. and 1013 mbar.
  • formulation auxiliaries customary in crop protection selected from the group consisting of surfactants, emulsifiers, dispersants, film formers, thickeners, inorganic salts, dusts, at 25 ° C and 1013 mbar solid carriers, preferably adsorptive, granulated inert materials, wetting agents, antioxidants, stabilizers, Buffer substances,
  • the compounds of the general formula (I) according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules.
  • the invention therefore also relates to herbicidal and plant growth-regulating compositions which contain the compounds of the formula (I) according to the invention and/or their salts.
  • the compounds of the general formula (I) according to the invention and/or their salts can be formulated in various ways, depending on the given biological and/or chemico-physical parameters.
  • WP wettable powder
  • SP water-soluble powder
  • EC emulsifiable concentrates
  • EW emulsions
  • SC suspension concentrates
  • SC oil- or water-based dispersions
  • CS capsule suspensions
  • DP dusts
  • dressings granules for spreading and floor application
  • granules GR
  • WG water-dispersible granules
  • SG water-soluble granules
  • Wettable powders are preparations that are evenly dispersible in water and which, in addition to the active ingredient, contain a diluent or inert substance as well as ionic and/or nonionic surfactants (wetting agents, dispersing agents), e.g , 2,2'-dinaphthylmethane-6,6'-sodium disulfonate, sodium dibutylnaphthalenesulfonate or sodium oleoylmethyltaurine.
  • wetting agents, dispersing agents e.g , 2,2'-dinaphthylmethane-6,6'-sodium disulfonate, sodium dibutylnaphthalenesulfonate or sodium oleoylmethyltaurine.
  • the herbicidal active ingredients are, for example, in conventional apparatus such as hammer mills, blower mills and Air jet mills finely ground and simultaneously or subsequently mixed with the formulation auxiliaries.
  • Emulsifiable concentrates are prepared by dissolving the active ingredient in an organic solvent, e.g. butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more ionic and/or nonionic surfactants (emulsifiers).
  • organic solvent e.g. butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents.
  • emulsifiers examples include: alkylarylsulfonic acid calcium salts such as cadodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as sorbitan fatty acid esters or polyoxyethylene sorbitan esters such as polyoxyethylene sorbitan fatty acid esters. Dusts are obtained by grinding the active ingredient with finely divided solid substances, e.g.
  • Suspension concentrates can be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and optionally adding surfactants, such as those already listed above for the other types of formulation.
  • Emulsions e.g. oil-in-water emulsions (EW)
  • EW oil-in-water emulsions
  • Granules can either be produced by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, e.g. polyvinyl alcohol, sodium polyacrylic acid or mineral oils, to the surface of carriers such as sand, kaolinite or granulated inert material.
  • adhesives e.g. polyvinyl alcohol, sodium polyacrylic acid or mineral oils
  • Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules—if desired in a mixture with fertilizers.
  • Water-dispersible granules are usually produced without solid inert material by the usual processes such as spray drying, fluidized bed granulation, pan granulation, mixing with high-speed mixers and extrusion.
  • the agrochemical preparations, preferably herbicidal or plant growth-regulating agents, of the present invention preferably contain a total amount of 0.1 to 99% by weight, preferably 0.5 to 95% by weight, more preferably 1 to 90% by weight, particularly preferably 2 to 80% by weight of active compounds of the formula (I) and their salts.
  • the active substance concentration is about 10 to 90% by weight, the remainder to 100% by weight consists of the usual formulation components.
  • the active substance concentration can be about 1 to 90% by weight, preferably 5 to 80% by weight.
  • Formulations in dust form contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient, and sprayable solutions contain about 0.05 to 80% by weight, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is in liquid or solid form and on the granulation aids, fillers, etc. used.
  • the active substance content is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned optionally contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetration agents, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and the Viscosity affecting agents.
  • formulation aids are described inter alia in "Chemistry and Technology of Agrochemical Formulations", ed. DA Knowles, Kluwer Academic Publishers (1998).
  • the compounds of the general formula (I) or their salts can be used as such or in the form of their preparations (formulations) in combination with other pesticidally active substances, such as insecticides, acaricides, nematicides, herbicides, fungicides, safeners, fertilizers and/or growth regulators , e.g. as a ready-to-use formulation or as tank mixes.
  • pesticidally active substances such as insecticides, acaricides, nematicides, herbicides, fungicides, safeners, fertilizers and/or growth regulators , e.g. as a ready-to-use formulation or as tank mixes.
  • the combination formulations can be based on the above Formulations are prepared, taking into account the physical properties and stability of the active ingredients to be combined.
  • Combination partners for the compounds of the general formula (I) according to the invention in mixture formulations or in a tank mix are, for example, known active substances which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate Synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II, protoporphyrinogen oxidase can be used, as described, for example, in Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc.
  • the weight ratio of herbicide (mixture) to safener generally depends on the amount of herbicide applied and the effectiveness of the respective safener and can vary within wide limits, for example in the range from 200:1 to 1:200, preferably 100:1 to 1: 100, especially 20:1 to 1:20.
  • the safeners can be formulated analogously to the compounds of general formula (I) or mixtures thereof with other herbicides/pesticides and provided and used as a ready-to-use formulation or tank mix with the herbicides.
  • the herbicide or herbicide-safener formulations which are in commercial form, are optionally diluted in a customary manner, for example with water for wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules.
  • Preparations in the form of dust, ground or granulated granules and sprayable solutions are usually not diluted with other inert substances before use.
  • External conditions such as temperature, humidity etc. influence to a certain extent the application rate of the compounds of the general formula (I) and/or their salts. The application rate can vary within wide limits.
  • the total amount of compounds of formula (I) and their salts is preferably in the range from 0.001 to 10.0 kg/ha, preferably in the range from 0.005 to 5 kg/ha, more preferably in the range from 0.01 to 1.5 kg/ha, particularly preferably in the range from 0.05 to 1 kg/ha. This applies to both pre-emergence and post-emergence application.
  • the total application rate is preferably in the range from 0.001 to 2 kg/ha, preferably in the range from 0.005 to 1 kg/ha, in particular in the range from 10 to 500 g/ha, very particularly preferably in the range from 20 to 250 g/ha Ha.
  • the application as a stalk shortener can take place at different stages of the growth of the plants. For example, application after tillering at the start of growth in length is preferred.
  • the treatment of the seed can also be considered, which includes the different seed dressing and coating techniques.
  • the application rate depends on the individual techniques and can be determined in preliminary tests.
  • mixture formulations or in the tank mix are, for example, known active substances which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate -3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II or protoporphyrinogen oxidase can be used, as they are, for example, from Weed Research 26 (1986) 441-445 or "The Pesticide Manual ", 16th edition, The British Crop Protection Council and the Royal Soc.
  • herbicides or plant growth regulators which can be combined with compounds of the general formula (I) include the following active ingredients (the compounds are either identified by the "common name” according to the International Organization for Standardization (ISO ) or with the chemical name or with the code number) and always include all application forms such as acids, salts, esters and isomers such as stereoisomers and optical isomers.
  • dicamba-biproamine dicamba -N,N-bis(3-aminopropyl)methylamine, dicamba-butotyl, dicamba-choline, dicamba-diglycolamine, dicamba-dimethylammonium, dicamba-diethanolamine-ammonium, dicamba-diethylammonium, dicamba-isopropylammonium, dicamba-methyl, dicamba-monoethanolamine, dicamba -olamine, dicamba potassium, dicamba sodium, dicamba triethanolamine), dichlobenil, 2-(2,4-dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, 2-(2,5 -Dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, Dichloroprop, Dichloroprop-butotyl, Dichloroprop-dimethylammonium, Dichloroprop-etexyl
  • Ketospiradox Ketospiradox Potassium, Lactofen, Lenacil, Linuron, MCPA, MCPA-Butotyl, -Butyl, -dimethyl-ammonium, -diolamine, -2-ethylhexyl, -ethyl, -isobutyl, isoctyl, -isopropyl, -isopropylammonium, - Methyl, Olamine, -Potassium, -Sodium and -Trolamine, MCPB, MCPB-Methyl, -Ethyl and -Sodium, Mecoprop, Mecoprop-Butoty
  • growth regulators and plant stimulants as mixing partners are: abscisic acid and related analogues [e.g. (2Z,4E)-5-[6-Ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoic acid, methyl-(2Z ,4E)-5-[6-ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoate, (2Z,4E)- 3-ethyl-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)penta-2,4-dienoic acid, (2E,4E)-5-(1- hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)p
  • COs (2S,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3 ,5,7-triol), chitooligosaccharides (CO; COs differ from LCOs in that they lack the fatty acid side chain characteristic of LCOs.
  • COs sometimes referred to as N-acetylchitooligosaccharides, are also composed of GlcNAc units but have side chains , by which they are distinguished from chitin molecules [(C8H13NO5)n, CAS No.1398-61-4] and chitosan molecules [(C 5 H11NO4)n, CAS No.9012-76-4]), Chitin-Like Compounds, Chlormequat chloride, Cloprop, Cyclanilide, 3-(Cycloprop-1-enyl)propionic acid, 1-[2-(4-Cyano-3, 5-dicyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, 1-[2-(4-cyano-3-cyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, 1-cyclopropenylmethanol, daminozide, dazomet, dazomet sodium, n-decanol, d
  • LCO lipochitooligosaccharides
  • Nod or Nod factors symbiotic nodulation signals
  • Myc factors they consist of an oligosaccharide backbone of ⁇ -1,4-linked N-acetyl-D-glucosamine residues (“GlcNAc”) with an N-linked fatty acid side chain fused to the non-reducing end.
  • LCOs differ in the number of GlcNAc units in the backbone structure, in the length and degree of saturation of the fatty acid chain, and in the substitution of the reducing and non-reducing sugar units), linoleic acid or its derivatives, linolenic acid or their derivatives, maleic hydrazide, mepiquat chloride, mepiquat pentaborate, 1-methylcyclopropene, 3-methylcyclopropene, methoxyvinylglycine (MVG), 3'-methylabscisic acid, 1-(4-methylphenyl)-N-(2-oxo-1-propyl-1,2, 3,4-tetrahydroquinolin-6-yl)methanesulfonamide and related substituted (tetrahydroquinolin-6-yl)methanesulfonamides, (3E,3 ⁇ R,8 ⁇ S)-3-( ⁇ [(2R)-4-methyl-5-oxo-2, 5-d
  • n A is a natural number from 0 to 5, preferably from 0 to 3;
  • R A 1 is halogen, (C 1 -C 4 )-alkyl, (C 1 -C 4 )alkoxy, nitro or (C 1 -C 4 )haloalkyl;
  • W A is an unsubstituted or substituted divalent heterocyclic radical from the group of partially saturated or aromatic five-membered heterocycles having 1 to 3 hetero ring atoms from the group N and O, where at least one N atom and at most one O atom is contained in the ring, preferably a radical from the group (W A 1 ) to (W A 5 ), mA is 0 or 1;
  • R A 2 is OR A 3 , SR
  • S1f compounds of the triazolyloxyacetic acid derivative type (S1 f ), preferably compounds such as methyl ⁇ [1,5-bis(4-chloro-2-fluorophenyl)-1H-1,2,4-triazol-3-yl]oxy ⁇ acetate (S1-14) or ⁇ [1 ,5-bis(4-chloro-2-fluorophenyl)-1H-1,2,4-triazol-3-yl]oxy ⁇ acetic acid (S1-15) or methyl- ⁇ [5-(4-chloro-2- fluorophenyl)-1-(2,4-difluorophenyl)-1H-1,2,4-triazol-3-yl]oxy ⁇ acetate (S1-16) or ⁇ [5-(4-chloro-2-fluorophenyl)- 1-(2,4-difluorophenyl)-1H-1,2,4-triazol-3-yl]oxy ⁇ acetic acid (S1-17) or methyl ⁇
  • R C 1 is (C 1 -C 4 )-alkyl, (C 1 -C 4 )-haloalkyl, (C 2 -C 4 )-alkenyl, (C 2 -C 4 )-haloalkenyl, (C 3 -C 7 )-cycloalkyl, preferably dichloromethyl;
  • R C 2 , R C 3 are identical or different hydrogen, (C 1 -C 4 )-alkyl, (C 2 -C 4 )-alkenyl, (C 2 -C 4 )-alkynyl, (C 1 -C 4 )-haloalkyl, (C 2 -C 4 )-haloalkenyl, (C 1 -C 4 )-alkylcarbamoyl-(C 1 -C 4 )-alkyl, (C 2 -C 4 )- alkenylcarbam
  • S4 a N-acylsulfonamides of formula (S4 a ) and their salts as described in WO-A-97/45016, wherein R A 1 (C 1 -C 6 )-alkyl, (C 3 -C 6 )-Cycloalkyl, where the last 2 radicals are replaced by v A Substituents from the group halogen, (C 1 -C 4 )-alkoxy, (C 1 -C 6 )-haloalkoxy and (C 1 - C 4 )-alkylthio and in the case of cyclic radicals also by (C 1 -C 4 )-alkyl and (C 1 -C 4 )-haloalkyl are substituted; R A 2 halogen, (C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkoxy, CF 3
  • S5 Active substances from the class of hydroxyaromatics and aromatic-aliphatic carboxylic acid derivatives (S5), e.g , 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001.
  • S6 Active substances from the class of 1,2-dihydroquinoxalin-2-ones (S6), e.g.
  • R D 1 is halogen, (C 1 -C 4 )-alkyl, (C 1 -C 4 )-haloalkyl, (C 1 -C 4 )-alkoxy, (C 1 -C 4 )-haloalkoxy
  • R D 2 is hydrogen or (C 1 -C 4 )-alkyl
  • R D 3 is hydrogen, (C 1 -C 8th )-alkyl, (C 2 -C 4 )-alkenyl, (C 2 -C 4 )-alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of halogen and alkoxy; or their salts, n D is an integer from 0 to 2.
  • S9 Active substances from the class of 3-(5-tetrazolylcarbonyl)-2-quinolones (S9), e.g. 1,2-dihydro-4-hydroxy-1-ethyl-3-(5 -tetrazolylcarbonyl)-2-quinolone (CAS Reg. No.: 219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-quinolone ( CAS Reg No. 95855-00-8) as described in WO-A-1999/000020.
  • S9 3-(5-tetrazolylcarbonyl)-2-quinolones
  • S11 Active substances of the type of oxyimino compounds (S11), which are known as seed dressings, such as. B. "Oxabetrinil” ((Z)-1,3-dioxolan-2-ylmethoxyimino(phenyl)acetonitrile) (S11-1) known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim” (1- (4-Chlorophenyl)-2,2,2-trifluoro-1-ethanone-O-(1,3-dioxolan-2-ylmethyl)-oxime) (S11-2) used as a seed dressing safener for sorghum against damage from metolachlor, and "Cyometrinil” or “CGA-43089” ((Z)-cyanomethoxyimino(phenyl)acetonitrile) (S11-3), which is known as a seed dressing safener for sorghum against damage from metolachlor.
  • S12 Active substances from the class of isothiochromanone (S12), such as methyl [(3-oxo-1H-2-benzothiopyran-4(3H)-ylidene)methoxy]acetate (CAS Reg. No. 205121-04-6 ) (S12-1) and related compounds from WO-A-1998/13361.
  • S12 isothiochromanone
  • S13 One or more compounds from group (S13): "Naphthalic anhydride” (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), known as a seed dressing safener for corn against damage from thiocarbamate herbicides, "Fenclorim” (4.6 -Dichloro-2-phenylpyrimidine) (S13-2), known as a safener for pretilachlor in seeded rice, "Flurazole” (benzyl 2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S13 -3) known as a seed dressing safener for millet against damage from alachlor and metolachlor, "CL 304415” (CAS Reg.No.31541-57-8) (4-carboxy-3,4-dihydro-2H- 1-benzopyran-4-acetic acid) (S13-4) from American Cyanamid, which is known as a safener for corn against damage from imidazolin
  • S16 active substances which are primarily used as herbicides but also have a safener effect on crop plants, e.g. B. (2,4-dichlorophenoxy)acetic acid (2,4-D), (4-chlorophenoxy)acetic acid, (R,S)-2-(4-chloro-o-tolyloxy)propionic acid (Mecoprop), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), (4-chloro-o-tolyloxy)acetic acid (MCPA), 4-(4-chloro-o-tolyloxy)butyric acid, 4-(4- chlorophenoxy)butyric acid, 3,6-dichloro-2-methoxybenzoic acid (dicamba), 1-(ethoxycarbonyl)ethyl 3,6-dichloro-2-methoxybenzoate (lactidichloro-ethyl).
  • B (2,4-dichlorophenoxy)acetic acid (2,4-
  • Preferred safeners in combination with the compounds of the formula (I) according to the invention and/or their salts, in particular with the compounds of the formulas (I.1-1) to (I.48-500) and/or their salts are: cloquintocet-mexyl , Cyprosulfamide, fenchlorazole ethyl ester, isoxadifen-ethyl, mefenpyr-diethyl, fenclorim, cumyluron, S4-1 and S4-5, and particularly preferred safeners are: cloquintocet-mexyl, cyprosulfamide, isoxadifen-ethyl and mefenpyr-diethyl.
  • ABUTH Abutilon theophrasti
  • ALOMY Alopecurus myosuroides
  • AMARE Amaranthus retroflexus
  • AVEFA Avena Fatua
  • BRSNS Brassica napus
  • DIGSA Digitaria sanguinalis
  • ECCHG Echinochloa crus-galli
  • GLXMA Glycine max
  • KCHSC Kochia scoparia
  • LOLRI Lolium rigidum
  • MATIN Matricaria inodora
  • ORYZA Oryza sativa
  • PHPBU Pharbitis purpurea
  • POLCO Polygonum convolvulus SETVI: Setaria viridis VERPE: Veronica persica VIOTR: Viola tricolor
  • TRZAS Triticum aestivum
  • ZEAMX Zea mays A.
  • Tables A1 to A13 below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and at an application rate corresponding to 20 g/ha and lower, which were obtained according to the test procedure mentioned above.
  • Table A1a Post-emergence effect at 1.25 g/ha against ABUTH in %
  • Table A1c Post-emergence effect at 20 g/ha against ABUTH in %
  • Table A2a Post-emergence effect at 5 g/ha against ALOMYin %
  • Table A3b Post-emergence effect at 5 g/ha against AMARE in %
  • Table A3c Post-emergence effect at 20 g/ha against AMARE in %
  • Table A4c Post-emergence effect at 20 g/ha against DIGSA in %
  • Table A5a Post-emergence effect at 1.25 g/ha against ECHCG in %
  • Table A5b Post-emergence effect at 5 g/ha against ECCHG in %
  • Table A6a Post-emergence effect at 20 g/ha against LOLRI in %
  • Table A7a Post-emergence effect at 1.25 g/ha against MATIN in %
  • Table A7b Post-emergence effect at 5 g/ha against MATIN in %
  • Table A8a Post-emergence effect at 1.25 g/ha against PHBPU in %
  • Table A8b Post-emergence effect at 5 g/ha against PHBPU in %
  • Table A8c Post-emergence effect at 20 g/ha against PHBPU in %
  • Table A9a Post-emergence effect at 1.25 g/ha against POLCO in %
  • Table A9b Post-emergence effect at 5 g/ha against POLCO in %
  • Table A10a Post-emergence effect at 1.25 g/ha against SETVI in %
  • Table A10b Post-emergence effect at 5 g/ha against SETVI in %
  • Table A10c Post-emergence effect at 20 g/ha against SETVI in %
  • Table A11a Post-emergence effect at 1.25 g/ha against VERPE in %
  • Table A11b Post-emergence effect at 5 g/ha against VERPE in %
  • Table A11c Post-emergence effect at 20 g/ha against VERPE in %
  • Table A12a Post-emergence effect at 1.25 g/ha against VIOTR in %
  • Table A13b Post-emergence effect at 5 g/ha against KCHSC in %
  • Table A13c Post-emergence effect at 20 g/ha against KCHSC in %
  • compounds of the general formula (I) according to the invention have good herbicidal activity against harmful plants such as e.g. B. Abutilon theophrasti, Alopecurus myosuroides, Amaranthus retroflexus, Digitaria sanguinalis, Echinochloa crus-galli, Kochia scoparia, Lolium rigidum, Matricaria inodora, Pharbitis purpurea, Polygonum convolvulus, Setaria viridis, Veronica persica and Viola tricolor at an application rate of 20 g of active ingredient or less per hectare, up. B.
  • Tables B1 to B5 below show the effects of selected compounds of the general formula (I) according to Table 1 on various crop plants and an application rate corresponding to 20 g/ha and lower, which were obtained according to the test procedure mentioned above.
  • Table B1a Post-emergence effect at 1.25 g/ha on ZEAMX in %
  • Table B1b Post-emergence effect at 5 g/ha on ZEAMX in %
  • Table B1c Post-emergence effect at 20 g/ha on ZEAMX in %
  • Table B2a Post-emergence effect at 1.25 g/ha on TRZAS in %
  • Table B2b Post-emergence effect at 5 g/ha on TRZAS in %
  • Table B2c Post-emergence effect at 20 g/ha on TRZAS in %
  • Table B3a Post-emergence effect at 1.25 g/ha on ORYZA in %
  • Table B3b Post-emergence effect at 5 g/ha on ORYZA in %
  • Table B4a Post-emergence effect at 1.25 g/ha on GLXMA in %
  • Table B4b Post-emergence effect at 5 g/ha on GLXMA in %
  • Table B5a Post-emergence effect at 1.25 g/ha on BRSNS in %
  • Table B5b Post-emergence effect at 5 g/ha on BRSNS in %
  • post-emergence treatment of compounds of general formula (I) according to the invention has good crop plant tolerance in organisms such as Oryza sativa, Zea mays, Brassica napus, Glycine max and Triticum aestivum at an application rate of 20 g or less per hectare.

Abstract

The present invention relates to substituted N-benzoic acid uracils of general formula (I) or salts thereof, wherein the radicals in general formula (I) correspond to the definitions given in the description, and to the use thereof as herbicides, in particular for controlling weeds and/or weed grasses in crops, and/or as plant growth regulators for influencing the growth of crops.

Description

Substituierte N-Benzoesäureuracile sowie deren Salze und ihre Verwendung als herbizide Wirkstoffe Beschreibung Die Erfindung betrifft das technische Gebiet der Pflanzenschutzmittel, insbesondere das der Herbizide zur selektiven Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen. Speziell betrifft diese Erfindung substituierte N-Benzoesäureuracile sowie deren Salze, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide, insbesondere zur Bekämpfung von Unkräutern und/oder Ungräsern in Nutzpflanzenkulturen und/oder als Pflanzenwachstumsregulatoren zur Beeinflussung des Wachstums von Nutzpflanzenkulturen. Bisher bekannte Pflanzenschutzmittel zur selektiven Bekämpfung von Schadpflanzen in Nutzpflanzenkulturen oder Wirkstoffe zur Bekämpfung von unerwünschtem Pflanzenwuchs weisen bei ihrer Anwendung teilweise Nachteile auf, sei es, dass sie (a) keine oder aber eine unzureichende herbizide Wirkung gegen bestimmte Schadpflanzen, (b) ein zu geringes Spektrum der Schadpflanzen, das mit einem Wirkstoff bekämpft werden kann, (c) zu geringe Selektivität in Nutzpflanzenkulturen und/oder (d) ein toxikologisch ungünstiges Profil besitzen. Weiterhin führen manche Wirkstoffe, die als Pflanzenwachstumsregulatoren bei einigen Nutzpflanzen eingesetzt werden können, bei anderen Nutzpflanzen zu unerwünscht verminderten Ernteerträgen oder sind mit der Kulturpflanze nicht oder nur in einem engen Aufwandmengenbereich verträglich. Einige der bekannten Wirkstoffe lassen sich wegen schwer zugänglicher Vorprodukte und Reagenzien im industriellen Maßstab nicht wirtschaftlich herstellen oder besitzen nur unzureichende chemische Stabilitäten. Bei anderen Wirkstoffen hängt die Wirkung zu stark von Umweltbedingungen, wie Wetter- und Bodenverhältnissen ab. Die herbizide Wirkung dieser bekannten Verbindungen, insbesondere bei niedrigen Aufwandmengen, bzw. deren Verträglichkeit gegenüber Kulturpflanzen bleiben verbesserungswürdig. Es ist aus verschiedenen Schriften bekannt, dass bestimmte substituierte N-verknüpfte Aryluracile als herbizide Wirkstoffe verwendet werden können (vgl. WO2021/013799, WO2021/013800, PCT/EP2021/073129 (PCT-Einreichung vom 20. August 2021), EP408382, EP473551, EP648749, US4,943,309, US5,084,084, US5,127,935, WO91/00278, WO95/29168, WO95/30661, WO96/35679, WO97/01541, WO98/25909, WO2001/39597, DE4431219). Die bekannten Aryluracile weisen jedoch eine Reihe von Wirkungslücken, insbesondere gegenüber monokotylen Unkräutern auf. Eine Reihe von herbiziden Wirkstoffkombinationen auf Basis von N-verknüpften Aryluracilen sind ebenfalls bekannt geworden (vgl. DE4437197, EP714602, WO96/07323, WO96/08151, JP11189506). Die Eigenschaften dieser Wirkstoffkombinationen sind jedoch nicht in allen Belangen zufriedenstellend. Es ist weiterhin bekannt, dass bestimmte N-Aryluracile mit gegebenenfalls weiter substituierten Milchsäuregruppen auch als herbizide Wirkstoffe eingesetzt werden können (vgl. JP2000/302764, JP2001/172265, US6,403,534, EP408382). Es ist darüber hinaus bekannt, dass N-Aryluracile mit speziellen, gegebenenfalls weiter substituierten, Thiomilchsäuregruppen ebenfalls herbizide Wirkungen zeigen (vgl. WO2010/038953, KR2011110420). Ausgewählte substituierte Tetrahydrofurylester von N- Aryluracilen mit gegebenenfalls weiter substituierten Thiomilchsäuregruppen sind in JP09188676 beschrieben. Ebenfalls bekannt sind substituierte N-Benzoesäureuracile, die Chlorsubstituenten in der Benzoesäureeinheit tragen (vgl. WO91/000278, DE19741411, WO95/32952, US6,207,830, WO88/10254 A1). Weiterhin sind hochsubstituierte 3-Amino-1-(3-carboxy-4-cyanophenyl)uracile mit verschiedenen Carboxylat-Seitenketten beschrieben (vgl. WO98/25909). Hochsubstituierte N- Benzoesäureuracile mit Aminosulfonylaminocarbonylalkoxyseitenkette sind ebenfalls bekannt (vgl. WO2004/009561). Es ist weiterhin bekannt, dass bestimmte substituierte N-Benzoesäurethiobarbiturate als herbizide Wirkstoffe eingesetzt werden können (vgl. WO2021/259224). Die WO88/10254 A1 beschreibt und umfasst spezielle N-Benzoesäureuracile mit zur Uracilgruppe para-ständigen Bromsubstituenten in der Benzoesäureeinheit. Spezielle substituierte N- Benzoesäureuracile mit zur Uracilgruppe para-ständigen Iod- oder Bromsubstituenten in der Benzoesäureeinheit sind hingegen in den Anmeldungen WO91/000278, DE19741411, WO95/32952, US6,207,830 nur generisch umfasst, wobei der konkrete synthetische Zugang nicht dargelegt wurde und weder grundlegende Intermediate noch entsprechende Zielverbindungen belegt sind. Überraschenderweise wurde nun gefunden, dass bestimmte substituierte N-Benzoesäureuracile, die sich von der WO88/10254 hinsichtlich der Substitution am Uracil-Stickstoff und durch einen additiven Spacer an der am Phenylkern gebundenen Estereinheit unterscheiden, oder deren Salze als Herbizide gut geeignet sind und besonders vorteilhaft als Wirkstoffe zur Bekämpfung von monokotylen und dikotylen Unkräutern in Nutzpflanzenkulturen eingesetzt werden können. Ein Gegenstand der vorliegenden Erfindung sind damit substituierte N-Benzoesäureuracile der allgemeinen Formel (I) oder deren Salze
Figure imgf000005_0001
worin R1 für Wasserstoff, Methyl steht, R2 für Wasserstoff, Halogen, Trifluormethyl steht, R3 für NR7R15, (C1-C8)-Alkyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel
Figure imgf000005_0002
steht, Q für Hydroxy oder einen Rest der nachfolgenden Formeln
Figure imgf000005_0003
steht, R5 und R6 unabhängig voneinander für Wasserstoff, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl, (C1-C8)-Alkoxy- (C1-C8)-Alkyl stehen, oder R5 und R6 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 7-gliedrigen Carbocyclus bilden, R8 für Wasserstoff, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl, Aryl, Aryl-(C1-C8)-alkyl, Heteroaryl, (C2-C8)-Alkinyl, (C2-C8)-Alkenyl, C(O)R13, C(O)OR13, (C1-C8)-Alkoxy-(C1-C8)-alkyl steht, R9 für Wasserstoff oder (C1-C8)-Alkyl steht, R10 für Wasserstoff, Halogen, Cyano, NO2, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl, (C3-C8)- Halocycloalkyl, (C3-C8)-Halocycloalkyl-(C1-C8)-alkyl, (C2-C8)-Alkinyl, Heteroaryl, Heteroaryl- (C1-C8)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C8)-alkyl, R11R12N-(C1-C8)-alkyl, R13O-(C1-C8)- alkyl, Cyano-(C1-C8)-alkyl, (C1-C8)-Alkylcarbonyloxy-(C1-C8)-alkyl, (C3-C8)- Cycloalkylcarbonyloxy-(C1-C8)-alkyl, Arylcarbonyloxy-(C1-C8)-alkyl, Heteroarylcarbonyloxy- (C1-C8)-alkyl, Heterocyclylcarbonyloxy-(C1-C8)-alkyl, OR13, NR11R12, SR14, S(O)R14, SO2R14, R14S-(C1-C8)-alkyl, R14(O)S-(C1-C8)-alkyl, R14O2S-(C1-C8)-alkyl, Tris-[(C1-C8)-Alkyl]silyl- (C1-C8)-alkyl, Bis-[(C1-C8)-Alkyl](aryl)silyl(C1-C8)-alkyl, [(C1-C8)-Alkyl]-bis-(aryl)silyl- (C1-C8)-alkyl, Tris-[(C1-C8)-Alkyl]silyl, Bis-hydroxyboryl-(C1-C8)-alkyl, Bis-[(C1-C8)- alkoxy]boryl-(C1-C8)-alkyl, Tetramethyl-1,3,2-Dioxaborolan-2-yl, Tetramethyl-1,3,2- Dioxaborolan-2-yl-(C1-C8)-alkyl, Nitro-(C1-C8)-alkyl, C(O)OR13, C(O)R13, C(O)NR11R12, R13O(O)C-(C1-C8)-alkyl, R11R12N(O)C-(C1-C8)-alkyl, Bis-(C1-C8)-alkoxy-(C1-C8)-alkyl steht, oder R8 und R10 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R11 und R12 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C8)-Alkyl, (C2-C8)-Alkenyl, (C2-C8)-Alkinyl, (C1-C8)-Cyanoalkyl, (C1-C10)-Haloalkyl, (C2-C8)-Haloalkenyl, (C3-C8)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)-Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C8)-Alkoxy-(C1-C8)-alkyl, (C1-C8)-Haloalkoxy-(C1-C8)-alkyl, (C1-C8)-Alkylthio-(C1-C8)-alkyl, (C1-C8)-Haloalkylthio-(C1-C8)-alkyl, (C1-C8)-Alkoxy-(C1-C8)- haloalkyl, Aryl, Aryl-(C1-C8)-alkyl, Heteroaryl, Heteroaryl-(C1-C8)-alkyl, (C3-C8)-Cycloalkyl- (C1-C8)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C8)-alkyl, C(O)R13, SO2R14, Heterocyclyl, (C1-C8)- Alkoxycarbonyl, Bis-[(C1-C8)-alkyl]aminocarbonyl-(C1-C8)-alkyl, (C1-C8)-Alkyl- aminocarbonyl-(C1-C8)-alkyl, Aryl-(C1-C8)-alkyl-aminocarbonyl-(C1-C8)-alkyl, Aryl-(C1-C8)- alkoxycarbonyl, Heteroaryl-(C1-C8)-alkoxycarbonyl, (C2-C8)-Alkenyloxycarbonyl, (C2-C8)- Alkinyloxycarbonyl, Heterocyclyl-(C1-C8)-alkyl stehen, oder R11 und R12 mit dem Stickstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R13 für Wasserstoff, (C1-C8)-Alkyl, (C2-C8)-Alkenyl, (C2-C8)-Alkinyl, (C1-C8)-Cyanoalkyl, (C1-C10)- Haloalkyl, (C2-C8)-Haloalkenyl, (C3-C8)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)- Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C8)-Alkoxy-(C1-C8)- alkyl, (C1-C8)-Haloalkoxy-(C1-C8)-alkyl, (C1-C8)-Alkoxy-(C1-C8)-haloalkyl, (C1-C8)-Alkoxy- (C1-C8)-alkoxy-(C1-C8)-alkyl, (C1-C8)-Alkoxy-(C1-C8)-alkoxy-(C1-C8)-alkoxy-(C1-C8)-alkyl, (C1-C8)-Alkoxy-(C1-C8)-alkoxy-(C1-C8)-alkoxy-(C1-C8)-alkoxy-(C1-C8)-alkyl, Aryl, Aryl- (C1-C8)-alkyl, Aryl-(C1-C8)-alkoxy-(C1-C8)-alkyl, Heteroaryl, Heteroaryl-(C1-C8)-alkyl, (C3-C8)- Cycloalkyl-(C1-C8)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C8)-alkyl, Bis-[(C1-C8)- alkyl]aminocarbonyl-(C1-C8)-alkyl, (C1-C8)-Alkyl-aminocarbonyl-(C1-C8)-alkyl, Aryl-(C1-C8)- alkyl-aminocarbonyl-(C1-C8)-alkyl, Bis-[(C1-C8)-alkyl]amino-(C2-C6)-alkyl, (C1-C8)-Alkyl- amino-(C2-C6)-alkyl, Aryl-(C1-C8)-alkyl-amino-(C2-C6)-alkyl, R14S-(C1-C8)-alkyl, R14(O)S- (C1-C8)-alkyl, R14O2S-(C1-C8)-alkyl, Hydroxycarbonyl-(C1-C8)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C8)-alkyl, Tris-[(C1-C8)-Alkyl]silyl-(C1-C8)-alkyl, Bis-[(C1-C8)- Alkyl](aryl)silyl(C1-C8)-alkyl, [(C1-C8)-Alkyl]-bis-(aryl)silyl-(C1-C8)-alkyl, (C1-C8)- Alkylcarbonyloxy-(C1-C8)-alkyl, (C3-C8)-Cycloalkylcarbonyloxy-(C1-C8)-alkyl, Arylcarbonyloxy-(C1-C8)-alkyl, Heteroarylcarbonyloxy-(C1-C8)-alkyl, Heterocyclylcarbonyloxy-(C1-C8)-alkyl, Aryloxy-(C1-C8)-alkyl, Heteroaryloxy-(C1-C8)-alkyl, (C1-C8)-Alkoxycarbonyl steht, R14 für Wasserstoff, (C1-C8)-Alkyl, (C2-C8)-Alkenyl, (C2-C8)-Alkinyl, (C1-C8)-Cyanoalkyl, (C1-C10)- Haloalkyl, (C2-C8)-Haloalkenyl, (C3-C8)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)- Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C8)-Alkoxy-(C1-C8)- alkyl, (C1-C8)-Alkoxy-(C1-C8)-haloalkyl, Aryl, Aryl-(C1-C8)-alkyl, Heteroaryl, Heteroaryl- (C1-C8)-alkyl, Heterocyclyl-(C1-C8)-alkyl, (C3-C8)-Cycloalkyl-(C1-C8)-alkyl, (C4-C10)- Cycloalkenyl-(C1-C8)-alkyl, Bis-[(C1-C8)-alkyl]amino, (C1-C8)-Alkyl-amino, Aryl-(C1-C8)- amino, Aryl-(C1-C6)-alkyl-amino, Aryl-[(C1-C8)-alkyl]amino; (C3-C8)-Cycloalkyl-amino, (C3- C8)-Cycloalkyl-[(C1-C8)-alkyl]amino; N-Azetidinyl, N-Pyrrolidinyl, N-Piperidinyl, N- Morpholinyl, steht, R7 und R15 unabhängig voneinander für Wasserstoff, (C1-C8)-Alkyl, (C2-C8)-Alkenyl, C(O)R13, C(O)OR13, C(O)NR11R12, SO2R14 stehen, oder R7 und R15 mit dem Stickstoffatom, an das sie gebunden sind, eine gegebenenfalls durch Wasserstoff, (C1-C8)-Alkyl, Aryl-(C1-C8)-alkyl, (C3-C8)-Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, (C1-C8)- Alkoxycarbonyl-(C1-C8)-alkyl, Aryl-(C1-C8)-Alkoxycarbonyl-(C1-C8)-alkyl weiter substituierte Iminogruppe bilden und R16 und R17 unabhängig voneinander für (C1-C8)-Alkyl, (C3-C8)-Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl stehen, oder R16 und R17 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 7-gliedrigen Carbocyclus bilden. Die Verbindungen der allgemeinen Formel (I) können durch Anlagerung einer geeigneten anorganischen oder organischen Säure, wie beispielsweise Mineralsäuren, wie beispielsweise HCl, HBr, H2SO4, H3PO4 oder HNO3, oder organische Säuren, z. B. Carbonsäuren, wie Ameisensäure, Essigsäure, Propionsäure, Oxalsäure, Milchsäure oder Salicylsäure oder Sulfonsäuren, wie zum Beispiel p- Toluolsulfonsäure, an eine basische Gruppe, wie z.B. Amino, Alkylamino, Dialkylamino, Piperidino, Morpholino oder Pyridino, Salze bilden. Diese Salze enthalten dann die konjugierte Base der Säure als Anion. Geeignete Substituenten, die in deprotonierter Form, wie z.B. Sulfonsäuren, bestimmte Sulfonsäureamide oder Carbonsäuren, vorliegen, können innere Salze mit ihrerseits protonierbaren Gruppen, wie Aminogruppen bilden. Salzbildung kann auch durch Einwirkung einer Base auf Verbindungen der allgemeinen Formel (I) erfolgen. Geeignete Basen sind beispielsweise organische Amine, wie Trialkylamine, Morpholin, Piperidin und Pyridin sowie Ammonium-, Alkali- oder Erdalkalimetallhydroxide, -carbonate und -hydrogencarbonate, insbesondere Natrium- und Kaliumhydroxid, Natrium- und Kaliumcarbonat und Natrium- und Kaliumhydrogencarbonat. Diese Salze sind Verbindungen, in denen der acide Wasserstoff durch ein für die Landwirtschaft geeignetes Kation ersetzt wird, beispielsweise Metallsalze, insbesondere Alkalimetall-salze oder Erdalkalimetallsalze, insbesondere Natrium- und Kaliumsalze, oder auch Ammoniumsalze, Salze mit organischen Aminen oder quartäre Ammoniumsalze, zum Beispiel mit Kationen der Formel [NRaRbRcRd]+, worin Ra bis Rd jeweils unabhängig voneinander einen organischen Rest, insbesondere Alkyl, Aryl, Aralkyl oder Alkylaryl darstellen. Infrage kommen auch Alkylsulfonium- und Alkylsulfoxoniumsalze, wie (C1-C4)-Trialkylsulfonium- und (C1-C4)-Trialkylsulfoxoniumsalze. Im Folgenden werden die erfindungsgemäß verwendeten Verbindungen der Formel (I) und ihre Salze "Verbindungen der allgemeinen Formel (I)" bezeichnet. Bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin R1 für Wasserstoff steht, R2 für Wasserstoff, Fluor, Chlor, Brom, Iod steht, R3 für NR7R15, (C1-C7)-Alkyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel
Figure imgf000009_0001
steht, Q für Hydroxy oder einen Rest der nachfolgenden Formeln steht,
Figure imgf000009_0002
R5 und R6 unabhängig voneinander für Wasserstoff, (C1-C7)-Alkyl stehen, oder R5 und R6 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden, R8 für Wasserstoff, (C1-C7)-Alkyl, (C1-C7)-Haloalkyl, Aryl, Aryl-(C1-C7)-alkyl, Heteroaryl, (C2-C7)-Alkinyl, (C2-C7)-Alkenyl, C(O)R13, C(O)OR13, (C1-C7)-Alkoxy-(C1-C7)-alkyl steht, R9 für Wasserstoff oder (C1-C7)-Alkyl steht, R10 für Wasserstoff, Halogen, Cyano, NO2, (C1-C7)-Alkyl, (C1-C7)-Haloalkyl, (C3-C7)- Halocycloalkyl, (C3-C7)-Halocycloalkyl-(C1-C7)-alkyl, (C2-C7)-Alkinyl, Heteroaryl, Heteroaryl- (C1-C7)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C7)-alkyl, R11R12N-(C1-C7)-alkyl, R13O-(C1-C7)- alkyl, Cyano-(C1-C7)-alkyl, (C1-C7)-Alkylcarbonyloxy-(C1-C7)-alkyl, (C3-C7)- Cycloalkylcarbonyloxy-(C1-C7)-alkyl, Arylcarbonyloxy-(C1-C7)-alkyl, Heteroarylcarbonyloxy- (C1-C7)-alkyl, Heterocyclylcarbonyloxy-(C1-C7)-alkyl, OR13, NR11R12, SR14, S(O)R14, SO2R14, R14S-(C1-C7)-alkyl, R14(O)S-(C1-C7)-alkyl, R14O2S-(C1-C7)-alkyl, Tris-[(C1-C7)-Alkyl]silyl- (C1-C7)-alkyl, Bis-[(C1-C7)-Alkyl](aryl)silyl(C1-C7)-alkyl, [(C1-C7)-Alkyl]-bis-(aryl)silyl- (C1-C7)-alkyl, Tris-[(C1-C7)-Alkyl]silyl, Bis-hydroxyboryl-(C1-C7)-alkyl, Bis-[(C1-C7)- alkoxy]boryl-(C1-C7)-alkyl, Tetramethyl-1,3,2-Dioxaborolan-2-yl, Tetramethyl-1,3,2- Dioxaborolan-2-yl-(C1-C7)-alkyl, Nitro-(C1-C7)-alkyl, C(O)OR13, C(O)R13, C(O)NR11R12, R13O(O)C-(C1-C7)-alkyl, R11R12N(O)C-(C1-C7)-alkyl, Bis-(C1-C7)-alkoxy-(C1-C7)-alkyl steht, oder R8 und R10 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R11 und R12 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C7)-Alkyl, (C2-C7)-Alkenyl, (C2-C7)-Alkinyl, (C1-C7)-Cyanoalkyl, (C1-C10)-Haloalkyl, (C2-C7)-Haloalkenyl, (C3-C7)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)-Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C7)-Alkoxy-(C1-C7)-alkyl, (C1-C7)-Haloalkoxy-(C1-C7)-alkyl, (C1-C7)-Alkylthio-(C1-C7)-alkyl, (C1-C7)-Haloalkylthio-(C1-C7)-alkyl, (C1-C7)-Alkoxy-(C1-C7)- haloalkyl, Aryl, Aryl-(C1-C7)-alkyl, Heteroaryl, Heteroaryl-(C1-C7)-alkyl, (C3-C7)-Cycloalkyl- (C1-C7)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C7)-alkyl, C(O)R13, SO2R14, Heterocyclyl, (C1-C7)- Alkoxycarbonyl, Bis-[(C1-C7)-alkyl]aminocarbonyl-(C1-C7)-alkyl, (C1-C7)-Alkyl- aminocarbonyl-(C1-C7)-alkyl, Aryl-(C1-C7)-alkyl-aminocarbonyl-(C1-C7)-alkyl, Aryl-(C1-C7)- alkoxycarbonyl, Heteroaryl-(C1-C7)-alkoxycarbonyl, (C2-C7)-Alkenyloxy-carbonyl, (C2-C7)- Alkinyloxycarbonyl, Heterocyclyl-(C1-C7)-alkyl stehen, oder R11 und R12 mit dem Stickstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R13 für Wasserstoff, (C1-C7)-Alkyl, (C2-C7)-Alkenyl, (C2-C7)-Alkinyl, (C1-C7)-Cyanoalkyl, (C1-C10)- Haloalkyl, (C2-C7)-Haloalkenyl, (C3-C7)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)- Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C7)-Alkoxy-(C1-C7)- alkyl, (C1-C7)-Haloalkoxy-(C1-C7)-alkyl, (C1-C7)-Alkoxy-(C1-C7)-haloalkyl, (C1-C7)-Alkoxy- (C1-C7)-alkoxy-(C1-C7)-alkyl, (C1-C7)-Alkoxy-(C1-C7)-alkoxy-(C1-C7)-alkoxy-(C1-C7)-alkyl, (C1-C7)-Alkoxy-(C1-C7)-alkoxy-(C1-C7)-alkoxy-(C1-C7)-alkoxy-(C1-C7)-alkyl, Aryl, Aryl- (C1-C7)-alkyl, Aryl-(C1-C7)-alkoxy-(C1-C7)-alkyl, Heteroaryl, Heteroaryl-(C1-C7)-alkyl, (C3-C7)- Cycloalkyl-(C1-C7)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C7)-alkyl, Bis-[(C1-C7)- alkyl]aminocarbonyl-(C1-C7)-alkyl, (C1-C7)-Alkyl-aminocarbonyl-(C1-C7)-alkyl, Aryl-(C1-C7)- alkyl-aminocarbonyl-(C1-C7)-alkyl, Bis-[(C1-C7)-alkyl]amino-(C2-C6)-alkyl, (C1-C7)-Alkyl- amino-(C2-C6)-alkyl, Aryl-(C1-C7)-alkyl-amino-(C2-C6)-alkyl, R14S-(C1-C7)-alkyl, R14(O)S- (C1-C7)-alkyl, R14O2S-(C1-C7)-alkyl, Hydroxycarbonyl-(C1-C7)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C7)-alkyl, Tris-[(C1-C7)-Alkyl]silyl-(C1-C7)-alkyl, Bis-[(C1-C7)- Alkyl](aryl)silyl(C1-C7)-alkyl, [(C1-C7)-Alkyl]-bis-(aryl)silyl-(C1-C7)-alkyl, (C1-C7)- Alkylcarbonyloxy-(C1-C7)-alkyl, (C3-C7)-Cycloalkylcarbonyloxy-(C1-C7)-alkyl, Arylcarbonyloxy-(C1-C7)-alkyl, Heteroarylcarbonyloxy-(C1-C7)-alkyl, Heterocyclylcarbonyloxy-(C1-C7)-alkyl, Aryloxy-(C1-C7)-alkyl, Heteroaryloxy-(C1-C7)-alkyl, (C1-C7)-Alkoxycarbonyl steht, R14 für Wasserstoff, (C1-C7)-Alkyl, (C2-C7)-Alkenyl, (C2-C7)-Alkinyl, (C1-C7)-Cyanoalkyl, (C1-C10)- Haloalkyl, (C2-C7)-Haloalkenyl, (C3-C7)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)- Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C7)-Alkoxy-(C1-C7)- alkyl, (C1-C7)-Alkoxy-(C1-C7)-haloalkyl, Aryl, Aryl-(C1-C7)-alkyl, Heteroaryl, Heteroaryl- (C1-C7)-alkyl, Heterocyclyl-(C1-C7)-alkyl, (C3-C7)-Cycloalkyl-(C1-C7)-alkyl, (C4-C10)- Cycloalkenyl-(C1-C7)-alkyl, Bis-[(C1-C7)-alkyl]amino, (C1-C7)-Alkyl-amino, Aryl-(C1-C7)- amino, Aryl-(C1-C6)-alkyl-amino, Aryl-[(C1-C7)-alkyl]amino; (C3-C7)-Cycloalkyl-amino, (C3- C7)-Cycloalkyl-[(C1-C7)-alkyl]amino; N-Azetidinyl, N-Pyrrolidinyl, N-Piperidinyl, N- Morpholinyl, steht, R7 und R15 unabhängig voneinander für Wasserstoff, (C1-C4)-Alkyl, (C2-C4)-Alkenyl stehen und R16 und R17 unabhängig voneinander für (C1-C7)-Alkyl, (C3-C7)-Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl stehen, oder R16 und R17 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden. Besonders bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin R1 für Wasserstoff steht, R2 für Wasserstoff, Fluor, Chlor, Brom steht, R3 für Amino, (C1-C6)-Alkyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel steht,
Figure imgf000012_0001
Q für Hydroxy oder einen Rest der nachfolgenden Formeln
Figure imgf000012_0002
steht, R5 und R6 unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl stehen, R5 und R6 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden, R8 für Wasserstoff, (C1-C6)-Alkyl, (C1-C6)-Haloalkyl, Aryl, Aryl-(C1-C6)-alkyl, Heteroaryl, (C2-C6)-Alkinyl, (C2-C6)-Alkenyl, C(O)R13, C(O)OR13, (C1-C6)-Alkoxy-(C1-C6)-alkyl steht, R9 für Wasserstoff oder (C1-C6)-Alkyl steht, R10 für Wasserstoff, Halogen, Cyano, NO2, (C1-C6)-Alkyl, (C1-C6)-Haloalkyl, (C3-C6)- Halocycloalkyl, (C3-C6)-Halocycloalkyl-(C1-C6)-alkyl, (C2-C6)-Alkinyl, Heteroaryl, Heteroaryl- (C1-C6)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C6)-alkyl, R11R12N-(C1-C6)-alkyl, R13O-(C1-C6)- alkyl, Cyano-(C1-C6)-alkyl, (C1-C6)-Alkylcarbonyloxy-(C1-C6)-alkyl, (C3-C6)- Cycloalkylcarbonyloxy-(C1-C6)-alkyl, Arylcarbonyloxy-(C1-C6)-alkyl, Heteroarylcarbonyloxy- (C1-C6)-alkyl, Heterocyclylcarbonyloxy-(C1-C6)-alkyl, OR13, NR11R12, SR14, S(O)R14, SO2R14, R14S-(C1-C6)-alkyl, R14(O)S-(C1-C6)-alkyl, R14O2S-(C1-C6)-alkyl, Tris-[(C1-C6)-Alkyl]silyl- (C1-C6)-alkyl, Bis-[(C1-C6)-Alkyl](aryl)silyl(C1-C6)-alkyl, [(C1-C6)-Alkyl]-bis-(aryl)silyl- (C1-C6)-alkyl, Tris-[(C1-C6)-Alkyl]silyl, Bis-hydroxyboryl-(C1-C6)-alkyl, Bis-[(C1-C6)- alkoxy]boryl-(C1-C6)-alkyl, Tetramethyl-1,3,2-Dioxaborolan-2-yl, Tetramethyl-1,3,2- Dioxaborolan-2-yl-(C1-C6)-alkyl, Nitro-(C1-C6)-alkyl, C(O)OR13, C(O)R13, C(O)NR11R12, R13O(O)C-(C1-C6)-alkyl, R11R12N(O)C-(C1-C6)-alkyl, Bis-(C1-C6)-alkoxy-(C1-C6)-alkyl steht, oder R8 und R10 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R11 und R12 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C1-C6)-Cyanoalkyl, (C1-C10)-Haloalkyl, (C2-C6)-Haloalkenyl, (C3-C6)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)-Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C6)-Alkoxy-(C1-C6)-alkyl, (C1-C6)-Haloalkoxy-(C1-C6)-alkyl, (C1-C6)-Alkylthio-(C1-C6)-alkyl, (C1-C6)-Haloalkylthio-(C1-C6)-alkyl, (C1-C6)-Alkoxy-(C1-C6)- haloalkyl, Aryl, Aryl-(C1-C6)-alkyl, Heteroaryl, Heteroaryl-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl- (C1-C6)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C6)-alkyl, C(O)R13, SO2R14, Heterocyclyl, (C1-C6)- Alkoxycarbonyl, Bis-[(C1-C6)-alkyl]aminocarbonyl-(C1-C6)-alkyl, (C1-C6)-Alkyl- aminocarbonyl-(C1-C6)-alkyl, Aryl-(C1-C6)-alkyl-aminocarbonyl-(C1-C6)-alkyl, Aryl-(C1-C6)- alkoxycarbonyl, Heteroaryl-(C1-C6)-alkoxycarbonyl, (C2-C6)-Alkenyloxy-carbonyl, (C2-C6)- Alkinyloxycarbonyl, Heterocyclyl-(C1-C6)-alkyl stehen, oder R11 und R12 mit dem Stickstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R13 für Wasserstoff, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C1-C6)-Cyanoalkyl, (C1-C10)- Haloalkyl, (C2-C6)-Haloalkenyl, (C3-C6)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)- Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C6)-Alkoxy-(C1-C6)- alkyl, (C1-C6)-Haloalkoxy-(C1-C6)-alkyl, (C1-C6)-Alkoxy-(C1-C6)-haloalkyl, (C1-C6)-Alkoxy- (C1-C6)-alkoxy-(C1-C6)-alkyl, (C1-C6)-Alkoxy-(C1-C6)-alkoxy-(C1-C6)-alkoxy-(C1-C6)-alkyl, (C1-C6)-Alkoxy-(C1-C6)-alkoxy-(C1-C6)-alkoxy-(C1-C6)-alkoxy-(C1-C6)-alkyl, Aryl, Aryl- (C1-C6)-alkyl, Aryl-(C1-C6)-alkoxy-(C1-C6)-alkyl, Heteroaryl, Heteroaryl-(C1-C6)-alkyl, (C3-C6)- Cycloalkyl-(C1-C6)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C6)-alkyl, Bis-[(C1-C6)- alkyl]aminocarbonyl-(C1-C6)-alkyl, (C1-C6)-Alkyl-aminocarbonyl-(C1-C6)-alkyl, Aryl-(C1-C6)- alkyl-aminocarbonyl-(C1-C6)-alkyl, Bis-[(C1-C6)-alkyl]amino-(C2-C6)-alkyl, (C1-C6)-Alkyl- amino-(C2-C6)-alkyl, Aryl-(C1-C6)-alkyl-amino-(C2-C6)-alkyl, R14S-(C1-C6)-alkyl, R14(O)S- (C1-C6)-alkyl, R14O2S-(C1-C6)-alkyl, Hydroxycarbonyl-(C1-C6)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C6)-alkyl, Tris-[(C1-C6)-Alkyl]silyl-(C1-C6)-alkyl, Bis-[(C1-C6)- Alkyl](aryl)silyl(C1-C6)-alkyl, [(C1-C6)-Alkyl]-bis-(aryl)silyl-(C1-C6)-alkyl, (C1-C6)- Alkylcarbonyloxy-(C1-C6)-alkyl, (C3-C6)-Cycloalkylcarbonyloxy-(C1-C6)-alkyl, Arylcarbonyloxy-(C1-C6)-alkyl, Heteroarylcarbonyloxy-(C1-C6)-alkyl, Heterocyclylcarbonyloxy-(C1-C6)-alkyl, Aryloxy-(C1-C6)-alkyl, Heteroaryloxy-(C1-C6)-alkyl, (C1-C6)-Alkoxycarbonyl steht, R14 für Wasserstoff, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C1-C6)-Cyanoalkyl, (C1-C10)- Haloalkyl, (C2-C6)-Haloalkenyl, (C3-C6)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)- Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C6)-Alkoxy-(C1-C6)- alkyl, (C1-C6)-Alkoxy-(C1-C6)-haloalkyl, Aryl, Aryl-(C1-C6)-alkyl, Heteroaryl, Heteroaryl- (C1-C6)-alkyl, Heterocyclyl-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl-(C1-C6)-alkyl, (C4-C10)- Cycloalkenyl-(C1-C6)-alkyl, Bis-[(C1-C6)-alkyl]amino, (C1-C6)-Alkyl-amino, Aryl-(C1-C6)- amino, Aryl-(C1-C6)-alkyl-amino, Aryl-[(C1-C6)-alkyl]amino; (C3-C6)-Cycloalkyl-amino, (C3- C6)-Cycloalkyl-[(C1-C6)-alkyl]amino; N-Azetidinyl, N-Pyrrolidinyl, N-Piperidinyl, N- Morpholinyl steht und R16 und R17 unabhängig voneinander für (C1-C7)-Alkyl, (C3-C7)-Cycloalkyl, Aryl stehen, oder R16 und R17 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden. Ganz besonders bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin R1 für Wasserstoff steht, R2 für Wasserstoff, Fluor, Chlor steht, R3 für Amino, Methyl, Ethyl, Prop-1-yl, 1-Methylethyl, But-1-yl, 1-Methylpropyl, 2-Methylpropyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel steht,
Figure imgf000014_0001
R5 und R6 unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Prop-1-yl, 1-Methylethyl, But-1-yl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n- Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Di-methylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3- Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1- Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl stehen, R5 und R6 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden und Q für eine der nachfolgend spezifisch genannten Gruppierungen Q-1 bis Q-500 steht:
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Substituted N-benzoic acid uracils and their salts and their use as herbicidally active compounds Description The invention relates to the technical field of crop protection agents, in particular that of herbicides for the selective control of weeds and weed grasses in crops of useful plants. Specifically, this invention relates to substituted N-benzoic acid uracils and their salts, processes for their preparation and their use as herbicides, in particular for controlling weeds and/or weed grasses in crops of useful plants and/or as plant growth regulators for influencing the growth of crops of useful plants. Previously known crop protection agents for the selective control of harmful plants in crops of useful plants or active ingredients for controlling unwanted plant growth sometimes have disadvantages when they are used, be it that they (a) have no or insufficient herbicidal action against certain harmful plants, (b) too little Spectrum of harmful plants that can be controlled with an active ingredient, (c) have insufficient selectivity in crops of useful plants and/or (d) have a toxicologically unfavorable profile. Furthermore, some active compounds which can be used as plant growth regulators in some useful plants lead to undesirably reduced crop yields in other useful plants or are not compatible with the crop plant or only in a narrow application rate range. Some of the known active ingredients cannot be produced economically on an industrial scale because of the difficult access to precursors and reagents, or their chemical stability is insufficient. With other active ingredients, the effect depends too much on environmental conditions, such as weather and soil conditions. The herbicidal action of these known compounds, particularly when low application rates are used, and their compatibility with crop plants remain in need of improvement. It is known from various publications that certain substituted N-linked aryluracils can be used as herbicidal active ingredients (cf. WO2021/013799, WO2021/013800, PCT/EP2021/073129 (PCT submission of August 20, 2021), EP408382, EP473551 , EP648749, US4,943,309, US5,084,084, US5,127,935, WO91/00278, WO95/29168, WO95/30661, WO96/35679, WO97/01541, WO98/25909, WO2001/39597, DE443121 9). However, the known aryluracils have a number of gaps in their effectiveness, in particular against monocotyledonous weeds. A number of herbicidal active ingredient combinations based on N-linked aryluracils are also known (cf. DE4437197, EP714602, WO96/07323, WO96/08151, JP11189506). However, the properties of these active substance combinations are not satisfactory in all respects. It is also known that certain N-aryluracils with optionally further substituted lactic acid groups can also be used as herbicidal active ingredients (cf. JP2000/302764, JP2001/172265, US Pat. No. 6,403,534, EP408382). It is also known that N-aryluracils with special, optionally further substituted, thiolactic acid groups also exhibit herbicidal effects (cf. WO2010/038953, KR2011110420). Selected substituted tetrahydrofuryl esters of N-aryluracils with optionally further substituted thiolactic acid groups are described in JP09188676. Also known are substituted N-benzoic acid uracils which carry chlorine substituents in the benzoic acid unit (cf. WO91/000278, DE19741411, WO95/32952, US6,207,830, WO88/10254 A1). Furthermore, highly substituted 3-amino-1-(3-carboxy-4-cyanophenyl)uracils with various carboxylate side chains are described (cf. WO98/25909). Highly substituted N-benzoic acid uracils with an aminosulfonylaminocarbonylalkoxy side chain are also known (cf. WO2004/009561). It is also known that certain substituted N-benzoic acid thiobarbiturates can be used as herbicidal active ingredients (cf. WO2021/259224). WO88/10254 A1 describes and includes special N-benzoic acid uracils with bromine substituents in the benzoic acid unit which are para to the uracil group. In contrast, special substituted N-benzoic acid uracils with iodo or bromo substituents in the benzoic acid unit in the para position to the uracil group are only generically covered in the applications WO91/000278, DE19741411, WO95/32952, US6,207,830, with the specific synthetic approach not being explained and neither basic intermediates nor corresponding target connections are occupied. Surprisingly, it has now been found that certain substituted N-benzoic acid uracils, which differ from WO88/10254 with regard to the substitution on the uracil nitrogen and by an additive spacer on the ester unit bonded to the phenyl nucleus, or their salts, are highly suitable and particularly advantageous as herbicides can be used as active ingredients for controlling monocotyledonous and dicotyledonous weeds in crops of useful plants. One subject of the present invention is N-benzoic acid uracils of the general formula (I) substituted with them or their salts
Figure imgf000005_0001
wherein R 1 is hydrogen, methyl, R 2 is hydrogen, halogen, trifluoromethyl, R 3 is NR 7 R 15 , (C 1 -C 8 )-alkyl, R 4 is bromo, iodo, G is a radical the following formula
Figure imgf000005_0002
is, Q is hydroxy or a radical of the formulas below
Figure imgf000005_0003
R 5 and R 6 are independently hydrogen, (C 1 -C 8 )alkyl, (C 1 -C 8 )haloalkyl, (C 1 -C 8 )alkoxy-(C 1 -C 8 )- alkyl, or R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 7-membered carbocycle, R 8 is hydrogen, (C 1 -C 8 )-alkyl, (C 1 -C 8 )haloalkyl, aryl, aryl-(C 1 -C 8 )alkyl, heteroaryl, (C 2 -C 8 )alkynyl, (C 2 -C 8 )alkenyl, C(O)R 13 , C(O)OR 13 , (C 1 -C 8 )-alkoxy-(C 1 -C 8 )-alkyl, R 9 represents hydrogen or (C 1 -C 8 )-alkyl, R 10 is hydrogen, halogen, cyano, NO 2 , (C 1 -C 8 )alkyl, (C 1 -C 8 )haloalkyl, (C 3 -C 8 )halocycloalkyl, (C 3 -C 8 )- Halocycloalkyl(C 1 -C 8 )alkyl, (C 2 -C 8 )alkynyl, heteroaryl, heteroaryl(C 1 -C 8 )alkyl, heterocyclyl, heterocyclyl(C 1 -C 8 )alkyl, R 11 R 12 N-(C 1 -C 8 )alkyl, R 13 O-(C 1 -C 8 )alkyl, cyano-(C 1 -C 8 )alkyl, (C 1 -C 8 )- Alkylcarbonyloxy-(C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkylcarbonyloxy-(C 1 -C 8 )alkyl, arylcarbonyloxy-(C 1 -C 8 )alkyl, heteroarylcarbonyloxy-(C 1 - C8 alkyl, heterocyclylcarbonyloxy-( C1 -C8 )alkyl, OR13 , NR11 R12 , SR14 , S(O) R14 , SO2 R14 , R14 S-( C1 -C R14 (O)S-( C1 -C8 )alkyl, R14 O2 S-( C1 -C8 )alkyl, tris [( C1 -C8 )alkyl ]silyl(C 1 -C 8 )alkyl, bis[(C 1 -C 8 )alkyl](aryl)silyl(C 1 -C 8 )alkyl, [(C 1 -C 8 )alkyl ]-bis(aryl)silyl(C 1 -C 8 )alkyl, tris[(C 1 -C 8 )alkyl]silyl, bishydroxyboryl(C 1 -C 8 )alkyl, bis- [(C 1 -C 8 )alkoxy]boryl(C 1 -C 8 )alkyl, tetramethyl-1,3,2-dioxaborolan-2-yl, tetramethyl-1,3,2-dioxaborolan-2-yl -(C 1 -C 8 )alkyl, nitro-(C 1 -C 8 )alkyl, C(O)OR 13 , C(O)R 13 , C(O)NR 11 R 12 , R 13 O( O)C-(C 1 -C 8 )alkyl, R 11 R 12 N(O)C-(C 1 -C 8 )alkyl, bis(C 1 -C 8 )alkoxy-(C 1 - C 8 )-alkyl, or R 8 and R 10 with the carbon atom to which they are attached form a fully saturated or partially saturated 3 to 10-membered monocyclic or bicyclic ring which is optionally interrupted by heteroatoms and optionally further substituted, R 11 and R 12 are the same or different and are independently hydrogen, (C 1 -C 8 )alkyl, (C 2 -C 8 )alkenyl, (C 2 -C 8 )alkynyl, (C 1 -C 8 ) -cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 8 )haloalkenyl, (C 3 -C 8 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 ) -halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 8 )alkoxy-(C 1 -C 8 )alkyl, (C 1 -C 8 ) -haloalkoxy-(C 1 -C 8 )alkyl, (C 1 -C 8 )alkylthio-(C 1 -C 8 )alkyl, (C 1 -C 8 )haloalkylthio-(C 1 -C 8 ) alkyl, (C 1 -C 8 )alkoxy(C 1 -C 8 )haloalkyl, aryl, aryl(C 1 -C 8 )alkyl, heteroaryl, heteroaryl(C 1 -C 8 )alkyl , (C 3 -C 8 )cycloalkyl-(C 1 -C 8 )alkyl, (C 4 -C 10 )cycloalkenyl-(C 1 -C 8 )alkyl, C(O)R 13 , SO 2 R 14 , heterocyclyl, (C 1 -C 8 )alkoxycarbonyl, bis[(C 1 -C 8 )alkyl]aminocarbonyl-(C 1 -C 8 )alkyl, (C 1 -C 8 )alkyl aminocarbonyl-(C 1 -C 8 )alkyl, aryl-(C 1 -C 8 )alkylaminocarbonyl-(C 1 -C 8 )alkyl, aryl-(C 1 -C 8 )alkoxycarbonyl, heteroaryl (C 1 -C 8 )alkoxycarbonyl, (C 2 -C 8 )alkenyloxycarbonyl, (C 2 -C 8 )alkynyloxycarbonyl, heterocyclyl-(C 1 -C 8 )alkyl, or R 11 and R 12 together the nitrogen atom to which they are attached form a fully saturated or partially saturated 3 to 10-membered monocyclic or bicyclic ring which is optionally interrupted by heteroatoms and optionally further substituted, R 13 is hydrogen, (C 1 -C 8 )-alkyl, ( C 2 -C 8 ) alkenyl, (C 2 -C 8 ) alkynyl, (C 1 -C 8 ) cyanoalkyl, (C 1 -C 10 ) haloalkyl, (C 2 -C 8 ) haloalkenyl, ( C 3 -C 8 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, ( C 1 -C 8 )-Alkoxy-(C 1 -C 8 )- alkyl, (C 1 -C 8 )haloalkoxy-(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy-(C 1 -C 8 )haloalkyl, (C 1 -C 8 )- Alkoxy-(C 1 -C 8 )alkoxy-(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy-(C 1 -C 8 )alkoxy-(C 1 -C 8 )- alkoxy-(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy-(C 1 -C 8 )alkoxy-(C 1 -C 8 )alkoxy-(C 1 -C 8 )- alkoxy-(C 1 -C 8 )alkyl, aryl, aryl-(C 1 -C 8 )alkyl, aryl-(C 1 -C 8 )alkoxy-(C 1 -C 8 )alkyl, heteroaryl, Heteroaryl(C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkyl(C 1 -C 8 )alkyl, (C 4 -C 10 )cycloalkenyl(C 1 -C 8 )- alkyl, bis[(C 1 -C 8 )alkyl]aminocarbonyl-(C 1 -C 8 )alkyl, (C 1 -C 8 )alkylaminocarbonyl-(C 1 -C 8 )alkyl, aryl -(C 1 -C 8 )-alkylaminocarbonyl-(C 1 -C 8 )alkyl, bis[(C 1 -C 8 )alkyl]amino-(C 2 -C 6 )alkyl, (C C 1 -C 8 )alkylamino-(C 2 -C 6 )alkyl, aryl-(C 1 -C 8 )alkylamino-(C 2 -C 6 )alkyl, R 14 S-(C C 1 -C 8 )alkyl, R 14 (O)S-(C 1 -C 8 )alkyl, R 14 O 2 S-(C 1 -C 8 )alkyl, hydroxycarbonyl-(C 1 -C 8 ) -alkyl, heterocyclyl, heterocyclyl(C 1 -C 8 )alkyl, tris[(C 1 -C 8 )alkyl]silyl(C 1 -C 8 )alkyl, bis[(C 1 -C 8 )alkyl 8 )-alkyl](aryl)silyl(C 1 -C 8 )alkyl, [(C 1 -C 8 )alkyl]bis(aryl)silyl(C 1 -C 8 )alkyl, (C C 1 -C 8 )-alkylcarbonyloxy-(C 1 -C 8 )-alkyl, (C 3 -C 8 )-cycloalkylcarbonyloxy-(C 1 -C 8 )-alkyl, arylcarbonyloxy-(C 1 -C 8 )-alkyl, heteroarylcarbonyloxy(C 1 -C 8 )alkyl, heterocyclylcarbonyloxy(C 1 -C 8 )alkyl, aryloxy(C 1 -C 8 )alkyl, heteroaryloxy(C 1 -C 8 )alkyl, (C C 1 -C 8 )alkoxycarbonyl, R 14 is hydrogen, (C 1 -C 8 )alkyl, (C 2 -C 8 )alkenyl, (C 2 -C 8 )alkynyl, (C 1 -C 8 ). )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 8 )haloalkenyl, (C 3 -C 8 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )-halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 8 )alkoxy-(C 1 -C 8 )alkyl, (C 1 -C 8 )-Alkoxy(C 1 -C 8 )haloalkyl, aryl, aryl(C 1 -C 8 )alkyl, heteroaryl, heteroaryl(C 1 -C 8 )alkyl, heterocyclyl(C 1 -C 8 ) . )-alkyl, (C 3 -C 8 )-cycloalkyl-(C 1 -C 8 )-alkyl, (C 4 -C 10 )-cycloalkenyl-(C 1 -C 8 )-alkyl, bis[(C 1 -C 8 )alkyl]amino, (C 1 -C 8 )alkylamino, aryl-(C 1 -C 8 )amino, aryl-(C 1 -C 6 )alkylamino, aryl[ (C 1 -C 8 )alkyl]amino; (C 3 -C 8 )cycloalkylamino, (C 3 -C 8 )cycloalkyl[(C 1 -C 8 )alkyl]amino; N-azetidinyl, N-pyrrolidinyl, N-piperidinyl, N-morpholinyl, R 7 and R 15 independently represent hydrogen, (C 1 -C 8 )-alkyl, (C 2 -C 8 )-alkenyl, C( O)R 13 , C(O)OR 13 , C(O)NR 11 R 12 , SO 2 R 14 , or R 7 and R 15 with the nitrogen atom to which they are attached, optionally substituted by hydrogen, (C C 1 -C 8 )-alkyl, aryl-(C 1 -C 8 )-alkyl, (C 3 -C 8 )-cycloalkyl, aryl, heteroaryl, heterocyclyl, (C 1 -C 8 )- alkoxycarbonyl-(C 1 - C 8 )-alkyl, aryl-(C 1 -C 8 )-alkoxycarbonyl-(C 1 -C 8 )-alkyl form a further substituted imino group and R 16 and R 17 are independently (C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkyl, aryl, heteroaryl, heterocyclyl, or R 16 and R 17 with the carbon atom to which they are attached , form a fully saturated monocyclic 3- to 7-membered carbocycle. The compounds of general formula (I) can be synthesized by addition of a suitable inorganic or organic acid, such as mineral acids such as HCl, HBr, H 2 SO 4 , H 3 PO 4 or HNO 3 , or organic acids, eg. B. carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid, lactic acid or salicylic acid or sulfonic acids such as p-toluenesulfonic acid to a basic group such as amino, alkylamino, dialkylamino, piperidino, morpholino or pyridino. These salts then contain the conjugate base of the acid as an anion. Suitable substituents which are in deprotonated form, such as, for example, sulfonic acids, certain sulfonic acid amides or carboxylic acids, can form inner salts with groups which in turn can be protonated, such as amino groups. Salt formation can also take place by the action of a base on compounds of the general formula (I). Suitable bases are, for example, organic amines such as trialkylamines, morpholine, piperidine and pyridine and ammonium, alkali metal or alkaline earth metal hydroxides, carbonates and bicarbonates, in particular sodium and potassium hydroxide, sodium and potassium carbonate and sodium and potassium bicarbonate. These salts are compounds in which the acidic hydrogen is replaced by an agriculturally suitable cation, for example metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or else ammonium salts, salts with organic amines or quaternary ammonium salts, for example with cations of the formula [NR a R b R c R d ] + , in which R a to R d each independently represent an organic radical, in particular alkyl, aryl, aralkyl or alkylaryl. Also suitable are alkylsulfonium and alkylsulfoxonium salts, such as (C 1 -C 4 )-trialkylsulfonium and (C 1 -C 4 )-trialkylsulfoxonium salts. The compounds of the formula (I) used according to the invention and their salts are referred to below as "compounds of the general formula (I)". A preferred subject of the invention are compounds of the general formula (I) in which R 1 is hydrogen, R 2 is hydrogen, fluorine, chlorine, bromine or iodine, R 3 is NR 7 R 15 , (C 1 -C 7 )-alkyl , R 4 is bromo, iodo, G is a radical of the formula below
Figure imgf000009_0001
stands, Q stands for hydroxy or a radical of the following formulas,
Figure imgf000009_0002
R 5 and R 6 are independently hydrogen, (C 1 -C 7 )-alkyl, or R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle, R 8 is hydrogen, (C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkyl, aryl, aryl(C 1 -C 7 )alkyl, heteroaryl, (C 2 -C 7 )alkynyl , (C 2 -C 7 )alkenyl, C(O)R 13 , C(O)OR 13 , (C 1 -C 7 )alkoxy(C 1 -C 7 )alkyl, R 9 is hydrogen or (C 1 -C 7 )alkyl, R 10 is hydrogen, halogen, cyano, NO 2 , (C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkyl, (C 3 -C 7 )- halocycloalkyl, (C 3 -C 7 )halocycloalkyl-(C 1 -C 7 )alkyl, (C 2 -C 7 )alkynyl, heteroaryl, heteroaryl-(C 1 -C 7 )alkyl, heterocyclyl, Heterocyclyl(C 1 -C 7 )alkyl, R 11 R 12 N-(C 1 -C 7 )alkyl, R 13 O-(C 1 -C 7 )alkyl, cyano(C 1 -C 7 ). )-alkyl, (C 1 -C 7 )-alkylcarbonyloxy-(C 1 -C 7 )-alkyl, (C 3 -C 7 )-cycloalkylcarbonyloxy-(C 1 -C 7 )-alkyl, arylcarbonyloxy-(C 1 - C 7 )alkyl, heteroarylcarbonyloxy-(C 1 -C 7 )alkyl, heterocyclylcarbonyloxy-(C 1 -C 7 )alkyl, OR 13 , NR 11 R 12 , SR 14 , S(O)R 14 , SO 2 R 14 , R 14 S-(C 1 -C 7 )-alkyl, R 14 (O)S-(C 1 -C 7 )-alkyl, R 14 O 2 S-(C 1 -C 7 )-alkyl, Tris[(C 1 -C 7 )alkyl]silyl(C 1 -C 7 )alkyl, bis[(C 1 -C 7 )alkyl](aryl)silyl(C 1 -C 7 )- alkyl, [(C 1 -C 7 )alkyl]bis(aryl)silyl(C 1 -C 7 )alkyl, tris[(C 1 -C 7 )alkyl]silyl, bishydroxyboryl (C 1 -C 7 )alkyl, bis[(C 1 -C 7 )alkoxy]boryl(C 1 -C 7 )alkyl, tetramethyl-1,3,2-dioxaborolan-2-yl, tetramethyl -1,3,2-dioxaborolan-2-yl-(C 1 -C 7 )alkyl, nitro-(C 1 -C 7 )alkyl, C(O)OR 13 , C(O)R 13 , C (O)NR 11 R 12 , R 13 O(O)C-(C 1 -C 7 )alkyl, R 11 R 12 N(O)C-(C 1 -C 7 )alkyl, bis(C C 1 -C 7 )-alkoxy-(C 1 -C 7 )-alkyl, or R 8 and R 10 form with the carbon atom to which they are attached a fully saturated or partially saturated 3 to 10-membered monocyclic or bicyclic ring which is optionally interrupted by heteroatoms and optionally further substituted, R 11 and R 12 are identical or different and independently of one another hydrogen, (C 1 -C 7 )alkyl, (C 2 -C 7 )alkenyl, (C 2 -C 7 )alkynyl, (C 1 -C 7 )cyanoalkyl, (C 1 -C C 10 )haloalkyl, (C 2 -C 7 )haloalkenyl, (C 3 -C 7 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 7 )alkoxy(C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkoxy(C 1 -C 12 ). C 7 )alkyl, (C 1 -C 7 )alkylthio(C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkylthio(C 1 -C 7 )alkyl, (C 1 -C 7 )-Alkoxy(C 1 -C 7 )haloalkyl, aryl, aryl(C 1 -C 7 )alkyl, heteroaryl, heteroaryl(C 1 -C 7 )alkyl, (C 3 -C 7 ) -Cycloalkyl-(C 1 -C 7 )alkyl, (C 4 -C 10 )cycloalkenyl-(C 1 -C 7 )alkyl, C(O)R 13 , SO 2 R 14 , heterocyclyl, (C 1 -C 7 )-Alkoxycarbonyl, bis[(C 1 -C 7 )alkyl]aminocarbonyl-(C 1 -C 7 )alkyl, (C 1 -C 7 )alkylaminocarbonyl-(C 1 -C 7 )-alkyl, aryl-(C 1 -C 7 )-alkylaminocarbonyl-(C 1 -C 7 )-alkyl, aryl-(C 1 -C 7 )-alkoxycarbonyl, heteroaryl-(C 1 -C 7 )- alkoxycarbonyl, (C 2 -C 7 )-alkenyloxy-carbonyl, (C 2 -C 7 )- alkynyloxycarbonyl, heterocyclyl-(C 1 -C 7 )-alkyl, or R 11 and R 12 with the nitrogen atom to which they are bonded, form a fully saturated or partially saturated 3 to 10-membered monocyclic or bicyclic ring which is optionally interrupted by heteroatoms and optionally further substituted, R 13 is hydrogen, (C 1 -C 7 )-alkyl, (C 2 -C 7 ) -alkenyl, (C 2 -C 7 )alkynyl, (C 1 -C 7 )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 7 )haloalkenyl, (C 3 -C 7 ) -haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 7 ) -Alkoxy-(C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkoxy-(C 1 -C 7 )alkyl, (C 1 -C 7 )alkoxy-(C 1 -C 7 ) -haloalkyl, (C 1 -C 7 )alkoxy-(C 1 -C 7 )alkoxy-(C 1 -C 7 )alkyl, (C 1 -C 7 )alkoxy-(C 1 -C 7 ) -alkoxy-(C 1 -C 7 )-alkoxy-(C 1 -C 7 )-alkyl, (C 1 -C 7 )-alkoxy-(C 1 -C 7 )-alkoxy-(C 1 -C 7 ) -alkoxy-(C 1 -C 7 )-alkoxy-(C 1 -C 7 )-alkyl, aryl, aryl-(C 1 -C 7 )-alkyl, aryl-(C 1 -C 7 )-alkoxy-( C 1 -C 7 )alkyl, heteroaryl, heteroaryl-(C 1 -C 7 )alkyl, (C 3 -C 7 )cycloalkyl-(C 1 -C 7 )alkyl, (C 4 -C 10 ) -cycloalkenyl-(C 1 -C 7 )alkyl, bis[(C 1 -C 7 )alkyl]aminocarbonyl-(C 1 -C 7 )alkyl, (C 1 -C 7 )alkylaminocarbonyl- (C 1 -C 7 )alkyl, aryl-(C 1 -C 7 )alkylaminocarbonyl-(C 1 -C 7 )alkyl, bis[(C 1 -C 7 )alkyl]amino-( C 2 -C 6 )alkyl, (C 1 -C 7 )alkylamino-(C 2 -C 6 )alkyl, aryl-(C 1 -C 7 )alkylamino-(C 2 -C 6 ) 6 )-alkyl, R 14 S-(C 1 -C 7 )-alkyl, R 14 (O)S-(C 1 -C 7 )-alkyl, R 14 O 2 S-(C 1 -C 7 )- alkyl, hydroxycarbonyl(C 1 -C 7 )alkyl, heterocyclyl, heterocyclyl(C 1 -C 7 )alkyl, tris[(C 1 -C 7 )alkyl]silyl(C 1 -C 7 ) -alkyl, bis[(C 1 -C 7 )alkyl](aryl)silyl(C 1 -C 7 )alkyl, [(C 1 -C 7 )alkyl]bis(aryl)silyl-( C 1 -C 7 )alkyl, (C 1 -C 7 )alkylcarbonyloxy-(C 1 -C 7 )alkyl, (C 3 -C 7 )cycloalkylcarbonyloxy-(C 1 -C 7 )alkyl, arylcarbonyloxy -(C 1 -C 7 )alkyl, heteroarylcarbonyloxy-(C 1 -C 7 )alkyl, R 14 is heterocyclylcarbonyloxy(C 1 -C 7 )alkyl, aryloxy(C 1 -C 7 )alkyl, heteroaryloxy(C 1 -C 7 )alkyl, (C 1 -C 7 )alkoxycarbonyl Hydrogen, (C 1 -C 7 )alkyl, (C 2 -C 7 )alkenyl, (C 2 -C 7 )alkynyl, (C 1 -C 7 )cyanoalkyl, (C 1 -C 10 )- Haloalkyl, (C 2 -C 7 )haloalkenyl, (C 3 -C 7 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )- Cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 7 )alkoxy(C 1 -C 7 )alkyl, (C 1 -C 7 )alkoxy(C 1 -C 7 )- haloalkyl, aryl, aryl(C 1 -C 7 )alkyl, heteroaryl, heteroaryl(C 1 -C 7 )alkyl, heterocyclyl(C 1 -C 7 )alkyl, (C 3 -C 7 )- Cycloalkyl(C 1 -C 7 )alkyl, (C 4 -C 10 )cycloalkenyl(C 1 -C 7 )alkyl, bis[(C 1 -C 7 )alkyl]amino, (C 1 -C 7 )alkylamino, aryl(C 1 -C 7 )amino, aryl(C 1 -C 6 )alkylamino, aryl[(C 1 -C 7 )alkyl]amino; (C 3 -C 7 )cycloalkylamino, (C 3 -C 7 )cycloalkyl[(C 1 -C 7 )alkyl]amino; N-azetidinyl, N-pyrrolidinyl, N-piperidinyl, N-morpholinyl, R 7 and R 15 independently represent hydrogen, (C 1 -C 4 )-alkyl, (C 2 -C 4 )-alkenyl and R 16 and R 17 independently represent (C 1 -C 7 )-alkyl, (C 3 -C 7 )-cycloalkyl, aryl, heteroaryl, heterocyclyl, or R 16 and R 17 with the carbon atom to which they are attached, form a fully saturated monocyclic 3- to 6-membered carbocycle. A particularly preferred subject of the invention are compounds of the general formula (I) in which R 1 is hydrogen, R 2 is hydrogen, fluorine, chlorine or bromine, R 3 is amino, (C 1 -C 6 )-alkyl, R 4 is bromo, iodo, G is a radical of the following formula stands,
Figure imgf000012_0001
Q is hydroxy or a radical of the formulas below
Figure imgf000012_0002
R 5 and R 6 are independently hydrogen, (C 1 -C 6 )alkyl, R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle , R 8 is hydrogen, (C 1 -C 6 )-alkyl, (C 1 -C 6 )-haloalkyl, aryl, aryl-(C 1 -C 6 )-alkyl, heteroaryl, (C 2 -C 6 )- alkynyl, (C 2 -C 6 )alkenyl, C(O)R 13 , C(O)OR 13 , (C 1 -C 6 )alkoxy(C 1 -C 6 )alkyl, R 9 represents is hydrogen or (C 1 -C 6 )alkyl, R 10 is hydrogen, halogen, cyano, NO 2 , (C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkyl, (C 3 -C 6 )-halocycloalkyl, (C 3 -C 6 )halocycloalkyl(C 1 -C 6 )alkyl, (C 2 -C 6 )alkynyl, heteroaryl, heteroaryl(C 1 -C 6 )alkyl, heterocyclyl , heterocyclyl(C 1 -C 6 )alkyl, R 11 R 12 N-(C 1 -C 6 )alkyl, R 13 O-(C 1 -C 6 )alkyl, cyano(C 1 -C 6 )alkyl 6 )alkyl, (C 1 -C 6 )alkylcarbonyloxy-(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkylcarbonyloxy-(C 1 -C 6 )alkyl, arylcarbonyloxy-(C 1 -C 6 )alkyl, heteroarylcarbonyloxy(C 1 -C 6 )alkyl, heterocyclylcarbonyloxy(C 1 -C 6 )alkyl, OR 13 , NR 11 R 12 , SR 14 , S(O)R 14 , SO 2 R14 , R14 S-( C1 -C6 )alkyl, R14 (O)S-( C1 -C6 )alkyl, R14 O2 S-( C1 -C6 )alkyl , tris[(C 1 -C 6 )alkyl]silyl(C 1 -C 6 )alkyl, bis[(C 1 -C 6 )alkyl](aryl)silyl(C 1 -C 6 ) -alkyl, [(C 1 -C 6 )alkyl]bis(aryl)silyl(C 1 -C 6 )alkyl, tris[(C 1 -C 6 )alkyl]silyl, bishydroxyboryl -(C 1 -C 6 )alkyl, bis[(C 1 -C 6 )alkoxy]boryl-(C 1 -C 6 )alkyl, tetramethyl-1,3,2-dioxaborolan-2-yl, Tetramethyl-1,3,2-dioxaborolan-2-yl-(C 1 -C 6 )alkyl, nitro-(C 1 -C 6 )alkyl, C(O)OR 13 , C(O)R 13 , C(O)NR 11 R 12 , R 13 O(O)C-(C 1 -C 6 )alkyl, R 11 R 12 N(O)C-(C 1 -C 6 )alkyl, bis-( C.sub.1 -C.sub.6 )-alkoxy-( C.sub.1 -C.sub.6 )-alkyl, or R.sup.8 and R.sup.10 with the carbon atom to which they are attached are completely saturated or partially saturated, optionally interrupted by heteroatoms and optionally further substituted form a 3 to 10-membered monocyclic or bicyclic ring, R 11 and R 12 are the same or different and are independently hydrogen, (C 1 -C 6 )alkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )alkynyl, (C 1 -C 6 )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 6 )haloalkenyl, (C 3 -C 6 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 6 )alkoxy-(C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkoxy(C 1 -C 6 )alkyl, (C 1 -C 6 )alkylthio(C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkylthio(C 1 -C 6 )alkyl 6 )-alkyl, (C 1 -C 6 )-alkoxy-(C 1 -C 6 )-haloalkyl, aryl, aryl-(C 1 -C 6 )-alkyl, heteroaryl, heteroaryl-(C 1 -C 6 ) -alkyl, (C 3 -C 6 )cycloalkyl-(C 1 -C 6 )alkyl, (C 4 -C 10 )cycloalkenyl-(C 1 -C 6 )alkyl, C(O)R 13 , SO 2 R 14 , heterocyclyl, (C 1 -C 6 )alkoxycarbonyl, bis[(C 1 -C 6 )alkyl]aminocarbonyl-(C 1 -C 6 )alkyl, (C 1 -C 6 )- Alkylaminocarbonyl-(C 1 -C 6 )alkyl, aryl-(C 1 -C 6 )alkylaminocarbonyl-(C 1 -C 6 )alkyl, aryl-(C 1 -C 6 )alkoxycarbonyl, Heteroaryl-(C 1 -C 6 )-alkoxycarbonyl, (C 2 -C 6 )-alkenyloxy-carbonyl, (C 2 -C 6 )-alkynyloxycarbonyl, heterocyclyl-(C 1 -C 6 )-alkyl, or R 11 and R 12 with the nitrogen atom to which they are attached form a fully saturated or partially saturated 3 to 10-membered monocyclic or bicyclic ring which is optionally interrupted by heteroatoms and optionally further substituted, R 13 is hydrogen, (C 1 -C 6 ) -alkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )alkynyl, (C 1 -C 6 )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 6 ) -haloalkenyl, (C 3 -C 6 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 ) -halocycloalkenyl, (C 1 -C 6 )alkoxy(C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkoxy(C 1 -C 6 )alkyl, (C 1 -C 6 ) -Alkoxy-(C 1 -C 6 )haloalkyl, (C 1 -C 6 )alkoxy-(C 1 -C 6 )alkoxy-(C 1 -C 6 )alkyl, (C 1 -C 6 ) -Alkoxy-(C 1 -C 6 )alkoxy-(C 1 -C 6 )alkoxy-(C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy-(C 1 -C 6 ) -alkoxy-(C 1 -C 6 )alkoxy-(C 1 -C 6 )alkoxy-(C 1 -C 6 )alkyl, aryl, aryl-(C 1 -C 6 )alkyl, aryl-( C 1 -C 6 )alkoxy(C 1 -C 6 )alkyl, heteroaryl, heteroaryl(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl(C 1 -C 6 ) alkyl, (C 4 -C 10 )cycloalkenyl-(C 1 -C 6 )alkyl, bis[(C 1 -C 6 )alkyl]aminocarbonyl-(C 1 -C 6 )alkyl, (C C 1 -C 6 )alkylaminocarbonyl-(C 1 -C 6 )alkyl, aryl-(C 1 -C 6 )alkylaminocarbonyl-(C 1 -C 6 )alkyl, bis[(C 1 -C 6 )alkyl]amino-(C 2 -C 6 )alkyl, (C 1 -C 6 )alkylamino-(C 2 -C 6 )alkyl, aryl-(C 1 -C 6 ) -alkylamino-(C 2 -C 6 )alkyl, R 14 S-(C 1 -C 6 )alkyl, R 14 (O)S-(C 1 -C 6 )alkyl, R 14 O 2 S-(C 1 -C 6 )alkyl, hydroxycarbonyl-(C 1 -C 6 )alkyl, heterocyclyl, heterocyclyl-(C 1 -C 6 )alkyl, tris[(C 1 -C 6 )alkyl ]silyl(C 1 -C 6 )alkyl, bis[(C 1 -C 6 )alkyl](aryl)silyl(C 1 -C 6 )alkyl, [(C 1 -C 6 )alkyl ]-bis(aryl)silyl(C 1 -C 6 )alkyl, (C 1 -C 6 )alkylcarbonyloxy-(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkylcarbonyloxy-( C 1 -C 6 )alkyl, arylcarbonyloxy-(C 1 -C 6 )alkyl, heteroarylcarbonyloxy-(C 1 -C 6 )alkyl, heterocyclylcarbonyloxy-(C 1 -C 6 )alkyl, aryloxy-(C 1 -C 6 )-alkyl, heteroaryloxy-(C 1 -C 6 )-alkyl, (C 1 -C 6 )-alkoxycarbonyl, R 14 is hydrogen, (C 1 -C 6 )alkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )alkynyl, (C 1 -C 6 )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 6 )haloalkenyl, (C 3 -C 6 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 6 )alkoxy-(C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy-(C 1 -C 12 ). 6 )haloalkyl, aryl, aryl(C 1 -C 6 )alkyl, heteroaryl, heteroaryl(C 1 -C 6 )alkyl, heterocyclyl(C 1 -C 6 )alkyl, (C 3 -C 6 )-cycloalkyl(C 1 -C 6 )alkyl, (C 4 -C 10 )cycloalkenyl(C 1 -C 6 )alkyl, bis[(C 1 -C 6 )alkyl]amino, (C 1 -C 6 )alkylamino, aryl(C 1 -C 6 )amino, aryl(C 1 -C 6 )alkylamino, aryl[(C 1 -C 6 )alkyl ]amino; (C 3 -C 6 )cycloalkylamino, (C 3 -C 6 )cycloalkyl[(C 1 -C 6 )alkyl]amino; N-azetidinyl, N-pyrrolidinyl, N-piperidinyl, N-morpholinyl and R 16 and R 17 independently represent (C 1 -C 7 )-alkyl, (C 3 -C 7 )-cycloalkyl, aryl, or R R 16 and R 17 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle. A very particularly preferred subject of the invention are compounds of the general formula (I) in which R 1 is hydrogen, R 2 is hydrogen, fluorine or chlorine, R 3 is amino, methyl, ethyl, prop-1-yl, 1-methylethyl, but -1-yl, 1-methylpropyl, 2-methylpropyl, R 4 is bromo, iodo, G is a radical of the following formula,
Figure imgf000014_0001
R 5 and R 6 are independently hydrogen, methyl, ethyl, prop-1-yl, 1-methylethyl, but-1-yl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, n-pentyl, 1- Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n- hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle and Q is one of the moieties Q-1 to Q-500 specifically mentioned below:
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Im Speziellen bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin R1 für Wasserstoff steht, R2 für Wasserstoff, Fluor, Chlor steht, R3 für Amino, Methyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel
Figure imgf000027_0001
steht, R5 und R6 unabhängig voneinander für Wasserstoff, Methyl, Ethyl, bevorzugt Methyl stehen, oder R5 und R6 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden und Q für eine der zuvor spezifisch genannten Gruppierungen Q-1 bis Q-500 steht. Im ganz Speziellen bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin R1 für Wasserstoff steht, R2 für Wasserstoff, Fluor, Chlor steht, R3 für Amino, Methyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel steht,
Figure imgf000027_0002
R5 und R6 für Methyl stehen und Q für eine der zuvor spezifisch genannten Gruppierungen Q-1, Q-2, Q-23, Q-24, Q-26, Q-31, Q-71, Q-72, Q-115, Q-127, Q-152, Q-176, Q-231, Q-237, Q-286, Q-301, Q-302, Q-441, Q-442, Q-454, Q-472, Q-481, Q-489, Q-490, Q-491, Q-496, Q-499, Q-500 steht. Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen gelten sowohl für die Endprodukte der Formel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangs- oder Zwischenprodukte. Diese Restedefinitionen können untereinander, also auch zwischen den angegebenen bevorzugten Bereichen, beliebig kombiniert werden. Im Hinblick auf die erfindungsgemäßen Verbindungen werden die vorstehend und weiter unten verwendeten Bezeichnungen erläutert. Diese sind dem Fachmann geläufig und haben insbesondere die im Folgenden erläuterten Bedeutungen: Sofern nicht anders definiert, gilt generell für die Bezeichnung von chemischen Gruppen, dass die Anbindung an das Gerüst bzw. den Rest des Moleküls über das zuletzt genannte Strukturelement der betreffenden chemischen Gruppe erfolgt, d.h. beispielsweise im Falle von (C2-C8)-Alkenyloxy über das Sauerstoffatom, und im Falle von Heterocyclyl-(C1-C8)-alkyl oder R13O(O)C-(C1-C8)-Alkyl jeweils über das C-Atom der Alkylgruppe. In einer zusammengesetzten chemischen Gruppe wie z. B. Heterocyclyl- (C1-C8)-alkyl oder R13O(O)C-(C1-C8)-Alkyl steht die Bezeichnung “Alkyl” daher auch für eine Alkylengruppe. Bei den funktionellen Gruppen C(=O)R13, C(=O)OR13, C(=O)NR11R12, NR11R12, OR13, S(O)mR14 erfolgt die Anbindung an das Gerüst bzw. den Rest des Moleküls über das zuerst genannte Strukturelement der betreffenden chemischen Gruppe. Erfindungsgemäß steht "Alkylsulfonyl" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes Alkylsulfonyl, vorzugsweise mit 1 bis 8, oder mit 1 bis 6 Kohlenstoffatomen, z.B. (aber nicht beschränkt auf) (C1-C6)-Alkylsulfonyl wie Methylsulfonyl, Ethyl- sulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methyl- propylsulfonyl, 1,1-Dimethylethylsulfonyl, Pentylsulfonyl, 1-Methylbutylsulfonyl, 2-Methylbutyl- sulfonyl, 3-Methylbutylsulfonyl, 1,1-Dimethylpropylsulfonyl, 1,2-Dimethylpropylsulfonyl, 2,2-Di- methylpropylsulfonyl, 1-Ethylpropylsulfonyl, Hexylsulfonyl, 1-Methylpentylsulfonyl, 2-Methyl- pentylsulfonyl, 3-Methylpentylsulfonyl, 4-Methylpentylsulfonyl, 1,1-Dimethylbutylsulfonyl, 1,2-Di- methylbutylsulfonyl, 1,3-Dimethylbutylsulfonyl, 2,2-Dimethylbutylsulfonyl, 2,3-Dimethylbutylsulfonyl, 3,3-Dimethylbutylsulfonyl, 1-Ethylbutylsulfonyl, 2-Ethylbutylsulfonyl, 1,1,2-Trimethylpropylsulfonyl, 1,2,2-Trimethylpropylsulfonyl, 1-Ethyl-1-methylpropylsulfonyl und 1-Ethyl-2-methylpropylsulfonyl. Erfindungsgemäß steht "Heteroarylsulfonyl" für gegebenenfalls substituiertes Pyridylsulfonyl, Pyrimidinylsulfonyl, Pyrazinylsulfonyl oder gegebenenfalls substituiertes polycyclisches Heteroarylsulfonyl, hier insbesondere gegebenenfalls substituiertes Chinolinylsulfonyl, beispielsweise substituiert durch Fluor, Chlor, Brom, Iod, Cyano, Nitro, Alkyl-, Haloalkyl-, Haloalkoxy-, Amino-, Alkylamino-, Alkylcarbonylamino-, Dialkylamino- oder Alkoxygruppen. Erfindungsgemäß steht "Alkylthio" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes S-Alkyl, vorzugsweise mit 1 bis 8, oder mit 1 bis 6 Kohlenstoffatomen, wie (C1-C10)-, (C1-C6)- oder (C1-C4)-Alkylthio, z.B. (aber nicht beschränkt auf) (C1-C6)-Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio, 1,1-Dimethylethylthio, Pentylthio, 1-Methylbutylthio, 2-Methylbutylthio, 3- Methylbutylthio, 1,1-Dimethylpropylthio, 1,2-Dimethylpropylthio, 2,2-Dimethylpropylthio, 1- Ethylpropylthio, Hexylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4-Methyl- pentylthio, 1,1-Dimethylbutylthio, 1,2-Dimethylbutylthio, 1,3-Dimethylbutylthio, 2,2-Dimethylbutyl- thio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1-Ethylbutylthio, 2-Ethylbutylthio, 1,1,2-Tri- methylpropylthio, 1,2,2-Trimethylpropylthio, 1-Ethyl-1-methylpropylthio und 1-Ethyl-2-methyl- propylthio. „Alkenylthio“ bedeutet erfindungsgemäß ein über ein Schwefelatom gebundenen Alkenylrest, Alkinylthio bedeutet ein über ein Schwefelatom gebundenen Alkinylrest, Cycloalkylthio bedeutet ein über ein Schwefelatom gebundenen Cycloalkylrest und Cycloalkenylthio bedeutet ein über ein Schwefelatom gebundenen Cycloalkenylrest. „Alkylsulfinyl (Alkyl-S(=O)-)“, soweit nicht an anderer Stelle anders definiert steht erfindungsgemäß für Alkylreste, die über -S(=O)- an das Gerüst gebunden sind, wie (C1-C10)-, (C1-C6)- oder (C1-C4)- Alkylsulfinyl, z. B. (aber nicht beschränkt auf) (C1-C6)-Alkylsulfinyl wie Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, 1-Methylethylsulfinyl, Butylsulfinyl, 1-Methylpropylsulfinyl, 2-Methylpropylsulfinyl, 1,1-Dimethylethylsulfinyl, Pentylsulfinyl, 1-Methylbutylsulfinyl, 2-Methylbutylsulfinyl, 3- Methylbutylsulfinyl, 1,1-Dimethylpropylsulfinyl, 1,2-Dimethylpropylsulfinyl, 2,2-Di- methylpropylsulfinyl, 1-Ethylpropylsulfinyl, Hexylsulfinyl, 1-Methylpentylsulfinyl, 2-Methylpentyl- sulfinyl, 3-Methylpentylsulfinyl, 4-Methylpentylsulfinyl, 1,1-Dimethylbutylsulfinyl, 1,2-Dimethyl- butylsulfinyl, 1,3-Dimethylbutylsulfinyl, 2,2-Dimethylbutylsulfinyl, 2,3-Dimethylbutylsulfinyl, 3,3- Dimethylbutylsulfinyl, 1-Ethylbutylsulfinyl, 2-Ethylbutylsulfinyl, 1,1,2-Trimethylpropylsulfinyl, 1,2,2- Trimethylpropylsulfinyl, 1-Ethyl-1-methylpropylsulfinyl und 1-Ethyl-2-methylpropylsulfinyl. Analog sind „Alkenylsulfinyl“ und „Alkinylsulfinyl“, erfindungsgemäß definiert als Alkenyl- bzw. Alkinylreste, die über -S(=O)- an das Gerüst gebunden sind, wie (C2-C10)-, (C2-C6)- oder (C2-C4)- Alkenylsulfinyl bzw. (C3-C10)-, (C3-C6)- oder (C3-C4)-Alkinylsulfinyl. Analog sind „Alkenylsulfonyl“ und „Alkinylsulfonyl“ erfindungsgemäß definiert als Alkenyl- bzw. Alkinylreste, die über -S(=O)2- an das Gerüst gebunden sind, wie (C2-C10)-, (C2-C6)- oder (C2-C4)- Alkenylsulfonyl bzw. (C3-C10)-, (C3-C6)- oder (C3-C4)-Alkinylsulfonyl. „Alkoxy“ bedeutet ein über ein Sauerstoffatom gebundenen Alkylrest, z. B. (aber nicht beschränkt auf) (C1-C6)-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2- Methylpropoxy, 1,1-Dimethylethoxy, Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1,1- Dimethylpropoxy, 1,2-Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1- Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Di- methylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1- Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methyl- propoxy und 1-Ethyl-2-methylpropoxy. Alkenyloxy bedeutet ein über ein Sauerstoffatom gebundenen Alkenylrest, Alkinyloxy bedeutet ein über ein Sauerstoffatom gebundenen Alkinylrest wie (C2-C10)-, (C2-C6)- oder (C2-C4)-Alkenoxy bzw. (C3-C10)-, (C3-C6)- oder (C3-C4)-Alkinoxy. „Cycloalkyloxy“ bedeutet ein über ein Sauerstoffatom gebundenen Cycloalkylrest und Cycloalkenyloxy bedeutet ein über ein Sauerstoffatom gebundenen Cycloalkenylrest. „Alkylcarbonyl“ (Alkyl-C(=O)-), soweit nicht an anderer Stelle anders definiert, steht erfindungsgemäß für Alkylreste, die über -C(=O)- an das Gerüst gebunden sind, wie (C1-C10)-, (C1-C6)- oder (C1-C4)- Alkylcarbonyl. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkylcarbonylgruppe. Analog stehen „Alkenylcarbonyl“ und „Alkinylcarbonyl“, soweit nicht an anderer Stelle anders definiert, erfindungsgemäß für Alkenyl- bzw. Alkinylreste, die über -C(=O)- an das Gerüst gebunden sind, wie (C2-C10)-, (C2-C6)- oder (C2-C4)-Alkenylcarbonyl bzw. (C2-C10)-, (C2-C6)- oder (C2-C4)- Alkinylcarbonyl. Die Anzahl der C-Atome bezieht sich dabei auf den Alkenyl- bzw. Alkinylrest in der Alkenyl- bzw. Alkinylcarbonylgruppe. „Alkoxycarbonyl (Alkyl-O-C(=O)-)“, soweit nicht an anderer Stelle anders definiert: Alkylreste, die über -O-C(=O)- an das Gerüst gebunden sind, wie (C1-C10)-, (C1-C6)- oder (C1-C4)-Alkoxycarbonyl. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkoxycarbonylgruppe. Analog stehen „Alkenyloxycarbonyl“ und „Alkinyloxycarbonyl“, soweit nicht an anderer Stelle anders definiert, erfindungsgemäß für Alkenyl- bzw. Alkinylreste, die über -O-C(=O)- an das Gerüst gebunden sind, wie (C2-C10)-, (C2-C6)- oder (C2-C4)-Alkenyloxycarbonyl bzw. (C3-C10)-, (C3-C6)- oder (C3-C4)- Alkinyloxycarbonyl. Die Anzahl der C-Atome bezieht sich dabei auf den Alkenyl- bzw. Alkinylrest in der Alken- bzw. Alkinyloxycarbonylgruppe. Der Begriff „Alkylcarbonyloxy“ (Alkyl-C(=O)-O-) steht erfindungsgemäß, soweit nicht an anderer Stelle anders definiert, für Alkylreste, die über eine Carbonyloxygruppe (-C(=O)-O-) mit dem Sauerstoff an das Gerüst gebunden sind, wie (C1-C10)-, (C1-C6)- oder (C1-C4)-Alkylcarbonyloxy. Die Anzahl der C- Atome bezieht sich dabei auf den Alkylrest in der Alkylcarbonyloxygruppe. Analog sind „Alkenylcarbonyloxy“ und „Alkinylcarbonyloxy“ erfindungsgemäß definiert als Alkenyl- bzw. Alkinylreste, die über (-C(=O)-O-) mit dem Sauerstoff an das Gerüst gebunden sind, wie (C2-C10)-, (C2-C6)- oder (C2-C4)-Alkenylcarbonyloxy bzw. (C2-C10)-, (C2-C6)- oder (C2-C4)-Alkinylcarbonyloxy. Die Anzahl der C-Atome bezieht sich dabei auf den Alkenyl- bzw. Alkinylrest in der Alkenyl- bzw. Alkinylcarbonyloxygruppe. In Kurzformen wie z.B. C(O)R13, C(O)OR13, OC(O)NR11R12, oder C(O)NR11R12 steht die in Klammern aufgeführte Kurzform O für ein über eine Doppelbindung an das benachbarte Kohlenstoffatom gebundenes Sauerstoffatom. In Kurzformen wie z.B. OC(S)OR13, OC(S)SR14, OC(S)NR11R12, steht die in Klammern aufgeführte Kurzform S für ein über eine Doppelbindung an das benachbarte Kohlenstoffatom gebundenes Schwefelatom. Der Begriff „Aryl“ bedeutet ein gegebenenfalls substituiertes mono-, bi- oder polycyclisches aromatisches System mit vorzugsweise 6 bis 14, insbesondere 6 bis 10 Ring-C-Atomen, beispielsweise Phenyl, Naphthyl, Anthryl, Phenanthrenyl, und ähnliches, vorzugsweise Phenyl. Vom Begriff „gegebenenfalls substituiertes Aryl“ sind auch mehrcyclische Systeme, wie Tetrahydronaphtyl, Indenyl, Indanyl, Fluorenyl, Biphenylyl, umfasst, wobei die Bindungsstelle am aromatischen System ist. Von der Systematik her ist „Aryl“ in der Regel auch von dem Begriff „gegebenenfalls substituiertes Phenyl“ umfasst. Bevorzugte Aryl-Substituenten sind hier zum Beispiel Wasserstoff, Halogen, Alkyl, Cycloalkyl, Cycloalkylalkyl, Cycloalkenyl, Halocycloalkyl, Alkenyl, Alkinyl, Aryl, Arylalkyl, Arylalkenyl, Heteroaryl, Heteroarylalkyl, Heterocyclyl, Heterocyclylalkyl, Alkoxyalkyl, Alkylthio, Haloalkylthio, Haloalkyl, Alkoxy, Haloalkoxy, Cycloalkoxy, Cycloalkylalkoxy, Aryloxy, Heteroraryloxy, Alkoxyalkoxy, Alkinylalkoxy, Alkenyloxy, Bis-alkylaminoalkoxy, Tris- [alkyl]silyl, Bis-[alkyl]arylsilyl, Bis-[alkyl]alkylsilyl, Tris-[alkyl]silylalkinyl, Arylalkinyl, Heteroarylalkinyl, Alkylalkinyl, Cycloalkylalkinyl, Haloalkylalkinyl, Heterocyclyl-N-alkoxy, Nitro, Cyano, Amino, Alkylamino, Bis-alkylamino, Alkylcarbonylamino, Cycloalkylcarbonylamino, Arylcarbonylamino, Alkoxycarbonylamino, Alkoxycarbonylalkylamino, Arylalkoxycarbonylalkylamino, Hydroxycarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Cycloalkylaminocarbonyl, Bis-Alkylaminocarbonyl, Heteroarylalkoxy, Arylalkoxy. Ein heterocyclischer Rest (Heterocyclyl) enthält mindestens einen heterocyclischen Ring (=carbocyclischer Ring, in dem mindestens ein C-Atom durch ein Heteroatom ersetzt ist, vorzugsweise durch ein Heteroatom aus der Gruppe N, O, S, P) der gesättigt, ungesättigt, teilgesättigt oder heteroaromatisch ist und dabei unsubstituiert oder substituiert sein kann, wobei die Bindungsstelle an einem Ringatom lokalisiert ist. Ist der Heterocyclylrest oder der heterocyclische Ring gegebenenfalls substituiert, kann er mit anderen carbocyclischen oder heterocyclischen Ringen annelliert sein. Im Falle von gegebenenfalls substituiertem Heterocyclyl werden auch mehrcyclische Systeme umfasst, wie beispielsweise 8-Aza-bicyclo[3.2.1]octanyl, 8-Aza-bicyclo[2.2.2]octanyl oder 1-Aza- bicyclo[2.2.1]heptyl. Im Falle von gegebenenfalls substituiertem Heterocyclyl werden auch spirocyclische Systeme umfasst, wie beispielsweise 1-Oxa-5-aza-spiro[2.3]hexyl. Wenn nicht anders definiert, enthält der heterocyclische Ring vorzugsweise 3 bis 9 Ringatome, insbesondere 3 bis 6 Ringatome, und ein oder mehrere, vorzugsweise 1 bis 4, insbesondere 1, 2 oder 3 Heteroatome im heterocyclischen Ring, vorzugsweise aus der Gruppe N, O, und S, wobei jedoch nicht zwei Sauerstoffatome direkt benachbart sein sollen, wie beispielsweise mit einem Heteroatom aus der Gruppe N, O und S 1- oder 2- oder 3-Pyrrolidinyl, 3,4-Dihydro-2H-pyrrol-2- oder 3-yl, 2,3-Dihydro-1H-pyrrol- 1- oder 2- oder 3- oder 4- oder 5-yl; 2,5-Dihydro-1H-pyrrol-1- oder 2- oder 3-yl, 1- oder 2- oder 3- oder 4-Piperidinyl; 2,3,4,5-Tetrahydropyridin-2- oder 3- oder 4- oder 5-yl oder 6-yl; 1,2,3,6- Tetrahydropyridin-1- oder 2- oder 3- oder 4- oder 5- oder 6-yl; 1,2,3,4-Tetrahydropyridin-1- oder 2- oder 3- oder 4- oder 5- oder 6-yl; 1,4-Dihydropyridin-1- oder 2- oder 3- oder 4-yl; 2,3-Dihydropyridin- 2- oder 3- oder 4- oder 5- oder 6-yl; 2,5-Dihydropyridin-2- oder 3- oder 4- oder 5- oder 6-yl, 1- oder 2- oder 3- oder 4-Azepanyl; 2,3,4,5-Tetrahydro-1H-azepin-1- oder 2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,7-Tetrahydro-1H-azepin-1- oder 2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,6,7- Tetrahydro-1H-azepin-1- oder 2- oder 3- oder 4-yl; 3,4,5,6-Tetrahydro-2H-azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,5-Dihydro-1H-azepin-1- oder 2- oder 3- oder 4-yl; 2,5-Dihydro-1H-azepin- 1- oder -2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,7-Dihydro-1H-azepin-1- oder -2- oder 3- oder 4- yl; 2,3-Dihydro-1H-azepin-1- oder -2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 3,4-Dihydro-2H-azepin- 2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 3,6-Dihydro-2H-azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 5,6-Dihydro-2H-azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,5-Dihydro-3H-azepin- 2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 1H-Azepin-1- oder -2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2H-Azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 3H-Azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4H-Azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl, 2- oder 3-Oxolanyl (= 2- oder 3- Tetrahydrofuranyl); 2,3-Dihydrofuran-2- oder 3- oder 4- oder 5-yl; 2,5-Dihydrofuran-2- oder 3-yl, 2- oder 3- oder 4-Oxanyl (= 2- oder 3- oder 4-Tetrahydropyranyl); 3,4-Dihydro-2H-pyran-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6-Dihydro-2H-pyran-2- oder 3-oder 4- oder 5- oder 6-yl; 2H-Pyran-2- oder 3- oder 4- oder 5- oder 6-yl; 4H-Pyran-2- oder 3- oder 4-yl, 2- oder 3- oder 4-Oxepanyl; 2,3,4,5- Tetrahydrooxepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,7-Tetrahydrooxepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,6,7-Tetrahydrooxepin-2- oder 3- oder 4-yl; 2,3-Dihydrooxepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,5-Dihydrooxepin-2- oder 3- oder 4-yl; 2,5-Dihydrooxepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; Oxepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2- oder 3- Tetrahydrothiophenyl; 2,3-Dihydrothiophen-2- oder 3- oder 4- oder 5-yl; 2,5-Dihydrothiophen-2- oder 3-yl; Tetrahydro-2H-thiopyran-2- oder 3- oder 4-yl; 3,4-Dihydro-2H-thiopyran-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6-Dihydro-2H-thiopyran-2- oder 3- oder 4- oder 5- oder 6-yl; 2H-Thiopyran-2- oder 3- oder 4- oder 5- oder 6-yl; 4H-Thiopyran-2- oder 3- oder 4-yl. Bevorzugte 3-Ring und 4-Ring- Heterocyclen sind beispielsweise 1- oder 2-Aziridinyl, Oxiranyl, Thiiranyl, 1- oder 2- oder 3-Azetidinyl, 2- oder 3-Oxetanyl, 2- oder 3-Thietanyl, 1,3-Dioxetan-2-yl. Weitere Beispiele für “Heterocyclyl“ sind ein partiell oder vollständig hydrierter heterocyclischer Rest mit zwei Heteroatomen aus der Gruppe N, O und S, wie beispielsweise 1- oder 2- oder 3- oder 4-Pyrazolidinyl; 4,5-Dihydro-3H-pyrazol- 3- oder 4- oder 5-yl; 4,5-Dihydro-1H-pyrazol-1- oder 3- oder 4- oder 5-yl; 2,3-Dihydro-1H-pyrazol-1- oder 2- oder 3- oder 4- oder 5-yl; 1- oder 2- oder 3- oder 4- Imidazolidinyl; 2,3-Dihydro-1H-imidazol-1- oder 2- oder 3- oder 4-yl; 2,5-Dihydro-1H-imidazol-1- oder 2- oder 4- oder 5-yl; 4,5-Dihydro-1H-imidazol-1- oder 2- oder 4- oder 5-yl; Hexahydropyridazin-1- oder 2- oder 3- oder 4-yl; 1,2,3,4-Tetrahydropyridazin-1- oder 2- oder 3- oder 4- oder 5- oder 6-yl; 1,2,3,6-Tetrahydropyridazin-1- oder 2- oder 3- oder 4- oder 5- oder 6-yl; 1,4,5,6-Tetrahydropyridazin-1- oder 3- oder 4- oder 5- oder 6-yl; 3,4,5,6-Tetrahydropyridazin-3- oder 4- oder 5-yl; 4,5-Dihydropyridazin-3- oder 4-yl; 3,4-Dihydropyridazin-3- oder 4- oder 5- oder 6-yl; 3,6-Dihydropyridazin-3- oder 4-yl; 1,6-Dihydropyriazin-1- oder 3- oder 4- oder 5- oder 6-yl; Hexahydropyrimidin-1- oder 2- oder 3- oder 4-yl; 1,4,5,6-Tetrahydropyrimidin-1- oder 2- oder 4- oder 5- oder 6-yl; 1,2,5,6-Tetrahydropyrimidin-1- oder 2- oder 4- oder 5- oder 6-yl; 1,2,3,4- Tetrahydropyrimidin-1- oder 2- oder 3- oder 4- oder 5- oder 6-yl; 1,6-Dihydropyrimidin-1- oder 2- oder 4- oder 5- oder 6-yl; 1,2-Dihydropyrimidin-1- oder 2- oder 4- oder 5- oder 6-yl; 2,5-Dihydropyrimidin- 2- oder 4- oder 5-yl; 4,5-Dihydropyrimidin- 4- oder 5- oder 6-yl; 1,4-Dihydropyrimidin-1- oder 2- oder 4- oder 5- oder 6-yl; 1- oder 2- oder 3-Piperazinyl; 1,2,3,6-Tetrahydropyrazin-1- oder 2- oder 3- oder 5- oder 6-yl; 1,2,3,4-Tetrahydropyrazin-1- oder 2- oder 3- oder 4- oder 5- oder 6-yl; 1,2-Dihydropyrazin-1- oder 2- oder 3- oder 5- oder 6-yl; 1,4-Dihydropyrazin-1- oder 2- oder 3-yl; 2,3-Dihydropyrazin-2- oder 3- oder 5- oder 6-yl; 2,5-Dihydropyrazin-2- oder 3-yl; 1,3-Dioxolan-2- oder 4- oder 5-yl; 1,3-Dioxol-2- oder 4-yl; 1,3-Dioxan-2- oder 4- oder 5-yl; 4H-1,3-Dioxin-2- oder 4- oder 5- oder 6-yl; 1,4-Dioxan-2- oder 3- oder 5- oder 6-yl; 2,3-Dihydro-1,4-dioxin-2- oder 3- oder 5- oder 6-yl; 1,4-Dioxin-2- oder 3-yl; 1,2-Dithiolan-3- oder 4-yl; 3H-1,2-Dithiol-3- oder 4- oder 5-yl; 1,3-Dithiolan-2- oder 4-yl; 1,3-Dithiol- 2- oder 4-yl; 1,2-Dithian-3- oder 4-yl; 3,4-Dihydro-1,2-dithiin-3- oder 4- oder 5- oder 6-yl; 3,6-Dihydro- 1,2-dithiin-3- oder 4-yl; 1,2-Dithiin-3- oder 4-yl; 1,3-Dithian-2- oder 4- oder 5-yl; 4H-1,3-Dithiin-2- oder 4- oder 5- oder 6-yl; Isoxazolidin-2- oder 3- oder 4- oder 5-yl; 2,3-Dihydroisoxazol-2- oder 3- oder 4- oder 5-yl; 2,5-Dihydroisoxazol-2- oder 3- oder 4- oder 5-yl; 4,5-Dihydroisoxazol-3- oder 4- oder 5-yl; 1,3-Oxazolidin-2- oder 3- oder 4- oder 5-yl; 2,3-Dihydro-1,3-oxazol-2- oder 3- oder 4- oder 5-yl; 2,5- Dihydro-1,3-oxazol-2- oder 4- oder 5-yl; 4,5-Dihydro-1,3-oxazol-2- oder 4- oder 5-yl; 1,2-Oxazinan-2- oder 3- oder 4- oder 5- oder 6-yl; 3,4-Dihydro-2H-1,2-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6- Dihydro-2H-1,2-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-2H-1,2-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-4H-1,2-oxazin-3- oder 4- oder 5- oder 6-yl; 2H-1,2-Oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 6H-1,2-Oxazin-3- oder 4- oder 5- oder 6-yl; 4H-1,2-Oxazin-3- oder 4- oder 5- oder 6-yl; 1,3-Oxazinan-2- oder 3- oder 4- oder 5- oder 6-yl; 3,4-Dihydro-2H-1,3-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6-Dihydro-2H-1,3-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-2H- 1,3-oxazin-2- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-4H-1,3-oxazin-2- oder 4- oder 5- oder 6-yl; 2H- 1,3-Oxazin-2- oder 4- oder 5- oder 6-yl; 6H-1,3-Oxazin-2- oder 4- oder 5- oder 6-yl; 4H-1,3-Oxazin-2- oder 4- oder 5- oder 6-yl; Morpholin-2- oder 3- oder 4-yl; 3,4-Dihydro-2H-1,4-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6-Dihydro-2H-1,4-oxazin-2- oder 3- oder 5- oder 6-yl; 2H-1,4-oxazin-2- oder 3- oder 5- oder 6-yl; 4H-1,4-oxazin-2- oder 3-yl; 1,2-Oxazepan-2- oder 3- oder 4- oder 5- oder 6- oder 7- yl; 2,3,4,5-Tetrahydro-1,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,7-Tetrahydro-1,2- oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,6,7-Tetrahydro-1,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,5,6,7-Tetrahydro-1,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7- yl; 4,5,6,7-Tetrahydro-1,2-oxazepin-3- oder 4- oder 5- oder 6- oder 7-yl; 2,3-Dihydro-1,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,5-Dihydro-1,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,7-Dihydro-1,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,5-Dihydro-1,2- oxazepin-3- oder 4- oder 5- oder 6- oder 7-yl; 4,7-Dihydro-1,2-oxazepin-3- oder 4- oder 5- oder 6- oder 7-yl; 6,7-Dihydro-1,2-oxazepin-3- oder 4- oder 5- oder 6- oder 7-yl; 1,2-Oxazepin-3- oder 4- oder 5- oder 6- oder 7-yl; 1,3-Oxazepan-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,5-Tetrahydro-1,3- oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,7-Tetrahydro-1,3-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,6,7-Tetrahydro-1,3-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7- yl; 2,5,6,7-Tetrahydro-1,3-oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 4,5,6,7-Tetrahydro-1,3- oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 2,3-Dihydro-1,3-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,5-Dihydro-1,3-oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 2,7-Dihydro-1,3-oxazepin- 2- oder 4- oder 5- oder 6- oder 7-yl; 4,5-Dihydro-1,3-oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 4,7- Dihydro-1,3-oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 6,7-Dihydro-1,3-oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 1,3-Oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 1,4-Oxazepan-2- oder 3- oder 5- oder 6- oder 7-yl; 2,3,4,5-Tetrahydro-1,4-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,7- Tetrahydro-1,4-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,6,7-Tetrahydro-1,4-oxazepin- 2- oder 3- oder 5- oder 6- oder 7-yl; 2,5,6,7-Tetrahydro-1,4-oxazepin-2- oder 3- oder 5- oder 6- oder 7- yl; 4,5,6,7-Tetrahydro-1,4-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3-Dihydro-1,4- oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 2,5-Dihydro-1,4-oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 2,7-Dihydro-1,4-oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 4,5-Dihydro-1,4-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,7-Dihydro-1,4-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7- yl; 6,7-Dihydro-1,4-oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 1,4-Oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; Isothiazolidin-2- oder 3- oder 4- oder 5-yl; 2,3-Dihydroisothiazol-2- oder 3- oder 4- oder 5- yl; 2,5-Dihydroisothiazol-2- oder 3- oder 4- oder 5-yl; 4,5-Dihydroisothiazol-3- oder 4- oder 5-yl; 1,3- Thiazolidin-2- oder 3- oder 4- oder 5-yl; 2,3-Dihydro-1,3-thiazol-2- oder 3- oder 4- oder 5-yl; 2,5- Dihydro-1,3-thiazol-2- oder 4- oder 5-yl; 4,5-Dihydro-1,3-thiazol-2- oder 4- oder 5-yl; 1,3-Thiazinan-2- oder 3- oder 4- oder 5- oder 6-yl; 3,4-Dihydro-2H-1,3-thiazin-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6- Dihydro-2H-1,3-thiazin-2- oder 3- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-2H-1,3-thiazin-2- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-4H-1,3-thiazin-2- oder 4- oder 5- oder 6-yl; 2H-1,3-Thiazin-2- oder 4- oder 5- oder 6-yl; 6H-1,3-Thiazin-2- oder 4- oder 5- oder 6-yl; 4H-1,3-Thiazin-2- oder 4- oder 5- oder 6-yl. Weitere Beispiele für “Heterocyclyl“ sind ein partiell oder vollständig hydrierter heterocyclischer Rest mit 3 Heteroatomen aus der Gruppe N, O und S, wie beispielsweise 1,4,2-Dioxazolidin-2- oder 3- oder 5-yl; 1,4,2-Dioxazol-3- oder 5-yl; 1,4,2-Dioxazinan-2- oder -3- oder 5- oder 6-yl; 5,6-Dihydro-1,4,2- dioxazin-3- oder 5- oder 6-yl; 1,4,2-Dioxazin-3- oder 5- oder 6-yl; 1,4,2-Dioxazepan-2- oder 3- oder 5- oder 6- oder 7-yl; 6,7-Dihydro-5H-1,4,2-Dioxazepin-3- oder 5- oder 6- oder 7-yl; 2,3-Dihydro-7H-1,4,2- Dioxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 2,3-Dihydro-5H-1,4,2-Dioxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 5H-1,4,2-Dioxazepin-3- oder 5- oder 6- oder 7-yl; 7H-1,4,2-Dioxazepin-3- oder 5- oder 6- oder 7-yl. Strukturbeispiele für gegebenenfalls weiter substituierte Heterocyclen sind auch im Folgenden aufgeführt:
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000026_0001
A particularly preferred subject of the invention are compounds of the general formula (I) in which R 1 represents hydrogen, R 2 represents hydrogen, fluorine, chlorine, R 3 represents amino, methyl, R 4 represents bromine, iodine, G for a radical of the following formula
Figure imgf000027_0001
R 5 and R 6 are independently hydrogen, methyl, ethyl, preferably methyl, or R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle and Q stands for one of the groups Q-1 to Q-500 specifically mentioned above. Very specifically, preferred subject matter of the invention are compounds of the general formula (I) in which R 1 is hydrogen, R 2 is hydrogen, fluorine, chlorine, R 3 is amino, methyl, R 4 is bromine, iodine, G is one remainder of the formula below,
Figure imgf000027_0002
R 5 and R 6 are methyl and Q is one of the groups Q-1, Q-2, Q-23, Q-24, Q-26, Q-31, Q-71, Q-72, Q-115, Q-127, Q-152, Q-176, Q-231, Q-237, Q-286, Q-301, Q-302, Q-441, Q- 442, Q-454, Q-472, Q-481, Q-489, Q-490, Q-491, Q-496, Q-499, Q-500. The definitions of radicals given above in general or in preferred ranges apply both to the end products of the formula (I) and correspondingly to the starting materials or intermediates required in each case for the preparation. These radical definitions can be combined with one another as desired, ie also between the specified preferred ranges. With regard to the compounds according to the invention, the designations used above and below are explained. These are familiar to the person skilled in the art and have in particular the meanings explained below: Unless defined otherwise, it generally applies to the designation of chemical groups that the connection to the structure or the remainder of the molecule takes place via the last-mentioned structural element of the chemical group in question , ie for example in the case of (C 2 -C 8 )-alkenyloxy via the oxygen atom, and in the case of heterocyclyl-(C 1 -C 8 )-alkyl or R 13 O(O)C-(C 1 -C 8 ) -alkyl in each case via the carbon atom of the alkyl group. In a composite chemical group such as B. heterocyclyl (C 1 -C 8 ) alkyl or R 13 O (O) C - (C 1 -C 8 ) alkyl, the term "alkyl" therefore also stands for an alkylene group. The functional groups C(=O)R 13 , C(=O)OR 13 , C(=O)NR 11 R 12 , NR 11 R 12 , OR 13 , S(O) m R 14 are connected to the Structure or the remainder of the molecule via the first-mentioned structural element of the chemical group in question. According to the invention, “alkylsulfonyl”—on its own or as part of a chemical group—is straight-chain or branched alkylsulfonyl, preferably having 1 to 8 or 1 to 6 carbon atoms, eg (but not limited to) (C 1 -C 6 )-alkylsulfonyl such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1,1-dimethylethylsulfonyl, pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl, 3-methylbutylsulfonyl, 1,1 -dimethylpropylsulfonyl, 1,2-dimethylpropylsulfonyl, 2,2-dimethylpropylsulfonyl, 1-ethylpropylsulfonyl, hexylsulfonyl, 1-methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpentylsulfonyl, 4-methylpentylsulfonyl, 1,1-dimethylbutylsulfonyl, 1,2 -dimethylbutylsulfonyl, 1,3-dimethylbutylsulfonyl, 2,2-dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl, 3,3-dimethylbutylsulfonyl, 1-ethylbutylsulfonyl, 2-ethylbutylsulfonyl, 1,1,2-trimethylpropylsulfonyl, 1,2,2 -Trimethylpropylsulfonyl, 1-ethyl-1-methylpropylsulfonyl and 1-ethyl-2-methylpropylsulfonyl. According to the invention, "heteroarylsulfonyl" represents optionally substituted pyridylsulfonyl, pyrimidinylsulfonyl, pyrazinylsulfonyl or optionally substituted polycyclic heteroarylsulfonyl, here in particular optionally substituted quinolinylsulfonyl, for example substituted by fluoro, chloro, bromo, iodo, cyano, nitro, alkyl, haloalkyl, haloalkoxy, amino, alkylamino, alkylcarbonylamino, dialkylamino, or alkoxy groups. According to the invention, “alkylthio”—on its own or as part of a chemical group—is straight-chain or branched S-alkyl, preferably having 1 to 8 or 1 to 6 carbon atoms, such as (C 1 -C 10 )-, (C 1 - C 6 )- or (C 1 -C 4 )-alkylthio, for example (but not limited to) (C 1 -C 6 )-alkylthio such as methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2- methylpropylthio, 1,1-dimethylethylthio, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 1,1-dimethylpropylthio, 1,2-dimethylpropylthio, 2,2-dimethylpropylthio, 1-ethylpropylthio, hexylthio, 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4-methylpentylthio, 1,1-dimethylbutylthio, 1,2-dimethylbutylthio, 1,3-dimethylbutylthio, 2,2-dimethylbutylthio, 2,3-dimethylbutylthio, 3,3- dimethylbutylthio, 1-ethylbutylthio, 2-ethylbutylthio, 1,1,2-trimethylpropylthio, 1,2,2-trimethylpropylthio, 1-ethyl-1-methylpropylthio and 1-ethyl-2-methylpropylthio. According to the invention, “alkenylthio” means an alkenyl radical bonded via a sulfur atom, alkynylthio means an alkynyl radical bonded via a sulfur atom, cycloalkylthio means a cycloalkyl radical bonded via a sulfur atom, and cycloalkenylthio means a cycloalkenyl radical bonded via a sulfur atom. According to the invention, “alkylsulphinyl (alkyl-S(=O)-)”, unless otherwise defined elsewhere, represents alkyl radicals which are bonded to the skeleton via -S(=O)-, such as (C 1 -C 10 )- , (C 1 -C 6 )- or (C 1 -C 4 )-alkylsulphinyl, e.g. B. (but not limited to) (C 1 -C 6 )-alkylsulphinyl such as methylsulphinyl, ethylsulphinyl, propylsulphinyl, 1-methylethylsulphinyl, butylsulphinyl, 1-methylpropylsulphinyl, 2-methylpropylsulphinyl, 1,1-dimethylethylsulphinyl, pentylsulphinyl, 1-methylbutylsulphinyl, 2-Methylbutylsulphinyl, 3-Methylbutylsulphinyl, 1,1-dimethylpropylsulphinyl, 1,2-dimethylpropylsulphinyl, 2,2-dimethylpropylsulphinyl, 1-ethylpropylsulphinyl, hexylsulphinyl, 1-methylpentylsulphinyl, 2-methylpentylsulphinyl, 3-methylpentylsulphinyl, 4- Methylpentylsulphinyl, 1,1-dimethylbutylsulphinyl, 1,2-dimethylbutylsulphinyl, 1,3-dimethylbutylsulphinyl, 2,2-dimethylbutylsulphinyl, 2,3-dimethylbutylsulphinyl, 3,3-dimethylbutylsulphinyl, 1-ethylbutylsulphinyl, 2-ethylbutylsulphinyl, 1, 1,2-trimethylpropylsulphinyl, 1,2,2-trimethylpropylsulphinyl, 1-ethyl-1-methylpropylsulphinyl and 1-ethyl-2-methylpropylsulphinyl. "Alkenylsulfinyl" and "alkynylsulfinyl" are analogous, defined according to the invention as alkenyl or alkynyl radicals which are bonded to the skeleton via -S(=O)-, such as ( C2 - C10 )-, ( C2 - C6 )- or (C 2 -C 4 )-alkenylsulphinyl or (C 3 -C 10 )-, (C 3 -C 6 )- or (C 3 -C 4 )-alkynylsulphinyl. Analogously, "alkenylsulfonyl" and "alkynylsulfonyl" are defined according to the invention as alkenyl or alkynyl radicals which are bonded to the skeleton via -S(=O) 2 -, such as (C 2 -C 10 )-, (C 2 -C 6 )- or (C 2 -C 4 )- alkenylsulfonyl or (C 3 -C 10 )-, (C 3 -C 6 )- or (C 3 -C 4 )-alkynylsulfonyl. "Alkoxy" means an alkyl radical bonded through an oxygen atom, e.g. B. (but not limited to) (C 1 -C 6 )-alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1-dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1, 1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2- trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy and 1-ethyl-2-methylpropoxy. Alkenyloxy means an alkenyl radical bonded via an oxygen atom, alkynyloxy means an alkynyl radical bonded via an oxygen atom, such as (C 2 -C 10 )-, (C 2 -C 6 )- or (C 2 -C 4 )-alkenoxy or (C 3 -C 10 ), (C 3 -C 6 ) or (C 3 -C 4 ) alkynoxy. "Cycloalkyloxy" means an oxygen-bonded cycloalkyl radical and cycloalkenyloxy means an oxygen-bonded cycloalkenyl radical. According to the invention, "alkylcarbonyl" (alkyl-C(=O)-), unless otherwise defined elsewhere, represents alkyl radicals which are bonded to the skeleton via -C(=O)-, such as (C 1 -C 10 ) -, (C 1 -C 6 )- or (C 1 -C 4 )- alkylcarbonyl. The number of carbon atoms refers to the alkyl radical in the alkylcarbonyl group. According to the invention, "alkenylcarbonyl" and "alkynylcarbonyl", unless otherwise defined elsewhere, stand for alkenyl or alkynyl radicals which are bonded to the skeleton via -C(=O)-, such as (C 2 -C 10 )- , (C 2 -C 6 )- or (C 2 -C 4 )-alkenylcarbonyl or (C 2 -C 10 )-, (C 2 -C 6 )- or (C 2 -C 4 )- alkynylcarbonyl. The number of carbon atoms refers to the alkenyl or alkynyl radical in the alkenyl or alkynylcarbonyl group. "Alkoxycarbonyl (alkyl-OC(=O)-)", unless otherwise defined elsewhere: alkyl radicals which are bonded to the skeleton via -OC(=O)-, such as (C 1 -C 10 )-, ( C 1 -C 6 ) or (C 1 -C 4 ) alkoxycarbonyl. The number of carbon atoms refers to the alkyl radical in the alkoxycarbonyl group. According to the invention, “alkenyloxycarbonyl” and “alkynyloxycarbonyl”, unless otherwise defined elsewhere, stand for alkenyl or alkynyl radicals which are bonded to the skeleton via -OC(=O)-, such as (C 2 -C 10 )-. , (C 2 -C 6 )- or (C 2 -C 4 )-alkenyloxycarbonyl or (C 3 -C 10 )-, (C 3 -C 6 )- or (C 3 -C 4 )- alkynyloxycarbonyl. The number of carbon atoms refers to the alkenyl or alkynyl radical in the alkene or alkynyloxycarbonyl group. According to the invention, the term “alkylcarbonyloxy” (alkyl-C(=O)-O-), unless otherwise defined elsewhere, represents alkyl radicals attached to the oxygen via a carbonyloxy group (-C(=O)-O-). are attached to the skeleton, such as (C 1 -C 10 )-, (C 1 -C 6 )- or (C 1 -C 4 )-alkylcarbonyloxy. The number of carbon atoms refers to the alkyl radical in the alkylcarbonyloxy group. Analogously, “alkenylcarbonyloxy” and “alkynylcarbonyloxy” are defined according to the invention as alkenyl or alkynyl radicals which are bonded to the skeleton with the oxygen via (-C(=O)-O-), such as (C 2 -C 10 )-, (C 2 -C 6 )- or (C 2 -C 4 )-alkenylcarbonyloxy or (C 2 -C 10 )-, (C 2 -C 6 )- or (C 2 -C 4 )-alkynylcarbonyloxy. The number of carbon atoms refers to the alkenyl or alkynyl radical in the alkenyl or alkynylcarbonyloxy group. In short forms such as C(O)R 13 , C(O)OR 13 , OC(O)NR 11 R 12 , or C(O)NR 11 R 12 , the short form O in brackets stands for a via a double bond to the adjacent carbon atom bonded oxygen atom. In short forms such as OC(S)OR 13 , OC(S)SR 14 , OC(S)NR 11 R 12 , the short form S given in brackets stands for a sulfur atom bonded to the adjacent carbon atom via a double bond. The term “aryl” means an optionally substituted mono-, bi- or polycyclic aromatic system with preferably 6 to 14, in particular 6 to 10, ring carbon atoms, for example phenyl, naphthyl, anthryl, phenanthrenyl and the like, preferably phenyl. The term “optionally substituted aryl” also includes polycyclic systems such as tetrahydronaphthyl, indenyl, indanyl, fluorenyl, biphenylyl, where the binding site is on the aromatic system. Systematically, “aryl” is generally also included in the term “optionally substituted phenyl”. Preferred aryl substituents here are, for example, hydrogen, halogen, alkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, halocycloalkyl, alkenyl, alkynyl, aryl, arylalkyl, arylalkenyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, alkoxyalkyl, alkylthio, haloalkylthio, haloalkyl, alkoxy, Haloalkoxy, cycloalkoxy, cycloalkylalkoxy, aryloxy, heteroaryloxy, alkoxyalkoxy, alkynylalkoxy, alkenyloxy, bis-alkylaminoalkoxy, tris-[alkyl]silyl, bis-[alkyl]arylsilyl, bis-[alkyl]alkylsilyl, tris-[alkyl]silylalkynyl, arylalkynyl, heteroarylalkynyl, alkylalkynyl, cycloalkylalkynyl, haloalkylalkynyl, heterocyclyl-N-alkoxy, nitro, cyano, amino, alkylamino, bis-alkylamino, alkylcarbonylamino, cycloalkylcarbonylamino, arylcarbonylamino, alkoxycarbonylamino, alkoxycarbonylalkylamino, arylalkoxycarbonylalkylamino, hydroxycarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, cycloalkylaminocarbonyl, bis-alkylaminocarbonyl, heteroarylalkoxy, arylalkoxy. A heterocyclic radical (heterocyclyl) contains at least one heterocyclic ring (=carbocyclic ring in which at least one carbon atom is replaced by a heteroatom, preferably by a heteroatom from the group N, O, S, P) of saturated, unsaturated, partially saturated or is heteroaromatic and can be unsubstituted or substituted, the point of attachment being located on a ring atom. When the heterocyclyl radical or heterocyclic ring is optionally substituted, it may be fused to other carbocyclic or heterocyclic rings. In the case of optionally substituted heterocyclyl, polycyclic systems are also included, such as, for example, 8-azabicyclo[3.2.1]octanyl, 8-azabicyclo[2.2.2]octanyl or 1-azabicyclo[2.2.1]heptyl. In the case of optionally substituted heterocyclyl, spirocyclic systems are also included, such as 1-oxa-5-azaspiro[2.3]hexyl. Unless defined otherwise, the heterocyclic ring preferably contains 3 to 9 ring atoms, in particular 3 to 6 ring atoms, and one or more, preferably 1 to 4, in particular 1, 2 or 3 heteroatoms in the heterocyclic ring, preferably from the group N, O, and S, but not two oxygen atoms should be directly adjacent, such as with a heteroatom from the group N, O and S 1- or 2- or 3-pyrrolidinyl, 3,4-dihydro-2H-pyrrole-2- or 3 -yl, 2,3-dihydro-1H-pyrrol-1- or 2- or 3- or 4- or 5-yl; 2,5-dihydro-1H-pyrrole-1- or 2- or 3-yl, 1- or 2- or 3- or 4-piperidinyl; 2,3,4,5-tetrahydropyridin-2- or 3- or 4- or 5-yl or 6-yl; 1,2,3,6-tetrahydropyridin-1- or 2- or 3- or 4- or 5- or 6-yl; 1,2,3,4-tetrahydropyridin-1- or 2- or 3- or 4- or 5- or 6-yl; 1,4-dihydropyridin-1- or 2- or 3- or 4-yl; 2,3-dihydropyridin-2- or 3- or 4- or 5- or 6-yl; 2,5-dihydropyridine-2- or 3- or 4- or 5- or 6-yl, 1- or 2- or 3- or 4-azepanyl; 2,3,4,5-tetrahydro-1H-azepin-1- or 2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,4,7-tetrahydro-1H-azepin-1- or 2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,6,7-tetrahydro-1H-azepin-1- or 2- or 3- or 4-yl; 3,4,5,6-tetrahydro-2H-azepin-2- or 3- or 4- or 5- or 6- or 7-yl; 4,5-dihydro-1H-azepin-1- or 2- or 3- or 4-yl; 2,5-dihydro-1H-azepin-1- or -2- or 3- or 4- or 5- or 6- or 7-yl; 2,7-dihydro-1H-azepin-1- or -2- or 3- or 4-yl; 2,3-dihydro-1H-azepin-1- or -2- or 3- or 4- or 5- or 6- or 7-yl; 3,4-dihydro-2H-azepin-2- or 3- or 4- or 5- or 6- or 7-yl; 3,6-dihydro-2H-azepin-2- or 3- or 4- or 5- or 6- or 7-yl; 5,6-dihydro-2H-azepin-2- or 3- or 4- or 5- or 6- or 7-yl; 4,5-dihydro-3H-azepin-2- or 3- or 4- or 5- or 6- or 7-yl; 1H-azepin-1- or -2- or 3- or 4- or 5- or 6- or 7-yl; 2H-azepin-2- or 3- or 4- or 5- or 6- or 7-yl; 3H-azepin-2- or 3- or 4- or 5- or 6- or 7-yl; 4H-azepine-2- or 3- or 4- or 5- or 6- or 7-yl, 2- or 3-oxolanyl (= 2- or 3-tetrahydrofuranyl); 2,3-dihydrofuran-2- or 3- or 4- or 5-yl; 2,5-dihydrofuran-2- or 3-yl, 2- or 3- or 4-oxanyl (= 2- or 3- or 4-tetrahydropyranyl); 3,4-dihydro-2H-pyran-2- or 3- or 4- or 5- or 6-yl; 3,6-dihydro-2H-pyran-2- or 3- or 4- or 5- or 6-yl; 2H-pyran-2- or 3- or 4- or 5- or 6-yl; 4H-pyran-2- or 3- or 4-yl, 2- or 3- or 4-oxepanyl; 2,3,4,5-tetrahydrooxepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,4,7-tetrahydrooxepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,6,7-tetrahydrooxepin-2- or 3- or 4-yl; 2,3-dihydrooxepin-2- or 3- or 4- or 5- or 6- or 7-yl; 4,5-dihydrooxepin-2- or 3- or 4-yl; 2,5-dihydrooxepin-2- or 3- or 4- or 5- or 6- or 7-yl; oxepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2- or 3-tetrahydrothiophenyl; 2,3-dihydrothiophene-2- or 3- or 4- or 5-yl; 2,5-dihydrothiophen-2- or 3-yl; tetrahydro-2H-thiopyran-2- or 3- or 4-yl; 3,4-dihydro-2H-thiopyran-2- or 3- or 4- or 5- or 6-yl; 3,6-dihydro-2H-thiopyran-2- or 3- or 4- or 5- or 6-yl; 2H-thiopyran-2- or 3- or 4- or 5- or 6-yl; 4H-thiopyran-2- or 3- or 4-yl. Examples of preferred 3-ring and 4-ring heterocycles are 1- or 2-aziridinyl, oxiranyl, thiiranyl, 1- or 2- or 3-azetidinyl, 2- or 3-oxetanyl, 2- or 3-thietanyl, 1,3 -dioxetan-2-yl. Further examples of “heterocyclyl” are a partially or fully hydrogenated heterocyclic radical having two heteroatoms from the group N, O and S, such as 1- or 2- or 3- or 4-pyrazolidinyl; 4,5-dihydro-3H-pyrazol-3- or 4- or 5-yl; 4,5-dihydro-1H-pyrazol-1- or 3- or 4- or 5-yl; 2,3-dihydro-1H-pyrazol-1- or 2- or 3- or 4- or 5-yl; 1- or 2- or 3- or 4-imidazolidinyl; 2,3-dihydro-1H-imidazol-1- or 2- or 3- or 4-yl; 2,5-dihydro-1H-imidazol-1- or 2- or 4- or 5-yl; 4,5-dihydro-1H-imidazol-1- or 2- or 4- or 5-yl; hexahydropyridazin-1- or 2- or 3- or 4-yl; 1,2,3,4-tetrahydropyridazin-1- or 2- or 3- or 4- or 5- or 6-yl; 1,2,3,6-tetrahydropyridazin-1- or 2- or 3- or 4- or 5- or 6-yl; 1,4,5,6-tetrahydropyridazin-1- or 3- or 4- or 5- or 6-yl; 3,4,5,6-tetrahydropyridazin-3- or 4- or 5-yl; 4,5-dihydropyridazin-3- or 4-yl; 3,4-dihydropyridazin-3- or 4- or 5- or 6-yl; 3,6-dihydropyridazin-3- or 4-yl; 1,6-dihydropyriazin-1- or 3- or 4- or 5- or 6-yl; hexahydropyrimidin-1- or 2- or 3- or 4-yl; 1,4,5,6-tetrahydropyrimidin-1- or 2- or 4- or 5- or 6-yl; 1,2,5,6-tetrahydropyrimidin-1- or 2- or 4- or 5- or 6-yl; 1,2,3,4-tetrahydropyrimidin-1- or 2- or 3- or 4- or 5- or 6-yl; 1,6-dihydropyrimidin-1- or 2- or 4- or 5- or 6-yl; 1,2-dihydropyrimidin-1- or 2- or 4- or 5- or 6-yl; 2,5-dihydropyrimidin-2- or 4- or 5-yl; 4,5-dihydropyrimidin-4- or 5- or 6-yl; 1,4-dihydropyrimidin-1- or 2- or 4- or 5- or 6-yl; 1- or 2- or 3-piperazinyl; 1,2,3,6-tetrahydropyrazin-1- or 2- or 3- or 5- or 6-yl; 1,2,3,4-tetrahydropyrazin-1- or 2- or 3- or 4- or 5- or 6-yl; 1,2-dihydropyrazine-1- or 2- or 3- or 5- or 6-yl; 1,4-dihydropyrazin-1- or 2- or 3-yl; 2,3-dihydropyrazin-2- or 3- or 5- or 6-yl; 2,5-dihydropyrazin-2- or 3-yl; 1,3-dioxolan-2- or 4- or 5-yl; 1,3-dioxol-2- or 4-yl; 1,3-dioxan-2- or 4- or 5-yl; 4H-1,3-dioxin-2- or 4- or 5- or 6-yl; 1,4-dioxan-2- or 3- or 5- or 6-yl; 2,3-dihydro-1,4-dioxin-2- or 3- or 5- or 6-yl; 1,4-dioxin-2- or 3-yl; 1,2-dithiolan-3- or 4-yl; 3H-1,2-dithiol-3- or 4- or 5-yl; 1,3-dithiolan-2- or 4-yl; 1,3-dithiol-2- or 4-yl; 1,2-dithian-3- or 4-yl; 3,4-dihydro-1,2-dithiin-3- or 4- or 5- or 6-yl; 3,6-dihydro-1,2-dithiin-3- or 4-yl; 1,2-dithiin-3- or 4-yl; 1,3-dithian-2- or 4- or 5-yl; 4H-1,3-dithiin-2- or 4- or 5- or 6-yl; isoxazolidin-2- or 3- or 4- or 5-yl; 2,3-dihydroisoxazol-2- or 3- or 4- or 5-yl; 2,5-dihydroisoxazol-2- or 3- or 4- or 5-yl; 4,5-dihydroisoxazol-3- or 4- or 5-yl; 1,3-oxazolidin-2- or 3- or 4- or 5-yl; 2,3-dihydro-1,3-oxazol-2- or 3- or 4- or 5-yl; 2,5-dihydro-1,3-oxazol-2- or 4- or 5-yl; 4,5-dihydro-1,3-oxazol-2- or 4- or 5-yl; 1,2-oxazinan-2- or 3- or 4- or 5- or 6-yl; 3,4-dihydro-2H-1,2-oxazin-2- or 3- or 4- or 5- or 6-yl; 3,6-dihydro-2H-1,2-oxazin-2- or 3- or 4- or 5- or 6-yl; 5,6-dihydro-2H-1,2-oxazin-2- or 3- or 4- or 5- or 6-yl; 5,6-dihydro-4H-1,2-oxazin-3- or 4- or 5- or 6-yl; 2H-1,2-oxazin-2- or 3- or 4- or 5- or 6-yl; 6H-1,2-oxazin-3- or 4- or 5- or 6-yl; 4H-1,2-oxazin-3- or 4- or 5- or 6-yl; 1,3-oxazinan-2- or 3- or 4- or 5- or 6-yl; 3,4-dihydro-2H-1,3-oxazin-2- or 3- or 4- or 5- or 6-yl; 3,6-dihydro-2H-1,3-oxazin-2- or 3- or 4- or 5- or 6-yl; 5,6-dihydro-2H-1,3-oxazin-2- or 4- or 5- or 6-yl; 5,6-dihydro-4H-1,3-oxazin-2- or 4- or 5- or 6-yl; 2H-1,3-oxazin-2- or 4- or 5- or 6-yl; 6H-1,3-oxazin-2- or 4- or 5- or 6-yl; 4H-1,3-oxazin-2- or 4- or 5- or 6-yl; morpholin-2- or 3- or 4-yl; 3,4-dihydro-2H-1,4-oxazin-2- or 3- or 4- or 5- or 6-yl; 3,6-dihydro-2H-1,4-oxazin-2- or 3- or 5- or 6-yl; 2H-1,4-oxazin-2- or 3- or 5- or 6-yl; 4H-1,4-oxazin-2- or 3-yl; 1,2-oxazepan-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,4,5-Tetrahydro-1,2-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,4,7-tetrahydro-1,2-oxazepine-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,6,7-tetrahydro-1,2-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,5,6,7-tetrahydro-1,2-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 4,5,6,7-tetrahydro-1,2-oxazepine-3- or 4- or 5- or 6- or 7-yl; 2,3-dihydro-1,2-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,5-dihydro-1,2-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,7-dihydro-1,2-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 4,5-dihydro-1,2-oxazepine-3- or 4- or 5- or 6- or 7-yl; 4,7-dihydro-1,2-oxazepine-3- or 4- or 5- or 6- or 7-yl; 6,7-dihydro-1,2-oxazepin-3- or 4- or 5- or 6- or 7-yl; 1,2-oxazepine-3- or 4- or 5- or 6- or 7-yl; 1,3-oxazepan-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,4,5-tetrahydro-1,3-oxazepine-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,4,7-tetrahydro-1,3-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,6,7-tetrahydro-1,3-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,5,6,7-tetrahydro-1,3-oxazepine-2- or 4- or 5- or 6- or 7-yl; 4,5,6,7-tetrahydro-1,3-oxazepine-2- or 4- or 5- or 6- or 7-yl; 2,3-dihydro-1,3-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,5-dihydro-1,3-oxazepine-2- or 4- or 5- or 6- or 7-yl; 2,7-dihydro-1,3-oxazepin-2- or 4- or 5- or 6- or 7-yl; 4,5-dihydro-1,3-oxazepine-2- or 4- or 5- or 6- or 7-yl; 4,7-dihydro-1,3-oxazepin-2- or 4- or 5- or 6- or 7-yl; 6,7-dihydro-1,3-oxazepin-2- or 4- or 5- or 6- or 7-yl; 1,3-oxazepin-2- or 4- or 5- or 6- or 7-yl; 1,4-oxazepan-2- or 3- or 5- or 6- or 7-yl; 2,3,4,5-Tetrahydro-1,4-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,4,7-tetrahydro-1,4-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3,6,7-tetrahydro-1,4-oxazepine-2- or 3- or 5- or 6- or 7-yl; 2,5,6,7-tetrahydro-1,4-oxazepin-2- or 3- or 5- or 6- or 7-yl; 4,5,6,7-tetrahydro-1,4-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 2,3-dihydro-1,4-oxazepin-2- or 3- or 5- or 6- or 7-yl; 2,5-dihydro-1,4-oxazepin-2- or 3- or 5- or 6- or 7-yl; 2,7-dihydro-1,4-oxazepin-2- or 3- or 5- or 6- or 7-yl; 4,5-dihydro-1,4-oxazepin-2- or 3- or 4- or 5- or 6- or 7-yl; 4,7-dihydro-1,4-oxazepine-2- or 3- or 4- or 5- or 6- or 7- yl; 6,7-dihydro-1,4-oxazepin-2- or 3- or 5- or 6- or 7-yl; 1,4-oxazepine-2- or 3- or 5- or 6- or 7-yl; isothiazolidin-2- or 3- or 4- or 5-yl; 2,3-dihydroisothiazol-2- or 3- or 4- or 5-yl; 2,5-dihydroisothiazol-2- or 3- or 4- or 5-yl; 4,5-dihydroisothiazol-3- or 4- or 5-yl; 1,3-thiazolidin-2- or 3- or 4- or 5-yl; 2,3-dihydro-1,3-thiazol-2- or 3- or 4- or 5-yl; 2,5-dihydro-1,3-thiazol-2- or 4- or 5-yl; 4,5-dihydro-1,3-thiazol-2- or 4- or 5-yl; 1,3-thiazinan-2- or 3- or 4- or 5- or 6-yl; 3,4-dihydro-2H-1,3-thiazine-2- or 3- or 4- or 5- or 6-yl; 3,6-dihydro-2H-1,3-thiazine-2- or 3- or 4- or 5- or 6-yl; 5,6-dihydro-2H-1,3-thiazine-2- or 4- or 5- or 6-yl; 5,6-dihydro-4H-1,3-thiazine-2- or 4- or 5- or 6-yl; 2H-1,3-thiazine-2- or 4- or 5- or 6-yl; 6H-1,3-thiazine-2- or 4- or 5- or 6-yl; 4H-1,3-thiazine-2- or 4- or 5- or 6-yl. Further examples of “heterocyclyl” are a partially or fully hydrogenated heterocyclic radical with 3 heteroatoms from the group N, O and S, such as 1,4,2-dioxazolidin-2- or 3- or 5-yl; 1,4,2-dioxazol-3- or 5-yl; 1,4,2-dioxazinan-2- or -3- or 5- or 6-yl; 5,6-dihydro-1,4,2-dioxazin-3- or 5- or 6-yl; 1,4,2-dioxazin-3- or 5- or 6-yl; 1,4,2-dioxazepan-2- or 3- or 5- or 6- or 7-yl; 6,7-dihydro-5H-1,4,2-dioxazepin-3- or 5- or 6- or 7-yl; 2,3-dihydro-7H-1,4,2-dioxazepine-2- or 3- or 5- or 6- or 7-yl; 2,3-dihydro-5H-1,4,2-dioxazepine-2- or 3- or 5- or 6- or 7-yl; 5H-1,4,2-dioxazepin-3- or 5- or 6- or 7-yl; 7H-1,4,2-dioxazepin-3- or 5- or 6- or 7-yl. Structural examples of optionally further substituted heterocycles are also listed below:
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Die oben aufgeführten Heterocyclen sind bevorzugt beispielsweise durch Wasserstoff, Halogen, Alkyl, Haloalkyl, Hydroxy, Alkoxy, Cycloalkoxy, Aryloxy, Alkoxyalkyl, Alkoxyalkoxy, Cycloalkyl, Halocycloalkyl, Aryl, Arylalkyl, Heteroaryl, Heterocyclyl, Alkenyl, Alkylcarbonyl, Cycloalkylcarbonyl, Arylcarbonyl, Heteroarylcarbonyl, Alkoxycarbonyl, Hydroxycarbonyl, Cycloalkoxycarbonyl, Cycloalkylalkoxycarbonyl, Alkoxycarbonylalkyl, Arylalkoxycarbonyl, Arylalkoxycarbonylalkyl, Alkinyl, Alkinylalkyl, Alkylalkinyl, Tris-alkylsilylalkinyl, Nitro, Amino, Cyano, Haloalkoxy, Haloalkylthio, Alkylthio, Hydrothio, Hydroxyalkyl, Oxo, Heteroarylalkoxy, Arylalkoxy, Heterocyclylalkoxy, Heterocyclylalkylthio, Heterocyclyloxy, Heterocyclylthio, Heteroaryloxy, Bis- alkylamino, Alkylamino, Cycloalkylamino, Hydroxycarbonylalkylamino, Alkoxycarbonylalkylamino, Arylalkoxycarbonylalkylamino, Alkoxycarbonylalkyl(alkyl)amino, Aminocarbonyl, Alkylaminocarbonyl, Bis-alkylaminocarbonyl, Cycloalkylaminocarbonyl, Hydroxycarbonylalkylaminocarbonyl, Alkoxycarbonylalkylaminocarbonyl, Arylalkoxycarbonylalkylaminocarbonyl substituiert. Wenn ein Grundkörper "durch einen oder mehrere Reste" aus einer Aufzählung von Resten (= Gruppe) oder einer generisch definierten Gruppe von Resten substituiert ist, so schließt dies jeweils die gleichzeitige Substitution durch mehrere gleiche und/oder strukturell unterschiedliche Reste ein. Handelt es sich es sich um einen teilweise oder vollständig gesättigten Stickstoff-Heterocyclus, so kann dieser sowohl über Kohlenstoff als auch über den Stickstoff mit dem Rest des Moleküls verknüpft sein. Als Substituenten für einen substituierten heterocyclischen Rest kommen die weiter unten genannten Substituenten in Frage, zusätzlich auch Oxo und Thioxo. Die Oxogruppe als Substituent an einem Ring- C-Atom bedeutet dann beispielsweise eine Carbonylgruppe im heterocyclischen Ring. Dadurch sind vorzugsweise auch Lactone und Lactame umfasst. Die Oxogruppe kann auch an den Heteroring-atomen, die in verschiedenen Oxidationsstufen existieren können, z.B. bei N und S, auftreten und bilden dann beispielsweise die divalenten Gruppen N(O), S(O) (auch kurz SO) und S(O)2 (auch kurz SO2) im heterocyclischen Ring. Im Fall von –N(O)- und –S(O)-Gruppen sind jeweils beide Enantiomere umfasst. Erfindungsgemäß steht der Ausdruck „Heteroaryl“ für heteroaromatische Verbindungen, d. h. vollständig ungesättigte aromatische heterocyclische Verbindungen, vorzugsweise für 5- bis 7-gliedrige Ringe mit 1 bis 4, vorzugsweise 1 oder 2 gleichen oder verschiedenen Heteroatomen, vorzugsweise O, S oder N. Erfindungsgemäße Heteroaryle sind beispielsweise 1H-Pyrrol-1-yl; 1H-Pyrrol-2-yl; 1H-Pyrrol- 3-yl; Furan-2-yl; Furan-3-yl; Thien-2-yl; Thien-3-yl, 1H-Imidazol-1-yl; 1H-Imidazol-2-yl; 1H-Imidazol- 4-yl; 1H-Imidazol-5-yl; 1H-Pyrazol-1-yl; 1H-Pyrazol-3-yl; 1H-Pyrazol-4-yl; 1H-Pyrazol-5-yl, 1H-1,2,3- Triazol-1-yl, 1H-1,2,3-Triazol-4-yl, 1H-1,2,3-Triazol-5-yl, 2H-1,2,3-Triazol-2-yl, 2H-1,2,3-Triazol-4-yl, 1H-1,2,4-Triazol-1-yl, 1H-1,2,4-Triazol-3-yl, 4H-1,2,4-Triazol-4-yl, 1,2,4-Oxadiazol-3-yl, 1,2,4- Oxadiazol-5-yl, 1,3,4-Oxadiazol-2-yl, 1,2,3-Oxadiazol-4-yl, 1,2,3-Oxadiazol-5-yl, 1,2,5-Oxadiazol-3-yl, Azepinyl, Pyridin-2-yl, Pyridin-3-yl, Pyridin-4-yl, Pyrazin-2-yl, Pyrazin-3-yl, Pyrimidin-2-yl, Pyrimidin-4-yl, Pyrimidin-5-yl, Pyridazin-3-yl, Pyridazin-4-yl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl, 1,2,4-Triazin-6-yl, 1,2,3-Triazin-4-yl, 1,2,3-Triazin-5-yl, 1,2,4-, 1,3,2-, 1,3,6- und 1,2,6-Oxazinyl, Isoxazol-3-yl, Isoxazol-4-yl, Isoxazol-5-yl, 1,3-Oxazol-2-yl, 1,3-Oxazol-4-yl, 1,3- Oxazol-5-yl, Isothiazol-3-yl, Isothiazol-4-yl, Isothiazol-5-yl, 1,3-Thiazol-2-yl, 1,3-Thiazol-4-yl, 1,3- Thiazol-5-yl, Oxepinyl, Thiepinyl, 1,2,4-Triazolonyl und 1,2,4-Diazepinyl, 2H-1,2,3,4-Tetrazol-5-yl, 1H-1,2,3,4-Tetrazol-5-yl, 1,2,3,4-Oxatriazol-5-yl, 1,2,3,4-Thiatriazol-5-yl, 1,2,3,5-Oxatriazol-4-yl, 1,2,3,5-Thiatriazol-4-yl. Die erfindungsgemäßen Heteroarylgruppen können ferner mit einem oder mehreren, gleichen oder verschiedenen Resten substituiert sein. Sind zwei benachbarte Kohlenstoffatome Bestandteil eines weiteren aromatischen Rings, so handelt es sich um annellierte heteroaromatische Systeme, wie benzokondensierte oder mehrfach annellierte Heteroaromaten. Bevorzugt sind beispielsweise Chinoline (z. B. Chinolin-2-yl, Chinolin-3-yl, Chinolin-4-yl, Chinolin-5- yl, Chinolin-6-yl, Chinolin-7-yl, Chinolin-8-yl); Isochinoline (z. B. Isochinolin-1-yl, Isochinolin-3-yl, Isochinolin-4-yl, Isochinolin-5-yl, Isochinolin-6-yl, Isochinolin-7-yl, Isochinolin-8-yl); Chinoxalin; Chinazolin; Cinnolin; 1,5-Naphthyridin; 1,6-Naphthyridin; 1,7-Naphthyridin; 1,8-Naphthyridin; 2,6- Naphthyridin; 2,7-Naphthyridin; Phthalazin; Pyridopyrazine; Pyridopyrimidine; Pyridopyridazine; Pteridine; Pyrimidopyrimidine. Beispiele für Heteroaryl sind auch 5- oder 6-gliedrige benzokondensierte Ringe aus der Gruppe 1H-Indol-1-yl, 1H-Indol-2-yl, 1H-Indol-3-yl, 1H-Indol-4-yl, 1H-Indol-5-yl, 1H- Indol-6-yl, 1H-Indol-7-yl, 1-Benzofuran-2-yl, 1-Benzofuran-3-yl, 1-Benzofuran-4-yl, 1-Benzofuran-5- yl, 1-Benzofuran-6-yl, 1-Benzofuran-7-yl, 1-Benzothiophen-2-yl, 1-Benzothiophen-3-yl, 1- Benzothiophen-4-yl, 1-Benzothiophen-5-yl, 1-Benzothiophen-6-yl, 1-Benzothiophen-7-yl, 1H-Indazol- 1-yl, 1H-Indazol-3-yl, 1H-Indazol-4-yl, 1H-Indazol-5-yl, 1H-Indazol-6-yl, 1H-Indazol-7-yl, 2H-Indazol- 2-yl, 2H-Indazol-3-yl, 2H-Indazol-4-yl, 2H-Indazol-5-yl, 2H-Indazol-6-yl, 2H-Indazol-7-yl, 2H- Isoindol-2-yl, 2H-Isoindol-1-yl, 2H-Isoindol-3-yl, 2H-Isoindol-4-yl, 2H-Isoindol-5-yl, 2H-Isoindol-6-yl; 2H-Isoindol-7-yl, 1H-Benzimidazol-1-yl, 1H-Benzimidazol-2-yl, 1H-Benzimidazol-4-yl, 1H- Benzimidazol-5-yl, 1H-Benzimidazol-6-yl, 1H-Benzimidazol-7-yl, 1,3-Benzoxazol-2-yl, 1,3- Benzoxazol-4-yl, 1,3-Benzoxazol-5-yl, 1,3-Benzoxazol-6-yl, 1,3-Benzoxazol-7-yl, 1,3-Benzthiazol-2-yl, 1,3-Benzthiazol-4-yl, 1,3-Benzthiazol-5-yl, 1,3-Benzthiazol-6-yl, 1,3-Benzthiazol-7-yl, 1,2- Benzisoxazol-3-yl, 1,2-Benzisoxazol-4-yl, 1,2-Benzisoxazol-5-yl, 1,2-Benzisoxazol-6-yl, 1,2- Benzisoxazol-7-yl, 1,2-Benzisothiazol-3-yl, 1,2-Benzisothiazol-4-yl, 1,2-Benzisothiazol-5-yl, 1,2- Benzisothiazol-6-yl, 1,2-Benzisothiazol-7-yl. Die Bezeichnung "Halogen" bedeutet beispielsweise Fluor, Chlor, Brom oder Iod. Wird die Bezeichnung für einen Rest verwendet, dann bedeutet "Halogen" beispielsweise ein Fluor-, Chlor-, Brom- oder Iodatom. Erfindungsgemäß bedeutet „Alkyl“ einen geradkettigen oder verzweigten offenkettigen, gesättigten Kohlenwasserstoffrest, der gegebenenfalls ein- oder mehrfach substituiert ist und im letzteren Falle als „substituiertes Alkyl“ bezeichnet wird. Bevorzugte Substituenten sind Halogenatome, Alkoxy-, Haloalkoxy-, Cyano-, Alkylthio, Haloalkylthio-, Amino- oder Nitrogruppen, besonders bevorzugt sind Methoxy, Methyl, Fluoralkyl, Cyano, Nitro, Fluor, Chlor, Brom oder Iod. Die Vorsilbe „Bis“ schließt auch die Kombination unterschiedlicher Alkylreste ein, z. B. Methyl(Ethyl) oder Ethyl(Methyl). „Haloalkyl“, „-alkenyl“ und „-alkinyl“ bedeuten durch gleiche oder verschiedene Halogenatome, teilweise oder vollständig substituiertes Alkyl, Alkenyl bzw. Alkinyl, z.B. Monohaloalkyl (= Monohalogenalkyl) wie z. B. CH2 CH2Cl, CH2CH2Br, CHClCH3, CH2Cl, CH2F; Perhaloalkyl wie z. B. CCl3, CClF2, CFCl2, CF2CClF2, CF2CClFCF3; Polyhaloalkyl wie z. B. CH2CHFCl, CF2CClFH, CF2CBrFH, CH2CF3; Der Begriff „Perhaloalkyl“ umfasst dabei auch den Begriff „Perfluoralkyl“. „Teilfluoriertes Alkyl“ bedeutet einen geradkettigen oder verzweigten, gesättigten Kohlenwasserstoff, der einfach oder mehrfach durch Fluor substituiert ist, wobei sich die entsprechenden Fluoratome als Substituenten an einem oder mehreren verschiedenen Kohlenstoffatomen der geradkettigen oder verzweigten Kohlenwasserstoffkette befinden können, wie z. B. CHFCH3, CH2CH2F, CH2CH2CF3, CHF2, CH2F, CHFCF2CF3. „Teilfluoriertes Haloalkyl“ bedeutet einen geradkettigen oder verzweigten, gesättigten Kohlenwasserstoff, der durch verschiedenene Halogenatomen mit mindestens einem Fluoratom substituiert ist, wobei alle anderen gegebenenfalls vorhandenen Halogenatome ausgewählt sind aus der Gruppe Fluor, Chlor oder Brom, Iod. Die entsprechenden Halogenatome können sich dabei als Substituenten an einem oder mehreren verschiedenen Kohlenstoffatomen der geradkettigen oder verzweigten Kohlenwasserstoffkette befinden. Teilfluoriertes Haloalkyl schließt auch die vollständige Substitution der geradkettigen oder verzweigten Kette durch Halogen unter Beteiligung von mindestens einem Fluoratom ein. „Haloalkoxy“ ist z.B. OCF3, OCHF2, OCH2F, OCF2CF3, OCH2CF3 und OCH2CH2Cl; Entsprechendes gilt für Haloalkenyl und andere durch Halogen substituierten Reste. Der hier beispielhaft genannte Ausdruck "(C1-C4)-Alkyl" bedeutet eine Kurzschreibweise für geradkettiges oder verzweigtes Alkyl mit einem bis 4 Kohlenstoffatomen entsprechend der Bereichsangabe für C-Atome, d. h. umfasst die Reste Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methylpropyl oder tert-Butyl. Allgemeine Alkylreste mit einem größeren angegebenen Bereich von C-Atomen, z. B. "(C1-C6)-Alkyl", umfassen entsprechend auch geradkettige oder verzweigte Alkylreste mit einer größeren Zahl von C-Atomen, d. h. gemäß Beispiel auch die Alkylreste mit 5 und 6 C-Atomen. Wenn nicht speziell angegeben, sind bei den Kohlenwasserstoffresten wie Alkyl-, Alkenyl- und Alkinylresten, auch in zusammengesetzten Resten, die niederen Kohlenstoffgerüste, z.B. mit 1 bis 6 C-Atomen bzw. bei ungesättigten Gruppen mit 2 bis 6 C-Atomen, bevorzugt. Alkylreste, auch in den zusammengesetzten Resten wie Alkoxy, Haloalkyl usw., bedeuten z.B. Methyl, Ethyl, n- oder i-Propyl, n-, i-, t- oder 2-Butyl, Pentyle, Hexyle, wie n-Hexyl, i-Hexyl und 1,3-Dimethylbutyl, Heptyle, wie n-Heptyl, 1-Methylhexyl und 1,4-Dimethylpentyl; Alkenyl- und Alkinylreste haben die Bedeutung der den Alkylresten entsprechenden möglichen ungesättigten Reste, wobei mindestens eine Doppelbindung bzw. Dreifachbindung enthalten ist. Bevorzugt sind Reste mit einer Doppelbindung bzw. Dreifachbindung. Der Begriff „Alkenyl“ schließt insbesondere auch geradkettige oder verzweigte offenkettige Kohlenwasserstoffreste mit mehr als einer Doppelbindung ein, wie 1,3-Butadienyl und 1,4-Pentadienyl, aber auch Allenyl- oder Kumulenyl-reste mit einer bzw. mehreren kumulierten Doppelbindungen, wie beispielsweise Allenyl (1,2-Propadienyl), 1,2-Butadienyl und 1,2,3-Pentatrienyl. Alkenyl bedeutet z.B. Vinyl, welches ggf. durch weitere Alkylreste substituiert sein kann, z B. (aber nicht beschränkt auf) (C2-C6)-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1- butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3- butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2- propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3- pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl. Der Begriff „Alkinyl“ schließt insbesondere auch geradkettige oder verzweigte offenkettige Kohlenwasserstoffreste mit mehr als einer Dreifachbindung oder auch mit einer oder mehreren Dreifachbindungen und einer oder mehreren Doppelbindungen ein, wie beispielsweise 1,3-Butatrienyl bzw.3-Penten-1-in-1-yl. (C2-C6)-Alkinyl bedeutet z.B. Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2- butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl- 2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3- pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Di-methyl-2-butinyl, 1,1-Dimethyl- 3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl. Der Begriff „Cycloalkyl“ bedeutet ein carbocyclisches, gesättigtes Ringsystem mit vorzugsweise 3-8 Ring-C-Atomen, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl, das gegebenenfalls weiter substituiert ist, bevorzugt durch Wasserstoff, Alkyl, Alkoxy, Cyano, Nitro, Alkylthio, Haloalkylthio, Halogen, Alkenyl, Alkinyl, Haloalkyl, Amino, Alkylamino, Bisalkylamino, Alkocycarbonyl, Hydroxycarbonyl, Arylalkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Cycloalkylaminocarbonyl. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden cyclische Systeme mit Substituenten umfasst, wobei auch Substituenten mit einer Doppelbindung am Cycloalkylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden auch mehrcyclische aliphatische Systeme umfasst, wie beispielsweise Bicyclo[1.1.0]butan-1-yl, Bicyclo[1.1.0]butan-2-yl, Bicyclo[2.1.0]pentan-1-yl, Bicyclo[1.1.1]pentan-1- yl, Bicyclo[2.1.0]pentan-2-yl, Bicyclo[2.1.0]pentan-5-yl, Bicyclo[2.1.1]hexyl, Bicyclo[2.2.1]hept-2-yl, Bicyclo[2.2.2]octan-2-yl, Bicyclo[3.2.1]octan-2-yl, Bicyclo[3.2.2]nonan-2-yl, Adamantan-1-yl und Adamantan-2-yl, aber auch Systeme wie z. B.1,1'-Bi(cyclopropyl)-1-yl, 1,1'-Bi(cyclopropyl)-2-yl. Der Ausdruck "(C3-C7)-Cycloalkyl" bedeutet eine Kurzschreibweise für Cycloalkyl mit drei bis 7 Kohlenstoffatomen entsprechend der Bereichsangabe für C-Atome. Im Falle von substituiertem Cycloalkyl werden auch spirocyclische aliphatische Systeme umfasst, wie beispielsweise Spiro[2.2]pent-1-yl, Spiro[2.3]hex-1-yl, Spiro[2.3]hex-4-yl, 3-Spiro[2.3]hex-5-yl, Spiro[3.3]hept-1-yl, Spiro[3.3]hept-2-yl. „Cycloalkenyl“ bedeutet ein carbocyclisches, nicht aromatisches, partiell ungesättigtes Ringsystem mit vorzugsweise 4-8 C-Atomen, z.B.1-Cyclobutenyl, 2-Cyclobutenyl, 1-Cyclopentenyl, 2-Cyclopentenyl, 3-Cyclopentenyl, oder 1-Cyclohexenyl, 2-Cyclohexenyl, 3-Cyclohexenyl, 1,3-Cyclohexadienyl oder 1,4-Cyclohexadienyl, wobei auch Substituenten mit einer Doppelbindung am Cycloalkenylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Im Falle von gegebenenfalls substituiertem Cycloalkenyl gelten die Erläuterungen für substituiertes Cycloalkyl entsprechend. Der Begriff „Alkyliden“, z. B. auch in der Form (C1-C10)-Alkyliden, bedeutet den Rest eines geradkettigen oder verzweigten offenkettigen Kohlenwasserstoffrests, der über eine Zweifachbindung gebunden ist. Als Bindungsstelle für Alkyliden kommen naturgemäß nur Positionen am Grundkörper in Frage, an denen zwei H-Atome durch die Doppelbindung ersetzt werden können; Reste sind z. B. =CH2, =CH-CH3, =C(CH3)-CH3, =C(CH3)-C2H5 oder =C(C2H5)-C2H5. Cycloalkyliden bedeutet ein carbocyclischer Rest, der über eine Zweifachbindung gebunden ist. „Cycloalkylalkyloxy“ bedeutet ein über ein Sauerstoffatom gebundenen Cycloalkylalkylrest und „Arylalkyloxy“ bedeutet ein über ein Sauerstoffatom gebundenen Arylalkylrest. „Alkoxyalkyl“ steht für einen über eine Alkylgruppe gebundenen Alkoxyrest und „Alkoxyalkoxy“ bedeutet einen über ein Sauerstoffatom gebundenen Alkoxyalkylrest, z.B. (aber nicht beschränkt auf) Methoxymethoxy, Methoxyethoxy, Ethoxyethoxy, Methoxy-n-propyloxy. „Alkylthioalkyl“ steht für einen über eine Alkylgruppe gebundenen Alkylthiorest und „Alkylthioalkylthio“ bedeutet einen über ein Sauerstoffatom gebundenen Alkylthioalkylrest. „Arylalkoxyalkyl“ steht für einen über eine Alkylgruppe gebundenen Aryloxyrest und „Heteroaryloxyalkyl“ bedeutet einen über eine Alkylgruppe gebundenen Heteroaryloxyrest. „Haloalkoxyalkyl“ steht für einen gebundenen Haloalkoxyrest und „Haloalkylthioalkyl“ bedeutet einen über eine Alkylgruppe gebundenen Haloalkylthiorest. „Arylalkyl“ steht für einen über eine Alkylgruppe gebundenen Arylrest, „Heteroarylalkyl“ bedeutet einen über eine Alkylgruppe gebundenen Heteroarylrest, und „Heterocyclylalkyl“ bedeutet einen über eine Alkylgruppe gebundenen Heterocyclylrest. „Cycloalkylalkyl“ steht für einen über eine Alkylgruppe gebundenen Cycloalkylrest, z. B. (aber nicht beschränkt auf) Cyclopropylmethyl, Cyclobutylmethyl, Cyclopentylmethyl, Cyclohexylmethyl, 1-Cyclopropyleth-1-yl, 2-Cyclopropyleth-1-yl, 1-Cyclopropylprop-1-yl, 3-Cyclopropylprop-1-yl. „Arylalkenyl“ steht für einen über eine Alkenylgruppe gebundenen Arylrest, „Heteroarylalkenyl“ bedeutet einen über eine Alkenylgruppe gebundenen Heteroarylrest, und „Heterocyclylalkenyl“ bedeutet einen über eine Alkenylgruppe gebundenen Heterocyclylrest. „Arylalkinyl“ steht für einen über eine Alkinylgruppe gebundenen Arylrest, „Heteroarylalkinyl“ bedeutet einen über eine Alkinylgruppe gebundenen Heteroarylrest, und „Heterocyclylalkinyl“ bedeutet einen über eine Alkinylgruppe gebundenen Heterocyclylrest. Erfindungsgemäß steht "Haloalkylthio" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes S-Halogenalkyl, vorzugsweise mit 1 bis 8, oder mit 1 bis 6 Kohlenstoffatomen, wie (C1-C8)-, (C1-C6)- oder (C1-C4)-Haloalkylthio, z.B. (aber nicht beschränkt auf) Trifluormethylthio, Pentafluorethylthio, Difluormethyl, 2,2-Difluoreth-1-ylthio, 2,2,2-Difluoreth-1- ylthio, 3,3,3-prop-1-ylthio. „Halocycloalkyl“ und „Halocycloalkenyl“ bedeuten durch gleiche oder verschiedene Halogenatome, wie z. B. F, Cl und Br, oder durch Haloalkyl, wie z. B. Trifluormethyl oder Difluormethyl teilweise oder vollständig substituiertes Cycloalkyl oder Cycloalkenyl , z.B.1-Fluorcycloprop-1-yl, 2-Fluorcycloprop- 1-yl, 2,2-Difluorcycloprop-1-yl, 1-Fluorcyclobut-1-yl, 1-Trifluormethylcycloprop-1-yl, 2-Trifluor- methylcycloprop-1-yl, 1-Chlor-cycloprop-1-yl, 2-Chlorcycloprop-1-yl, 2,2-Dichlorcycloprop-1-yl, 3,3-Difluorcyclobutyl, Erfindungsgemäß steht "Trialkylsilyl" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes Si-Alkyl, vorzugsweise mit 1 bis 8, oder mit 1 bis 6 Kohlenstoffatomen, wie Tri-[(C1-C8)-, (C1-C6)- oder (C1-C4)-alkyl]silyl, z.B. (aber nicht beschränkt auf) Trimethylsilyl, Triethylsilyl, Tri-(n-propyl)silyl, Tri-(iso-propyl)silyl, Tri-(n-butyl)silyl, Tri-(1- methylprop-1-yl)silyl, Tri-(2-methylprop-1-yl)silyl, Tri(1,1-Dimethyleth-1-yl)silyl, Tri(2,2- Dimethyleth-1-yl)silyl. „Trialkylsilylalkinyl“ steht für einen über eine Alkinylgruppe gebundenen Trialkylsilylrest. Wenn die Verbindungen durch Wasserstoffverschiebung Tautomere bilden können, welche strukturell formal nicht durch die Formel (I) erfasst würden, so sind diese Tautomere gleichwohl von der Definition der erfindungsgemäßen Verbindungen der Formel (I) umfasst, sofern nicht ein bestimmtes Tautomer Gegenstand der Betrachtung ist. So können beispielsweise viele Carbonylverbindungen sowohl in der Ketoform wie auch in der Enolform vorliegen, wobei beide Formen durch die Definition der Verbindung der Formel (I) umfasst werden. Die Verbindungen der allgemeinen Formel (I) können je nach Art und Verknüpfung der Substituenten als Stereoisomere vorliegen. Die durch ihre spezifische Raumform definierten möglichen Stereoisomere, wie Enantiomere, Diastereomere, Z- und E-Isomere sind alle von der Formel (I) umfasst. Sind beispielsweise eine oder mehrere Alkenylgruppen vorhanden, so können Diastereomere (Z- und E- Isomere) auftreten. Sind beispielsweise ein oder mehrere asymmetrische Kohlenstoffatome vorhanden, so können Enantiomere und Diastereomere auftreten. Stereoisomere lassen sich aus den bei der Herstellung anfallenden Gemischen nach üblichen Trennmethoden erhalten. Die chromatographische Trennung kann sowohl im analytischen Maßstab zur Feststellung des Enantiomerenüberschusses bzw. des Diastereomerenüberschusses, wie auch im präparativen Maßstab zur Herstellung von Prüfmustern für die biologische Ausprüfung erfolgen. Ebenso können Stereoisomere durch Einsatz stereoselektiver Reaktionen unter Verwendung optisch aktiver Ausgangs- und/oder Hilfsstoffe selektiv hergestellt werden. Die Erfindung betrifft somit auch alle Stereoisomeren, die von der allgemeinen Formel (I) umfasst, jedoch nicht mit ihrer spezifischen Stereoform angegeben sind, sowie deren Gemische. Sofern die Verbindungen als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen. Sofern einzelne Verbindungen (I) nicht auf den nachstehend beschriebenen Wegen zufriedenstellend zugänglich sind, können sie durch Derivatisierung anderer Verbindungen (I) hergestellt werden. Als Isolierungs-, Reinigungs- und Stereoisomerenauftrennungsverfahren von Verbindungen der allgemeinen Formel (I) kommen Methoden in Frage, die dem Fachmann aus analogen Fällen allgemein bekannt sind, z.B. durch physikalische Verfahren wie Kristallisation, Chromatographieverfahren, vor allem Säulenchromatographie und HPLC (Hochdruckflüssigchromatographie), Destillation, gegebenenfalls unter reduziertem Druck, Extraktion und andere Verfahren, können gegebenenfalls verbleibende Gemische in der Regel durch chromatographische Trennung, z.B. an chiralen Festphasen, getrennt werden. Für präparative Mengen oder im industriellen Maßstab kommen Verfahren in Frage wie Kristallisation, z.B. diastereomerer Salze, die aus den Diastereomerengemischen mit optisch aktiven Säuren und gegebenenfalls bei vorhandenen sauren Gruppen mit optisch aktiven Basen erhalten werden können. Synthese von substituierten N-Benzoesäureuracilen der allgemeinen Formel (I): Die erfindungsgemäßen substituierten N-Benzoesäureuracile der allgemeinen Formel (I) können ausgehend von bekannten Verfahren hergestellt werden. Die eingesetzten und untersuchten Syntheserouten gehen dabei von kommerziell erhältlichen oder leicht herstellbaren Synthesebausteinen aus. Die Gruppierungen G, Q, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13 R14, R15, R16 und R17 der allgemeinen Formel (I) haben in den nachfolgenden Schemata die zuvor definierten Bedeutungen, sofern nicht beispielhafte, aber nicht einschränkende, Definitionen erfolgen. Die Synthese der Verbindungen der allgemeinen Formel (I) verläuft, wie nachfolgend in Schema 1 beschrieben. Ausgehend von 2-Brom-4-fluorbenzoesäure bzw.2-Iod-4-fluorbenzoesäure erhält man die entsprechende nitrierte Benzoesäure (II) unter Verwendung von Nitriersäure (vgl. Medicinal Chemistry Letters (2016), 7(12), 1077-1081). Durch nachfolgende Veresterung der nitrierten Benzoesäure (II) mit einem geeigneten alpha-Hydroxy-carbonsäure-Allylester (III), hier beispielhaft aber nicht einschränkend als kommerziell erhältliches Allyl 2-hydroxy-2-methylpropanoat dargestellt, erhält man den adäquat substituierten Nitrobenzoesäureester (IV). Die Veresterung kann, wie beispielhaft aber nicht einschränkend in Schema 1 dargestellt via Transformation ins Säurechlorid mittels Thionylchlorid erfolgen, wobei ein geeignetes polar-aprotischen Lösemittel (z. B. Dichlormethan (DCM), Chloroform, N,N-Dimethylacetamid (DMA) oder N,N-Dimethylformamid (DMF)) Verwendung findet. Alternativ können die Nitrobenzoesäureester (IV) unter Vermittlung geeigneter Kupplungsreagenzien (z. B. HOBt = 1-Hydroxybenzotriazol, EDC = 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid, HATU = O-(7- Azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium-hexafluorphosphat, T3P = 2,4,6-Tripropyl- 1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxid) und geeigneter Basen (z. B. Diisopropylethylamin, Triethylamin) in einem geeigneten polar-aprotischen Lösemittel (z. B. Dichlormethan, Chloroform) erhalten werden. Die nachfolgende Reduktion der Nitrogruppe liefert den entsprechenden 3- Aminobenzoesäureester (V). Die Reduktion erfolgt dabei mit einem geeigneten Reduktionsmittel (z. B. Wasserstoff, Palladium auf Kohle in einem geeigneten polar-protischen Lösemittel) oder, wie in Schema 1 beispielhaft dargestellt, unter Verwendung von Eisenpulver in Essigsäure. Die Synthese der 2-(Dimethylamino)-4-(haloalkyl)-6H-1,3-oxazin-6-one vom Typ (VII) erfolgt in einer zweistufigen Synthesesequenz (wie in WO2000/049002 A1 beschrieben) ausgehend von den entsprechenden Aminoacrylsäureestern, z. B. Ethyl-(2Z)-3-amino-4,4,4-trifluorbut-2-enoat (vgl. Journal of Fluorine Chemistry (2016), 181, 1-6), mittels Umsetzung mit Dimethylcarbamoylchlorid in N,N- Dimethylformamid (DMF) unter Verwendung einer geeigneten Base (z. B. Natriumhydrid oder Kalium- tert-butylat) und nachfolgender Cyclisierung zum Oxazin-6-on (VII) unter Verwendung von Phosphorpentachlorid sowie Phosphoroxychlorid. Die nachfolgende Kondensationsreaktion des 3-Aminobenzoesäureesters (V) mit dem so erhaltenen Oxazin-6-on (VII) unter Verwendung von Essigsäure als Lösungsmittel bei geeigneter Temperatur liefert das Uracil (VIII), das durch nachfolgende N-Alkylierung in das N-Alkyl-N´-Benzoesäureuracil (Ia) überführt werden kann, hier beispielhaft aber nicht einschränkend als N-Methylierung dargestellt. Die Alkylierung erfolgt dabei unter Verwendung einer geeigneten Base (z. B. Natriumhydrid, Kalium- tert-butylat oder Kaliumcarbonat) in einem geeigneten polar-aprotischen Lösemittel (z. B. Dichlor- methan, Chloroform, N,N-Dimethylacetamid oder N,N-Dimethylformamid). Die selektive Esterspaltung der endständigen Allylestergruppe des N-Alkyl-N´-Benzoesäureuracils (Ia) gelingt unter Verwendung von Phenylsilan in Gegenwart eines geeigneten Pd-Katalysators, z.B. Tetrakis(triphenylphosphin)palladium(0) in Dichlormethan und ergibt die N-Alkyl-N´-Benzoe- säureuracile (Ib) in Form der Carbonsäure. Diese kann dann durch Veresterung mit einem geeigneten Alkohol R-OH zu verschiedensten Estervarianten des N-Alkyl-N´-Benzoesäureuracils (Ic) überführt werden.
Figure imgf000046_0001
Schema 1 Die Veresterung kann, wie beispielhaft aber nicht einschränkend in Schema 1 dargestellt, unter Vermittlung geeigneter Kupplungsreagenzien (z. B. HOBt = 1-Hydroxybenzotriazol, EDC = 1-Ethyl-3- (3-dimethylaminopropyl)carbodiimid, HATU = O-(7-Azabenzotriazol-1-yl)-N,N,N′,N′- tetramethyluronium-hexafluorphosphat, T3P = 2,4,6-Tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6- trioxid) und geeigneter Basen (z. B. Diisopropylethylamin, Triethylamin) in einem geeigneten polar- aprotischen Lösemittel (z. B. Dichlormethan, Chloroform) durchgeführt werden. Alternativ kann die Veresterung via Transformation ins Säurechlorid mittels Thionylchlorid und nachfolgender Umsetzung mit dem Alkohol R-OH erfolgen, wobei ein geeignetes polar-aprotischen Lösemittel (z. B. Dichlormethan (DCM), Chloroform, N,N-Dimethylacetamid (DMA) oder N,N-Dimethylformamid (DMF)) Verwendung findet. Die Synthese des N-Amino-N´-Benzoesäureuracils (Id) erfolgt ausgehend vom zuvor beschriebenen Uracil (VIII) durch N-Aminierung, wie nachfolgend in Schema 2 dargestellt. Dabei erfolgt die N- Aminierung mit Hilfe eines geeigneten Aminierungsreagenzes (z.B. O-(Mesitylsulfonyl)-hydroxylamin, O-(Tolylsulfonyl)hydroxylamin, O-(Diphenylphosphoryl)hydroxylamin) unter Verwendung einer geeigneten Base (z. B. Natriumhydrid, Kalium-tert-butylat oder Kaliumcarbonat) in einem geeigneten polar-aprotischen Lösemittel (z. B. Dichlormethan, Chloroform, N,N-Dimethyl-acetamid oder N,N- Dimethylformamid).
Figure imgf000047_0001
Schema 2 Die selektive Esterspaltung der endständigen Allylestergruppe des N-Amino-N´-Benzoesäureuracils (Id) gelingt unter Verwendung von Phenylsilan in Gegenwart eines geeigneten Pd-Katalysators, z.B. Tetrakis(triphenylphosphin)palladium(0) in Dichlormethan und ergibt die N-Amino-N´-Benzoe- säureuracile (Ie) in Form der Carbonsäure. Diese können dann durch Veresterung mit einem geeigneten Alkohol R-OH zu verschiedensten Estervarianten des N-Amino-N´-Benzoesäureuracils (If) überführt werden. Die Veresterung kann, wie beispielhaft aber nicht einschränkend in Schema 2 dargestellt, unter Vermittlung geeigneter Kupplungsreagenzien (z. B. HOBt = 1-Hydroxybenzotriazol, EDC = 1-Ethyl-3- (3-dimethylaminopropyl)carbodiimid, HATU = O-(7-Azabenzotriazol-1-yl)-N,N,N′,N′- tetramethyluronium-hexafluorphosphat, T3P = 2,4,6-Tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6- trioxid) und geeigneter Basen (z. B. Diisopropylethylamin, Triethylamin) in einem geeigneten polar- aprotischen Lösemittel (z. B. Dichlormethan, Chloroform) durchgeführt werden. Alternativ kann die Veresterung via Transformation ins Säurechlorid mittels Thionylchlorid und nachfolgender Umsetzung mit dem Alkohol R-OH erfolgen, wobei ein geeignetes polar-aprotischen Lösemittel (z. B. Dichlormethan (DCM), Chloroform, N,N-Dimethylacetamid (DMA) oder N,N-Dimethylformamid (DMF)) Verwendung findet. Ausgewählte detaillierte Synthesebeispiele für erfindungsgemäße Verbindungen der allgemeinen Formeln (I) sind im Folgenden aufgeführt. Die angegebenen Beispielnummern entsprechen den in den nachstehenden Tabellen I.1 bis I.48 genannten Nummerierungen. Die 1H-NMR-, 13C-NMR- und 19F- NMR-spektroskopischen Daten, die für die in den nachfolgenden Abschnitten beschriebenen chemischen Beispiele angegeben sind, (400 MHz bei 1H-NMR und 150 MHz bei 13C-NMR und 375 MHz bei 19F-NMR, Lösungsmittel CDCl3, CD3OD oder d6-DMSO, interner Standard: Tetramethylsilan δ = 0.00 ppm), wurden mit einem Gerät der Firma Bruker erhalten, und die bezeichneten Signale haben die nachfolgend aufgeführten Bedeutungen: br = breit(es); s = Singulett, d = Dublett, t = Triplett, dd = Doppeldublett, ddd = Dublett eines Doppeldubletts, m = Multiplett, q = Quartett, quint = Quintett, sext = Sextett, sept = Septett, dq = Doppelquartett, dt = Doppeltriplett. Bei Diastereomerengemischen werden entweder die jeweils signifikanten Signale beider Diastereomere oder das charakteristische Signal des Hauptdiastereomers angegeben. Die verwendeten Abkürzungen für chemische Gruppen haben beispielsweise die nachfolgenden Bedeutungen: Me = CH3, Et = CH2CH3, t-Hex = C(CH3)2CH(CH3)2, t-Bu = C(CH3)3, n-Bu = unverzweigtes Butyl, n-Pr = unverzweigtes Propyl, i-Pr = verzweigtes Propyl, c-Pr = Cyclopropyl, c-Hex = Cyclohexyl. Synthesebeispiele: Nr. I.1-176: 1-(Cyanmethoxy)-2-methyl-1-oxopropan-2-yl-2-brom-4-fluor-5-[3-methyl-2,6-dioxo-4- (trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl]benzoat
Figure imgf000049_0001
2-Bromo-4-fluoro-5-nitrobenzoesäure (4000 mg, 15.15 mmol; Herstellung gemäß Medicinal Chemistry Letters (2016), 7(12), 1077-1081) wird in 100 mL Dichlormethan vorgelegt und mit Oxalylchlorid (2885 mg, 22.73 mmol) und katalytischen Mengen N,N-Dimethylformamid (0.3 mL) versetzt. Nach 2stündigem Rühren bei 40 Grad Celsius erhielt man eine klare Reaktionslösung, die nachfolgend unter vermindertem Druck eingeengt wurde. Das so erhaltene Säurechlorid wurde in 10 mL Dichlormethan aufgenommen und tropfenweise zu einer Lösung von Allyl 2-hydroxy-2-methylpropanoat (4458 mg, 30.30 mmol), Triethylamin (3066 mg, 30.30 mmol) und 4-Dimethylaminoyridin (18.51 mg, 0.15 mmol) in 100 mL Dichlormethan zugetropft. Die Reaktionsmischung wurde 2.5 Stunden gerührt, stand über Nacht und wurde weitere 5 Stunden bei Raumtemperatur gerührt. Nachfolgend wurde die Reaktionsmischung mit einer Mischung von Wasser und 100 mL 2N Salzsäure versetzt. Nach Trennung der Phasen wurde die organische Phase mit Natriumhydrogencarbonat-Lösung gewaschen, und nach erneuter Phasentrennung getrocknet und unter vermindertem Druck eingeengt. Durch säulenchromato- graphische Reinigung des erhaltenen Rohproduktes wurde 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-2- brom-4-fluor-5-nitrobenzoat (3670 mg, Reinheit: 95%, 59% der Theorie) erhalten und in der Folgestufe umgesetzt. Das so zugängliche 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-2-brom-4-fluor-5-nitrobenzoat (4000 mg, 10.25 mmol) wurde in 40 mL Eisessig vorgelegt und mit Eisenpulver (7443 mg, 133.3 mmol) versetzt. Die Reaktionsmischung wurde auf 40 Grad Celsius erwärmt und 2 Stunden gerührt. Nachfolgend wurde die Reaktionsmischung mit einer Mischung von Wasser und Dichlormethan versetzt und überschüssiges Eisen mittels eines Magneten entfernt. Nach Trennung der Phasen wurde die organische Phase mit Natriumhydrogencarbonat-Lösung gewaschen, und nach erneuter Phasentrennung mittels Filtration durch eine Separatorkartusche getrocknet und unter vermindertem Druck eingeengt. Durch säulen- chromatographische Reinigung des erhaltenen Rohproduktes wurde 1-(Allyloxy)-2-methyl-1- oxopropan-2-yl-5-amino-2-brom-4-fluorbenzoat (2540 mg, Reinheit: 98%, 67% der Theorie) erhalten und in der Folgestufe umgesetzt. Das so erhaltene 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-5-amino-2-brom-4-fluorbenzoat (1570 mg, 4.35 mmol) wurde zusammen mit 2-(Dimethylamino)-4-(trifluormethyl)-6H-1,3-oxazin-6-on (1366 mg, 6.10 mmol; Herstellung gemäß WO2000/049002) in 87 mL Essigsäure aufgenommen und 3h bei 110 Grad Celsius gerührt. Nach vollständigem Umsatz wurde das Reaktionsgemisch mit Wasser versetzt und anschließend gründlich mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet, abfiltriert und unter vermindertem Druck eingeengt. Durch säulenchromato- graphische Reinigung des erhaltenen Rohproduktes wurde 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-2- brom-5-[2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl]-4-fluorbenzoat (1340 mg, Reinheit: 99%, 58% der Theorie) in Form eines farblosen Feststoffes erhalten. Das so erhaltene 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-2-brom-5-[2,6-dioxo-4-(trifluormethyl)-3,6- dihydropyrimidin-1(2H)-yl]-4-fluorbenzoat (1280 mg, 2.44 mmol) wurde in abs. N,N-Dimethyl- formamid (43 mL) gelöst und mit Kaliumcarbonat (1690 mg, 12.2 mol) versetzt. Danach wurde eine Lösung von Methyliodid (1736 mg, 12.2 mol) in abs. N,N-Dimethylformamid (ca.20 mL) zugegeben und das resultierende Reaktionsgemisch wurde 2 h lang bei Raumtemperatur nachgerührt. Nach vollständigem Umsatz wurde das Reaktionsgemisch mit Ethylacetat verdünnt und nachfolgend mit Wasser und gesättigter Natriumchlorid-Lösung versetzt und anschließend gründlich mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet, abfiltriert und unter vermindertem Druck eingeengt. Durch säulenchromatographische Reinigung des erhaltenen Rohproduktes wurde 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-2-brom-4-fluor-5-[3-methyl-2,6-dioxo-4- (trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl]benzoat (1240 mg, Reinheit: 97%, 91% der Theorie) in Form eines farblosen Öles erhalten, welches nach längerem Stehen durchkristallisierte. Das so erhaltene 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-2-brom-4-fluor-5-[3-methyl-2,6-dioxo-4- (trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl]benzoat (1140 mg, 2.12 mmol) wurde unter Argon- atmosphäre in 5 mL Dichlormethan gelöst. Bei Raumtemperatur wurden Phenylsilan (459 mg, 4.24 mmol) und nachfolgend Tetrakis(triphenylphosphin)palladium(0) (122 mg, 0.10 mmol) zugesetzt. Die Reaktionsmischung wurde ca.1h bei Raumtemperatur gerührt. Mittels Dünnschichtchromatographie wurde vollständige Umsetzung detektiert, so dass die Reaktion nachfolgend durch Zugabe von 5 mL Wasser gequencht und mittels Zugabe von Natriumhydrogencarbonat-Lösung basisch gestellt wurde. Nach Phasentrennung wurde die wässrige Phase durch Zugabe 2N Salzsäure sauer gestellt und nachfolgend mehrfach mit Dichlormethan extrahiert. Die organische Phase wurde mittels einer Separatorkartusche getrocknet und nach Auffangen der organischen Phase wurde das Lösungsmittel im Vakuum entfernt. Die so erhaltene 2-({2-Brom-4-fluor-5-[3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6- dihydropyrimidin-1(2H)-yl]benzoyl}oxy)-2-methylpropansäure (970 mg, Reinheit: 97%, 89% der Theorie) wurde ohne weitere Aufreinigung in der Folgestufe umgesetzt. Zu einer Lösung aus Bromacetonitril (40.5 mg, 0.33 mmol) in 2 ml Aceton wurde die 2-({2-Brom-4- fluor-5-[3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl]benzoyl}oxy)-2- methylpropansäure (112 mg, 0.22 mmol) zugegeben, anschließend wurde mit Triethylamin (34 mg, 0.33 mmol) versetzt. Der Ansatz wurde 3 h bei RT gerührt und über Nacht bei RT stehen gelassen. Nachfolgend wurden 5 mL Dichlormethan und 5 mLWasser hinzugesetzt. Die Reaktionsmischung wurde mittels einer Separatorkartusche von der wässrigen Phase getrennt und nach Auffangen der organischen Phase wurde das Lösungsmittel im Vakuum entfernt. Durch säulenchromatographische Reinigung des erhaltenen Rohproduktes wurde 1-(Cyanmethoxy)-2-methyl-1-oxopropan-2-yl-2-brom-4- fluor-5-[3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl]benzoat (90 mg, Reinheit: 98%, 73% der Theorie) erhalten. 1H NMR (CDCl3, ppm): 7.83 (d, 1H), 7.61 (d, 1H), 6.38 (s, 1H), 4.79 (s, 2H), 3.58 (s, 3H), 1.72 (s, 6H). Nr. I.4-1: 1-(2-Methoxyethoxy)-2-methyl-1-oxopropan-2-yl-5-[3-amino-4-(difluormethyl)-2,6-dioxo- 3,6-dihydropyrimidin-1(2H)-yl]-2-brom-4-fluorbenzoat
Figure imgf000051_0001
1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-2-brom-5-[2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin- 1(2H)-yl]-4-fluorbenzoat (1280 mg, 2.44 mmol) wurde in abs. Tetrahydrofuran (40 mL) gelöst und mit Natriumhydrid (60%ig; 129 mg, 3.22 mmol) versetzt. Danach wurde die Suspension 30 Minuten bei Raumtemperatur gerührt, mit O-(Diphenylphosphoryl)hydroxylamin (888 mg, 3.81 mmol) versetzt und weitere 2 Stunden bei Raumtemperatur gerührt. Mittels Dünnschichtchromatographie wurde vollständige Umsetzung detektiert, so dass die Reaktion nachfolgend durch Zugabe von 5 mL Wasser gequencht wurde. Nach Phasentrennung wurde die wässrige Phase mehrfach mit Dichlormethan extrahiert. Die vereinigten organische Phasen wurden mittels einer Separatorkartusche getrocknet und das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde säulenchromatographisch gereinigt (Gradient Essigsäureethylester/n-Heptan) und 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-5-[3-amino-4- (difluormethyl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl]-2-brom-4-fluorbenzoat als farbloses Öl erhalten (1200 mg, Reinheit: 90 %, Ausbeute 71%), welches langsam wachsartig erstarrte. Das so erhaltene 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-5-[3-amino-4-(difluormethyl)-2,6-dioxo-3,6- dihydropyrimidin-1(2H)-yl]-2-brom-4-fluorbenzoat (1045 mg, 2.01 mmol) wurde unter Argon- atmosphäre in 5 mL Dichlormethan gelöst. Bei Raumtemperatur wurden Phenylsilan (435 mg, 4.02 mmol) und nachfolgend Tetrakis(triphenylphosphin)palladium(0) (116 mg, 0.10 mmol) zugesetzt. Die Reaktionsmischung wurde ca.1h bei Raumtemperatur gerührt. Mittels Dünnschichtchromatographie wurde vollständige Umsetzung detektiert, so dass die Reaktion nachfolgend durch Zugabe von 5 mL Wasser gequencht und mittels Zugabe von Natriumhydrogencarbonat-Lösung auf pH = 10 gestellt wurde. Nach Phasentrennung wurde die wässrige Phase durch Zugabe 2N Salzsäure auf pH = 2 gestellt und nachfolgend mehrfach mit Dichlormethan extrahiert. Die organische Phase wurde mittels einer Separatorkartusche getrocknet und nach Auffangen der organischen Phase wurde das Lösungsmittel im Vakuum entfernt. Die so erhaltene 2-({5-[3-Amino-4-(difluormethyl)-2,6-dioxo-3,6-dihydropyrimidin- 1(2H)-yl]-2-brom-4-fluorbenzoyl}oxy)-2-methylpropansäure (820 mg, Reinheit: 90%, 76% der Theorie) wurde ohne weitere Aufreinigung in der Folgestufe umgesetzt. Zu einer Lösung aus 3-Methoxy-1-propanol (30 mg, 0.40 mmol) in 5 ml Dichlormethan wurde 2-({5-[3- Amino-4-(difluormethyl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl]-2-brom-4-fluorbenzoyl}oxy)-2- methylpropansäure (147 mg, 0.31 mmol) zugegeben und anschließend 1-Hydroxy-1H-benzotriazol Hydrat (61 mg, 0.40 mmol), 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimidhydrochlorid (31 mg, 0.16 mmol) und 4-Dimethylaminopyridin (10 mol%). Der Ansatz wurde 6 h bei RT gerührt, über Nacht bei RT stehen gelassen und das Lösungsmittel wurde entfernt. Der Rückstand wurde säulenchromatographisch gereinigt (Gradient Essigsäureethylester/n-Heptan) und 1-(2-Methoxyethoxy)- 2-methyl-1-oxopropan-2-yl-5-[3-amino-4-(difluormethyl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl]-2- brom-4-fluorbenzoat als farbloses Öl erhalten (83 mg, Reinheit: 95 %, 48% der Theorie) 1H NMR (CDCl3, ppm): 7.83 (d, 1H), 7.59 (d, 1H), 6.91 (t, 1H, CHF2), 6.18 (s, 1H), 4.57 (s, 2H), 4.31 (t, 2H), 3.58 (t, 2H), 3.31 (s, 3H), 1.70 (s, 6H). Nr. I.6-491: 1-[(Isopropylidenamino)oxy]-2-methyl-1-oxopropan-2-yl-5-{3-amino-4- [chlor(difluor)methyl]-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl}-2-brom-4-fluorbenzoat
Figure imgf000052_0001
Zu einer Lösung aus Acetonoxim (28 mg, 0.38 mmol) in 4 ml Dichlormethan wurde 2-[(5-{3-Amino-4- [chlor(difluor)methyl]-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl}-2-brom-4-fluorbenzoyl)oxy]-2- methylpropansäure (150 mg, 0.29 mmol) zugegeben und anschließend 1-Hydroxy-1H-benzotriazol Hydrat (58 mg, 0.38 mmol), 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimidhydrochlorid (73 mg, 0.38 mmol) und 4-Dimethylaminopyridin (10 mol%) zugesetzt. Der Ansatz wurde 5h bei RT gerührt, über Nacht bei RT stehen gelassen. Nachfolgend durch Zugabe von 1 mL Wasser gequencht und die Reaktionsmischung verrührt. Nach Phasentrennung wurde die organische Phase getrocknet und nachfolgend wurde das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde säulenchromatographisch gereinigt (Gradient Essigsäureethylester/n-Heptan) und 1- [(Isopropylidenamino)oxy]-2-methyl-1-oxopropan-2-yl-5-{3-amino-4-[chlor(difluor)methyl]-2,6-dioxo- 3,6-dihydropyrimidin-1(2H)-yl}-2-brom-4-fluorbenzoat als farbloses Öl erhalten (114 mg, Reinheit: 95 %, Ausbeute 65%).1H NMR (CDCl3, ppm): 7.88 (d, 1H), 7.61 (d, 1H), 6.22 (s, 1H), 4.57 (s, 2H), 2.05 (s, 3H), 1.95 (s, 3H), 1.72 (s, 6H). Nr. I.31-481: 2-((4-Fluor-2-iod-5-(3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)- yl)benzoyl)oxy)-2-methylpropancarbonsäure
Figure imgf000053_0001
Zu einer auf eine Temperatur von 0 °C eingekühlten Lösung von 4-Fluor-3-nitrobenzoesäure (85 g, 459.18 mmol) in MeOH (850 mL) wurde Schwefelsäure (170 mL) gegeben. Das resultierende Reaktionsgemisch wurde bei einer Temperatur von 70 °C 16 h lang gerührt. Der Reaktionsfortschritt wurde per Dünnschichtchromatographie überprüft (30% EtOAc in Petrolether (Rf : 0.7). Nach vollständigem Umsatz wurde das Reaktionsgemisch auf Eiswasser gegeben (1000 mL), der entstandene Feststoff wurde abgesaugt, mit Wasser nachgewaschen (500 mL) und unter vermindertem Druck gründlich getrocknet. Das Rohprodukt wurde anschließend mit n-Pentan (200 mL) 30 min lang ausgerührt, abfiltriert und der erhaltene Feststoff gründlich getrocknet. Auf diese Weise wurde 4-Fluor- 3-nitrobenzoesäuremethylester (90 g, 89% der Theorie) in Form eines farblosen Feststoffs erhalten. 1H NMR (CDCl3, ppm): 8.76 (d, 1H), 8.34 (d, 1H), 7.41 (dd, 1H), 3.98 (s, 3H). Zu einer Lösung von 4-Fluor-3-nitrobenzoesäuremethylester (90 g, 529.41 mmol) in MeOH (850 mL) wurde Palladium auf Kohle (30 g, nass, 10%) gegeben und das Gemisch in ein geeignetes Autoklavengefäß überführt. Das Reaktionsgemisch wurde 16 h lang bei einem Druck von 200 psi unter Wasserstoffatmosphäre gerührt. Der Reaktionsfortschritt wurde dabei nach Probenentnahme per Dünnschichtchromatographie überprüft (30% EtOAc in Petrolether (Rf : 0.7). Nach vollständigem Umsatz wurde das Reaktionsgemisch über Celite filtriert, mit Methanol nachgewaschen (300 mL) und das Filtrat unter vermindertem Druck eingeengt. Das Rohprodukt wurde anschließend mit n-Pentan (200 mL) 30 min lang ausgerührt, abfiltriert und der erhaltene Feststoff gründlich getrocknet. Auf diese Weise wurde 3-Amino-4-Fluorbenzoesäuremethylester (69 g, 90% der Theorie) in Form eines farblosen Feststoffs erhalten. 1H NMR (d6-DMSO, ppm): 7.44-7.41 (m, 1H), 7.16-7.07 (m, 2H), 5.60-5.40 (m, 2H), 3.80 (s, 3H). 3-Amino-4-Fluorbenzoesäuremethylester (60 g, 352.94 mmol) wurde in Essigsäure (600 mL) gelöst und mit Natriumperiodat (75 g, 352.94 mmol) sowie Natriumchlorid (40 g, 705.88 mmol) versetzt. Nach 5 Min Rühren bei Raumtemperatur erfolgte die langsame Zugabe einer Lösung von Kaliumiodid (58.5 g, 352.94 mmol) in Wasser (180mL). Das resultierende Reaktionsgemisch wurde anschließend 24 h lang bei Raumtemperatur gerührt, wobei der Reaktionsfortschritt per Dünnschichtchromatographie überprüft (30% EtOAc in Petrolether (Rf : 0.5) wurde. Nach dem Ende der Reaktion wurde das Reaktionsgemisch mit Wasser (1L) versetzt und mehrfach mit Essigester extrahiert (2 x 1L). Die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, über Natriumsulfat getrocknet, abfiltriert und unter vermindertem Druck eingeengt. Das resultierende Rohprodukt wurde säulenchromatographisch gereinigt (Silicagel 230-400, Gradient 5-10 % EtOAc/Petrolether), und 5-Amino-4-Fluor-2- iodbenzoesäuremethylester (40 g, 38% der Theorie) wurde in Form eines bräunlichen Feststoffs erhalten. 1H NMR (d6-DMSO, ppm): 7.58-7.55 (m, 1H), 7.24-7.22 (m, 1H), 5.65-5.55 (br. s, 2H), 3.79 (s, 3H). Zu einer Lösung von 5-Amino-4-fluor-2-iodbenzoesäuremethylester (35 g, 118.64 mmol) in AcOH (350 mL 10 V) wurde 2-(Dimethylamino)-4-(trifluormethyl)-6H-1,3-oxazin-6-on (37g, 177.96 mmol) gegeben und das resultierende Reaktionsgemisch 6 h lang bei einer Temperatur von 110 °C gerührt. Nach dem Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch auf Wasser gegeben (1L) und gründlich mit Essigester extrahiert (3 x 500 mL). Die vereinigten organischen Phasen wurden mit über Natriumsulfat getrocknet, abfiltriert und unter vermindertem Druck eingeengt. Durch säulenchromatographische Reinigung des resultierenden Rohproduktes (Silicagel 100-200), Gradient 20-30% EtOAc/Petrolether) wurde Methyl 5-(2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)- yl)-4-fluor-2-iodbenzoat (40 g, 73% der Theorie) in Form eines farblosen Feststoffs erhalten. Methyl 5- (2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluor-2-iodbenzoat (2.0 g, 4.36 mmol) wurde in einem 1:1 Gemisch aus Methanol (10 mL) und Tetrahydrofuran (10 mL) gelöst und bei Raumtemperatur mit einer Lösung von Lithiumhydroxid (550 mg, 13.09 mmol, als Hydrat) in Wasser (10 mL) versetzt. Das resultierende Reaktionsgemisch wurde 16 h lang bei Raumtemperatur gerührt, danach unter vermindertem Druck eingeengt, mit Wasser (20 mL) versetzt und mit 1N HCl angesäuert, bis ein pH-Wert von 3 bis 4 erreicht war. Das Reaktionsgemisch wurde 30 min lang bei Raumtemperatur gerührt und der ausgefallene Feststoff abgesaugt. Durch gründliches Trocknen unter vermindertem Druck wurde 5-(2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluor-2- iodbenzoesäure (1.5 g, 77 % der Theorie) in Form eines schwach braunen Feststoffs erhalten. 1H NMR (d6-DMSO, ppm): 13.54 (br. s, 1H, OH), 8.12-8.09 (m, 1H), 7.95-7.93 (m, 1H), 6.42 (s, 1H). 5-(2,6-Dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluor-2-iodbenzoesäure (36 g, 81.06 mmol) wurde in Dichlormethan (1.4 L) gelöst und nach 5 Min Rühren bei Raumtemperatur mit DCC (33.39 g, 162.13 mmol), DMAP (19.80 g, 162.13 mmol) und Triethylamin (11.3 mL, 81.06 mmol) versetzt. Nach weiteren 5 Min Rühren bei Raumtemperatur wurde Allyl-2-hydroxy-2-methylpropanoat (46.69 g, 8324.26 mmol) zugegeben und das resultierende Reaktionsgemisch 24 h lang bei Raumtemperatur nachgerührt. Nach der Zugabe von Wasser (1L) und 10 Min Rühren bei Raumtemperatur wurde die wässrige Phase gründlich mit Dichlormethan mehrfach extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet, abfiltriert und unter vermindertem Druck eingeengt. Das so erhaltene schwach braune 1-(Allyloxy)-2-methyl-1-oxopropan- 2-yl 5-(2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluor-2-iodbenzoat (40 g, 86 % der Theorie) wurde ohne weitere Reinigung in den folgenden Reaktionsschritten eingesetzt. 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl 5-(2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)- yl)-4-fluor-2-iodbenzoat (20 g, 35.08 mmol) wurde in N,N-Dimethylformamid (300 mL) gelöst, auf eine Temperatur von 0°C eingekühlt und mit fein gepulvertem K2CO3 (24.2 g, 175.44 mmol) versetzt. Nach 10 Minuten Rühren bei 0 °C erfolgte die Zugabe von Methyliodid (10.92 mL, 175.44 mmol). Das resultierende Reaktionsgemisch wurde 4 h lang bei Raumtemperatur gerührt, danach auf Eiswasser gegeben (1.5 L) und 30 Minuten bei Raumtemperatur nachgerührt. Nach Zugabe von Essigester wurde gründlich mehrfach mit Essigester extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, über Natriumsulfat getrocknet, abfiltriert und unter vermindertem Druck eingeengt. Durch säulenchromatographische Reinigung des resultierenden Rohproduktes (Silicagel 100- 200, Gradient 60-70% Dichlormethan in Petrolether) wurde 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl 4- fluor-2-iod-5-(3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl)benzoat (15 g, 73%) in Form eines schwach bräunlichen Feststoffs erhalten. 1H NMR (d6-DMSO, ppm): 8.20-8.17 (m, 1H), 7.94-7.92 (m, 1H), 6.60 (s, 1H), 5.92-5.86 (m, 1H), 5.36- 5.30 (m, 1H), 5.24-5.21 (m, 1H), 4.65-4.63 (d, 2H), 3.42 (s, 3H), 1.65 (s, 6H). 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl 4-fluor-2-iod-5-(3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6- dihydropyrimidin-1(2H)-yl)benzoat (6 g, 10.27 mmol) wurde anschließend unter Argon in entgastem Dichlormethan gelöst, auf eine Temperatur von ca.10 °C eingekühlt und nach 10 Min Rühren bei 10 °C unter Argon mit Phenylsilan (0.6 mL, 5.135 mmol) und Pd(PPh3)4 (297 mg, 0.257 mmol) versetzt. Das resultierende Reaktionsgemisch wurde danach 4 h lang bei 10-20 °C gerührt, danach mit Wasser (100 mL) versetzt und anschließend mit ges. Natriumhydrogencarbonatlösung auf einen pH-Wert von ca 8 gebracht. Nach 10 Minuten Rühren bei Raumtemperatur wurde Dichlormethan zugegeben und die wässrige Phase nach Phasentrennung mit Hilfe von 2N HCl auf einen pH-Wert von 4-5 eingestellt und gründlich mehrfach mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, über Natriumsulfat getrocknet, abfiltriert und unter vermindertem Druck eingeengt. Durch säulenchromatographische Reinigung des resultierenden Rohproduktes wurde 2-((4- Fluor-2-iod-5-(3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl)benzoyl)oxy)-2- methylpropancarbonsäure (3.3 g, 59% der Theorie) in Form eines farblosen Feststoffs erhalten. 1H NMR (d6-DMSO, ppm): 13.09 (br. s, 1H, OH), 8.19-8.16 (m, 1H), 7.91-7.89 (m, 1H), 6.59 (s, 1H), 3.41 (s, 3H), 1.61 (s, 6H). Nr. I.32-481: 2-((5-(3-amino-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluor-2- iodbenzoyl)oxy)-2-methylpropancarbonsäure
Figure imgf000056_0001
1-(Allyloxy)-2-methyl-1-oxopropan-2-yl 5-(2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)- yl)-4-fluor-2-iodbenzoat (14 g, 24.60 mmol) wurde in abs. Tetrahydrofuran (400 mL) gelöst, auf eine temperature von 0 °C eingekühlt und mit NaH (60%ig in Mineralöl, 1.11g, 49.2 mmol) vorsichtig portionsweise versetzt. Nach 30 Min Rühren bei 0 °C erfolgte die portionsweise Zugabe von O- Diphenylphosphinylhydroxylamin (22.9 g, 98.41 mmol). Danach wurde das resultierende Reaktionsgemisch 6 h lang bei einer Temperatur von 40 °C gerührt und im Anschluss mit Eiswasser versetzt (500 mL). Nach Zugabe von Essigester und einer ersten Extraktion wurde die wässrige Phase mehrfach mit Essigester extrahiert. Die vereinigten organischen Phasen wurden mit Wasser gewaschen, über Natriumsulfat getrocknet, abfiltriert und unter vermindertem Druck eingeengt. Durch säulenchromatographische Reinigung des resultierenden Rohproduktes wurde 1-(Allyloxy)-2-methyl-1- oxopropan-2-yl 5-(3-amino-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluor-2- iodbenzoat (7.0 g, 49% der Theorie) in Form eines farblosen Feststoffs erhalten. 1H NMR (d6-DMSO, ppm): 8.22-8.19 (m, 1H), 7.98-7.95 (m, 1H), 6.43 (s, 1H), 5.96-5.86 (m, 1H), 5.60 (s, 2H), 5.36-5.30 (m, 1H), 5.24-5.21 (m, 1H), 4.65-4.63 (d, 2H), 1.63 (s, 6H). 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl 5-(3-amino-2,6-dioxo-4-(trifluormethyl)-3,6- dihydropyrimidin-1(2H)-yl)-4-fluor-2-iodbenzoat (7.0 g, 11.96 mmol) wurde anschließend unter Argon in entgastem Dichlormethan (187 mL) gelöst, auf eine Temperatur von ca.10 °C eingekühlt und nach 10 Min Rühren bei 10 °C unter Argon mit Phenylsilan (0.65 g, 5.98 mmol) und Pd(PPh3)4 (345 mg, 0.29 mmol) versetzt. Das resultierende Reaktionsgemisch wurde danach 3 h lang bei Raumtemperatur gerührt, danach mit Wasser (100 mL) versetzt und anschließend mit ges. Natriumhydrogencarbonatlösung auf einen pH-Wert von ca 8 gebracht. Nach 10 Minuten Rühren bei Raumtemperatur wurde Dichlormethan zugegeben und die wässrige Phase nach Phasentrennung mit Hilfe von 2N HCl auf einen pH-Wert von 4-5 eingestellt und gründlich mehrfach mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, über Natriumsulfat getrocknet, abfiltriert und unter vermindertem Druck eingeengt. Durch säulenchromatographische Reinigung des resultierenden Rohproduktes wurde 2-((5-(3-amino-2,6-dioxo- 4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluor-2-iodbenzoyl)oxy)-2- methylpropancarbonsäure (2.6 g, 40% der Theorie) in Form eines farblosen Feststoffs erhalten. 1H NMR (d6-DMSO, ppm): 13.07 (br. s, 1H, OH), 8.20-8.17 (m, 1H), 7.94-7.92 (m, 1H), 6.41 (s, 1H), 5.59 (s, 2H), 1.61 (s, 6H). Nr. I.32-176: 1-(Cyanmethoxy)-2-methyl-1-oxopropan-2-yl-2-brom-4-fluor-5-[3-amino-2,6-dioxo-4- (trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl]benzoat
Figure imgf000057_0002
Zu einer Lösung aus 2-((5-(3-amino-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4- fluor-2-iodbenzoyl)oxy)-2-methylpropancarbonsäure (80 mg, 0.15 mmol) in abs. Dichlormethan (3 mL) wurden 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid (37 mg, 0.19 mmol), 1- Hydroxybenzotriazol (29 mg, 0.19 mmol) und 4-Dimethylaminopyridin (2 mg) gegeben und 30 Min lang bei Raumtemperatur nachgerührt. Anschließend wurden Glyconitril (0.03 mL, 0.26 mmol.50%ige Lösung in Wasser) sowie Triethylamin (0.06 mL, 0.44 mmol) zugegeben und das resultierende Reaktionsgemisch 14 h lang bei Raumtemperatur gerührt. Nachfolgend wurden 5 mL Dichlormethan und 5 mLWasser hinzugesetzt. Die Reaktionsmischung wurde mittels einer Separatorkartusche von der wässrigen Phase getrennt und nach Auffangen der organischen Phase wurde das Lösungsmittel im Vakuum entfernt. Durch säulenchromatographische Reinigung des erhaltenen Rohproduktes wurde 1-(Cyanmethoxy)-2-methyl- 1-oxopropan-2-yl-2-brom-4-fluor-5-[3-amino-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)- yl]benzoat (51 mg, 57% der Theorie) in Form eines farblosen Feststoffs erhalten. 1H NMR (CDCl3, ppm): 7.94 (d, 1H), 7.82 (d, 1H), 6.29 (s, 1H), 4.80 (s, 2H), 4.61 (s, 2H), 1.72 (s, 6H). In Analogie zu den oben angeführten und an entsprechender Stelle rezitierten Herstellungsbeispielen und unter Berücksichtigung der allgemeinen Angaben zur Herstellung von substituierten N- Benzoesäureuracilen erhält man die nachfolgend genannten Verbindungen. Wenn in Tabelle 1 ein Strukturelement durch eine Strukturformel definiert ist, welches eine gestrichelte Linie enthält, so bedeutet diese gestrichelte Linie, dass an dieser Position die betreffende Gruppe mit dem Rest des Moleküls verbunden ist. Wenn in Tabelle 1 ein Strukturelement durch eine Strukturformel definiert ist, welches einen Pfeil enthält, so steht der Pfeil für eine Bindung der jeweiligen Gruppe Q zur Carbonylgruppe in der allgemeinen Formel (I).
Figure imgf000057_0001
Tabelle I.1: Bevorzugte Verbindungen der Formel (I.1) sind die Verbindungen I.1-1 bis I.1-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.1-1 bis I.1-500 der Tabelle I.1 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle 1:
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Tabelle I.2: Bevorzugte Verbindungen der Formel (I.2) sind die Verbindungen I.2-1 bis I.2-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.2-1 bis I.2-500 der Tabelle I.2 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000070_0002
Tabelle I.3: Bevorzugte Verbindungen der Formel (I.3) sind die Verbindungen I.3-1 bis I.3-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.3-1 bis I.3-500 der Tabelle I.3 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000070_0003
Tabelle I.4: Bevorzugte Verbindungen der Formel (I.4) sind die Verbindungen I.4-1 bis I.4-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.4-1 bis I.4-500 der Tabelle I.4 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000070_0004
Tabelle I.5: Bevorzugte Verbindungen der Formel (I.5) sind die Verbindungen I.5-1 bis I.5-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.5-1 bis I.5-500 der Tabelle I.5 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000071_0001
Tabelle I.6: Bevorzugte Verbindungen der Formel (I.6) sind die Verbindungen I.6-1 bis I.6-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.6-1 bis I.6-500 der Tabelle I.6 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000071_0002
Tabelle I.7: Bevorzugte Verbindungen der Formel (I.7) sind die Verbindungen I.7-1 bis I.7-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.7-1 bis I.7-500 der Tabelle I.7 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000071_0003
Tabelle I.8: Bevorzugte Verbindungen der Formel (I.8) sind die Verbindungen I.8-1 bis I.8-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.8-1 bis I.8-500 der Tabelle I.8 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000072_0001
Tabelle I.9: Bevorzugte Verbindungen der Formel (I.9) sind die Verbindungen I.9-1 bis I.9-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.9-1 bis I.9-500 der Tabelle I.9 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000072_0002
Tabelle I.10: Bevorzugte Verbindungen der Formel (I.10) sind die Verbindungen I.10-1 bis I.10-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.10-1 bis I.10-500 der Tabelle I.10 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000072_0003
Tabelle I.11: Bevorzugte Verbindungen der Formel (I.11) sind die Verbindungen I.11-1 bis I.11-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.11-1 bis I.11-500 der Tabelle I.11 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000072_0004
Tabelle I.12: Bevorzugte Verbindungen der Formel (I.12) sind die Verbindungen I.12-1 bis I.12-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.12-1 bis I.12-500 der Tabelle I.12 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000073_0001
Tabelle I.13: Bevorzugte Verbindungen der Formel (I.13) sind die Verbindungen I.13-1 bis I.13-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.13-1 bis I.13-500 der Tabelle I.13 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000073_0002
Tabelle I.14: Bevorzugte Verbindungen der Formel (I.14) sind die Verbindungen I.14-1 bis I.14-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.14-1 bis I.14-500 der Tabelle I.14 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000073_0003
Tabelle I.15: Bevorzugte Verbindungen der Formel (I.15) sind die Verbindungen I.15-1 bis I.15-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.15.-1 bis I.15-500 der Tabelle I.15 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.16: Bevorzugte Verbindungen der Formel (I.16) sind die Verbindungen I.16-1 bis I.16-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.16-1 bis I.16-500 der Tabelle I.16 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000074_0001
Tabelle I.17: Bevorzugte Verbindungen der Formel (I.17) sind die Verbindungen I.17-1 bis I.17-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.17-1 bis I.17-500 der Tabelle I.17 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.18: Bevorzugte Verbindungen der Formel (I.18) sind die Verbindungen I.18-1 bis I.18-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.18-1 bis I.18-500 der Tabelle I.18 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.19: Bevorzugte Verbindungen der Formel (I.19) sind die Verbindungen I.19-1 bis I.19-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.19-1 bis I.19-500 der Tabelle I.19 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.20: Bevorzugte Verbindungen der Formel (I.20) sind die Verbindungen I.20-1 bis I.20-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.20-1 bis I.20-500 der Tabelle I.20 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.21: Bevorzugte Verbindungen der Formel (I.21) sind die Verbindungen I.21-1 bis I.21-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.21-1 bis I.21-500 der Tabelle I.21 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.22: Bevorzugte Verbindungen der Formel (I.22) sind die Verbindungen I.22-1 bis I.22-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.22-1 bis I.22-500 der Tabelle I.22 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000076_0001
Tabelle I.23: Bevorzugte Verbindungen der Formel (I.23) sind die Verbindungen I.23-1 bis I.23-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.23-1 bis I.23-500 der Tabelle I.23 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000076_0002
Tabelle I.24: Bevorzugte Verbindungen der Formel (I.24) sind die Verbindungen I.24-1 bis I.24-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.24-1 bis I.24-500 der Tabelle I.24 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.25: Bevorzugte Verbindungen der Formel (I.25) sind die Verbindungen I.25-1 bis I.25-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.25-1 bis I.25-500 der Tabelle I.25 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000076_0003
Tabelle I.26: Bevorzugte Verbindungen der Formel (I.26) sind die Verbindungen I.26-1 bis I.26-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.26-1 bis I.26-500 der Tabelle I.26 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000077_0001
Tabelle I.27: Bevorzugte Verbindungen der Formel (I.27) sind die Verbindungen I.27-1 bis I.27-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.27.-1 bis I.27-500 der Tabelle I.27 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000077_0002
Tabelle I.28: Bevorzugte Verbindungen der Formel (I.28) sind die Verbindungen I.28-1 bis I.28-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.28-1 bis I.28-500 der Tabelle I.28 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.29: Bevorzugte Verbindungen der Formel (I.29) sind die Verbindungen I.29-1 bis I.29-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.29-1 bis I.29-500 der Tabelle I.29 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.30: Bevorzugte Verbindungen der Formel (I.30) sind die Verbindungen I.30-1 bis I.30-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.30-1 bis I.30-500 der Tabelle I.30 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000078_0001
Tabelle I.31: Bevorzugte Verbindungen der Formel (I.31) sind die Verbindungen I.31-1 bis I.31-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.31-1 bis I.31-500 der Tabelle I.31 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.32: Bevorzugte Verbindungen der Formel (I.32) sind die Verbindungen I.32-1 bis I.32-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.32-1 bis I.32-500 der Tabelle I.32 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.33: Bevorzugte Verbindungen der Formel (I.33) sind die Verbindungen I.33-1 bis I.33-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.33-1 bis I.33-500 der Tabelle I.33 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.34: Bevorzugte Verbindungen der Formel (I.34) sind die Verbindungen I.34-1 bis I.34-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.34-1 bis I.34-500 der Tabelle I.34 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.35: Bevorzugte Verbindungen der Formel (I.35) sind die Verbindungen I.35-1 bis I.35-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.35-1 bis I.35-500 der Tabelle I.35 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000079_0001
Tabelle I.36: Bevorzugte Verbindungen der Formel (I.36) sind die Verbindungen I.36-1 bis I.36-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.36-1 bis I.36-500 der Tabelle I.36 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.37: Bevorzugte Verbindungen der Formel (I.37) sind die Verbindungen I.37-1 bis I.37-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.37-1 bis I.37-500 der Tabelle I.37 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000080_0001
Tabelle I.38: Bevorzugte Verbindungen der Formel (I.38) sind die Verbindungen I.38-1 bis I.38-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.38-1 bis I.38-500 der Tabelle I.38 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.39: Bevorzugte Verbindungen der Formel (I.39) sind die Verbindungen I.39-1 bis I.39-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.39-1 bis I.39-500 der Tabelle I.39 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.40: Bevorzugte Verbindungen der Formel (I.40) sind die Verbindungen I.40-1 bis I.40-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.40-1 bis I.40-500 der Tabelle I.40 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000081_0001
Tabelle I.41: Bevorzugte Verbindungen der Formel (I.41) sind die Verbindungen I.41-1 bis I.41-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.41-1 bis I.41-500 der Tabelle I.41 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.42: Bevorzugte Verbindungen der Formel (I.42) sind die Verbindungen I.42-1 bis I.42-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.42-1 bis I.42-500 der Tabelle I.42 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.43: Bevorzugte Verbindungen der Formel (I.43) sind die Verbindungen I.43-1 bis I.43-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.43-1 bis I.43-500 der Tabelle I.43 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.44: Bevorzugte Verbindungen der Formel (I.44) sind die Verbindungen I.44-1 bis I.44-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.44-1 bis I.44-500 der Tabelle I.44 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.45: Bevorzugte Verbindungen der Formel (I.45) sind die Verbindungen I.45-1 bis I.45-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.45.-1 bis I.45-500 der Tabelle I.45 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.46: Bevorzugte Verbindungen der Formel (I.46) sind die Verbindungen I.46-1 bis I.46-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.46-1 bis I.46-500 der Tabelle I.46 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert.
Figure imgf000082_0001
Tabelle I.47: Bevorzugte Verbindungen der Formel (I.47) sind die Verbindungen I.47-1 bis I.47-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.47-1 bis I.47-500 der Tabelle I.47 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. Tabelle I.48: Bevorzugte Verbindungen der Formel (I.48) sind die Verbindungen I.48-1 bis I.48-500, worin der Rest Q die in der jeweiligen Zeile angegebenen Bedeutungen der Tabelle 1 hat. Die Verbindungen I.48-1 bis I.48-500 der Tabelle I.48 sind somit durch die Bedeutung der jeweiligen Einträge Nr.1 bis 500 für Q der Tabelle 1 definiert. a) klassische NMR-Interpretation Beispiel Nr. I.2-491: 1H NMR (CDCl3, ppm): 7.87 (d, 1H), 7.61 (d, 1H), 6.29 (s, 1H), 4.60 (s, 2H), 2.06 (s, 3H), 1.95 (s, 3H), 1.77 (s, 6H). b) NMR-Peak-Listenverfahren Die 1H-NMR-Daten ausgewählter Beispiele können auch in Form von 1H-NMR-Peaklisten notiert werden. Zu jedem Signalpeak wird erst der δ-Wert in ppm und dann die Signalintensität in runden Klammern aufgeführt. Die δ−Wert – Signalintensitäts- Zahlenpaare von verschiedenen Signalpeaks werden durch Semikolons voneinander getrennt aufgelistet. Die Peakliste eines Beispiels hat daher die Form: δ1 (Intensität1); δ2 (Intensität2);……..; δi (Intensitäti);……; δn (Intensitätn) Die Intensität scharfer Signale korreliert mit der Höhe der Signale in einem gedruckten Beispiel eines NMR-Spektrums in cm und zeigt die wirklichen Verhältnisse der Signalintensitäten. Bei breiten Signalen können mehrere Peaks oder die Mitte des Signals und ihre relative Intensität im Vergleich zum intensivsten Signal im Spektrum gezeigt werden. Zur Kalibrierung der chemischen Verschiebung von 1H-NMR-Spektren benutzen wir Tetramethylsilan und/oder die chemische Verschiebung des Lösungsmittels, besonders im Falle von Spektren, die in DMSO gemessen werden. Daher kann in NMR- Peaklisten der Tetramethylsilan-Peak vorkommen, muss es aber nicht. Die Listen der 1H-NMR-Peaks sind ähnlich den klassischen 1H-NMR-Ausdrucken und enthalten somit gewöhnlich alle Peaks, die bei einer klassischen NMR-Interpretation aufgeführt werden. Darüber hinaus können sie wie klassische 1H- NMR-Ausdrucke Lösungsmittelsignale, Signale von Stereoisomeren der Zielverbindun-gen, die ebenfalls Gegenstand der Erfindung sind, und/oder Peaks von Verunreinigungen zeigen. Bei der Angabe von Verbindungssignalen im Delta-Bereich von Lösungsmitteln und/oder Wasser sind in unseren Listen von 1H-NMR-Peaks die gewöhnlichen Lösungsmittelpeaks, zum Beispiel Peaks von DMSO in DMSO- D6 und der Peak von Wasser, gezeigt, die gewöhnlich im Durchschnitt eine hohe Intensität aufweisen. Die Peaks von Stereoisomeren der Zielverbindungen und/oder Peaks von Verunreinigungen haben gewöhnlich im Durchschnitt eine geringere Intensität als die Peaks der Zielverbindungen (zum Beispiel mit einer Reinheit von >90%). Solche Stereoisomere und/oder Verunreinigungen können typisch für das jeweilige Herstellungsverfahren sein. Ihre Peaks können somit dabei helfen, die Reproduktion unseres Herstellungsverfahrens anhand von “Nebenprodukt- Fingerabdrücken” zu erkennen. Einem Experten, der die Peaks der Zielverbindungen mit bekannten Verfahren (MestreC, ACD-Simulation, aber auch mit empirisch ausgewerteten Erwartungswerten) berechnet, kann je nach Bedarf die Peaks der Zielverbindungen isolieren, wobei gegebenenfalls zusätzliche Intensitätsfilter eingesetzt werden. Diese Isolierung wäre ähnlich dem betreffenden Peak- Picking bei der klassischen 1H-NMR-Interpretation. Weitere Details zu 1H-NMR-Peaklisten können der Research Disclosure Database Number 564025 entnommen werden. Beispiel Nr.: I.1-1: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8435 (2.8); 7.8247 (2.8); 7.6198 (3.0); 7.5976 (3.0); 7.2608 (14.8); 6.3842 (4.9); 5.3000 (4.6); 4.7925 (16.0); 3.5771 (6.9); 3.5743 (7.0); 2.0452 (0.8); 1.7231 (13.9); 1.7190 (14.4); 1.2593 (0.6); 0.0079 (0.6); -0.0002 (22.2); -0.0085 (0.7) I.1-2: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8375 (3.2); 7.8185 (3.2); 7.5966 (3.3); 7.5808 (0.5); 7.5743 (3.3); 7.2615 (16.5); 6.3735 (5.3); 4.3188 (3.1); 4.3087 (2.0); 4.3065 (3.4); 4.3034 (1.9); 4.2939 (3.4); 3.6314 (3.4); 3.6226 (1.9); 3.6216 (1.9); 3.6188 (3.4); 3.6163 (2.0); 3.6065 (3.4); 3.5988 (0.7); 3.5949 (1.3); 3.5835 (1.2); 3.5700 (8.1); 3.5672 (7.7); 3.5595 (0.9); 3.5419 (1.8); 3.5244 (1.8); 3.5069 (0.7); 3.5036 (2.0); 3.4861 (6.1); 3.4686 (6.2); 3.4512 (2.0); 1.9828 (1.7); 1.6976 (14.8); 1.6935 (16.0); 1.6315 (0.7); 1.6134 (0.6); 1.5736 (0.6); 1.3520 (1.5); 1.3385 (1.5); 1.2563 (0.5); 1.2285 (1.7); 1.2110 (3.3); 1.1935 (1.6); 1.1492 (6.5); 1.1317 (13.4); 1.1143 (6.3); 0.8821 (0.8); 0.0080 (0.6); -0.0002 (24.5); -0.0029 (0.9); -0.0085 (0.7) I.1-23: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8359 (1.3); 7.8171 (1.3); 7.5957 (3.0); 7.5734 (3.0); 7.2607 (33.0); 6.3733 (3.5); 5.3001 (0.7); 4.3373 (1.2); 4.3263 (1.7); 4.3134 (1.3); 3.7013 (1.3); 3.6886 (1.7); 3.6773 (1.2); 3.6002 (1.6); 3.5896 (1.9); 3.5845 (1.7); 3.5768 (3.1); 3.5708 (6.0); 3.4830 (2.2); 3.4759 (1.6); 3.4708 (1.8); 3.4602 (1.5); 3.3470 (16.0); 1.6949 (11.6); 1.6910 (12.1); 1.5569 (2.3); 0.0080 (1.4); -0.0002 (46.6); -0.0085 (1.2) I.1-176: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8358 (1.5); 7.8168 (1.5); 7.5961 (1.6); 7.5738 (1.6); 7.2610 (11.3); 6.3739 (2.4); 5.3000 (1.0); 4.3179 (1.7); 4.3102 (0.6); 4.3087 (0.9); 4.3059 (1.7); 4.3027 (0.9); 4.3013 (0.7); 4.2937 (1.9); 3.5888 (1.8); 3.5812 (0.7); 3.5797 (0.9); 3.5765 (1.9); 3.5736 (2.1); 3.5706 (3.6); 3.5675 (3.7); 3.5646 (3.1); 3.3149 (16.0); 1.6989 (7.2); 1.6958 (7.5); 1.5482 (2.9); -0.0002 (17.0) I.1-286: 1H-NMR (400.6 MHz, CDCl3): δ= 8.5594 (1.1); 8.5570 (1.2); 8.5550 (1.2); 8.5528 (1.1); 8.5472 (1.1); 8.5449 (1.3); 8.5429 (1.2); 8.5406 (1.0); 7.8296 (3.6); 7.8106 (3.6); 7.7121 (0.8); 7.7077 (0.8); 7.6929 (1.5); 7.6885 (1.5); 7.6736 (0.9); 7.6692 (0.9); 7.5911 (3.7); 7.5688 (3.7); 7.3670 (1.6); 7.3475 (1.4); 7.2609 (27.6); 7.2243 (0.9); 7.2121 (0.9); 7.2095 (0.9); 7.2054 (0.9); 7.1932 (0.8); 6.3739 (5.9); 5.3163 (9.5); 5.2998 (3.1); 4.1309 (0.6); 4.1130 (0.6); 3.5696 (8.0); 3.5667 (8.0); 2.0452 (2.8); 1.7463 (15.8); 1.7415 (16.0); 1.2773 (1.0); 1.2595 (2.0); 1.2416 (0.8); 0.8820 (1.1); 0.0079 (1.2); -0.0002 (40.7); -0.0028 (1.4); -0.0085 (1.1) I.1-441: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8430 (1.7); 7.8240 (1.8); 7.6033 (1.8); 7.5810 (1.8); 7.2612 (6.8); 6.3777 (2.8); 5.2999 (3.5); 3.7545 (16.0); 3.5730 (3.9); 3.5700 (3.9); 1.6848 (8.1); 1.6811 (8.3); -0.0002 (10.4) I.1-442: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8294 (3.2); 7.8105 (3.3); 7.6004 (3.3); 7.5780 (3.3); 7.2610 (15.3); 6.3775 (5.1); 5.2999 (4.0); 4.2454 (2.0); 4.2276 (6.4); 4.2098 (6.4); 4.1920 (2.0); 3.5724 (7.1); 3.5694 (7.3); 3.5665 (2.9); 1.6799 (15.7); 1.6770 (16.0); 1.5524 (1.3); 1.2814 (6.7); 1.2636 (14.1); 1.2581 (0.9); 1.2457 (6.5); 0.0079 (0.6); -0.0002 (22.8); -0.0085 (0.6) I.1-481: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8465 (2.9); 7.8276 (2.9); 7.6018 (3.0); 7.5795 (3.0); 7.2603 (18.8); 6.3787 (5.4); 5.2997 (13.2); 3.5694 (8.4); 1.7266 (16.0); 1.7229 (15.6); 0.0080 (0.9); -0.0002 (26.5); -0.0046 (0.7); -0.0055 (0.6); - 0.0086 (1.0) I.1-491: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8724 (2.0); 7.8535 (2.0); 7.6047 (2.0); 7.5824 (2.0); 7.2605 (28.7); 6.3745 (3.3); 5.3001 (2.9); 3.5710 (4.4); 3.5682 (4.5); 2.0539 (14.6); 2.0454 (1.0); 1.9419 (16.0); 1.9362 (0.8); 1.7689 (11.2); 1.5457 (2.5); 1.2596 (0.6); 0.0080 (1.1); -0.0002 (40.0); -0.0085 (1.1) I.2-176: 1H-NMR (400.6 MHz, CDCl3): δ= 8.5660 (1.4); 8.5537 (1.4); 7.8762 (0.7); 7.8569 (0.7); 7.8425 (3.2); 7.8236 (3.2); 7.7258 (0.7); 7.6004 (3.4); 7.5782 (3.4); 7.5190 (0.8); 7.3957 (1.3); 7.3728 (1.2); 7.2606 (155.1); 7.2450 (1.0); 7.2332 (1.2); 7.2245 (0.5); 6.9969 (0.7); 6.2895 (7.3); 5.3426 (4.2); 4.6096 (7.0); 4.1309 (1.3); 4.1132 (1.3); 2.0455 (6.2); 1.7508 (15.5); 1.7412 (16.0); 1.5500 (6.0); 1.2775 (2.1); 1.2597 (4.3); 1.2418 (1.8); 0.8991 (0.8); 0.8821 (2.6); 0.8643 (1.0); 0.1457 (0.7); 0.0287 (0.5); 0.0080 (6.7); 0.0064 (1.8); 0.0056 (2.1); 0.0048 (2.2); -0.0002 (239.5); -0.0085 (6.2); -0.0275 (1.0); -0.1492 (0.7) I.2-286: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8476 (1.8); 7.8288 (1.9); 7.6335 (1.9); 7.6113 (1.9); 7.2606 (31.0); 6.2981 (3.8); 4.7958 (10.8); 4.7938 (3.1); 4.6072 (4.7); 4.1309 (0.6); 4.1130 (0.6); 2.0454 (2.8); 1.7297 (8.0); 1.7215 (8.4); 1.5432 (16.0); 1.2774 (0.9); 1.2596 (1.8); 1.2417 (0.8); 0.8821 (0.9); 0.0080 (1.2); -0.0002 (45.8); -0.0085 (1.4) I.1-472: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8379 (3.4); 7.8190 (3.4); 7.6031 (3.6); 7.5807 (3.5); 7.2611 (15.1); 6.3775 (5.5); 4.7516 (10.4); 4.7454 (10.5); 3.5728 (7.8); 3.5697 (7.9); 2.4762 (2.5); 2.4700 (5.2); 2.4639 (2.5); 1.7084 (15.9); 1.7044 (16.0); 1.6955 (1.0); 1.5474 (3.9); 0.0079 (0.7); -0.0002 (23.0); -0.0085 (0.6) I.2-152: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8367 (1.5); 7.8178 (1.5); 7.6047 (1.5); 7.5825 (1.6); 7.2605 (72.6); 6.2796 (3.0); 5.3003 (1.7); 4.6610 (3.1); 4.3166 (1.0); 4.3044 (1.2); 4.3011 (0.9); 4.2922 (1.3); 3.6852 (1.4); 3.6728 (1.4); 3.6608 (1.3); 3.6329 (0.8); 3.6288 (0.8); 3.6222 (1.7); 3.6175 (1.0); 3.6149 (1.4); 3.6087 (1.3); 3.6067 (1.3); 3.5983 (0.8); 3.5909 (1.6); 3.5876 (1.6); 3.5829 (2.5); 3.5748 (3.0); 3.5652 (0.6); 3.5324 (2.1); 3.5235 (1.0); 3.5194 (1.6); 3.5097 (0.9); 3.3603 (13.6); 1.7788 (0.8); 1.6998 (6.5); 1.6903 (6.4); 1.5452 (16.0); 0.0324 (0.6); 0.0079 (2.6); -0.0002 (99.7); -0.0085 (2.9) I.2-442: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8333 (3.5); 7.8144 (3.5); 7.6134 (3.6); 7.5910 (3.6); 7.2612 (17.2); 6.2908 (6.7); 4.6060 (7.6); 4.2472 (2.1); 4.2294 (6.9); 4.2116 (7.0); 4.1938 (2.2); 3.7637 (0.7); 3.7533 (0.5); 3.7471 (1.8); 3.7410 (0.6); 3.7304 (0.8); 1.8700 (0.8); 1.8623 (0.6); 1.8535 (2.1); 1.8446 (0.7); 1.8369 (0.8); 1.6845 (15.9); 1.6779 (16.0); 1.4320 (0.9); 1.4278 (1.2); 1.3012 (0.6); 1.2830 (7.6); 1.2778 (0.9); 1.2652 (15.9); 1.2599 (2.4); 1.2474 (7.5); 1.2423 (0.9); 0.0079 (0.6); -0.0002 (24.9); -0.0085 (0.8) I.1-152: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8395 (1.7); 7.8206 (1.7); 7.5969 (1.8); 7.5745 (1.8); 7.2620 (8.4); 6.3735 (3.0); 4.3254 (1.5); 4.3154 (1.2); 4.3131 (1.7); 4.3101 (1.1); 4.3005 (1.6); 3.6974 (1.6); 3.6878 (1.1); 3.6848 (1.7); 3.6824 (1.2); 3.6725 (1.5); 3.6267 (1.4); 3.6218 (0.7); 3.6170 (1.7); 3.6145 (2.5); 3.6099 (2.0); 3.6077 (1.8); 3.6027 (4.8); 3.5928 (2.6); 3.5914 (2.3); 3.5866 (1.6); 3.5829 (1.0); 3.5798 (1.2); 3.5710 (4.4); 3.5680 (4.5); 3.5364 (2.4); 3.5292 (1.4); 3.5241 (1.6); 3.5136 (1.1); 3.3657 (16.0); 1.6918 (8.4); 1.6881 (8.4); - 0.0002 (13.5) I.1-302: 1H-NMR (400.6 MHz, CDCl3): δ= 9.1541 (2.8); 9.1508 (2.8); 8.7474 (2.3); 8.7344 (2.3); 7.8538 (3.5); 7.8349 (3.6); 7.6161 (3.6); 7.5939 (3.7); 7.4046 (1.6); 7.4028 (1.5); 7.4011 (1.6); 7.3916 (1.6); 7.3898 (1.4); 7.3880 (1.6); 7.2621 (18.3); 6.3808 (6.0); 5.2823 (9.4); 3.5734 (8.0); 3.5704 (8.2); 1.7750 (15.7); 1.7703 (16.0); 0.0080 (0.7); -0.0002 (28.8); -0.0085 (0.8) I.1-500: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8648 (2.6); 7.8458 (2.7); 7.6016 (2.7); 7.5793 (2.8); 7.2636 (6.0); 6.3749 (4.5); 3.5702 (6.3); 3.5674 (6.2); 2.4675 (1.0); 2.4529 (1.7); 2.4365 (1.3); 2.4012 (1.7); 2.3857 (2.0); 2.3696 (1.9); 2.0450 (1.3); 1.7638 (16.0); 1.7534 (2.2); 1.7357 (0.9); 1.6390 (0.9); 1.6213 (1.6); 1.6167 (1.9); 1.6102 (1.7); 1.5983 (1.1); 1.2770 (0.7); 1.2592 (1.5); 1.2414 (0.5); 0.8818 (1.4); 0.8641 (0.5); -0.0002 (9.2) I.1-24: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8358 (3.4); 7.8169 (3.5); 7.5959 (3.6); 7.5735 (3.6); 7.2617 (16.9); 6.3734 (5.7); 4.3343 (3.1); 4.3243 (2.2); 4.3219 (3.4); 4.3189 (2.1); 4.3093 (3.4); 3.7057 (3.4); 3.6961 (2.0); 3.6931 (3.5); 3.6907 (2.2); 3.6807 (3.1); 3.6657 (0.6); 3.6066 (1.7); 3.6049 (1.7); 3.5963 (3.3); 3.5896 (2.7); 3.5824 (4.8); 3.5710 (7.7); 3.5681 (8.1); 3.5279 (4.7); 3.5213 (3.7); 3.5162 (2.6); 3.5141 (3.4); 3.5043 (8.9); 3.4868 (7.5); 3.4694 (2.4); 1.6939 (15.6); 1.6901 (16.0); 1.2556 (1.5); 1.2042 (7.7); 1.1867 (15.6); 1.1692 (7.5); 0.0080 (0.7); -0.0002 (26.6); -0.0085 (0.7) I.1-26: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8364 (2.2); 7.8175 (2.2); 7.6012 (2.2); 7.5789 (2.2); 7.2608 (7.3); 6.3754 (4.0); 4.2707 (2.0); 4.2546 (4.2); 4.2387 (2.2); 3.5711 (5.8); 3.5690 (5.9); 3.4249 (2.0); 3.4093 (4.3); 3.3937 (2.1); 3.2931 (16.0); 3.2674 (0.6); 1.9213 (2.0); 1.9055 (2.9); 1.8897 (1.9); 1.6832 (11.6); 1.6801 (12.2); 1.5574 (1.3); 1.2563 (0.6); -0.0002 (9.9) I.1-31: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8510 (1.8); 7.8321 (1.8); 7.6020 (1.9); 7.5797 (1.9); 7.2613 (8.3); 6.3778 (3.0); 4.3316 (2.0); 4.3141 (3.5); 4.2963 (2.1); 3.5730 (4.2); 3.5700 (4.3); 2.7424 (2.0); 2.7247 (3.3); 2.7071 (1.9); 2.1242 (16.0); 2.1131 (0.6); 1.6946 (8.7); 1.6914 (8.8); 1.6808 (0.7); 1.2592 (0.6); 1.2557 (0.6); -0.0002 (12.3) I.2-302: 1H-NMR (400.6 MHz, CDCl3): δ= 9.1556 (2.4); 9.1523 (2.4); 8.7478 (2.0); 8.7348 (2.1); 7.8276 (2.8); 7.8088 (2.8); 7.6266 (2.9); 7.6043 (2.9); 7.4100 (1.2); 7.4082 (1.2); 7.4066 (1.3); 7.3970 (1.3); 7.3952 (1.2); 7.3935 (1.2); 7.2609 (36.7); 6.2934 (5.6); 5.3002 (16.0); 5.2840 (7.9); 4.6212 (6.1); 4.1308 (1.0); 4.1130 (1.0); 2.0453 (4.8); 1.7808 (12.2); 1.7712 (12.4); 1.2773 (1.4); 1.2595 (2.8); 1.2417 (1.4); 0.0080 (1.5); -0.0002 (54.9); - 0.0085 (1.7) I.2-237: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8636 (1.1); 7.8448 (1.2); 7.6135 (3.4); 7.5912 (3.5); 7.2606 (82.4); 6.2885 (6.6); 4.6148 (4.4); 4.1487 (1.1); 4.1309 (3.3); 4.1130 (3.4); 4.0952 (1.1); 2.5740 (0.5); 2.0454 (16.0); 1.7759 (1.1); 1.6979 (13.2); 1.6893 (13.9); 1.5579 (0.8); 1.2774 (4.6); 1.2596 (9.4); 1.2417 (4.5); 0.0080 (3.0); -0.0002 (121.4); -0.0085 (3.6) I.2-231: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8559 (1.7); 7.8370 (1.7); 7.6108 (2.0); 7.5884 (2.0); 7.2612 (14.4); 6.2887 (3.9); 5.3002 (4.6); 4.6083 (4.3); 4.2847 (1.5); 4.2696 (3.2); 4.2546 (1.6); 2.6025 (0.9); 2.5875 (1.8); 2.5725 (0.9); 2.2515 (16.0); 2.0452 (2.2); 1.6934 (8.6); 1.6871 (8.8); 1.2773 (0.6); 1.2595 (1.3); 1.2416 (0.6); 0.0080 (0.5); - 0.0002 (21.0); -0.0085 (0.6) I.2-490: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8184 (3.7); 7.7995 (3.8); 7.6057 (3.8); 7.5834 (3.8); 7.2609 (27.3); 6.2870 (7.2); 5.3002 (9.8); 4.6071 (8.1); 4.4487 (3.0); 4.4326 (7.1); 4.4166 (3.4); 4.1237 (2.0); 4.1059 (6.4); 4.0881 (6.5); 4.0703 (2.1); 2.6751 (3.4); 2.6591 (7.2); 2.6430 (3.3); 2.0452 (1.8); 1.6808 (15.8); 1.6675 (15.8); 1.5504 (6.4); 1.2773 (0.6); 1.2595 (1.2); 1.2391 (7.8); 1.2213 (16.0); 1.2035 (7.5); 0.0079 (1.2); -0.0002 (40.8); - 0.0085 (1.1) I.2-31: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8561 (1.7); 7.8372 (1.8); 7.6151 (1.8); 7.5928 (1.8); 7.2607 (17.2); 6.2920 (3.4); 5.3002 (5.6); 4.6039 (3.8); 4.3331 (1.9); 4.3157 (3.5); 4.2981 (2.0); 2.7431 (1.9); 2.7256 (3.4); 2.7081 (1.8); 2.1232 (16.0); 1.7012 (7.5); 1.6933 (7.5); 1.5436 (3.4); 0.0079 (0.7); -0.0002 (25.7); -0.0085 (0.7) I.1-301: 1H-NMR (400.6 MHz, CDCl3): δ= 9.1408 (1.5); 9.1365 (1.6); 9.1286 (1.6); 9.1243 (1.5); 7.8142 (3.4); 7.7954 (3.5); 7.5987 (3.6); 7.5925 (1.3); 7.5882 (1.3); 7.5764 (3.6); 7.5713 (2.2); 7.5669 (2.1); 7.5148 (2.4); 7.5025 (2.3); 7.4935 (1.4); 7.4813 (1.4); 7.2618 (23.6); 6.3768 (5.6); 5.5465 (10.4); 3.5722 (7.6); 3.5692 (7.9); 1.7439 (15.8); 1.7402 (16.0); 1.6345 (0.5); 1.2558 (0.8); 0.0080 (1.0); -0.0002 (36.2); -0.0085 (1.0) I.1-499: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8712 (1.4); 7.8523 (1.4); 7.6065 (1.5); 7.5843 (1.5); 7.2619 (4.7); 7.2600 (4.5); 6.3742 (3.1); 3.5680 (6.0); 2.5685 (0.8); 2.5501 (2.0); 2.5335 (1.0); 2.4880 (0.8); 2.4713 (1.9); 2.4533 (0.9); 2.0451 (0.5); 1.8081 (0.7); 1.7895 (3.0); 1.7803 (2.6); 1.7706 (3.5); 1.7601 (16.0); 1.5566 (1.0); 1.2595 (0.9); 0.8804 (0.7); -0.0002 (7.6); -0.0021 (7.3) I.1-237: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8822 (1.0); 7.8714 (3.0); 7.8633 (1.0); 7.8526 (2.8); 7.6047 (3.0); 7.5905 (0.5); 7.5826 (3.0); 7.5519 (1.5); 7.5295 (1.4); 7.2620 (37.4); 6.3677 (5.2); 6.3518 (1.9); 4.5703 (1.2); 4.5578 (1.9); 4.5439 (1.3); 4.1312 (0.9); 4.1133 (0.9); 3.6209 (0.5); 3.6129 (0.5); 3.5642 (7.4); 3.5616 (7.0); 3.5448 (5.6); 3.4210 (0.7); 3.4014 (0.7); 3.2474 (1.4); 3.2342 (1.9); 3.2213 (1.4); 3.1573 (1.4); 2.0574 (0.8); 2.0459 (5.4); 2.0386 (2.4); 1.9722 (1.4); 1.9552 (3.8); 1.6701 (16.0); 1.6679 (14.7); 1.6417 (8.1); 1.6192 (1.1); 1.2848 (0.6); 1.2774 (1.6); 1.2595 (3.9); 1.2532 (2.9); 1.2417 (1.6); 1.1662 (2.9); 1.1504 (2.9); 0.8817 (0.6); 0.8792 (0.7); 0.0080 (1.4); -0.0002 (64.7); -0.0085 (2.0) I.1-127: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8437 (1.8); 7.8248 (1.8); 7.6040 (2.0); 7.5821 (2.0); 7.2625 (6.5); 7.2611 (6.7); 6.3791 (4.0); 3.7559 (12.7); 3.7547 (13.0); 3.7371 (0.7); 3.5728 (8.0); 1.6842 (16.0); 1.3022 (0.6); 1.2841 (0.6); 1.2568 (2.6); 0.8816 (0.5); 0.0012 (10.3); -0.0002 (10.9) I.1-115: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8276 (1.7); 7.8087 (1.7); 7.6163 (1.8); 7.5940 (1.8); 7.2614 (5.4); 6.3834 (3.6); 5.5007 (0.8); 5.4860 (1.2); 5.4720 (0.9); 4.9072 (1.8); 4.8889 (3.0); 4.8717 (1.9); 4.6870 (2.0); 4.6732 (2.2); 4.6546 (1.7); 3.5748 (8.0); 1.9724 (0.8); 1.7629 (0.6); 1.7021 (16.0); 1.5558 (1.2); 1.2571 (1.6); -0.0002 (8.8) I.1-496: 1H-NMR (400.6 MHz, CDCl3): δ= 7.6422 (1.7); 7.6405 (1.8); 7.6373 (1.4); 7.6312 (2.3); 7.6222 (2.4); 7.6178 (2.2); 7.4012 (0.9); 7.3984 (1.0); 7.3905 (3.4); 7.3882 (3.0); 7.3810 (4.4); 7.3758 (4.3); 7.3664 (0.7); 7.2560 (1.5); 7.2546 (1.4); 2.3023 (16.0); -0.0002 (2.4); -0.0016 (2.2) I.1-71: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8538 (3.2); 7.8348 (3.2); 7.5962 (3.4); 7.5738 (3.4); 7.2617 (12.8); 6.3731 (4.7); 4.2020 (1.3); 4.1854 (1.9); 4.1683 (1.2); 4.1392 (1.4); 4.1248 (3.2); 4.1070 (2.5); 4.0991 (1.1); 4.0923 (0.6); 3.8420 (0.5); 3.8251 (1.1); 3.8212 (1.0); 3.8081 (0.7); 3.8045 (1.9); 3.7878 (0.9); 3.7655 (1.0); 3.7485 (1.4); 3.7322 (1.1); 3.7279 (0.8); 3.7116 (0.6); 3.5700 (7.6); 3.5671 (7.5); 1.9796 (0.5); 1.9596 (0.6); 1.9456 (0.6); 1.8918 (0.6); 1.8805 (0.7); 1.8745 (1.4); 1.8703 (0.6); 1.8575 (1.5); 1.8541 (1.0); 1.8449 (0.8); 1.8398 (0.7); 1.8371 (0.9); 1.7057 (9.1); 1.7021 (16.0); 1.6971 (8.4); 1.6305 (0.5); 1.6175 (0.5); 1.6007 (0.6); 1.5826 (0.6); 1.5668 (0.6); 0.0079 (0.6); -0.0002 (20.4); -0.0085 (0.6) I.1-72: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8421 (2.4); 7.8232 (2.4); 7.6071 (2.5); 7.5848 (2.5); 7.2608 (23.1); 6.3786 (4.3); 4.1931 (0.8); 4.1765 (0.9); 4.1662 (1.4); 4.1496 (1.5); 4.0973 (1.5); 4.0778 (1.4); 4.0704 (0.9); 4.0508 (0.9); 3.8357 (0.8); 3.8274 (0.9); 3.8220 (0.9); 3.8154 (0.7); 3.8095 (1.0); 3.8052 (1.2); 3.7873 (1.1); 3.7545 (1.1); 3.7470 (0.8); 3.7287 (1.1); 3.7103 (0.8); 3.7076 (0.8); 3.6892 (0.5); 3.5726 (5.9); 3.5699 (5.9); 3.5561 (0.7); 3.5530 (0.7); 3.5423 (0.7); 3.5392 (0.7); 3.5340 (0.6); 3.5309 (0.6); 3.5201 (0.6); 3.5170 (0.5); 2.0223 (0.5); 1.6850 (16.0); 1.6820 (7.6); 1.6724 (1.0); 1.6104 (0.6); 1.5910 (0.6); 1.5760 (0.5); 1.5589 (0.6); 0.0079 (0.9); -0.0002 (34.0); -0.0053 (0.5); -0.0085 (1.0) I.2-472: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8421 (3.5); 7.8232 (3.5); 7.6167 (3.6); 7.5944 (3.6); 7.2605 (28.9); 6.2917 (6.8); 5.3001 (9.5); 4.7541 (9.5); 4.7479 (9.6); 4.6018 (7.9); 4.1307 (0.6); 4.1128 (0.6); 2.4784 (2.3); 2.4723 (4.8); 2.4661 (2.3); 2.0452 (2.7); 1.7133 (16.0); 1.7060 (16.0); 1.5419 (8.5); 1.2773 (0.8); 1.2595 (1.7); 1.2416 (0.7); 0.0080 (1.2); -0.0002 (43.2); -0.0085 (1.2) I.2-1: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8421 (1.7); 7.8231 (1.8); 7.6099 (1.8); 7.5875 (1.8); 7.2604 (34.4); 6.2889 (3.3); 5.3001 (2.4); 4.5985 (3.8); 4.3212 (1.8); 4.3120 (1.0); 4.3092 (1.8); 4.3060 (1.0); 4.2970 (2.0); 4.1309 (0.5); 4.1131 (0.5); 3.5906 (1.9); 3.5815 (0.9); 3.5784 (1.9); 3.5757 (1.0); 3.5664 (1.8); 3.3144 (16.0); 2.0454 (2.5); 1.7040 (7.6); 1.6976 (7.8); 1.5504 (1.1); 1.2774 (0.8); 1.2596 (1.7); 1.2417 (0.7); 0.0080 (1.3); -0.0002 (50.0); -0.0085 (1.6) I.2-72: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8440 (0.6); 7.8380 (0.7); 7.8252 (0.7); 7.8191 (0.7); 7.6202 (1.1); 7.5979 (1.1); 7.2603 (43.6); 6.2924 (2.3); 4.6148 (1.7); 4.6118 (1.8); 3.8097 (0.5); 3.8055 (0.6); 3.7874 (0.5); 1.6975 (3.0); 1.6927 (3.2); 1.6884 (3.4); 1.6847 (3.2); 1.5396 (16.0); 0.0080 (1.9); -0.0002 (68.4); -0.0085 (2.1) I.2-115: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8334 (2.6); 7.8146 (2.6); 7.6305 (2.7); 7.6082 (2.7); 7.2619 (28.8); 7.2603 (33.6); 6.2985 (5.6); 5.5045 (1.1); 5.4891 (1.7); 5.4755 (1.3); 4.9110 (2.3); 4.8923 (3.9); 4.8759 (2.6); 4.6853 (2.7); 4.6720 (3.0); 4.6658 (2.6); 4.6526 (2.3); 4.6056 (8.0); 2.0455 (0.5); 1.7105 (16.0); 1.7035 (15.8); 1.5404 (15.6); 1.2614 (1.0); 0.8823 (0.9); 0.0014 (44.1); -0.0002 (52.0) I.2-500: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8708 (1.7); 7.8518 (1.7); 7.6150 (1.8); 7.5927 (1.8); 7.2607 (43.8); 6.2897 (3.4); 4.6000 (3.9); 2.4726 (0.7); 2.4585 (1.1); 2.4422 (0.9); 2.4036 (1.1); 2.3880 (1.3); 2.3720 (1.2); 1.7685 (8.0); 1.7629 (8.2); 1.6427 (0.6); 1.6207 (1.2); 1.6144 (1.1); 1.6027 (0.6); 1.5472 (16.0); 1.2651 (0.6); 0.8820 (1.1); 0.0080 (1.8); -0.0002 (65.8); -0.0085 (2.0) I.2-3: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8772 (1.4); 7.8583 (1.4); 7.6185 (1.4); 7.5961 (1.5); 7.2604 (30.4); 6.2890 (2.8); 4.5989 (3.2); 2.0571 (10.5); 2.0454 (1.1); 1.9484 (11.7); 1.7738 (6.3); 1.7685 (6.4); 1.5395 (16.0); 1.2597 (0.8); 0.8820 (0.8); 0.0080 (1.2); -0.0002 (45.6); -0.0085 (1.4) I.2-2: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8445 (2.4); 7.8255 (2.4); 7.6106 (2.5); 7.5882 (2.5); 7.2606 (35.8); 6.2882 (4.6); 5.3002 (2.6); 4.5985 (5.2); 4.3218 (2.3); 4.3120 (1.5); 4.3095 (2.4); 4.3065 (1.4); 4.2970 (2.6); 4.1308 (0.6); 4.1130 (0.6); 3.6330 (2.6); 3.6232 (1.4); 3.6204 (2.6); 3.6182 (1.5); 3.6081 (2.4); 3.5036 (1.5); 3.4861 (5.0); 3.4686 (5.0); 3.4512 (1.6); 2.0454 (3.1); 1.7023 (10.2); 1.6953 (10.4); 1.5442 (16.0); 1.2774 (1.0); 1.2596 (2.1); 1.2417 (0.9); 1.1487 (5.1); 1.1312 (10.5); 1.1137 (4.9); 0.0080 (1.4); -0.0002 (54.8); - 0.0085 (1.7) I.2-71: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8596 (2.3); 7.8408 (2.3); 7.6089 (2.4); 7.5865 (2.4); 7.2604 (27.1); 6.2869 (4.7); 5.3000 (3.8); 4.5971 (7.1); 4.2086 (1.0); 4.1916 (1.7); 4.1752 (1.0); 4.1368 (1.2); 4.1231 (3.0); 4.1052 (2.2); 3.8234 (1.2); 3.8041 (1.7); 3.7870 (0.8); 3.7659 (0.8); 3.7488 (1.6); 3.7313 (1.2); 3.7125 (0.6); 2.0453 (1.7); 1.9815 (0.8); 1.9625 (0.8); 1.9486 (0.7); 1.9329 (0.6); 1.8951 (0.7); 1.8775 (1.7); 1.8597 (1.9); 1.8405 (1.2); 1.7051 (16.0); 1.6987 (8.6); 1.6293 (0.7); 1.6134 (0.8); 1.5411 (13.7); 1.2760 (0.6); 1.2594 (1.2); 1.2417 (0.6); -0.0002 (41.9) I.2-301: 1H-NMR (400.6 MHz, CDCl3): δ= 9.1355 (1.7); 9.1246 (1.8); 7.8050 (2.5); 7.7863 (2.5); 7.6044 (2.8); 7.5962 (1.6); 7.5818 (3.0); 7.5178 (1.9); 7.5054 (1.8); 7.4963 (1.2); 7.4843 (1.2); 7.2613 (15.1); 7.2598 (14.6); 6.2884 (5.4); 5.5428 (10.4); 5.3002 (8.7); 5.2987 (8.5); 4.6251 (7.8); 4.1304 (1.2); 4.1126 (1.2); 2.0451 (4.9); 1.7478 (15.4); 1.7396 (16.0); 1.6383 (0.7); 1.2773 (1.4); 1.2594 (2.8); 1.2416 (1.4); -0.0002 (23.4); -0.0017 (22.6) I.2-24: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8340 (3.1); 7.8151 (3.2); 7.6071 (3.1); 7.5848 (3.2); 7.2612 (21.1); 6.2857 (6.0); 5.3001 (16.0); 4.6197 (6.6); 4.3312 (2.7); 4.3214 (1.9); 4.3189 (2.9); 4.3157 (1.8); 4.3064 (2.9); 4.1306 (0.5); 4.1128 (0.5); 3.7025 (2.9); 3.6931 (1.8); 3.6900 (2.9); 3.6874 (1.9); 3.6777 (2.6); 3.6058 (1.3); 3.6024 (1.3); 3.5946 (3.2); 3.5914 (1.8); 3.5880 (2.3); 3.5807 (3.8); 3.5299 (4.6); 3.5249 (2.4); 3.5225 (2.3); 3.5186 (2.1); 3.5163 (3.3); 3.5074 (7.7); 3.4899 (6.4); 3.4724 (2.1); 2.0451 (2.5); 1.7012 (12.8); 1.6909 (12.8); 1.5573 (4.5); 1.2772 (0.8); 1.2594 (1.7); 1.2416 (0.8); 1.2037 (6.6); 1.1862 (13.5); 1.1686 (6.3); 0.8820 (0.5); 0.0080 (0.8); -0.0002 (30.9); -0.0085 (0.9) I.2-26: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8394 (1.7); 7.8205 (1.8); 7.6150 (1.8); 7.5926 (1.8); 7.2608 (15.0); 6.2902 (3.4); 5.3001 (5.4); 4.6056 (3.8); 4.2710 (1.6); 4.2549 (3.5); 4.2388 (1.7); 3.4270 (1.7); 3.4113 (3.6); 3.3957 (1.7); 3.2942 (16.0); 2.0452 (0.9); 1.9246 (1.7); 1.9087 (2.5); 1.8928 (1.6); 1.6901 (7.4); 1.6816 (7.4); 1.5483 (4.1); 1.2595 (0.6); 0.0079 (0.6); -0.0002 (21.8); -0.0085 (0.6) I.2-481: 1H-NMR (400.0 MHz, CDCl3): δ= 7.8817 (0.7); 7.8622 (0.7); 7.8460 (3.3); 7.8271 (3.3); 7.6142 (3.4); 7.5919 (3.4); 7.4071 (0.7); 7.3844 (0.7); 7.2603 (45.1); 6.2921 (7.2); 5.2999 (2.0); 4.6181 (9.2); 4.1493 (0.8); 4.1314 (2.4); 4.1136 (2.4); 4.0958 (0.9); 2.0461 (10.5); 1.7332 (15.8); 1.7228 (16.0); 1.2774 (2.8); 1.2595 (5.8); 1.2416 (2.7); 0.0079 (2.2); -0.0002 (58.9); -0.0085 (1.7) I.3-1: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8364 (1.7); 7.8174 (1.8); 7.5876 (1.8); 7.5653 (1.8); 7.2614 (12.6); 6.6015 (0.6); 6.4701 (1.3); 6.3387 (0.7); 6.1291 (2.0); 4.3164 (1.9); 4.3070 (1.3); 4.3044 (2.0); 4.3012 (1.2); 4.2922 (2.1); 3.5887 (2.0); 3.5795 (1.2); 3.5765 (2.0); 3.5738 (1.2); 3.5644 (1.9); 3.5498 (6.4); 3.3155 (16.0); 2.0453 (0.6); 1.6965 (9.9); 1.6938 (9.4); 1.5595 (5.3); -0.0002 (10.8) I.3-176: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8444 (2.9); 7.8256 (2.9); 7.6109 (3.0); 7.5887 (3.0); 7.2615 (15.4); 6.6059 (1.0); 6.4745 (2.2); 6.3432 (1.1); 6.1393 (3.4); 4.7906 (16.0); 3.5550 (10.4); 1.7202 (14.8); 1.7166 (15.0); 1.5549 (2.1); - 0.0002 (12.0) I.3-286: 1H-NMR (400.6 MHz, CDCl3): δ= 8.5541 (1.2); 8.5522 (1.2); 8.5499 (1.1); 8.5442 (1.2); 8.5419 (1.3); 8.5400 (1.3); 7.8293 (3.2); 7.8104 (3.2); 7.7090 (0.8); 7.7046 (0.8); 7.6897 (1.6); 7.6853 (1.6); 7.6704 (1.0); 7.6660 (1.0); 7.5827 (3.2); 7.5604 (3.3); 7.3650 (1.7); 7.3455 (1.6); 7.2616 (23.0); 7.2192 (1.0); 7.2070 (1.0); 7.2004 (1.0); 7.1882 (0.9); 6.6013 (1.1); 6.4699 (2.4); 6.3386 (1.2); 6.1293 (3.8); 5.3135 (9.4); 3.5485 (11.7); 1.7444 (15.8); 1.7399 (16.0); 0.0080 (0.5); -0.0002 (18.9); -0.0084 (0.8) I.3-454: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8216 (3.0); 7.8027 (3.0); 7.6026 (3.1); 7.5803 (3.1); 7.2612 (16.4); 6.6027 (1.1); 6.4714 (2.3); 6.3400 (1.2); 6.1363 (3.6); 4.5690 (1.6); 4.5482 (4.9); 4.5274 (5.1); 4.5065 (1.7); 3.5531 (11.2); 2.0450 (1.7); 1.7213 (16.0); 1.7170 (15.6); 1.5523 (5.3); 1.2771 (0.5); 1.2593 (1.1); -0.0002 (11.4) I.3-481: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8486 (2.9); 7.8296 (3.0); 7.5932 (3.0); 7.5709 (3.1); 7.2605 (42.0); 6.6003 (1.0); 6.4690 (2.2); 6.3376 (1.1); 6.1396 (3.6); 3.5497 (10.8); 1.7585 (0.6); 1.7237 (16.0); 1.7208 (15.3); 0.0079 (1.4); - 0.0002 (42.1); -0.0060 (0.8); -0.0067 (0.7); -0.0085 (1.4) I.3-491: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8727 (1.9); 7.8537 (2.0); 7.5958 (2.0); 7.5735 (2.0); 7.2627 (11.4); 6.6121 (0.7); 6.4807 (1.4); 6.3494 (0.7); 6.1309 (2.3); 3.5485 (7.1); 2.0515 (14.5); 2.0452 (1.4); 1.9406 (16.0); 1.7660 (13.1); 1.2594 (0.7); -0.0002 (8.3) I.4-1: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8393 (1.8); 7.8203 (1.8); 7.5987 (1.8); 7.5764 (1.8); 7.2608 (20.4); 7.0461 (0.7); 6.9131 (1.4); 6.7802 (0.7); 6.1772 (2.4); 4.5653 (4.1); 4.3192 (1.8); 4.3098 (1.3); 4.3072 (1.9); 4.3039 (1.3); 4.2950 (2.1); 3.5899 (2.0); 3.5805 (1.2); 3.5777 (2.1); 3.5753 (1.3); 3.5657 (1.9); 3.4001 (1.1); 3.3150 (16.0); 2.0452 (0.5); 1.7018 (8.1); 1.6941 (8.6); 1.5515 (10.8); 1.2595 (0.5); 0.0080 (0.6); -0.0002 (20.3); - 0.0085 (0.8) I.4-176: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8455 (3.1); 7.8267 (3.1); 7.6226 (3.3); 7.6004 (3.3); 7.2604 (64.7); 7.0486 (1.2); 6.9158 (2.7); 6.7829 (1.4); 6.1884 (4.5); 4.7937 (15.4); 4.5708 (3.1); 2.2653 (1.6); 1.9856 (1.2); 1.7281 (15.2); 1.7181 (16.0); 1.6021 (1.6); 1.2544 (0.7); 0.0081 (1.7); -0.0002 (65.2); -0.0083 (3.0) I.4-286: 1H-NMR (400.6 MHz, CDCl3): δ= 8.5565 (1.4); 8.5466 (1.3); 8.5444 (1.5); 8.5426 (1.4); 7.8322 (3.3); 7.8132 (3.3); 7.7113 (0.8); 7.7070 (0.9); 7.6921 (1.7); 7.6877 (1.6); 7.6728 (1.0); 7.6684 (1.0); 7.5932 (3.4); 7.5709 (3.4); 7.3682 (1.8); 7.3486 (1.6); 7.2610 (38.9); 7.2251 (1.0); 7.2129 (1.1); 7.2062 (1.1); 7.1940 (1.0); 7.0457 (1.2); 6.9130 (2.6); 6.7800 (1.3); 6.1782 (4.6); 5.3167 (9.7); 4.5675 (7.6); 2.2616 (0.8); 1.9764 (0.8); 1.7766 (0.6); 1.7493 (15.2); 1.7395 (16.0); 1.5756 (0.7); 1.2555 (0.7); 0.0080 (1.2); -0.0002 (41.0); -0.0085 (1.5) I.4-454: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8196 (3.3); 7.8008 (3.3); 7.6135 (3.3); 7.5912 (3.4); 7.2609 (22.5); 7.0457 (1.2); 6.9127 (2.6); 6.7798 (1.3); 6.1838 (4.3); 4.5699 (8.6); 4.5480 (5.8); 4.5272 (5.8); 4.5064 (2.0); 2.2626 (0.7); 2.0447 (0.9); 1.9799 (0.6); 1.7272 (15.1); 1.7172 (16.0); 1.5508 (8.7); 1.2591 (0.8); -0.0002 (18.3); -0.0085 (0.7) I.4-481: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8375 (3.8); 7.8186 (3.8); 7.5994 (3.9); 7.5771 (4.0); 7.2607 (19.0); 7.0402 (1.4); 6.9072 (3.1); 6.7743 (1.5); 6.1811 (5.3); 4.6034 (4.2); 1.7260 (15.9); 1.7115 (16.0); 0.0081 (0.8); -0.0002 (30.2); - 0.0085 (0.9) I.4-491: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8732 (2.0); 7.8543 (2.0); 7.6061 (2.0); 7.5838 (2.0); 7.2615 (18.1); 7.0485 (0.7); 6.9156 (1.5); 6.7826 (0.8); 6.1749 (2.7); 4.5721 (4.6); 2.0539 (14.4); 2.0451 (1.2); 1.9464 (16.0); 1.9402 (1.2); 1.7707 (9.4); 1.7639 (9.9); 1.5570 (3.4); 1.2594 (0.6); -0.0002 (15.4); -0.0085 (0.6) I.5-442: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8393 (2.2); 7.8203 (2.2); 7.6020 (2.3); 7.5797 (2.4); 7.2665 (8.8); 6.3171 (5.5); 4.2454 (1.3); 4.2275 (4.0); 4.2097 (4.1); 4.1920 (1.4); 3.6378 (8.8); 1.6924 (0.6); 1.6808 (16.0); 1.6787 (15.2); 1.2822 (4.2); 1.2644 (8.8); 1.2466 (4.2); -0.0002 (1.9) I.5-1: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8427 (1.7); 7.8238 (1.8); 7.5964 (1.8); 7.5741 (1.8); 7.2614 (10.1); 6.3147 (4.7); 4.3182 (2.0); 4.3089 (1.3); 4.3062 (2.1); 4.3031 (1.2); 4.2940 (2.1); 3.6405 (3.7); 3.6378 (6.2); 3.6347 (3.5); 3.5895 (2.0); 3.5803 (1.3); 3.5773 (2.1); 3.5746 (1.2); 3.5653 (1.9); 3.3160 (16.0); 2.0452 (1.2); 1.6999 (9.7); 1.6965 (9.6); 1.5589 (0.6); 1.2772 (0.5); 1.2595 (1.1); 0.8819 (0.9); -0.0002 (10.6) I.5-454: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8304 (2.8); 7.8115 (2.8); 7.6121 (2.9); 7.5898 (2.9); 7.2612 (14.0); 6.3222 (7.6); 4.5703 (1.5); 4.5495 (4.7); 4.5286 (4.8); 4.5078 (1.6); 3.6417 (10.0); 3.6386 (5.5); 2.0450 (2.2); 1.7250 (16.0); 1.7201 (14.9); 1.5512 (1.0); 1.2771 (0.8); 1.2592 (1.8); 1.2414 (0.7); 0.8820 (1.0); -0.0002 (11.5) I.5-286: 1H-NMR (400.6 MHz, CDCl3): δ= 8.5576 (1.1); 8.5554 (1.3); 8.5534 (1.3); 8.5512 (1.1); 8.5455 (1.2); 8.5432 (1.4); 8.5413 (1.3); 7.8345 (3.2); 7.8156 (3.2); 7.7104 (0.8); 7.7060 (0.8); 7.6912 (1.6); 7.6867 (1.6); 7.6719 (1.0); 7.6675 (0.9); 7.5913 (3.5); 7.5690 (3.5); 7.3663 (1.7); 7.3467 (1.5); 7.2614 (24.0); 7.2219 (1.0); 7.2096 (1.0); 7.2031 (1.0); 7.1908 (0.9); 6.3145 (8.6); 5.3144 (9.7); 4.1308 (0.6); 4.1129 (0.6); 3.6370 (11.0); 3.6339 (6.0); 3.4673 (1.0); 3.4655 (0.9); 2.0452 (2.8); 1.7473 (15.4); 1.7422 (16.0); 1.7317 (1.4); 1.7190 (1.4); 1.7129 (1.3); 1.2772 (1.1); 1.2594 (2.5); 1.2416 (1.0); 0.8988 (0.5); 0.8820 (1.7); 0.8643 (0.7); 0.0080 (0.7); -0.0002 (23.6); -0.0085 (1.0) I.5-176: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8520 (2.2); 7.8332 (2.2); 7.6201 (2.3); 7.5978 (2.3); 7.2613 (11.0); 6.3242 (5.4); 4.7923 (11.0); 3.6441 (8.9); 2.0451 (0.6); 1.7233 (16.0); 1.7198 (14.3); 1.5522 (1.4); 1.2594 (0.7); -0.0002 (8.2) I.5-491: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8808 (2.0); 7.8618 (2.0); 7.6051 (2.1); 7.5828 (2.1); 7.2619 (13.8); 6.3148 (5.4); 3.6380 (7.2); 3.6350 (4.2); 2.0540 (15.0); 2.0452 (1.3); 1.9434 (16.0); 1.9376 (1.2); 1.7697 (13.1); 1.5610 (0.7); 1.2595 (0.7); -0.0002 (11.2) I.5-481: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8493 (3.2); 7.8303 (3.2); 7.5930 (2.3); 7.5707 (2.4); 7.5657 (1.3); 7.5434 (1.2); 7.2605 (47.4); 6.6009 (0.8); 6.4695 (1.7); 6.3382 (0.8); 6.1411 (2.8); 5.7642 (1.3); 5.7621 (1.2); 3.6377 (0.6); 3.5500 (8.5); 3.5099 (1.3); 3.4924 (4.1); 3.4749 (4.2); 3.4536 (7.7); 2.3299 (4.2); 2.3282 (4.0); 1.7305 (3.5); 1.7231 (16.0); 1.7213 (15.8); 1.7131 (8.7); 1.2270 (4.3); 1.2095 (8.6); 1.1920 (4.3); 0.0079 (1.7); - 0.0002 (59.2); -0.0084 (2.8) I.6-1: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8488 (1.6); 7.8299 (1.6); 7.6099 (1.7); 7.5876 (1.6); 7.2824 (0.9); 7.2615 (12.0); 6.2225 (4.2); 4.5911 (0.6); 4.5712 (4.5); 4.3209 (1.9); 4.3117 (1.4); 4.3090 (2.0); 4.3059 (1.3); 4.2968 (1.9); 3.5908 (2.0); 3.5873 (0.9); 3.5816 (1.3); 3.5786 (2.1); 3.5759 (1.4); 3.5667 (1.7); 3.4014 (0.7); 3.3359 (1.2); 3.3150 (16.0); 2.0449 (0.7); 1.7180 (1.5); 1.7047 (8.3); 1.6979 (8.1); 1.5616 (4.5); 1.2593 (0.6); 0.0207 (0.7); 0.0079 (0.6); -0.0002 (9.4) I.6-176: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8903 (0.5); 7.8712 (0.5); 7.8555 (2.8); 7.8367 (2.8); 7.6335 (2.9); 7.6113 (2.9); 7.4255 (0.5); 7.4026 (0.5); 7.2610 (25.0); 6.2310 (7.9); 4.7950 (16.0); 4.5767 (8.1); 2.0450 (2.2); 1.7301 (13.3); 1.7215 (14.3); 1.5495 (8.3); 1.2771 (0.8); 1.2593 (1.6); 1.2414 (0.7); 0.8820 (0.5); 0.0080 (0.6); -0.0002 (18.9); -0.0085 (0.7) I.6-286: 1H-NMR (400.6 MHz, CDCl3): δ= 8.5589 (1.3); 8.5567 (1.5); 8.5547 (1.5); 8.5525 (1.3); 8.5468 (1.4); 8.5446 (1.6); 8.5426 (1.6); 8.5404 (1.3); 7.8762 (0.6); 7.8571 (0.6); 7.8406 (3.1); 7.8217 (3.2); 7.7085 (0.9); 7.7041 (1.0); 7.6892 (1.8); 7.6848 (1.8); 7.6700 (1.1); 7.6656 (1.1); 7.6040 (3.2); 7.5816 (3.3); 7.3977 (0.6); 7.3748 (0.7); 7.3662 (1.9); 7.3466 (1.7); 7.2618 (29.9); 7.2241 (1.2); 7.2119 (1.2); 7.2093 (1.2); 7.2053 (1.2); 7.1931 (1.1); 6.2222 (8.6); 6.2113 (0.5); 5.3145 (11.0); 4.5735 (8.9); 4.1302 (1.3); 4.1124 (1.3); 3.1226 (0.6); 2.1521 (0.7); 2.0448 (6.0); 1.7510 (15.2); 1.7423 (16.0); 1.6066 (0.8); 1.2769 (2.0); 1.2591 (4.2); 1.2412 (1.8); 0.8819 (1.5); 0.8642 (0.6); 0.0079 (0.7); -0.0002 (22.0); -0.0084 (0.9) I.6-481: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8826 (0.6); 7.8636 (0.6); 7.8466 (3.2); 7.8368 (0.6); 7.8278 (3.1); 7.8180 (0.6); 7.6086 (3.2); 7.5958 (0.6); 7.5863 (3.3); 7.5737 (0.6); 7.4021 (0.6); 7.3791 (0.6); 7.2611 (19.6); 6.2262 (8.6); 6.1793 (0.9); 4.5987 (7.4); 3.5140 (2.4); 3.4964 (7.5); 3.4789 (7.7); 3.4614 (2.6); 2.2604 (0.8); 1.9794 (0.8); 1.7247 (15.0); 1.7120 (15.9); 1.2274 (7.9); 1.2099 (16.0); 1.1924 (7.8); 0.0080 (0.6); -0.0002 (21.7); - 0.0084 (0.9) I.6-491: 1H-NMR (400.6 MHz, CDCl3): δ= 7.8856 (2.0); 7.8666 (2.0); 7.6184 (2.0); 7.5961 (2.1); 7.2618 (17.2); 6.2221 (5.3); 4.5738 (6.5); 2.1280 (0.6); 2.1116 (0.8); 2.0564 (16.0); 2.0453 (1.7); 1.9497 (14.9); 1.9441 (3.6); 1.7743 (11.1); 1.7689 (12.9); 1.5629 (1.1); 1.2771 (0.7); 1.2594 (1.5); 0.8821 (1.1); -0.0002 (12.2); -0.0084 (0.6) I.31-24: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9067 (2.0); 7.8847 (2.0); 7.8100 (1.9); 7.7913 (1.9); 7.2607 (38.2); 6.3730 (3.2); 4.3372 (1.6); 4.3249 (2.0); 4.3218 (1.2); 4.3122 (1.9); 3.7116 (1.8); 3.7017 (1.2); 3.6989 (1.9); 3.6866 (1.7); 3.6082 (1.0); 3.5980 (1.8); 3.5914 (1.4); 3.5842 (2.6); 3.5703 (4.7); 3.5676 (4.8); 3.5269 (2.5); 3.5215 (1.6); 3.5198 (1.7); 3.5133 (1.9); 3.5041 (4.6); 3.4867 (3.6); 3.4692 (1.2); 1.6990 (8.9); 1.6943 (8.9); 1.6818 (0.8); 1.5468 (15.3); 1.5457 (16.0); 1.2551 (0.5); 1.2046 (3.7); 1.1871 (7.6); 1.1696 (3.6); 0.0078 (1.3); - 0.0002 (42.9); -0.0054 (0.9); -0.0061 (0.9); -0.0085 (1.4) I.31-26: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9161 (1.8); 7.8941 (1.9); 7.8167 (1.8); 7.7981 (1.8); 7.2613 (15.4); 6.3759 (2.9); 4.2740 (1.6); 4.2579 (3.5); 4.2419 (1.7); 3.5712 (4.2); 3.5683 (4.1); 3.4265 (1.7); 3.4109 (3.6); 3.3953 (1.8); 3.2939 (16.0); 3.2674 (0.9); 1.9284 (1.7); 1.9126 (2.5); 1.8967 (1.7); 1.8809 (0.5); 1.6888 (8.1); 1.6845 (8.1); 1.6712 (0.8); 1.5564 (7.8); 0.0080 (0.5); -0.0002 (17.8); -0.0085 (0.5) I.31-31: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9153 (0.8); 7.8933 (0.8); 7.8278 (0.8); 7.8092 (0.8); 7.2606 (24.5); 7.2574 (0.5); 6.3773 (1.2); 4.3342 (0.8); 4.3167 (1.3); 4.2989 (0.8); 3.5724 (1.7); 3.5694 (1.6); 2.7521 (0.8); 2.7343 (1.3); 2.7167 (0.8); 2.1254 (6.9); 1.6992 (3.3); 1.6953 (3.2); 1.5444 (16.0); 0.0079 (0.8); -0.0002 (27.7); -0.0027 (1.2); -0.0085 (0.9) I.31-71: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9077 (1.3); 7.8857 (1.3); 7.8306 (1.3); 7.8120 (1.3); 7.2611 (21.9); 6.3725 (2.0); 4.1851 (0.7); 4.1434 (0.6); 4.1290 (1.3); 4.1112 (1.0); 3.8033 (0.7); 3.7489 (0.6); 3.5691 (3.1); 3.5664 (3.1); 1.8736 (0.6); 1.8564 (0.7); 1.7103 (3.6); 1.7070 (8.0); 1.7019 (3.4); 1.5554 (16.0); 1.5541 (15.3); 1.2648 (1.2); 0.8989 (0.6); 0.8820 (2.2); 0.8643 (0.8); 0.0079 (0.7); -0.0002 (25.7); -0.0085 (0.8) I.31-72: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9221 (0.9); 7.9001 (0.9); 7.8230 (0.8); 7.8045 (0.8); 7.2611 (20.8); 6.3781 (1.4); 4.1660 (0.5); 4.1494 (0.5); 4.1030 (0.6); 4.0835 (0.6); 3.5717 (1.8); 3.5689 (1.9); 1.6929 (2.4); 1.6900 (4.6); 1.6869 (2.4); 1.5526 (16.0); 0.0080 (0.7); -0.0002 (23.3); -0.0085 (0.7) I.31-93: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9197 (1.3); 7.8977 (1.4); 7.8216 (1.3); 7.8030 (1.3); 7.2608 (22.4); 6.3753 (2.2); 4.0279 (2.1); 4.0116 (2.2); 3.5696 (3.0); 3.5667 (3.0); 3.4051 (0.6); 3.4003 (0.6); 3.3755 (0.9); 3.3708 (0.9); 1.6956 (5.6); 1.6888 (5.6); 1.5747 (0.5); 1.5475 (16.0); 1.2637 (0.6); 0.8820 (1.1); 0.0080 (0.8); -0.0002 (25.1); -0.0085 (0.8) I.31-115: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9268 (0.6); 7.9048 (0.6); 7.8028 (0.6); 7.7843 (0.6); 7.2608 (23.0); 6.3834 (0.9); 4.8915 (0.5); 3.5758 (1.3); 3.5729 (1.3); 1.7067 (2.6); 1.7025 (2.6); 1.5491 (15.8); 1.5482 (16.0); 0.0080 (0.8); - 0.0002 (27.2); -0.0085 (0.8) I.31-301: 1H-NMR (400.6 MHz, CDCl3): δ= 9.1289 (0.5); 7.9102 (2.2); 7.8883 (2.3); 7.7949 (2.2); 7.7764 (2.2); 7.6032 (0.5); 7.5994 (0.5); 7.5819 (0.9); 7.5782 (0.8); 7.5202 (0.6); 7.2617 (27.5); 6.3759 (3.4); 5.5490 (6.1); 3.5709 (4.6); 3.5679 (4.8); 1.7485 (9.4); 1.7444 (9.5); 1.5697 (16.0); 0.0080 (1.0); -0.0002 (33.0); -0.0049 (0.6); -0.0085 (1.0) I.31-499: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9219 (1.0); 7.8999 (1.0); 7.8481 (1.0); 7.8295 (1.0); 7.2607 (23.9); 6.3747 (1.7); 3.5699 (2.3); 3.5671 (2.3); 2.5514 (0.8); 2.4703 (0.7); 1.7916 (1.5); 1.7835 (0.9); 1.7810 (0.9); 1.7727 (1.8); 1.7667 (6.3); 1.7492 (0.5); 1.5439 (16.0); 0.8820 (0.7); 0.0079 (0.8); -0.0002 (27.0); -0.0086 (0.8) I.31-496: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9319 (2.1); 7.9098 (2.1); 7.8776 (2.0); 7.8590 (2.1); 7.7597 (1.5); 7.7563 (2.0); 7.7521 (1.0); 7.7450 (0.6); 7.7396 (2.2); 7.7355 (1.8); 7.4446 (1.0); 7.4311 (0.8); 7.4272 (1.4); 7.4232 (0.7); 7.4147 (2.0); 7.4111 (0.8); 7.4017 (0.8); 7.4000 (0.8); 7.3965 (2.1); 7.3794 (0.6); 7.2604 (31.8); 6.3778 (3.3); 3.5718 (4.6); 3.5690 (4.5); 2.3272 (16.0); 2.2732 (1.0); 2.0453 (1.6); 1.8335 (8.9); 1.8294 (8.8); 1.8147 (1.0); 1.5460 (15.0); 1.2773 (0.8); 1.2646 (1.1); 1.2596 (1.6); 1.2417 (0.6); 0.8990 (0.6); 0.8820 (2.1); 0.8643 (0.8); 0.0080 (1.0); -0.0002 (36.2); -0.0085 (1.1) I.31-127: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9196 (0.8); 7.8975 (0.9); 7.8028 (0.8); 7.7842 (0.8); 7.2606 (21.3); 6.3804 (1.3); 3.5745 (2.0); 3.5715 (1.9); 3.5465 (0.6); 1.6948 (3.8); 1.6913 (4.0); 1.5441 (16.0); 0.8821 (0.7); 0.0080 (0.7); -0.0002 (24.1); -0.0085 (0.8) I.31-231: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9098 (2.8); 7.8877 (2.8); 7.8279 (2.5); 7.8093 (2.5); 7.2651 (0.8); 7.2609 (62.5); 7.2561 (0.8); 7.2553 (0.7); 6.3748 (4.2); 4.2889 (1.8); 4.2737 (3.7); 4.2586 (1.9); 3.5705 (5.8); 3.5676 (5.9); 2.6141 (1.0); 2.5991 (1.8); 2.5839 (1.0); 2.2578 (16.0); 2.2443 (1.2); 2.1722 (1.3); 1.6938 (11.9); 1.6898 (11.9); 1.6763 (1.0); 1.5850 (1.7); 1.2564 (1.5); 0.0079 (1.8); 0.0046 (0.6); 0.0038 (0.9); -0.0002 (68.8); - 0.0027 (3.4); -0.0043 (1.4); -0.0052 (1.2); -0.0060 (1.1); -0.0068 (1.0); -0.0085 (2.4); -0.0108 (0.7); - 0.0115 (0.6); -0.0123 (0.6) I.31-237: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9140 (3.5); 7.8920 (3.5); 7.8252 (3.3); 7.8066 (3.4); 7.2613 (56.5); 6.3745 (5.7); 4.3506 (1.6); 4.3353 (3.2); 4.3202 (1.6); 3.5705 (7.8); 3.5678 (8.1); 2.8277 (1.1); 2.8124 (2.1); 2.7974 (1.1); 2.6334 (1.9); 2.6176 (2.3); 2.1782 (1.5); 2.1723 (3.4); 2.0093 (3.8); 1.9586 (0.7); 1.7782 (1.7); 1.7617 (4.4); 1.7452 (1.7); 1.6933 (15.4); 1.6889 (16.0); 1.2843 (0.6); 1.2563 (4.6); 0.8797 (0.5); 0.0080 (1.5); - 0.0002 (63.2); -0.0085 (2.2) I.31-152: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9079 (1.7); 7.8859 (1.7); 7.8141 (1.6); 7.7955 (1.7); 7.2610 (39.5); 7.2577 (1.0); 7.2569 (0.8); 7.2561 (0.6); 6.3729 (2.6); 4.3285 (1.3); 4.3184 (1.0); 4.3161 (1.5); 4.3132 (1.0); 4.3035 (1.5); 3.7033 (1.4); 3.6937 (0.9); 3.6908 (1.5); 3.6884 (1.0); 3.6784 (1.4); 3.6261 (1.1); 3.6247 (1.3); 3.6203 (0.7); 3.6166 (2.2); 3.6140 (2.1); 3.6096 (2.5); 3.6026 (3.8); 3.5922 (2.1); 3.5904 (2.0); 3.5854 (1.4); 3.5814 (1.1); 3.5786 (1.2); 3.5703 (4.0); 3.5671 (3.9); 3.5367 (2.2); 3.5296 (1.3); 3.5240 (1.4); 3.5223 (1.3); 3.5141 (1.0); 3.3662 (16.0); 1.6968 (6.9); 1.6922 (6.9); 1.6790 (0.7); 1.5539 (12.6); 0.0079 (1.4); - 0.0002 (46.5); -0.0027 (2.0); -0.0043 (0.9); -0.0052 (0.8); -0.0060 (0.6); -0.0068 (0.5); -0.0085 (1.4) I.31-287: 1H-NMR (400.6 MHz, CDCl3): δ= 8.6090 (0.9); 8.6044 (0.9); 8.5672 (0.7); 8.5631 (0.8); 8.5550 (0.8); 8.5510 (0.8); 7.9054 (1.7); 7.8833 (1.7); 7.7487 (1.7); 7.7302 (1.7); 7.6956 (0.6); 7.6752 (0.6); 7.3013 (0.6); 7.2910 (0.6); 7.2835 (0.6); 7.2696 (0.7); 7.2607 (34.3); 6.3761 (2.8); 5.2130 (4.5); 3.5730 (3.8); 3.5702 (3.8); 1.6973 (7.4); 1.6921 (7.4); 1.5543 (16.0); 0.8820 (0.8); 0.0079 (1.2); -0.0002 (39.7); -0.0085 (1.3) I.31-500: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9182 (1.1); 7.8962 (1.1); 7.8468 (1.1); 7.8281 (1.1); 7.2607 (27.3); 6.3748 (1.7); 3.5700 (2.4); 3.5672 (2.5); 2.4493 (0.7); 2.4327 (0.6); 2.4014 (0.6); 2.3859 (0.8); 2.3697 (0.8); 1.7697 (5.4); 1.7675 (5.6); 1.7529 (1.0); 1.6188 (0.6); 1.6120 (0.6); 1.5443 (16.0); 0.0080 (0.8); -0.0002 (30.1); -0.0085 (1.0) I.31-472: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9148 (2.0); 7.8927 (2.0); 7.8122 (1.9); 7.7937 (2.0); 7.2605 (47.9); 7.2564 (0.6); 7.2555 (0.5); 6.3773 (2.9); 4.7550 (5.8); 4.7488 (5.8); 3.5724 (4.0); 3.5694 (4.1); 2.4777 (1.4); 2.4716 (3.0); 2.4653 (1.4); 1.7131 (8.2); 1.7082 (8.1); 1.6953 (0.5); 1.5416 (16.0); 0.8821 (0.8); 0.0080 (1.6); 0.0066 (0.5); - 0.0002 (57.1); -0.0085 (1.6) I.31-302: 1H-NMR (400.6 MHz, CDCl3): δ= 9.1524 (1.2); 9.1490 (1.2); 8.7501 (1.4); 8.7371 (1.5); 7.9281 (1.5); 7.9061 (1.6); 7.8357 (1.5); 7.8172 (1.5); 7.4140 (0.7); 7.4122 (0.6); 7.4105 (0.7); 7.4010 (0.7); 7.3992 (0.6); 7.3974 (0.7); 7.2608 (33.8); 6.3802 (2.4); 5.2837 (3.8); 3.5728 (3.2); 3.5699 (3.3); 1.7792 (6.2); 1.7734 (6.2); 1.5491 (16.0); 1.5484 (14.4); 0.8820 (0.7); 0.0080 (1.2); -0.0002 (37.7); -0.0085 (1.1) I.31-490: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9040 (1.6); 7.8820 (1.7); 7.7936 (1.6); 7.7750 (1.6); 7.2607 (51.4); 7.2573 (1.0); 7.2565 (0.7); 7.2556 (0.6); 6.3735 (2.4); 4.4521 (1.5); 4.4360 (3.4); 4.4198 (1.6); 4.1258 (0.9); 4.1080 (2.8); 4.0901 (2.8); 4.0723 (0.9); 3.5700 (3.2); 3.5670 (3.4); 2.6853 (1.4); 2.6691 (3.0); 2.6530 (1.4); 1.6775 (6.4); 1.6717 (6.4); 1.5425 (16.0); 1.2388 (3.5); 1.2210 (7.4); 1.2032 (3.5); 0.0079 (1.8); 0.0063 (0.5); 0.0055 (0.6); 0.0046 (0.7); 0.0038 (0.9); -0.0002 (59.6); -0.0028 (2.3); -0.0035 (1.6); -0.0044 (1.0); -0.0052 (0.7); -0.0060 (0.6); -0.0069 (0.5); -0.0085 (1.8) I.31-176: 1H-NMR (400.0 MHz, CDCl3): δ= 7.9309 (0.8); 7.9096 (0.8); 7.8149 (0.7); 7.7972 (0.7); 7.2608 (10.1); 6.3832 (1.6); 4.7964 (3.2); 3.5725 (4.0); 1.7231 (7.7); 1.5496 (16.0); -0.0002 (11.3) I.31-491: 1H-NMR (400.0 MHz, CDCl3): δ= 7.9205 (0.9); 7.8979 (0.8); 7.8510 (0.8); 7.8317 (0.8); 7.2612 (10.4); 6.3735 (1.8); 3.5670 (4.6); 2.0539 (5.3); 1.9408 (5.4); 1.7730 (9.2); 1.5532 (16.0); 1.2645 (0.7); 0.8814 (0.6); -0.0002 (11.7) I.31-286: 1H-NMR (400.0 MHz, CDCl3): δ= 8.5409 (0.8); 7.9032 (0.8); 7.8812 (0.8); 7.8072 (0.7); 7.7884 (0.8); 7.6857 (0.7); 7.3678 (0.8); 7.3483 (0.7); 7.2611 (9.9); 7.1990 (0.6); 6.3728 (1.6); 5.3142 (3.0); 3.5652 (3.9); 1.7457 (7.4); 1.5601 (16.0); 1.2624 (0.6); -0.0002 (10.2) I.31-121: 1H-NMR (400.0 MHz, CDCl3): δ= 7.9075 (0.7); 7.8876 (0.7); 7.7894 (0.7); 7.7710 (0.7); 7.2610 (10.5); 6.3766 (1.5); 5.3676 (0.6); 3.9104 (0.6); 3.8640 (1.0); 3.8342 (1.5); 3.8187 (0.9); 3.5686 (3.9); 1.6818 (7.1); 1.5516 (16.0); 1.2628 (0.6); -0.0002 (12.0) I.32-127: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9333 (1.6); 7.9113 (1.6); 7.8082 (1.6); 7.7897 (1.6); 7.2607 (29.4); 6.2951 (2.9); 4.6076 (3.3); 3.8473 (0.6); 3.5774 (0.5); 3.5694 (0.6); 3.5563 (0.6); 3.5481 (1.0); 3.5268 (0.5); 1.7206 (0.5); 1.7102 (0.7); 1.7015 (6.4); 1.6934 (6.4); 1.6778 (0.5); 1.5465 (16.0); 0.0080 (0.9); -0.0002 (33.0); -0.0085 (0.9) I.32-71: 1H-NMR (400.6 MHz, CDCl3): δ= 7.2604 (29.7); 7.2572 (0.7); 7.2564 (0.5); 6.2872 (0.7); 4.5978 (1.0); 1.7156 (1.1); 1.7105 (2.3); 1.7039 (1.0); 1.5441 (16.0); 0.0080 (1.0); -0.0002 (34.9); -0.0085 (1.1) I.32-115: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9401 (1.2); 7.9181 (1.2); 7.8072 (1.1); 7.7887 (1.1); 7.2605 (32.6); 6.2976 (2.1); 5.4902 (0.6); 4.9129 (0.6); 4.8969 (0.7); 4.8942 (1.0); 4.8914 (0.8); 4.8755 (0.7); 4.7076 (0.9); 4.6944 (0.8); 4.6922 (0.7); 4.6879 (0.6); 4.6859 (0.7); 4.6748 (0.6); 4.6728 (0.7); 4.6053 (2.4); 2.1720 (0.7); 1.7130 (4.6); 1.7045 (4.6); 1.5427 (16.0); 0.0079 (1.1); -0.0002 (35.5); -0.0085 (1.0) I.32-72: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9330 (4.0); 7.9310 (3.9); 7.9110 (4.1); 7.9090 (3.9); 7.8223 (3.4); 7.8153 (3.5); 7.8038 (3.5); 7.7967 (3.5); 7.2636 (20.8); 6.2880 (11.6); 4.6267 (8.8); 4.6235 (8.5); 4.2110 (1.2); 4.2066 (1.2); 4.1947 (1.3); 4.1905 (1.3); 4.1841 (1.9); 4.1797 (1.9); 4.1678 (1.9); 4.1636 (2.0); 4.0923 (2.3); 4.0897 (2.2); 4.0725 (2.3); 4.0698 (2.2); 4.0654 (1.6); 4.0628 (1.5); 4.0456 (1.5); 4.0429 (1.4); 3.8672 (0.6); 3.8562 (1.4); 3.8546 (1.4); 3.8470 (0.6); 3.8394 (1.4); 3.8346 (2.9); 3.8292 (2.4); 3.8202 (1.9); 3.8188 (1.8); 3.8114 (3.1); 3.8070 (2.8); 3.8010 (1.2); 3.7890 (2.7); 3.7654 (0.5); 3.7475 (1.7); 3.7303 (2.5); 3.7287 (2.8); 3.7129 (1.4); 3.7107 (2.2); 3.6919 (0.8); 3.6898 (0.8); 3.6464 (0.9); 3.6338 (1.4); 3.6246 (0.7); 3.6180 (0.8); 3.6116 (0.7); 3.6018 (0.6); 3.5833 (0.6); 3.5537 (1.5); 3.5464 (1.6); 3.5398 (1.6); 3.5320 (2.6); 3.5243 (1.4); 3.5176 (1.4); 3.5102 (1.4); 2.6197 (0.9); 2.6022 (1.1); 2.5847 (0.9); 2.0568 (0.7); 2.0434 (0.7); 2.0355 (1.0); 2.0251 (1.5); 2.0221 (1.1); 2.0163 (1.0); 2.0121 (1.1); 2.0034 (1.4); 1.9927 (1.0); 1.9851 (0.8); 1.9716 (0.7); 1.7023 (14.9); 1.6977 (14.9); 1.6915 (16.0); 1.6884 (15.4); 1.6751 (0.8); 1.6494 (0.5); 1.6426 (0.7); 1.6249 (1.2); 1.6230 (1.2); 1.6080 (1.7); 1.6055 (1.6); 1.5936 (1.4); 1.5910 (1.4); 1.5762 (1.0); 1.5742 (1.0); 1.5578 (0.6); 0.0079 (0.7); 0.0037 (0.5); -0.0002 (23.9); - 0.0028 (0.7); -0.0035 (0.5); -0.0085 (0.7) I.32-496: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9421 (1.9); 7.9201 (1.9); 7.8794 (1.9); 7.8609 (1.9); 7.7593 (1.5); 7.7558 (1.9); 7.7516 (0.8); 7.7444 (0.5); 7.7390 (2.1); 7.7350 (1.6); 7.4469 (0.9); 7.4333 (0.7); 7.4295 (1.3); 7.4255 (0.6); 7.4179 (1.3); 7.4160 (1.8); 7.4125 (0.7); 7.4029 (0.8); 7.4013 (0.7); 7.3979 (2.0); 7.3961 (1.2); 7.3809 (0.6); 7.2604 (14.8); 6.2868 (3.6); 4.6049 (3.9); 2.3323 (16.0); 1.8376 (7.2); 1.8294 (7.1); 1.5535 (7.2); 0.8819 (0.9); 0.0079 (0.5); -0.0002 (16.5) I.32-499: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9350 (3.4); 7.9130 (3.4); 7.8541 (3.4); 7.8355 (3.4); 7.2610 (45.0); 6.2880 (6.4); 4.6003 (7.1); 2.5720 (1.0); 2.5543 (2.5); 2.5381 (1.0); 2.4958 (0.9); 2.4925 (0.8); 2.4864 (0.6); 2.4767 (2.2); 2.4590 (1.0); 1.8139 (1.0); 1.8037 (1.1); 1.7958 (5.0); 1.7875 (2.8); 1.7850 (2.7); 1.7769 (5.3); 1.7702 (16.0); 1.7665 (15.3); 1.7586 (1.5); 1.7534 (0.9); 1.5468 (15.0); 0.0080 (1.3); -0.0002 (49.6); -0.0085 (1.4) I.32-93: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9281 (4.0); 7.9061 (4.1); 7.8140 (4.0); 7.7955 (4.1); 7.2712 (5.3); 6.2816 (7.6); 4.6461 (8.6); 4.0303 (6.1); 4.0143 (6.9); 4.0073 (1.6); 3.9980 (1.5); 3.9958 (1.5); 3.9838 (1.6); 3.9812 (1.6); 3.9783 (1.5); 3.9724 (2.2); 3.9687 (2.1); 3.9602 (1.3); 3.9453 (0.9); 3.9306 (1.3); 3.5012 (3.7); 3.4852 (3.7); 3.4300 (2.0); 3.4245 (2.0); 3.3997 (3.7); 3.3956 (4.0); 3.3903 (1.2); 3.3742 (1.8); 3.3707 (2.9); 3.3660 (3.3); 3.3610 (1.5); 3.3454 (0.9); 3.3395 (1.0); 3.3370 (0.9); 3.3314 (0.7); 1.9345 (0.7); 1.7637 (0.5); 1.7477 (1.0); 1.7382 (0.7); 1.7316 (0.7); 1.7220 (0.7); 1.7189 (0.8); 1.7034 (16.0); 1.6866 (15.7); 1.6718 (1.4); 1.6672 (1.6); 1.6627 (1.4); 1.6579 (1.1); 1.6393 (1.6); 1.6347 (1.9); 1.6299 (1.8); 1.6264 (1.3); 1.6083 (0.8); 1.6034 (1.0); 1.5983 (1.1); 1.5935 (0.9); 1.5873 (0.7); 1.5806 (0.9); 1.5748 (1.4); 1.5700 (1.9); 1.5651 (2.1); 1.4067 (0.5); 1.3888 (0.8); 1.3743 (2.0); 1.3628 (1.6); 1.3556 (0.9); 1.3443 (2.6); 1.3328 (2.2); 1.3119 (1.6); 1.3034 (1.3); 1.3002 (1.5); 1.2816 (0.6); 1.2703 (0.6); -0.0002 (6.4) I.32-301: 1H-NMR (400.6 MHz, CDCl3): δ= 9.1377 (1.8); 9.1335 (1.8); 9.1254 (1.8); 9.1212 (1.8); 7.9138 (4.1); 7.8919 (4.1); 7.7866 (4.0); 7.7682 (4.1); 7.6061 (1.5); 7.6019 (1.5); 7.5849 (2.4); 7.5806 (2.3); 7.5188 (2.7); 7.5065 (2.6); 7.4976 (1.7); 7.4853 (1.7); 7.2624 (22.2); 6.2867 (7.5); 5.5451 (11.9); 4.6297 (8.3); 2.0964 (1.2); 1.7528 (16.0); 1.7440 (16.0); 1.3332 (0.6); 1.2844 (0.9); 1.2557 (2.6); 0.0079 (0.7); -0.0002 (24.4); -0.0085 (0.7) I.32-472: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9261 (4.0); 7.9041 (4.1); 7.8135 (3.9); 7.7950 (4.0); 7.2624 (9.1); 6.2870 (7.3); 4.7559 (11.8); 4.7498 (11.6); 4.6079 (8.2); 2.4822 (2.8); 2.4760 (6.1); 2.4698 (2.8); 1.7166 (16.0); 1.7081 (16.0); 1.5686 (2.0); -0.0002 (10.6) I.32-287: 1H-NMR (400.6 MHz, CDCl3): δ= 8.5972 (2.1); 8.5930 (2.1); 8.5468 (1.7); 8.5426 (1.8); 8.5347 (1.8); 8.5305 (1.7); 7.8965 (4.1); 7.8745 (4.2); 7.7029 (0.9); 7.6986 (1.3); 7.6973 (1.3); 7.6930 (0.9); 7.6833 (1.0); 7.6790 (1.4); 7.6778 (1.4); 7.6734 (1.0); 7.6174 (4.0); 7.5990 (4.1); 7.3100 (1.4); 7.3080 (1.3); 7.2979 (1.4); 7.2958 (1.3); 7.2904 (1.3); 7.2884 (1.2); 7.2783 (1.2); 7.2763 (1.1); 7.2636 (10.5); 6.2754 (7.6); 5.2767 (2.0); 5.2456 (3.4); 5.1626 (3.3); 5.1315 (2.0); 4.7714 (8.3); 1.7210 (15.9); 1.6895 (16.0); -0.0002 (11.6) I.32-302: 1H-NMR (400.6 MHz, CDCl3): δ= 9.1493 (3.4); 9.1459 (3.4); 8.7470 (4.0); 8.7340 (4.1); 7.9351 (4.1); 7.9131 (4.2); 7.8096 (4.1); 7.7911 (4.1); 7.4145 (1.8); 7.4128 (1.6); 7.4110 (1.8); 7.4015 (1.8); 7.3998 (1.6); 7.3980 (1.8); 7.2646 (10.0); 6.2894 (7.8); 5.2829 (10.2); 4.6346 (8.6); 2.1096 (0.7); 2.0443 (1.1); 1.7840 (16.0); 1.7729 (16.0); 1.2765 (0.5); 1.2586 (1.4); 1.2548 (1.3); 0.8817 (0.7); -0.0002 (11.3) I.32-237: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9237 (4.0); 7.9017 (4.2); 7.8316 (4.0); 7.8130 (4.0); 7.2654 (10.6); 6.2843 (7.6); 4.6231 (8.2); 4.3212 (3.3); 4.3057 (7.6); 4.2903 (3.6); 2.7734 (3.3); 2.7579 (7.1); 2.7424 (3.2); 2.6327 (1.4); 2.5642 (2.0); 2.5608 (1.8); 2.5577 (1.7); 2.5537 (2.5); 2.5473 (4.9); 2.5414 (2.7); 2.5371 (1.9); 2.5338 (2.0); 2.5306 (2.2); 2.5229 (0.5); 2.1772 (3.3); 1.7501 (2.3); 1.7422 (2.8); 1.7332 (6.7); 1.7242 (3.0); 1.7201 (1.6); 1.7163 (2.3); 1.6981 (16.0); 1.6898 (16.0); 1.6773 (0.8); 1.2545 (8.4); -0.0002 (12.5) I.32-152: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9093 (1.8); 7.8873 (1.9); 7.8047 (1.8); 7.7862 (1.8); 7.2648 (4.0); 6.2743 (3.5); 4.6699 (3.8); 4.3175 (1.2); 4.3079 (1.1); 4.3054 (1.3); 4.3020 (1.0); 4.2929 (1.4); 3.6890 (1.5); 3.6814 (0.7); 3.6791 (1.0); 3.6766 (1.6); 3.6646 (1.5); 3.6315 (0.9); 3.6280 (1.0); 3.6210 (1.9); 3.6166 (1.4); 3.6140 (1.6); 3.6059 (2.0); 3.5997 (1.0); 3.5945 (1.0); 3.5918 (1.8); 3.5892 (1.8); 3.5843 (2.1); 3.5814 (1.9); 3.5744 (3.0); 3.5661 (0.6); 3.5317 (2.4); 3.5257 (0.6); 3.5232 (1.0); 3.5186 (1.7); 3.5159 (0.5); 3.5090 (1.0); 3.3859 (0.5); 3.3592 (16.0); 1.7043 (7.3); 1.6933 (7.3); 1.6547 (0.6); -0.0002 (4.4) I.32-24: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9139 (3.7); 7.8919 (3.7); 7.8049 (3.6); 7.7863 (3.7); 7.2660 (7.9); 6.2809 (6.9); 4.6344 (7.6); 4.3325 (3.0); 4.3228 (2.2); 4.3202 (3.3); 4.3171 (2.0); 4.3077 (3.2); 3.7486 (0.9); 3.7380 (1.2); 3.7340 (0.7); 3.7260 (1.6); 3.7072 (3.3); 3.6975 (2.4); 3.6948 (4.1); 3.6922 (2.2); 3.6868 (1.4); 3.6824 (3.2); 3.6801 (1.4); 3.6729 (2.1); 3.6365 (2.0); 3.6322 (0.5); 3.6285 (1.0); 3.6244 (1.4); 3.6232 (1.2); 3.6121 (2.4); 3.6068 (1.8); 3.6040 (1.9); 3.6004 (1.4); 3.5991 (1.5); 3.5959 (4.1); 3.5927 (2.2); 3.5893 (3.3); 3.5818 (4.9); 3.5708 (1.3); 3.5533 (3.0); 3.5358 (3.2); 3.5283 (5.2); 3.5239 (2.8); 3.5207 (2.7); 3.5170 (2.7); 3.5146 (3.8); 3.5064 (9.1); 3.5038 (2.0); 3.4889 (7.8); 3.4714 (2.5); 1.7057 (14.4); 1.6940 (14.3); 1.2441 (3.2); 1.2266 (6.5); 1.2091 (3.2); 1.2029 (7.7); 1.1854 (16.0); 1.1679 (7.6); -0.0002 (9.3) I.32-500: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9313 (1.9); 7.9093 (2.0); 7.8525 (1.9); 7.8339 (1.9); 7.2607 (38.7); 6.2888 (3.6); 4.5991 (4.0); 2.4700 (0.7); 2.4554 (1.1); 2.4389 (0.9); 2.4038 (1.1); 2.3884 (1.3); 2.3721 (1.2); 1.7745 (7.8); 1.7683 (8.0); 1.7548 (1.0); 1.7386 (0.5); 1.6464 (0.6); 1.6285 (0.9); 1.6229 (1.0); 1.6035 (0.6); 1.5439 (16.0); 0.0080 (1.3); -0.0002 (43.8); -0.0085 (1.1) I.32-490: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9125 (3.5); 7.8905 (3.6); 7.7890 (3.5); 7.7704 (3.5); 7.2635 (8.8); 6.2828 (6.5); 4.6144 (7.3); 4.4495 (2.8); 4.4334 (6.8); 4.4173 (3.2); 4.1223 (1.9); 4.1045 (6.0); 4.0866 (6.2); 4.0688 (2.1); 2.6828 (3.0); 2.6667 (6.5); 2.6506 (2.9); 1.6856 (13.7); 1.6710 (13.6); 1.5882 (2.2); 1.2382 (7.6); 1.2204 (16.0); 1.2072 (0.6); 1.2026 (7.4); -0.0002 (9.9) I.32-31: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9261 (1.8); 7.9041 (1.8); 7.8302 (1.8); 7.8116 (1.8); 7.2630 (4.2); 6.2879 (3.3); 4.6097 (3.7); 4.3343 (1.9); 4.3168 (3.4); 4.2992 (2.0); 2.7515 (1.9); 2.7339 (3.2); 2.7164 (1.8); 2.1227 (16.0); 1.7051 (7.1); 1.6963 (7.1); 1.5718 (0.9); -0.0002 (4.8) I.32-231: 1H-NMR (400.6 MHz, CDCl3): δ= 7.9160 (1.6); 7.8940 (1.6); 7.8324 (1.5); 7.8138 (1.5); 7.2670 (3.8); 6.2789 (3.0); 4.6530 (3.2); 4.3023 (1.3); 4.2874 (2.8); 4.2725 (1.4); 2.6583 (0.9); 2.6434 (1.7); 2.6285 (0.9); 2.6130 (14.2); 2.2883 (16.0); 1.6943 (6.2); 1.6819 (6.1); 1.6506 (0.6); 1.6348 (0.6); 1.2543 (1.0); -0.0002 (4.4) I.32-286: 1H-NMR (400.6 MHz, CDCl3): δ= 8.5693 (0.5); 8.5544 (1.6); 8.5521 (1.5); 8.5500 (1.4); 8.5477 (1.2); 8.5422 (1.3); 8.5399 (1.4); 8.5378 (1.3); 8.5355 (1.2); 7.9119 (4.1); 7.8899 (4.1); 7.8132 (4.0); 7.7946 (4.1); 7.7086 (1.0); 7.7041 (1.4); 7.6998 (0.5); 7.6893 (2.1); 7.6849 (2.8); 7.6807 (0.9); 7.6701 (1.3); 7.6657 (1.7); 7.6615 (0.6); 7.3690 (2.0); 7.3494 (1.7); 7.2645 (9.5); 7.2570 (0.8); 7.2373 (0.7); 7.2215 (1.4); 7.2188 (1.1); 7.2093 (1.4); 7.2066 (1.4); 7.2026 (1.4); 7.1999 (1.0); 7.1904 (1.3); 7.1877 (1.0); 6.2810 (7.5); 5.3148 (10.7); 4.7636 (3.8); 4.6240 (8.4); 1.7529 (15.9); 1.7435 (16.0); -0.0002 (10.6) Gegenstand der vorliegenden Erfindung ist weiterhin die Verwendung einer oder mehrerer erfindungsgemäßer Verbindungen der allgemeinen Formel (I) und/oder deren Salze, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (I.1-1) bis (I.48-500) und/oder deren Salze, jeweils wie oben definiert, als Herbizid und/oder Pflanzenwachstumsregulator, vorzugsweise in Kulturen von Nutz- und/oder Zierpflanzen. Gegenstand der vorliegenden Erfindung ist ferner ein Verfahren zur Bekämpfung von Schadpflanzen und/oder zur Wachstumsregulierung von Pflanzen, dadurch gekennzeichnet, dass eine wirksame Menge - einer oder mehrerer erfindungsgemäßer Verbindungen der allgemeinen Formel (I) und/oder deren Salze, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (I.1-1) bis (I.48-500) und/oder deren Salze, jeweils wie oben definiert, oder - eines erfindungsgemäßen Mittels, wie nachstehend definiert, auf die (Schad)Pflanzen, (Schad)Pflanzensamen, den Boden, in dem oder auf dem die (Schad)Pflanzen wachsen, oder die Anbaufläche appliziert wird. Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Bekämpfung von unerwünschten Pflanzen, vorzugsweise in Nutzpflanzenkulturen, dadurch gekennzeichnet, dass eine wirksame Menge - einer oder mehrerer Verbindungen der allgemeinen Formel (I) und/oder deren Salze, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (I.1-1) bis (I.48-500) und/oder deren Salze, jeweils wie oben definiert, oder - eines erfindungsgemäßen Mittels, wie nachstehend definiert, auf unerwünschte Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut der unerwünschten Pflanzen (d.h. Pflanzensamen, z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen), den Boden, in dem oder auf dem die unerwünschte Pflanzen wachsen, (z.B. den Boden von Kulturland oder Nicht-Kulturland) oder die Anbaufläche (d.h. Fläche, auf der die unerwünschte Pflanzen wachsen werden) appliziert wird. Gegenstand der vorliegenden Erfindung ist ferner auch Verfahren zur Bekämpfung zur Wachstumsregulierung von Pflanzen, vorzugsweise von Nutzpflanzen, dadurch gekennzeichnet, dass eine wirksame Menge - einer oder mehrerer Verbindungen der allgemeinen Formel (I) und/oder deren Salzen, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (I.1-1) bis (I.48-500) und/oder deren Salze, jeweils wie oben definiert, oder - eines erfindungsgemäßen Mittels, wie nachstehend definiert, auf die Pflanze, das Saatgut der Pflanze (d.h. Pflanzensamen, z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen), den Boden, in dem oder auf dem die Pflanzen wachsen, (z.B. den Boden von Kulturland oder Nicht-Kulturland) oder die Anbaufläche (d.h. Fläche, auf der die Pflanzen wachsen werden) appliziert wird. Dabei können die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) bzw. die erfindungsgemäßen Mittel z.B. im Vorsaat- (ggf. auch durch Einarbeitung in den Boden), Vorauflauf- und/oder Nachauflaufverfahren ausgebracht werden. Im Einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Vorzugsweise werden in einem erfindungsgemäßen Verfahren zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen eine oder mehrere Verbindungen der allgemeinen Formel (I) und/oder deren Salze zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung in Kulturen von Nutzpflanzen oder Zierpflanzen eingesetzt, wobei die Nutzpflanzen oder Zierpflanzen in einer bevorzugten Ausgestaltung transgene Pflanzen sind. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze eignen sich zur Bekämpfung der folgenden Gattungen von monokotylen und dikotylen Schadpflanzen: Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dikotyle Schadpflanzen der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. Werden die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) vor dem Keimen der Schadpflanzen (Ungräser und/oder Unkräuter) auf die Erdoberfläche appliziert (Vorauflaufverfahren), so wird entweder das Auflaufen der Ungras- bzw. Unkrautkeimlinge vollständig verhindert oder diese wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis vier Wochen vollkommen ab. Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Obgleich die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden Kulturpflanzen wirtschaftlich bedeutender Kulturen z.B. dikotyler Kulturen der Gattungen Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Miscanthus, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, oder monokotyler Kulturen der Gattungen Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, Triticale, Triticum, Zea, abhängig von der Struktur der jeweiligen erfindungsgemäßen Verbindung und deren Aufwandmenge nur unwesentlich oder gar nicht geschädigt. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in Pflanzenkulturen wie landwirtschaftlichen Nutzpflanzungen oder Zierpflanzungen. Darüber hinaus weisen die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) (abhängig von ihrer jeweiligen Struktur und der ausgebrachten Aufwandmenge) hervorragende wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen und zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation und Wuchsstauchung eingesetzt werden. Des Weiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativem Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da beispielsweise die Lagerbildung hierdurch verringert oder völlig verhindert werden kann. Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von gentechnisch oder durch konventionelle Mutagenese veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Bevorzugt bezüglich transgener Kulturen ist die Anwendung der erfindungsgemäßen Verbindungen und/oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz und Zierpflanzen, z.B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten. Vorzugsweise können die erfindungsgemäßen Verbindungen auch als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind. Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Weitere besondere Eigenschaften können in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung liegen. Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz- und Zierpflanzen, z.B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Triticale, Hirse, Reis, Maniok und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten. Vorzugsweise können die Verbindungen der allgemeinen Formel (I) als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind. Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden. Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind dem Fachmann bekannt. Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von Standardverfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden. Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Co-Suppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA- Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA- Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind. Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J.11 (1992), 3219- 3227). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden. Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen. So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen. Vorzugsweise können die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B. Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydoxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, resistent sind. Bei der Anwendung der erfindungsgemäßen Wirkstoffe der allgemeinen Formel (I) in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen. Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze als Herbizide zur Bekämpfung von Schadpflanzen in Kulturen von Nutz- oder Zierpflanzen, gegebenenfalls in transgenen Kulturpflanzen. Bevorzugt ist die Verwendung in Getreide, dabei vorzugsweise Mais, Weizen, Gerste, Roggen, Hafer, Hirse, oder Reis, im Vor- oder Nachauflauf. Bevorzugt ist auch die Verwendung in Soja im Vor- oder Nachauflauf. Die erfindungsgemäße Verwendung zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen schließt auch den Fall ein, bei dem Verbindungen der allgemeinen Formel (I) oder deren Salz erst nach der Ausbringung auf der Pflanze, in der Pflanze oder im Boden aus einer Vorläufersubstanz ("Prodrug") gebildet wird. Gegenstand der Erfindung ist auch die Verwendung einer oder mehrerer Verbindungen der allgemeinen Formel (I) oder deren Salzen bzw. eines erfindungsgemäßen Mittels (wie nachstehend definiert) (in einem Verfahren) zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen, dadurch gekennzeichnet, dass man eine wirksame Menge einer oder mehreren Verbindungen der allgemeinen Formel (I) oder deren Salzen auf die Pflanzen (Schadpflanzen, ggf. zusammen mit den Nutzpflanzen) Pflanzensamen, den Boden, in dem oder auf dem die Pflanzen wachsen, oder die Anbaufläche appliziert. Gegenstand der Erfindung ist auch ein herbizides und/oder pflanzenwachstumsregulierendes Mittel, dadurch gekennzeichnet, dass das Mittel (a) eine oder mehrere Verbindungen der allgemeinen Formel (I) und/oder deren Salze enthält wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere eine oder mehrere Verbindungen der Formeln (I.1-1) bis (I.48-500) und/oder deren Salze, jeweils wie oben definiert, und (b) ein oder mehrere weitere Stoffe ausgewählt aus den Gruppen (i) und/oder (ii): (i) ein oder mehrere weitere agrochemisch wirksame Stoffe, vorzugsweise ausgewählt aus der Gruppe bestehend aus Insektiziden, Akariziden, Nematiziden, weiteren Herbiziden (d.h. solche, die nicht der oben definierten allgemeinen Formel (I) entsprechen), Fungiziden, Safenern, Düngemitteln und/oder weiteren Wachstumsregulatoren, (ii) ein oder mehrere im Pflanzenschutz übliche Formulierungshilfsmittel. Die weiteren agrochemischen wirksamen Stoffe des Bestandteils (i) eines erfindungsgemäßen Mittels sind dabei vorzugsweise ausgewählt aus der Gruppe der Stoffe, die in "The Pesticide Manual", 16th edition, The British Crop Protection Council und the Royal Soc. of Chemistry, 2012 genannt sind. Ein erfindungsgemäßes herbizides oder pflanzenwachstumsregulierendes Mittel, umfasst vorzugsweise ein, zwei, drei oder mehr im Pflanzenschutz übliche Formulierungshilfsmittel (ii) ausgewählt aus der Gruppe bestehend aus Tensiden, Emulgatoren, Dispergiermitteln, Filmbildnern, Verdickungsmitteln, anorganischen Salzen, Stäubemitteln, bei 25 °C und 1013 mbar festen Trägerstoffen, vorzugsweise adsorptionsfähigen, granulierten Inertmaterialien, Netzmitteln, Antioxidationsmitteln, Stabilisatoren, Puffersubstanzen, Antischaummitteln, Wasser, organischen Lösungsmitteln, vorzugsweise bei 25 °C und 1013 mbar mit Wasser in jedem beliebigen Verhältnis mischbare organische Lösungsmittel. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, die erfindungsgemäßen Verbindungen der Formel (I) und/oder deren Salze enthalten. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen und die Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind dem Fachmann bekannt, und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvents Guide"; 2nd Ed., Interscience, N.Y.1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y.1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesellschaft, Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl.1986. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate, Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid- Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfettsäureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitanfettsäureester. Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde. Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Nass-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden. Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wässrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise – falls gewünscht in Mischung mit Düngemitteln - granuliert werden. Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt. Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulaten siehe z.B. Verfahren in "Spray- Drying Handbook" 3rd ed.1979, G. Goodwin Ltd., London; J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S.8-57. Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103. Die agrochemischen Zubereitungen, vorzugsweise herbizide oder pflanzenwachstumsregulierende Mittel der vorliegenden Erfindung enthalten vorzugsweise eine Gesamtmenge von 0,1 bis 99 Gew.-%, bevorzugt 0,5 bis 95 Gew.-%, weiter bevorzugt 1 bis 90 Gew.-%, insbesondere bevorzugt 2 bis 80 Gew.-%, an Wirkstoffen der Formel (I) und deren Salzen. In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0,05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%. Daneben enthalten die genannten Wirkstoffformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel. Beispiele für Formulierungshilfsmittel sind unter anderem in "Chemistry and Technology of Agrochemical Formulations", ed. D. A. Knowles, Kluwer Academic Publishers (1998) beschrieben. Die Verbindungen der allgemeinen Formel (I) oder deren Salze können als solche oder in Form ihrer Zubereitungen (Formulierungen) mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Nematiziden, Herbiziden, Fungiziden, Safenern, Düngemitteln und/oder Wachstumsregulatoren kombiniert eingesetzt werden, z.B. als Fertigformulierung oder als Tankmischungen. Die Kombinationsformulierungen können dabei auf Basis der obengenannten Formulierungen hergestellt werden, wobei die physikalischen Eigenschaften und Stabilitäten der zu kombinierenden Wirkstoffe zu berücksichtigen sind. Als Kombinationspartner für die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat-Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat- Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II, Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. in Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 und der dort zitierten Literatur beschrieben sind. Von besonderem Interesse ist die selektive Bekämpfung von Schadpflanzen in Kulturen von Nutz- und Zierpflanzen. Obgleich die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) bereits in vielen Kulturen sehr gute bis ausreichende Selektivität aufweisen, können prinzipiell in einigen Kulturen und vor allem auch im Falle von Mischungen mit anderen Herbiziden, die weniger selektiv sind, Phytotoxizitäten an den Kulturpflanzen auftreten. Diesbezüglich sind Kombinationen erfindungsgemäßer Verbindungen der allgemeinen Formel (I) von besonderem Interesse, welche die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) bzw. deren Kombinationen mit anderen Herbiziden oder Pestiziden und Safenern enthalten. Die Safener, welche in einem antidotisch wirksamen Gehalt eingesetzt werden, reduzieren die phytotoxischen Nebenwirkungen der eingesetzten Herbizide/Pestizide, z.B. in wirtschaftlich bedeutenden Kulturen wie Getreide (Weizen, Gerste, Roggen, Mais, Reis, Hirse), Zuckerrübe, Zuckerrohr, Raps, Baumwolle und Soja, vorzugsweise Getreide. Die Gewichtsverhältnisse von Herbizid(mischung) zu Safener hängt im Allgemeinen von der Aufwandmenge an Herbizid und der Wirksamkeit des jeweiligen Safeners ab und kann innerhalb weiter Grenzen variieren, beispielsweise im Bereich von 200:1 bis 1:200, vorzugsweise 100:1 bis 1:100, insbesondere 20:1 bis 1:20. Die Safener können analog den Verbindungen allgemeinen Formel (I) oder deren Mischungen mit weiteren Herbiziden/Pestiziden formuliert werden und als Fertigformulierung oder Tankmischung mit den Herbiziden bereitgestellt und angewendet werden. Zur Anwendung werden die in handelsüblicher Form vorliegenden Herbizid- oder Herbizid-Safener- Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Äußere Bedingungen wie Temperatur, Feuchtigkeit etc. beeinflussen zu einem gewissen Teil die Aufwandmenge der Verbindungen der allgemeinen Formel (I) und/oder deren Salze. Die Aufwandmenge kann dabei innerhalb weiter Grenzen variieren. Für die Anwendung als Herbizid zur Bekämpfung von Schadpflanzen liegt die Gesamtmenge an Verbindungen der Formel (I) und deren Salze vorzugsweise im Bereich von 0,001 bis 10,0 kg/ha, bevorzugt im Bereich von 0,005 bis 5 kg/ha, weiter bevorzugt im Bereich von 0,01 bis 1,5 kg/ha, insbesondere bevorzugt im Bereich von 0,05 bis 1 kg/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf. Bei der Anwendung von erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salzen als Pflanzenwachstumsregulator, beispielsweise als Halmverkürzer bei Kulturpflanzen, wie sie oben genannt worden sind, vorzugsweise bei Getreidepflanzen wie Weizen, Gerste, Roggen, Triticale, Hirse, Reis oder Mais, liegt die Gesamt-Aufwandmenge vorzugsweise im Bereich von 0,001 bis 2 kg/ha, vorzugsweise im Bereich von 0,005 bis 1 kg/ha, insbesondere im Bereich von 10 bis 500 g/ha, ganz besonders bevorzugt im Bereich von 20 bis 250 g/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf. Die Applikation als Halmverkürzer kann in verschiedenen Stadien des Wachstums der Pflanzen erfolgen. Bevorzugt ist beispielsweise die Anwendung nach der Bestockung am Beginn des Längenwachstums. Alternativ kommt bei der Anwendung als Pflanzenwachstumsregulator auch die Behandlung des Saatguts in Frage, welche die unterschiedlichen Saatgutbeiz- und Beschichtungstechniken einschließt. Die Aufwandmenge hängt dabei von den einzelnen Techniken ab und kann in Vorversuchen ermittelt werden. Als Kombinationspartner für die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in erfindungsgemäßen Mitteln (z.B. Mischungsformulierungen oder im Tank-Mix) sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA- Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat-Synthase, Glutamin-Synthetase, p- Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II oder Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 16th edition, The British Crop Protection Council und the Royal Soc. of Chemistry, 2012 und dort zitierter Literatur beschrieben sind. Nachfolgend werden beispielhaft bekannte Herbizide oder Pflanzenwachstumsregulatoren genannt, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, wobei diese Wirkstoffe entweder mit ihrem "common name" in der englischsprachigen Variante gemäß International Organization for Standardization (ISO) oder mit dem chemischen Namen bzw. mit der Codenummer bezeichnet sind. Dabei sind stets sämtliche Anwendungsformen wie beispielsweise Säuren, Salze, Ester sowie auch alle isomeren Formen wie Stereoisomere und optische Isomere umfasst, auch wenn diese nicht explizit erwähnt sind. Beispiele für solche herbiziden Mischungspartner: Als bekannte Herbizide oder Pflanzenwachstumsregulatoren, die mit Verbindungen der allgemeinen Formel (I) kombiniert werden können, sind z.B. folgende Wirkstoffe zu nennen (die Verbindungen sind entweder mit dem "common name" nach der International Organization for Standardization (ISO) oder mit dem chemischen Namen oder mit der Codenummer bezeichnet) und umfassen stets sämtliche Anwendungsformen wie Säuren, Salze, Ester und Isomere wie Stereoisomere und optische Isomere. Dabei sind beispielhaft eine und zum Teil auch mehrere Anwendungsformen genannt: Acetochlor, Acifluorfen, Acifluorfen-methyl, Acifluorfen-Natrium, Aclonifen, Alachlor, Allidochlor, Alloxydim, Alloxydim-Natrium, Ametryn, Amicarbazon, Amidochlor, Amidosulfuron, 4-Amino-3- chlor-6-(4-chlor-2-fluor-3-methylphenyl)-5-fluorpyridin-2-carbonsäure, Aminocyclopyrachlor, Aminocyclopyrachlor-Kalium, Aminocyclopyrachlor-methyl, Aminopyralid, Aminopyralid- dimethylammonium, Aminopyralid-tripromine, Amitrol, Ammoniumsulfamate, Anilofos, Asulam, Asulam-Kalium, Asulam-Natrium, Atrazin, Azafenidin, Azimsulfuron, Beflubutamid, (S)-(-)- Beflubutamid, Beflubutamid-M, Benazolin, Benazolin-ethyl, Benazolin-dimethylammonium, Benazolin-Klaium, Benfluralin, Benfuresate, Bensulfuron, Bensulfuron-methyl, Bensulid, Bentazon, Bentazon-Natrium, Benzobicyclon, Benzofenap, Bicyclopyrone, Bifenox, Bilanafos, Bilanafos-Natium, Bipyrazone, Bispyribac, Bispyribac-Natium, Bixlozon, Bromacil, Bromacil-lithium, Bromacil-Natrium, Bromobutid, Bromofenoxim, Bromoxynil, Bromoxynilbutyrat, Bromoxynil-Kalium, Bromoxynil- heptanoat und Bromoxynil-octanoat, Busoxinon, Butachlor, Butafenacil, Butamifos, Butenachlor, Butralin, Butroxydim, Butylat, Cafenstrol, Cambendichlor, Carbetamide, Carfentrazon, Carfentrazon- Ethyl, Chloramben, Chloramben-ammonium, Chloramben-diolamin, Chlroamben-methyl, Chloramben- methylammonium, Chloramben-Natium, Chlorbromuron, Chlorfenac, Chlorfenac-ammonium, Chlorfenac-Natium, Chlorfenprop, Chlorfenprop-methyl, Chlorflurenol, Chlorflurenol-methyl, Chloridazon, Chlorimuron, Chlorimuron-ethyl, Chlorophthalim, Chlorotoluron, Chlorsulfuron, Chlorthal, Chlorthal-dimethyl, Chlorthal-monomethyl, Cinidon, Cinidon-ethyl, Cinmethylin, exo-(+)- Cinmethylin, d.h. (1R,2S,4S)-4-isopropyl-1-methyl-2-[(2-methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptan, exo-(-)-Cinmethylin, d.h. (1R,2S,4S)-4-isopropyl-1-methyl-2-[(2-methylbenzyl)oxy]-7- oxabicyclo[2.2.1]heptan, Cinosulfuron, Clacyfos, Clethodim, Clodinafop, Clodinafop-ethyl, Clodinafop- propargyl, Clomazon, Clomeprop, Clopyralid, Clopyralid-methyl, Clopyralid-olamin, Clopyralid- Kalium, Clopyralid-tripomin, Cloransulam, Cloransulam-methyl, Cumyluron, Cyanamide, Cyanazine, Cycloat, Cyclopyranil, Cyclopyrimorat, Cyclosulfamuron, Cycloxydim, Cyhalofop, Cyhalofop-butyl, Cyprazin, 2,4-D (sowie die Ammonium, Butotyl, Butyl, Cholin, Diethylammonium, Dimethylammonium, Diolamin, Doboxyl, Dodecylammonium, Etexyl, Ethyl, 2-Ethylhexyl, Heptylammonium, Isobutyl, Isooctyl, Isopropyl, Isopropylammonium, Lithium, Meptyl, Methyl, Kalium, Tetradecylammonium, Triethylammonium, Triisopropanolammonium, Tripromin and Trolamin Salze davon), 2,4-DB, 2,4-DB-butyl, 2,4-DB-Dimethylammonium, 2,4-DB-isooctyl, 2,4-DB-Kalium und 2,4-DB-Natrium, Daimuron (Dymron), Dalapon, Dalapon-Calcium, Dalapon-Magnesium, Dalapon- Natium, Dazomet, Dazomet-Natrium, n-Decanol, 7-Deoxy-D-sedoheptulose, Desmedipham, Detosyl- pyrazolat (DTP), Dicamba und seine Salze (z.B. Dicamba-biproamin, Dicamba-N,N-Bis(3- aminopropyl)methylamin, Dicamba-butotyl, Dicamba-cholin, Dicamba-Diglycolamin, Dicamba- Dimethylammonium, Dicamba-Diethanolaminemmonium, Dicamba-Diethylammonium, Dicamba- isopropylammonium, Dicamba-methyl, Dicamba-monoethanolamin, Dicamba-olamin, Dicamba- Kalium, Dicamba-Natium, Dicamba-Triethanolamin), Dichlobenil, 2-(2,4-Dichlorbenzyl)-4,4-dimethyl- 1,2-oxazolidin-3-on, 2-(2,5-Dichlorbenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, Dichlorprop, Dichlorprop-butotyl, Dichlorprop-Dimethylammonium, Dichhlorprop-etexyl, Dichlorprop- ethylammonium, Dichlorprop-isoctyl, Dichlorprop-methyl, Dichlorprop-Kalium, Dichlorprop-Natrium, Dichlorprop-P, Dichlorprop-P-Dimethylammonium, Dichlorprop-P-etexyl, Dichlorprop-P-Kalium, Dichlorprop-Natrium, Diclofop, Diclofop-methyl, Diclofop-P, Diclofop-P-methyl, Diclosulam, Difenzoquat, Difenzoquat-metilsulfate, Diflufenican, Diflufenzopyr, Diflufenzopyr-Natrium, Dimefuron, Dimepiperate, Dimesulfazet, Dimethachlor, Dimethametryn, Dimethenamid, Dimethenamid-P, Dimetrasulfuron, Dinitramine, Dinoterb, Dinoterb-Acetate, Diphenamid, Diquat, Diquat-Dibromid, Diquat-Dichloride, Dithiopyr, Diuron, DNOC, DNOC-Ammonium, DNOC-Kalium, DNOC-Natrium, Endothal, Endothal-Diammonium, Endothal-Dikalium, Endothal-Dinatrium, Epyrifenacil (S-3100), EPTC, Esprocarb, Ethalfluralin, Ethametsulfuron, Ethametsulfuron-Methyl, Ethiozin, Ethofumesate, Ethoxyfen, Ethoxyfen-Ethyl, Ethoxysulfuron, Etobenzanid, F-5231, d.h. N-[2- Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-ethansulfonamid, F- 7967, i.e.3-[7-Chlor-5-fluor-2-(trifluormethyl)-1H-benzimidazol-4-yl]-1-methyl-6- (trifluormethyl)pyrimidin-2,4(1H,3H)-dion, Fenoxaprop, Fenoxaprop-P, Fenoxaprop-Ethyl, Fenoxaprop-P-Ethyl, Fenoxasulfone, Fenpyrazone, Fenquinotrione, Fentrazamid, Flamprop, Flamprop- Isoproyl, Flamprop-Methyl, Flamprop-M-Isopropyl, Flamprop-M-Methyl, Flazasulfuron, Florasulam, Florpyrauxifen, Florpyrauxifen-benzyl, Fluazifop, Fluazifop-Butyl, Fluazifop-Methyl, Fluazifop-P, Fluazifop-P-Butyl, Flucarbazone, Flucarbazone-Natrium, Flucetosulfuron, Fluchloralin, Flufenacet, Flufenpyr, Flufenpyr-Ethyl, Flumetsulam, Flumiclorac, Flumiclorac-Pentyl, Flumioxazin, Fluometuron, Flurenol, Flurenol-Butyl, -Dimethylammonium und -Methyl, Fluoroglycofen, Fluoroglycofen-Ethyl, Flupropanat, Flupropanat-Natrium, Flupyrsulfuron, Flupyrsulfuron-Methyl, Flupyrsulfuron-Methyl- Natrium, Fluridon, Flurochloridon, Fluroxypyr, Fluroxypyr-Butometyl, Fluroxypyr-Meptyl, Flurtamon, Fluthiacet, Fluthiacet-Methyl, Fomesafen, Fomesafen-Natrium, Foramsulfuron, Foramsulfuron-Natrium, Fosamine, Fosamine-Ammonium, Glufosinat, Glufosinat-Ammonium, Glufosinat-Natrium, L- Glufosinat-Ammonium, L-Glufosinat-Natrium, Glufosinat-P-Natrium, Glufosinat-P-Ammonium, Glyphosat, Glyphosat-Ammonium, Glyphosat-Isopropylammonium, Glyphosat-Diammonium, Glyphosat-Dimethylammonium, Glyphosat-Kalium, Glyphosat-Natrium, Glyphosat-Sesquinatrium und Glyphosat-Trimesium, H-9201, d.h. O-(2,4-Dimethyl-6-nitrophenyl)-O-ethyl- isopropylphosphoramidothioat, Halauxifen, Halauxifen-methyl, Halosafen, Halosulfuron, Halosulfuron- Methyl, Haloxyfop, Haloxyfop-P, Haloxyfop-Ethoxyethyl, Haloxyfop-P-Ethoxyethyl, Haloxyfop- Methyl, Haloxyfop-P-Methyl, Haloxifop-Natrium, Hexazinon, HNPC-A8169, i.e. Prop-2-yn-1-yl (2S)- 2-{3-[(5-tert-butylpyridin-2-yl)oxy]phenoxy}propanoat, HW-02, d.h.1-(Dimethoxyphosphoryl)-ethyl- (2,4-dichlorphenoxy)acetat, Hydantocidin, Imazamethabenz, Imazamethabenz-Methyl, Imazamox, Imazamox-Ammonium, Imazapic, Imazapic-Ammonium, Imazapyr, Imazapyr-Isopropylammonium, Imazaquin, Imazaquin-Ammonium, Imazaquin-Methyl, Imazethapyr, Imazethapyr-Ammonium, Imazosulfuron, Indanofan, Indaziflam, Iodosulfuron, Iodosulfuron-Methyl, Iodosulfuron-Methyl- Natrium, Ioxynil, Ioxynil-Lithium, -Octanoat, -Kalium und Natrium, Ipfencarbazon, Isoproturon, Isouron, Isoxaben, Isoxaflutole, Karbutilat, KUH-043, d.h.3-({[5-(Difluormethyl)-1-methyl-3- (trifluormethyl)-1H-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazol, Ketospiradox, Ketospiradox-Kalium, Lactofen, Lenacil, Linuron, MCPA, MCPA-Butotyl, -Butyl, -Dimethyl- ammonium, -Diolamin, -2-Ethylhexyl, -Ethyl, -Isobutyl, Isoctyl, -Isopropyl, -Isopropylammonium, - Methyl, Olamin, -Kalium, –Natrium und -Trolamin, MCPB, MCPB-Methyl, -Ethyl und -Natrium, Mecoprop, Mecoprop-Butotyl, Mecoprop- dimethylammonium, Mecoprop-Diolamin, Mecoprop-Etexyl, Mecoprop-Ethadyl, Mecoprop-Isoctyl, Mecoprop-Methyl, Mecoprop-Kalium, Mecoprop-Natrium, und Mecoprop-Trolamin, Mecoprop-P, Mecoprop-P-Butotyl, -Dimethylammonium, -2-Ethylhexyl und - Kalium, Mefenacet, Mefluidid, Mefluidid-Diolamin, Mefluidid-Kalium, Mesosulfuron, Mesosulfuron- Methyl, Mesosulfuron-Natrium, Mesotrion, Methabenzthiazuron, Metam, Metamifop, Metamitron, Metazachlor, Metazosulfuron, Methabenzthiazuron, Methiopyrsulfuron, Methiozolin, Methyl isothiocyanat, Metobromuron, Metolachlor, S-Metolachlor, Metosulam, Metoxuron, Metribuzin, Metsulfuron, Metsulfuron-Methyl, Molinat, Monolinuron, Monosulfuron, Monosulfuron-Methyl, MT- 5950, d.h. N-[3-Chlor-4-(1-methylethyl)-phenyl]-2-methylpentanamid, NGGC-011, Napropamid, NC- 310, i.e.4-(2,4-Dichlorbenzoyl)-1-methyl-5-benzyloxypyrazol, NC-656, i.e. 3- [(Isopropylsulfonyl)methyl]-N-(5-methyl-1,3,4-oxadiazol-2-yl)-5-(trifluormethyl)[1,2,4]triazolo-[4,3- a]pyridin-8-carboxamid, Neburon, Nicosulfuron, Nonansäure (Pelargonsäure), Norflurazon, Ölsäure (Fettsäuren), Orbencarb, Orthosulfamuron, Oryzalin, Oxadiargyl, Oxadiazon, Oxasulfuron, Oxaziclomefone, Oxyfluorfen, Paraquat, Paraquat-dichlorid, Paraquat-Dimethylsulfat, Pebulat, Pendimethalin, Penoxsulam, Pentachlorphenol, Pentoxazon, Pethoxamid, Petroleumöl, Phenmedipham, Phenmedipham-Ethyl, Picloram, Picloram-dimethylammonium, Picloram-Etexyl, Picloram-Isoctyl, Picloram-Methyl, Picloram-Olamin, Picloram-Kalium, Picloram-Triethylammonium, Picloram- Tripromin, Picloram-Trolamin, Picolinafen, Pinoxaden, Piperophos, Pretilachlor, Primisulfuron, Primisulfuron-Methyl, Prodiamine, Profoxydim, Prometon, Prometryn, Propachlor, Propanil, Propaquizafop, Propazine, Propham, Propisochlor, Propoxycarbazone, Propoxycarbazone-Natrium, Propyrisulfuron, Propyzamid, Prosulfocarb, Prosulfuron, Pyraclonil, Pyraflufen, Pyraflufen-Ethyl, Pyrasulfotol, Pyrazolynat (Pyrazolat), Pyrazosulfuron, Pyrazosulfuron-Ethyl, Pyrazoxyfen, Pyribambenz, Pyribambenz-Isopropyl, Pyribambenz-Propyl, Pyribenzoxim, Pyributicarb, Pyridafol, Pyridat, Pyriftalid, Pyriminobac, Pyriminobac-Methyl, Pyrimisulfan, Pyrithiobac, Pyrithiobac-Natrium, Pyroxasulfon, Pyroxsulam, Quinclorac, Quinclorac-Dimethylammonium, Quinclorac-Methyl, Quinmerac, Quinoclamin, Quizalofop, Quizalofop-Ethyl, Quizalofop-P, Quizalofop-P-Ethyl, Quizalofop-P-Tefuryl, QYM201, i.e.1-{2-Chlor-3-[(3-cyclopropyl-5-hydroxy-1-methyl-1H-pyrazol-4- yl)carbonyl]-6-(trifluormethyl)phe-nyl}piperidin-2-on, Rimsulfuron, Saflufenacil, Sethoxydim, Siduron, Simazine, Simetryn, SL-261, Sulcotrione, Sulfentrazone, Sulfometuron, Sulfometuron-Methyl, Sulfosulfuron, , SYP-249, d.h.1-Ethoxy-3-methyl-1-oxobut-3-en-2-yl-5-[2-chlor-4- (trifluormethyl)phenoxy]-2-nitrobenzoat, SYP-300, i.e.1-[7-Fluor-3-oxo-4-(prop-2-in-1-yl)-3,4- dihydro-2H-1,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidin-4,5-dion, 2,3,6-TBA, TCA (Trichloressigsäure) und seine Salze, z.B. TCA-ammonium, TCA-Calcium, TCA-Ethyl, TCA- Magnesium, TCA-Natrium, Tebuthiuron, Tefuryltrione, Tembotrion, Tepraloxydim, Terbacil, Terbucarb, Terbumeton, Terbuthylazine, Terbutryn, Tetflupyrolimet, Thaxtomin, Thenylchlor, Thiazopyr, Thiencarbazone, Thiencarbazon-Methyl, Thifensulfuron, Thifensulfuron-Methyl, Thiobencarb, Tiafenacil, Tolpyralat, Topramezon, Tralkoxydim, Triafamon, Tri-allat, Triasulfuron, Triaziflam, Tribenuron, Tribenuron-Methyl, Triclopyr, Triclopyr-Butotyl, Triclopyr-Cholin, Triclopyr- Ethyl, Triclopyr-Triethylammonium, Trietazine, Trifloxysulfuron, Trifloxysulfuron-Natrium, Trifludimoxazin, Trifluralin, Triflusulfuron, Triflusulfuron-Methyl, Tritosulfuron, Harnstoffsulfat, Vernolat, XDE-848, ZJ-0862, d.h.3,4-Dichlor-N-{2-[(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}anilin, 3-(2-Chlor-4-fluor-5-(3-methyl-2,6-dioxo-4-trifluormethyl-3,6-dihydropyrimidin-1(2H)-yl)phenyl)-5- methyl-4,5-dihydroisoxazole-5-carbonsäureethylester, Ethyl-[(3-{2-chlor-4-fluor-5-[3-methyl-2,6- dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl]phenoxy}pyridin-2-yl)oxy]acetat, 3-Chlor-2- [3-(difluormethyl)isoxazolyl-5-yl]phenyl-5-chlorpyrimidin-2-ylether, 2-(3,4-Dimethoxyphenyl)-4-[(2- hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-6-methylpyridazine-3(2H)-on, 2-({2-[(2- Methoxyethoxy)methyl]-6-methylpyridin-3-yl}carbonyl)cyclohexane-1,3-dion, (5-Hydroxy-1-methyl- 1H-pyrazol-4-yl)(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)methanon, 1-Methyl-4- [(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)carbonyl]-1H-pyrazol-5-yl propan-1- sulfonat, 4-{2-Chlor-3-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-4-(methylsulfonyl)benzoyl}-1-methyl- 1H-pyrazol-5-yl-1,3-dimethyl-1H-pyrazol-4-carboxylat; Cyanomethyl-4-amino-3-chlor-5-fluor-6-(7- fluor-1H-indol-6-yl)pyridin-2-carboxylat, Prop-2-yn-1-yl 4-amino-3-chlor-5-fluor-6-(7-fluor-1H-indol- 6-yl)pyridin-2-carboxylat, Methyl-4-amino-3-chlor-5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2- carboxylat, 4-Amino-3-chlor-5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2-carbonsäure, Benzyl-4-amino- 3-chlor-5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2-carboxylat, Ethyl-4-amino-3-chlor-5-fluor-6-(7- fluor-1H-indol-6-yl)pyridin-2-carboxylat, Methyl-4-amino-3-chlor-5-fluor-6-(7-fluor-1-isobutyryl-1H- indol-6-yl)pyridin-2-carboxylat, Methyl 6-(1-acetyl-7-fluor-1H-indol-6-yl)-4-amino-3-chlor-5- fluorpyridin-2-carboxylat, Methyl-4-amino-3-chlor-6-[1-(2,2-dimethylpropanoyl)-7-fluor-1H-indol-6- yl]-5-fluorpyridin-2-carboxylat, Methyl-4-amino-3-chlor-5-fluor-6-[7-fluor-1-(methoxyacetyl)-1H- indol-6-yl]pyridin-2-carboxylat, Kalium 4-amino-3-chlor-5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2- carboxylat, Natrium-4-amino-3-chlor-5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2-carboxylat, Butyl-4- amino-3-chlor-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridin-2-carboxylat, 4-Hydroxy-1-methyl-3-[4- (trifluoromethyl)pyridin-2-yl]imidazolidin-2-on, 3-(5-tert-butyl-1,2-oxazol-3-yl)-4-hydroxy-1- methylimidazolidin-2-on, 3-[5-Chlor-4-(trifluormethyl)pyridin-2-yl]-4-hydroxy-1-methylimidazolidin- 2-on, 4-Hydroxy-1-methoxy-5-methyl-3-[4-(trifluormethyl)pyridin-2-yl]imidazolidin-2-on, 6-[(2- Hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1,5-dimethyl-3-(2-methylphenyl)chinazolin-2,4(1H,3H)- dion, 3-(2,6-Dimethylphenyl)-6-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1-methylchinazolin- 2,4(1H,3H)-dion, 2-[2-chlor-4-(methylsulfonyl)-3-(morpholin-4-ylmethyl)benzoyl]-3-hydroxycyclohex- 2-en-1-on, 1-(2-carboxyethyl)-4-(pyrimidin-2-yl)pyridazin-1-iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), 1-(2-Carboxyethyl)-4-(pyridazin-3-yl)pyridazin-1-iumsalz (mit passenden Anionen wie z.B. Chlorid, Acetat oder Trifluoracetat), 4-(Pyrimidin-2-yl)-1-(2- sulfoethyl)pyridazin-1-ium salz iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), 4-(Pyridazin-3-yl)-1-(2-sulfoethyl)pyridazin-1-iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), 1-(2-Carboxyethyl)-4-(1,3-thiazol-2-yl)pyridazin-1-iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), 1-(2-Carboxyethyl)-4-(1,3,4- thiadiazol-2-yl)pyridazin-1-ium salz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat). Beispiele für Wuchsregulatoren und Pflanzenstimulantien als Mischungspartner sind: Abscisinsäure und verwandte Analoga [z.B. (2Z,4E)-5-[6-Ethynyl-1-hydroxy-2,6-dimethyl-4- oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-diensäure, methyl-(2Z,4E)-5-[6-ethynyl-1-hydroxy-2,6- dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoat, (2Z,4E)-3-ethyl-5-(1-hydroxy-2,6,6- trimethyl-4-oxocyclohex-2-en-1-yl)penta-2,4-diensäure, (2E,4E)-5-(1-hydroxy-2,6,6-trimethyl-4- oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-diensäure, methyl (2E,4E)-5-(1-hydroxy-2,6,6- trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-dienoat, (2Z,4E)-5-(2-hydroxy-1,3- dimethyl-5-oxobicyclo[4.1.0]hept-3-en-2-yl)-3-methylpenta-2,4-diensäure], Acibenzolar, Acibenzolar- S-methyl, S-Adenosylhomocystein, Allantoin, 2-Aminoethoxyvinylglycin (AVG), Aminooxyessigsäure and verwandte Ester [z.B. (Isopropyliden)-aminooxyessigsäure-2-(methoxy)-2-oxoethylester, (Isopropyliden)-aminooxyessigsäure-2-(hexyloxy)-2-oxoethylester, (Cyclohexyliden)- aminooxyessigsäure-2-(isopropyloxy)-2-oxoethylester], 1-Aminocycloprop-1-ylcarbonsäure N-Methyl- 1-aminocyclopropyl-1-carbonsäure, 1-Aminocyclopropyl-1-carbonsäureamid, substituierte 1- Aminocyclopropyl-1-carbonsäurederivate wie sie in DE3335514, EP30287, DE2906507 oder US5123951 beschrieben werden, 1-Aminocyclopropyl-1-hydroxamsäure, 5-Aminolevulinsäure, Ancymidol, 6-Benzylaminopurin, Bikinin, Brassinolid, Brassinolide-ethyl, L-Canalin, Catechin und catechine (z.B. (2S,3R)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2H-chromen-3,5,7-triol), Chitooligosaccharides (CO; COs unterscheiden sich von LCOs dadurch, dass ihnen die für LCOs charakteristische Fettsäureseitenkette fehlt. COs, in manchen Fällen als N-Acetylchitooligosaccharide bezeichnet, sind auch aus GlcNAc-Einheiten aufgebaut, aber haben Seitenketten, durch die sies ich von Chitinmolekülen unterscheiden [(C8H13NO5)n, CAS No.1398-61-4] und chitosan Moleküle [(C5H11NO4)n, CAS No.9012-76-4]), Chitin-artige Verbindungen, Chlormequat chloride, Cloprop, Cyclanilide, 3-(Cycloprop-1-enyl)propionsäure, 1-[2-(4-Cyano-3,5- dicyclopropylphenyl)acetamido]cyclohexancarbonsäure, 1-[2-(4-Cyano-3- cyclopropylphenyl)acetamido]cyclohexancarbonsäure, 1-Cyclopropenylmethanol, Daminozid, Dazomet, Dazomet-Natrium, n-Decanol, Dikegulac, Dikegulac-Natrium, Endothal, Endothal-di-Kalium, -di- Natrium, und mono(N,N-dimethylalkylammonium), Ethephon, 1-Ethylcyclopropen,Flumetralin, Flurenol, Flurenol-butyl, Flurenol-methyl, Flurprimidol, Forchlorfenuron, Gibberellinsäure, Inabenfid, Indol-3-essigsäure (IAA), 4-Indol-3-ylbuttersäure, Isoprothiolan, Probenazole, Jasmonsäure, Jasmonsäureester oder andere Derivate (z.B. Jasmonsäuremethylester, Jasmonsäureethylester), Lipochitooligosaccharide (LCO, in manchen Fällen auch als Symbiotische Nodulationssignale (Nod oder Nod Faktoren) oder als Myc Faktoren bezeichnet, bestehen aus einem Oligosacchariderückgrat aus β-l,4-verknüpften N-Acetyl-D-Glucosaminresten (“GlcNAc”) mit einer N-verknüpften Fettsäureseitenkette, die am nicht reduzierenden Ende ankondensiert ist. Wie aus der Literatur zu entnehmen ist, unterscheiden sich LCOs in der Zahl an GlcNAc-EInheiten in der Rückgratstruktur, in der Länge und dem Sättigungsgrad der Fettsäurekette sowie in der Substitution der reduzierenden und nicht-reduzierenden Zuckereinheiten), Linoleinsäure oder ihre Derivate, Linolensäure oder ihre Derivate, Maleinsäurehydrazid, Mepiquatchlorid, Mepiquatpentaborat, 1-Methylcyclopropen, 3- Methylcyclopropen, Methoxyvinylglycin (MVG), 3’-Methylabscisinsäure, 1-(4-Methylphenyl)-N-(2- oxo-1-propyl-1,2,3,4-tetrahydrochinolin-6-yl)methansulfonamid und verwandte substituierte (Tetrahydrochinolin-6-yl)methansulfonamide, (3E,3αR,8βS)-3-({[(2R)-4-Methyl-5-oxo-2,5- dihydrofuran-2-yl]oxy}methylen)-3,3a,4,8b-tetrahydro-2H-indeno[1,2-b]furan-2-on und verwandte Laktone wie sie in EP2248421 beschrieben sind, 2-(1-Naphthyl)acetamid, 1-Naphthylessigsäure, 2- Naphthyloxyessigsäure, Nitrophenolatmischung, 4-Oxo-4[(2-phenylethyl)amino]buttersäure, Paclobutrazol, 4-Phenylbuttersäure and ihre Salze (z.B. Natrium-4-phenylbutanoat, Kalium-4- phenylbutanoat), Phenylalanine, N-Phenylphthalamsäure, Prohexadione, Prohexadion-Calcium, , 1-n- Propylcyclopropen, Putrescin, Prohydrojasmon, Rhizobitoxin, Salicylsäure und Salicyclsäuremethylester, Sarcosin, Natriumcycloprop-1-en-1-ylacetat, Natriumcycloprop-2-en-1- ylacetat, Natrium-3-(cycloprop-2-en-1-yl)propanoat, Natrium-3-(cycloprop-1-en-1-yl)propanoat, Sidefungin, Spermidin, Spermine, Strigolactone, Tecnazene, Thidiazuron, Triacontanol, Trinexapac, Trinexapac-ethyl, Tryptophan, Tsitodef, Uniconazol, Uniconazol-P, 2-Fluoro-N-(3-methoxyphenyl)-9H- purin-6-amin. Ebenfalls als Kombinationspartner für die erfindungsgemäßen Verbindungen der Formel (I) kommen beispielsweise die folgenden Safener in Frage: S1) Verbindungen aus der Gruppe heterocyclischer Carbonsäurederivate der Formel (S1):
Figure imgf000122_0001
wobei die Symbole und Indizes folgende Bedeutungen haben: nA ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3; RA 1 ist Halogen, (C1-C4)-Alkyl, (C1-C4)Alkoxy, Nitro oder (C1-C4)Haloalkyl;
Figure imgf000122_0002
WA ist ein unsubstituierter oder substituierter divalenter heterocyclischer Rest aus der Gruppe der teilungesättigten oder aromatischen Fünfring-Heterocyclen mit 1 bis 3 Heteroringatomen aus der Gruppe N und O, wobei mindestens ein N-Atom und höchstens ein O-Atom im Ring enthalten ist, vorzugsweise ein Rest aus der Gruppe (WA 1) bis (WA 5), mA ist 0 oder 1; RA 2 ist ORA 3, SRA 3 oder NRA 3RA 4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S1) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4)-Alkyl, (C1-C4)-Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORA 3, NHRA 4 oder N(CH3)2, insbesondere der Formel ORA 3; RA 3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen; RA 4 ist Wasserstoff, (C1-C6)-Alkyl, (C1-C6)-Alkoxy oder substituiertes oder unsubstituiertes Phenyl; RA 5 ist H, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl, (C1-C4)-Alkoxy-(C1-C8)-Alkyl, Cyano oder COORA 9, worin RA 9 Wasserstoff, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C6)- Hydroxyalkyl, (C3-C12)-Cycloalkyl oder Tris-(C1-C4)-alkylsilyl ist; RA 6, RA 7, RA 8 stehen unabhängig voneinander für Wasserstoff, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl, (C3- C12)-Cycloalkyl oder substituiertes oder unsubstituiertes Phenyl; RA 10 steht für H, (C3-C12)-Cycloalkyl, substituiertes oder unsubstituiertes Phenyl oder substituiertes oder unsubstituiertes Heteroaryl; vorzugsweise: S1a) Verbindungen vom Typ der Dichlorphenylpyrazolin-3-carbonsäure (S1a), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl- 2-pyrazolin-3-carbonsäure, 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäureethylester (S1-1) ("Mefenpyr-diethyl"), und verwandte Verbindungen, wie sie in der WO-A-91/07874 beschrieben sind; S1b) Derivate der Dichlorphenylpyrazolcarbonsäure (S1b), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-methyl-pyrazol-3-carbonsäureethylester (S1-2), 1-(2,4-Di- chlorphenyl)-5-isopropyl-pyrazol-3-carbonsäureethylester (S1-3), 1-(2,4-Dichlor- phenyl)-5-(1,1-dimethyl-ethyl)pyrazol-3-carbonsäureethyl-ester (S1-4) und verwandte Verbindungen, wie sie in EP-A-333131 und EP-A-269806 beschrieben sind; S1c) Derivate der 1,5-Diphenylpyrazol-3-carbonsäure (S1c), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-phenylpyrazol-3-carbonsäureethylester (S1-5), 1-(2-Chlorphenyl)-5-phenylpyrazol-3-carbonsäuremethylester (S1-6) und verwandte Verbindungen wie sie beispielsweise in der EP-A-268554 beschrieben sind; S1d) Verbindungen vom Typ der Triazolcarbonsäuren (S1d), vorzugsweise Verbindungen wie Fenchlorazol(-ethylester), d.h.1-(2,4-Dichlorphenyl)-5-trichlormethyl-(1H)-1,2,4-triazol-3-carbonsäure- ethylester (S1-7), und verwandte Verbindungen wie sie in EP-A-174562 und EP-A-346620 beschrieben sind; S1e) Verbindungen vom Typ der 5-Benzyl- oder 5-Phenyl-2-isoxazolin-3- carbonsäure oder der 5,5- Diphenyl-2-isoxazolin-3-carbonsäure (S1e), vorzugsweise Verbindungen wie 5-(2,4-Dichlorbenzyl)-2-isoxazolin-3-carbonsäureethylester (S1-8) oder 5-Phenyl-2-isoxazolin-3- carbonsäureethylester (S1-9) und verwandte Verbindungen, wie sie in WO-A-91/08202 beschrieben sind, bzw.5,5-Diphenyl-2-isoxazolin-3-carbonsäure (S1-10) oder 5,5-Diphenyl-2-isoxazolin-3- carbonsäureethylester (S1-11) ("Isoxadifen-ethyl") oder -n-propylester (S1-12) oder der 5-(4-Fluorphenyl)-5-phenyl-2-isoxazolin-3-carbonsäureethylester (S1-13), wie sie in der Patentanmeldung WO-A-95/07897 beschrieben sind. S1f) Verbindungen vom Typ der Triazolyloxyessigsäurederivate (S1f), vorzugsweise Verbindungen wie Methyl-{[1,5-bis(4-chlor-2-fluorphenyl)-1H-1,2,4-triazol-3-yl]oxy}acetat (S1-14) oder {[1,5-Bis(4- chlor-2-fluorphenyl)-1H-1,2,4-triazol-3-yl]oxy}essigsäure (S1-15) oder Methyl-{[5-(4-chlor-2- fluorphenyl)-1-(2,4-difluorphenyl)-1H-1,2,4-triazol-3-yl]oxy}acetat (S1-16) oder {[5-(4-Chlor-2- fluorphenyl)-1-(2,4-difluorphenyl)-1H-1,2,4-triazol-3-yl]oxy}essigsäure (S1-17) oder Methyl-{[1-(4- chlor-2-fluorphenyl)-5-(2,4-difluorphenyl)-1H-1,2,4-triazol-3-yl]oxy}acetat (S1-18) oder {[1-(4-Chlor- 2-fluorphenyl)-5-(2,4-difluorphenyl)-1H-1,2,4-triazol-3-yl]oxy}essigsäure (S1-19), wie sie in der Patentanmeldung WO2021105101 beschrieben sind S2) Chinolinderivate der Formel (S2),
Figure imgf000124_0001
wobei die Symbole und Indizes folgende Bedeutungen haben: RB 1 ist Halogen, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, Nitro oder (C1-C4)-Haloalkyl; nB ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3; RB 2 ist ORB 3, SRB 3 oder NRB 3RB 4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S2) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4)-Alkyl, (C1-C4)-Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORB 3, NHRB 4 oder N(CH3)2, insbesondere der Formel ORB 3; RB 3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen; RB 4 ist Wasserstoff, (C1-C6)-Alkyl, (C1-C6)-Alkoxy oder substituiertes oder unsubstituiertes Phenyl; TB ist eine (C1 oder C2)-Alkandiylkette, die unsubstituiert oder mit einem oder zwei (C1-C4)- Alkylresten oder mit [(C1-C3)-Alkoxy]carbonyl substituiert ist; vorzugsweise: S2a) Verbindungen vom Typ der 8-Chinolinoxyessigsäure (S2a), vorzugsweise (5-Chlor-8-chinolinoxy)essigsäure-(1-methylhexyl)-ester ("Cloquintocet-mexyl") (S2-1), (5-Chlor-8-chinolinoxy)essigsäure-(1,3-dimethyl-but-1-yl)-ester (S2-2), (5-Chlor-8-chinolinoxy)essigsäure-4-allyl-oxy-butylester (S2-3), (5-Chlor-8-chinolinoxy)essigsäure-1-allyloxy-prop-2-ylester (S2-4), (5-Chlor-8-chinolinoxy)essigsäureethylester (S2-5), (5-Chlor-8-chinolinoxy)essigsäuremethylester (S2-6), (5-Chlor-8-chinolinoxy)essigsäureallylester (S2-7), (5-Chlor-8-chinolinoxy)essigsäure-2-(2-propyliden-iminoxy)-1-ethylester (S2-8), (5-Chlor-8-chinolinoxy)essigsäure-2-oxo-prop-1-ylester (S2-9) und verwandte Verbindungen, wie sie in EP-A-86750, EP-A-94349 und EP-A-191736 oder EP-A-0492366 beschrieben sind, sowie (5-Chlor-8-chinolinoxy)essigsäure (S2-10), deren Hydrate und Salze, beispielsweise deren Lithium-, Natrium- Kalium-, Kalzium-, Magnesium-, Aluminium-, Eisen-, Ammonium-, quartäre Ammonium-, Sulfonium-, oder Phosphoniumsalze wie sie in der WO-A-2002/34048 beschrieben sind; S2b) Verbindungen vom Typ der (5-Chlor-8-chinolinoxy)malonsäure (S2b), vorzugsweise Verbindungen wie (5-Chlor-8-chinolinoxy)malonsäurediethylester, (5-Chlor-8-chinolinoxy)malonsäurediallylester, (5-Chlor-8-chinolinoxy)malonsäure-methyl-ethylester und verwandte Verbindungen, wie sie in EP-A-0582198 beschrieben sind. S3) Verbindungen der Formel (S3)
Figure imgf000125_0001
wobei die Symbole und Indizes folgende Bedeutungen haben: RC 1 ist (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C3-C7)-Cycloalkyl, vorzugsweise Dichlormethyl; RC 2, RC 3 sind gleich oder verschieden Wasserstoff, (C1-C4)-Alkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, (C1-C4)-Haloalkyl, (C2-C4)-Haloalkenyl, (C1-C4)-Alkylcarbamoyl-(C1-C4)-alkyl, (C2-C4)- Alkenylcarbamoyl-(C1-C4)-alkyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, Dioxolanyl-(C1-C4)-alkyl, Thiazolyl, Furyl, Furylalkyl, Thienyl, Piperidyl, substituiertes oder unsubstituiertes Phenyl, oder RC 2 und RC 3 bilden zusammen einen substituierten oder unsubstituierten heterocyclischen Ring, vorzugsweise einen Oxazolidin-, Thiazolidin-, Piperidin-, Morpholin-, Hexahydropyrimidin- oder Benzoxazinring; vorzugsweise: Wirkstoffe vom Typ der Dichloracetamide (S3), die häufig als Vorauflaufsafener (bodenwirksame Safener) angewendet werden, wie z. B. "Dichlormid" (N,N-Diallyl-2,2-dichloracetamid) (S3-1), "R-29148" (3-Dichloracetyl-2,2,5-trimethyl-1,3-oxazolidin) der Firma Stauffer (S3-2), "R-28725" (3-Dichloracetyl-2,2,-dimethyl-1,3-oxazolidin) der Firma Stauffer (S3-3), "Benoxacor" (4-Dichloracetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazin) (S3-4), "PPG-1292" (N-Allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloracetamid) der Firma PPG Industries (S3-5), "DKA-24" (N-Allyl-N-[(allylaminocarbonyl)methyl]-dichloracetamid) der Firma Sagro-Chem (S3-6), "AD-67" oder "MON 4660" (3-Dichloracetyl-1-oxa-3-aza-spiro[4,5]decan) der Firma Nitrokemia bzw. Monsanto (S3-7), "TI-35" (1-Dichloracetyl-azepan) der Firma TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonon) oder "BAS145138" oder "LAB145138" (S3-9) ((RS)-1-Dichloracetyl-3,3,8a-trimethylperhydropyrrolo[1,2-a]pyrimidin-6-on) der Firma BASF, "Furilazol" oder "MON 13900" ((RS)-3-Dichloracetyl-5-(2-furyl)-2,2-dimethyloxazolidin) (S3-10), sowie dessen (R)-Isomer (S3-11). S4) Verbindungen aus der Klasse der Acylsulfonamide (S4): S4a) N-Acylsulfonamide der Formel (S4a) und deren Salze wie sie in der WO-A-97/45016 beschrieben sind,
Figure imgf000126_0001
worin RA 1 (C1-C6)-Alkyl, (C3-C6)-Cycloalkyl, wobei die 2 letztgenannten Reste durch vA Substituenten aus der Gruppe Halogen, (C1-C4)-Alkoxy, (C1-C6)-Haloalkoxy und (C1- C4)-Alkylthio und im Falle cyclischer Reste auch durch (C1-C4)-Alkyl und (C1-C4)- Haloalkyl substituiert sind; RA 2 Halogen, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, CF3; mA 1 oder 2; vA ist 0, 1, 2 oder 3 bedeuten; S4b) Verbindungen vom Typ der 4-(Benzoylsulfamoyl)benzamide der Formel (S4b) und deren Salze, wie sie in der WO-A-99/16744 beschrieben sind,
Figure imgf000127_0001
worin RB 1, RB 2 unabhängig voneinander Wasserstoff, (C1-C6)-Alkyl, (C3-C6)-Cycloalkyl, (C3-C6)- Alkenyl, (C3-C6)-Alkinyl, RB 3 Halogen, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl oder (C1-C4)-Alkoxy und mB 1 oder 2 bedeuten, z.B. solche worin RB 1 = Cyclopropyl, RB 2 = Wasserstoff und (RB 3) = 2-OMe ist ("Cyprosulfamide", S4-1), RB 1 = Cyclopropyl, RB 2 = Wasserstoff und (RB 3) = 5-Cl-2-OMe ist (S4-2), RB 1 = Ethyl, RB 2 = Wasserstoff und (RB 3) = 2-OMe ist (S4-3), RB 1 = Isopropyl, RB 2 = Wasserstoff und (RB 3) = 5-Cl-2-OMe ist (S4-4) und RB 1 = Isopropyl, RB 2 = Wasserstoff und (RB 3) = 2-OMe ist (S4-5); S4c) Verbindungen aus der Klasse der Benzoylsulfamoylphenylharnstoffe der Formel (S4c), wie sie in der EP-A-365484 beschrieben sind,
Figure imgf000127_0002
worin RC 1, RC 2 unabhängig voneinander Wasserstoff, (C1-C8)-Alkyl, (C3-C8)-Cycloalkyl, (C3- C6)-Alkenyl, (C3-C6)-Alkinyl, RC 3 Halogen, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, CF3 und mC 1 oder 2 bedeuten; beispielsweise 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3-methylharnstoff, 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylharnstoff, 1-[4-(N-4,5-Dimethylbenzoylsulfamoyl)phenyl]-3-methylharnstoff; S4d) Verbindungen vom Typ der N-Phenylsulfonylterephthalamide der Formel (S4d) und deren Salze, die z.B. bekannt sind aus CN 101838227,
Figure imgf000128_0001
worin RD 4 Halogen, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, CF3; mD 1 oder 2; RD 5 Wasserstoff, (C1-C6)-Alkyl, (C3-C6)-Cycloalkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C5- C6)-Cycloalkenyl bedeutet. S5) Wirkstoffe aus der Klasse der Hydroxyaromaten und der aromatisch-aliphatischen Carbonsäurederivate (S5), z.B. 3,4,5-Triacetoxybenzoesäureethylester, 3,5-Dimethoxy-4-hydroxybenzoesäure, 3,5- Dihydroxybenzoesäure, 4-Hydroxysalicylsäure, 4-Fluorsalicyclsäure, 2-Hydroxyzimtsäure, 2,4- Dichlorzimtsäure, wie sie in der WO-A-2004/084631, WO-A-2005/015994, WO-A- 2005/016001 beschrieben sind. S6) Wirkstoffe aus der Klasse der 1,2-Dihydrochinoxalin-2-one (S6), z.B. 1-Methyl-3-(2-thienyl)-1,2-dihydrochinoxalin-2-on, 1-Methyl-3-(2-thienyl)-1,2-dihydro- chinoxalin-2-thion, 1-(2-Aminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on-hydrochlorid, 1-(2-Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on, wie sie in der WO- A-2005/112630 beschrieben sind. S7) Verbindungen aus der Klasse der Diphenylmethoxyessigsäurederivate (S7), z.B. Diphenylmethoxyessigsäuremethylester (CAS-Reg.Nr.41858-19-9) (S7-1), Diphenylmethoxyessigsäureethylester oder Diphenylmethoxyessigsäure wie sie in der WO-A- 98/38856 beschrieben sind. S8) Verbindungen der Formel (S8), wie sie in der WO-A-98/27049 beschrieben sind,
Figure imgf000129_0001
worin die Symbole und Indizes folgende Bedeutungen haben: RD 1 ist Halogen, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, RD 2 ist Wasserstoff oder (C1-C4)-Alkyl, RD 3 ist Wasserstoff, (C1-C8)-Alkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist; oder deren Salze, nD ist eine ganze Zahl von 0 bis 2. S9) Wirkstoffe aus der Klasse der 3-(5-Tetrazolylcarbonyl)-2-chinolone (S9), z.B. 1,2-Dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbonyl)-2-chinolon (CAS-Reg.Nr.: 219479-18- 2), 1,2-Dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolon (CAS-Reg.Nr. 95855-00-8), wie sie in der WO-A-1999/000020 beschrieben sind. S10) Verbindungen der Formeln (S10a) oder (S10b), wie sie in der WO-A-2007/023719 und WO-A-2007/023764 beschrieben sind, worin
Figure imgf000129_0002
RE 1 Halogen, (C1-C4)-Alkyl, Methoxy, Nitro, Cyano, CF3, OCF3 YE, ZE unabhängig voneinander O oder S, nE eine ganze Zahl von 0 bis 4, RE 2 (C1-C16)-Alkyl, (C2-C6)-Alkenyl, (C3-C6)-Cycloalkyl, Aryl; Benzyl, Halogenbenzyl, RE 3 Wasserstoff oder (C1-C6)-Alkyl bedeuten. S11) Wirkstoffe vom Typ der Oxyimino-Verbindungen (S11), die als Saatbeizmittel bekannt sind, wie z. B. "Oxabetrinil" ((Z)-1,3-Dioxolan-2-ylmethoxyimino(phenyl)acetonitril) (S11-1), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, "Fluxofenim" (1-(4-Chlorphenyl)-2,2,2-trifluor-1-ethanon-O-(1,3-dioxolan-2-ylmethyl)-oxim) (S11-2), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, und "Cyometrinil" oder "CGA-43089" ((Z)-Cyanomethoxyimino(phenyl)acetonitril) (S11-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist. S12) Wirkstoffe aus der Klasse der Isothiochromanone (S12), wie z.B. Methyl-[(3-oxo-1H-2- benzothiopyran-4(3H)-yliden)methoxy]acetat (CAS-Reg.Nr.205121-04-6) (S12-1) und verwandte Verbindungen aus WO-A-1998/13361. S13) Eine oder mehrere Verbindungen aus Gruppe (S13): "Naphthalic anhydrid" (1,8-Naphthalindicarbonsäureanhydrid) (S13-1), das als Saatbeiz-Safener für Mais gegen Schäden von Thiocarbamatherbiziden bekannt ist, "Fenclorim" (4,6-Dichlor-2-phenylpyrimidin) (S13-2), das als Safener für Pretilachlor in gesätem Reis bekannt ist, "Flurazole" (Benzyl-2-chlor-4-trifluormethyl-1,3-thiazol-5-carboxylat) (S13-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Alachlor und Metolachlor bekannt ist, "CL 304415" (CAS-Reg.Nr.31541-57-8) (4-Carboxy-3,4-dihydro-2H-1-benzopyran-4-essigsäure) (S13-4) der Firma American Cyanamid, das als Safener für Mais gegen Schäden von Imidazolinonen bekannt ist, "MG 191" (CAS-Reg.Nr.96420-72-3) (2-Dichlormethyl-2-methyl-1,3-dioxolan) (S13-5) der Firma Nitrokemia, das als Safener für Mais bekannt ist, "MG 838" (CAS-Reg.Nr.133993-74-5) (2-propenyl 1-oxa-4-azaspiro[4.5]decan-4-carbodithioat) (S13-6) der Firma Nitrokemia "Disulfoton" (O,O-Diethyl S-2-ethylthioethyl phosphordithioat) (S13-7), "Dietholate" (O,O-Diethyl-O-phenylphosphorothioat) (S13-8), "Mephenate" (4-Chlorphenyl-methylcarbamat) (S13-9). S14) Wirkstoffe, die neben einer herbiziden Wirkung gegen Schadpflanzen auch Safenerwirkung an Kulturpflanzen wie Reis aufweisen, wie z. B. "Dimepiperate" oder "MY-93" (S-1-Methyl-1-phenylethyl-piperidin-1-carbothioat), das als Safener für Reis gegen Schäden des Herbizids Molinate bekannt ist, "Daimuron" oder "SK 23" (1-(1-Methyl-1-phenylethyl)-3-p-tolyl-harnstoff), das als Safener für Reis gegen Schäden des Herbizids Imazosulfuron bekannt ist, "Cumyluron" = "JC-940" (3-(2-Chlorphenylmethyl)-1-(1-methyl-1-phenyl-ethyl)harnstoff, siehe JP-A-60087254), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "Methoxyphenon" oder "NK 049" (3,3'-Dimethyl-4-methoxy-benzophenon), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "CSB" (1-Brom-4-(chlormethylsulfonyl)benzol) von Kumiai, (CAS-Reg.Nr.54091-06-4), das als Safener gegen Schäden einiger Herbizide in Reis bekannt ist. S15) Verbindungen der Formel (S15) oder deren Tautomere,
Figure imgf000131_0001
wie sie in der WO-A-2008/131861 und WO-A-2008/131860 beschrieben sind, worin RH 1 einen (C1-C6)-Haloalkylrest bedeutet und RH 2 Wasserstoff oder Halogen bedeutet und RH 3, RH 4 unabhängig voneinander Wasserstoff, (C1-C16)-Alkyl, (C2-C16)-Alkenyl oder (C2-C16)-Alkinyl, wobei jeder der letztgenannten 3 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C4)-Alkylthio, (C1-C4)-Alkylamino, Di[(C1-C4)-alkyl]-amino, [(C1-C4)-Alkoxy]-carbonyl, [(C1-C4)- Haloalkoxy]-carbonyl, (C3-C6)-Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, oder (C3-C6)-Cycloalkyl, (C4-C6)-Cycloalkenyl, (C3-C6)-Cycloalkyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, oder (C4-C6)-Cycloalkenyl, das an einer Seite des Rings mit einem 4 bis 6- gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, wobei jeder der letztgenannten 4 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C1-C4)-Alkoxy, (C1-C4)- Haloalkoxy, (C1-C4)-Alkylthio, (C1-C4)-Alkylamino, Di[(C1-C4)-alkyl]-amino, [(C1-C4)- Alkoxy]-carbonyl, [(C1-C4)-Haloalkoxy]-carbonyl, (C3-C6)-Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, bedeutet oder RH 3 (C1-C4)-Alkoxy, (C2-C4)-Alkenyloxy, (C2-C6)-Alkinyloxy oder (C2-C4)-Haloalkoxy bedeutet und RH 4 Wasserstoff oder (C1-C4)-Alkyl bedeutet oder RH 3 und RH 4 zusammen mit dem direkt gebundenen N-Atom einen vier- bis achtgliedrigen heterocyclischen Ring, der neben dem N-Atom auch weitere Heteroringatome, vorzugsweise bis zu zwei weitere Heteroringatome aus der Gruppe N, O und S enthalten kann und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, (C1- C4)-Alkyl, (C1-C4)-Haloalkyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy und (C1-C4)-Alkylthio substituiert ist, bedeutet. S16) Wirkstoffe, die vorrangig als Herbizide eingesetzt werden, jedoch auch Safenerwirkung auf Kulturpflanzen aufweisen, z. B. (2,4-Dichlorphenoxy)essigsäure (2,4-D), (4-Chlorphenoxy)essigsäure, (R,S)-2-(4-Chlor-o-tolyloxy)propionsäure (Mecoprop), 4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB), (4-Chlor-o-tolyloxy)essigsäure (MCPA), 4-(4-Chlor-o-tolyloxy)buttersäure, 4-(4-Chlorphenoxy)buttersäure, 3,6-Dichlor-2-methoxybenzoesäure (Dicamba), 1-(Ethoxycarbonyl)ethyl-3,6-dichlor-2-methoxybenzoat (Lactidichlor-ethyl). Bevorzugte Safener in Kombination mit den erfindungsgemäßen Verbindungen der Formel (I) und/oder deren Salze, insbesondere mit den Verbindungen der Formeln (I.1-1) bis (I.48-500) und/oder deren Salze sind: Cloquintocet-mexyl, Cyprosulfamid, Fenchlorazol-ethylester, Isoxadifen-ethyl, Mefenpyr- diethyl, Fenclorim, Cumyluron, S4-1 und S4-5, und besonders bevorzugte Safener sind: Cloquintocet- mexyl, Cyprosulfamid, Isoxadifen-ethyl und Mefenpyr-diethyl. Biologische Beispiele: Die folgenden Abkürzungen werden für die in den folgenden Tabellen aufgeführten Kultur- und Schadpflanzen verwendet: ABUTH: Abutilon theophrasti ALOMY: Alopecurus myosuroides AMARE: Amaranthus retroflexus AVEFA: Avena Fatua BRSNS: Brassica napus DIGSA: Digitaria sanguinalis ECHCG: Echinochloa crus-galli GLXMA: Glycine max KCHSC: Kochia scoparia LOLRI: Lolium rigidum MATIN: Matricaria inodora ORYZA: Oryza sativa PHPBU : Pharbitis purpurea POLCO: Polygonum convolvulus SETVI: Setaria viridis VERPE: Veronica persica VIOTR: Viola tricolor TRZAS : Triticum aestivum ZEAMX: Zea mays A. Herbizide Wirkung im Nachauflauf Samen von mono- bzw. dikotylen Unkrautpflanzen wurden in Kunststoff- oder Holzfasertöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter kontrollierten Wachstumsbedingungen angezogen.2 bis 3 Wochen nach der Aussaat wurden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen wurden dann als wässrige Suspension bzw. Emulsion unter Zusatz von 0,5% Additiv mit einer Wasseraufwandmenge von umgerechnet 600 l/ha auf die grünen Pflanzenteile gesprüht. Nach ca.3 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wurde die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen. In den nachstehenden Tabellen A1 bis A13 sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß der Tabelle 1 auf verschiedene Schadpflanzen und einer Aufwandmenge entsprechend 20 g/ha und niedriger, die gemäß zuvor genannter Versuchsvorschrift erhalten wurden, dargestellt. Tabelle A1a: Nachauflaufwirkung bei 1,25 g/ha gegen ABUTH in %
Figure imgf000134_0001
Figure imgf000135_0001
Figure imgf000037_0001
The heterocycles listed above are preferably substituted, for example, by hydrogen, halogen, alkyl, haloalkyl, hydroxy, alkoxy, cycloalkoxy, aryloxy, alkoxyalkyl, alkoxyalkoxy, cycloalkyl, halocycloalkyl, aryl, arylalkyl, heteroaryl, heterocyclyl, alkenyl, alkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, Alkoxycarbonyl, Hydroxycarbonyl, Cycloalkoxycarbonyl, Cycloalkylalkoxycarbonyl, Alkoxycarbonylalkyl, Arylalkoxycarbonyl, Arylalkoxycarbonylalkyl, Alkynyl, Alkynylalkyl, Alkylalkynyl, Tris-alkylsilylalkynyl, Nitro, Amino, Cyano, Haloalkoxy, Haloalkylthio, Alkylthio, Hydrothio, Hydroxyalkyl, Oxo, Heteroarylalkoxy, Arylalkoxy, Heterocyclylalkoxy, Heterocyclylalkylthio, Heterocyclyloxy, heterocyclylthio, heteroaryloxy, bis-alkylamino, alkylamino, cycloalkylamino, hydroxycarbonylalkylamino, alkoxycarbonylalkylamino, arylalkoxycarbonylalkylamino, alkoxycarbonylalkyl(alkyl)amino, aminocarbonyl, alkylaminocarbonyl, bis-alkylaminocarbonyl, cycloalkylaminocarbonyl, hydroxycarbonylalkylaminocarbonyl, alkoxycarbonylalkylaminocarbonyl, arylalkoxycarbonylalkylaminocarbonyl. If a base is substituted "by one or more radicals" from a list of radicals (= group) or a generically defined group of radicals, this includes the simultaneous substitution by several identical and/or structurally different residues. If it is a partially or fully saturated nitrogen heterocycle, it can be linked to the rest of the molecule both via carbon and via the nitrogen. Suitable substituents for a substituted heterocyclic radical are the substituents mentioned below, as well as oxo and thioxo. The oxo group as a substituent on a ring C atom then means, for example, a carbonyl group in the heterocyclic ring. This preferably also includes lactones and lactams. The oxo group can also occur on the hetero ring atoms, which can exist in different oxidation states, e.g. with N and S, and then form, for example, the divalent groups N(O), S(O) (also short SO) and S(O)2 (also short SO2) in the heterocyclic ring. In the case of -N(O)- and -S(O)- groups both enantiomers are included. According to the invention, the term “heteroaryl” stands for heteroaromatic compounds, i. H. completely unsaturated aromatic heterocyclic compounds, preferably 5- to 7-membered rings having 1 to 4, preferably 1 or 2, identical or different heteroatoms, preferably O, S or N. Examples of heteroaryls according to the invention are 1H-pyrrol-1-yl; 1H-pyrrol-2-yl; 1H-pyrrol-3-yl; furan-2-yl; furan-3-yl; thien-2-yl; thien-3-yl, 1H-imidazol-1-yl; 1H-imidazol-2-yl; 1H-imidazol-4-yl; 1H-imidazol-5-yl; 1H-pyrazol-1-yl; 1H-pyrazol-3-yl; 1H-pyrazol-4-yl; 1H-pyrazol-5-yl, 1H-1,2,3-triazol-1-yl, 1H-1,2,3-triazol-4-yl, 1H-1,2,3-triazol-5-yl, 2H-1,2,3-triazol-2-yl, 2H-1,2,3-triazol-4-yl, 1H-1,2,4-triazol-1-yl, 1H-1,2,4- triazol-3-yl, 4H-1,2,4-triazol-4-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,3,4- oxadiazol-2-yl, 1,2,3-oxadiazol-4-yl, 1,2,3-oxadiazol-5-yl, 1,2,5-oxadiazol-3-yl, azepinyl, pyridin-2-yl, Pyridin-3-yl, Pyridin-4-yl, Pyrazin-2-yl, Pyrazin-3-yl, Pyrimidin-2-yl, Pyrimidin-4-yl, Pyrimidin-5-yl, Pyridazin-3-yl, Pyridazin- 4-yl, 1,3,5-triazin-2-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-6- yl, 1,2,3-triazin-4-yl, 1,2,3-triazin-5-yl, 1,2,4-, 1,3,2-, 1,3,6- and 1,2 ,6-oxazinyl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, 1,3-oxazol-2-yl, 1,3-oxazol-4-yl, 1,3-oxazol-5 -yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,3-thiazol-2-yl, 1,3-thiazol-4-yl, 1,3-thiazol-5-yl , oxepinyl, thiepinyl, 1,2,4-triazolonyl and 1,2,4-diazepinyl, 2H-1,2,3,4-tetrazol-5-yl, 1H-1,2,3,4-tetrazol-5 -yl, 1,2,3,4-oxatriazol-5-yl, 1,2,3,4-thiatriazol-5-yl, 1,2,3,5-oxatriazol-4-yl, 1,2,3 ,5-thiatriazol-4-yl. The heteroaryl groups according to the invention can also be substituted with one or more identical or different radicals. If two adjacent carbon atoms are part of another aromatic ring, these are fused heteroaromatic systems, such as benzo-fused or multiply fused heteroaromatics. Preferred are, for example, quinolines (e.g. quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-5-yl, quinolin-6-yl, quinolin-7-yl, quinolin-8-yl ); isoquinolines (e.g. isoquinolin-1-yl, isoquinolin-3-yl, isoquinolin-4-yl, isoquinolin-5-yl, isoquinolin-6-yl, isoquinolin-7-yl, isoquinolin-8-yl); quinoxaline; quinazoline; cinnoline; 1,5-naphthyridine; 1,6-naphthyridine; 1,7-naphthyridine; 1,8-naphthyridine; 2,6-naphthyridine; 2,7-naphthyridine; phthalazine; pyridopyrazines; pyridopyrimidines; pyridopyridazines; pteridines; pyrimidopyrimidines. Examples of heteroaryl are also 5- or 6-membered benzo-fused rings from the group 1H-indol-1-yl, 1H-indol-2-yl, 1H-indol-3-yl, 1H-indol-4-yl, 1H- Indol-5-yl, 1H-indol-6-yl, 1H-indol-7-yl, 1-benzofuran-2-yl, 1-benzofuran-3-yl, 1-benzofuran-4-yl, 1-benzofuran- 5-yl, 1-benzofuran-6-yl, 1-benzofuran-7-yl, 1-benzothiophen-2-yl, 1-benzothiophen-3-yl, 1-benzothiophen-4-yl, 1-benzothiophen-5- yl, 1-benzothiophen-6-yl, 1-benzothiophen-7-yl, 1H-indazol-1-yl, 1H-indazol-3-yl, 1H-indazol-4-yl, 1H-indazol-5-yl, 1H-indazol-6-yl, 1H-indazol-7-yl, 2H-indazol-2-yl, 2H-indazol-3-yl, 2H-indazol-4-yl, 2H-indazol-5-yl, 2H- Indazol-6-yl, 2H-Indazol-7-yl, 2H-Isoindol-2-yl, 2H-Isoindol-1-yl, 2H-Isoindol-3-yl, 2H-Isoindol-4-yl, 2H-Isoindol- 5-yl, 2H -isoindol-6-yl; 2H-Isoindol-7-yl, 1H-Benzimidazol-1-yl, 1H-Benzimidazol-2-yl, 1H-Benzimidazol-4-yl, 1H-Benzimidazol-5-yl, 1H-Benzimidazol-6-yl, 1H- Benzimidazol-7-yl, 1,3-Benzoxazol-2-yl, 1,3-Benzoxazol-4-yl, 1,3-Benzoxazol-5-yl, 1,3-Benzoxazol-6-yl, 1,3- Benzoxazol-7-yl, 1,3-Benzthiazol-2-yl, 1,3-Benzthiazol-4-yl, 1,3-Benzthiazol-5-yl, 1,3-Benzthiazol-6-yl, 1,3- Benzthiazol-7-yl, 1,2-Benzisoxazol-3-yl, 1,2-Benzisoxazol-4-yl, 1,2-Benzisoxazol-5-yl, 1,2-Benzisoxazol-6-yl, 1,2- Benzisoxazol-7-yl, 1,2-Benzisothiazol-3-yl, 1,2-Benzisothiazol-4-yl, 1,2-Benzisothiazol-5-yl, 1,2-Benzisothiazol-6-yl, 1,2- Benzisothiazol-7-yl. The term "halogen" means, for example, fluorine, chlorine, bromine or iodine. When the term is used for a radical, "halo" means, for example, fluoro, chloro, bromo or iodo. According to the invention, “alkyl” means a straight-chain or branched, open-chain, saturated hydrocarbon radical which is optionally mono- or polysubstituted and, in the latter case, is referred to as “substituted alkyl”. Preferred substituents are halogen atoms, alkoxy, haloalkoxy, cyano, alkylthio, haloalkylthio, amino or nitro groups, particularly preferred are methoxy, methyl, fluoroalkyl, cyano, nitro, fluorine, chlorine, bromine or iodine. The prefix "bis" also includes the combination of different alkyl radicals, e.g. methyl(ethyl) or ethyl(methyl). "Haloalkyl", "-alkenyl" and "alkynyl" mean alkyl, alkenyl or alkynyl, e.g. B.CH2 CH2Cl, CH2CH2Br, CHClCH3, CH2Cl, CH2F; perhaloalkyl such as e.g. B.CCl3, CCIF2, CFCl2, CF2CCIF2, CF2CCIFCF3; polyhaloalkyl such as e.g. B.CH2CHFCl, CF2CCFH, CF2CBrFH, CH2CF3; The term “perhaloalkyl” also includes the term “perfluoroalkyl”. "Partially fluorinated alkyl" means a straight-chain or branched, saturated hydrocarbon which is mono- or poly-substituted by fluorine, where the corresponding fluorine atoms are as Substituents may be on one or more different carbon atoms of the straight or branched hydrocarbon chain, such as. B.CHFCH3, CH2CH2F, CH2CH2CF3, CHF2, CH2F, CHFCF2CF3. "Partially fluorinated haloalkyl" means a straight-chain or branched, saturated hydrocarbon substituted by various halogen atoms having at least one fluorine atom, with all other optionally present halogen atoms being selected from the group consisting of fluorine, chlorine or bromine, iodine. The corresponding halogen atoms can be present as substituents on one or more different carbon atoms of the straight-chain or branched hydrocarbon chain. Partially fluorinated haloalkyl also includes full substitution of the straight or branched chain with halogen involving at least one fluorine atom. For example, "haloalkoxy" is OCF3, OCHF2, OH2F, OCF2CF3, OH2CF3 and OCH2CH2Cl; The same applies to haloalkenyl and other radicals substituted by halogen. The expression "(C1-C4)-Alkyl" means an abbreviation for straight-chain or branched alkyl with one to 4 carbon atoms corresponding to the range specified for carbon atoms, i.e. includes the radicals methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2 -methylpropyl or tert-butyl. General alkyl radicals with a larger specified range of carbon atoms, e.g. "(C1-C6)-Alkyl" accordingly also include straight-chain or branched alkyl radicals with a larger number of carbon atoms, i.e. according to the example also the alkyl radicals with 5 and 6 carbon atoms. Unless specifically stated, the hydrocarbon radicals such as alkyl, alkenyl and alkynyl radicals, also in compound radicals, which preferably have lower carbon structures, for example with 1 to 6 carbon atoms or, in the case of unsaturated groups, with 2 to 6 carbon atoms e.g., methyl, ethyl, n- or i-propyl, n-, i-, t- or 2-butyl, pentyls, hexyls such as n-hexyl, i-hexyl and 1,3-dimethylbutyl, heptyls such as n-heptyl , 1-methylhexyl and 1,4-dimethylpentyl; alkenyl and alkynyl radicals have the meaning of the possible unsaturated radicals corresponding to the alkyl radicals, where at least one double bond or triple bond is present. Preference is given to radicals having a double bond or triple bond. The term "alkenyl “Includes in particular straight-chain or branched open-chain hydrocarbon radicals with more than one double bond, such as 1,3-butadienyl and 1,4-pentadienyl, but also allenyl or cumulenyl radicals with one or more cumulative double bonds, such as for example allenyl (1,2-propadienyl), 1,2-butadienyl and 1,2,3-pentatrienyl. Alkenyl means, for example, vinyl, which can optionally be substituted by further alkyl radicals, for example (but not limited to) (C2-C6)-alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl- 2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1- butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1-ethyl-2-propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-1-pentenyl, 2-methyl-1-pentenyl, 3-methyl-1-pentenyl, 4-methyl-1-pentenyl, 1- Methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl, 3-methyl- 3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1,1-dimethyl 2-butenyl, 1,1-dimethyl-3-butenyl, 1,2-dimethyl-1-butenyl, 1,2-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1,3-dimethyl- 1-butenyl, 1,3-dimethyl-2-butenyl, 1,3-dimethyl-3-butenyl, 2,2-dimethyl-3-butenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl- 2-butenyl, 2,3-dimethyl-3-butenyl, 3,3-dimethyl-1-butenyl, 3,3-dimethyl-2-butenyl, 1-ethyl-1-butenyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 2-ethyl-1-butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1,1,2-trimethyl-2-propenyl, 1-ethyl-1- methyl-2-propenyl, 1-ethyl-2-methyl-1-propenyl and 1-ethyl-2-methyl-2-propenyl. The term "alkynyl" also includes in particular straight-chain or branched open-chain hydrocarbon radicals with more than one triple bond or with one or more triple bonds and one or more double bonds, such as 1,3-butatrienyl or 3-pentene-1-in-1 -yl. (C2-C6)-Alkynyl means, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl , 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 3-methyl-1-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl , 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 1-methyl-4-pentynyl, 2-methyl-3 -pentynyl, 2-methyl-4-pentynyl, 3-methyl-1-pentynyl, 3-methyl-4-pentynyl, 4-methyl-1-pentynyl, 4-methyl-2-pentynyl, 1,1-dimethyl -2-butynyl, 1,1-dimethyl-3-butynyl, 1,2-dimethyl-3-butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1-butynyl, 1-ethyl-2 -butynyl, 1-ethyl-3-butynyl, 2-ethyl-3-butynyl and 1-ethyl-1-methyl-2-propynyl. The term "cycloalkyl" means a carbocyclic, saturated ring system preferably having 3-8 ring carbon atoms, e.g. cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, which is optionally further substituted, preferably by hydrogen, alkyl, alkoxy, cyano, nitro, alkylthio , haloalkylthio, halogen, alkenyl, alkynyl, haloalkyl, amino, alkylamino, bisalkylamino, alcocycarbonyl, hydroxycarbonyl, arylalkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, cycloalkylaminocarbonyl. In the case of optionally substituted cycloalkyl, cyclic Systems with substituents, with substituents having a double bond on the cycloalkyl radical, e.g. an alkylidene group such as methylidene. In the case of optionally substituted cycloalkyl, polycyclic aliphatic systems are also included, such as bicyclo[1.1.0]butan-1-yl, bicyclo[1.1.0]butan-2-yl, bicyclo[2.1.0]pentan-1-yl , bicyclo[1.1.1]pentan-1-yl, bicyclo[2.1.0]pentan-2-yl, bicyclo[2.1.0]pentan-5-yl, bicyclo[2.1.1]hexyl, bicyclo[2.2.1 ]hept-2-yl, bicyclo[2.2.2]octan-2-yl, bicyclo[3.2.1]octan-2-yl, bicyclo[3.2.2]nonan-2-yl, adamantan-1-yl and adamantane -2-yl, but also systems such. B. 1,1'-Bi(cyclopropyl)-1-yl, 1,1'-Bi(cyclopropyl)-2-yl. The expression "(C3-C7)-Cycloalkyl" means an abbreviation for cycloalkyl with three to 7 carbon atoms, corresponding to the range specified for carbon atoms. In the case of substituted cycloalkyl, spirocyclic aliphatic systems are also included, such as spiro[2.2]pent-1-yl, spiro[2.3] hex-1-yl, spiro[2.3]hex-4-yl, 3-spiro[2.3]hex-5-yl, spiro[3.3]hept-1-yl, spiro[3.3]hept-2-yl "means a carbocyclic, non-aromatic, partially unsaturated ring system preferably having 4-8 carbon atoms, e.g. 1-cyclobutenyl, 2-cyclobutenyl, 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, or 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, 1,3-cyclohexadienyl or 1,4-cyclohexadienyl, which also includes substituents with a double bond on the cycloalkenyl radical, eg an alkylidene group such as methylidene In the case of optionally substituted cycloalkenyl, the explanations for substituted cycloalkyl apply accordingly . The term "alkylidene", e.g. also in the form (C1-C10)-Alkylidene means the radical of a straight-chain or branched open-chain hydrocarbon radical which is bonded via a double bond. Of course, only positions on the skeleton where two H atoms can be replaced by the double bond can be considered as binding sites for alkylidene; leftovers are e.g. e.g. =CH2, =CH-CH3, =C(CH3)-CH3, =C(CH3)-C2H5 or =C(C2H5)-C2H5. Cycloalkylidene means a carbocyclic radical bonded via a double bond. "Cycloalkylalkyloxy" means an oxygen-bonded cycloalkylalkyl radical and "arylalkyloxy" means an oxygen-bonded arylalkyl radical. "Alkoxyalkyl" means an alkoxy radical bonded through an alkyl group and "alkoxyalkoxy" means an alkoxyalkyl radical bonded through an oxygen atom, such as (but not limited to) methoxymethoxy, methoxyethoxy, ethoxyethoxy, methoxy-n-propyloxy. “Alkylthioalkyl” means an alkylthio radical bonded through an alkyl group and “alkylthioalkylthio” means an alkylthioalkyl radical bonded through an oxygen atom. “Arylalkoxyalkyl” means an aryloxy radical bonded through an alkyl group and “heteroaryloxyalkyl” means a heteroaryloxy radical bonded through an alkyl group. "Haloalkoxyalkyl" means a linked haloalkoxy radical and "haloalkylthioalkyl" means a haloalkylthio radical linked through an alkyl group. “Arylalkyl” means an aryl radical bonded through an alkyl group, “heteroarylalkyl” means a heteroaryl radical bonded through an alkyl group, and “heterocyclylalkyl” means a heterocyclyl radical bonded through an alkyl group. "Cycloalkylalkyl" represents a cycloalkyl radical bonded via an alkyl group, e.g. B. (but not limited to) cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, 1-cyclopropyleth-1-yl, 2-cyclopropyleth-1-yl, 1-cyclopropylprop-1-yl, 3-cyclopropylprop-1-yl. "Arylalkenyl" means an aryl radical bonded through an alkenyl group, "heteroarylalkenyl" means a heteroaryl radical bonded through an alkenyl group, and "heterocyclylalkenyl" means a heterocyclyl radical bonded through an alkenyl group. "Arylalkynyl" means an aryl radical bonded through an alkynyl group, "heteroarylalkynyl" means a heteroaryl radical bonded through an alkynyl group, and "heterocyclylalkynyl" means a heterocyclyl radical bonded through an alkynyl group. According to the invention, “haloalkylthio”—on its own or as part of a chemical group—is straight-chain or branched S-haloalkyl, preferably having 1 to 8 or 1 to 6 carbon atoms, such as (C1-C8th)-, (C1-C6)- or (C1-C4)-haloalkylthio such as (but not limited to) trifluoromethylthio, pentafluoroethylthio, difluoromethyl, 2,2-difluoroeth-1-ylthio, 2,2,2-difluoroeth-1-ylthio, 3,3,3-prop-1-ylthio . "Halocycloalkyl" and "halocycloalkenyl" denote identical or different halogen atoms, such as e.g. B. F, Cl and Br, or by haloalkyl, such as. B. trifluoromethyl or difluoromethyl partially or fully substituted cycloalkyl or cycloalkenyl, e.g. 1-fluorocycloprop-1-yl, 2-fluorocycloprop-1-yl, 2,2-difluorocycloprop-1-yl, 1-fluorocyclobut-1-yl, trifluoromethylcycloprop-1-yl, 2-trifluoromethylcycloprop-1-yl, 1-chlorocycloprop-1-yl, 2-chlorocycloprop-1-yl, 2,2-dichlorocycloprop-1-yl, 3,3-difluorocyclobutyl, According to the invention, “trialkylsilyl”—on its own or as part of a chemical group—is straight-chain or branched Si-alkyl, preferably with 1 to 8, or with 1 to 6 Carbon atoms such as tri-[(C1-C8th)-, (C1-C6)- or (C1-C4)-alkyl]silyl, such as (but not limited to) trimethylsilyl, triethylsilyl, tri-(n-propyl)silyl, tri-(iso-propyl)silyl, tri-(n-butyl)silyl, tri-(1-methylprop -1-yl)silyl, tri(2-methylprop-1-yl)silyl, tri(1,1-dimethyleth-1-yl)silyl, tri(2,2-dimethyleth-1-yl)silyl. "Trialkylsilylalkynyl" represents a trialkylsilyl radical bonded through an alkynyl group. If the compounds can form tautomers by hydrogen shift, which would not be formally covered by the formula (I) structurally, these tautomers are nevertheless included in the definition of the compounds of the formula (I) according to the invention, unless a specific tautomer is the subject of consideration. For example, many carbonyl compounds can exist in both the keto form and the enol form, both forms being encompassed by the definition of the compound of formula (I). Depending on the type and linkage of the substituents, the compounds of the general formula (I) can be present as stereoisomers. The possible stereoisomers defined by their specific spatial form, such as enantiomers, diastereomers, Z and E isomers are all encompassed by the formula (I). If, for example, one or more alkenyl groups are present, diastereomers (Z and E isomers) can occur. For example, if one or more asymmetric carbon atoms are present, enantiomers and diastereomers can occur. Stereoisomers can be obtained from the mixtures obtained in the preparation by customary separation methods. The chromatographic separation can be carried out both on an analytical scale to determine the enantiomeric excess or diastereomeric excess and on a preparative scale to produce test specimens for biological testing. Likewise, stereoisomers can be prepared selectively by using stereoselective reactions using optically active starting materials and/or auxiliaries. The invention thus also relates to all stereoisomers which are covered by the general formula (I) but are not specified with their specific stereo form, and mixtures thereof. If the compounds are obtained as solids, they can also be purified by recrystallization or digestion. If individual compounds (I) are not satisfactorily accessible by the routes described below, they can be prepared by derivatizing other compounds (I). Suitable methods for isolating, purifying and separating stereoisomers of compounds of the general formula (I) are methods which are generally known to the person skilled in the art from analogous cases, e.g. by physical methods such as crystallization, chromatographic methods, especially column chromatography and HPLC (high pressure liquid chromatography), distillation , optionally under reduced pressure, extraction and other methods, can optionally remaining mixtures are usually separated by chromatographic separation, e.g. on chiral solid phases. For preparative amounts or on an industrial scale, processes such as crystallization, e.g. Synthesis of substituted N-benzoic acid uracils of the general formula (I): The substituted N-benzoic acid uracils of the general formula (I) according to the invention can be prepared starting from known processes. The synthetic routes used and investigated are based on commercially available or easily manufacturable synthetic building blocks. The groupings G, Q, R1, R2, R3, R4, R5, R6, R7, R8th, R9, R10, R11, R12, R13 R14, R15, R16 and R17 of the general formula (I) have the previously defined meanings in the schemes below, unless they are defined by way of example but not by way of limitation. The synthesis of the compounds of general formula (I) proceeds as described in Scheme 1 below. Starting from 2-bromo-4-fluorobenzoic acid or 2-iodo-4-fluorobenzoic acid, the corresponding nitrated benzoic acid (II) is obtained using nitrating acid (cf. Medicinal Chemistry Letters (2016), 7(12), 1077-1081) . Subsequent esterification of the nitrated benzoic acid (II) with a suitable alpha-hydroxy-carboxylic acid allyl ester (III), shown here as a commercially available allyl 2-hydroxy-2-methylpropanoate by way of example but without limitation, gives the adequately substituted nitrobenzoic acid ester (IV) . The esterification can, as shown in Scheme 1 by way of example but not limitation, take place via transformation into the acid chloride using thionyl chloride, using a suitable polar-aprotic solvent (e.g. dichloromethane (DCM), chloroform, N,N-dimethylacetamide (DMA) or N ,N-dimethylformamide (DMF)) is used. Alternatively, the nitrobenzoic acid esters (IV) can be converted by means of suitable coupling reagents (e.g. HOBt = 1-hydroxybenzotriazole, EDC = 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, HATU = O-(7-azabenzotriazol-1-yl) -N,N,N',N'-tetramethyluronium hexafluorophosphate, T3P = 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide) and suitable bases (e.g. diisopropylethylamine, triethylamine) in a suitable polar-aprotic solvent (e.g. dichloromethane, chloroform). Subsequent reduction of the nitro group provides the corresponding 3-aminobenzoic acid ester (V). The reduction is carried out using a suitable reducing agent (e.g. hydrogen, palladium on carbon in a suitable polar-protic solvent) or, as shown in scheme 1 by way of example, using iron powder in acetic acid. The 2-(dimethylamino)-4-(haloalkyl)-6H-1,3-oxazin-6-ones of type (VII) are synthesized in a two-stage synthesis sequence (as described in WO2000/049002 A1) starting from the corresponding aminoacrylic acid esters , e.g. B. Ethyl (2Z)-3-amino-4,4,4-trifluorobut-2-enoate (cf. Journal of Fluorine Chemistry (2016), 181, 1-6), by reaction with dimethylcarbamoyl chloride in N,N- dimethylformamide (DMF) using a suitable base (e.g. sodium hydride or potassium tert-butylate) and subsequent cyclization to the oxazin-6-one (VII) using phosphorus pentachloride and phosphorus oxychloride. Subsequent condensation reaction of the 3-aminobenzoic acid ester (V) with the resulting oxazin-6-one (VII) using acetic acid as a solvent at a suitable temperature affords the uracil (VIII) which is converted to the N-alkyl by subsequent N-alkylation N'-Benzoic acid uracil (Ia) can be converted, shown here as an example but not limiting as N-methylation. The alkylation is carried out using a suitable base (e.g. sodium hydride, potassium tert-butoxide or potassium carbonate) in a suitable polar aprotic solvent (e.g. dichloromethane, chloroform, N,N-dimethylacetamide or N, N-dimethylformamide). The selective ester cleavage of the terminal allyl ester group of the N-alkyl-N'-benzoic acid uracil (Ia) succeeds using phenylsilane in the presence of a suitable Pd catalyst, e.g. tetrakis(triphenylphosphine)palladium(0) in dichloromethane and gives the N-alkyl-N ´-Benzoic acid uracils (Ib) in the form of the carboxylic acid. This can then be converted to a wide variety of ester variants of the N-alkyl-N'-benzoic acid uracil (Ic) by esterification with a suitable alcohol R—OH.
Figure imgf000046_0001
Scheme 1 The esterification can, as shown in Scheme 1 by way of example but without limitation, be carried out with the mediation of suitable coupling reagents (e.g. HOBt=1-hydroxybenzotriazole, EDC=1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, HATU=O- (7-Azabenzotriazol-1-yl)-N,N,N′,N′- tetramethyluronium hexafluorophosphate, T3P = 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2, 4,6-trioxide) and suitable bases (e.g. diisopropylethylamine, triethylamine) in a suitable polar aprotic solvent (e.g. dichloromethane, chloroform). Alternatively, the esterification can be carried out via transformation into the acid chloride using thionyl chloride and subsequent reaction with the alcohol R-OH, using a suitable polar aprotic solvent (e.g. dichloromethane (DCM), chloroform, N,N-dimethylacetamide (DMA) or N ,N-dimethylformamide (DMF)) is used. The N-amino-N'-benzoic acid uracil (Id) is synthesized by N-amination starting from the uracil (VIII) described above, as shown in Scheme 2 below. The N-amination is carried out using a suitable aminating agent (e.g. O-(mesitylsulfonyl)-hydroxylamine, O-(tolylsulfonyl)-hydroxylamine, O-(diphenylphosphoryl)-hydroxylamine) using a suitable base (e.g. sodium hydride, potassium tert -butoxide or potassium carbonate) in a suitable polar-aprotic solvent (e.g. dichloromethane, chloroform, N,N-dimethylacetamide or N,N-dimethylformamide).
Figure imgf000047_0001
Scheme 2 The selective ester cleavage of the terminal allyl ester group of the N-amino-N´-benzoic acid uracil (Id) succeeds using phenylsilane in the presence of a suitable Pd catalyst, e.g. tetrakis(triphenylphosphine)palladium(0) in dichloromethane and gives the N-amino -N'-benzoic acid uracils (Ie) in the form of carboxylic acid. This can then by esterification with a suitable Alcohol R-OH to various ester variants of N-amino-N'-benzoic acid uracil (If) are converted. As shown by way of example but not limitation in Scheme 2, the esterification can be carried out by means of suitable coupling reagents (e.g. HOBt=1-hydroxybenzotriazole, EDC=1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, HATU=O-(7 -Azabenzotriazol-1-yl)-N,N,N′,N′- tetramethyluronium hexafluorophosphate, T3P = 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4, 6-trioxide) and suitable bases (e.g. diisopropylethylamine, triethylamine) in a suitable polar aprotic solvent (e.g. dichloromethane, chloroform). Alternatively, the esterification can be carried out via transformation into the acid chloride using thionyl chloride and subsequent reaction with the alcohol R-OH, using a suitable polar aprotic solvent (e.g. dichloromethane (DCM), chloroform, N,N-dimethylacetamide (DMA) or N ,N-dimethylformamide (DMF)) is used. Selected detailed synthesis examples for compounds of the general formula (I) according to the invention are listed below. The example numbers given correspond to the numbering given in Tables I.1 to I.48 below. The1H NMR,13C NMR and19F NMR spectroscopic data presented for the chemical examples described in the following sections (400 MHz at1H NMR and 150 MHz at13C NMR and 375 MHz at19F NMR, solvent CDCl3, cd3OD or d6-DMSO, internal standard: tetramethylsilane δ = 0.00 ppm) were obtained using a Bruker device, and the indicated signals have the following meanings: br = broad(es); s = singlet, d = doublet, t = triplet, dd = double doublet, ddd = doublet of a double doublet, m = multiplet, q = quartet, quint = quintet, sext = sextet, sept = septet, dq = double quartet, dt = double triplet. In the case of mixtures of diastereomers, either the significant signals of both diastereomers or the characteristic signal of the main diastereomer are given. The abbreviations used for chemical groups have, for example, the following meanings: Me=CH3, Et = CH2CH3, t-Hex = C(CH3)2CH(CH3)2, t-Bu = C(CH3)3, n-Bu = unbranched butyl, n-Pr = unbranched propyl, i-Pr = branched propyl, c-Pr = cyclopropyl, c-Hex = cyclohexyl. Synthesis Examples: No. I.1-176: 1-(Cyanomethoxy)-2-methyl-1-oxopropan-2-yl-2-bromo-4-fluoro-5-[3-methyl-2,6-dioxo-4 -(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]benzoate
Figure imgf000049_0001
2-Bromo-4-fluoro-5-nitrobenzoic acid (4000 mg, 15.15 mmol; preparation according to Medicinal Chemistry Letters (2016), 7(12), 1077-1081) is placed in 100 mL dichloromethane and treated with oxalyl chloride (2885 mg, 22.73 mmol) and catalytic amounts of N,N-dimethylformamide (0.3 mL). After stirring for 2 hours at 40 degrees Celsius, a clear reaction solution was obtained, which was then concentrated under reduced pressure. The acid chloride thus obtained was taken up in 10 mL of dichloromethane and added dropwise to a solution of allyl 2-hydroxy-2-methylpropanoate (4458 mg, 30.30 mmol), triethylamine (3066 mg, 30.30 mmol) and 4-dimethylaminoyridine (18.51 mg, 0.15 mmol ) was added dropwise to 100 mL dichloromethane. The reaction mixture was stirred for 2.5 hours, stood overnight and was stirred at room temperature for a further 5 hours. A mixture of water and 100 mL of 2N hydrochloric acid was then added to the reaction mixture. After the phases had separated, the organic phase was washed with sodium bicarbonate solution and, after renewed phase separation, dried and concentrated under reduced pressure. The crude product obtained was purified by column chromatography by 1-(allyloxy)-2-methyl-1-oxopropan-2-yl-2-bromo-4-fluoro-5-nitrobenzoate (3670 mg, purity: 95%, 59% of Theory) received and implemented in the next stage. The 1-(allyloxy)-2-methyl-1-oxopropan-2-yl-2-bromo-4-fluoro-5-nitrobenzoate (4000 mg, 10.25 mmol) that was accessible in this way was placed in 40 mL of glacial acetic acid and treated with iron powder (7443 mg, 133.3 mmol) added. The reaction mixture was heated to 40 degrees Celsius and stirred for 2 hours. A mixture of water and dichloromethane was then added to the reaction mixture, and excess iron was removed using a magnet. After the phases had separated, the organic phase was washed with sodium bicarbonate solution and, after renewed phase separation, dried by filtration through a separator cartridge and concentrated under reduced pressure. By column chromatographic purification of the crude product obtained was 1- (allyloxy) -2-methyl-1- oxopropan-2-yl 5-amino-2-bromo-4-fluorobenzoate (2540 mg, purity: 98%, 67% of Theory) received and implemented in the next stage. The 1-(allyloxy)-2-methyl-1-oxopropan-2-yl 5-amino-2-bromo-4-fluorobenzoate thus obtained (1570 mg, 4.35 mmol) was combined with 2-(dimethylamino)-4- (trifluoromethyl)-6H-1,3-oxazin-6-one (1366 mg, 6.10 mmol; preparation according to WO2000/049002) in 87 mL acetic acid and stirred at 110 degrees Celsius for 3 h. After complete conversion, the reaction mixture was treated with water and then thoroughly extracted with dichloromethane. The combined organic phases were dried over sodium sulfate, filtered off and concentrated under reduced pressure. by column chromato- Graphic purification of the crude product obtained became 1-(allyloxy)-2-methyl-1-oxopropan-2-yl-2-bromo-5-[2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidine-1 (2H)-yl]-4-fluorobenzoate (1340 mg, purity: 99%, 58% of theory) in the form of a colorless solid. The 1-(allyloxy)-2-methyl-1-oxopropan-2-yl-2-bromo-5-[2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidine-1(2H) thus obtained -yl]-4-fluorobenzoate (1280 mg, 2.44 mmol) was dissolved in abs. Dissolved N,N-dimethylformamide (43 mL) and treated with potassium carbonate (1690 mg, 12.2 mol). Thereafter, a solution of methyl iodide (1736 mg, 12.2 mol) in abs. N,N-dimethylformamide (about 20 mL) was added and the resulting reaction mixture was stirred at room temperature for 2 h. After complete conversion, the reaction mixture was diluted with ethyl acetate and then treated with water and saturated sodium chloride solution and then thoroughly extracted with dichloromethane. The combined organic phases were dried over sodium sulfate, filtered off and concentrated under reduced pressure. The crude product obtained was purified by column chromatography to give 1-(allyloxy)-2-methyl-1-oxopropan-2-yl-2-bromo-4-fluoro-5-[3-methyl-2,6-dioxo-4-(trifluoromethyl )-3,6-dihydropyrimidin-1(2H)-yl]benzoate (1240 mg, purity: 97%, 91% of theory) in the form of a colorless oil, which crystallized after standing for a long time. The 1-(allyloxy)-2-methyl-1-oxopropan-2-yl-2-bromo-4-fluoro-5-[3-methyl-2,6-dioxo-4-(trifluoromethyl)-3 thus obtained, 6-dihydropyrimidin-1(2H)-yl]benzoate (1140 mg, 2.12 mmol) was dissolved in 5 mL dichloromethane under an argon atmosphere. At room temperature, phenylsilane (459 mg, 4.24 mmol) and subsequently tetrakis(triphenylphosphine)palladium(0) (122 mg, 0.10 mmol) were added. The reaction mixture was stirred at room temperature for about 1 hour. Complete conversion was detected by thin-layer chromatography, so that the reaction was subsequently quenched by adding 5 mL of water and made basic by adding sodium bicarbonate solution. After phase separation, the aqueous phase was acidified by adding 2N hydrochloric acid and then extracted several times with dichloromethane. The organic phase was dried using a separator cartridge and, after the organic phase had been collected, the solvent was removed in vacuo. The 2-({2-bromo-4-fluoro-5-[3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]benzoyl}oxy thus obtained )-2-methylpropanoic acid (970 mg, purity: 97%, 89% of theory) was reacted in the subsequent stage without further purification. To a solution of bromoacetonitrile (40.5 mg, 0.33 mmol) in 2 mL of acetone was added 2-({2-bromo-4-fluoro-5-[3-methyl-2,6-dioxo-4-(trifluoromethyl)-3 ,6-dihydropyrimidin-1(2H)-yl]benzoyl}oxy)-2-methylpropanoic acid (112 mg, 0.22 mmol) was added, then triethylamine (34 mg, 0.33 mmol) was added. The batch was stirred at RT for 3 h and left to stand at RT overnight. Subsequently, 5 mL of dichloromethane and 5 mL of water were added. The reaction mixture was separated from the aqueous phase using a separator cartridge and, after collecting the organic phase, the solvent was removed in vacuo. 1-(Cyanomethoxy)-2-methyl-1-oxopropan-2-yl-2-bromo-4- fluoro-5-[3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]benzoate (90 mg, purity: 98%, 73% of theory). . 1H NMR (CDCl3, ppm): 7.83 (d, 1H), 7.61 (d, 1H), 6.38 (s, 1H), 4.79 (s, 2H), 3.58 (s, 3H), 1.72 (s, 6H). No. I.4-1: 1-(2-Methoxyethoxy)-2-methyl-1-oxopropan-2-yl-5-[3-amino-4-(difluoromethyl)-2,6-dioxo-3,6 -dihydropyrimidin-1(2H)-yl]-2-bromo-4-fluorobenzoate
Figure imgf000051_0001
1-(Allyloxy)-2-methyl-1-oxopropan-2-yl-2-bromo-5-[2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl] -4-fluorobenzoate (1280 mg, 2.44 mmol) was dissolved in abs. Dissolved tetrahydrofuran (40 mL) and treated with sodium hydride (60%; 129 mg, 3.22 mmol). The suspension was then stirred at room temperature for 30 minutes, treated with O-(diphenylphosphoryl)hydroxylamine (888 mg, 3.81 mmol) and stirred at room temperature for a further 2 hours. Complete conversion was detected by thin-layer chromatography, so that the reaction was subsequently quenched by adding 5 mL of water. After phase separation, the aqueous phase was extracted several times with dichloromethane. The combined organic phases were dried using a separator cartridge and the solvent was removed in vacuo. The residue was purified by column chromatography (ethyl acetate/n-heptane gradient) and 1-(allyloxy)-2-methyl-1-oxopropan-2-yl-5-[3-amino-4-(difluoromethyl)-2,6-dioxo -3,6-dihydropyrimidin-1(2H)-yl]-2-bromo-4-fluorobenzoate as a colorless oil (1200 mg, purity: 90%, yield 71%), which slowly solidified as a wax. The 1-(allyloxy)-2-methyl-1-oxopropan-2-yl-5-[3-amino-4-(difluoromethyl)-2,6-dioxo-3,6-dihydropyrimidine-1(2H) thus obtained -yl]-2-bromo-4-fluorobenzoate (1045 mg, 2.01 mmol) was dissolved in 5 mL of dichloromethane under an argon atmosphere. At room temperature, phenylsilane (435 mg, 4.02 mmol) and subsequently tetrakis(triphenylphosphine)palladium(0) (116 mg, 0.10 mmol) were added. The reaction mixture was stirred at room temperature for about 1 hour. Complete conversion was detected by thin-layer chromatography, so that the reaction was subsequently quenched by adding 5 mL of water and adjusting to pH=10 by adding sodium bicarbonate solution. After phase separation, the aqueous phase was adjusted to pH=2 by adding 2N hydrochloric acid and then extracted several times with dichloromethane. The organic phase was dried using a separator cartridge and, after the organic phase had been collected, the solvent was removed in vacuo. The 2-({5-[3-amino-4-(difluoromethyl)-2,6-dioxo-3,6-dihydropyrimidine- 1(2H)-yl]-2-bromo-4-fluorobenzoyl}oxy)-2-methylpropanoic acid (820 mg, purity: 90%, 76% of theory) was reacted in the subsequent stage without further purification. To a solution of 3-methoxy-1-propanol (30 mg, 0.40 mmol) in 5 mL of dichloromethane was added 2-({5-[3-amino-4-(difluoromethyl)-2,6-dioxo-3,6- dihydropyrimidin-1(2H)-yl]-2-bromo-4-fluorobenzoyl}oxy)-2-methylpropanoic acid (147 mg, 0.31 mmol) was added followed by 1-hydroxy-1H-benzotriazole hydrate (61 mg, 0.40 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (31 mg, 0.16 mmol) and 4-dimethylaminopyridine (10 mol%). The batch was stirred at RT for 6 h, left to stand at RT overnight and the solvent was removed. The residue was purified by column chromatography (ethyl acetate/n-heptane gradient) and 1-(2-methoxyethoxy)-2-methyl-1-oxopropan-2-yl-5-[3-amino-4-(difluoromethyl)-2,6 -dioxo-3,6-dihydropyrimidin-1(2H)-yl]-2-bromo-4-fluorobenzoate as a colorless oil (83 mg, purity: 95%, 48% of theory) 1H NMR (CDCl3, ppm): 7.83 (d, 1H), 7.59 (d, 1H), 6.91 (t, 1H, CHF2), 6.18 (s, 1H), 4.57 (s, 2H), 4.31 (t, 2H), 3.58 (t, 2H), 3.31 (s, 3H), 1.70 (s, 6H). Entry I.6-491: 1-[(Isopropylideneamino)oxy]-2-methyl-1-oxopropan-2-yl-5-{3-amino-4-[chloro(difluoro)methyl]-2,6- dioxo-3,6-dihydropyrimidin-1(2H)-yl}-2-bromo-4-fluorobenzoate
Figure imgf000052_0001
To a solution of acetone oxime (28 mg, 0.38 mmol) in 4 mL of dichloromethane was added 2-[(5-{3-amino-4-[chloro(difluoro)methyl]-2,6-dioxo-3,6-dihydropyrimidine- 1(2H)-yl}-2-bromo-4-fluorobenzoyl)oxy]-2-methylpropanoic acid (150 mg, 0.29 mmol) was added followed by 1-hydroxy-1H-benzotriazole hydrate (58 mg, 0.38 mmol), 1- Added (3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (73 mg, 0.38 mmol) and 4-dimethylaminopyridine (10 mol%). The batch was stirred at RT for 5 h and left to stand at RT overnight. Subsequently quenched by adding 1 mL of water and stirring the reaction mixture. After phase separation, the organic phase was dried and then the solvent was removed in vacuo. The residue was purified by column chromatography (ethyl acetate/n-heptane gradient) and 1-[(isopropylideneamino)oxy]-2-methyl-1-oxopropan-2-yl-5-{3-amino-4-[chloro(difluoro)methyl ]-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl}-2-bromo-4-fluorobenzoate as a colorless oil (114 mg, purity: 95%, yield 65%).1H NMR (CDCl3, ppm): 7.88 (d, 1H), 7.61 (d, 1H), 6.22 (s, 1H), 4.57 (s, 2H), 2.05 (s, 3H), 1.95 (s, 3H), 1.72 (s, 6H). Entry I.31-481: 2-((4-Fluoro-2-iodo-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidine-1(2H)- yl)benzoyl)oxy)-2-methylpropanecarboxylic acid
Figure imgf000053_0001
Sulfuric acid (170 mL) was added to a solution of 4-fluoro-3-nitrobenzoic acid (85 g, 459.18 mmol) in MeOH (850 mL) cooled to a temperature of 0 °C. The resulting reaction mixture was stirred at a temperature of 70°C for 16 hours. The progress of the reaction was checked by thin-layer chromatography (30% EtOAc in petroleum ether (Rf: 0.7). After complete conversion, the reaction mixture was added to ice-water (1000 mL), the solid formed was filtered off with suction, washed with water (500 mL) and thoroughly under reduced pressure The crude product was then stirred with n-pentane (200 mL) for 30 min, filtered off and the resulting solid dried thoroughly colorless solid obtained 1H NMR (CDCl3, ppm): 8.76 (d, 1H), 8.34 (d, 1H), 7.41 (dd, 1H), 3.98 (s, 3H). To a solution of methyl 4-fluoro-3-nitrobenzoate (90 g, 529.41 mmol) in MeOH (850 mL) was added palladium on carbon (30 g, wet, 10%) and the mixture transferred to a suitable autoclave vessel. The reaction mixture was stirred at 200 psi pressure under a hydrogen atmosphere for 16 h. The progress of the reaction was checked by thin-layer chromatography after sampling (30% EtOAc in petroleum ether (Rf: 0.7). After complete conversion, the reaction mixture was filtered through Celite, washed with methanol (300 mL) and the filtrate was concentrated under reduced pressure. The crude product was then stirred with n-pentane (200 mL) for 30 min, filtered off and the resulting solid dried thoroughly to give methyl 3-amino-4-fluorobenzoate (69 g, 90% of theory) as a colorless solid.1H NMR (i.e6-DMSO, ppm): 7.44-7.41 (m, 1H), 7.16-7.07 (m, 2H), 5.60-5.40 (m, 2H), 3.80 (s, 3H). Methyl 3-amino-4-fluorobenzoate (60 g, 352.94 mmol) was dissolved in acetic acid (600 mL), and sodium periodate (75 g, 352.94 mmol) and sodium chloride (40 g, 705.88 mmol) were added. After stirring at room temperature for 5 min, a solution of potassium iodide (58.5 g, 352.94 mmol) in water (180 mL) was slowly added. The resulting reaction mixture was then stirred at room temperature for 24 hours, checking the progress of the reaction by thin layer chromatography (30% EtOAc in petroleum ether (Rf: 0.5). After the end of the reaction, water (1L) was added to the reaction mixture and it was extracted several times with ethyl acetate (2×1L). The combined organic phases were washed with saturated NaCl solution , dried over sodium sulfate, filtered off and concentrated in vacuo The resulting crude product was purified by column chromatography (silica gel 230-400, gradient 5-10% EtOAc/petroleum ether) and 5-amino-4-fluoro-2-iodobenzoic acid methyl ester (40 g, 38% of theory) was obtained as a tan solid.1H NMR (i.e6-DMSO, ppm): 7.58-7.55 (m, 1H), 7.24-7.22 (m, 1H), 5.65-5.55 (br.s, 2H), 3.79 (s, 3H). To a solution of methyl 5-amino-4-fluoro-2-iodobenzoate (35 g, 118.64 mmol) in AcOH (350 mL of 10 V) was added 2-(dimethylamino)-4-(trifluoromethyl)-6H-1,3-oxazine -6-one (37g, 177.96 mmol) and the resulting reaction mixture was stirred at a temperature of 110°C for 6 hours. After cooling to room temperature, the reaction mixture was poured into water (1L) and extracted thoroughly with ethyl acetate (3×500 mL). The combined organic phases were dried over sodium sulfate, filtered off and concentrated under reduced pressure. Purification of the resulting crude product by column chromatography (silica gel 100-200, gradient 20-30% EtOAc/petroleum ether) gave methyl 5-(2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidine-1(2H)- yl)-4-fluoro-2-iodobenzoate (40 g, 73% of theory) as a colorless solid. Methyl 5-(2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluoro-2-iodobenzoate (2.0 g, 4.36 mmol) was prepared in a 1:1 Dissolved a mixture of methanol (10 mL) and tetrahydrofuran (10 mL) and treated at room temperature with a solution of lithium hydroxide (550 mg, 13.09 mmol, as hydrate) in water (10 mL). The resulting reaction mixture was stirred at room temperature for 16 h, then concentrated under reduced pressure, treated with water (20 mL) and acidified with 1N HCl until pH 3-4. The reaction mixture was stirred at room temperature for 30 min and the precipitated solid was filtered off with suction. Thorough drying under reduced pressure gave 5-(2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluoro-2-iodobenzoic acid (1.5 g, 77% of Theory) obtained in the form of a pale brown solid.1H NMR (i.e6-DMSO, ppm): 13.54 (br.s, 1H, OH), 8.12-8.09 (m, 1H), 7.95-7.93 (m, 1H), 6.42 (s, 1H). 5-(2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluoro-2-iodobenzoic acid (36 g, 81.06 mmol) was dissolved in dichloromethane (1.4 L) dissolved and, after stirring for 5 min at room temperature, treated with DCC (33.39 g, 162.13 mmol), DMAP (19.80 g, 162.13 mmol) and triethylamine (11.3 mL, 81.06 mmol). After stirring at room temperature for a further 5 min, allyl 2-hydroxy-2-methylpropanoate (46.69 g, 8324.26 mmol) was added and the resulting reaction mixture was stirred at room temperature for a further 24 h. After the addition of water (1L) and stirring at room temperature for 10 min, the aqueous phase was thoroughly extracted several times with dichloromethane. The combined organic phases were dried over sodium sulfate, filtered and under reduced pressure. The pale brown 1-(allyloxy)-2-methyl-1-oxopropan-2-yl 5-(2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl) thus obtained -4-Fluoro-2-iodobenzoate (40 g, 86% of theory) was used in the following reaction steps without further purification. 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl 5-(2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluoro- 2-Iodobenzoate (20 g, 35.08 mmol) was dissolved in N,N-dimethylformamide (300 mL), cooled to 0 °C and finely powdered K2CO3 (24.2 g, 175.44 mmol) was added. After stirring at 0° C. for 10 minutes, methyl iodide (10.92 mL, 175.44 mmol) was added. The resulting reaction mixture was stirred at room temperature for 4 h, then added to ice-water (1.5 L) and stirred at room temperature for 30 minutes. After addition of ethyl acetate, it was thoroughly extracted several times with ethyl acetate. The combined organic phases were washed with sat. Washed NaCl solution, dried over sodium sulfate, filtered off and concentrated under reduced pressure. 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl 4-fluoro-2-iodo-5-( Obtained 3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)benzoate (15 g, 73%) as a pale tan solid.1H NMR (i.e6-DMSO, ppm): 8.20-8.17 (m, 1H), 7.94-7.92 (m, 1H), 6.60 (s, 1H), 5.92-5.86 (m, 1H), 5.36-5.30 (m, 1H), 5.24 -5.21 (m, 1H), 4.65-4.63 (d, 2H), 3.42 (s, 3H), 1.65 (s, 6H). 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl 4-fluoro-2-iodo-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidine- 1(2H)-yl)benzoate (6 g, 10.27 mmol) was then dissolved in degassed dichloromethane under argon, cooled to a temperature of approx. 10 °C and, after stirring for 10 min at 10 °C under argon, treated with phenylsilane (0.6 mL , 5.135 mmol) and Pd(PPh3)4 (297 mg, 0.257 mmol) were added. The resulting reaction mixture was then stirred at 10-20 °C for 4 h, then treated with water (100 mL) and then washed with sat. Sodium bicarbonate solution brought to a pH of about 8. After stirring at room temperature for 10 minutes, dichloromethane was added and, after phase separation, the aqueous phase was adjusted to a pH of 4-5 using 2N HCl and thoroughly extracted several times with dichloromethane. The combined organic phases were washed with sat. Washed NaCl solution, dried over sodium sulfate, filtered off and concentrated under reduced pressure. Purification of the resulting crude product by column chromatography gave 2-((4-fluoro-2-iodo-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl )benzoyl)oxy)-2-methylpropanecarboxylic acid (3.3 g, 59% of theory) in the form of a colorless solid.1H NMR (i.e6-DMSO, ppm): 13.09 (br.s, 1H, OH), 8.19-8.16 (m, 1H), 7.91-7.89 (m, 1H), 6.59 (s, 1H), 3.41 (s, 3H), 1.61 (s, 6H). Entry I.32-481: 2-((5-(3-amino-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluoro-2 - iodobenzoyl)oxy)-2-methylpropanecarboxylic acid
Figure imgf000056_0001
1-(Allyloxy)-2-methyl-1-oxopropan-2-yl 5-(2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluoro- 2-iodobenzoate (14 g, 24.60 mmol) was abs. Tetrahydrofuran (400 mL) dissolved, cooled to a temperature of 0 °C and NaH (60% in mineral oil, 1.11 g, 49.2 mmol) was carefully added in portions. After stirring at 0° C. for 30 minutes, O-diphenylphosphinylhydroxylamine (22.9 g, 98.41 mmol) was added in portions. Thereafter, the resulting reaction mixture was stirred at a temperature of 40° C. for 6 h and then treated with ice water (500 mL). After addition of ethyl acetate and a first extraction, the aqueous phase was extracted several times with ethyl acetate. The combined organic phases were washed with water, dried over sodium sulfate, filtered off and concentrated under reduced pressure. Purification of the resulting crude product by column chromatography gave 1-(allyloxy)-2-methyl-1-oxopropan-2-yl 5-(3-amino-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidine-1 (2H)-yl)-4-fluoro-2-iodobenzoate (7.0 g, 49% of theory) as a colorless solid. 1H NMR (i.e6-DMSO, ppm): 8.22-8.19 (m, 1H), 7.98-7.95 (m, 1H), 6.43 (s, 1H), 5.96-5.86 (m, 1H), 5.60 (s, 2H), 5.36-5.30 (m, 1H), 5.24-5.21 (m, 1H), 4.65-4.63 (d, 2H), 1.63 (s, 6H). 1-(Allyloxy)-2-methyl-1-oxopropan-2-yl 5-(3-amino-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)- 4-Fluoro-2-iodobenzoate (7.0 g, 11.96 mmol) was then dissolved in degassed dichloromethane (187 mL) under argon, cooled to a temperature of approx. 10 °C and, after 10 min stirring at 10 °C under argon, with phenylsilane (0.65 g, 5.98 mmol) and Pd(PPh3)4 (345 mg, 0.29 mmol) added. The resulting reaction mixture was then stirred at room temperature for 3 h, then treated with water (100 mL) and then washed with sat. Sodium bicarbonate solution brought to a pH of about 8. After stirring at room temperature for 10 minutes, dichloromethane was added and, after phase separation, the aqueous phase was adjusted to a pH of 4-5 using 2N HCl and thoroughly extracted several times with dichloromethane. The combined organic phases were washed with sat. Washed NaCl solution, dried over sodium sulfate, filtered off and concentrated under reduced pressure. 2-((5-(3-amino-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluoro-2- iodobenzoyl)oxy)-2-methylpropanecarboxylic acid (2.6 g, 40% of theory) in the form of a colorless solid. 1H NMR (i.e6-DMSO, ppm): 13.07 (br.s, 1H, OH), 8.20-8.17 (m, 1H), 7.94-7.92 (m, 1H), 6.41 (s, 1H), 5.59 (s, 2H), 1.61 (s, 6H). Entry I.32-176: 1-(Cyanomethoxy)-2-methyl-1-oxopropan-2-yl-2-bromo-4-fluoro-5-[3-amino-2,6-dioxo-4-( trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]benzoate
Figure imgf000057_0002
To a solution of 2-((5-(3-amino-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-4-fluoro-2-iodobenzoyl)oxy )-2-methylpropanecarboxylic acid (80 mg, 0.15 mmol) in abs. Dichloromethane (3 mL) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (37 mg, 0.19 mmol), 1-hydroxybenzotriazole (29 mg, 0.19 mmol) and 4-dimethylaminopyridine (2 mg) and stirred for 30 min stirred at room temperature. Then glyconitrile (0.03 mL, 0.26 mmol, 50% solution in water) and triethylamine (0.06 mL, 0.44 mmol) were added and the resulting reaction mixture was stirred at room temperature for 14 h. Subsequently, 5 mL of dichloromethane and 5 mL of water were added. The reaction mixture was separated from the aqueous phase using a separator cartridge and, after collecting the organic phase, the solvent was removed in vacuo. The crude product obtained was purified by column chromatography to give 1-(cyanomethoxy)-2-methyl-1-oxopropan-2-yl-2-bromo-4-fluoro-5-[3-amino-2,6-dioxo-4-(trifluoromethyl )-3,6-dihydropyrimidin-1(2H)-yl]benzoate (51 mg, 57% of theory) as a colorless solid. 1H NMR (CDCl3, ppm): 7.94 (d, 1H), 7.82 (d, 1H), 6.29 (s, 1H), 4.80 (s, 2H), 4.61 (s, 2H), 1.72 (s, 6H). The compounds mentioned below are obtained analogously to the preparation examples given above and recited at the appropriate point and taking into account the general information on the preparation of substituted N-benzoic acid uracils. In Table 1, when a structural element is defined by a structural formula containing a dashed line, this dashed line means that the group in question is linked to the rest of the molecule at this position. If in Table 1 a structural element is defined by a structural formula which contains an arrow, then the arrow stands for a bond of the respective group Q to the carbonyl group in the general formula (I).
Figure imgf000057_0001
Table I.1: Preferred compounds of the formula (I.1) are the compounds I.1-1 to I.1-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.1-1 to I.1-500 in Table I.1 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table 1:
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Table I.2: Preferred compounds of the formula (I.2) are the compounds I.2-1 to I.2-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.2-1 to I.2-500 in Table I.2 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000070_0002
Table I.3: Preferred compounds of the formula (I.3) are the compounds I.3-1 to I.3-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.3-1 to I.3-500 in Table I.3 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000070_0003
Table I.4: Preferred compounds of the formula (I.4) are the compounds I.4-1 to I.4-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.4-1 to I.4-500 in Table I.4 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000070_0004
Table I.5: Preferred compounds of the formula (I.5) are the compounds I.5-1 to I.5-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.5-1 to I.5-500 in Table I.5 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000071_0001
Table I.6: Preferred compounds of the formula (I.6) are the compounds I.6-1 to I.6-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.6-1 to I.6-500 in Table I.6 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000071_0002
Table I.7: Preferred compounds of the formula (I.7) are the compounds I.7-1 to I.7-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.7-1 to I.7-500 in Table I.7 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000071_0003
Table I.8: Preferred compounds of the formula (I.8) are the compounds I.8-1 to I.8-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.8-1 to I.8-500 in Table I.8 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000072_0001
Table I.9: Preferred compounds of the formula (I.9) are the compounds I.9-1 to I.9-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.9-1 to I.9-500 in Table I.9 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000072_0002
Table I.10: Preferred compounds of the formula (I.10) are the compounds I.10-1 to I.10-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.10-1 to I.10-500 in Table I.10 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000072_0003
Table I.11: Preferred compounds of the formula (I.11) are the compounds I.11-1 to I.11-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.11-1 to I.11-500 in Table I.11 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000072_0004
Table I.12: Preferred compounds of the formula (I.12) are the compounds I.12-1 to I.12-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.12-1 to I.12-500 in Table I.12 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000073_0001
Table I.13: Preferred compounds of the formula (I.13) are the compounds I.13-1 to I.13-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.13-1 to I.13-500 in Table I.13 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000073_0002
Table I.14: Preferred compounds of the formula (I.14) are the compounds I.14-1 to I.14-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.14-1 to I.14-500 in Table I.14 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000073_0003
Table I.15: Preferred compounds of the formula (I.15) are the compounds I.15-1 to I.15-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.15.-1 to I.15-500 in Table I.15 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.16: Preferred compounds of the formula (I.16) are the compounds I.16-1 to I.16-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.16-1 to I.16-500 in Table I.16 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000074_0001
Table I.17: Preferred compounds of the formula (I.17) are the compounds I.17-1 to I.17-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.17-1 to I.17-500 in Table I.17 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.18: Preferred compounds of the formula (I.18) are the compounds I.18-1 to I.18-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.18-1 to I.18-500 in Table I.18 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.19: Preferred compounds of the formula (I.19) are the compounds I.19-1 to I.19-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.19-1 to I.19-500 in Table I.19 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.20: Preferred compounds of the formula (I.20) are the compounds I.20-1 to I.20-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.20-1 to I.20-500 in Table I.20 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.21: Preferred compounds of the formula (I.21) are the compounds I.21-1 to I.21-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.21-1 to I.21-500 in Table I.21 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.22: Preferred compounds of the formula (I.22) are the compounds I.22-1 to I.22-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.22-1 to I.22-500 in Table I.22 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000076_0001
Table I.23: Preferred compounds of the formula (I.23) are the compounds I.23-1 to I.23-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.23-1 to I.23-500 in Table I.23 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000076_0002
Table I.24: Preferred compounds of the formula (I.24) are the compounds I.24-1 to I.24-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.24-1 to I.24-500 in Table I.24 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.25: Preferred compounds of the formula (I.25) are the compounds I.25-1 to I.25-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.25-1 to I.25-500 in Table I.25 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000076_0003
Table I.26: Preferred compounds of the formula (I.26) are the compounds I.26-1 to I.26-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.26-1 to I.26-500 in Table I.26 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000077_0001
Table I.27: Preferred compounds of the formula (I.27) are the compounds I.27-1 to I.27-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.27.-1 to I.27-500 in Table I.27 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000077_0002
Table I.28: Preferred compounds of the formula (I.28) are the compounds I.28-1 to I.28-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.28-1 to I.28-500 in Table I.28 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.29: Preferred compounds of the formula (I.29) are the compounds I.29-1 to I.29-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.29-1 to I.29-500 in Table I.29 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.30: Preferred compounds of the formula (I.30) are the compounds I.30-1 to I.30-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.30-1 to I.30-500 in Table I.30 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000078_0001
Table I.31: Preferred compounds of the formula (I.31) are the compounds I.31-1 to I.31-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.31-1 to I.31-500 in Table I.31 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.32: Preferred compounds of the formula (I.32) are the compounds I.32-1 to I.32-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.32-1 to I.32-500 in Table I.32 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.33: Preferred compounds of the formula (I.33) are the compounds I.33-1 to I.33-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.33-1 to I.33-500 in Table I.33 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.34: Preferred compounds of the formula (I.34) are the compounds I.34-1 to I.34-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.34-1 to I.34-500 in Table I.34 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.35: Preferred compounds of the formula (I.35) are the compounds I.35-1 to I.35-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.35-1 to I.35-500 in Table I.35 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000079_0001
Table I.36: Preferred compounds of the formula (I.36) are the compounds I.36-1 to I.36-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.36-1 to I.36-500 in Table I.36 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.37: Preferred compounds of the formula (I.37) are the compounds I.37-1 to I.37-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.37-1 to I.37-500 in Table I.37 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000080_0001
Table I.38: Preferred compounds of the formula (I.38) are the compounds I.38-1 to I.38-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.38-1 to I.38-500 in Table I.38 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.39: Preferred compounds of the formula (I.39) are the compounds I.39-1 to I.39-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.39-1 to I.39-500 in Table I.39 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.40: Preferred compounds of the formula (I.40) are the compounds I.40-1 to I.40-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.40-1 to I.40-500 in Table I.40 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000081_0001
Table I.41: Preferred compounds of the formula (I.41) are the compounds I.41-1 to I.41-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.41-1 to I.41-500 in Table I.41 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.42: Preferred compounds of the formula (I.42) are the compounds I.42-1 to I.42-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.42-1 to I.42-500 in Table I.42 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.43: Preferred compounds of the formula (I.43) are the compounds I.43-1 to I.43-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.43-1 to I.43-500 in Table I.43 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.44: Preferred compounds of the formula (I.44) are the compounds I.44-1 to I.44-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.44-1 to I.44-500 of Table I.44 are thus defined by the meaning of the respective entries No.1 to 500 for Q of Table 1. Table I.45: Preferred compounds of the formula (I.45) are the compounds I.45-1 to I.45-500, in which the radical Q has the meanings of Table 1 given in the respective line. The compounds I.45.-1 to I.45-500 in Table I.45 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. Table I.46: Preferred compounds of the formula (I.46) are the compounds I.46-1 to I.46-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.46-1 to I.46-500 in Table I.46 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1.
Figure imgf000082_0001
Table I.47: Preferred compounds of the formula (I.47) are the compounds I.47-1 to I.47-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.47-1 to I.47-500 of Table I.47 are thus defined by the meaning of the respective entries No.1 to 500 for Q of Table 1. Table I.48: Preferred compounds of the formula (I.48) are the compounds I.48-1 to I.48-500, in which the radical Q has the meanings of Table 1 given in the respective line. The connections I.48-1 to I.48-500 in Table I.48 are thus defined by the meaning of the respective entries No.1 to 500 for Q in Table 1. a) classic NMR interpretation Example No. I.2-491:1H NMR (CDCl3, ppm): 7.87 (d, 1H), 7.61 (d, 1H), 6.29 (s, 1H), 4.60 (s, 2H), 2.06 (s, 3H), 1.95 (s, 3H), 1.77 (s, 6H). b) NMR peak list method Die1H-NMR data of selected examples can also be in the form of1H NMR peak lists are noted. For each signal peak, first the δ value in ppm and then the signal intensity is listed in round brackets. The δ−value – signal intensity number pairs from different signal peaks are listed separated by semicolons. The peak list of an example therefore has the form: δ1 (intensity1); δ2 (intensity2);……..; δi (intensityi);……; δn (intensitiesn) The intensity of sharp signals correlates with the height of the signals in a printed example of an NMR spectrum in cm and shows the true ratios of the signal intensities. For broad signals, multiple peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum can be shown. To calibrate the chemical shift of 1H NMR spectra, we use tetramethylsilane and/or the chemical shift of the solvent, especially in the case of spectra measured in DMSO. Therefore, in NMR Peak lists of the tetramethylsilane peak exist, but it doesn't have to. The lists of1H NMR peaks are similar to the classical ones1H NMR plots and thus usually contain all of the peaks listed in a classical NMR interpretation. In addition, they can like classic1H-NMR printouts show solvent signals, signals from stereoisomers of the target compounds, which are also the subject of the invention, and/or peaks from impurities. When specifying compound signals in the delta range of solvents and/or water, our lists of1H NMR peaks the usual solvent peaks, for example peaks from DMSO in DMSO-D6 and the peak of water, which usually have high intensity on average. The peaks of stereoisomers of the target compounds and/or peaks of impurities usually have on average a lower intensity than the peaks of the target compounds (e.g. with a purity of >90%). Such stereoisomers and/or impurities can be typical of the particular production process. Their peaks can thus help to identify the reproduction of our manufacturing process using 'by-product fingerprints'. An expert who calculates the peaks of the target compounds with known methods (MestreC, ACD simulation, but also with empirically evaluated expected values) can isolate the peaks of the target compounds as required, with additional intensity filters being used if necessary. This isolation would be similar to the peak picking involved in classical 1H NMR interpretation. More details about1H NMR peak lists can be found in Research Disclosure Database Number 564025. Example No.: I.1-1:1H NMR (400.6 MHz, CDCl3): δ= 7.8435 (2.8); 7.8247 (2.8); 7.6198 (3.0); 7.5976 (3.0); 7.2608 (14.8); 6.3842 (4.9); 5.3000 (4.6); 4.7925 (16.0); 3.5771 (6.9); 3.5743 (7.0); 2.0452 (0.8); 1.7231 (13.9); 1.7190 (14.4); 1.2593 (0.6); 0.0079 (0.6); -0.0002 (22.2); -0.0085 (0.7) I.1-2:1H NMR (400.6 MHz, CDCl3): δ= 7.8375 (3.2); 7.8185 (3.2); 7.5966 (3.3); 7.5808 (0.5); 7.5743 (3.3); 7.2615 (16.5); 6.3735 (5.3); 4.3188 (3.1); 4.3087 (2.0); 4.3065 (3.4); 4.3034 (1.9); 4.2939 (3.4); 3.6314 (3.4); 3.6226 (1.9); 3.6216 (1.9); 3.6188 (3.4); 3.6163 (2.0); 3.6065 (3.4); 3.5988 (0.7); 3.5949 (1.3); 3.5835 (1.2); 3.5700 (8.1); 3.5672 (7.7); 3.5595 (0.9); 3.5419 (1.8); 3.5244 (1.8); 3.5069 (0.7); 3.5036 (2.0); 3.4861 (6.1); 3.4686 (6.2); 3.4512 (2.0); 1.9828 (1.7); 1.6976 (14.8); 1.6935 (16.0); 1.6315 (0.7); 1.6134 (0.6); 1.5736 (0.6); 1.3520 (1.5); 1.3385 (1.5); 1.2563 (0.5); 1.2285 (1.7); 1.2110 (3.3); 1.1935 (1.6); 1.1492 (6.5); 1.1317 (13.4); 1.1143 (6.3); 0.8821 (0.8); 0.0080 (0.6); -0.0002 (24.5); -0.0029 (0.9); -0.0085 (0.7) I.1-23:1H NMR (400.6 MHz, CDCl3): δ= 7.8359 (1.3); 7.8171 (1.3); 7.5957 (3.0); 7.5734 (3.0); 7.2607 (33.0); 6.3733 (3.5); 5.3001 (0.7); 4.3373 (1.2); 4.3263 (1.7); 4.3134 (1.3); 3.7013 (1.3); 3.6886 (1.7); 3.6773 (1.2); 3.6002 (1.6); 3.5896 (1.9); 3.5845 (1.7); 3.5768 (3.1); 3.5708 (6.0); 3.4830 (2.2); 3.4759 (1.6); 3.4708 (1.8); 3.4602 (1.5); 3.3470 (16.0); 1.6949 (11.6); 1.6910 (12.1); 1.5569 (2.3); 0.0080 (1.4); -0.0002 (46.6); -0.0085 (1.2) I.1-176:1H NMR (400.6 MHz, CDCl3): δ= 7.8358 (1.5); 7.8168 (1.5); 7.5961 (1.6); 7.5738 (1.6); 7.2610 (11.3); 6.3739 (2.4); 5.3000 (1.0); 4.3179 (1.7); 4.3102 (0.6); 4.3087 (0.9); 4.3059 (1.7); 4.3027 (0.9); 4.3013 (0.7); 4.2937 (1.9); 3.5888 (1.8); 3.5812 (0.7); 3.5797 (0.9); 3.5765 (1.9); 3.5736 (2.1); 3.5706 (3.6); 3.5675 (3.7); 3.5646 (3.1); 3.3149 (16.0); 1.6989 (7.2); 1.6958 (7.5); 1.5482 (2.9); -0.0002 (17.0) I.1-286:1H NMR (400.6 MHz, CDCl3): δ= 8.5594 (1.1); 8.5570 (1.2); 8.5550 (1.2); 8.5528 (1.1); 8.5472 (1.1); 8.5449 (1.3); 8.5429 (1.2); 8.5406 (1.0); 7.8296 (3.6); 7.8106 (3.6); 7.7121 (0.8); 7.7077 (0.8); 7.6929 (1.5); 7.6885 (1.5); 7.6736 (0.9); 7.6692 (0.9); 7.5911 (3.7); 7.5688 (3.7); 7.3670 (1.6); 7.3475 (1.4); 7.2609 (27.6); 7.2243 (0.9); 7.2121 (0.9); 7.2095 (0.9); 7.2054 (0.9); 7.1932 (0.8); 6.3739 (5.9); 5.3163 (9.5); 5.2998 (3.1); 4.1309 (0.6); 4.1130 (0.6); 3.5696 (8.0); 3.5667 (8.0); 2.0452 (2.8); 1.7463 (15.8); 1.7415 (16.0); 1.2773 (1.0); 1.2595 (2.0); 1.2416 (0.8); 0.8820 (1.1); 0.0079 (1.2); -0.0002 (40.7); -0.0028 (1.4); -0.0085 (1.1) I.1-441:1H NMR (400.6 MHz, CDCl3): δ= 7.8430 (1.7); 7.8240 (1.8); 7.6033 (1.8); 7.5810 (1.8); 7.2612 (6.8); 6.3777 (2.8); 5.2999 (3.5); 3.7545 (16.0); 3.5730 (3.9); 3.5700 (3.9); 1.6848 (8.1); 1.6811 (8.3); -0.0002 (10.4) I.1-442:1H NMR (400.6 MHz, CDCl3): δ= 7.8294 (3.2); 7.8105 (3.3); 7.6004 (3.3); 7.5780 (3.3); 7.2610 (15.3); 6.3775 (5.1); 5.2999 (4.0); 4.2454 (2.0); 4.2276 (6.4); 4.2098 (6.4); 4.1920 (2.0); 3.5724 (7.1); 3.5694 (7.3); 3.5665 (2.9); 1.6799 (15.7); 1.6770 (16.0); 1.5524 (1.3); 1.2814 (6.7); 1.2636 (14.1); 1.2581 (0.9); 1.2457 (6.5); 0.0079 (0.6); -0.0002 (22.8); -0.0085 (0.6) I.1-481:1H NMR (400.6 MHz, CDCl3): δ= 7.8465 (2.9); 7.8276 (2.9); 7.6018 (3.0); 7.5795 (3.0); 7.2603 (18.8); 6.3787 (5.4); 5.2997 (13.2); 3.5694 (8.4); 1.7266 (16.0); 1.7229 (15.6); 0.0080 (0.9); -0.0002 (26.5); -0.0046 (0.7); -0.0055 (0.6); - 0.0086 (1.0) I.1-491:1H NMR (400.6 MHz, CDCl3): δ= 7.8724 (2.0); 7.8535 (2.0); 7.6047 (2.0); 7.5824 (2.0); 7.2605 (28.7); 6.3745 (3.3); 5.3001 (2.9); 3.5710 (4.4); 3.5682 (4.5); 2.0539 (14.6); 2.0454 (1.0); 1.9419 (16.0); 1.9362 (0.8); 1.7689 (11.2); 1.5457 (2.5); 1.2596 (0.6); 0.0080 (1.1); -0.0002 (40.0); -0.0085 (1.1) I.2-176:1H NMR (400.6 MHz, CDCl3): δ= 8.5660 (1.4); 8.5537 (1.4); 7.8762 (0.7); 7.8569 (0.7); 7.8425 (3.2); 7.8236 (3.2); 7.7258 (0.7); 7.6004 (3.4); 7.5782 (3.4); 7.5190 (0.8); 7.3957 (1.3); 7.3728 (1.2); 7.2606 (155.1); 7.2450 (1.0); 7.2332 (1.2); 7.2245 (0.5); 6.9969 (0.7); 6.2895 (7.3); 5.3426 (4.2); 4.6096 (7.0); 4.1309 (1.3); 4.1132 (1.3); 2.0455 (6.2); 1.7508 (15.5); 1.7412 (16.0); 1.5500 (6.0); 1.2775 (2.1); 1.2597 (4.3); 1.2418 (1.8); 0.8991 (0.8); 0.8821 (2.6); 0.8643 (1.0); 0.1457 (0.7); 0.0287 (0.5); 0.0080 (6.7); 0.0064 (1.8); 0.0056 (2.1); 0.0048 (2.2); -0.0002 (239.5); -0.0085 (6.2); -0.0275 (1.0); -0.1492 (0.7) I.2-286:1H NMR (400.6 MHz, CDCl3): δ= 7.8476 (1.8); 7.8288 (1.9); 7.6335 (1.9); 7.6113 (1.9); 7.2606 (31.0); 6.2981 (3.8); 4.7958 (10.8); 4.7938 (3.1); 4.6072 (4.7); 4.1309 (0.6); 4.1130 (0.6); 2.0454 (2.8); 1.7297 (8.0); 1.7215 (8.4); 1.5432 (16.0); 1.2774 (0.9); 1.2596 (1.8); 1.2417 (0.8); 0.8821 (0.9); 0.0080 (1.2); -0.0002 (45.8); -0.0085 (1.4) I.1-472:1H NMR (400.6 MHz, CDCl3): δ= 7.8379 (3.4); 7.8190 (3.4); 7.6031 (3.6); 7.5807 (3.5); 7.2611 (15.1); 6.3775 (5.5); 4.7516 (10.4); 4.7454 (10.5); 3.5728 (7.8); 3.5697 (7.9); 2.4762 (2.5); 2.4700 (5.2); 2.4639 (2.5); 1.7084 (15.9); 1.7044 (16.0); 1.6955 (1.0); 1.5474 (3.9); 0.0079 (0.7); -0.0002 (23.0); -0.0085 (0.6) I.2-152:1H NMR (400.6 MHz, CDCl3): δ= 7.8367 (1.5); 7.8178 (1.5); 7.6047 (1.5); 7.5825 (1.6); 7.2605 (72.6); 6.2796 (3.0); 5.3003 (1.7); 4.6610 (3.1); 4.3166 (1.0); 4.3044 (1.2); 4.3011 (0.9); 4.2922 (1.3); 3.6852 (1.4); 3.6728 (1.4); 3.6608 (1.3); 3.6329 (0.8); 3.6288 (0.8); 3.6222 (1.7); 3.6175 (1.0); 3.6149 (1.4); 3.6087 (1.3); 3.6067 (1.3); 3.5983 (0.8); 3.5909 (1.6); 3.5876 (1.6); 3.5829 (2.5); 3.5748 (3.0); 3.5652 (0.6); 3.5324 (2.1); 3.5235 (1.0); 3.5194 (1.6); 3.5097 (0.9); 3.3603 (13.6); 1.7788 (0.8); 1.6998 (6.5); 1.6903 (6.4); 1.5452 (16.0); 0.0324 (0.6); 0.0079 (2.6); -0.0002 (99.7); -0.0085 (2.9) I.2-442:1H NMR (400.6 MHz, CDCl3): δ= 7.8333 (3.5); 7.8144 (3.5); 7.6134 (3.6); 7.5910 (3.6); 7.2612 (17.2); 6.2908 (6.7); 4.6060 (7.6); 4.2472 (2.1); 4.2294 (6.9); 4.2116 (7.0); 4.1938 (2.2); 3.7637 (0.7); 3.7533 (0.5); 3.7471 (1.8); 3.7410 (0.6); 3.7304 (0.8); 1.8700 (0.8); 1.8623 (0.6); 1.8535 (2.1); 1.8446 (0.7); 1.8369 (0.8); 1.6845 (15.9); 1.6779 (16.0); 1.4320 (0.9); 1.4278 (1.2); 1.3012 (0.6); 1.2830 (7.6); 1.2778 (0.9); 1.2652 (15.9); 1.2599 (2.4); 1.2474 (7.5); 1.2423 (0.9); 0.0079 (0.6); -0.0002 (24.9); -0.0085 (0.8) I.1-152:1H NMR (400.6 MHz, CDCl3): δ= 7.8395 (1.7); 7.8206 (1.7); 7.5969 (1.8); 7.5745 (1.8); 7.2620 (8.4); 6.3735 (3.0); 4.3254 (1.5); 4.3154 (1.2); 4.3131 (1.7); 4.3101 (1.1); 4.3005 (1.6); 3.6974 (1.6); 3.6878 (1.1); 3.6848 (1.7); 3.6824 (1.2); 3.6725 (1.5); 3.6267 (1.4); 3.6218 (0.7); 3.6170 (1.7); 3.6145 (2.5); 3.6099 (2.0); 3.6077 (1.8); 3.6027 (4.8); 3.5928 (2.6); 3.5914 (2.3); 3.5866 (1.6); 3.5829 (1.0); 3.5798 (1.2); 3.5710 (4.4); 3.5680 (4.5); 3.5364 (2.4); 3.5292 (1.4); 3.5241 (1.6); 3.5136 (1.1); 3.3657 (16.0); 1.6918 (8.4); 1.6881 (8.4); - 0.0002 (13.5) I.1-302:1H NMR (400.6 MHz, CDCl3): δ= 9.1541 (2.8); 9.1508 (2.8); 8.7474 (2.3); 8.7344 (2.3); 7.8538 (3.5); 7.8349 (3.6); 7.6161 (3.6); 7.5939 (3.7); 7.4046 (1.6); 7.4028 (1.5); 7.4011 (1.6); 7.3916 (1.6); 7.3898 (1.4); 7.3880 (1.6); 7.2621 (18.3); 6.3808 (6.0); 5.2823 (9.4); 3.5734 (8.0); 3.5704 (8.2); 1.7750 (15.7); 1.7703 (16.0); 0.0080 (0.7); -0.0002 (28.8); -0.0085 (0.8) I.1-500:1H NMR (400.6 MHz, CDCl3): δ= 7.8648 (2.6); 7.8458 (2.7); 7.6016 (2.7); 7.5793 (2.8); 7.2636 (6.0); 6.3749 (4.5); 3.5702 (6.3); 3.5674 (6.2); 2.4675 (1.0); 2.4529 (1.7); 2.4365 (1.3); 2.4012 (1.7); 2.3857 (2.0); 2.3696 (1.9); 2.0450 (1.3); 1.7638 (16.0); 1.7534 (2.2); 1.7357 (0.9); 1.6390 (0.9); 1.6213 (1.6); 1.6167 (1.9); 1.6102 (1.7); 1.5983 (1.1); 1.2770 (0.7); 1.2592 (1.5); 1.2414 (0.5); 0.8818 (1.4); 0.8641 (0.5); -0.0002 (9.2) I.1-24:1H NMR (400.6 MHz, CDCl3): δ= 7.8358 (3.4); 7.8169 (3.5); 7.5959 (3.6); 7.5735 (3.6); 7.2617 (16.9); 6.3734 (5.7); 4.3343 (3.1); 4.3243 (2.2); 4.3219 (3.4); 4.3189 (2.1); 4.3093 (3.4); 3.7057 (3.4); 3.6961 (2.0); 3.6931 (3.5); 3.6907 (2.2); 3.6807 (3.1); 3.6657 (0.6); 3.6066 (1.7); 3.6049 (1.7); 3.5963 (3.3); 3.5896 (2.7); 3.5824 (4.8); 3.5710 (7.7); 3.5681 (8.1); 3.5279 (4.7); 3.5213 (3.7); 3.5162 (2.6); 3.5141 (3.4); 3.5043 (8.9); 3.4868 (7.5); 3.4694 (2.4); 1.6939 (15.6); 1.6901 (16.0); 1.2556 (1.5); 1.2042 (7.7); 1.1867 (15.6); 1.1692 (7.5); 0.0080 (0.7); -0.0002 (26.6); -0.0085 (0.7) I.1-26: 1H NMR (400.6 MHz, CDCl3): δ= 7.8364 (2.2); 7.8175 (2.2); 7.6012 (2.2); 7.5789 (2.2); 7.2608 (7.3); 6.3754 (4.0); 4.2707 (2.0); 4.2546 (4.2); 4.2387 (2.2); 3.5711 (5.8); 3.5690 (5.9); 3.4249 (2.0); 3.4093 (4.3); 3.3937 (2.1); 3.2931 (16.0); 3.2674 (0.6); 1.9213 (2.0); 1.9055 (2.9); 1.8897 (1.9); 1.6832 (11.6); 1.6801 (12.2); 1.5574 (1.3); 1.2563 (0.6); -0.0002 (9.9) I.1-31:1H NMR (400.6 MHz, CDCl3): δ= 7.8510 (1.8); 7.8321 (1.8); 7.6020 (1.9); 7.5797 (1.9); 7.2613 (8.3); 6.3778 (3.0); 4.3316 (2.0); 4.3141 (3.5); 4.2963 (2.1); 3.5730 (4.2); 3.5700 (4.3); 2.7424 (2.0); 2.7247 (3.3); 2.7071 (1.9); 2.1242 (16.0); 2.1131 (0.6); 1.6946 (8.7); 1.6914 (8.8); 1.6808 (0.7); 1.2592 (0.6); 1.2557 (0.6); -0.0002 (12.3) I.2-302:1H NMR (400.6 MHz, CDCl3): δ= 9.1556 (2.4); 9.1523 (2.4); 8.7478 (2.0); 8.7348 (2.1); 7.8276 (2.8); 7.8088 (2.8); 7.6266 (2.9); 7.6043 (2.9); 7.4100 (1.2); 7.4082 (1.2); 7.4066 (1.3); 7.3970 (1.3); 7.3952 (1.2); 7.3935 (1.2); 7.2609 (36.7); 6.2934 (5.6); 5.3002 (16.0); 5.2840 (7.9); 4.6212 (6.1); 4.1308 (1.0); 4.1130 (1.0); 2.0453 (4.8); 1.7808 (12.2); 1.7712 (12.4); 1.2773 (1.4); 1.2595 (2.8); 1.2417 (1.4); 0.0080 (1.5); -0.0002 (54.9); - 0.0085 (1.7) I.2-237:1H NMR (400.6 MHz, CDCl3): δ= 7.8636 (1.1); 7.8448 (1.2); 7.6135 (3.4); 7.5912 (3.5); 7.2606 (82.4); 6.2885 (6.6); 4.6148 (4.4); 4.1487 (1.1); 4.1309 (3.3); 4.1130 (3.4); 4.0952 (1.1); 2.5740 (0.5); 2.0454 (16.0); 1.7759 (1.1); 1.6979 (13.2); 1.6893 (13.9); 1.5579 (0.8); 1.2774 (4.6); 1.2596 (9.4); 1.2417 (4.5); 0.0080 (3.0); -0.0002 (121.4); -0.0085 (3.6) I.2-231:1H NMR (400.6 MHz, CDCl3): δ= 7.8559 (1.7); 7.8370 (1.7); 7.6108 (2.0); 7.5884 (2.0); 7.2612 (14.4); 6.2887 (3.9); 5.3002 (4.6); 4.6083 (4.3); 4.2847 (1.5); 4.2696 (3.2); 4.2546 (1.6); 2.6025 (0.9); 2.5875 (1.8); 2.5725 (0.9); 2.2515 (16.0); 2.0452 (2.2); 1.6934 (8.6); 1.6871 (8.8); 1.2773 (0.6); 1.2595 (1.3); 1.2416 (0.6); 0.0080 (0.5); - 0.0002 (21.0); -0.0085 (0.6) I.2-490:1H NMR (400.6 MHz, CDCl3): δ= 7.8184 (3.7); 7.7995 (3.8); 7.6057 (3.8); 7.5834 (3.8); 7.2609 (27.3); 6.2870 (7.2); 5.3002 (9.8); 4.6071 (8.1); 4.4487 (3.0); 4.4326 (7.1); 4.4166 (3.4); 4.1237 (2.0); 4.1059 (6.4); 4.0881 (6.5); 4.0703 (2.1); 2.6751 (3.4); 2.6591 (7.2); 2.6430 (3.3); 2.0452 (1.8); 1.6808 (15.8); 1.6675 (15.8); 1.5504 (6.4); 1.2773 (0.6); 1.2595 (1.2); 1.2391 (7.8); 1.2213 (16.0); 1.2035 (7.5); 0.0079 (1.2); -0.0002 (40.8); - 0.0085 (1.1) I.2-31:1H NMR (400.6 MHz, CDCl3): δ= 7.8561 (1.7); 7.8372 (1.8); 7.6151 (1.8); 7.5928 (1.8); 7.2607 (17.2); 6.2920 (3.4); 5.3002 (5.6); 4.6039 (3.8); 4.3331 (1.9); 4.3157 (3.5); 4.2981 (2.0); 2.7431 (1.9); 2.7256 (3.4); 2.7081 (1.8); 2.1232 (16.0); 1.7012 (7.5); 1.6933 (7.5); 1.5436 (3.4); 0.0079 (0.7); -0.0002 (25.7); -0.0085 (0.7) I.1-301:1H NMR (400.6 MHz, CDCl3): δ= 9.1408 (1.5); 9.1365 (1.6); 9.1286 (1.6); 9.1243 (1.5); 7.8142 (3.4); 7.7954 (3.5); 7.5987 (3.6); 7.5925 (1.3); 7.5882 (1.3); 7.5764 (3.6); 7.5713 (2.2); 7.5669 (2.1); 7.5148 (2.4); 7.5025 (2.3); 7.4935 (1.4); 7.4813 (1.4); 7.2618 (23.6); 6.3768 (5.6); 5.5465 (10.4); 3.5722 (7.6); 3.5692 (7.9); 1.7439 (15.8); 1.7402 (16.0); 1.6345 (0.5); 1.2558 (0.8); 0.0080 (1.0); -0.0002 (36.2); -0.0085 (1.0) I.1-499:1H NMR (400.6 MHz, CDCl3): δ= 7.8712 (1.4); 7.8523 (1.4); 7.6065 (1.5); 7.5843 (1.5); 7.2619 (4.7); 7.2600 (4.5); 6.3742 (3.1); 3.5680 (6.0); 2.5685 (0.8); 2.5501 (2.0); 2.5335 (1.0); 2.4880 (0.8); 2.4713 (1.9); 2.4533 (0.9); 2.0451 (0.5); 1.8081 (0.7); 1.7895 (3.0); 1.7803 (2.6); 1.7706 (3.5); 1.7601 (16.0); 1.5566 (1.0); 1.2595 (0.9); 0.8804 (0.7); -0.0002 (7.6); -0.0021 (7.3) I.1-237:1H NMR (400.6 MHz, CDCl3): δ= 7.8822 (1.0); 7.8714 (3.0); 7.8633 (1.0); 7.8526 (2.8); 7.6047 (3.0); 7.5905 (0.5); 7.5826 (3.0); 7.5519 (1.5); 7.5295 (1.4); 7.2620 (37.4); 6.3677 (5.2); 6.3518 (1.9); 4.5703 (1.2); 4.5578 (1.9); 4.5439 (1.3); 4.1312 (0.9); 4.1133 (0.9); 3.6209 (0.5); 3.6129 (0.5); 3.5642 (7.4); 3.5616 (7.0); 3.5448 (5.6); 3.4210 (0.7); 3.4014 (0.7); 3.2474 (1.4); 3.2342 (1.9); 3.2213 (1.4); 3.1573 (1.4); 2.0574 (0.8); 2.0459 (5.4); 2.0386 (2.4); 1.9722 (1.4); 1.9552 (3.8); 1.6701 (16.0); 1.6679 (14.7); 1.6417 (8.1); 1.6192 (1.1); 1.2848 (0.6); 1.2774 (1.6); 1.2595 (3.9); 1.2532 (2.9); 1.2417 (1.6); 1.1662 (2.9); 1.1504 (2.9); 0.8817 (0.6); 0.8792 (0.7); 0.0080 (1.4); -0.0002 (64.7); -0.0085 (2.0) I.1-127:1H NMR (400.6 MHz, CDCl3): δ= 7.8437 (1.8); 7.8248 (1.8); 7.6040 (2.0); 7.5821 (2.0); 7.2625 (6.5); 7.2611 (6.7); 6.3791 (4.0); 3.7559 (12.7); 3.7547 (13.0); 3.7371 (0.7); 3.5728 (8.0); 1.6842 (16.0); 1.3022 (0.6); 1.2841 (0.6); 1.2568 (2.6); 0.8816 (0.5); 0.0012 (10.3); -0.0002 (10.9) I.1-115:1H NMR (400.6 MHz, CDCl3): δ= 7.8276 (1.7); 7.8087 (1.7); 7.6163 (1.8); 7.5940 (1.8); 7.2614 (5.4); 6.3834 (3.6); 5.5007 (0.8); 5.4860 (1.2); 5.4720 (0.9); 4.9072 (1.8); 4.8889 (3.0); 4.8717 (1.9); 4.6870 (2.0); 4.6732 (2.2); 4.6546 (1.7); 3.5748 (8.0); 1.9724 (0.8); 1.7629 (0.6); 1.7021 (16.0); 1.5558 (1.2); 1.2571 (1.6); -0.0002 (8.8) I.1-496:1H NMR (400.6 MHz, CDCl3): δ= 7.6422 (1.7); 7.6405 (1.8); 7.6373 (1.4); 7.6312 (2.3); 7.6222 (2.4); 7.6178 (2.2); 7.4012 (0.9); 7.3984 (1.0); 7.3905 (3.4); 7.3882 (3.0); 7.3810 (4.4); 7.3758 (4.3); 7.3664 (0.7); 7.2560 (1.5); 7.2546 (1.4); 2.3023 (16.0); -0.0002 (2.4); -0.0016 (2.2) I.1-71:1H NMR (400.6 MHz, CDCl3): δ= 7.8538 (3.2); 7.8348 (3.2); 7.5962 (3.4); 7.5738 (3.4); 7.2617 (12.8); 6.3731 (4.7); 4.2020 (1.3); 4.1854 (1.9); 4.1683 (1.2); 4.1392 (1.4); 4.1248 (3.2); 4.1070 (2.5); 4.0991 (1.1); 4.0923 (0.6); 3.8420 (0.5); 3.8251 (1.1); 3.8212 (1.0); 3.8081 (0.7); 3.8045 (1.9); 3.7878 (0.9); 3.7655 (1.0); 3.7485 (1.4); 3.7322 (1.1); 3.7279 (0.8); 3.7116 (0.6); 3.5700 (7.6); 3.5671 (7.5); 1.9796 (0.5); 1.9596 (0.6); 1.9456 (0.6); 1.8918 (0.6); 1.8805 (0.7); 1.8745 (1.4); 1.8703 (0.6); 1.8575 (1.5); 1.8541 (1.0); 1.8449 (0.8); 1.8398 (0.7); 1.8371 (0.9); 1.7057 (9.1); 1.7021 (16.0); 1.6971 (8.4); 1.6305 (0.5); 1.6175 (0.5); 1.6007 (0.6); 1.5826 (0.6); 1.5668 (0.6); 0.0079 (0.6); -0.0002 (20.4); -0.0085 (0.6) I.1-72:1H NMR (400.6 MHz, CDCl3): δ= 7.8421 (2.4); 7.8232 (2.4); 7.6071 (2.5); 7.5848 (2.5); 7.2608 (23.1); 6.3786 (4.3); 4.1931 (0.8); 4.1765 (0.9); 4.1662 (1.4); 4.1496 (1.5); 4.0973 (1.5); 4.0778 (1.4); 4.0704 (0.9); 4.0508 (0.9); 3.8357 (0.8); 3.8274 (0.9); 3.8220 (0.9); 3.8154 (0.7); 3.8095 (1.0); 3.8052 (1.2); 3.7873 (1.1); 3.7545 (1.1); 3.7470 (0.8); 3.7287 (1.1); 3.7103 (0.8); 3.7076 (0.8); 3.6892 (0.5); 3.5726 (5.9); 3.5699 (5.9); 3.5561 (0.7); 3.5530 (0.7); 3.5423 (0.7); 3.5392 (0.7); 3.5340 (0.6); 3.5309 (0.6); 3.5201 (0.6); 3.5170 (0.5); 2.0223 (0.5); 1.6850 (16.0); 1.6820 (7.6); 1.6724 (1.0); 1.6104 (0.6); 1.5910 (0.6); 1.5760 (0.5); 1.5589 (0.6); 0.0079 (0.9); -0.0002 (34.0); -0.0053 (0.5); -0.0085 (1.0) I.2-472:1H NMR (400.6 MHz, CDCl3): δ= 7.8421 (3.5); 7.8232 (3.5); 7.6167 (3.6); 7.5944 (3.6); 7.2605 (28.9); 6.2917 (6.8); 5.3001 (9.5); 4.7541 (9.5); 4.7479 (9.6); 4.6018 (7.9); 4.1307 (0.6); 4.1128 (0.6); 2.4784 (2.3); 2.4723 (4.8); 2.4661 (2.3); 2.0452 (2.7); 1.7133 (16.0); 1.7060 (16.0); 1.5419 (8.5); 1.2773 (0.8); 1.2595 (1.7); 1.2416 (0.7); 0.0080 (1.2); -0.0002 (43.2); -0.0085 (1.2) I.2-1:1H NMR (400.6 MHz, CDCl3): δ= 7.8421 (1.7); 7.8231 (1.8); 7.6099 (1.8); 7.5875 (1.8); 7.2604 (34.4); 6.2889 (3.3); 5.3001 (2.4); 4.5985 (3.8); 4.3212 (1.8); 4.3120 (1.0); 4.3092 (1.8); 4.3060 (1.0); 4.2970 (2.0); 4.1309 (0.5); 4.1131 (0.5); 3.5906 (1.9); 3.5815 (0.9); 3.5784 (1.9); 3.5757 (1.0); 3.5664 (1.8); 3.3144 (16.0); 2.0454 (2.5); 1.7040 (7.6); 1.6976 (7.8); 1.5504 (1.1); 1.2774 (0.8); 1.2596 (1.7); 1.2417 (0.7); 0.0080 (1.3); -0.0002 (50.0); -0.0085 (1.6) I.2-72:1H NMR (400.6 MHz, CDCl3): δ= 7.8440 (0.6); 7.8380 (0.7); 7.8252 (0.7); 7.8191 (0.7); 7.6202 (1.1); 7.5979 (1.1); 7.2603 (43.6); 6.2924 (2.3); 4.6148 (1.7); 4.6118 (1.8); 3.8097 (0.5); 3.8055 (0.6); 3.7874 (0.5); 1.6975 (3.0); 1.6927 (3.2); 1.6884 (3.4); 1.6847 (3.2); 1.5396 (16.0); 0.0080 (1.9); -0.0002 (68.4); -0.0085 (2.1) I.2-115:1H NMR (400.6 MHz, CDCl3): δ= 7.8334 (2.6); 7.8146 (2.6); 7.6305 (2.7); 7.6082 (2.7); 7.2619 (28.8); 7.2603 (33.6); 6.2985 (5.6); 5.5045 (1.1); 5.4891 (1.7); 5.4755 (1.3); 4.9110 (2.3); 4.8923 (3.9); 4.8759 (2.6); 4.6853 (2.7); 4.6720 (3.0); 4.6658 (2.6); 4.6526 (2.3); 4.6056 (8.0); 2.0455 (0.5); 1.7105 (16.0); 1.7035 (15.8); 1.5404 (15.6); 1.2614 (1.0); 0.8823 (0.9); 0.0014 (44.1); -0.0002 (52.0) I.2-500:1H NMR (400.6 MHz, CDCl3): δ= 7.8708 (1.7); 7.8518 (1.7); 7.6150 (1.8); 7.5927 (1.8); 7.2607 (43.8); 6.2897 (3.4); 4.6000 (3.9); 2.4726 (0.7); 2.4585 (1.1); 2.4422 (0.9); 2.4036 (1.1); 2.3880 (1.3); 2.3720 (1.2); 1.7685 (8.0); 1.7629 (8.2); 1.6427 (0.6); 1.6207 (1.2); 1.6144 (1.1); 1.6027 (0.6); 1.5472 (16.0); 1.2651 (0.6); 0.8820 (1.1); 0.0080 (1.8); -0.0002 (65.8); -0.0085 (2.0) I.2-3:1H NMR (400.6 MHz, CDCl3): δ= 7.8772 (1.4); 7.8583 (1.4); 7.6185 (1.4); 7.5961 (1.5); 7.2604 (30.4); 6.2890 (2.8); 4.5989 (3.2); 2.0571 (10.5); 2.0454 (1.1); 1.9484 (11.7); 1.7738 (6.3); 1.7685 (6.4); 1.5395 (16.0); 1.2597 (0.8); 0.8820 (0.8); 0.0080 (1.2); -0.0002 (45.6); -0.0085 (1.4) I.2-2:1H NMR (400.6 MHz, CDCl3): δ= 7.8445 (2.4); 7.8255 (2.4); 7.6106 (2.5); 7.5882 (2.5); 7.2606 (35.8); 6.2882 (4.6); 5.3002 (2.6); 4.5985 (5.2); 4.3218 (2.3); 4.3120 (1.5); 4.3095 (2.4); 4.3065 (1.4); 4.2970 (2.6); 4.1308 (0.6); 4.1130 (0.6); 3.6330 (2.6); 3.6232 (1.4); 3.6204 (2.6); 3.6182 (1.5); 3.6081 (2.4); 3.5036 (1.5); 3.4861 (5.0); 3.4686 (5.0); 3.4512 (1.6); 2.0454 (3.1); 1.7023 (10.2); 1.6953 (10.4); 1.5442 (16.0); 1.2774 (1.0); 1.2596 (2.1); 1.2417 (0.9); 1.1487 (5.1); 1.1312 (10.5); 1.1137 (4.9); 0.0080 (1.4); -0.0002 (54.8); - 0.0085 (1.7) I.2-71:1H NMR (400.6 MHz, CDCl3): δ= 7.8596 (2.3); 7.8408 (2.3); 7.6089 (2.4); 7.5865 (2.4); 7.2604 (27.1); 6.2869 (4.7); 5.3000 (3.8); 4.5971 (7.1); 4.2086 (1.0); 4.1916 (1.7); 4.1752 (1.0); 4.1368 (1.2); 4.1231 (3.0); 4.1052 (2.2); 3.8234 (1.2); 3.8041 (1.7); 3.7870 (0.8); 3.7659 (0.8); 3.7488 (1.6); 3.7313 (1.2); 3.7125 (0.6); 2.0453 (1.7); 1.9815 (0.8); 1.9625 (0.8); 1.9486 (0.7); 1.9329 (0.6); 1.8951 (0.7); 1.8775 (1.7); 1.8597 (1.9); 1.8405 (1.2); 1.7051 (16.0); 1.6987 (8.6); 1.6293 (0.7); 1.6134 (0.8); 1.5411 (13.7); 1.2760 (0.6); 1.2594 (1.2); 1.2417 (0.6); -0.0002 (41.9) I.2-301:1H NMR (400.6 MHz, CDCl3): δ= 9.1355 (1.7); 9.1246 (1.8); 7.8050 (2.5); 7.7863 (2.5); 7.6044 (2.8); 7.5962 (1.6); 7.5818 (3.0); 7.5178 (1.9); 7.5054 (1.8); 7.4963 (1.2); 7.4843 (1.2); 7.2613 (15.1); 7.2598 (14.6); 6.2884 (5.4); 5.5428 (10.4); 5.3002 (8.7); 5.2987 (8.5); 4.6251 (7.8); 4.1304 (1.2); 4.1126 (1.2); 2.0451 (4.9); 1.7478 (15.4); 1.7396 (16.0); 1.6383 (0.7); 1.2773 (1.4); 1.2594 (2.8); 1.2416 (1.4); -0.0002 (23.4); -0.0017 (22.6) I.2-24:1H NMR (400.6 MHz, CDCl3): δ= 7.8340 (3.1); 7.8151 (3.2); 7.6071 (3.1); 7.5848 (3.2); 7.2612 (21.1); 6.2857 (6.0); 5.3001 (16.0); 4.6197 (6.6); 4.3312 (2.7); 4.3214 (1.9); 4.3189 (2.9); 4.3157 (1.8); 4.3064 (2.9); 4.1306 (0.5); 4.1128 (0.5); 3.7025 (2.9); 3.6931 (1.8); 3.6900 (2.9); 3.6874 (1.9); 3.6777 (2.6); 3.6058 (1.3); 3.6024 (1.3); 3.5946 (3.2); 3.5914 (1.8); 3.5880 (2.3); 3.5807 (3.8); 3.5299 (4.6); 3.5249 (2.4); 3.5225 (2.3); 3.5186 (2.1); 3.5163 (3.3); 3.5074 (7.7); 3.4899 (6.4); 3.4724 (2.1); 2.0451 (2.5); 1.7012 (12.8); 1.6909 (12.8); 1.5573 (4.5); 1.2772 (0.8); 1.2594 (1.7); 1.2416 (0.8); 1.2037 (6.6); 1.1862 (13.5); 1.1686 (6.3); 0.8820 (0.5); 0.0080 (0.8); -0.0002 (30.9); -0.0085 (0.9) I.2-26:1H NMR (400.6 MHz, CDCl3): δ= 7.8394 (1.7); 7.8205 (1.8); 7.6150 (1.8); 7.5926 (1.8); 7.2608 (15.0); 6.2902 (3.4); 5.3001 (5.4); 4.6056 (3.8); 4.2710 (1.6); 4.2549 (3.5); 4.2388 (1.7); 3.4270 (1.7); 3.4113 (3.6); 3.3957 (1.7); 3.2942 (16.0); 2.0452 (0.9); 1.9246 (1.7); 1.9087 (2.5); 1.8928 (1.6); 1.6901 (7.4); 1.6816 (7.4); 1.5483 (4.1); 1.2595 (0.6); 0.0079 (0.6); -0.0002 (21.8); -0.0085 (0.6) I.2-481:1H NMR (400.0 MHz, CDCl3): δ= 7.8817 (0.7); 7.8622 (0.7); 7.8460 (3.3); 7.8271 (3.3); 7.6142 (3.4); 7.5919 (3.4); 7.4071 (0.7); 7.3844 (0.7); 7.2603 (45.1); 6.2921 (7.2); 5.2999 (2.0); 4.6181 (9.2); 4.1493 (0.8); 4.1314 (2.4); 4.1136 (2.4); 4.0958 (0.9); 2.0461 (10.5); 1.7332 (15.8); 1.7228 (16.0); 1.2774 (2.8); 1.2595 (5.8); 1.2416 (2.7); 0.0079 (2.2); -0.0002 (58.9); -0.0085 (1.7) I.3-1:1H NMR (400.6 MHz, CDCl3): δ= 7.8364 (1.7); 7.8174 (1.8); 7.5876 (1.8); 7.5653 (1.8); 7.2614 (12.6); 6.6015 (0.6); 6.4701 (1.3); 6.3387 (0.7); 6.1291 (2.0); 4.3164 (1.9); 4.3070 (1.3); 4.3044 (2.0); 4.3012 (1.2); 4.2922 (2.1); 3.5887 (2.0); 3.5795 (1.2); 3.5765 (2.0); 3.5738 (1.2); 3.5644 (1.9); 3.5498 (6.4); 3.3155 (16.0); 2.0453 (0.6); 1.6965 (9.9); 1.6938 (9.4); 1.5595 (5.3); -0.0002 (10.8) I.3-176:1H NMR (400.6 MHz, CDCl3): δ= 7.8444 (2.9); 7.8256 (2.9); 7.6109 (3.0); 7.5887 (3.0); 7.2615 (15.4); 6.6059 (1.0); 6.4745 (2.2); 6.3432 (1.1); 6.1393 (3.4); 4.7906 (16.0); 3.5550 (10.4); 1.7202 (14.8); 1.7166 (15.0); 1.5549 (2.1); - 0.0002 (12.0) I.3-286:1H NMR (400.6 MHz, CDCl3): δ= 8.5541 (1.2); 8.5522 (1.2); 8.5499 (1.1); 8.5442 (1.2); 8.5419 (1.3); 8.5400 (1.3); 7.8293 (3.2); 7.8104 (3.2); 7.7090 (0.8); 7.7046 (0.8); 7.6897 (1.6); 7.6853 (1.6); 7.6704 (1.0); 7.6660 (1.0); 7.5827 (3.2); 7.5604 (3.3); 7.3650 (1.7); 7.3455 (1.6); 7.2616 (23.0); 7.2192 (1.0); 7.2070 (1.0); 7.2004 (1.0); 7.1882 (0.9); 6.6013 (1.1); 6.4699 (2.4); 6.3386 (1.2); 6.1293 (3.8); 5.3135 (9.4); 3.5485 (11.7); 1.7444 (15.8); 1.7399 (16.0); 0.0080 (0.5); -0.0002 (18.9); -0.0084 (0.8) I.3-454:1H NMR (400.6 MHz, CDCl3): δ= 7.8216 (3.0); 7.8027 (3.0); 7.6026 (3.1); 7.5803 (3.1); 7.2612 (16.4); 6.6027 (1.1); 6.4714 (2.3); 6.3400 (1.2); 6.1363 (3.6); 4.5690 (1.6); 4.5482 (4.9); 4.5274 (5.1); 4.5065 (1.7); 3.5531 (11.2); 2.0450 (1.7); 1.7213 (16.0); 1.7170 (15.6); 1.5523 (5.3); 1.2771 (0.5); 1.2593 (1.1); -0.0002 (11.4) I.3-481:1H NMR (400.6 MHz, CDCl3): δ= 7.8486 (2.9); 7.8296 (3.0); 7.5932 (3.0); 7.5709 (3.1); 7.2605 (42.0); 6.6003 (1.0); 6.4690 (2.2); 6.3376 (1.1); 6.1396 (3.6); 3.5497 (10.8); 1.7585 (0.6); 1.7237 (16.0); 1.7208 (15.3); 0.0079 (1.4); - 0.0002 (42.1); -0.0060 (0.8); -0.0067 (0.7); -0.0085 (1.4) I.3-491:1H NMR (400.6 MHz, CDCl3): δ= 7.8727 (1.9); 7.8537 (2.0); 7.5958 (2.0); 7.5735 (2.0); 7.2627 (11.4); 6.6121 (0.7); 6.4807 (1.4); 6.3494 (0.7); 6.1309 (2.3); 3.5485 (7.1); 2.0515 (14.5); 2.0452 (1.4); 1.9406 (16.0); 1.7660 (13.1); 1.2594 (0.7); -0.0002 (8.3) I.4-1:1H NMR (400.6 MHz, CDCl3): δ= 7.8393 (1.8); 7.8203 (1.8); 7.5987 (1.8); 7.5764 (1.8); 7.2608 (20.4); 7.0461 (0.7); 6.9131 (1.4); 6.7802 (0.7); 6.1772 (2.4); 4.5653 (4.1); 4.3192 (1.8); 4.3098 (1.3); 4.3072 (1.9); 4.3039 (1.3); 4.2950 (2.1); 3.5899 (2.0); 3.5805 (1.2); 3.5777 (2.1); 3.5753 (1.3); 3.5657 (1.9); 3.4001 (1.1); 3.3150 (16.0); 2.0452 (0.5); 1.7018 (8.1); 1.6941 (8.6); 1.5515 (10.8); 1.2595 (0.5); 0.0080 (0.6); -0.0002 (20.3); - 0.0085 (0.8) I.4-176:1H NMR (400.6 MHz, CDCl3): δ= 7.8455 (3.1); 7.8267 (3.1); 7.6226 (3.3); 7.6004 (3.3); 7.2604 (64.7); 7.0486 (1.2); 6.9158 (2.7); 6.7829 (1.4); 6.1884 (4.5); 4.7937 (15.4); 4.5708 (3.1); 2.2653 (1.6); 1.9856 (1.2); 1.7281 (15.2); 1.7181 (16.0); 1.6021 (1.6); 1.2544 (0.7); 0.0081 (1.7); -0.0002 (65.2); -0.0083 (3.0) I.4-286:1H NMR (400.6 MHz, CDCl3): δ= 8.5565 (1.4); 8.5466 (1.3); 8.5444 (1.5); 8.5426 (1.4); 7.8322 (3.3); 7.8132 (3.3); 7.7113 (0.8); 7.7070 (0.9); 7.6921 (1.7); 7.6877 (1.6); 7.6728 (1.0); 7.6684 (1.0); 7.5932 (3.4); 7.5709 (3.4); 7.3682 (1.8); 7.3486 (1.6); 7.2610 (38.9); 7.2251 (1.0); 7.2129 (1.1); 7.2062 (1.1); 7.1940 (1.0); 7.0457 (1.2); 6.9130 (2.6); 6.7800 (1.3); 6.1782 (4.6); 5.3167 (9.7); 4.5675 (7.6); 2.2616 (0.8); 1.9764 (0.8); 1.7766 (0.6); 1.7493 (15.2); 1.7395 (16.0); 1.5756 (0.7); 1.2555 (0.7); 0.0080 (1.2); -0.0002 (41.0); -0.0085 (1.5) I.4-454:1H NMR (400.6 MHz, CDCl3): δ= 7.8196 (3.3); 7.8008 (3.3); 7.6135 (3.3); 7.5912 (3.4); 7.2609 (22.5); 7.0457 (1.2); 6.9127 (2.6); 6.7798 (1.3); 6.1838 (4.3); 4.5699 (8.6); 4.5480 (5.8); 4.5272 (5.8); 4.5064 (2.0); 2.2626 (0.7); 2.0447 (0.9); 1.9799 (0.6); 1.7272 (15.1); 1.7172 (16.0); 1.5508 (8.7); 1.2591 (0.8); -0.0002 (18.3); -0.0085 (0.7) I.4-481:1H NMR (400.6 MHz, CDCl3): δ= 7.8375 (3.8); 7.8186 (3.8); 7.5994 (3.9); 7.5771 (4.0); 7.2607 (19.0); 7.0402 (1.4); 6.9072 (3.1); 6.7743 (1.5); 6.1811 (5.3); 4.6034 (4.2); 1.7260 (15.9); 1.7115 (16.0); 0.0081 (0.8); -0.0002 (30.2); - 0.0085 (0.9) I.4-491:1H NMR (400.6 MHz, CDCl3): δ= 7.8732 (2.0); 7.8543 (2.0); 7.6061 (2.0); 7.5838 (2.0); 7.2615 (18.1); 7.0485 (0.7); 6.9156 (1.5); 6.7826 (0.8); 6.1749 (2.7); 4.5721 (4.6); 2.0539 (14.4); 2.0451 (1.2); 1.9464 (16.0); 1.9402 (1.2); 1.7707 (9.4); 1.7639 (9.9); 1.5570 (3.4); 1.2594 (0.6); -0.0002 (15.4); -0.0085 (0.6) I.5-442:1H NMR (400.6 MHz, CDCl3): δ= 7.8393 (2.2); 7.8203 (2.2); 7.6020 (2.3); 7.5797 (2.4); 7.2665 (8.8); 6.3171 (5.5); 4.2454 (1.3); 4.2275 (4.0); 4.2097 (4.1); 4.1920 (1.4); 3.6378 (8.8); 1.6924 (0.6); 1.6808 (16.0); 1.6787 (15.2); 1.2822 (4.2); 1.2644 (8.8); 1.2466 (4.2); -0.0002 (1.9) I.5-1:1H NMR (400.6 MHz, CDCl3): δ= 7.8427 (1.7); 7.8238 (1.8); 7.5964 (1.8); 7.5741 (1.8); 7.2614 (10.1); 6.3147 (4.7); 4.3182 (2.0); 4.3089 (1.3); 4.3062 (2.1); 4.3031 (1.2); 4.2940 (2.1); 3.6405 (3.7); 3.6378 (6.2); 3.6347 (3.5); 3.5895 (2.0); 3.5803 (1.3); 3.5773 (2.1); 3.5746 (1.2); 3.5653 (1.9); 3.3160 (16.0); 2.0452 (1.2); 1.6999 (9.7); 1.6965 (9.6); 1.5589 (0.6); 1.2772 (0.5); 1.2595 (1.1); 0.8819 (0.9); -0.0002 (10.6) I.5-454:1H NMR (400.6 MHz, CDCl3): δ= 7.8304 (2.8); 7.8115 (2.8); 7.6121 (2.9); 7.5898 (2.9); 7.2612 (14.0); 6.3222 (7.6); 4.5703 (1.5); 4.5495 (4.7); 4.5286 (4.8); 4.5078 (1.6); 3.6417 (10.0); 3.6386 (5.5); 2.0450 (2.2); 1.7250 (16.0); 1.7201 (14.9); 1.5512 (1.0); 1.2771 (0.8); 1.2592 (1.8); 1.2414 (0.7); 0.8820 (1.0); -0.0002 (11.5) I.5-286:1H NMR (400.6 MHz, CDCl3): δ= 8.5576 (1.1); 8.5554 (1.3); 8.5534 (1.3); 8.5512 (1.1); 8.5455 (1.2); 8.5432 (1.4); 8.5413 (1.3); 7.8345 (3.2); 7.8156 (3.2); 7.7104 (0.8); 7.7060 (0.8); 7.6912 (1.6); 7.6867 (1.6); 7.6719 (1.0); 7.6675 (0.9); 7.5913 (3.5); 7.5690 (3.5); 7.3663 (1.7); 7.3467 (1.5); 7.2614 (24.0); 7.2219 (1.0); 7.2096 (1.0); 7.2031 (1.0); 7.1908 (0.9); 6.3145 (8.6); 5.3144 (9.7); 4.1308 (0.6); 4.1129 (0.6); 3.6370 (11.0); 3.6339 (6.0); 3.4673 (1.0); 3.4655 (0.9); 2.0452 (2.8); 1.7473 (15.4); 1.7422 (16.0); 1.7317 (1.4); 1.7190 (1.4); 1.7129 (1.3); 1.2772 (1.1); 1.2594 (2.5); 1.2416 (1.0); 0.8988 (0.5); 0.8820 (1.7); 0.8643 (0.7); 0.0080 (0.7); -0.0002 (23.6); -0.0085 (1.0) I.5-176:1H NMR (400.6 MHz, CDCl3): δ= 7.8520 (2.2); 7.8332 (2.2); 7.6201 (2.3); 7.5978 (2.3); 7.2613 (11.0); 6.3242 (5.4); 4.7923 (11.0); 3.6441 (8.9); 2.0451 (0.6); 1.7233 (16.0); 1.7198 (14.3); 1.5522 (1.4); 1.2594 (0.7); -0.0002 (8.2) I.5-491:1H NMR (400.6 MHz, CDCl3): δ= 7.8808 (2.0); 7.8618 (2.0); 7.6051 (2.1); 7.5828 (2.1); 7.2619 (13.8); 6.3148 (5.4); 3.6380 (7.2); 3.6350 (4.2); 2.0540 (15.0); 2.0452 (1.3); 1.9434 (16.0); 1.9376 (1.2); 1.7697 (13.1); 1.5610 (0.7); 1.2595 (0.7); -0.0002 (11.2) I.5-481:1H NMR (400.6 MHz, CDCl3): δ= 7.8493 (3.2); 7.8303 (3.2); 7.5930 (2.3); 7.5707 (2.4); 7.5657 (1.3); 7.5434 (1.2); 7.2605 (47.4); 6.6009 (0.8); 6.4695 (1.7); 6.3382 (0.8); 6.1411 (2.8); 5.7642 (1.3); 5.7621 (1.2); 3.6377 (0.6); 3.5500 (8.5); 3.5099 (1.3); 3.4924 (4.1); 3.4749 (4.2); 3.4536 (7.7); 2.3299 (4.2); 2.3282 (4.0); 1.7305 (3.5); 1.7231 (16.0); 1.7213 (15.8); 1.7131 (8.7); 1.2270 (4.3); 1.2095 (8.6); 1.1920 (4.3); 0.0079 (1.7); - 0.0002 (59.2); -0.0084 (2.8) I.6-1:1H NMR (400.6 MHz, CDCl3): δ= 7.8488 (1.6); 7.8299 (1.6); 7.6099 (1.7); 7.5876 (1.6); 7.2824 (0.9); 7.2615 (12.0); 6.2225 (4.2); 4.5911 (0.6); 4.5712 (4.5); 4.3209 (1.9); 4.3117 (1.4); 4.3090 (2.0); 4.3059 (1.3); 4.2968 (1.9); 3.5908 (2.0); 3.5873 (0.9); 3.5816 (1.3); 3.5786 (2.1); 3.5759 (1.4); 3.5667 (1.7); 3.4014 (0.7); 3.3359 (1.2); 3.3150 (16.0); 2.0449 (0.7); 1.7180 (1.5); 1.7047 (8.3); 1.6979 (8.1); 1.5616 (4.5); 1.2593 (0.6); 0.0207 (0.7); 0.0079 (0.6); -0.0002 (9.4) I.6-176:1H NMR (400.6 MHz, CDCl3): δ= 7.8903 (0.5); 7.8712 (0.5); 7.8555 (2.8); 7.8367 (2.8); 7.6335 (2.9); 7.6113 (2.9); 7.4255 (0.5); 7.4026 (0.5); 7.2610 (25.0); 6.2310 (7.9); 4.7950 (16.0); 4.5767 (8.1); 2.0450 (2.2); 1.7301 (13.3); 1.7215 (14.3); 1.5495 (8.3); 1.2771 (0.8); 1.2593 (1.6); 1.2414 (0.7); 0.8820 (0.5); 0.0080 (0.6); -0.0002 (18.9); -0.0085 (0.7) I.6-286:1H NMR (400.6 MHz, CDCl3): δ= 8.5589 (1.3); 8.5567 (1.5); 8.5547 (1.5); 8.5525 (1.3); 8.5468 (1.4); 8.5446 (1.6); 8.5426 (1.6); 8.5404 (1.3); 7.8762 (0.6); 7.8571 (0.6); 7.8406 (3.1); 7.8217 (3.2); 7.7085 (0.9); 7.7041 (1.0); 7.6892 (1.8); 7.6848 (1.8); 7.6700 (1.1); 7.6656 (1.1); 7.6040 (3.2); 7.5816 (3.3); 7.3977 (0.6); 7.3748 (0.7); 7.3662 (1.9); 7.3466 (1.7); 7.2618 (29.9); 7.2241 (1.2); 7.2119 (1.2); 7.2093 (1.2); 7.2053 (1.2); 7.1931 (1.1); 6.2222 (8.6); 6.2113 (0.5); 5.3145 (11.0); 4.5735 (8.9); 4.1302 (1.3); 4.1124 (1.3); 3.1226 (0.6); 2.1521 (0.7); 2.0448 (6.0); 1.7510 (15.2); 1.7423 (16.0); 1.6066 (0.8); 1.2769 (2.0); 1.2591 (4.2); 1.2412 (1.8); 0.8819 (1.5); 0.8642 (0.6); 0.0079 (0.7); -0.0002 (22.0); -0.0084 (0.9) I.6-481:1H NMR (400.6 MHz, CDCl3): δ= 7.8826 (0.6); 7.8636 (0.6); 7.8466 (3.2); 7.8368 (0.6); 7.8278 (3.1); 7.8180 (0.6); 7.6086 (3.2); 7.5958 (0.6); 7.5863 (3.3); 7.5737 (0.6); 7.4021 (0.6); 7.3791 (0.6); 7.2611 (19.6); 6.2262 (8.6); 6.1793 (0.9); 4.5987 (7.4); 3.5140 (2.4); 3.4964 (7.5); 3.4789 (7.7); 3.4614 (2.6); 2.2604 (0.8); 1.9794 (0.8); 1.7247 (15.0); 1.7120 (15.9); 1.2274 (7.9); 1.2099 (16.0); 1.1924 (7.8); 0.0080 (0.6); -0.0002 (21.7); - 0.0084 (0.9) I.6-491:1H NMR (400.6 MHz, CDCl3): δ= 7.8856 (2.0); 7.8666 (2.0); 7.6184 (2.0); 7.5961 (2.1); 7.2618 (17.2); 6.2221 (5.3); 4.5738 (6.5); 2.1280 (0.6); 2.1116 (0.8); 2.0564 (16.0); 2.0453 (1.7); 1.9497 (14.9); 1.9441 (3.6); 1.7743 (11.1); 1.7689 (12.9); 1.5629 (1.1); 1.2771 (0.7); 1.2594 (1.5); 0.8821 (1.1); -0.0002 (12.2); -0.0084 (0.6) I.31-24:1H NMR (400.6 MHz, CDCl3): δ= 7.9067 (2.0); 7.8847 (2.0); 7.8100 (1.9); 7.7913 (1.9); 7.2607 (38.2); 6.3730 (3.2); 4.3372 (1.6); 4.3249 (2.0); 4.3218 (1.2); 4.3122 (1.9); 3.7116 (1.8); 3.7017 (1.2); 3.6989 (1.9); 3.6866 (1.7); 3.6082 (1.0); 3.5980 (1.8); 3.5914 (1.4); 3.5842 (2.6); 3.5703 (4.7); 3.5676 (4.8); 3.5269 (2.5); 3.5215 (1.6); 3.5198 (1.7); 3.5133 (1.9); 3.5041 (4.6); 3.4867 (3.6); 3.4692 (1.2); 1.6990 (8.9); 1.6943 (8.9); 1.6818 (0.8); 1.5468 (15.3); 1.5457 (16.0); 1.2551 (0.5); 1.2046 (3.7); 1.1871 (7.6); 1.1696 (3.6); 0.0078 (1.3); - 0.0002 (42.9); -0.0054 (0.9); -0.0061 (0.9); -0.0085 (1.4) I.31-26:1H NMR (400.6 MHz, CDCl3): δ= 7.9161 (1.8); 7.8941 (1.9); 7.8167 (1.8); 7.7981 (1.8); 7.2613 (15.4); 6.3759 (2.9); 4.2740 (1.6); 4.2579 (3.5); 4.2419 (1.7); 3.5712 (4.2); 3.5683 (4.1); 3.4265 (1.7); 3.4109 (3.6); 3.3953 (1.8); 3.2939 (16.0); 3.2674 (0.9); 1.9284 (1.7); 1.9126 (2.5); 1.8967 (1.7); 1.8809 (0.5); 1.6888 (8.1); 1.6845 (8.1); 1.6712 (0.8); 1.5564 (7.8); 0.0080 (0.5); -0.0002 (17.8); -0.0085 (0.5) I.31-31:1H NMR (400.6 MHz, CDCl3): δ= 7.9153 (0.8); 7.8933 (0.8); 7.8278 (0.8); 7.8092 (0.8); 7.2606 (24.5); 7.2574 (0.5); 6.3773 (1.2); 4.3342 (0.8); 4.3167 (1.3); 4.2989 (0.8); 3.5724 (1.7); 3.5694 (1.6); 2.7521 (0.8); 2.7343 (1.3); 2.7167 (0.8); 2.1254 (6.9); 1.6992 (3.3); 1.6953 (3.2); 1.5444 (16.0); 0.0079 (0.8); -0.0002 (27.7); -0.0027 (1.2); -0.0085 (0.9) I.31-71:1H NMR (400.6 MHz, CDCl3): δ= 7.9077 (1.3); 7.8857 (1.3); 7.8306 (1.3); 7.8120 (1.3); 7.2611 (21.9); 6.3725 (2.0); 4.1851 (0.7); 4.1434 (0.6); 4.1290 (1.3); 4.1112 (1.0); 3.8033 (0.7); 3.7489 (0.6); 3.5691 (3.1); 3.5664 (3.1); 1.8736 (0.6); 1.8564 (0.7); 1.7103 (3.6); 1.7070 (8.0); 1.7019 (3.4); 1.5554 (16.0); 1.5541 (15.3); 1.2648 (1.2); 0.8989 (0.6); 0.8820 (2.2); 0.8643 (0.8); 0.0079 (0.7); -0.0002 (25.7); -0.0085 (0.8) I.31-72:1H NMR (400.6 MHz, CDCl3): δ= 7.9221 (0.9); 7.9001 (0.9); 7.8230 (0.8); 7.8045 (0.8); 7.2611 (20.8); 6.3781 (1.4); 4.1660 (0.5); 4.1494 (0.5); 4.1030 (0.6); 4.0835 (0.6); 3.5717 (1.8); 3.5689 (1.9); 1.6929 (2.4); 1.6900 (4.6); 1.6869 (2.4); 1.5526 (16.0); 0.0080 (0.7); -0.0002 (23.3); -0.0085 (0.7) I.31-93:1H NMR (400.6 MHz, CDCl3): δ= 7.9197 (1.3); 7.8977 (1.4); 7.8216 (1.3); 7.8030 (1.3); 7.2608 (22.4); 6.3753 (2.2); 4.0279 (2.1); 4.0116 (2.2); 3.5696 (3.0); 3.5667 (3.0); 3.4051 (0.6); 3.4003 (0.6); 3.3755 (0.9); 3.3708 (0.9); 1.6956 (5.6); 1.6888 (5.6); 1.5747 (0.5); 1.5475 (16.0); 1.2637 (0.6); 0.8820 (1.1); 0.0080 (0.8); -0.0002 (25.1); -0.0085 (0.8) I.31-115:1H NMR (400.6 MHz, CDCl3): δ= 7.9268 (0.6); 7.9048 (0.6); 7.8028 (0.6); 7.7843 (0.6); 7.2608 (23.0); 6.3834 (0.9); 4.8915 (0.5); 3.5758 (1.3); 3.5729 (1.3); 1.7067 (2.6); 1.7025 (2.6); 1.5491 (15.8); 1.5482 (16.0); 0.0080 (0.8); - 0.0002 (27.2); -0.0085 (0.8) I.31-301:1H NMR (400.6 MHz, CDCl3): δ= 9.1289 (0.5); 7.9102 (2.2); 7.8883 (2.3); 7.7949 (2.2); 7.7764 (2.2); 7.6032 (0.5); 7.5994 (0.5); 7.5819 (0.9); 7.5782 (0.8); 7.5202 (0.6); 7.2617 (27.5); 6.3759 (3.4); 5.5490 (6.1); 3.5709 (4.6); 3.5679 (4.8); 1.7485 (9.4); 1.7444 (9.5); 1.5697 (16.0); 0.0080 (1.0); -0.0002 (33.0); -0.0049 (0.6); -0.0085 (1.0) I.31-499:1H NMR (400.6 MHz, CDCl3): δ= 7.9219 (1.0); 7.8999 (1.0); 7.8481 (1.0); 7.8295 (1.0); 7.2607 (23.9); 6.3747 (1.7); 3.5699 (2.3); 3.5671 (2.3); 2.5514 (0.8); 2.4703 (0.7); 1.7916 (1.5); 1.7835 (0.9); 1.7810 (0.9); 1.7727 (1.8); 1.7667 (6.3); 1.7492 (0.5); 1.5439 (16.0); 0.8820 (0.7); 0.0079 (0.8); -0.0002 (27.0); -0.0086 (0.8) I.31-496:1H NMR (400.6 MHz, CDCl3): δ= 7.9319 (2.1); 7.9098 (2.1); 7.8776 (2.0); 7.8590 (2.1); 7.7597 (1.5); 7.7563 (2.0); 7.7521 (1.0); 7.7450 (0.6); 7.7396 (2.2); 7.7355 (1.8); 7.4446 (1.0); 7.4311 (0.8); 7.4272 (1.4); 7.4232 (0.7); 7.4147 (2.0); 7.4111 (0.8); 7.4017 (0.8); 7.4000 (0.8); 7.3965 (2.1); 7.3794 (0.6); 7.2604 (31.8); 6.3778 (3.3); 3.5718 (4.6); 3.5690 (4.5); 2.3272 (16.0); 2.2732 (1.0); 2.0453 (1.6); 1.8335 (8.9); 1.8294 (8.8); 1.8147 (1.0); 1.5460 (15.0); 1.2773 (0.8); 1.2646 (1.1); 1.2596 (1.6); 1.2417 (0.6); 0.8990 (0.6); 0.8820 (2.1); 0.8643 (0.8); 0.0080 (1.0); -0.0002 (36.2); -0.0085 (1.1) I.31-127:1H NMR (400.6 MHz, CDCl3): δ= 7.9196 (0.8); 7.8975 (0.9); 7.8028 (0.8); 7.7842 (0.8); 7.2606 (21.3); 6.3804 (1.3); 3.5745 (2.0); 3.5715 (1.9); 3.5465 (0.6); 1.6948 (3.8); 1.6913 (4.0); 1.5441 (16.0); 0.8821 (0.7); 0.0080 (0.7); -0.0002 (24.1); -0.0085 (0.8) I.31-231:1H NMR (400.6 MHz, CDCl3): δ= 7.9098 (2.8); 7.8877 (2.8); 7.8279 (2.5); 7.8093 (2.5); 7.2651 (0.8); 7.2609 (62.5); 7.2561 (0.8); 7.2553 (0.7); 6.3748 (4.2); 4.2889 (1.8); 4.2737 (3.7); 4.2586 (1.9); 3.5705 (5.8); 3.5676 (5.9); 2.6141 (1.0); 2.5991 (1.8); 2.5839 (1.0); 2.2578 (16.0); 2.2443 (1.2); 2.1722 (1.3); 1.6938 (11.9); 1.6898 (11.9); 1.6763 (1.0); 1.5850 (1.7); 1.2564 (1.5); 0.0079 (1.8); 0.0046 (0.6); 0.0038 (0.9); -0.0002 (68.8); - 0.0027 (3.4); -0.0043 (1.4); -0.0052 (1.2); -0.0060 (1.1); -0.0068 (1.0); -0.0085 (2.4); -0.0108 (0.7); - 0.0115 (0.6); -0.0123 (0.6) I.31-237:1H NMR (400.6 MHz, CDCl3): δ= 7.9140 (3.5); 7.8920 (3.5); 7.8252 (3.3); 7.8066 (3.4); 7.2613 (56.5); 6.3745 (5.7); 4.3506 (1.6); 4.3353 (3.2); 4.3202 (1.6); 3.5705 (7.8); 3.5678 (8.1); 2.8277 (1.1); 2.8124 (2.1); 2.7974 (1.1); 2.6334 (1.9); 2.6176 (2.3); 2.1782 (1.5); 2.1723 (3.4); 2.0093 (3.8); 1.9586 (0.7); 1.7782 (1.7); 1.7617 (4.4); 1.7452 (1.7); 1.6933 (15.4); 1.6889 (16.0); 1.2843 (0.6); 1.2563 (4.6); 0.8797 (0.5); 0.0080 (1.5); - 0.0002 (63.2); -0.0085 (2.2) I.31-152:1H NMR (400.6 MHz, CDCl3): δ= 7.9079 (1.7); 7.8859 (1.7); 7.8141 (1.6); 7.7955 (1.7); 7.2610 (39.5); 7.2577 (1.0); 7.2569 (0.8); 7.2561 (0.6); 6.3729 (2.6); 4.3285 (1.3); 4.3184 (1.0); 4.3161 (1.5); 4.3132 (1.0); 4.3035 (1.5); 3.7033 (1.4); 3.6937 (0.9); 3.6908 (1.5); 3.6884 (1.0); 3.6784 (1.4); 3.6261 (1.1); 3.6247 (1.3); 3.6203 (0.7); 3.6166 (2.2); 3.6140 (2.1); 3.6096 (2.5); 3.6026 (3.8); 3.5922 (2.1); 3.5904 (2.0); 3.5854 (1.4); 3.5814 (1.1); 3.5786 (1.2); 3.5703 (4.0); 3.5671 (3.9); 3.5367 (2.2); 3.5296 (1.3); 3.5240 (1.4); 3.5223 (1.3); 3.5141 (1.0); 3.3662 (16.0); 1.6968 (6.9); 1.6922 (6.9); 1.6790 (0.7); 1.5539 (12.6); 0.0079 (1.4); - 0.0002 (46.5); -0.0027 (2.0); -0.0043 (0.9); -0.0052 (0.8); -0.0060 (0.6); -0.0068 (0.5); -0.0085 (1.4) I.31-287:1H NMR (400.6 MHz, CDCl3): δ= 8.6090 (0.9); 8.6044 (0.9); 8.5672 (0.7); 8.5631 (0.8); 8.5550 (0.8); 8.5510 (0.8); 7.9054 (1.7); 7.8833 (1.7); 7.7487 (1.7); 7.7302 (1.7); 7.6956 (0.6); 7.6752 (0.6); 7.3013 (0.6); 7.2910 (0.6); 7.2835 (0.6); 7.2696 (0.7); 7.2607 (34.3); 6.3761 (2.8); 5.2130 (4.5); 3.5730 (3.8); 3.5702 (3.8); 1.6973 (7.4); 1.6921 (7.4); 1.5543 (16.0); 0.8820 (0.8); 0.0079 (1.2); -0.0002 (39.7); -0.0085 (1.3) I.31-500:1H NMR (400.6 MHz, CDCl3): δ= 7.9182 (1.1); 7.8962 (1.1); 7.8468 (1.1); 7.8281 (1.1); 7.2607 (27.3); 6.3748 (1.7); 3.5700 (2.4); 3.5672 (2.5); 2.4493 (0.7); 2.4327 (0.6); 2.4014 (0.6); 2.3859 (0.8); 2.3697 (0.8); 1.7697 (5.4); 1.7675 (5.6); 1.7529 (1.0); 1.6188 (0.6); 1.6120 (0.6); 1.5443 (16.0); 0.0080 (0.8); -0.0002 (30.1); -0.0085 (1.0) I.31-472:1H NMR (400.6 MHz, CDCl3): δ= 7.9148 (2.0); 7.8927 (2.0); 7.8122 (1.9); 7.7937 (2.0); 7.2605 (47.9); 7.2564 (0.6); 7.2555 (0.5); 6.3773 (2.9); 4.7550 (5.8); 4.7488 (5.8); 3.5724 (4.0); 3.5694 (4.1); 2.4777 (1.4); 2.4716 (3.0); 2.4653 (1.4); 1.7131 (8.2); 1.7082 (8.1); 1.6953 (0.5); 1.5416 (16.0); 0.8821 (0.8); 0.0080 (1.6); 0.0066 (0.5); - 0.0002 (57.1); -0.0085 (1.6) I.31-302:1H NMR (400.6 MHz, CDCl3): δ= 9.1524 (1.2); 9.1490 (1.2); 8.7501 (1.4); 8.7371 (1.5); 7.9281 (1.5); 7.9061 (1.6); 7.8357 (1.5); 7.8172 (1.5); 7.4140 (0.7); 7.4122 (0.6); 7.4105 (0.7); 7.4010 (0.7); 7.3992 (0.6); 7.3974 (0.7); 7.2608 (33.8); 6.3802 (2.4); 5.2837 (3.8); 3.5728 (3.2); 3.5699 (3.3); 1.7792 (6.2); 1.7734 (6.2); 1.5491 (16.0); 1.5484 (14.4); 0.8820 (0.7); 0.0080 (1.2); -0.0002 (37.7); -0.0085 (1.1) I.31-490:1H NMR (400.6 MHz, CDCl3): δ= 7.9040 (1.6); 7.8820 (1.7); 7.7936 (1.6); 7.7750 (1.6); 7.2607 (51.4); 7.2573 (1.0); 7.2565 (0.7); 7.2556 (0.6); 6.3735 (2.4); 4.4521 (1.5); 4.4360 (3.4); 4.4198 (1.6); 4.1258 (0.9); 4.1080 (2.8); 4.0901 (2.8); 4.0723 (0.9); 3.5700 (3.2); 3.5670 (3.4); 2.6853 (1.4); 2.6691 (3.0); 2.6530 (1.4); 1.6775 (6.4); 1.6717 (6.4); 1.5425 (16.0); 1.2388 (3.5); 1.2210 (7.4); 1.2032 (3.5); 0.0079 (1.8); 0.0063 (0.5); 0.0055 (0.6); 0.0046 (0.7); 0.0038 (0.9); -0.0002 (59.6); -0.0028 (2.3); -0.0035 (1.6); -0.0044 (1.0); -0.0052 (0.7); -0.0060 (0.6); -0.0069 (0.5); -0.0085 (1.8) I.31-176:1H NMR (400.0 MHz, CDCl3): δ= 7.9309 (0.8); 7.9096 (0.8); 7.8149 (0.7); 7.7972 (0.7); 7.2608 (10.1); 6.3832 (1.6); 4.7964 (3.2); 3.5725 (4.0); 1.7231 (7.7); 1.5496 (16.0); -0.0002 (11.3) I.31-491:1H NMR (400.0 MHz, CDCl3): δ= 7.9205 (0.9); 7.8979 (0.8); 7.8510 (0.8); 7.8317 (0.8); 7.2612 (10.4); 6.3735 (1.8); 3.5670 (4.6); 2.0539 (5.3); 1.9408 (5.4); 1.7730 (9.2); 1.5532 (16.0); 1.2645 (0.7); 0.8814 (0.6); -0.0002 (11.7) I.31-286:1H NMR (400.0 MHz, CDCl3): δ= 8.5409 (0.8); 7.9032 (0.8); 7.8812 (0.8); 7.8072 (0.7); 7.7884 (0.8); 7.6857 (0.7); 7.3678 (0.8); 7.3483 (0.7); 7.2611 (9.9); 7.1990 (0.6); 6.3728 (1.6); 5.3142 (3.0); 3.5652 (3.9); 1.7457 (7.4); 1.5601 (16.0); 1.2624 (0.6); -0.0002 (10.2) I.31-121:1H NMR (400.0 MHz, CDCl3): δ= 7.9075 (0.7); 7.8876 (0.7); 7.7894 (0.7); 7.7710 (0.7); 7.2610 (10.5); 6.3766 (1.5); 5.3676 (0.6); 3.9104 (0.6); 3.8640 (1.0); 3.8342 (1.5); 3.8187 (0.9); 3.5686 (3.9); 1.6818 (7.1); 1.5516 (16.0); 1.2628 (0.6); -0.0002 (12.0) I.32-127:1H NMR (400.6 MHz, CDCl3): δ= 7.9333 (1.6); 7.9113 (1.6); 7.8082 (1.6); 7.7897 (1.6); 7.2607 (29.4); 6.2951 (2.9); 4.6076 (3.3); 3.8473 (0.6); 3.5774 (0.5); 3.5694 (0.6); 3.5563 (0.6); 3.5481 (1.0); 3.5268 (0.5); 1.7206 (0.5); 1.7102 (0.7); 1.7015 (6.4); 1.6934 (6.4); 1.6778 (0.5); 1.5465 (16.0); 0.0080 (0.9); -0.0002 (33.0); -0.0085 (0.9) I.32-71:1H NMR (400.6 MHz, CDCl3): δ= 7.2604 (29.7); 7.2572 (0.7); 7.2564 (0.5); 6.2872 (0.7); 4.5978 (1.0); 1.7156 (1.1); 1.7105 (2.3); 1.7039 (1.0); 1.5441 (16.0); 0.0080 (1.0); -0.0002 (34.9); -0.0085 (1.1) I.32-115:1H NMR (400.6 MHz, CDCl3): δ= 7.9401 (1.2); 7.9181 (1.2); 7.8072 (1.1); 7.7887 (1.1); 7.2605 (32.6); 6.2976 (2.1); 5.4902 (0.6); 4.9129 (0.6); 4.8969 (0.7); 4.8942 (1.0); 4.8914 (0.8); 4.8755 (0.7); 4.7076 (0.9); 4.6944 (0.8); 4.6922 (0.7); 4.6879 (0.6); 4.6859 (0.7); 4.6748 (0.6); 4.6728 (0.7); 4.6053 (2.4); 2.1720 (0.7); 1.7130 (4.6); 1.7045 (4.6); 1.5427 (16.0); 0.0079 (1.1); -0.0002 (35.5); -0.0085 (1.0) I.32-72:1H NMR (400.6 MHz, CDCl3): δ= 7.9330 (4.0); 7.9310 (3.9); 7.9110 (4.1); 7.9090 (3.9); 7.8223 (3.4); 7.8153 (3.5); 7.8038 (3.5); 7.7967 (3.5); 7.2636 (20.8); 6.2880 (11.6); 4.6267 (8.8); 4.6235 (8.5); 4.2110 (1.2); 4.2066 (1.2); 4.1947 (1.3); 4.1905 (1.3); 4.1841 (1.9); 4.1797 (1.9); 4.1678 (1.9); 4.1636 (2.0); 4.0923 (2.3); 4.0897 (2.2); 4.0725 (2.3); 4.0698 (2.2); 4.0654 (1.6); 4.0628 (1.5); 4.0456 (1.5); 4.0429 (1.4); 3.8672 (0.6); 3.8562 (1.4); 3.8546 (1.4); 3.8470 (0.6); 3.8394 (1.4); 3.8346 (2.9); 3.8292 (2.4); 3.8202 (1.9); 3.8188 (1.8); 3.8114 (3.1); 3.8070 (2.8); 3.8010 (1.2); 3.7890 (2.7); 3.7654 (0.5); 3.7475 (1.7); 3.7303 (2.5); 3.7287 (2.8); 3.7129 (1.4); 3.7107 (2.2); 3.6919 (0.8); 3.6898 (0.8); 3.6464 (0.9); 3.6338 (1.4); 3.6246 (0.7); 3.6180 (0.8); 3.6116 (0.7); 3.6018 (0.6); 3.5833 (0.6); 3.5537 (1.5); 3.5464 (1.6); 3.5398 (1.6); 3.5320 (2.6); 3.5243 (1.4); 3.5176 (1.4); 3.5102 (1.4); 2.6197 (0.9); 2.6022 (1.1); 2.5847 (0.9); 2.0568 (0.7); 2.0434 (0.7); 2.0355 (1.0); 2.0251 (1.5); 2.0221 (1.1); 2.0163 (1.0); 2.0121 (1.1); 2.0034 (1.4); 1.9927 (1.0); 1.9851 (0.8); 1.9716 (0.7); 1.7023 (14.9); 1.6977 (14.9); 1.6915 (16.0); 1.6884 (15.4); 1.6751 (0.8); 1.6494 (0.5); 1.6426 (0.7); 1.6249 (1.2); 1.6230 (1.2); 1.6080 (1.7); 1.6055 (1.6); 1.5936 (1.4); 1.5910 (1.4); 1.5762 (1.0); 1.5742 (1.0); 1.5578 (0.6); 0.0079 (0.7); 0.0037 (0.5); -0.0002 (23.9); - 0.0028 (0.7); -0.0035 (0.5); -0.0085 (0.7) I.32-496:1H NMR (400.6 MHz, CDCl3): δ= 7.9421 (1.9); 7.9201 (1.9); 7.8794 (1.9); 7.8609 (1.9); 7.7593 (1.5); 7.7558 (1.9); 7.7516 (0.8); 7.7444 (0.5); 7.7390 (2.1); 7.7350 (1.6); 7.4469 (0.9); 7.4333 (0.7); 7.4295 (1.3); 7.4255 (0.6); 7.4179 (1.3); 7.4160 (1.8); 7.4125 (0.7); 7.4029 (0.8); 7.4013 (0.7); 7.3979 (2.0); 7.3961 (1.2); 7.3809 (0.6); 7.2604 (14.8); 6.2868 (3.6); 4.6049 (3.9); 2.3323 (16.0); 1.8376 (7.2); 1.8294 (7.1); 1.5535 (7.2); 0.8819 (0.9); 0.0079 (0.5); -0.0002 (16.5) I.32-499:1H NMR (400.6 MHz, CDCl3): δ= 7.9350 (3.4); 7.9130 (3.4); 7.8541 (3.4); 7.8355 (3.4); 7.2610 (45.0); 6.2880 (6.4); 4.6003 (7.1); 2.5720 (1.0); 2.5543 (2.5); 2.5381 (1.0); 2.4958 (0.9); 2.4925 (0.8); 2.4864 (0.6); 2.4767 (2.2); 2.4590 (1.0); 1.8139 (1.0); 1.8037 (1.1); 1.7958 (5.0); 1.7875 (2.8); 1.7850 (2.7); 1.7769 (5.3); 1.7702 (16.0); 1.7665 (15.3); 1.7586 (1.5); 1.7534 (0.9); 1.5468 (15.0); 0.0080 (1.3); -0.0002 (49.6); -0.0085 (1.4) I.32-93:1H NMR (400.6 MHz, CDCl3): δ= 7.9281 (4.0); 7.9061 (4.1); 7.8140 (4.0); 7.7955 (4.1); 7.2712 (5.3); 6.2816 (7.6); 4.6461 (8.6); 4.0303 (6.1); 4.0143 (6.9); 4.0073 (1.6); 3.9980 (1.5); 3.9958 (1.5); 3.9838 (1.6); 3.9812 (1.6); 3.9783 (1.5); 3.9724 (2.2); 3.9687 (2.1); 3.9602 (1.3); 3.9453 (0.9); 3.9306 (1.3); 3.5012 (3.7); 3.4852 (3.7); 3.4300 (2.0); 3.4245 (2.0); 3.3997 (3.7); 3.3956 (4.0); 3.3903 (1.2); 3.3742 (1.8); 3.3707 (2.9); 3.3660 (3.3); 3.3610 (1.5); 3.3454 (0.9); 3.3395 (1.0); 3.3370 (0.9); 3.3314 (0.7); 1.9345 (0.7); 1.7637 (0.5); 1.7477 (1.0); 1.7382 (0.7); 1.7316 (0.7); 1.7220 (0.7); 1.7189 (0.8); 1.7034 (16.0); 1.6866 (15.7); 1.6718 (1.4); 1.6672 (1.6); 1.6627 (1.4); 1.6579 (1.1); 1.6393 (1.6); 1.6347 (1.9); 1.6299 (1.8); 1.6264 (1.3); 1.6083 (0.8); 1.6034 (1.0); 1.5983 (1.1); 1.5935 (0.9); 1.5873 (0.7); 1.5806 (0.9); 1.5748 (1.4); 1.5700 (1.9); 1.5651 (2.1); 1.4067 (0.5); 1.3888 (0.8); 1.3743 (2.0); 1.3628 (1.6); 1.3556 (0.9); 1.3443 (2.6); 1.3328 (2.2); 1.3119 (1.6); 1.3034 (1.3); 1.3002 (1.5); 1.2816 (0.6); 1.2703 (0.6); -0.0002 (6.4) I.32-301:1H NMR (400.6 MHz, CDCl3): δ= 9.1377 (1.8); 9.1335 (1.8); 9.1254 (1.8); 9.1212 (1.8); 7.9138 (4.1); 7.8919 (4.1); 7.7866 (4.0); 7.7682 (4.1); 7.6061 (1.5); 7.6019 (1.5); 7.5849 (2.4); 7.5806 (2.3); 7.5188 (2.7); 7.5065 (2.6); 7.4976 (1.7); 7.4853 (1.7); 7.2624 (22.2); 6.2867 (7.5); 5.5451 (11.9); 4.6297 (8.3); 2.0964 (1.2); 1.7528 (16.0); 1.7440 (16.0); 1.3332 (0.6); 1.2844 (0.9); 1.2557 (2.6); 0.0079 (0.7); -0.0002 (24.4); -0.0085 (0.7) I.32-472:1H NMR (400.6 MHz, CDCl3): δ= 7.9261 (4.0); 7.9041 (4.1); 7.8135 (3.9); 7.7950 (4.0); 7.2624 (9.1); 6.2870 (7.3); 4.7559 (11.8); 4.7498 (11.6); 4.6079 (8.2); 2.4822 (2.8); 2.4760 (6.1); 2.4698 (2.8); 1.7166 (16.0); 1.7081 (16.0); 1.5686 (2.0); -0.0002 (10.6) I.32-287:1H NMR (400.6 MHz, CDCl3): δ= 8.5972 (2.1); 8.5930 (2.1); 8.5468 (1.7); 8.5426 (1.8); 8.5347 (1.8); 8.5305 (1.7); 7.8965 (4.1); 7.8745 (4.2); 7.7029 (0.9); 7.6986 (1.3); 7.6973 (1.3); 7.6930 (0.9); 7.6833 (1.0); 7.6790 (1.4); 7.6778 (1.4); 7.6734 (1.0); 7.6174 (4.0); 7.5990 (4.1); 7.3100 (1.4); 7.3080 (1.3); 7.2979 (1.4); 7.2958 (1.3); 7.2904 (1.3); 7.2884 (1.2); 7.2783 (1.2); 7.2763 (1.1); 7.2636 (10.5); 6.2754 (7.6); 5.2767 (2.0); 5.2456 (3.4); 5.1626 (3.3); 5.1315 (2.0); 4.7714 (8.3); 1.7210 (15.9); 1.6895 (16.0); -0.0002 (11.6) I.32-302:1H NMR (400.6 MHz, CDCl3): δ= 9.1493 (3.4); 9.1459 (3.4); 8.7470 (4.0); 8.7340 (4.1); 7.9351 (4.1); 7.9131 (4.2); 7.8096 (4.1); 7.7911 (4.1); 7.4145 (1.8); 7.4128 (1.6); 7.4110 (1.8); 7.4015 (1.8); 7.3998 (1.6); 7.3980 (1.8); 7.2646 (10.0); 6.2894 (7.8); 5.2829 (10.2); 4.6346 (8.6); 2.1096 (0.7); 2.0443 (1.1); 1.7840 (16.0); 1.7729 (16.0); 1.2765 (0.5); 1.2586 (1.4); 1.2548 (1.3); 0.8817 (0.7); -0.0002 (11.3) I.32-237:1H NMR (400.6 MHz, CDCl3): δ= 7.9237 (4.0); 7.9017 (4.2); 7.8316 (4.0); 7.8130 (4.0); 7.2654 (10.6); 6.2843 (7.6); 4.6231 (8.2); 4.3212 (3.3); 4.3057 (7.6); 4.2903 (3.6); 2.7734 (3.3); 2.7579 (7.1); 2.7424 (3.2); 2.6327 (1.4); 2.5642 (2.0); 2.5608 (1.8); 2.5577 (1.7); 2.5537 (2.5); 2.5473 (4.9); 2.5414 (2.7); 2.5371 (1.9); 2.5338 (2.0); 2.5306 (2.2); 2.5229 (0.5); 2.1772 (3.3); 1.7501 (2.3); 1.7422 (2.8); 1.7332 (6.7); 1.7242 (3.0); 1.7201 (1.6); 1.7163 (2.3); 1.6981 (16.0); 1.6898 (16.0); 1.6773 (0.8); 1.2545 (8.4); -0.0002 (12.5) I.32-152:1H NMR (400.6 MHz, CDCl3): δ= 7.9093 (1.8); 7.8873 (1.9); 7.8047 (1.8); 7.7862 (1.8); 7.2648 (4.0); 6.2743 (3.5); 4.6699 (3.8); 4.3175 (1.2); 4.3079 (1.1); 4.3054 (1.3); 4.3020 (1.0); 4.2929 (1.4); 3.6890 (1.5); 3.6814 (0.7); 3.6791 (1.0); 3.6766 (1.6); 3.6646 (1.5); 3.6315 (0.9); 3.6280 (1.0); 3.6210 (1.9); 3.6166 (1.4); 3.6140 (1.6); 3.6059 (2.0); 3.5997 (1.0); 3.5945 (1.0); 3.5918 (1.8); 3.5892 (1.8); 3.5843 (2.1); 3.5814 (1.9); 3.5744 (3.0); 3.5661 (0.6); 3.5317 (2.4); 3.5257 (0.6); 3.5232 (1.0); 3.5186 (1.7); 3.5159 (0.5); 3.5090 (1.0); 3.3859 (0.5); 3.3592 (16.0); 1.7043 (7.3); 1.6933 (7.3); 1.6547 (0.6); -0.0002 (4.4) I.32-24:1H NMR (400.6 MHz, CDCl3): δ= 7.9139 (3.7); 7.8919 (3.7); 7.8049 (3.6); 7.7863 (3.7); 7.2660 (7.9); 6.2809 (6.9); 4.6344 (7.6); 4.3325 (3.0); 4.3228 (2.2); 4.3202 (3.3); 4.3171 (2.0); 4.3077 (3.2); 3.7486 (0.9); 3.7380 (1.2); 3.7340 (0.7); 3.7260 (1.6); 3.7072 (3.3); 3.6975 (2.4); 3.6948 (4.1); 3.6922 (2.2); 3.6868 (1.4); 3.6824 (3.2); 3.6801 (1.4); 3.6729 (2.1); 3.6365 (2.0); 3.6322 (0.5); 3.6285 (1.0); 3.6244 (1.4); 3.6232 (1.2); 3.6121 (2.4); 3.6068 (1.8); 3.6040 (1.9); 3.6004 (1.4); 3.5991 (1.5); 3.5959 (4.1); 3.5927 (2.2); 3.5893 (3.3); 3.5818 (4.9); 3.5708 (1.3); 3.5533 (3.0); 3.5358 (3.2); 3.5283 (5.2); 3.5239 (2.8); 3.5207 (2.7); 3.5170 (2.7); 3.5146 (3.8); 3.5064 (9.1); 3.5038 (2.0); 3.4889 (7.8); 3.4714 (2.5); 1.7057 (14.4); 1.6940 (14.3); 1.2441 (3.2); 1.2266 (6.5); 1.2091 (3.2); 1.2029 (7.7); 1.1854 (16.0); 1.1679 (7.6); -0.0002 (9.3) I.32-500:1H NMR (400.6 MHz, CDCl3): δ= 7.9313 (1.9); 7.9093 (2.0); 7.8525 (1.9); 7.8339 (1.9); 7.2607 (38.7); 6.2888 (3.6); 4.5991 (4.0); 2.4700 (0.7); 2.4554 (1.1); 2.4389 (0.9); 2.4038 (1.1); 2.3884 (1.3); 2.3721 (1.2); 1.7745 (7.8); 1.7683 (8.0); 1.7548 (1.0); 1.7386 (0.5); 1.6464 (0.6); 1.6285 (0.9); 1.6229 (1.0); 1.6035 (0.6); 1.5439 (16.0); 0.0080 (1.3); -0.0002 (43.8); -0.0085 (1.1) I.32-490:1H NMR (400.6 MHz, CDCl3): δ= 7.9125 (3.5); 7.8905 (3.6); 7.7890 (3.5); 7.7704 (3.5); 7.2635 (8.8); 6.2828 (6.5); 4.6144 (7.3); 4.4495 (2.8); 4.4334 (6.8); 4.4173 (3.2); 4.1223 (1.9); 4.1045 (6.0); 4.0866 (6.2); 4.0688 (2.1); 2.6828 (3.0); 2.6667 (6.5); 2.6506 (2.9); 1.6856 (13.7); 1.6710 (13.6); 1.5882 (2.2); 1.2382 (7.6); 1.2204 (16.0); 1.2072 (0.6); 1.2026 (7.4); -0.0002 (9.9) I.32-31:1H NMR (400.6 MHz, CDCl3): δ= 7.9261 (1.8); 7.9041 (1.8); 7.8302 (1.8); 7.8116 (1.8); 7.2630 (4.2); 6.2879 (3.3); 4.6097 (3.7); 4.3343 (1.9); 4.3168 (3.4); 4.2992 (2.0); 2.7515 (1.9); 2.7339 (3.2); 2.7164 (1.8); 2.1227 (16.0); 1.7051 (7.1); 1.6963 (7.1); 1.5718 (0.9); -0.0002 (4.8) I.32-231:1H NMR (400.6 MHz, CDCl3): δ= 7.9160 (1.6); 7.8940 (1.6); 7.8324 (1.5); 7.8138 (1.5); 7.2670 (3.8); 6.2789 (3.0); 4.6530 (3.2); 4.3023 (1.3); 4.2874 (2.8); 4.2725 (1.4); 2.6583 (0.9); 2.6434 (1.7); 2.6285 (0.9); 2.6130 (14.2); 2.2883 (16.0); 1.6943 (6.2); 1.6819 (6.1); 1.6506 (0.6); 1.6348 (0.6); 1.2543 (1.0); -0.0002 (4.4) I.32-286:1H NMR (400.6 MHz, CDCl3): δ= 8.5693 (0.5); 8.5544 (1.6); 8.5521 (1.5); 8.5500 (1.4); 8.5477 (1.2); 8.5422 (1.3); 8.5399 (1.4); 8.5378 (1.3); 8.5355 (1.2); 7.9119 (4.1); 7.8899 (4.1); 7.8132 (4.0); 7.7946 (4.1); 7.7086 (1.0); 7.7041 (1.4); 7.6998 (0.5); 7.6893 (2.1); 7.6849 (2.8); 7.6807 (0.9); 7.6701 (1.3); 7.6657 (1.7); 7.6615 (0.6); 7.3690 (2.0); 7.3494 (1.7); 7.2645 (9.5); 7.2570 (0.8); 7.2373 (0.7); 7.2215 (1.4); 7.2188 (1.1); 7.2093 (1.4); 7.2066 (1.4); 7.2026 (1.4); 7.1999 (1.0); 7.1904 (1.3); 7.1877 (1.0); 6.2810 (7.5); 5.3148 (10.7); 4.7636 (3.8); 4.6240 (8.4); 1.7529 (15.9); 1.7435 (16.0); -0.0002 (10.6) The present invention further relates to the use of one or more compounds of the general formula (I) according to the invention and/or salts thereof, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular one or several compounds of the formulas (I.1-1) to (I.48-500) and/or salts thereof, each as defined above, as a herbicide and/or plant growth regulator, preferably in crops of useful and/or ornamental plants. The present invention is also a method for controlling harmful plants and / or for regulating the growth of plants, characterized in that an effective amount - one or more compounds of the general formula (I) according to the invention and / or their salts, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular one or more compounds of the formulas (I.1-1) to (I.48-500) and/or their salts, each as defined above, or - an agent according to the invention , as defined below, is applied to the (harmful) plants, (harmful) plant seeds, the soil in or on which the (harmful) plants are growing, or the area under cultivation. The present invention also relates to a method for controlling unwanted plants, preferably in crops of useful plants, characterized in that an effective amount - of one or more compounds of the general formula (I) and/or salts thereof, as defined above, preferably in one of as preferred or particularly preferred embodiment, in particular one or more compounds of the formulas (I.1-1) to (I.48-500) and / or their salts, each as defined above, or - an agent according to the invention, as below defined, on undesired plants (e.g. harmful plants such as monocotyledonous or dicotyledon weeds or undesired cultivated plants), the seeds of the undesired plants (i.e. plant seeds, e.g. grains, seeds or vegetative propagation organs such as tubers or shoot parts with buds), the soil in which or on where the unwanted plants are growing (e.g. the soil of cultivated land or non-cultivated land) or the cultivated area (i.e. area where unwanted plants will grow) is applied. The present invention is also a method for controlling the growth regulation of plants, preferably useful plants, characterized in that an effective amount - of one or more compounds of the general formula (I) and / or their salts, as defined above, preferably in a the preferred or particularly preferred characterized configuration, in particular one or more compounds of the formulas (I.1-1) to (I.48-500) and / or their salts, each as defined above, or - a composition according to the invention, as defined below, on the plant, the seed of the plant (i.e. plant seeds, e.g. grains, seeds or vegetative propagating organs such as tubers or parts of shoots with buds), the soil in or on which the plants grow (e.g. the soil of cultivated land or non-cultivated land) or the area under cultivation ( i.e. area where the plants will grow) is applied. The compounds of the general formula (I) according to the invention or the compositions according to the invention can be applied, for example, pre-sowing (possibly also by incorporation into the soil), pre-emergence and/or post-emergence. Specifically, some representatives of the monocotyledonous and dicotyledonous weed flora that can be controlled by the compounds according to the invention may be mentioned by way of example, without the naming of a restriction to specific species. In a method according to the invention for controlling harmful plants or for regulating the growth of plants, one or more compounds of the general formula (I) and/or salts thereof are preferably used for controlling harmful plants or for regulating growth in crops of useful plants or ornamental plants, the useful plants or ornamental plants in a preferred embodiment are transgenic plants. The compounds of the general formula (I) according to the invention and/or their salts are suitable for controlling the following genera of monocotyledonous and dicotyledonous harmful plants: monocotyledonous harmful plants of the genera: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dicotyledonous weeds of the genera: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis , Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio , Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. If the compounds of the general formula (I) according to the invention are applied to the surface of the soil before the harmful plants (grasses and/or weeds) germinate (pre-emergence method), then either the emergence of the weed or weed seedlings is completely prevented or they grow up to the cotyledon stage , but then stop growing and finally die off completely after three to four weeks. When the active ingredients are applied to the green parts of the plant post-emergence, growth stops after the treatment and the harmful plants remain in the growth stage present at the time of application or die off completely after a certain time, so that weed competition that is harmful to the crop plants occurs very early and is permanently eliminated. Although the compounds of the general formula (I) according to the invention have excellent herbicidal activity against monocotyledonous and dicotyledon weeds, crop plants of economically important crops, e.g. dicotyledonous crops of the genera Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Miscanthus, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledonous cultures of the genera Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, Triticale, Triticum, Zea , Depending on the structure of the respective compound according to the invention and the amount applied, only insignificant damage or no damage at all. For these reasons, the present compounds are very suitable for the selective control of undesired plant growth in crops such as agricultural crops or ornamental plants. In addition, the compounds of the general formula (I) according to the invention (depending on their particular structure and the application rate applied) have excellent growth-regulating properties in crop plants. They intervene to regulate the plant's own metabolism and can therefore be used to specifically influence plant constituents and to facilitate harvesting, e.g. by triggering desiccation and growth stunted growth. Furthermore, they are also suitable for the general control and inhibition of unwanted vegetative growth without killing the plants. Inhibition of vegetative growth plays a major role in many monocotyledonous and dicotyledonous crops, since this can reduce or completely prevent the formation of beds. Because of their herbicidal and plant growth-regulating properties, the active compounds can also be used for combating harmful plants in crops of plants modified by genetic engineering or by conventional mutagenesis. The transgenic plants are characterized in the Usually characterized by particularly advantageous properties, for example resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses. Other special properties relate, for example, to the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients. Thus, transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known. With regard to transgenic crops, preference is given to using the compounds according to the invention and/or their salts in economically important transgenic crops of useful and ornamental plants, e.g. of cereals such as wheat, barley, rye, oats, millet, rice and corn or also crops of sugar beets, cotton, Soy, rapeseed, potato, tomato, pea and other vegetables. The compounds according to the invention can preferably also be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or have been made resistant by genetic engineering. Because of their herbicidal and plant growth-regulating properties, the active compounds can also be used to control harmful plants in crops of known or genetically modified plants that are still to be developed. The transgenic plants are generally distinguished by particularly advantageous properties, for example resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses. Other special properties relate, for example, to the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients. Thus, transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known. Other special properties can be tolerance or resistance to abiotic stressors such as heat, cold, drought, salt and ultraviolet radiation. Preference is given to using the compounds of the formula (I) according to the invention or their salts in economically important transgenic crops of useful and ornamental plants, e.g. of cereals such as wheat, barley, rye, oats, triticale, millet, rice, cassava and corn, or crops of sugar beet, cotton, soybean, canola, potato, tomato, pea and other vegetables. The compounds of the general formula (I) can preferably be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or have been made resistant by genetic engineering. Conventional ways of producing new plants that have modified properties compared to previously existing plants include, for example, classical breeding methods and the generation of mutants. Alternatively, new plants with modified properties can be created using genetic engineering methods. Numerous molecular biological techniques with which new transgenic plants with modified properties can be produced are known to the person skilled in the art. For such genetic engineering manipulations, nucleic acid molecules can be introduced into plasmids, which allow mutagenesis or sequence modification by recombination of DNA sequences. With the help of standard methods, for example, base exchanges can be made, partial sequences can be removed or natural or synthetic sequences can be added. To connect the DNA fragments to one another, adapters or linkers can be attached to the fragments. The production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, a sense RNA to achieve a co-suppression effect or the expression of at least one correspondingly constructed ribozyme that specifically cleaves transcripts of the above gene product . For this purpose, on the one hand, DNA molecules can be used which include the entire coding sequence of a gene product, including any flanking sequences present, as well as DNA molecules which only include parts of the coding sequence, these parts having to be long enough to enter the cells produce an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product but are not completely identical. When nucleic acid molecules are expressed in plants, the synthesized protein can be located in any compartment of the plant cell. However, in order to achieve localization in a specific compartment, for example the coding region can be linked to DNA sequences which ensure localization in a specific compartment. Such sequences are known to those skilled in the art (see, for example, Braun et al., EMBO J.11 (1992), 3219-3227). The expression of the nucleic acid molecules can also take place in the organelles of the plant cells. The transgenic plant cells can be regenerated into whole plants using known techniques. In principle, the transgenic plants can be plants of any desired plant species, i.e. both monocotyledonous and dicotyledonous plants. It is thus possible to obtain transgenic plants which have modified properties as a result of overexpression, suppression or inhibition of homologous (=natural) genes or gene sequences or expression of heterologous (=foreign) genes or gene sequences. The compounds of the general formula (I) according to the invention can preferably be used in transgenic crops which are active against growth substances, such as dicamba, or against herbicides which contain essential plant enzymes, e.g. acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate dioxygenases (HPPD ) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosate, glufosinate or benzoylisoxazoles and analogous active ingredients. When the active compounds of the general formula (I) according to the invention are used in transgenic crops, in addition to the effects on harmful plants that can be observed in other crops, there are often effects that are specific to the application in the respective transgenic crop, for example a modified or specially expanded spectrum of weeds, that can be combated, changed application rates that can be used for the application, preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing the growth and yield of the transgenic crop plants. The invention therefore also relates to the use of the compounds of the general formula (I) according to the invention and/or their salts as herbicides for controlling harmful plants in crops of useful or ornamental plants, optionally in transgenic crop plants. Preference is given to use in cereals, preferably corn, wheat, barley, rye, oats, millet or rice, pre- or post-emergence. Pre- or post-emergence use in soya is also preferred. The use according to the invention for controlling harmful plants or for regulating the growth of plants also includes the case in which compounds of the general formula (I) or salts thereof are derived from a precursor substance ("prodrug ") is formed. The invention also relates to the use of one or more compounds of the general formula (I) or salts thereof or an agent according to the invention (as defined below) (in a method) for controlling harmful plants or for regulating the growth of plants, characterized in that an effective amount of one or more compounds of the general formula (I) or salts thereof to the plants (harmful plants, optionally together with the useful plants), plant seeds, the soil in which or on which the plants grow, or the area under cultivation applied. The invention also relates to a herbicidal and/or plant growth-regulating agent, characterized in that the agent (a) contains one or more compounds of the general formula (I) and/or salts thereof as defined above, preferably in one of the preferred or particularly preferred embodiment, in particular one or more compounds of the formulas (I.1-1) to (I.48-500) and / or their salts, each as defined above, and (b) one or more other substances selected from the Groups (i) and/or (ii): (i) one or more other agrochemically active substances, preferably selected from the group consisting of insecticides, acaricides, nematicides, other herbicides (i.e. those which do not conform to the general formula (I ) correspond), fungicides, safeners, fertilizers and/or other growth regulators, (ii) one or more formulation auxiliaries customary in crop protection. The other agrochemically active substances of component (i) of a composition according to the invention are preferably selected from the group of substances that are listed in "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012. A herbicidal or plant growth-regulating agent according to the invention preferably comprises one, two, three or more formulation auxiliaries (ii) customary in crop protection selected from the group consisting of surfactants, emulsifiers, dispersants, film formers, thickeners, inorganic salts, dusts, at 25 ° C and 1013 mbar solid carriers, preferably adsorptive, granulated inert materials, wetting agents, antioxidants, stabilizers, Buffer substances, antifoam agents, water, organic solvents, preferably organic solvents miscible with water in any ratio at 25° C. and 1013 mbar. The compounds of the general formula (I) according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules. The invention therefore also relates to herbicidal and plant growth-regulating compositions which contain the compounds of the formula (I) according to the invention and/or their salts. The compounds of the general formula (I) according to the invention and/or their salts can be formulated in various ways, depending on the given biological and/or chemico-physical parameters. Examples of possible formulations are: wettable powder (WP), water-soluble powder (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for spreading and floor application, granules (GR) in the form of micro, spray, lift - and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes. These individual formulation types and the formulation aids such as inert materials, surfactants, solvents and other additives are known to those skilled in the art and are described, for example, in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvents Guide"; 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Interface-active ethylene oxide adducts", Wiss. Publishing company, Stuttgart 1976; Winnacker-Küchler, "Chemical Technology", Volume 7, C. Hanser Verlag Munich, 4th edition 1986. Wettable powders are preparations that are evenly dispersible in water and which, in addition to the active ingredient, contain a diluent or inert substance as well as ionic and/or nonionic surfactants (wetting agents, dispersing agents), e.g , 2,2'-dinaphthylmethane-6,6'-sodium disulfonate, sodium dibutylnaphthalenesulfonate or sodium oleoylmethyltaurine. To produce the wettable powder, the herbicidal active ingredients are, for example, in conventional apparatus such as hammer mills, blower mills and Air jet mills finely ground and simultaneously or subsequently mixed with the formulation auxiliaries. Emulsifiable concentrates are prepared by dissolving the active ingredient in an organic solvent, e.g. butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more ionic and/or nonionic surfactants (emulsifiers). Examples of emulsifiers that can be used are: alkylarylsulfonic acid calcium salts such as cadodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as sorbitan fatty acid esters or polyoxyethylene sorbitan esters such as polyoxyethylene sorbitan fatty acid esters. Dusts are obtained by grinding the active ingredient with finely divided solid substances, e.g. talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth. Suspension concentrates can be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and optionally adding surfactants, such as those already listed above for the other types of formulation. Emulsions, e.g. oil-in-water emulsions (EW), can be prepared, for example, using stirrers, colloid mills and/or static mixers using aqueous organic solvents and, if appropriate, surfactants, such as those already listed above for the other types of formulation. Granules can either be produced by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, e.g. polyvinyl alcohol, sodium polyacrylic acid or mineral oils, to the surface of carriers such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules—if desired in a mixture with fertilizers. Water-dispersible granules are usually produced without solid inert material by the usual processes such as spray drying, fluidized bed granulation, pan granulation, mixing with high-speed mixers and extrusion. For the production of pan, fluidized bed, extruder and spray granules see, for example, methods in "Spray-Drying Handbook" 3rd ed.1979, G. Goodwin Ltd., London; JE Browning, "Agglomeration", Chemical and Engineering 1967, pp. 147ff; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, pp. 8-57. For further details on the formulation of crop protection products see, e.g., G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, pp. 81-96 and J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pages 101-103. The agrochemical preparations, preferably herbicidal or plant growth-regulating agents, of the present invention preferably contain a total amount of 0.1 to 99% by weight, preferably 0.5 to 95% by weight, more preferably 1 to 90% by weight, particularly preferably 2 to 80% by weight of active compounds of the formula (I) and their salts. In wettable powders, for example, the active substance concentration is about 10 to 90% by weight, the remainder to 100% by weight consists of the usual formulation components. In the case of emulsifiable concentrates, the active substance concentration can be about 1 to 90% by weight, preferably 5 to 80% by weight. Formulations in dust form contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient, and sprayable solutions contain about 0.05 to 80% by weight, preferably 2 to 50% by weight of active ingredient. In the case of water-dispersible granules, the active ingredient content depends in part on whether the active compound is in liquid or solid form and on the granulation aids, fillers, etc. used. In the case of the water-dispersible granules, the active substance content is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight. In addition, the active ingredient formulations mentioned optionally contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetration agents, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and the Viscosity affecting agents. Examples of formulation aids are described inter alia in "Chemistry and Technology of Agrochemical Formulations", ed. DA Knowles, Kluwer Academic Publishers (1998). The compounds of the general formula (I) or their salts can be used as such or in the form of their preparations (formulations) in combination with other pesticidally active substances, such as insecticides, acaricides, nematicides, herbicides, fungicides, safeners, fertilizers and/or growth regulators , e.g. as a ready-to-use formulation or as tank mixes. The combination formulations can be based on the above Formulations are prepared, taking into account the physical properties and stability of the active ingredients to be combined. Combination partners for the compounds of the general formula (I) according to the invention in mixture formulations or in a tank mix are, for example, known active substances which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate Synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II, protoporphyrinogen oxidase can be used, as described, for example, in Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 and the literature cited there. Of particular interest is the selective control of harmful plants in crops of useful and ornamental plants. Although the compounds of the general formula (I) according to the invention already have very good to sufficient selectivity in many crops, phytotoxicities on the crop plants can in principle occur in some crops and especially in the case of mixtures with other herbicides which are less selective. In this regard, combinations of compounds of the general formula (I) according to the invention which contain the compounds of the general formula (I) according to the invention or combinations thereof with other herbicides or pesticides and safeners are of particular interest. The safeners, which are used in an antidotally effective amount, reduce the phytotoxic side effects of the herbicides/pesticides used, e.g. in economically important crops such as cereals (wheat, barley, rye, corn, rice, millet), sugar beet, sugar cane, rapeseed, cotton and soy, preferably grain. The weight ratio of herbicide (mixture) to safener generally depends on the amount of herbicide applied and the effectiveness of the respective safener and can vary within wide limits, for example in the range from 200:1 to 1:200, preferably 100:1 to 1: 100, especially 20:1 to 1:20. The safeners can be formulated analogously to the compounds of general formula (I) or mixtures thereof with other herbicides/pesticides and provided and used as a ready-to-use formulation or tank mix with the herbicides. For use, the herbicide or herbicide-safener formulations, which are in commercial form, are optionally diluted in a customary manner, for example with water for wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules. Preparations in the form of dust, ground or granulated granules and sprayable solutions are usually not diluted with other inert substances before use. External conditions such as temperature, humidity etc. influence to a certain extent the application rate of the compounds of the general formula (I) and/or their salts. The application rate can vary within wide limits. For application as a herbicide for controlling harmful plants, the total amount of compounds of formula (I) and their salts is preferably in the range from 0.001 to 10.0 kg/ha, preferably in the range from 0.005 to 5 kg/ha, more preferably in the range from 0.01 to 1.5 kg/ha, particularly preferably in the range from 0.05 to 1 kg/ha. This applies to both pre-emergence and post-emergence application. When using compounds of the general formula (I) according to the invention and/or salts thereof as plant growth regulators, for example as stalk shorteners in crop plants such as those mentioned above, preferably in cereal plants such as wheat, barley, rye, triticale, millet, rice or corn , the total application rate is preferably in the range from 0.001 to 2 kg/ha, preferably in the range from 0.005 to 1 kg/ha, in particular in the range from 10 to 500 g/ha, very particularly preferably in the range from 20 to 250 g/ha Ha. This applies to both pre-emergence and post-emergence application. The application as a stalk shortener can take place at different stages of the growth of the plants. For example, application after tillering at the start of growth in length is preferred. Alternatively, when used as a plant growth regulator, the treatment of the seed can also be considered, which includes the different seed dressing and coating techniques. The application rate depends on the individual techniques and can be determined in preliminary tests. Combination partners for the compounds of the general formula (I) according to the invention in agents according to the invention (e.g. mixture formulations or in the tank mix) are, for example, known active substances which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate -3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II or protoporphyrinogen oxidase can be used, as they are, for example, from Weed Research 26 (1986) 441-445 or "The Pesticide Manual ", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 and the literature cited there. Known herbicides or plant growth regulators that can be combined with the compounds according to the invention are mentioned below by way of example, these active ingredients being identified either by their "common name" in the English-language variant according to the International Organization for Standardization (ISO) or by the chemical name or by the code number are designated. There are always all Application forms such as acids, salts, esters and also all isomeric forms such as stereoisomers and optical isomers, even if they are not explicitly mentioned. Examples of such herbicidal mixing partners: Known herbicides or plant growth regulators which can be combined with compounds of the general formula (I) include the following active ingredients (the compounds are either identified by the "common name" according to the International Organization for Standardization (ISO ) or with the chemical name or with the code number) and always include all application forms such as acids, salts, esters and isomers such as stereoisomers and optical isomers. One and sometimes also several application forms are mentioned as examples: acetochlor, acifluorfen, acifluorfen-methyl, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3- chloro-6-(4-chloro-2-fluoro-3-methylphenyl)-5-fluoropyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, aminopyralid-dimethylammonium, aminopyralid-tripromine, amitrole, ammonium sulfamates, Anilofos, Asulam, Asulam Potassium, Asulam Sodium, Atrazine, Azafenidin, Azimsulfuron, Beflubutamide, (S)-(-)- Beflubutamide, Beflubutamide-M, Benazolin, Benazolin-ethyl, Benazolin-dimethylammonium, Benazolin-Klaium, Benfluralin, Benfuresate, Bensulfuron, Bensulfuron-methyl, Bensulide, Bentazone, Bentazone-Sodium, Benzobicyclon, Benzofenap, Bicyclopyrone, Bifenox, Bilanafos, Bilanafos-Natium, Bipyrazone, Bispyribac, Bispyribac-Natium, Bixlozone, Bromacil, Bromacil-lithium, Bromacil-Sodium, Bromobutide, bromofenoxime, bromoxynil, bromoxynil butyrate, bromoxynil potassium, bromoxynil heptanoate and bromoxynil octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butraline, butroxydim, butylate, cafenstrol, cambendichlor, carbetamide, carfentrazone, carfentrazone ethyl, chloramben, Chloramben-ammonium, Chloramben-diolamine, Chlroamben-methyl, Chloramben-methylammonium, Chloramben-sodium, Chlorbromuron, Chlorfenac, Chlorfenac-ammonium, Chlorfenac-sodium, Chlorfenprop, Chlorfenprop-methyl, Chlorflurenol, Chlorflurenol-methyl, Chloridazon, Chlorimuron, Chlorimuron- ethyl, chlorophthalime, chlorotoluron, chlorsulfuron, chlorthal, chlorthal-dimethyl, chlorthal-monomethyl, cinidon, cinidon-ethyl, cinmethyline, exo-(+)-cinmethyline, i.e. (1R,2S,4S)-4-isopropyl-1-methyl -2-[(2-methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptane, exo-(-)-cinmethyline, i.e. (1R,2S,4S)-4-isopropyl-1-methyl-2-[ (2-methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptane, Cinosulfuron, Clacyfos, Clethodim, Clodinafop, Clodinafop-ethyl, Clodinafop-propargyl, Clomazone, Clomeprop, Clopyralid, Clopyralid-methyl, Clopyralid-olamine, Clopyralid- Potassium, clopyralid-tripomin, cloransulam, cloransulam-methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyranil, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D (as well as the ammonium, butotyl, butyl, choline, diethylammonium, dimethylammonium, diolamine, doboxyl, dodecylammonium, etexyl, ethyl, 2-ethylhexyl, heptylammonium, isobutyl, isooctyl, isopropyl, isopropylammonium, lithium, meptyl, methyl, potassium, tetradecylammonium, triethylammonium, triisopropanolammonium, tripromine and trolamine salts thereof), 2,4 -DB, 2,4-DB-butyl, 2,4-DB-dimethylammonium, 2,4-DB-isooctyl, 2,4-DB-potassium and 2,4-DB-sodium, Daimuron (Dymron), Dalapon, Dalapon calcium, dalapon magnesium, dalapon sodium, dazomet, dazomet sodium, n-decanol, 7-deoxy-D-sedoheptulose, desmedipham, detosylpyrazolate (DTP), dicamba and its salts (e.g. dicamba-biproamine, dicamba -N,N-bis(3-aminopropyl)methylamine, dicamba-butotyl, dicamba-choline, dicamba-diglycolamine, dicamba-dimethylammonium, dicamba-diethanolamine-ammonium, dicamba-diethylammonium, dicamba-isopropylammonium, dicamba-methyl, dicamba-monoethanolamine, dicamba -olamine, dicamba potassium, dicamba sodium, dicamba triethanolamine), dichlobenil, 2-(2,4-dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, 2-(2,5 -Dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, Dichloroprop, Dichloroprop-butotyl, Dichloroprop-dimethylammonium, Dichloroprop-etexyl, Dichloroprop- ethylammonium, Dichloroprop-isoctyl, Dichloroprop-methyl, Dichloroprop-potassium, Dichlorprop-Sodium, Dichlorprop-P, Dichlorprop-P-dimethylammonium, Dichlorprop-P-etexyl, Dichlorprop-P-Potassium, Dichlorprop-Sodium, Diclofop, Diclofop-methyl, Diclofop-P, Diclofop-P-methyl, Diclosulam, Difenzoquat, Difenzoquat-metilsulfate, Diflufenican, Diflufenzopyr, Diflufenzopyr-Sodium, Dimefuron, Dimepiperate, Dimesulfazet, Dimethachlor, Dimethametryn, Dimethenamid, Dimethenamid-P, Dimetrasulfuron, Dinitramine, Dinoterb, Dinoterb-Acetate, Diphenamid, Diquat, Diquat-Dibromide, Diquat-Dichloride, Dithiopyr, Diuron, DNOC, DNOC-Ammonium, DNOC-Potassium, DNOC-Sodium, Endothal, Endothal-Diammonium, Endothal-Dipotassium, Endothal-Disodium, Epyrifenacil (S-3100), EPTC, Esprocarb, Ethalfluralin, Ethametsulfuron, Ethametsulfuron-Methyl , Ethiozine, Ethofumesate, Ethoxyfen, Ethoxyfen-Ethyl, Ethoxysulfuron, Etobenzanid, F-5231 i.e. N-[2-Chloro-4-fluoro-5-[4-(3-fluoropropyl)-4,5-dihydro-5- oxo-1H-tetrazol-1-yl]-phenyl]-ethanesulfonamide, F-7967, i.e. 3-[7-chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl -6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione, Fenoxaprop, Fenoxaprop-P, Fenoxaprop-Ethyl, Fenoxaprop-P-Ethyl, Fenoxasulfone, Fenpyrazone, Fenquinotrione, Fentrazamid, Flamprop, Flamprop- Isoproyl, Flamprop -Methyl, Flamprop-M-Isopropyl, Flamprop-M-Methyl, Flazasulfuron, Florasulam, Florpyrauxifen, Florpyrauxifen-Benzyl, Fluazifop, Fluazifop-Butyl, Fluazifop-Methyl, Fluazifop-P, Fluazifop-P-Butyl, Flucarbazone, Flucarbazone-Sodium , flucetosulfuron, fluchloraline, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazine, fluometuron, flurenol, flurenol-butyl, -dimethylammonium and -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupropanate sodium, flupyrsulfuron , Flupyrsulfuron Methyl, Flupyrsulfuron Methyl Sodium, Fluridone, Flurochloridone, Fluroxypyr, Fluroxypyr Butometyl, Fluroxypyr Meptyl, Flurtamon, Fluthiacet, Fluthiacet Methyl, Fomesafen, Fomesafen Sodium, Foramsulfuron, Foramsulfuron Sodium, Fosamine, Fosamine-Ammonium , Glufosinate, Glufosinate Ammonium, Glufosinate Sodium, L-Glufosinate Ammonium, L-Glufosinate Sodium, Glufosinate P Sodium, Glufosinate P Ammonium, Glyphosate, Glyphosate Ammonium, Glyphosate Isopropylammonium, Glyphosate Diammonium, Glyphosate dimethylammonium, Glyphosate Potassium, Glyphosate Sodium, Glyphosate Sesquinodium and Glyphosate Trimesium, H-9201, i.e. O-(2,4-dimethyl-6- nitrophenyl)-O-ethyl- isopropylphosphoramidothioate, halauxifen, halauxifen-methyl, halosafen, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop- methyl, haloxyfop-P-methyl, haloxifop - Sodium, Hexazinone, HNPC-A8169, i.e. Prop-2-yn-1-yl (2S)- 2-{3-[(5-tert-butylpyridin-2-yl)oxy]phenoxy}propanoate, HW-02 i.e. 1-(Dimethoxyphosphoryl)-ethyl-( 2,4-dichlorophenoxy)acetate, hydantocidin, imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazaquin-methyl, imazethapyr, imazethapyr-ammonium, Imazosulfuron, Indanofan, Indaziflam, Iodosulfuron, Iodosulfuron Methyl, Iodosulfuron Methyl Sodium, Ioxynil, Ioxynil Lithium, Octanoate, Potassium and Sodium, Ipfencarbazone, Isoproturon, Isouron, Isoxaben, Isoxaflutole, Karbutylate, KUH-043, i.e. 3 -({[5-(Difluoromethyl)-1-methyl-3-(trifluoromethyl)-1 H -pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazole , Ketospiradox, Ketospiradox Potassium, Lactofen, Lenacil, Linuron, MCPA, MCPA-Butotyl, -Butyl, -dimethyl-ammonium, -diolamine, -2-ethylhexyl, -ethyl, -isobutyl, isoctyl, -isopropyl, -isopropylammonium, - Methyl, Olamine, -Potassium, -Sodium and -Trolamine, MCPB, MCPB-Methyl, -Ethyl and -Sodium, Mecoprop, Mecoprop-Butotyl, Mecoprop-dimethylammonium, Mecoprop-Diolamine, Mecoprop-Etexyl, Mecoprop-Ethadyl, Mecoprop-Isoctyl , mecoprop-methyl, mecoprop-potassium, mecoprop-sodium, and mecoprop-trolamine, mecoprop-P, mecoprop-P-butotyl, -dimethylammonium, -2-ethylhexyl and -potassium, mefenacet, mefluidide, mefluidide-diolamine, mefluidide-potassium , Mesosulfuron, Mesosulfuron- Methyl, Mesosulfuron Sodium, Mesotrione, Methhabenzthiazuron, Metam, Metamifop, Metamitron, Metazachlor, Metazosulfuron, Methhabenzthiazuron, Methopyrsulfuron, Methiozoline, Methyl isothiocyanate, Metobromuron, Metolachlor, S-Metolachlor, Metosulam, Metoxuron, Metribuzin, Metsulfur on, Metsulfuron-Methyl, Molinat, Monolinuron, Monosulfuron, Monosulfuron-Methyl, MT-5950, i.e. N-[3-Chloro-4-(1-methylethyl)-phenyl]-2-methylpentanamide, NGGC-011, Napropamide, NC-310 , i.e. 4-(2,4-dichlorobenzoyl)-1-methyl-5-benzyloxypyrazole, NC-656, i.e. 3-[(Isopropylsulfonyl)methyl]-N-(5-methyl-1,3,4-oxadiazol-2-yl)-5-(trifluoromethyl)[1,2,4]triazolo-[4,3-a] Pyridine-8-carboxamide, Neburon, Nicosulfuron, Nonanoic Acid (Pelargonic Acid), Norflurazon, Oleic Acid (Fatty Acids), Orbencarb, Orthosulfamuron, Oryzalin, Oxadiargyl, Oxadiazon, Oxasulfuron, Oxaziclomefone, Oxyfluorfen, Paraquat, Paraquat Dichloride, Paraquat Dimethyl Sulfate, Pebulat, Pendimethalin, Penoxsulam, Pentachlorophenol, Pentoxazone, Pethoxamide, Petroleum Oil, Phenmedipham, Phenmedipham Ethyl, Picloram, Picloram dimethylammonium, Picloram etexyl, Picloram isoctyl, Picloram methyl, Picloram olamine, Picloram potassium, Picloram triethylammonium, Picloram Tripromin, Picloram-Trolamine, Picolinafen, Pinoxaden, Piperophos, Pretilachlor, Primisulfuron, Primisulfuron-Methyl, Prodiamine, Profoxydim, Prometon, Prometryn, Propachlor, Propanil, Propaquizafop, Propazine, Propham, Propisochlor, Propoxycarbazone, Propoxycarbazone-Sodium, Propyrisulfuron, propyzamide, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotol, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxen, pyribambenz, pyribambenz, , Pyribambambenz-propyl, pyribenzoxim, pyributicarb, pyridafole, pyrdat, pyriftalide , Pyriminobac, Pyriminobac Methyl, Pyrimisulfan, Pyrithiobac, Pyrithiobac Sodium, Pyroxasulfone, Pyroxsulam, Quinclorac, Quinclorac dimethylammonium, Quinclorac Methyl, Quinmerac, Quinoclamin, Quizalofop, Quizalofop Ethyl, Quizalofop P, Quizalofop P Ethyl, Quizalofop -P-Tefuryl, QYM201, i.e. 1-{2-chloro-3-[(3-cyclopropyl-5-hydroxy-1-methyl-1H-pyrazol-4-yl)carbonyl]-6-(trifluoromethyl)phenyl }piperidin-2-one, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, SL-261, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, , SYP-249, i.e. 1-ethoxy-3-methyl-1 -oxobut-3-en-2-yl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate, SYP-300, i.e.1-[7-Fluoro-3-oxo-4-(prop -2-yn-1-yl)-3,4-dihydro-2H-1,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidine-4,5-dione, 2,3,6-TBA , TCA (trichloroacetic acid) and its salts, e.g. TCA-ammonium, TCA-calcium, TCA-ethyl, TCA-magnesium, TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumetone, terbuthylazine, terbutryn, tetflupyrolimet, Thaxtomin, Thenylchlor, Thiazopyr, Thiencarbazone, Thiencarbazone-Methyl, Thifensulfuron, Thifensulfuron-Methyl, Thiobencarb, Tiafenacil, Tolpyralate, Topramezone, Tralkoxydim, Triafamon, Tri-allate, Triasulfuron, Triaziflam, Tribenuron, Tribenuron-Methyl, Triclopyr, Triclopyr-Butotyl, Triclopyr Choline, Triclopyr Ethyl, Triclopyr Triethylammonium, Trietazine, Trifloxysulfuron, Trifloxysulfuron Sodium, Trifludimoxazine, Trifluralin, Triflusulfuron, Triflusulfuron Methyl, Tritosulfuron, Urea Sulfate, Vernolate, XDE-848, ZJ-0862, i.e. 3,4-dichloro -N-{2-[(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}aniline, 3-(2-Chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydropyrimidin-1(2H)-yl)phenyl)-5-methyl-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester, Ethyl [(3-{2-chloro-4-fluoro-5-[ 3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]phenoxy}pyridin-2-yl)oxy]acetate, 3-chloro-2-[3- (difluoromethyl)isoxazolyl-5-yl]phenyl 5-chloropyrimidin-2-yl ether, 2-(3,4-dimethoxyphenyl)-4-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl ]-6-methylpyridazine-3(2H)-one, 2-({2-[(2-Methoxyethoxy)methyl]-6-methylpyridin-3-yl}carbonyl)cyclohexane-1,3-dione, (5-hydroxy -1-methyl-1H-pyrazol-4-yl)(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)methanone, 1-methyl-4- [(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)carbonyl]-1H-pyrazol-5-ylpropane-1-sulfonate, 4-{2 -Chloro-3-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-4-(methylsulfonyl)benzoyl}-1-methyl-1H-pyrazol-5-yl-1,3-dimethyl- 1H-pyrazole-4-carboxylate; Cyanomethyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridin-2-carboxylate, prop-2-yn-1-yl 4-amino-3- chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H- indol-6-yl)pyridine-2-carboxylate, 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indole-6-yl)pyridine-2-carboxylic acid, benzyl-4-amino - 3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, ethyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro -1H-indol-6-yl)pyridin-2-carboxylate, Methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1-isobutyryl-1H-indol-6-yl)pyridin- 2-carboxylate, methyl 6-(1-acetyl-7-fluoro-1H-indol-6-yl)-4-amino-3-chloro-5- fluoropyridine-2-carboxylate, methyl 4-amino-3-chloro-6-[1-(2,2-dimethylpropanoyl)-7-fluoro-1H-indol-6-yl]-5-fluoropyridine-2-carboxylate, Methyl 4-amino-3-chloro-5-fluoro-6-[7-fluoro-1-(methoxyacetyl)-1H-indol-6-yl]pyridine-2-carboxylate, potassium 4-amino-3-chloro- 5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridin-2-carboxylate, sodium 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indole- 6-yl)pyridine-2-carboxylate, butyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, 4-hydroxy-1 -methyl-3-[4-(trifluoromethyl)pyridin-2-yl]imidazolidin-2-one, 3-(5-tert-butyl-1,2-oxazol-3-yl)-4-hydroxy-1-methylimidazolidine -2-one, 3-[5-chloro-4-(trifluoromethyl)pyridin-2-yl]-4-hydroxy-1-methylimidazolidin-2-one, 4-hydroxy-1-methoxy-5-methyl-3- [4-(trifluoromethyl)pyridin-2-yl]imidazolidin-2-one, 6-[(2-Hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1,5-dimethyl-3-( 2-methylphenyl)quinazoline-2,4(1H,3H)-dione, 3-(2,6-dimethylphenyl)-6-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]- 1-methylquinazolin-2,4(1H,3H)-dione, 2-[2-chloro-4-(methylsulfonyl)-3-(morpholin-4-ylmethyl)benzoyl]-3-hydroxycyclohex-2-en-1- one, 1-(2-carboxyethyl)-4-(pyrimidin-2-yl)pyridazin-1-ium salt (with suitable anions such as chloride, acetate or trifluoroacetate), 1-(2-carboxyethyl)-4-(pyridazin- 3-yl)pyridazin-1-ium salt (with appropriate anions such as chloride, acetate or trifluoroacetate), 4-(pyrimidin-2-yl)-1-(2-sulfoethyl)pyridazin-1-ium salt (with appropriate anions such as chloride, acetate or trifluoroacetate), 4-(pyridazin-3-yl)-1-(2-sulfoethyl)pyridazin-1-ium salt (with appropriate anions such as chloride, acetate or trifluoroacetate), 1-(2-carboxyethyl )-4-(1,3-thiazol-2-yl)pyridazin-1-ium salt (with appropriate anions such as chloride, acetate or trifluoroacetate), 1-(2-carboxyethyl)-4-(1,3,4- thiadiazol-2-yl)pyridazin-1-ium salt (with suitable anions such as chloride, acetate or trifluoroacetate). Examples of growth regulators and plant stimulants as mixing partners are: abscisic acid and related analogues [e.g. (2Z,4E)-5-[6-Ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoic acid, methyl-(2Z ,4E)-5-[6-ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoate, (2Z,4E)- 3-ethyl-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)penta-2,4-dienoic acid, (2E,4E)-5-(1- hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-dienoic acid, methyl (2E,4E)-5-(1-hydroxy- 2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-dienoate, (2Z,4E)-5-(2-hydroxy-1,3 - dimethyl-5-oxobicyclo[4.1.0]hept-3-en-2-yl)-3-methylpenta-2,4-dienoic acid], acibenzenear, acibenzenear-S-methyl, S-adenosylhomocysteine, allantoin, 2-aminoethoxyvinylglycine (AVG), aminooxyacetic acid and related esters [e.g. (Isopropylidene)-aminooxyacetic acid 2-(methoxy)-2-oxoethyl ester, (Isopropylidene)-aminooxyacetic acid 2-(hexyloxy)-2-oxoethyl ester, (cyclohexylidene)-aminooxyacetic acid 2-(isopropyloxy)-2-oxoethyl ester], 1 -aminocycloprop-1-ylcarboxylic acid N-methyl-1-aminocyclopropyl-1-carboxylic acid, 1-aminocyclopropyl-1-carboxamide, substituted 1-aminocyclopropyl-1-carboxylic acid derivatives as described in DE3335514, EP30287, DE2906507 or US5123951, 1-aminocyclopropyl -1-hydroxamic acid, 5-aminolevulinic acid, Ancymidol, 6-Benzylaminopurine, Bikinin, Brassinolide, Brassinolide-ethyl, L-Canalin, Catechin and catechins (e.g. (2S,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3 ,5,7-triol), chitooligosaccharides (CO; COs differ from LCOs in that they lack the fatty acid side chain characteristic of LCOs. COs, sometimes referred to as N-acetylchitooligosaccharides, are also composed of GlcNAc units but have side chains , by which they are distinguished from chitin molecules [(C8H13NO5)n, CAS No.1398-61-4] and chitosan molecules [(C5H11NO4)n, CAS No.9012-76-4]), Chitin-Like Compounds, Chlormequat chloride, Cloprop, Cyclanilide, 3-(Cycloprop-1-enyl)propionic acid, 1-[2-(4-Cyano-3, 5-dicyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, 1-[2-(4-cyano-3-cyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, 1-cyclopropenylmethanol, daminozide, dazomet, dazomet sodium, n-decanol, dikegulac, dikegulac sodium, endothal, Endothal-di-potassium, -di-sodium, and mono(N,N-dimethylalkylammonium), ethephon, 1-ethylcyclopropene, flumetralin, flurenol, flurenol-butyl, flurenol-methyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indole-3 -acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, jasmonic acid ester or other derivatives (e.g. jasmonic acid methyl ester, jasmonic acid ethyl ester), lipochitooligosaccharides (LCO, in some cases also as symbiotic nodulation signals (Nod or Nod factors) or as Referred to as Myc factors, they consist of an oligosaccharide backbone of β-1,4-linked N-acetyl-D-glucosamine residues (“GlcNAc”) with an N-linked fatty acid side chain fused to the non-reducing end. As can be seen from the literature, LCOs differ in the number of GlcNAc units in the backbone structure, in the length and degree of saturation of the fatty acid chain, and in the substitution of the reducing and non-reducing sugar units), linoleic acid or its derivatives, linolenic acid or their derivatives, maleic hydrazide, mepiquat chloride, mepiquat pentaborate, 1-methylcyclopropene, 3-methylcyclopropene, methoxyvinylglycine (MVG), 3'-methylabscisic acid, 1-(4-methylphenyl)-N-(2-oxo-1-propyl-1,2, 3,4-tetrahydroquinolin-6-yl)methanesulfonamide and related substituted (tetrahydroquinolin-6-yl)methanesulfonamides, (3E,3αR,8βS)-3-({[(2R)-4-methyl-5-oxo-2, 5-dihydrofuran-2-yl]oxy}methylene)-3,3a,4,8b-tetrahydro-2H-indeno[1,2-b]furan-2-one and related lactones as described in EP2248421, 2- (1-Naphthyl)acetamide, 1-Naphthylacetic acid, 2-Naphthyloxyacetic acid, Nitrophenolate mixture, 4-Oxo-4[(2-phenylethyl)amino]butyric acid, Paclobutrazol, 4-Phenylbutyric acid and its salts (e.g. Sodium 4-phenylbutanoate, potassium 4-phenylbutanoate), phenylalanine, N-phenylphthalamic acid, prohexadione, prohexadione calcium, , 1-n-propylcyclopropene, putrescine, prohydrojasmone, rhizobitoxin, salicylic acid and methyl salicylate, sarcosine, sodium cycloprop-1-ene 1-yl acetate, sodium cycloprop-2-en-1-yl acetate, sodium 3-(cycloprop-2-en-1-yl)propanoate, sodium 3-(cycloprop-1-en-1-yl)propanoate, sidefungin, Spermidine, Spermine, Strigolactone, Tecnazene, Thidiazuron, Triacontanol, Trinexapac, Trinexapac-ethyl, Tryptophan, Tsitodef, Uniconazole, Uniconazole-P, 2-Fluoro-N-(3-methoxyphenyl)-9H-purin-6-amine. Also suitable as combination partners for the compounds of the formula (I) according to the invention are, for example, the following safeners: S1) Compounds from the group of heterocyclic carboxylic acid derivatives of the formula (S1):
Figure imgf000122_0001
where the symbols and indices have the following meanings: nA is a natural number from 0 to 5, preferably from 0 to 3; RA 1 is halogen, (C1-C4)-alkyl, (C1-C4)alkoxy, nitro or (C1-C4)haloalkyl;
Figure imgf000122_0002
WA is an unsubstituted or substituted divalent heterocyclic radical from the group of partially saturated or aromatic five-membered heterocycles having 1 to 3 hetero ring atoms from the group N and O, where at least one N atom and at most one O atom is contained in the ring, preferably a radical from the group (WA 1) to (WA 5), mA is 0 or 1; RA 2 is ORA 3, SRA 3 or NOA 3RA 4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected to the carbonyl group in (S1) via the N atom and is unsubstituted or by residues from the group (C1-C4)-alkyl, (C1-C4)-alkoxy or optionally substituted phenyl, preferably a radical of the formula ORA 3, NHRA 4 or N(CH3)2, in particular the formula ORA 3; RA 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 carbon atoms; RA 4 is hydrogen, (C1-C6)-alkyl, (C1-C6)-alkoxy or substituted or unsubstituted phenyl; RA 5 is H, (C1-C8th)-alkyl, (C1-C8th)-haloalkyl, (C1-C4)-alkoxy-(C1-C8th)-alkyl, cyano or COORA 9, where RA 9 hydrogen, (C1-C8th)-alkyl, (C1-C8th)-haloalkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-hydroxyalkyl, (C3-C12)-cycloalkyl or tris-(C1-C4)-alkylsilyl; RA 6, RA 7, RA 8th are independently hydrogen, (C1-C8th)-alkyl, (C1-C8th)-haloalkyl, (C3- C12)-cycloalkyl or substituted or unsubstituted phenyl; RA 10 stands for H, (C3-C12)-cycloalkyl, substituted or unsubstituted phenyl, or substituted or unsubstituted heteroaryl; preferably: S1a) compounds of the dichlorophenylpyrazoline-3-carboxylic acid type (S1a), preferably compounds such as 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylic acid, 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5 -methyl-2-pyrazoline-3-carboxylic acid ethyl ester (S1-1) ("mefenpyr-diethyl"), and related compounds as described in WO-A-91/07874; S1b) Derivatives of dichlorophenylpyrazole carboxylic acid (S1b), preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-methylpyrazole-3-carboxylate (S1-2), 1-(2,4-dichlorophenyl)-5-isopropylpyrazole-3- ethyl carboxylate (S1-3), ethyl 1-(2,4-dichlorophenyl)-5-(1,1-dimethylethyl)pyrazole-3-carboxylate (S1-4) and related compounds as described in EP -A-333131 and EP-A-269806; S1c) Derivatives of 1,5-diphenylpyrazole-3-carboxylic acid (S1c), preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-phenylpyrazole-3-carboxylate (S1-5), methyl 1-(2-chlorophenyl)-5-phenylpyrazole-3-carboxylate (S1-6) and related ones compounds such as are described in EP-A-268554; S1d) compounds of the triazole carboxylic acid type (S1i.e), preferably compounds such as fenchlorazole (ethyl ester), i.e. ethyl 1-(2,4-dichlorophenyl)-5-trichloromethyl-(1H)-1,2,4-triazole-3-carboxylate (S1-7), and related compounds as described in EP-A-174562 and EP-A-346620; S1e) Compounds of the 5-benzyl- or 5-phenyl-2-isoxazoline-3-carboxylic acid or 5,5-diphenyl-2-isoxazoline-3-carboxylic acid type (S1e), preferably compounds such as ethyl 5-(2,4-dichlorobenzyl)-2-isoxazoline-3-carboxylate (S1-8) or ethyl 5-phenyl-2-isoxazoline-3-carboxylate (S1-9) and related compounds such as them are described in WO-A-91/08202, or 5,5-diphenyl-2-isoxazoline-3-carboxylic acid (S1-10) or ethyl 5,5-diphenyl-2-isoxazoline-3-carboxylate (S1-11) ("Isoxadifen-ethyl") or -n-propyl ester (S1-12) or ethyl 5-(4-fluorophenyl)-5-phenyl-2-isoxazoline-3-carboxylate (S1-13) as described in patent application WO -A-95/07897. S1f) compounds of the triazolyloxyacetic acid derivative type (S1f), preferably compounds such as methyl {[1,5-bis(4-chloro-2-fluorophenyl)-1H-1,2,4-triazol-3-yl]oxy}acetate (S1-14) or {[1 ,5-bis(4-chloro-2-fluorophenyl)-1H-1,2,4-triazol-3-yl]oxy}acetic acid (S1-15) or methyl-{[5-(4-chloro-2- fluorophenyl)-1-(2,4-difluorophenyl)-1H-1,2,4-triazol-3-yl]oxy}acetate (S1-16) or {[5-(4-chloro-2-fluorophenyl)- 1-(2,4-difluorophenyl)-1H-1,2,4-triazol-3-yl]oxy}acetic acid (S1-17) or methyl {[1-(4-chloro-2-fluorophenyl)-5 -(2,4-difluorophenyl)-1H-1,2,4-triazol-3-yl]oxy}acetate (S1-18) or {[1-(4-chloro-2-fluorophenyl)-5-(2 ,4-difluorophenyl)-1H-1,2,4-triazol-3-yl]oxy}acetic acid (S1-19), as described in patent application WO2021105101 S2) quinoline derivatives of the formula (S2),
Figure imgf000124_0001
where the symbols and indices have the following meanings: RB 1 is halogen, (C1-C4)-alkyl, (C1-C4)-alkoxy, nitro or (C1-C4)-haloalkyl; nB is a natural number from 0 to 5, preferably 0 to 3; RB 2 is ORB 3, SRB 3 or NOB 3RB 4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected to the carbonyl group in (S2) via the N atom and is unsubstituted or by residues from the group (C1-C4)-alkyl, (C1-C4)-alkoxy or optionally substituted phenyl, preferably a radical of the formula ORB 3, NHRB 4 or N(CH3)2, in particular the formula ORB 3; RB 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 carbon atoms; RB 4 is hydrogen, (C1-C6)-alkyl, (C1-C6)-alkoxy or substituted or unsubstituted phenyl; TB is a (C1 or c2)-alkanediyl chain which is unsubstituted or with one or two (C1-C4)- alkyl radicals or with [(C1-C3)-alkoxy]carbonyl is substituted; preferably: S2a) compounds of the 8-quinolinoxyacetic acid type (S2a), preferably (5-chloro-8-quinolinoxy)acetic acid (1-methylhexyl) ester ("Cloquintocet-mexyl") (S2-1), (5-chloro-8-quinolinoxy)acetic acid (1,3- dimethyl-but-1-yl)-ester (S2-2), (5-Chloro-8-quinolinoxy)acetic acid 4-allyl-oxy-butyl ester (S2-3), (5-Chloro-8-quinolinoxy)acetic acid 1-allyloxy-prop-2-yl ester (S2-4), (5-Chloro-8-quinolinoxy)acetic acid ethyl ester (S2-5), (5-Chloro-8-quinolinoxy )methyl acetate (S2-6), allyl (5-chloro-8-quinolinoxy)acetate (S2-7), 2-(2-propylideneiminoxy)-1-ethyl (5-chloro-8-quinolinoxy)acetate (S2 -8), (5-Chloro-8-quinolinoxy)acetic acid 2-oxo-prop-1-yl ester (S2-9) and related compounds as described in EP-A-86750, EP-A-94349 and EP-A- A-191736 or EP-A-0492366, and (5-chloro-8-quinolinoxy)acetic acid (S2-10), its hydrates and salts, for example its lithium, sodium, potassium, calcium, magnesium, aluminum, iron, ammonium, quaternary ammonium, sulfonium or phosphonium salts as described in WO-A-2002/34048; S2b) Compounds of the (5-chloro-8-quinolinoxy)malonic acid type (S2b), preferably compounds such as diethyl (5-chloro-8-quinolinoxy)malonate, diallyl (5-chloro-8-quinolinoxy)malonate, methyl ethyl (5-chloro-8-quinolinoxy)malonate and related compounds as described in EP A-0582198. S3) Compounds of formula (S3)
Figure imgf000125_0001
where the symbols and indices have the following meanings: RC 1 is (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C2-C4)-alkenyl, (C2-C4)-haloalkenyl, (C3-C7)-cycloalkyl, preferably dichloromethyl; RC 2, RC 3 are identical or different hydrogen, (C1-C4)-alkyl, (C2-C4)-alkenyl, (C2-C4)-alkynyl, (C1-C4)-haloalkyl, (C2-C4)-haloalkenyl, (C1-C4)-alkylcarbamoyl-(C1-C4)-alkyl, (C2-C4)- alkenylcarbamoyl-(C1-C4)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, dioxolanyl-(C1-C4)-alkyl, thiazolyl, furyl, furylalkyl, thienyl, piperidyl, substituted or unsubstituted phenyl, or RC 2 and RC 3 together form a substituted or unsubstituted heterocyclic ring, preferably an oxazolidine, thiazolidine, piperidine, morpholine, hexahydropyrimidine or benzoxazine ring; preferably: active ingredients of the dichloroacetamide type (S3), which are often used as pre-emergence safeners (soil-effective safeners), such as e.g. B. "Dichlormide" (N,N-diallyl-2,2-dichloroacetamide) (S3-1), "R-29148" (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from Stauffer (S3-2), "R-28725" (3-dichloroacetyl-2,2,-dimethyl- 1,3-oxazolidine) from Stauffer (S3-3), "Benoxacor" (4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4), "PPG- 1292" (N-allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloroacetamide) from PPG Industries (S3-5), "DKA-24" (N-allyl-N-[ (allylaminocarbonyl)methyl]-dichloroacetamide) from Sagro-Chem (S3-6), "AD-67" or "MON 4660" (3-dichloroacetyl-1-oxa-3-aza-spiro[4,5]decane) from Nitrokemia or Monsanto (S3-7), "TI-35" (1-Dichloroacetyl-azepan) from TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonon) or "BAS145138" or "LAB145138" (S3-9) ((RS)-1-dichloroacetyl-3,3,8a-trimethylperhydropyrrolo[1,2-a]pyrimidin-6-one) from BASF, "Furilazol" or "MON 13900" ((RS) -3-Dichloroacetyl-5-(2-furyl)-2,2-dimethyloxazolidine) (S3-10), as well as its (R)-isomer (S3-11). S4) Compounds from the class of the acylsulfonamides (S4): S4a) N-acylsulfonamides of formula (S4a) and their salts as described in WO-A-97/45016,
Figure imgf000126_0001
wherein RA 1 (C1-C6)-alkyl, (C3-C6)-Cycloalkyl, where the last 2 radicals are replaced by vA Substituents from the group halogen, (C1-C4)-alkoxy, (C1-C6)-haloalkoxy and (C1- C4)-alkylthio and in the case of cyclic radicals also by (C1-C4)-alkyl and (C1-C4)-haloalkyl are substituted; RA 2 halogen, (C1-C4)-alkyl, (C1-C4)-alkoxy, CF3; mA 1 or 2; vA is 0, 1, 2 or 3; S4b) Compounds of the 4-(benzoylsulfamoyl)benzamide type of the formula (S4b) and their salts, as described in WO-A-99/16744,
Figure imgf000127_0001
wherein RB 1, RB 2 independently hydrogen, (C1-C6)-alkyl, (C3-C6)-cycloalkyl, (C3-C6)-alkenyl, (C3-C6)-alkynyl, RB 3 halogen, (C1-C4)-alkyl, (C1-C4)-haloalkyl or (C1-C4)-alkoxy and mB is 1 or 2, e.g. those in which RB 1 = cyclopropyl, RB 2 = hydrogen and (RB 3) = 2-OMe ("Cyprosulfamide", S4-1), RB 1 = cyclopropyl, RB 2 = hydrogen and (RB 3) = 5-Cl-2-OMe is (S4-2), RB 1 = ethyl, RB 2 = hydrogen and (RB 3) = 2-OMe is (S4-3), RB 1 = isopropyl, RB 2 = hydrogen and (RB 3) = 5-Cl-2-OMe is (S4-4) and RB 1 = isopropyl, RB 2 = hydrogen and (RB 3) = 2-OMe (S4-5); S4c) Compounds from the class of benzoylsulfamoylphenylureas of the formula (S4c), as described in EP-A-365484,
Figure imgf000127_0002
wherein RC 1, RC 2 independently hydrogen, (C1-C8th)-alkyl, (C3-C8th)-cycloalkyl, (C3- C6)-alkenyl, (C3-C6)-alkynyl, RC 3 halogen, (C1-C4)-alkyl, (C1-C4)-alkoxy, CF3 and mC is 1 or 2; for example 1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3-methylurea, 1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylurea, 1-[4-(N-4 ,5-dimethylbenzoylsulfamoyl)phenyl]-3-methylurea; S4i.e) Compounds of the N-phenylsulfonylterephthalamide type of the formula (S4i.e) and their salts, which are known, for example, from CN 101838227,
Figure imgf000128_0001
wherein RD 4 halogen, (C1-C4)-alkyl, (C1-C4)-alkoxy, CF3; mD 1 or 2; RD 5 hydrogen, (C1-C6)-alkyl, (C3-C6)-cycloalkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C5- C6)-cycloalkenyl. S5) Active substances from the class of hydroxyaromatics and aromatic-aliphatic carboxylic acid derivatives (S5), e.g , 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001. S6) Active substances from the class of 1,2-dihydroquinoxalin-2-ones (S6), e.g. 1-methyl-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, 1-methyl-3-( 2-thienyl)-1,2-dihydro-quinoxaline-2-thione, 1-(2-aminoethyl)-3-(2-thienyl)-1,2-dihydro-quinoxalin-2-one hydrochloride, 1-( 2-Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydro-quinoxalin-2-one, as described in WO-A-2005/112630. S7) Compounds from the class of diphenylmethoxyacetic acid derivatives (S7), e.g. methyl diphenylmethoxyacetate (CAS Reg. No. 41858-19-9) (S7-1), Diphenylmethoxyacetic acid ethyl ester or diphenylmethoxyacetic acid as described in WO-A-98/38856. S8) compounds of the formula (S8) as described in WO-A-98/27049,
Figure imgf000129_0001
where the symbols and indices have the following meanings: RD 1 is halogen, (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C1-C4)-alkoxy, (C1-C4)-haloalkoxy, RD 2 is hydrogen or (C1-C4)-alkyl, RD 3 is hydrogen, (C1-C8th)-alkyl, (C2-C4)-alkenyl, (C2-C4)-alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of halogen and alkoxy; or their salts, nD is an integer from 0 to 2. S9) Active substances from the class of 3-(5-tetrazolylcarbonyl)-2-quinolones (S9), e.g. 1,2-dihydro-4-hydroxy-1-ethyl-3-(5 -tetrazolylcarbonyl)-2-quinolone (CAS Reg. No.: 219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-quinolone ( CAS Reg No. 95855-00-8) as described in WO-A-1999/000020. S10) Compounds of formulas (S10a) or (S10b) as described in WO-A-2007/023719 and WO-A-2007/023764, wherein
Figure imgf000129_0002
RE 1 halogen, (C1-C4)-alkyl, methoxy, nitro, cyano, CF3, OCF3 YE, ZE independently O or S, nE an integer from 0 to 4, RE 2 (C1-C16)-alkyl, (C2-C6)-alkenyl, (C3-C6)-cycloalkyl, aryl; benzyl, halobenzyl, RE 3 hydrogen or (C1-C6)-alkyl. S11) Active substances of the type of oxyimino compounds (S11), which are known as seed dressings, such as. B. "Oxabetrinil" ((Z)-1,3-dioxolan-2-ylmethoxyimino(phenyl)acetonitrile) (S11-1) known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim" (1- (4-Chlorophenyl)-2,2,2-trifluoro-1-ethanone-O-(1,3-dioxolan-2-ylmethyl)-oxime) (S11-2) used as a seed dressing safener for sorghum against damage from metolachlor, and "Cyometrinil" or "CGA-43089" ((Z)-cyanomethoxyimino(phenyl)acetonitrile) (S11-3), which is known as a seed dressing safener for sorghum against damage from metolachlor. S12) Active substances from the class of isothiochromanone (S12), such as methyl [(3-oxo-1H-2-benzothiopyran-4(3H)-ylidene)methoxy]acetate (CAS Reg. No. 205121-04-6 ) (S12-1) and related compounds from WO-A-1998/13361. S13) One or more compounds from group (S13): "Naphthalic anhydride" (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), known as a seed dressing safener for corn against damage from thiocarbamate herbicides, "Fenclorim" (4.6 -Dichloro-2-phenylpyrimidine) (S13-2), known as a safener for pretilachlor in seeded rice, "Flurazole" (benzyl 2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S13 -3) known as a seed dressing safener for millet against damage from alachlor and metolachlor, "CL 304415" (CAS Reg.No.31541-57-8) (4-carboxy-3,4-dihydro-2H- 1-benzopyran-4-acetic acid) (S13-4) from American Cyanamid, which is known as a safener for corn against damage from imidazolinones, "MG 191" (CAS Reg. No. 96420-72-3) (2- dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as a safener for corn, "MG 838" (CAS-Reg.Nr.133993-74-5) (2-propenyl 1-oxa-4-azaspiro[4.5]decane-4-carbodithioate) (S13-6) from Nitrokemia "Disulfoton" (O ,O-Diethyl S-2-ethylthioethyl phosphorodithioate) (S13-7), "Dietholate" (O,O-Diethyl-O-phenylphosphorothioate) (S13-8), "Mephenate" (4-Chlorophenyl-methylcarbamate) (S13- 9). S14) active ingredients which, in addition to having a herbicidal action against harmful plants, also have a safener effect on crop plants such as rice, such as, for. B. "Dimepiperate" or "MY-93" (S-1-methyl-1-phenylethyl-piperidine-1-carbothioate), which is known as a safener for rice against damage from the herbicide Molinate, "Daimuron" or "SK 23" (1-(1-Methyl-1-phenylethyl)-3-p-tolyl-urea), known as a safener for rice against damage from the herbicide imazosulfuron, "Cumyluron" = "JC-940" (3-(2- chlorophenylmethyl)-1-(1-methyl-1-phenylethyl)urea, see JP-A-60087254) known as a safener for rice against damage from some herbicides, "methoxyphenone" or "NK 049" (3.3 '-dimethyl-4-methoxy-benzophenone) known as a safener for rice against damage from some herbicides, "CSB" (1-bromo-4-(chloromethylsulfonyl)benzene) from Kumiai, (CAS Reg.No.54091- 06-4), which is known as a safener against damage from some herbicides in rice. S15) compounds of the formula (S15) or their tautomers,
Figure imgf000131_0001
as described in WO-A-2008/131861 and WO-A-2008/131860, wherein RH 1 one (C1-C6)-haloalkyl radical and RH 2 is hydrogen or halogen and RH 3, RH 4 independently hydrogen, (C1-C16)-alkyl, (C2-C16)-alkenyl or (C2-C16)-alkynyl, each of the last-mentioned 3 radicals being unsubstituted or substituted by one or more radicals from the group consisting of halogen, hydroxy, cyano, (C1-C4)-alkoxy, (C1-C4)-haloalkoxy, (C1-C4)-alkylthio, (C1-C4)-alkylamino, di[(C1-C4)-alkyl]-amino, [(C1-C4)-alkoxy]-carbonyl, [(C1-C4)-haloalkoxy]-carbonyl, (C3-C6)-cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted and heterocyclyl which is unsubstituted or substituted, or (C3-C6)-cycloalkyl, (C4-C6)-cycloalkenyl, (C3-C6)-cycloalkyl fused at one side of the ring with a 4 to 6-membered saturated or unsaturated carbocyclic ring, or (C4-C6)-cycloalkenyl fused at one side of the ring to a 4 to 6-membered saturated or unsaturated carbocyclic ring, each of the latter 4 radicals being unsubstituted or substituted by one or more radicals from the group halo, hydroxy, cyano, (C1-C4)-alkyl, (C1-C4)-haloalkyl, (C1-C4)-alkoxy, (C1-C4)-haloalkoxy, (C1-C4)-alkylthio, (C1-C4)-alkylamino, di[(C1-C4)-alkyl]-amino, [(C1-C4)-alkoxy]-carbonyl, [(C1-C4)-haloalkoxy]-carbonyl, (C3-C6)-cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted and heterocyclyl which is unsubstituted or substituted, or RH 3 (C1-C4)-alkoxy, (C2-C4)-alkenyloxy, (C2-C6)-alkynyloxy or (C2-C4)-haloalkoxy and RH 4 hydrogen or (C1-C4)-alkyl or RH 3 and RH 4 together with the directly bonded N atom, a four- to eight-membered heterocyclic ring which, in addition to the N atom, can also contain further hetero ring atoms, preferably up to two further hetero ring atoms from the group N, O and S and which is unsubstituted or by one or more Residues from the group halogen, cyano, nitro, (C1- C4)-alkyl, (C1-C4)-haloalkyl, (C1-C4)-alkoxy, (C1-C4)-haloalkoxy and (C1-C4)-alkylthio is substituted. S16) active substances which are primarily used as herbicides but also have a safener effect on crop plants, e.g. B. (2,4-dichlorophenoxy)acetic acid (2,4-D), (4-chlorophenoxy)acetic acid, (R,S)-2-(4-chloro-o-tolyloxy)propionic acid (Mecoprop), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), (4-chloro-o-tolyloxy)acetic acid (MCPA), 4-(4-chloro-o-tolyloxy)butyric acid, 4-(4- chlorophenoxy)butyric acid, 3,6-dichloro-2-methoxybenzoic acid (dicamba), 1-(ethoxycarbonyl)ethyl 3,6-dichloro-2-methoxybenzoate (lactidichloro-ethyl). Preferred safeners in combination with the compounds of the formula (I) according to the invention and/or their salts, in particular with the compounds of the formulas (I.1-1) to (I.48-500) and/or their salts are: cloquintocet-mexyl , Cyprosulfamide, fenchlorazole ethyl ester, isoxadifen-ethyl, mefenpyr-diethyl, fenclorim, cumyluron, S4-1 and S4-5, and particularly preferred safeners are: cloquintocet-mexyl, cyprosulfamide, isoxadifen-ethyl and mefenpyr-diethyl. Biological Examples: The following abbreviations are used for the crop and harmful plants listed in the following tables: ABUTH: Abutilon theophrasti ALOMY: Alopecurus myosuroides AMARE: Amaranthus retroflexus AVEFA: Avena Fatua BRSNS: Brassica napus DIGSA: Digitaria sanguinalis ECCHG: Echinochloa crus-galli GLXMA: Glycine max KCHSC: Kochia scoparia LOLRI: Lolium rigidum MATIN: Matricaria inodora ORYZA: Oryza sativa PHPBU: Pharbitis purpurea POLCO: Polygonum convolvulus SETVI: Setaria viridis VERPE: Veronica persica VIOTR: Viola tricolor TRZAS: Triticum aestivum ZEAMX: Zea mays A. Post-emergence herbicidal action Seeds of monocotyledonous and dicotyledonous weed plants were placed in sandy loam soil in plastic or wood fiber pots, covered with soil and grown in the greenhouse under controlled growth conditions. 2 to 3 weeks after sowing, the test plants were treated at the one-leaf stage. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), were then sprayed onto the green parts of the plants as an aqueous suspension or emulsion with the addition of 0.5% additive at a water application rate of the equivalent of 600 l/ha. After the test plants had been standing for about 3 weeks in the greenhouse under optimal growth conditions, the effect of the preparations was scored visually in comparison with untreated controls. For example, 100% activity = plants have died, 0% activity = like control plants. Tables A1 to A13 below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and at an application rate corresponding to 20 g/ha and lower, which were obtained according to the test procedure mentioned above. Table A1a: Post-emergence effect at 1.25 g/ha against ABUTH in %
Figure imgf000134_0001
Figure imgf000135_0001
Figure imgf000136_0001
Tabelle A1b: Nachauflaufwirkung bei 5 g/ha gegen ABUTH in %
Figure imgf000136_0002
Figure imgf000137_0001
Figure imgf000138_0001
Figure imgf000136_0001
Table A1b: Post-emergence effect at 5 g/ha against ABUTH in %
Figure imgf000136_0002
Figure imgf000137_0001
Figure imgf000138_0001
Figure imgf000139_0001
Tabelle A1c: Nachauflaufwirkung bei 20 g/ha gegen ABUTH in %
Figure imgf000139_0002
Figure imgf000140_0001
Figure imgf000141_0001
Tabelle A2a: Nachauflaufwirkung bei 5 g/ha gegen ALOMYin %
Figure imgf000142_0001
Figure imgf000139_0001
Table A1c: Post-emergence effect at 20 g/ha against ABUTH in %
Figure imgf000139_0002
Figure imgf000140_0001
Figure imgf000141_0001
Table A2a: Post-emergence effect at 5 g/ha against ALOMYin %
Figure imgf000142_0001
Figure imgf000143_0002
Tabelle A2b: Nachauflaufwirkung bei 20 g/ha gegen ALOMY in %
Figure imgf000143_0001
Figure imgf000144_0001
Figure imgf000143_0002
Table A2b: Post-emergence effect at 20 g/ha against ALOMY in %
Figure imgf000143_0001
Figure imgf000144_0001
Figure imgf000145_0001
Tabelle A3a: Nachauflaufwirkung bei 1,25 g/ha gegen AMARE in %
Figure imgf000145_0002
Figure imgf000146_0001
Figure imgf000147_0001
Figure imgf000145_0001
Table A3a: Post-emergence effect at 1.25 g/ha against AMARE in %
Figure imgf000145_0002
Figure imgf000146_0001
Figure imgf000147_0001
Figure imgf000148_0001
Tabelle A3b: Nachauflaufwirkung bei 5 g/ha gegen AMARE in %
Figure imgf000148_0002
Figure imgf000149_0001
Figure imgf000150_0001
Tabelle A3c: Nachauflaufwirkung bei 20 g/ha gegen AMARE in %
Figure imgf000151_0001
Figure imgf000152_0001
Figure imgf000148_0001
Table A3b: Post-emergence effect at 5 g/ha against AMARE in %
Figure imgf000148_0002
Figure imgf000149_0001
Figure imgf000150_0001
Table A3c: Post-emergence effect at 20 g/ha against AMARE in %
Figure imgf000151_0001
Figure imgf000152_0001
Figure imgf000153_0001
Tabelle A4a: Nachauflaufwirkung bei 1,25 g/ha gegen DIGSA in %
Figure imgf000153_0002
Figure imgf000153_0001
Table A4a: Post-emergence effect at 1.25 g/ha against DIGSA in %
Figure imgf000153_0002
Figure imgf000154_0001
Tabelle A4b: Nachauflaufwirkung bei 5 g/ha gegen DIGSA in %
Figure imgf000154_0002
Figure imgf000154_0001
Table A4b: Post-emergence effect at 5 g/ha against DIGSA in %
Figure imgf000154_0002
Figure imgf000155_0001
Tabelle A4c: Nachauflaufwirkung bei 20 g/ha gegen DIGSA in %
Figure imgf000155_0002
Figure imgf000156_0001
Figure imgf000157_0001
Figure imgf000158_0001
Tabelle A5a: Nachauflaufwirkung bei 1,25 g/ha gegen ECHCG in %
Figure imgf000158_0002
Tabelle A5b: Nachauflaufwirkung bei 5 g/ha gegen ECHCG in %
Figure imgf000158_0003
Figure imgf000159_0001
Figure imgf000155_0001
Table A4c: Post-emergence effect at 20 g/ha against DIGSA in %
Figure imgf000155_0002
Figure imgf000156_0001
Figure imgf000157_0001
Figure imgf000158_0001
Table A5a: Post-emergence effect at 1.25 g/ha against ECHCG in %
Figure imgf000158_0002
Table A5b: Post-emergence effect at 5 g/ha against ECCHG in %
Figure imgf000158_0003
Figure imgf000159_0001
Figure imgf000160_0001
Tabelle A5c: Nachauflaufwirkung bei 20 g/ha gegen ECHCG in %
Figure imgf000160_0002
Figure imgf000161_0001
Figure imgf000162_0001
Figure imgf000160_0001
Table A5c: Post-emergence effect at 20 g/ha against ECHCG in %
Figure imgf000160_0002
Figure imgf000161_0001
Figure imgf000162_0001
Figure imgf000163_0001
Tabelle A6a: Nachauflaufwirkung bei 20 g/ha gegen LOLRI in %
Figure imgf000163_0002
Figure imgf000164_0001
Tabelle A7a: Nachauflaufwirkung bei 1,25 g/ha gegen MATIN in %
Figure imgf000165_0001
Tabelle A7b: Nachauflaufwirkung bei 5 g/ha gegen MATIN in %
Figure imgf000165_0002
Figure imgf000166_0001
Figure imgf000163_0001
Table A6a: Post-emergence effect at 20 g/ha against LOLRI in %
Figure imgf000163_0002
Figure imgf000164_0001
Table A7a: Post-emergence effect at 1.25 g/ha against MATIN in %
Figure imgf000165_0001
Table A7b: Post-emergence effect at 5 g/ha against MATIN in %
Figure imgf000165_0002
Figure imgf000166_0001
Figure imgf000167_0001
Tabelle A7c: Nachauflaufwirkung bei 20 g/ha gegen MATIN in %
Figure imgf000167_0002
Figure imgf000168_0001
Figure imgf000169_0001
Figure imgf000167_0001
Table A7c: Post-emergence effect at 20 g/ha against MATIN in %
Figure imgf000167_0002
Figure imgf000168_0001
Figure imgf000169_0001
Figure imgf000170_0001
Tabelle A8a: Nachauflaufwirkung bei 1,25 g/ha gegen PHBPU in %
Figure imgf000170_0002
Figure imgf000171_0001
Tabelle A8b: Nachauflaufwirkung bei 5 g/ha gegen PHBPU in %
Figure imgf000172_0001
Figure imgf000173_0001
Figure imgf000170_0001
Table A8a: Post-emergence effect at 1.25 g/ha against PHBPU in %
Figure imgf000170_0002
Figure imgf000171_0001
Table A8b: Post-emergence effect at 5 g/ha against PHBPU in %
Figure imgf000172_0001
Figure imgf000173_0001
Figure imgf000174_0001
Tabelle A8c: Nachauflaufwirkung bei 20 g/ha gegen PHBPU in %
Figure imgf000174_0002
Figure imgf000175_0001
Figure imgf000176_0001
Tabelle A9a: Nachauflaufwirkung bei 1,25 g/ha gegen POLCO in %
Figure imgf000177_0001
Tabelle A9b: Nachauflaufwirkung bei 5 g/ha gegen POLCO in %
Figure imgf000177_0002
Figure imgf000178_0001
Figure imgf000174_0001
Table A8c: Post-emergence effect at 20 g/ha against PHBPU in %
Figure imgf000174_0002
Figure imgf000175_0001
Figure imgf000176_0001
Table A9a: Post-emergence effect at 1.25 g/ha against POLCO in %
Figure imgf000177_0001
Table A9b: Post-emergence effect at 5 g/ha against POLCO in %
Figure imgf000177_0002
Figure imgf000178_0001
Figure imgf000179_0001
Tabelle A9c: Nachauflaufwirkung bei 20 g/ha gegen POLCO in %
Figure imgf000179_0002
Figure imgf000180_0001
Figure imgf000181_0001
Figure imgf000179_0001
Table A9c: Post-emergence effect at 20 g/ha against POLCO in %
Figure imgf000179_0002
Figure imgf000180_0001
Figure imgf000181_0001
Figure imgf000182_0001
Tabelle A10a: Nachauflaufwirkung bei 1,25 g/ha gegen SETVI in %
Figure imgf000182_0002
Figure imgf000183_0001
Tabelle A10b: Nachauflaufwirkung bei 5 g/ha gegen SETVI in %
Figure imgf000184_0001
Figure imgf000185_0001
Figure imgf000182_0001
Table A10a: Post-emergence effect at 1.25 g/ha against SETVI in %
Figure imgf000182_0002
Figure imgf000183_0001
Table A10b: Post-emergence effect at 5 g/ha against SETVI in %
Figure imgf000184_0001
Figure imgf000185_0001
Figure imgf000186_0001
Tabelle A10c: Nachauflaufwirkung bei 20 g/ha gegen SETVI in %
Figure imgf000186_0002
Figure imgf000187_0001
Figure imgf000188_0001
Tabelle A11a: Nachauflaufwirkung bei 1,25 g/ha gegen VERPE in %
Figure imgf000189_0001
Figure imgf000190_0001
Tabelle A11b: Nachauflaufwirkung bei 5 g/ha gegen VERPE in %
Figure imgf000191_0001
Figure imgf000192_0001
Figure imgf000186_0001
Table A10c: Post-emergence effect at 20 g/ha against SETVI in %
Figure imgf000186_0002
Figure imgf000187_0001
Figure imgf000188_0001
Table A11a: Post-emergence effect at 1.25 g/ha against VERPE in %
Figure imgf000189_0001
Figure imgf000190_0001
Table A11b: Post-emergence effect at 5 g/ha against VERPE in %
Figure imgf000191_0001
Figure imgf000192_0001
Figure imgf000193_0001
Tabelle A11c: Nachauflaufwirkung bei 20 g/ha gegen VERPE in %
Figure imgf000193_0002
Figure imgf000194_0001
Figure imgf000195_0001
Figure imgf000196_0002
Tabelle A12a: Nachauflaufwirkung bei 1,25 g/ha gegen VIOTR in %
Figure imgf000196_0001
Figure imgf000197_0001
Figure imgf000193_0001
Table A11c: Post-emergence effect at 20 g/ha against VERPE in %
Figure imgf000193_0002
Figure imgf000194_0001
Figure imgf000195_0001
Figure imgf000196_0002
Table A12a: Post-emergence effect at 1.25 g/ha against VIOTR in %
Figure imgf000196_0001
Figure imgf000197_0001
Figure imgf000198_0001
Tabelle A12b: Nachauflaufwirkung bei 5 g/ha gegen VIOTR in %
Figure imgf000198_0002
Figure imgf000199_0001
Figure imgf000200_0001
Figure imgf000198_0001
Table A12b: Post-emergence effect at 5 g/ha against VIOTR in %
Figure imgf000198_0002
Figure imgf000199_0001
Figure imgf000200_0001
Figure imgf000201_0001
Tabelle A12c: Nachauflaufwirkung bei 20 g/ha gegen VIOTR in %
Figure imgf000201_0002
Figure imgf000202_0001
Figure imgf000201_0001
Table A12c: Post-emergence effect at 20 g/ha against VIOTR in %
Figure imgf000201_0002
Figure imgf000202_0001
Figure imgf000203_0001
Tabelle A13a: Nachauflaufwirkung bei 1,25 g/ha gegen KCHSC in %
Figure imgf000203_0002
Figure imgf000204_0001
Figure imgf000203_0001
Table A13a: Post-emergence effect at 1.25 g/ha against KCHSC in %
Figure imgf000203_0002
Figure imgf000204_0001
Figure imgf000205_0001
Tabelle A13b: Nachauflaufwirkung bei 5 g/ha gegen KCHSC in %
Figure imgf000205_0002
Figure imgf000206_0001
Figure imgf000207_0001
Tabelle A13c: Nachauflaufwirkung bei 20 g/ha gegen KCHSC in %
Figure imgf000208_0001
Figure imgf000209_0001
Figure imgf000205_0001
Table A13b: Post-emergence effect at 5 g/ha against KCHSC in %
Figure imgf000205_0002
Figure imgf000206_0001
Figure imgf000207_0001
Table A13c: Post-emergence effect at 20 g/ha against KCHSC in %
Figure imgf000208_0001
Figure imgf000209_0001
Figure imgf000210_0002
Tabelle A14: Nachauflaufwirkung bei 20 g/ha gegen AVEFA in %
Figure imgf000210_0001
Figure imgf000210_0002
Table A14: Post-emergence effect at 20 g/ha against AVEFA in %
Figure imgf000210_0001
Figure imgf000211_0001
Wie die Ergebnisse zeigen, weisen erfindungsgemäße Verbindungen der allgemeinen Formel (I) bei Behandlung im Nachauflauf eine gute herbizide Wirksamkeit gegen Schadpflanzen auf wie z. B. Abutilon theophrasti, Alopecurus myosuroides, Amaranthus retroflexus, Digitaria sanguinalis, Echinochloa crus-galli, Kochia scoparia, Lolium rigidum, Matricaria inodora, Pharbitis purpurea, Polygonum convolvulus, Setaria viridis, Veronica persica und Viola tricolor bei einer Aufwandmenge von 20 g Aktivsubstanz oder weniger pro Hektar, auf. B. Wirkung auf Kulturpflanzen im Nachauflauf Samen von mono- bzw. dikotylen Kulturpflanzen wurden in Kunststoff- oder Holzfasertöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter kontrollierten Wachstumsbedingungen angezogen.2 bis 3 Wochen nach der Aussaat wurden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen wurden dann als wässrige Suspension bzw. Emulsion unter Zusatz von 0,5% Additiv mit einer Wasseraufwandmenge von umgerechnet 600 l/ha auf die grünen Pflanzenteile gesprüht. Nach ca.3 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wurde die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen. In den nachstehenden Tabellen B1 bis B5 sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß der Tabelle 1 auf verschiedene Kulturpflanzen und einer Aufwandmenge entsprechend 20 g/ha und niedriger, die gemäß zuvor genannter Versuchsvorschrift erhalten wurden, dargestellt. Tabelle B1a: Nachauflaufwirkung bei 1,25 g/ha auf ZEAMX in %
Figure imgf000212_0001
Figure imgf000213_0001
Tabelle B1b: Nachauflaufwirkung bei 5 g/ha auf ZEAMX in %
Figure imgf000214_0001
Tabelle B1c: Nachauflaufwirkung bei 20 g/ha auf ZEAMX in %
Figure imgf000214_0002
Tabelle B2a: Nachauflaufwirkung bei 1,25 g/ha auf TRZAS in %
Figure imgf000215_0001
Figure imgf000216_0001
Figure imgf000211_0001
As the results show, compounds of the general formula (I) according to the invention have good herbicidal activity against harmful plants such as e.g. B. Abutilon theophrasti, Alopecurus myosuroides, Amaranthus retroflexus, Digitaria sanguinalis, Echinochloa crus-galli, Kochia scoparia, Lolium rigidum, Matricaria inodora, Pharbitis purpurea, Polygonum convolvulus, Setaria viridis, Veronica persica and Viola tricolor at an application rate of 20 g of active ingredient or less per hectare, up. B. Post-emergence effect on crops Seeds of monocotyledonous and dicotyledonous crops were placed in sandy loam soil in plastic or wood fiber pots, covered with soil and grown in a greenhouse under controlled growth conditions. 2 to 3 weeks after sowing, the test plants were treated at the one-leaf stage . The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), were then sprayed onto the green parts of the plants as an aqueous suspension or emulsion with the addition of 0.5% additive at a water application rate of the equivalent of 600 l/ha. After the test plants had been standing for about 3 weeks in the greenhouse under optimal growth conditions, the effect of the preparations was scored visually in comparison with untreated controls. For example, 100% activity = plants have died, 0% activity = like control plants. Tables B1 to B5 below show the effects of selected compounds of the general formula (I) according to Table 1 on various crop plants and an application rate corresponding to 20 g/ha and lower, which were obtained according to the test procedure mentioned above. Table B1a: Post-emergence effect at 1.25 g/ha on ZEAMX in %
Figure imgf000212_0001
Figure imgf000213_0001
Table B1b: Post-emergence effect at 5 g/ha on ZEAMX in %
Figure imgf000214_0001
Table B1c: Post-emergence effect at 20 g/ha on ZEAMX in %
Figure imgf000214_0002
Table B2a: Post-emergence effect at 1.25 g/ha on TRZAS in %
Figure imgf000215_0001
Figure imgf000216_0001
Figure imgf000217_0001
Tabelle B2b: Nachauflaufwirkung bei 5 g/ha auf TRZAS in %
Figure imgf000217_0002
Figure imgf000218_0001
Figure imgf000219_0001
Tabelle B2c: Nachauflaufwirkung bei 20 g/ha auf TRZAS in %
Figure imgf000219_0005
Tabelle B3a: Nachauflaufwirkung bei 1,25 g/ha auf ORYZA in %
Figure imgf000219_0004
Tabelle B3b: Nachauflaufwirkung bei 5 g/ha auf ORYZA in %
Figure imgf000219_0003
Tabelle B4a: Nachauflaufwirkung bei 1,25 g/ha auf GLXMA in %
Figure imgf000219_0002
Figure imgf000217_0001
Table B2b: Post-emergence effect at 5 g/ha on TRZAS in %
Figure imgf000217_0002
Figure imgf000218_0001
Figure imgf000219_0001
Table B2c: Post-emergence effect at 20 g/ha on TRZAS in %
Figure imgf000219_0005
Table B3a: Post-emergence effect at 1.25 g/ha on ORYZA in %
Figure imgf000219_0004
Table B3b: Post-emergence effect at 5 g/ha on ORYZA in %
Figure imgf000219_0003
Table B4a: Post-emergence effect at 1.25 g/ha on GLXMA in %
Figure imgf000219_0002
Figure imgf000220_0001
Tabelle B4b: Nachauflaufwirkung bei 5 g/ha auf GLXMA in %
Figure imgf000220_0003
Tabelle B5a: Nachauflaufwirkung bei 1,25 g/ha auf BRSNS in %
Figure imgf000220_0002
Figure imgf000221_0001
Tabelle B5b: Nachauflaufwirkung bei 5 g/ha auf BRSNS in %
Figure imgf000221_0002
Wie die Ergebnisse zeigen, weisen erfindungsgemäße Verbindungen der allgemeinen Formel (I) bei Behandlung im Nachauflauf eine gute Kulturpflanzenverträglichkeit bei Organismen, wie Oryza sativa, Zea mays, Brassica napus, Glycine max und Triticum aestivum bei einer Aufwandmenge von 20 g oder weniger pro Hektar.
Figure imgf000220_0001
Table B4b: Post-emergence effect at 5 g/ha on GLXMA in %
Figure imgf000220_0003
Table B5a: Post-emergence effect at 1.25 g/ha on BRSNS in %
Figure imgf000220_0002
Figure imgf000221_0001
Table B5b: Post-emergence effect at 5 g/ha on BRSNS in %
Figure imgf000221_0002
As the results show, post-emergence treatment of compounds of general formula (I) according to the invention has good crop plant tolerance in organisms such as Oryza sativa, Zea mays, Brassica napus, Glycine max and Triticum aestivum at an application rate of 20 g or less per hectare.

Claims

Patentansprüche: 1. Substituierte N-Benzoesäureuracile der allgemeinen Formel (I) oder deren Salze
Figure imgf000222_0001
worin R1 für Wasserstoff, Methyl steht, R2 für Wasserstoff, Halogen, Trifluormethyl steht, R3 für NR7R15, (C1-C8)-Alkyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel steht,
Figure imgf000222_0002
Q für Hydroxy oder einen Rest der nachfolgenden Formeln steht,
Figure imgf000222_0003
R5 und R6 unabhängig voneinander für Wasserstoff, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl, (C1-C8)- Alkoxy-(C1-C8)-Alkyl stehen, oder R5 und R6 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 7-gliedrigen Carbocyclus bilden, R8 für Wasserstoff, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl, Aryl, Aryl-(C1-C8)-alkyl, Heteroaryl, (C2-C8)-Alkinyl, (C2-C8)-Alkenyl, C(O)R13, C(O)OR13, (C1-C8)-Alkoxy-(C1-C8)-alkyl steht, R9 für Wasserstoff oder (C1-C8)-Alkyl steht, R10 für Wasserstoff, Halogen, Cyano, NO2, (C1-C8)-Alkyl, (C1-C8)-Haloalkyl, (C3-C8)- Halocycloalkyl, (C3-C8)-Halocycloalkyl-(C1-C8)-alkyl, (C2-C8)-Alkinyl, Heteroaryl, Heteroaryl-(C1-C8)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C8)-alkyl, R11R12N-(C1-C8)- alkyl, R13O-(C1-C8)-alkyl, Cyano-(C1-C8)-alkyl, (C1-C8)-Alkylcarbonyloxy-(C1-C8)- alkyl, (C3-C8)-Cycloalkylcarbonyloxy-(C1-C8)-alkyl, Arylcarbonyloxy-(C1-C8)-alkyl, Heteroarylcarbonyloxy-(C1-C8)-alkyl, Heterocyclylcarbonyloxy-(C1-C8)-alkyl, OR13, NR11R12, SR14, S(O)R14, SO2R14, R14S-(C1-C8)-alkyl, R14(O)S-(C1-C8)-alkyl, R14O2S- (C1-C8)-alkyl, Tris-[(C1-C8)-Alkyl]silyl-(C1-C8)-alkyl, Bis-[(C1-C8)- Alkyl](aryl)silyl(C1-C8)-alkyl, [(C1-C8)-Alkyl]-bis-(aryl)silyl-(C1-C8)-alkyl, Tris- [(C1-C8)-Alkyl]silyl, Bis-hydroxyboryl-(C1-C8)-alkyl, Bis-[(C1-C8)-alkoxy]boryl- (C1-C8)-alkyl, Tetramethyl-1,3,2-Dioxaborolan-2-yl, Tetramethyl-1,3,2-Dioxaborolan-2- yl-(C1-C8)-alkyl, Nitro-(C1-C8)-alkyl, C(O)OR13, C(O)R13, C(O)NR11R12, R13O(O)C- (C1-C8)-alkyl, R11R12N(O)C-(C1-C8)-alkyl, Bis-(C1-C8)-alkoxy-(C1-C8)-alkyl steht, oder R8 und R10 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R11 und R12 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C8)- Alkyl, (C2-C8)-Alkenyl, (C2-C8)-Alkinyl, (C1-C8)-Cyanoalkyl, (C1-C10)-Haloalkyl, (C2-C8)-Haloalkenyl, (C3-C8)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)- Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C8)-Alkoxy- (C1-C8)-alkyl, (C1-C8)-Haloalkoxy-(C1-C8)-alkyl, (C1-C8)-Alkylthio-(C1-C8)-alkyl, (C1-C8)-Haloalkylthio-(C1-C8)-alkyl, (C1-C8)-Alkoxy-(C1-C8)-haloalkyl, Aryl, Aryl- (C1-C8)-alkyl, Heteroaryl, Heteroaryl-(C1-C8)-alkyl, (C3-C8)-Cycloalkyl-(C1-C8)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C8)-alkyl, C(O)R13, SO2R14, Heterocyclyl, (C1-C8)- Alkoxycarbonyl, Bis-[(C1-C8)-alkyl]aminocarbonyl-(C1-C8)-alkyl, (C1-C8)-Alkyl- aminocarbonyl-(C1-C8)-alkyl, Aryl-(C1-C8)-alkyl-aminocarbonyl-(C1-C8)-alkyl, Aryl- (C1-C8)-alkoxycarbonyl, Heteroaryl-(C1-C8)-alkoxycarbonyl, (C2-C8)- Alkenyloxycarbonyl, (C2-C8)-Alkinyloxycarbonyl, Heterocyclyl-(C1-C8)-alkyl stehen, oder R11 und R12 mit dem Stickstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R13 für Wasserstoff, (C1-C8)-Alkyl, (C2-C8)-Alkenyl, (C2-C8)-Alkinyl, (C1-C8)-Cyanoalkyl, (C1-C10)-Haloalkyl, (C2-C8)-Haloalkenyl, (C3-C8)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)-Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C8)- Alkoxy-(C1-C8)-alkyl, (C1-C8)-Haloalkoxy-(C1-C8)-alkyl, (C1-C8)-Alkoxy-(C1-C8)- haloalkyl, (C1-C8)-Alkoxy-(C1-C8)-alkoxy-(C1-C8)-alkyl, (C1-C8)-Alkoxy-(C1-C8)- alkoxy-(C1-C8)-alkoxy-(C1-C8)-alkyl, (C1-C8)-Alkoxy-(C1-C8)-alkoxy-(C1-C8)-alkoxy- (C1-C8)-alkoxy-(C1-C8)-alkyl, Aryl, Aryl-(C1-C8)-alkyl, Aryl-(C1-C8)-alkoxy-(C1-C8)- alkyl, Heteroaryl, Heteroaryl-(C1-C8)-alkyl, (C3-C8)-Cycloalkyl-(C1-C8)-alkyl, (C4-C10)- Cycloalkenyl-(C1-C8)-alkyl, Bis-[(C1-C8)-alkyl]aminocarbonyl-(C1-C8)-alkyl, (C1-C8)- Alkyl-aminocarbonyl-(C1-C8)-alkyl, Aryl-(C1-C8)-alkyl-aminocarbonyl-(C1-C8)-alkyl, Bis-[(C1-C8)-alkyl]amino-(C2-C6)-alkyl, (C1-C8)-Alkyl-amino-(C2-C6)-alkyl, Aryl-(C1- C8)-alkyl-amino-(C2-C6)-alkyl, R14S-(C1-C8)-alkyl, R14(O)S-(C1-C8)-alkyl, R14O2S- (C1-C8)-alkyl, Hydroxycarbonyl-(C1-C8)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C8)- alkyl, Tris-[(C1-C8)-Alkyl]silyl-(C1-C8)-alkyl, Bis-[(C1-C8)-Alkyl](aryl)silyl(C1-C8)- alkyl, [(C1-C8)-Alkyl]-bis-(aryl)silyl-(C1-C8)-alkyl, (C1-C8)-Alkylcarbonyloxy-(C1-C8)- alkyl, (C3-C8)-Cycloalkylcarbonyloxy-(C1-C8)-alkyl, Arylcarbonyloxy-(C1-C8)-alkyl, Heteroarylcarbonyloxy-(C1-C8)-alkyl, Heterocyclylcarbonyloxy-(C1-C8)-alkyl, Aryloxy- (C1-C8)-alkyl, Heteroaryloxy-(C1-C8)-alkyl, (C1-C8)-Alkoxycarbonyl steht, R14 für Wasserstoff, (C1-C8)-Alkyl, (C2-C8)-Alkenyl, (C2-C8)-Alkinyl, (C1-C8)-Cyanoalkyl, (C1-C10)-Haloalkyl, (C2-C8)-Haloalkenyl, (C3-C8)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)-Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C8)- Alkoxy-(C1-C8)-alkyl, (C1-C8)-Alkoxy-(C1-C8)-haloalkyl, Aryl, Aryl-(C1-C8)-alkyl, Heteroaryl, Heteroaryl-(C1-C8)-alkyl, Heterocyclyl-(C1-C8)-alkyl, (C3-C8)-Cycloalkyl- (C1-C8)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C8)-alkyl, Bis-[(C1-C8)-alkyl]amino, (C1-C8)- Alkyl-amino, Aryl-(C1-C8)-amino, Aryl-(C1-C6)-alkyl-amino, Aryl-[(C1-C8)- alkyl]amino; (C3-C8)-Cycloalkyl-amino, (C3-C8)-Cycloalkyl-[(C1-C8)-alkyl]amino; N- Azetidinyl, N-Pyrrolidinyl, N-Piperidinyl, N-Morpholinyl steht, R7 und R15 unabhängig voneinander für Wasserstoff, (C1-C8)-Alkyl, (C2-C8)-Alkenyl, C(O)R13, C(O)OR13, C(O)NR11R12, SO2R14 stehen, oder R7 und R15 mit dem Stickstoffatom, an das sie gebunden sind, eine gegebenenfalls durch Wasserstoff, (C1-C8)-Alkyl, Aryl-(C1-C8)-alkyl, (C3-C8)-Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, (C1-C8)-Alkoxycarbonyl-(C1-C8)-alkyl, Aryl-(C1-C8)-Alkoxycarbonyl- (C1-C8)-alkyl weiter substituierte Iminogruppe bilden und R16 und R17 unabhängig voneinander für (C1-C8)-Alkyl, (C3-C8)-Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl stehen, oder R16 und R17 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 7-gliedrigen Carbocyclus bilden. 2. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 und/oder deren Salz, dadurch gekennzeichnet, dass R1 für Wasserstoff steht, R2 für Wasserstoff, Fluor, Chlor, Brom, Iod steht, R3 für NR7R15, (C1-C7)-Alkyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel steht,
Figure imgf000225_0001
Q für Hydroxy oder einen Rest der nachfolgenden Formeln steht,
Figure imgf000226_0001
R5 und R6 unabhängig voneinander für Wasserstoff, (C1-C7)-Alkyl stehen, oder R5 und R6 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden, R8 für Wasserstoff, (C1-C7)-Alkyl, (C1-C7)-Haloalkyl, Aryl, Aryl-(C1-C7)-alkyl, Heteroaryl, (C2-C7)-Alkinyl, (C2-C7)-Alkenyl, C(O)R13, C(O)OR13, (C1-C7)-Alkoxy-(C1-C7)-alkyl steht, R9 für Wasserstoff oder (C1-C7)-Alkyl steht, R10 für Wasserstoff, Halogen, Cyano, NO2, (C1-C7)-Alkyl, (C1-C7)-Haloalkyl, (C3-C7)- Halocycloalkyl, (C3-C7)-Halocycloalkyl-(C1-C7)-alkyl, (C2-C7)-Alkinyl, Heteroaryl, Heteroaryl-(C1-C7)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C7)-alkyl, R11R12N-(C1-C7)- alkyl, R13O-(C1-C7)-alkyl, Cyano-(C1-C7)-alkyl, (C1-C7)-Alkylcarbonyloxy-(C1-C7)- alkyl, (C3-C7)-Cycloalkylcarbonyloxy-(C1-C7)-alkyl, Arylcarbonyloxy-(C1-C7)-alkyl, Heteroarylcarbonyloxy-(C1-C7)-alkyl, Heterocyclylcarbonyloxy-(C1-C7)-alkyl, OR13, NR11R12, SR14, S(O)R14, SO2R14, R14S-(C1-C7)-alkyl, R14(O)S-(C1-C7)-alkyl, R14O2S- (C1-C7)-alkyl, Tris-[(C1-C7)-Alkyl]silyl-(C1-C7)-alkyl, Bis-[(C1-C7)- Alkyl](aryl)silyl(C1-C7)-alkyl, [(C1-C7)-Alkyl]-bis-(aryl)silyl-(C1-C7)-alkyl, Tris- [(C1-C7)-Alkyl]silyl, Bis-hydroxyboryl-(C1-C7)-alkyl, Bis-[(C1-C7)-alkoxy]boryl- (C1-C7)-alkyl, Tetramethyl-1,3,2-Dioxaborolan-2-yl, Tetramethyl-1,3,2-Dioxaborolan-2- yl-(C1-C7)-alkyl, Nitro-(C1-C7)-alkyl, C(O)OR13, C(O)R13, C(O)NR11R12, R13O(O)C- (C1-C7)-alkyl, R11R12N(O)C-(C1-C7)-alkyl, Bis-(C1-C7)-alkoxy-(C1-C7)-alkyl steht, oder R8 und R10 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R11 und R12 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C7)- Alkyl, (C2-C7)-Alkenyl, (C2-C7)-Alkinyl, (C1-C7)-Cyanoalkyl, (C1-C10)-Haloalkyl, (C2-C7)-Haloalkenyl, (C3-C7)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)- Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C7)-Alkoxy- (C1-C7)-alkyl, (C1-C7)-Haloalkoxy-(C1-C7)-alkyl, (C1-C7)-Alkylthio-(C1-C7)-alkyl, (C1-C7)-Haloalkylthio-(C1-C7)-alkyl, (C1-C7)-Alkoxy-(C1-C7)-haloalkyl, Aryl, Aryl- (C1-C7)-alkyl, Heteroaryl, Heteroaryl-(C1-C7)-alkyl, (C3-C7)-Cycloalkyl-(C1-C7)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C7)-alkyl, C(O)R13, SO2R14, Heterocyclyl, (C1-C7)- Alkoxycarbonyl, Bis-[(C1-C7)-alkyl]aminocarbonyl-(C1-C7)-alkyl, (C1-C7)-Alkyl- aminocarbonyl-(C1-C7)-alkyl, Aryl-(C1-C7)-alkyl-aminocarbonyl-(C1-C7)-alkyl, Aryl- (C1-C7)-alkoxycarbonyl, Heteroaryl-(C1-C7)-alkoxycarbonyl, (C2-C7)-Alkenyloxy- carbonyl, (C2-C7)-Alkinyloxycarbonyl, Heterocyclyl-(C1-C7)-alkyl stehen, oder R11 und R12 mit dem Stickstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R13 für Wasserstoff, (C1-C7)-Alkyl, (C2-C7)-Alkenyl, (C2-C7)-Alkinyl, (C1-C7)-Cyanoalkyl, (C1-C10)-Haloalkyl, (C2-C7)-Haloalkenyl, (C3-C7)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)-Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C7)- Alkoxy-(C1-C7)-alkyl, (C1-C7)-Haloalkoxy-(C1-C7)-alkyl, (C1-C7)-Alkoxy-(C1-C7)- haloalkyl, (C1-C7)-Alkoxy-(C1-C7)-alkoxy-(C1-C7)-alkyl, (C1-C7)-Alkoxy-(C1-C7)- alkoxy-(C1-C7)-alkoxy-(C1-C7)-alkyl, (C1-C7)-Alkoxy-(C1-C7)-alkoxy-(C1-C7)-alkoxy- (C1-C7)-alkoxy-(C1-C7)-alkyl, Aryl, Aryl-(C1-C7)-alkyl, Aryl-(C1-C7)-alkoxy-(C1-C7)- alkyl, Heteroaryl, Heteroaryl-(C1-C7)-alkyl, (C3-C7)-Cycloalkyl-(C1-C7)-alkyl, (C4-C10)- Cycloalkenyl-(C1-C7)-alkyl, Bis-[(C1-C7)-alkyl]aminocarbonyl-(C1-C7)-alkyl, (C1-C7)- Alkyl-aminocarbonyl-(C1-C7)-alkyl, Aryl-(C1-C7)-alkyl-aminocarbonyl-(C1-C7)-alkyl, Bis-[(C1-C7)-alkyl]amino-(C2-C6)-alkyl, (C1-C7)-Alkyl-amino-(C2-C6)-alkyl, Aryl-(C1- C7)-alkyl-amino-(C2-C6)-alkyl, R14S-(C1-C7)-alkyl, R14(O)S-(C1-C7)-alkyl, R14O2S- (C1-C7)-alkyl, Hydroxycarbonyl-(C1-C7)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C7)- alkyl, Tris-[(C1-C7)-Alkyl]silyl-(C1-C7)-alkyl, Bis-[(C1-C7)-Alkyl](aryl)silyl(C1-C7)- alkyl, [(C1-C7)-Alkyl]-bis-(aryl)silyl-(C1-C7)-alkyl, (C1-C7)-Alkylcarbonyloxy-(C1-C7)- alkyl, (C3-C7)-Cycloalkylcarbonyloxy-(C1-C7)-alkyl, Arylcarbonyloxy-(C1-C7)-alkyl, Heteroarylcarbonyloxy-(C1-C7)-alkyl, Heterocyclylcarbonyloxy-(C1-C7)-alkyl, Aryloxy- (C1-C7)-alkyl, Heteroaryloxy-(C1-C7)-alkyl, (C1-C7)-Alkoxycarbonyl steht, R14 für Wasserstoff, (C1-C7)-Alkyl, (C2-C7)-Alkenyl, (C2-C7)-Alkinyl, (C1-C7)-Cyanoalkyl, (C1-C10)-Haloalkyl, (C2-C7)-Haloalkenyl, (C3-C7)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)-Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C7)- Alkoxy-(C1-C7)-alkyl, (C1-C7)-Alkoxy-(C1-C7)-haloalkyl, Aryl, Aryl-(C1-C7)-alkyl, Heteroaryl, Heteroaryl-(C1-C7)-alkyl, Heterocyclyl-(C1-C7)-alkyl, (C3-C7)-Cycloalkyl- (C1-C7)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C7)-alkyl, Bis-[(C1-C7)-alkyl]amino, (C1-C7)- Alkyl-amino, Aryl-(C1-C7)-amino, Aryl-(C1-C6)-alkyl-amino, Aryl-[(C1-C7)- alkyl]amino; (C3-C7)-Cycloalkyl-amino, (C3-C7)-Cycloalkyl-[(C1-C7)-alkyl]amino; N- Azetidinyl, N-Pyrrolidinyl, N-Piperidinyl, N-Morpholinyl steht, R7 und R15 unabhängig voneinander für Wasserstoff, (C1-C4)-Alkyl, (C2-C4)-Alkenyl stehen und R16 und R17 unabhängig voneinander für (C1-C7)-Alkyl, (C3-C7)-Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl stehen, oder R16 und R17 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden. 3. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 und/oder deren Salz, dadurch gekennzeichnet, dass R1 für Wasserstoff steht, R2 für Wasserstoff, Fluor, Chlor, Brom steht, R3 für Amino, (C1-C6)-Alkyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel steht,
Figure imgf000228_0001
Q für Hydroxy oder einen Rest der nachfolgenden Formeln steht,
Figure imgf000229_0001
R5 und R6 unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl stehen, R5 und R6 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden, R8 für Wasserstoff, (C1-C6)-Alkyl, (C1-C6)-Haloalkyl, Aryl, Aryl-(C1-C6)-alkyl, Heteroaryl, (C2-C6)-Alkinyl, (C2-C6)-Alkenyl, C(O)R13, C(O)OR13, (C1-C6)-Alkoxy-(C1-C6)-alkyl steht, R9 für Wasserstoff oder (C1-C6)-Alkyl steht, R10 für Wasserstoff, Halogen, Cyano, NO2, (C1-C6)-Alkyl, (C1-C6)-Haloalkyl, (C3-C6)- Halocycloalkyl, (C3-C6)-Halocycloalkyl-(C1-C6)-alkyl, (C2-C6)-Alkinyl, Heteroaryl, Heteroaryl- (C1-C6)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C6)-alkyl, R11R12N-(C1-C6)-alkyl, R13O-(C1-C6)- alkyl, Cyano-(C1-C6)-alkyl, (C1-C6)-Alkylcarbonyloxy-(C1-C6)-alkyl, (C3-C6)- Cycloalkylcarbonyloxy-(C1-C6)-alkyl, Arylcarbonyloxy-(C1-C6)-alkyl, Heteroarylcarbonyloxy- (C1-C6)-alkyl, Heterocyclylcarbonyloxy-(C1-C6)-alkyl, OR13, NR11R12, SR14, S(O)R14, SO2R14, R14S-(C1-C6)-alkyl, R14(O)S-(C1-C6)-alkyl, R14O2S-(C1-C6)-alkyl, Tris-[(C1-C6)-Alkyl]silyl- (C1-C6)-alkyl, Bis-[(C1-C6)-Alkyl](aryl)silyl(C1-C6)-alkyl, [(C1-C6)-Alkyl]-bis-(aryl)silyl- (C1-C6)-alkyl, Tris-[(C1-C6)-Alkyl]silyl, Bis-hydroxyboryl-(C1-C6)-alkyl, Bis-[(C1-C6)- alkoxy]boryl-(C1-C6)-alkyl, Tetramethyl-1,3,2-Dioxaborolan-2-yl, Tetramethyl-1,3,2- Dioxaborolan-2-yl-(C1-C6)-alkyl, Nitro-(C1-C6)-alkyl, C(O)OR13, C(O)R13, C(O)NR11R12, R13O(O)C-(C1-C6)-alkyl, R11R12N(O)C-(C1-C6)-alkyl, Bis-(C1-C6)-alkoxy-(C1-C6)-alkyl steht, oder R8 und R10 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R11 und R12 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C1-C6)-Cyanoalkyl, (C1-C10)-Haloalkyl, (C2-C6)-Haloalkenyl, (C3-C6)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)-Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C6)-Alkoxy-(C1-C6)-alkyl, (C1-C6)-Haloalkoxy-(C1-C6)-alkyl, (C1-C6)-Alkylthio-(C1-C6)-alkyl, (C1-C6)-Haloalkylthio-(C1-C6)-alkyl, (C1-C6)-Alkoxy-(C1-C6)- haloalkyl, Aryl, Aryl-(C1-C6)-alkyl, Heteroaryl, Heteroaryl-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl- (C1-C6)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C6)-alkyl, C(O)R13, SO2R14, Heterocyclyl, (C1-C6)- Alkoxycarbonyl, Bis-[(C1-C6)-alkyl]aminocarbonyl-(C1-C6)-alkyl, (C1-C6)-Alkyl- aminocarbonyl-(C1-C6)-alkyl, Aryl-(C1-C6)-alkyl-aminocarbonyl-(C1-C6)-alkyl, Aryl-(C1-C6)- alkoxycarbonyl, Heteroaryl-(C1-C6)-alkoxycarbonyl, (C2-C6)-Alkenyloxy-carbonyl, (C2-C6)- Alkinyloxycarbonyl, Heterocyclyl-(C1-C6)-alkyl stehen, oder R11 und R12 mit dem Stickstoffatom, an das sie gebunden sind, einen vollständig gesättigten oder teilgesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls weiter substituierten 3 bis 10-gliedrigen monocyclischen oder bicyclischen Ring bilden, R13 für Wasserstoff, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C1-C6)-Cyanoalkyl, (C1-C10)- Haloalkyl, (C2-C6)-Haloalkenyl, (C3-C6)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)- Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C6)-Alkoxy-(C1-C6)- alkyl, (C1-C6)-Haloalkoxy-(C1-C6)-alkyl, (C1-C6)-Alkoxy-(C1-C6)-haloalkyl, (C1-C6)-Alkoxy- (C1-C6)-alkoxy-(C1-C6)-alkyl, (C1-C6)-Alkoxy-(C1-C6)-alkoxy-(C1-C6)-alkoxy-(C1-C6)-alkyl, (C1-C6)-Alkoxy-(C1-C6)-alkoxy-(C1-C6)-alkoxy-(C1-C6)-alkoxy-(C1-C6)-alkyl, Aryl, Aryl- (C1-C6)-alkyl, Aryl-(C1-C6)-alkoxy-(C1-C6)-alkyl, Heteroaryl, Heteroaryl-(C1-C6)-alkyl, (C3-C6)- Cycloalkyl-(C1-C6)-alkyl, (C4-C10)-Cycloalkenyl-(C1-C6)-alkyl, Bis-[(C1-C6)- alkyl]aminocarbonyl-(C1-C6)-alkyl, (C1-C6)-Alkyl-aminocarbonyl-(C1-C6)-alkyl, Aryl-(C1-C6)- alkyl-aminocarbonyl-(C1-C6)-alkyl, Bis-[(C1-C6)-alkyl]amino-(C2-C6)-alkyl, (C1-C6)-Alkyl- amino-(C2-C6)-alkyl, Aryl-(C1-C6)-alkyl-amino-(C2-C6)-alkyl, R14S-(C1-C6)-alkyl, R14(O)S- (C1-C6)-alkyl, R14O2S-(C1-C6)-alkyl, Hydroxycarbonyl-(C1-C6)-alkyl, Heterocyclyl, Heterocyclyl-(C1-C6)-alkyl, Tris-[(C1-C6)-Alkyl]silyl-(C1-C6)-alkyl, Bis-[(C1-C6)- Alkyl](aryl)silyl(C1-C6)-alkyl, [(C1-C6)-Alkyl]-bis-(aryl)silyl-(C1-C6)-alkyl, (C1-C6)- Alkylcarbonyloxy-(C1-C6)-alkyl, (C3-C6)-Cycloalkylcarbonyloxy-(C1-C6)-alkyl, Arylcarbonyloxy-(C1-C6)-alkyl, Heteroarylcarbonyloxy-(C1-C6)-alkyl, Heterocyclylcarbonyloxy-(C1-C6)-alkyl, Aryloxy-(C1-C6)-alkyl, Heteroaryloxy-(C1-C6)-alkyl, (C1-C6)-Alkoxycarbonyl steht, R14 für Wasserstoff, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C1-C6)-Cyanoalkyl, (C1-C10)- Haloalkyl, (C2-C6)-Haloalkenyl, (C3-C6)-Haloalkinyl, (C3-C10)-Cycloalkyl, (C3-C10)- Halocycloalkyl, (C4-C10)-Cycloalkenyl, (C4-C10)-Halocycloalkenyl, (C1-C6)-Alkoxy-(C1-C6)- alkyl, (C1-C6)-Alkoxy-(C1-C6)-haloalkyl, Aryl, Aryl-(C1-C6)-alkyl, Heteroaryl, Heteroaryl- (C1-C6)-alkyl, Heterocyclyl-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl-(C1-C6)-alkyl, (C4-C10)- Cycloalkenyl-(C1-C6)-alkyl, Bis-[(C1-C6)-alkyl]amino, (C1-C6)-Alkyl-amino, Aryl-(C1-C6)- amino, Aryl-(C1-C6)-alkyl-amino, Aryl-[(C1-C6)-alkyl]amino; (C3-C6)-Cycloalkyl-amino, (C3- C6)-Cycloalkyl-[(C1-C6)-alkyl]amino; N-Azetidinyl, N-Pyrrolidinyl, N-Piperidinyl, N- Morpholinyl steht und R16 und R17 unabhängig voneinander für (C1-C7)-Alkyl, (C3-C7)-Cycloalkyl, Aryl stehen, oder R16 und R17 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden. 4. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 und/oder deren Salz, dadurch gekennzeichnet, dass R1 für Wasserstoff steht, R2 für Wasserstoff, Fluor, Chlor steht, R3 für Amino, Methyl, Ethyl, Prop-1-yl, 1-Methylethyl, But-1-yl, 1-Methylpropyl, 2- Methylpropyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel steht,
Figure imgf000231_0001
R5 und R6 unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Prop-1-yl, 1-Methylethyl, But-1-yl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2- Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3- Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Di- methylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2- Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1- Ethyl-2-methylpropyl stehen, R5 und R6 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden und Q für eine der nachfolgend spezifisch genannten Gruppierungen Q-1 bis Q-500 steht:
Figure imgf000232_0001
Claims: 1. Substituted N-benzoic acid uracils of the general formula (I) or salts thereof
Figure imgf000222_0001
wherein R 1 is hydrogen, methyl, R 2 is hydrogen, halogen, trifluoromethyl, R 3 is NR 7 R 15 , (C 1 -C 8 )-alkyl, R 4 is bromo, iodo, G is a radical of the following formula,
Figure imgf000222_0002
Q is hydroxy or a radical of the following formulas,
Figure imgf000222_0003
R 5 and R 6 are independently hydrogen, (C 1 -C 8 )alkyl, (C 1 -C 8 )haloalkyl, (C 1 -C 8 )alkoxy(C 1 -C 8 )alkyl , or R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 7-membered carbocycle, R 8 is hydrogen, (C 1 -C 8 )alkyl, (C 1 -C 8 )haloalkyl, aryl, aryl(C 1 -C 8 )alkyl, heteroaryl, (C 2 -C 8 )alkynyl , (C 2 -C 8 )alkenyl, C(O)R 13 , C(O)OR 13 , (C 1 -C 8 )alkoxy-(C 1 -C 8 )alkyl, R 9 is hydrogen or (C 1 -C 8 )alkyl, R 10 is hydrogen, halogen, cyano, NO 2 , (C 1 -C 8 )alkyl, (C 1 -C 8 )haloalkyl, (C 3 -C 8 )- halocycloalkyl, (C 3 -C 8 )halocycloalkyl-(C 1 -C 8 )alkyl, (C 2 -C 8 )alkynyl, heteroaryl, heteroaryl-(C 1 -C 8 )alkyl, heterocyclyl, Heterocyclyl(C 1 -C 8 )alkyl, R 11 R 12 N-(C 1 -C 8 )alkyl, R 13 O-(C 1 -C 8 )alkyl, cyano(C 1 -C 8 ). )-alkyl, (C 1 -C 8 )-alkylcarbonyloxy-(C 1 -C 8 )-alkyl, (C 3 -C 8 )-cycloalkylcarbonyloxy-(C 1 -C 8 )-alkyl, arylcarbonyloxy-(C 1 - C 8 )alkyl, heteroarylcarbonyloxy(C 1 -C 8 )alkyl, heterocyclylcarbonyloxy(C 1 -C 8 )alkyl, OR 13 , NR 11 R 12 , SR 14 , S(O)R 14 , SO 2 R 14 , R 14 S-(C 1 -C 8 )-alkyl, R 14 (O)S-(C 1 -C 8 )-alkyl, R 14 O 2 S-(C 1 -C 8 )-alkyl, Tris[(C 1 -C 8 )alkyl]silyl(C 1 -C 8 )alkyl, bis[(C 1 -C 8 )alkyl](aryl)silyl(C 1 -C 8 )- alkyl, [(C 1 -C 8 )alkyl]bis(aryl)silyl-(C 1 -C 8 )alkyl, tris[(C 1 -C 8 )alkyl]silyl, bishydroxyboryl (C 1 -C 8 )alkyl, bis[(C 1 -C 8 )alkoxy]boryl(C 1 -C 8 )alkyl, tetramethyl-1,3,2-dioxaborolan-2-yl, tetramethyl -1,3,2-Dioxaborolan-2- yl-(C 1 -C 8 )alkyl, Nitro-(C 1 -C 8 )alkyl, C(O)OR 13 , C(O)R 13 , C (O)NR 11 R 12 , R 13 O(O)C-(C 1 -C 8 )alkyl, R 11 R 12 N(O)C-(C 1 -C 8 )alkyl, bis(C C 1 -C 8 )-alkoxy-(C 1 -C 8 )-alkyl, or R 8 and R 10 with the carbon atom to which they are attached form a fully saturated or partially saturated, optionally interrupted by heteroatoms and optionally further substituted 3 to 10-membered monocyclic or bicyclic ring, R 11 and R 12 are the same or different and are independently hydrogen, (C 1 -C 8 ) - alkyl, (C 2 -C 8 ) alkenyl, (C 2 -C 8 )alkynyl, (C 1 -C 8 )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 8 )haloalkenyl, (C 3 -C 8 )haloalkynyl, (C 3 -C C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 8 )alkoxy (C 1 -C 10 )cycloalkyl C 8 )alkyl, (C 1 -C 8 )haloalkoxy(C 1 -C 8 )alkyl, (C 1 -C 8 )alkylthio(C 1 -C 8 )alkyl, (C 1 -C 8 )alkyl 8 )-haloalkylthio(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy(C 1 -C 8 )haloalkyl, aryl, aryl(C 1 -C 8 )alkyl, heteroaryl , heteroaryl(C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkyl(C 1 -C 8 )alkyl, (C 4 -C 10 )cycloalkenyl(C 1 -C 8 ) -alkyl, C(O)R 13 , SO 2 R 14 , heterocyclyl, (C 1 -C 8 )-alkoxycarbonyl, bis[(C 1 -C 8 )alkyl]aminocarbonyl-(C 1 -C 8 )- alkyl, (C 1 -C 8 )alkylaminocarbonyl-(C 1 -C 8 )alkyl, aryl-(C 1 -C 8 )alkylaminocarbonyl-(C 1 -C 8 )alkyl, aryl- (C 1 -C 8 )alkoxycarbonyl, heteroaryl-(C 1 -C 8 )alkoxycarbonyl, (C 2 -C 8 )- alkenyloxycarbonyl, (C 2 -C 8 )-alkynyloxycarbonyl, heterocyclyl-(C 1 -C 8 )-alkyl, or R 11 and R 12 with the nitrogen atom to which they are attached is a fully saturated or partially saturated, optionally by heteroatoms interrupted and optionally further substituted 3 to 10-membered monocyclic or bicyclic ring, R 13 is hydrogen, (C 1 -C 8 )alkyl, (C 2 -C 8 )alkenyl, (C 2 -C 8 )alkynyl , (C 1 -C 8 )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 8 )haloalkenyl, (C 3 -C 8 )haloalkynyl, (C 3 -C 10 )cycloalkyl , (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 8 )alkoxy(C 1 -C 8 )alkyl , (C 1 -C 8 )haloalkoxy(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy(C 1 -C 8 )haloalkyl, (C 1 -C 8 )alkoxy -(C 1 -C 8 )alkoxy-(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy-(C 1 -C 8 )alkoxy-(C 1 -C 8 )alkoxy -(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxy-(C 1 -C 8 )alkoxy-(C 1 -C 8 )alkoxy-(C 1 -C 8 )alkoxy -(C 1 -C 8 )alkyl, aryl, aryl-(C 1 -C 8 )alkyl, aryl-(C 1 -C 8 )alkoxy-(C 1 -C 8 )alkyl, heteroaryl, heteroaryl -(C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkyl-(C 1 -C 8 )alkyl, (C 4 -C 10 )cycloalkenyl-(C 1 -C 8 )alkyl , bis[(C 1 -C 8 )alkyl]aminocarbonyl-(C 1 -C 8 )alkyl, (C 1 -C 8 )alkylaminocarbonyl-(C 1 -C 8 )alkyl, aryl- (C 1 -C 8 )alkylaminocarbonyl-(C 1 -C 8 )alkyl, bis[(C 1 -C 8 )alkyl]amino-(C 2 -C 6 )alkyl, (C 1 -C 8 )alkylamino-(C 2 -C 6 )alkyl, aryl-(C 1 -C 8 )alkylamino-(C 2 -C 6 )alkyl, R 14 S-(C 1 -C 8 )alkyl, R 14 (O)S-(C 1 -C 8 )alkyl, R 14 O 2 S-(C 1 -C 8 )alkyl, hydroxycarbonyl-(C 1 -C 8 )- alkyl, heterocyclyl, heterocyclyl(C 1 -C 8 )alkyl, tris[(C 1 -C 8 )alkyl]silyl(C 1 -C 8 )alkyl, bis[(C 1 -C 8 )alkyl )-alkyl](aryl)silyl(C 1 -C 8 )-alkyl, [(C 1 -C 8 )-alkyl]-bis(aryl)silyl-(C 1 -C 8 )-alkyl, (C 1 -C 8 )alkylcarbonyloxy-(C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkylcarbonyloxy-(C 1 -C 8 )alkyl, arylcarbonyloxy-(C 1 -C 8 )alkyl, heteroarylcarbonyloxy -(C 1 -C 8 )alkyl, heterocyclylcarbonyloxy-(C 1 -C 8 )alkyl, aryloxy-(C 1 -C 8 )alkyl, heteroaryloxy-(C 1 -C 8 )alkyl, (C 1 -C 8 )alkoxycarbonyl, R 14 is hydrogen, (C 1 -C 8 )alkyl, (C 2 -C 8 )alkenyl, (C 2 -C 8 )alkynyl, (C 1 -C 8 ) -cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 8 )haloalkenyl, (C 3 -C 8 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 ) -halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 8 )alkoxy-(C 1 -C 8 )alkyl, (C 1 -C 8 ) -Alkoxy(C 1 -C 8 )haloalkyl, aryl, aryl(C 1 -C 8 )alkyl, heteroaryl, heteroaryl(C 1 -C 8 )alkyl, heterocyclyl(C 1 -C 8 ) -alkyl, (C 3 -C 8 )cycloalkyl-(C 1 -C 8 )alkyl, (C 4 -C 10 )cycloalkenyl-(C 1 -C 8 )alkyl, bis[(C 1 - C 8 )alkyl]amino, (C 1 -C 8 )alkylamino, aryl-(C 1 -C 8 )amino, aryl-(C 1 -C 6 )alkylamino, aryl[( C 1 -C 8 alkyl]amino; (C 3 -C 8 )cycloalkylamino, (C 3 -C 8 )cycloalkyl[(C 1 -C 8 )alkyl]amino; N-azetidinyl, N-pyrrolidinyl, N-piperidinyl, N-morpholinyl, R 7 and R 15 are independently hydrogen, (C 1 -C 8 )alkyl, (C 2 -C 8 )alkenyl, C(O)R 13 , C(O)OR 13 , C(O)NR 11 R 12 , SO 2 R 14 , or R 7 and R 15 with the nitrogen atom to which they are attached, an optionally substituted by hydrogen, (C 1 -C 8 )-alkyl, aryl-(C 1 -C 8 )- alkyl, (C 3 -C 8 )cycloalkyl, aryl, heteroaryl, heterocyclyl, (C 1 -C 8 )alkoxycarbonyl-(C 1 -C 8 )alkyl, aryl-(C 1 -C 8 )alkoxycarbonyl (C 1 -C 8 )alkyl form a further substituted imino group and R 16 and R 17 independently represent (C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkyl, aryl, heteroaryl, heterocyclyl, or R 16 and R 17 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 7-membered carbocycle. 2. Compounds of the general formula (I) according to claim 1 and/or salts thereof, characterized in that R 1 represents hydrogen, R 2 represents hydrogen, fluorine, chlorine, bromine or iodine, R 3 represents NR 7 R 15 , (C 1 -C 7 )-alkyl, R 4 represents bromine, iodine, G represents a radical of the following formula,
Figure imgf000225_0001
Q is hydroxy or a radical of the formulas below stands,
Figure imgf000226_0001
R 5 and R 6 are independently hydrogen, (C 1 -C 7 )-alkyl, or R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle, R 8 is hydrogen, (C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkyl, aryl, aryl(C 1 -C 7 )alkyl, heteroaryl, (C 2 -C 7 )alkynyl , (C 2 -C 7 )alkenyl, C(O)R 13 , C(O)OR 13 , (C 1 -C 7 )alkoxy(C 1 -C 7 )alkyl, R 9 is hydrogen or (C 1 -C 7 )alkyl, R 10 is hydrogen, halogen, cyano, NO 2 , (C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkyl, (C 3 -C 7 )- halocycloalkyl, (C 3 -C 7 )halocycloalkyl-(C 1 -C 7 )alkyl, (C 2 -C 7 )alkynyl, heteroaryl, heteroaryl-(C 1 -C 7 )alkyl, heterocyclyl, Heterocyclyl(C 1 -C 7 )alkyl, R 11 R 12 N-(C 1 -C 7 )alkyl, R 13 O-(C 1 -C 7 )alkyl, cyano(C 1 -C 7 ). )-alkyl, (C 1 -C 7 )-alkylcarbonyloxy-(C 1 -C 7 )-alkyl, (C 3 -C 7 )-cycloalkylcarbonyloxy-(C 1 -C 7 )-alkyl, arylcarbonyloxy-(C 1 - C 7 )alkyl, heteroarylcarbonyloxy(C 1 -C 7 )alkyl, heterocyclylcarbonyloxy(C 1 -C 7 )alkyl, OR 13 , NR 11 R 12 , SR 14 , S(O)R 14 , SO 2 R 14 , R 14 S-(C 1 -C 7 )-alkyl, R 14 (O)S-(C 1 -C 7 )-alkyl, R 14 O 2 S-(C 1 -C 7 )-alkyl, Tris[(C 1 -C 7 )alkyl]silyl(C 1 -C 7 )alkyl, bis[(C 1 -C 7 )alkyl](aryl)silyl(C 1 -C 7 )- alkyl, [(C 1 -C 7 )alkyl]bis(aryl)silyl-(C 1 -C 7 )alkyl, tris[(C 1 -C 7 )alkyl]silyl, bishydroxyboryl (C 1 -C 7 )alkyl, bis[(C 1 -C 7 )alkoxy]boryl(C 1 -C 7 )alkyl, tetramethyl-1,3,2-dioxaborolan-2-yl, tetramethyl -1,3,2-Dioxaborolan-2-yl-(C 1 -C 7 )alkyl, Nitro-(C 1 -C 7 )alkyl, C(O)OR 13 , C(O)R 13 , C (O)NR 11 R 12 , R 13 O(O)C-(C 1 -C 7 )alkyl, R 11 R 12 N(O)C-(C 1 -C 7 )alkyl, bis(C C 1 -C 7 )-alkoxy-(C 1 -C 7 )-alkyl, or R 8 and R 10 with the carbon atom to which they are attached form a fully saturated or partially saturated, optionally interrupted by heteroatoms and optionally further substituted 3 to 10-membered monocyclic or bicyclic ring, R 11 and R 12 are the same or different and are independently hydrogen, (C 1 -C 7 ) - alkyl, (C 2 -C 7 ) alkenyl, (C 2 -C 7 )alkynyl, (C 1 -C 7 )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 7 )haloalkenyl, (C 3 -C 7 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 7 )alkoxy(C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkoxy-(C 1 -C 7 )alkyl, (C 1 -C 7 )alkylthio-(C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkylthio-(C 1 -C 7 )alkyl, (C 1 -C 7 )alkoxy (C 1 -C 7 )haloalkyl, aryl, aryl-(C 1 -C 7 )alkyl, heteroaryl, heteroaryl-(C 1 -C 7 )alkyl, (C 3 -C 7 )cycloalkyl-(C C 1 -C 7 )alkyl, (C 4 -C 10 )cycloalkenyl-(C 1 -C 7 )alkyl, C(O)R 13 , SO 2 R 14 , heterocyclyl, (C 1 -C 7 )- alkoxycarbonyl, bis[(C 1 -C 7 )alkyl]aminocarbonyl-(C 1 -C 7 )alkyl, (C 1 -C 7 )alkylaminocarbonyl-(C 1 -C 7 )alkyl, aryl -(C 1 -C 7 )alkylaminocarbonyl-(C 1 -C 7 )alkyl, aryl-(C 1 -C 7 )alkoxycarbonyl, heteroaryl-(C 1 -C 7 )alkoxycarbonyl, (C 2 -C 7 ) alkenyloxy- carbonyl, (C 2 -C 7 ) alkynyloxycarbonyl, heterocyclyl (C 1 -C 7 ) alkyl, or R 11 and R 12 with the nitrogen atom to which they are attached, a complete saturated or partially saturated, optionally interrupted by heteroatoms and optionally further substituted 3 to 10-membered monocyclic or bicyclic ring, R 13 is hydrogen, (C 1 -C 7 )-alkyl, (C 2 -C 7 )-alkenyl, (C C 2 -C 7 )alkynyl, (C 1 -C 7 )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 7 )haloalkenyl, (C 3 -C 7 )haloalkynyl, (C C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 7 )alkoxy(C C 1 -C 7 )alkyl, (C 1 -C 7 )haloalkoxy(C 1 -C 7 )alkyl, (C 1 -C 7 )alkoxy(C 1 -C 7 )haloalkyl, (C C 1 -C 7 )alkoxy(C 1 -C 7 )alkoxy(C 1 -C 7 )alkyl, (C 1 -C 7 )alkoxy(C 1 -C 7 )alkoxy(C C 1 -C 7 )alkoxy-(C 1 -C 7 )alkyl, (C 1 -C 7 )alkoxy-(C 1 -C 7 )alkoxy-(C 1 -C 7 )alkoxy-(C C 1 -C 7 )alkoxy(C 1 -C 7 )alkyl, aryl, aryl(C 1 -C 7 )alkyl, aryl(C 1 -C 7 )alkoxy(C 1 -C 7 ). )-alkyl, heteroaryl, heteroaryl-(C 1 -C 7 )-alkyl, (C 3 -C 7 )-cycloalkyl-(C 1 -C 7 )-alkyl, (C 4 -C 10 )-cycloalkenyl-(C C 1 -C 7 )alkyl, bis[(C 1 -C 7 )alkyl]aminocarbonyl-(C 1 -C 7 )alkyl, (C 1 -C 7 )alkylaminocarbonyl-(C 1 -C 7 )alkyl, aryl(C 1 -C 7 )alkylaminocarbonyl(C 1 -C 7 )alkyl, bis[(C 1 -C 7 )alkyl]amino(C 2 -C 6 ). )-alkyl, (C 1 -C 7 )-alkyl-amino-(C 2 -C 6 )-alkyl, aryl-(C 1 - C 7 )-alkyl-amino-(C 2 -C 6 )-alkyl, R 14 S-(C 1 -C 7 )alkyl, R 14 (O)S-(C 1 -C 7 )alkyl, R 14 O 2 S-(C 1 -C 7 )alkyl, hydroxycarbonyl-(C C 1 -C 7 )alkyl, heterocyclyl, heterocyclyl(C 1 -C 7 )alkyl, tris[(C 1 -C 7 )alkyl]silyl(C 1 -C 7 )alkyl, bis[ (C 1 -C 7 )alkyl](aryl)silyl(C 1 -C 7 )alkyl, [(C 1 -C 7 )alkyl]bis(aryl)silyl-(C 1 -C 7 ) alkyl, (C 1 -C 7 )alkylcarbonyloxy-(C 1 -C 7 )alkyl, (C 3 -C 7 )cycloalkylcarbonyloxy-(C 1 -C 7 )alkyl, arylcarbonyloxy-(C 1 -C 7 )alkyl 7 )-alkyl, heteroarylcarbonyloxy-(C 1 -C 7 )-alkyl, heterocyclylcarbonyloxy-(C 1 -C 7 )-alkyl, aryloxy-(C 1 -C 7 )-alkyl, heteroaryloxy-(C 1 -C 7 ) -alkyl, (C 1 -C 7 )alkoxycarbonyl, R 14 is hydrogen, (C 1 -C 7 )alkyl, (C 2 -C 7 )alkenyl, (C 2 -C 7 )alkynyl, ( C 1 -C 7 cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 7 )haloalkenyl, (C 3 -C 7 )haloalkynyl, (C 3 -C 10 )cycloalkyl, ( C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 7 )- Alkoxy(C 1 -C 7 )alkyl, (C 1 -C 7 )alkoxy(C 1 -C 7 )haloalkyl, aryl, aryl(C 1 -C 7 )alkyl, heteroaryl, heteroaryl (C 1 -C 7 )alkyl, heterocyclyl-(C 1 -C 7 )alkyl, (C 3 -C 7 )cycloalkyl-(C 1 -C 7 )alkyl, (C 4 -C 10 )- cycloalkenyl(C 1 -C 7 )alkyl, bis[(C 1 -C 7 )alkyl]amino, (C 1 -C 7 )alkylamino, aryl(C 1 -C 7 )amino , aryl(C 1 -C 6 )alkylamino, aryl[(C 1 -C 7 )alkyl]amino; (C 3 -C 7 )cycloalkylamino, (C 3 -C 7 )cycloalkyl[(C 1 -C 7 )alkyl]amino; N-azetidinyl, N-pyrrolidinyl, N-piperidinyl, N-morpholinyl, R 7 and R 15 are independently hydrogen, (C 1 -C 4 )-alkyl, (C 2 -C 4 )-alkenyl and R 16 and R 17 are independently (C 1 -C 7 )alkyl, (C 3 -C 7 )cycloalkyl, aryl, heteroaryl, heterocyclyl, or R 16 and R 17 are one with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle. 3. Compounds of the general formula (I) according to Claim 1 and/or salts thereof, characterized in that R 1 represents hydrogen, R 2 represents hydrogen, fluorine, chlorine or bromine, R 3 represents amino, (C 1 -C 6 )-alkyl, R 4 represents bromine, iodine, G represents a radical of the following formula,
Figure imgf000228_0001
Q is hydroxy or a radical of the formulas below stands,
Figure imgf000229_0001
R 5 and R 6 are independently hydrogen, (C 1 -C 6 )alkyl, R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle, R 8 for hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkyl, aryl, aryl-(C 1 -C 6 )alkyl, heteroaryl, (C 2 -C 6 )alkynyl, (C 2 -C 6 )alkenyl, C(O)R 13 , C(O)OR 13 , (C 1 -C 6 )alkoxy-(C 1 -C 6 )alkyl, R 9 is hydrogen or (C 1 -C 6 )alkyl, R 10 is hydrogen, halogen, cyano, NO 2 , (C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkyl, (C 3 -C 6 ) - halocycloalkyl, (C 3 -C 6 )halocycloalkyl-(C 1 -C 6 )alkyl, (C 2 -C 6 )alkynyl, heteroaryl, heteroaryl-(C 1 -C 6 )alkyl, heterocyclyl, heterocyclyl -(C 1 -C 6 )alkyl, R 11 R 12 N-(C 1 -C 6 )alkyl, R 13 O-(C 1 -C 6 )alkyl, cyano-(C 1 -C 6 ) alkyl, (C 1 -C 6 )alkylcarbonyloxy-(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkylcarbonyloxy-(C 1 -C 6 )alkyl, arylcarbonyloxy-(C 1 -C 6 )alkyl 6 )-alkyl, heteroarylcarbonyloxy-(C 1 -C 6 )-alkyl, heterocyclylcarbonyloxy-(C 1 -C 6 )-alkyl, OR 13 , NR 11 R 12 , SR 14 , S(O)R 14 , SO 2 R R14 , R14 S-( C1 -C6 )alkyl, R14 (O)S-( C1 -C6 )alkyl, R14 O2 S-( C1 -C6 )alkyl, tris -(C 1 -C 6 )alkyl]silyl(C 1 -C 6 )alkyl, bis[(C 1 -C 6 )alkyl](aryl)silyl(C 1 -C 6 )alkyl , [(C 1 -C 6 )alkyl]bis(aryl)silyl-(C 1 -C 6 )alkyl, tris[(C 1 -C 6 )alkyl]silyl, bishydroxyboryl-( C 1 -C 6 )alkyl, bis[(C 1 -C 6 )alkoxy]boryl-(C 1 -C 6 )alkyl, tetramethyl-1,3,2-dioxaborolan-2-yl, tetramethyl- 1,3,2-dioxaborolan-2-yl-(C 1 -C 6 )alkyl, nitro-(C 1 -C 6 )alkyl, C(O)OR 13 , C(O)R 13 , C( O)NR 11 R 12 , R 13 O(O)C-(C 1 -C 6 )alkyl, R 11 R 12 N(O)C-(C 1 -C 6 )alkyl, bis-(C 1 -C 6 ) alkoxy (C 1 -C 6 ) alkyl, or R 8 and R 10 with the carbon atom to which they are attached, a fully saturated or partially saturated, optionally interrupted by heteroatoms and optionally further substituted 3 bis 10-membered monocyclic or bicyclic ring, R 11 and R 12 are the same or different and are independently hydrogen, (C 1 -C 6 )-alkyl, (C 2 -C 6 )-alkenyl, (C 2 -C 6 )-alkynyl, (C 1 -C 6 )-cyanoalkyl, (C 1 -C 10 )-haloalkyl, (C 2 -C 6 )-haloalkenyl, (C 3 -C 6 )-haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 6 )alkoxy-(C 1 -C 6 ). )-alkyl, (C 1 -C 6 )haloalkoxy-(C 1 -C 6 )-alkyl, (C 1 -C 6 )alkylthio-(C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkylthio-(C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy (C 1 -C 6 )haloalkyl, aryl, aryl-(C 1 -C 6 )alkyl, heteroaryl, heteroaryl-(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl-(C C 1 -C 6 )alkyl, (C 4 -C 10 )cycloalkenyl-(C 1 -C 6 )alkyl, C(O)R 13 , SO 2 R 14 , heterocyclyl, (C 1 -C 6 )- alkoxycarbonyl, bis[(C 1 -C 6 )alkyl]aminocarbonyl-(C 1 -C 6 )alkyl, (C 1 -C 6 )alkylaminocarbonyl-(C 1 -C 6 )alkyl, aryl -(C 1 -C 6 )alkylaminocarbonyl-(C 1 -C 6 )alkyl, aryl-(C 1 -C 6 )alkoxycarbonyl, heteroaryl-(C 1 -C 6 )alkoxycarbonyl, (C 2 -C 6 )-alkenyloxy-carbonyl, (C 2 -C 6 )-alkynyloxycarbonyl, heterocyclyl-(C 1 -C 6 )-alkyl, or R 11 and R 12 with the nitrogen atom to which they are attached form a complete saturated or partially saturated, optionally interrupted by heteroatoms and optionally further substituted 3 to 10-membered monocyclic or bicyclic ring, R 13 is hydrogen, (C 1 -C 6 )-alkyl, (C 2 -C 6 )-alkenyl, (C C 2 -C 6 )alkynyl, (C 1 -C 6 )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 6 )haloalkenyl, (C 3 -C 6 )haloalkynyl, (C C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl, (C 4 -C 10 )halocycloalkenyl, (C 1 -C 6 )alkoxy-(C C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkoxy(C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy(C 1 -C 6 )haloalkyl, (C C 1 -C 6 )alkoxy-(C 1 -C 6 )alkoxy-(C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy-(C 1 -C 6 )alkoxy-(C C 1 -C 6 )alkoxy-(C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy-(C 1 -C 6 )alkoxy-(C 1 -C 6 )alkoxy-(C C 1 -C 6 )alkoxy(C 1 -C 6 )alkyl, aryl, aryl(C 1 -C 6 )alkyl, aryl(C 1 -C 6 )alkoxy(C 1 -C 6 ). )-alkyl, heteroaryl, heteroaryl-(C 1 -C 6 )-alkyl, (C 3 -C 6 )-cycloalkyl-(C 1 -C 6 )-alkyl, (C 4 -C 10 )-cycloalkenyl-(C C 1 -C 6 )alkyl, bis[(C 1 -C 6 )alkyl]aminocarbonyl-(C 1 -C 6 )alkyl, (C 1 -C 6 )alkylaminocarbonyl-(C 1 -C 6 ). 6 )alkyl, aryl(C 1 -C 6 )alkylaminocarbonyl(C 1 -C 6 )alkyl, bis[(C 1 -C 6 )alkyl]amino(C 2 -C 6 ). )-alkyl, (C 1 -C 6 )-alkyl-amino-(C 2 -C 6 )-alkyl, aryl-(C 1 -C 6 )-alkyl-amino-(C 2 -C 6 )-alkyl, R 14 S-(C 1 -C 6 )alkyl, R 14 (O)S-(C 1 -C 6 )alkyl, R 14 O 2 S-(C 1 -C 6 )alkyl, hydroxycarbonyl-( C 1 -C 6 )alkyl, heterocyclyl, heterocyclyl(C 1 -C 6 )alkyl, tris[(C 1 -C 6 )alkyl]silyl(C 1 -C 6 )alkyl, bis- [(C 1 -C 6 )alkyl](aryl)silyl(C 1 -C 6 )alkyl, [(C 1 -C 6 )alkyl]bis(aryl)silyl(C 1 -C 6 ) . )-alkyl, (C 1 -C 6 )-alkylcarbonyloxy-(C 1 -C 6 )-alkyl, (C 3 -C 6 )-cycloalkylcarbonyloxy-(C 1 -C 6 )-alkyl, arylcarbonyloxy-(C 1 - C 6 )alkyl, heteroarylcarbonyloxy(C 1 -C 6 )alkyl, heterocyclylcarbonyloxy(C 1 -C 6 )alkyl, aryloxy(C 1 -C 6 )alkyl, heteroaryloxy(C 1 -C 6 ) . )-alkyl, (C 1 -C 6 )-alkoxycarbonyl, R 14 is hydrogen, (C 1 -C 6 )-alkyl, (C 2 -C 6 )-alkenyl, (C 2 -C 6 )-alkynyl, (C 1 -C 6 )cyanoalkyl, (C 1 -C 10 )haloalkyl, (C 2 -C 6 )haloalkenyl, (C 3 -C 6 )haloalkynyl, (C 3 -C 10 )cycloalkyl, (C 3 -C 10 )halocycloalkyl, (C 4 -C 10 )cycloalkenyl , (C 4 -C 10 )halocycloalkenyl, (C 1 -C 6 )alkoxy-(C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy(C 1 -C 6 )haloalkyl, aryl, aryl(C 1 -C 6 )alkyl, heteroaryl, heteroaryl-(C 1 -C 6 )alkyl, heterocyclyl (C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl-(C 1 -C 6 )alkyl, (C 4 -C 10 )cycloalkenyl-(C 1 -C 6 )alkyl, Bis[(C 1 -C 6 )alkyl]amino, (C 1 -C 6 )alkylamino, aryl-(C 1 -C 6 )- amino, aryl(C 1 -C 6 )alkylamino, aryl[(C 1 -C 6 )alkyl]amino; (C 3 -C 6 )cycloalkylamino, (C 3 -C 6 )cycloalkyl[(C 1 -C 6 )alkyl]amino; N-azetidinyl, N-pyrrolidinyl, N-piperidinyl, N-morpholinyl and R 16 and R 17 independently represent (C 1 -C 7 )-alkyl, (C 3 -C 7 )-cycloalkyl, aryl, or R R 16 and R 17 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle. 4. Compounds of the general formula (I) according to claim 1 and/or salts thereof, characterized in that R 1 represents hydrogen, R 2 represents hydrogen, fluorine, chlorine, R 3 represents amino, methyl, ethyl, prop-1 -yl, 1-methylethyl, but-1-yl, 1-methylpropyl, 2-methylpropyl, R 4 is bromo, iodo, G is a radical of the following formula,
Figure imgf000231_0001
R 5 and R 6 are independently hydrogen, methyl, ethyl, prop-1-yl, 1-methylethyl, but-1-yl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, n-pentyl, 1- Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4- Methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1, 1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, R 5 and R 6 together with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle and Q is one of the moieties Q-1 to Q-500 specifically mentioned below:
Figure imgf000232_0001
j
Figure imgf000233_0001
Figure imgf000234_0001
Figure imgf000235_0001
Figure imgf000236_0001
Figure imgf000237_0001
Figure imgf000238_0001
Figure imgf000239_0001
Figure imgf000240_0001
Figure imgf000241_0001
Figure imgf000242_0001
j
Figure imgf000233_0001
Figure imgf000234_0001
Figure imgf000235_0001
Figure imgf000236_0001
Figure imgf000237_0001
Figure imgf000238_0001
Figure imgf000239_0001
Figure imgf000240_0001
Figure imgf000241_0001
Figure imgf000242_0001
Figure imgf000243_0001
5. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 und/oder deren Salz, dadurch gekennzeichnet, dass R1 für Wasserstoff steht, R2 für Wasserstoff, Fluor, Chlor steht, R3 für Amino, Methyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel
Figure imgf000244_0001
steht, R5 und R6 unabhängig voneinander für Wasserstoff, Methyl, Ethyl, bevorzugt Methyl stehen, oder R5 und R6 mit dem Kohlenstoffatom, an das sie gebunden sind, einen vollständig gesättigten monocyclischen 3- bis 6-gliedrigen Carbocyclus bilden und Q für eine der zuvor spezifisch genannten Gruppierungen Q-1 bis Q-500 steht. 6. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 und/oder deren Salz, dadurch gekennzeichnet, dass R1 für Wasserstoff steht, R2 für Wasserstoff, Fluor, Chlor steht, R3 für Amino, Methyl steht, R4 für Brom, Iod steht, G für einen Rest der nachfolgenden Formel steht,
Figure imgf000244_0002
R5 und R6 für Methyl stehen und Q für eine der zuvor spezifisch genannten Gruppierungen Q-1, Q-2, Q-23, Q-24, Q-26, Q-31, Q-71, Q-72, Q-115, Q-127, Q-152, Q-176, Q-231, Q-237, Q-286, Q-301, Q-302, Q-441, Q-442, Q-454, Q-472, Q-481, Q-489, Q-490, Q-491, Q-496, Q-499, Q-500 steht. 7. Verwendung einer oder mehrere Verbindungen der allgemeinen Formel (I) wie in einem der Ansprüche 1 bis 6 definiert und/oder deren Salze, als Herbizid und/oder Pflanzenwachstumsregulator, vorzugsweise in Kulturen von Nutz- und/oder Zierpflanzen. 8. Herbizides und/oder pflanzenwachstumsregulierendes Mittel, dadurch gekennzeichnet, dass das Mittel eine oder mehrere Verbindungen der allgemeinen Formel (I) wie in einem der Ansprüche 1 bis 6 definiert und/oder deren Salze enthält, und ein oder mehrere weitere Stoffe ausgewählt aus den Gruppen (i) und/oder (ii), mit (i) ein oder mehrere weitere agrochemisch wirksame Stoffe, vorzugsweise ausgewählt aus der Gruppe bestehend aus Insektiziden, Akariziden, Nematiziden, weiteren Herbiziden, Fungiziden, Safenern, Düngemitteln und/oder weiteren Wachstumsregulatoren, (ii) ein oder mehrere im Pflanzenschutz übliche Formulierungshilfsmittel. 9. Verfahren zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen, dadurch gekennzeichnet, dass eine wirksame Menge - einer oder mehrerer Verbindungen der allgemeinen Formel (I), wie in einem der Ansprüche 1 bis 6 definiert und/oder deren Salze, oder - eines Mittels nach Anspruch 8, auf die Pflanzen, Pflanzensamen, den Boden, in dem oder auf dem die Pflanzen wachsen, oder die Anbaufläche appliziert wird.
Figure imgf000243_0001
5. Compounds of the general formula (I) according to claim 1 and/or salts thereof, characterized in that R 1 represents hydrogen, R 2 represents hydrogen, fluorine, chlorine, R 3 represents amino, methyl, R 4 represents bromine , iodine, G is a radical of the following formula
Figure imgf000244_0001
R 5 and R 6 are independently hydrogen, methyl, ethyl, preferably methyl, or R 5 and R 6 with the carbon atom to which they are attached form a fully saturated monocyclic 3- to 6-membered carbocycle and Q stands for one of the groups Q-1 to Q-500 specifically mentioned above. 6. Compounds of the general formula (I) according to claim 1 and/or salts thereof, characterized in that R 1 represents hydrogen, R 2 represents hydrogen, fluorine, chlorine, R 3 represents amino, methyl, R 4 represents bromine , iodine, G is a radical of the following formula,
Figure imgf000244_0002
R 5 and R 6 are methyl and Q for any of the previously specifically mentioned groupings Q-1, Q-2, Q-23, Q-24, Q-26, Q-31, Q-71, Q-72, Q-115, Q-127, Q- 152, Q-176, Q-231, Q-237, Q-286, Q-301, Q-302, Q-441, Q-442, Q-454, Q-472, Q-481, Q-489, Q-490, Q-491, Q-496, Q-499, Q-500. 7. Use of one or more compounds of the general formula (I) as defined in any one of claims 1 to 6 and/or salts thereof as a herbicide and/or plant growth regulator, preferably in crops of useful and/or ornamental plants. 8. Herbicidal and / or plant growth-regulating agent, characterized in that the agent contains one or more compounds of general formula (I) as defined in any one of claims 1 to 6 and / or salts thereof, and one or more other substances selected from the Groups (i) and/or (ii), with (i) one or more other agrochemically active substances, preferably selected from the group consisting of insecticides, acaricides, nematicides, other herbicides, fungicides, safeners, fertilizers and/or other growth regulators, (ii) one or more formulation auxiliaries customary in crop protection. 9. A method for controlling harmful plants or for regulating the growth of plants, characterized in that an effective amount - of one or more compounds of the general formula (I) as defined in any one of claims 1 to 6 and / or salts thereof, or - a Composition according to Claim 8, to which the plants, plant seeds, the soil in which or on which the plants grow, or the area under cultivation is applied.
PCT/EP2023/054143 2022-02-22 2023-02-20 Substituted n-benzoic acid uracils and salts thereof, and use thereof as herbicidal active substances WO2023161172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22157926.1 2022-02-22
EP22157926 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023161172A1 true WO2023161172A1 (en) 2023-08-31

Family

ID=80447711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/054143 WO2023161172A1 (en) 2022-02-22 2023-02-20 Substituted n-benzoic acid uracils and salts thereof, and use thereof as herbicidal active substances

Country Status (1)

Country Link
WO (1) WO2023161172A1 (en)

Citations (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906507A1 (en) 1979-02-20 1980-08-28 Bayer Ag Plant growth regulating compsn. - contg. alpha amino cyclo:alkanoic acid derivs., e.g. for dwarfing cereals
EP0030287A1 (en) 1979-11-29 1981-06-17 Bayer Ag 1-Aminocyclopropanecarboxylic acid derivatives, methods for their production, their use as plant-growth regulators and compositions containing such derivatives
EP0086750A2 (en) 1982-02-17 1983-08-24 Ciba-Geigy Ag Use of quinoline derivatives in the protection of crop plants
EP0094349A2 (en) 1982-05-07 1983-11-16 Ciba-Geigy Ag Use of quinoline derivatives for the protection of cultivated plants
DE3335514A1 (en) 1983-09-30 1985-04-18 Bayer Ag, 5090 Leverkusen 1-METHYLAMINO-CYCLOPROPAN-1-CARBONIC ACID DERIVATIVES
JPS6087254A (en) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The Novel urea compound and herbicide containing the same
EP0174562A2 (en) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Plant protecting agents based on 1,2,4 - triazole derivatives as well as 1,2,4-triazole derivatives
EP0191736A2 (en) 1985-02-14 1986-08-20 Ciba-Geigy Ag Use of quinoline derivatives for the protection of crop plants
EP0268554A2 (en) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenyl pyrazole-3-carbonic-acid derivatives for the protection of cultured plants
EP0269806A1 (en) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazole carbonic acid derivatives, their preparation and use as plant growth regulators and antidotes
WO1988010254A1 (en) 1987-06-19 1988-12-29 F. Hoffmann-La Roche & Co. Aktiengesellschaft Heterocyclic compounds
EP0333131A1 (en) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Plant protective agent based on pyrazolecarboxylic acid derivatives
EP0346620A1 (en) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft Plant protection agents containing 1,2,4-triazole derivatives, and the 1,2,4-triazole derivatives
EP0365484A1 (en) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoyl phenyl ureas
US4943309A (en) 1988-09-06 1990-07-24 Uniroyal Chemical Company, Inc. Method of defoleating cotton plants employing 3-carbonylphenyl uracil derivatives
WO1991000278A1 (en) 1989-06-29 1991-01-10 Ciba-Geigy Ag Heterocyclic compounds
EP0408382A2 (en) 1989-07-14 1991-01-16 Nissan Chemical Industries, Limited Uracil derivatives and herbicides containing the same as active ingredient
WO1991007874A1 (en) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazolines for the protection of crops against herbicides
WO1991008202A1 (en) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazolines, method of preparation thereof, and their use as plant-protection agents
US5084084A (en) 1989-07-14 1992-01-28 Nissan Chemical Industries Ltd. Uracil derivatives and herbicides containing the same as active ingredient
EP0473551A1 (en) 1990-08-31 1992-03-04 Ciba-Geigy Ag 3-Aryluracil derivatives, process for their preparation and herbicides containing them
US5123951A (en) 1986-03-31 1992-06-23 Rhone-Poulenc Nederland B.V. Synergistic plant growth regulator compositions
EP0492366A2 (en) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH New 5-chloroquinolin-8-oxyalkanecarbonic acid derivatives, process for their preparation and their use as antidotes for herbicides
EP0582198A2 (en) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituted (hetero-)aryle compounds, process for their preparation, those containing compositions and their use as safeners
WO1995007897A1 (en) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituted isoxazolines, process for producing them, agents containing them and their use as safeners
EP0648749A2 (en) 1993-08-18 1995-04-19 Bayer Ag N-cynanoaryl nitrogencontaining heterocycles
WO1995029168A1 (en) 1994-04-25 1995-11-02 Bayer Aktiengesellschaft N-cyanoaryl nitrogen heterocycles
WO1995030661A1 (en) 1994-05-04 1995-11-16 Bayer Aktiengesellschaft Substituted aromatic thiocarboxylic acid amides and their use as herbicides
WO1995032952A1 (en) 1994-05-27 1995-12-07 Ciba-Geigy Ag Process for the preparation of 3-aryluracils
DE4431219A1 (en) 1994-09-02 1996-03-07 Bayer Ag Selective herbicides based on aryluracils
WO1996008151A1 (en) 1994-09-15 1996-03-21 Bayer Aktiengesellschaft Use of aryluracils in semi-selective and non-selective weed control
DE4437197A1 (en) 1994-10-18 1996-04-25 Bayer Ag Synergistic herbicidal compsns
EP0714602A1 (en) 1994-12-02 1996-06-05 Nihon Bayer Agrochem K.K. Sulphonylaminophenyluracil herbicides for paddy field
WO1996035679A1 (en) 1995-05-08 1996-11-14 Bayer Aktiengesellschaft Substituted aminophenyluracils as herbicides and insecticides
WO1997001541A1 (en) 1995-06-29 1997-01-16 Bayer Aktiengesellschaft Substituted cyanophenyl uracils
JPH0918676A (en) 1995-06-29 1997-01-17 Nireco Corp Line sensor camera image pickup device with electronic shutter
WO1997045016A1 (en) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Novel n-acyl sulphonamides, novel mixtures of herbicides and antidotes and their use
DE19741411A1 (en) 1996-09-23 1998-03-26 Ciba Geigy Ag Preparation of 3-aryl-uracil derivative useful as herbicide
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998025909A1 (en) 1996-12-09 1998-06-18 Bayer Aktiengesellschaft 3-amino-1-cyanophenyl-uracils
WO1998027049A1 (en) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Novel 2-fluoroacrylic acid derivatives, novel mixtures of herbicides and antidotes and the use thereof
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (en) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolyl carbonyl)-2-quinolones and products for protecting useful plants containing the same
JPH1189506A (en) 1997-09-23 1999-04-06 Teruo Hashizume Sounding bird-repeller of pet bottle
WO1999016744A1 (en) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoyl benzoic acid amides, plant protection agents containing said acylsulfamoyl benzoic acid amides, and method for producing the same
WO2000049002A1 (en) 1999-02-16 2000-08-24 American Cyanamid Company Processes and intermediates for the preparation of 1,3-oxazin-6-ones and uracils
JP2000302764A (en) 1999-04-26 2000-10-31 Sumitomo Chem Co Ltd Phenyluracyl compound and its use
US6207830B1 (en) 1987-09-23 2001-03-27 Syngenta Crop Protection, Inc. Process for the production of 3-aryl-uracils
WO2001039597A2 (en) 1999-12-03 2001-06-07 Bayer Aktiengesellschaft N-aryl-uracile-based herbicides
JP2001172265A (en) 1999-12-15 2001-06-26 Sumitomo Chem Co Ltd Hydroxamic acid derivative and its application
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
US6403534B1 (en) 2000-06-28 2002-06-11 Sumitomo Chemical Company, Limited Uracil compounds and use thereof
WO2004009561A1 (en) 2002-07-23 2004-01-29 Basf Aktiengesellschaft 3-heterocyclyl substituted benzoic acid derivatives
WO2004084631A1 (en) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Use of aromatic hydroxy compounds as safeners
WO2005016001A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener based on aromatic-aliphatic carboxylic acid derivatives
WO2005015994A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Use of aromatic compounds as safeners
WO2005112630A1 (en) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Quinoxalin-2-one derivatives crop protection agents comprising the same and method for production and use therof
WO2007023719A1 (en) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reducing chemical injury and herbicide composition with reduced chemical injury
WO2007023764A1 (en) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reduction of harmful effect of herbicide and herbicide composition having reduced harmful effect
WO2008131861A1 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Use of pyridine-2-oxy-3-carbonamides as safeners
WO2008131860A2 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridonecarboxamides crop protection agents containing the same method for production and use thereof
WO2010038953A2 (en) 2008-10-02 2010-04-08 한국화학연구원 Uracil-based compounds, and herbicides comprising same
CN101838227A (en) 2010-04-30 2010-09-22 孙德群 Safener of benzamide herbicide
EP2248421A1 (en) 2009-05-07 2010-11-10 GMI - Gregor-Mendel-Institut für Molekulare Pflanzenbiologie GmbH Accumulation of biomass in plants
KR20110110420A (en) 2010-04-01 2011-10-07 한국화학연구원 Herbicidal uracil compounds and a herbicide comprising the derivatives
WO2021013799A1 (en) 2019-07-22 2021-01-28 Bayer Aktiengesellschaft Substituted n-phenyl uracils, salts thereof and their use as herbicidal agents
WO2021013800A1 (en) 2019-07-22 2021-01-28 Bayer Aktiengesellschaft Substituted n-phenyl-n-aminouarcils and salts thereof and use thereof as herbicidal agents
WO2021105101A1 (en) 2019-11-26 2021-06-03 Bayer Aktiengesellschaft [(1,5-diphenyl-1h-1,2,4-triazol-3-yl)oxy]acetic acid derivatives and salts thereof, crop protection compositions comprising them, methods for producing them and use thereof as safeners
WO2021259224A1 (en) 2020-06-23 2021-12-30 沈阳中化农药化工研发有限公司 Triazine benzoate compound and application thereof

Patent Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906507A1 (en) 1979-02-20 1980-08-28 Bayer Ag Plant growth regulating compsn. - contg. alpha amino cyclo:alkanoic acid derivs., e.g. for dwarfing cereals
EP0030287A1 (en) 1979-11-29 1981-06-17 Bayer Ag 1-Aminocyclopropanecarboxylic acid derivatives, methods for their production, their use as plant-growth regulators and compositions containing such derivatives
EP0086750A2 (en) 1982-02-17 1983-08-24 Ciba-Geigy Ag Use of quinoline derivatives in the protection of crop plants
EP0094349A2 (en) 1982-05-07 1983-11-16 Ciba-Geigy Ag Use of quinoline derivatives for the protection of cultivated plants
DE3335514A1 (en) 1983-09-30 1985-04-18 Bayer Ag, 5090 Leverkusen 1-METHYLAMINO-CYCLOPROPAN-1-CARBONIC ACID DERIVATIVES
JPS6087254A (en) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The Novel urea compound and herbicide containing the same
EP0174562A2 (en) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Plant protecting agents based on 1,2,4 - triazole derivatives as well as 1,2,4-triazole derivatives
EP0191736A2 (en) 1985-02-14 1986-08-20 Ciba-Geigy Ag Use of quinoline derivatives for the protection of crop plants
US5123951A (en) 1986-03-31 1992-06-23 Rhone-Poulenc Nederland B.V. Synergistic plant growth regulator compositions
EP0269806A1 (en) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazole carbonic acid derivatives, their preparation and use as plant growth regulators and antidotes
EP0268554A2 (en) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenyl pyrazole-3-carbonic-acid derivatives for the protection of cultured plants
WO1988010254A1 (en) 1987-06-19 1988-12-29 F. Hoffmann-La Roche & Co. Aktiengesellschaft Heterocyclic compounds
US6207830B1 (en) 1987-09-23 2001-03-27 Syngenta Crop Protection, Inc. Process for the production of 3-aryl-uracils
EP0333131A1 (en) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Plant protective agent based on pyrazolecarboxylic acid derivatives
EP0346620A1 (en) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft Plant protection agents containing 1,2,4-triazole derivatives, and the 1,2,4-triazole derivatives
US4943309A (en) 1988-09-06 1990-07-24 Uniroyal Chemical Company, Inc. Method of defoleating cotton plants employing 3-carbonylphenyl uracil derivatives
EP0365484A1 (en) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoyl phenyl ureas
WO1991000278A1 (en) 1989-06-29 1991-01-10 Ciba-Geigy Ag Heterocyclic compounds
EP0408382A2 (en) 1989-07-14 1991-01-16 Nissan Chemical Industries, Limited Uracil derivatives and herbicides containing the same as active ingredient
US5127935A (en) 1989-07-14 1992-07-07 Nissan Chemical Industries Ltd. Uracil derivatives and herbicides containing the same as active ingredient
US5084084A (en) 1989-07-14 1992-01-28 Nissan Chemical Industries Ltd. Uracil derivatives and herbicides containing the same as active ingredient
WO1991008202A1 (en) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazolines, method of preparation thereof, and their use as plant-protection agents
WO1991007874A1 (en) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazolines for the protection of crops against herbicides
EP0473551A1 (en) 1990-08-31 1992-03-04 Ciba-Geigy Ag 3-Aryluracil derivatives, process for their preparation and herbicides containing them
EP0492366A2 (en) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH New 5-chloroquinolin-8-oxyalkanecarbonic acid derivatives, process for their preparation and their use as antidotes for herbicides
EP0582198A2 (en) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituted (hetero-)aryle compounds, process for their preparation, those containing compositions and their use as safeners
EP0648749A2 (en) 1993-08-18 1995-04-19 Bayer Ag N-cynanoaryl nitrogencontaining heterocycles
WO1995007897A1 (en) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituted isoxazolines, process for producing them, agents containing them and their use as safeners
WO1995029168A1 (en) 1994-04-25 1995-11-02 Bayer Aktiengesellschaft N-cyanoaryl nitrogen heterocycles
WO1995030661A1 (en) 1994-05-04 1995-11-16 Bayer Aktiengesellschaft Substituted aromatic thiocarboxylic acid amides and their use as herbicides
WO1995032952A1 (en) 1994-05-27 1995-12-07 Ciba-Geigy Ag Process for the preparation of 3-aryluracils
DE4431219A1 (en) 1994-09-02 1996-03-07 Bayer Ag Selective herbicides based on aryluracils
WO1996007323A1 (en) 1994-09-02 1996-03-14 Bayer Aktiengesellschaft Selective herbicides based on aryl uracils
WO1996008151A1 (en) 1994-09-15 1996-03-21 Bayer Aktiengesellschaft Use of aryluracils in semi-selective and non-selective weed control
DE4437197A1 (en) 1994-10-18 1996-04-25 Bayer Ag Synergistic herbicidal compsns
EP0714602A1 (en) 1994-12-02 1996-06-05 Nihon Bayer Agrochem K.K. Sulphonylaminophenyluracil herbicides for paddy field
WO1996035679A1 (en) 1995-05-08 1996-11-14 Bayer Aktiengesellschaft Substituted aminophenyluracils as herbicides and insecticides
JPH0918676A (en) 1995-06-29 1997-01-17 Nireco Corp Line sensor camera image pickup device with electronic shutter
WO1997001541A1 (en) 1995-06-29 1997-01-16 Bayer Aktiengesellschaft Substituted cyanophenyl uracils
WO1997045016A1 (en) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Novel n-acyl sulphonamides, novel mixtures of herbicides and antidotes and their use
DE19741411A1 (en) 1996-09-23 1998-03-26 Ciba Geigy Ag Preparation of 3-aryl-uracil derivative useful as herbicide
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998025909A1 (en) 1996-12-09 1998-06-18 Bayer Aktiengesellschaft 3-amino-1-cyanophenyl-uracils
WO1998027049A1 (en) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Novel 2-fluoroacrylic acid derivatives, novel mixtures of herbicides and antidotes and the use thereof
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (en) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolyl carbonyl)-2-quinolones and products for protecting useful plants containing the same
JPH1189506A (en) 1997-09-23 1999-04-06 Teruo Hashizume Sounding bird-repeller of pet bottle
WO1999016744A1 (en) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoyl benzoic acid amides, plant protection agents containing said acylsulfamoyl benzoic acid amides, and method for producing the same
WO2000049002A1 (en) 1999-02-16 2000-08-24 American Cyanamid Company Processes and intermediates for the preparation of 1,3-oxazin-6-ones and uracils
JP2000302764A (en) 1999-04-26 2000-10-31 Sumitomo Chem Co Ltd Phenyluracyl compound and its use
WO2001039597A2 (en) 1999-12-03 2001-06-07 Bayer Aktiengesellschaft N-aryl-uracile-based herbicides
JP2001172265A (en) 1999-12-15 2001-06-26 Sumitomo Chem Co Ltd Hydroxamic acid derivative and its application
US6403534B1 (en) 2000-06-28 2002-06-11 Sumitomo Chemical Company, Limited Uracil compounds and use thereof
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2004009561A1 (en) 2002-07-23 2004-01-29 Basf Aktiengesellschaft 3-heterocyclyl substituted benzoic acid derivatives
WO2004084631A1 (en) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Use of aromatic hydroxy compounds as safeners
WO2005016001A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener based on aromatic-aliphatic carboxylic acid derivatives
WO2005015994A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Use of aromatic compounds as safeners
WO2005112630A1 (en) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Quinoxalin-2-one derivatives crop protection agents comprising the same and method for production and use therof
WO2007023719A1 (en) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reducing chemical injury and herbicide composition with reduced chemical injury
WO2007023764A1 (en) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reduction of harmful effect of herbicide and herbicide composition having reduced harmful effect
WO2008131860A2 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridonecarboxamides crop protection agents containing the same method for production and use thereof
WO2008131861A1 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Use of pyridine-2-oxy-3-carbonamides as safeners
WO2010038953A2 (en) 2008-10-02 2010-04-08 한국화학연구원 Uracil-based compounds, and herbicides comprising same
EP2248421A1 (en) 2009-05-07 2010-11-10 GMI - Gregor-Mendel-Institut für Molekulare Pflanzenbiologie GmbH Accumulation of biomass in plants
KR20110110420A (en) 2010-04-01 2011-10-07 한국화학연구원 Herbicidal uracil compounds and a herbicide comprising the derivatives
CN101838227A (en) 2010-04-30 2010-09-22 孙德群 Safener of benzamide herbicide
WO2021013799A1 (en) 2019-07-22 2021-01-28 Bayer Aktiengesellschaft Substituted n-phenyl uracils, salts thereof and their use as herbicidal agents
WO2021013800A1 (en) 2019-07-22 2021-01-28 Bayer Aktiengesellschaft Substituted n-phenyl-n-aminouarcils and salts thereof and use thereof as herbicidal agents
WO2021105101A1 (en) 2019-11-26 2021-06-03 Bayer Aktiengesellschaft [(1,5-diphenyl-1h-1,2,4-triazol-3-yl)oxy]acetic acid derivatives and salts thereof, crop protection compositions comprising them, methods for producing them and use thereof as safeners
WO2021259224A1 (en) 2020-06-23 2021-12-30 沈阳中化农药化工研发有限公司 Triazine benzoate compound and application thereof

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Chemistry and Technology of Agrochemical Formulations", 1998, KLUWER ACADEMIC PUBLISHERS
"Perry's Chemical Engineer's Handbook", 1973, MCGRAW-HILL, pages: 8 - 57
BRAUN ET AL., EMBO J., vol. 11, 1992, pages 3219 - 3227
CAS, no. 133993-74-5
CAS, no. 9012-76-4
G.C. KLINGMAN: "Weed Control as a Science", 1961, JOHN WILEY AND SONS, INC., pages: 81 - 96
GRUPPE DER STOFFE: "The Pesticide Manual", 2012, THE BRITISH CROP PROTECTION COUNCIL UND THE ROYAL SOC. OF CHEMISTRY
H.V. OLPHEN: "Handbook of Insecticide Dust Diluents and Carriers", 1963, J. WILEY & SONS
HERSTELLUNG GEMÄSS, MEDICINAL CHEMISTRY LETTERS, vol. 7, no. 12, 2016, pages 1077 - 1081
J.D. FREYERS.A. EVANS: "Weed Control Handbook", 1968, SCIENTIFIC PUBLICATIONS, pages: 101 - 103
J.E. BROWNING: "Agglomeration", 1967, CHEMICAL AND ENGINEERING, pages: 147
JOURNAL OF FLUORINE CHEMISTRY, vol. 181, 2016, pages 1 - 6
SCHÖNFELDT: "Grenzflächenaktive Äthylenoxidaddukte", 1976, WISS. VERLAGSGESELLSCHAFT
SISLEYWOOD: "McCutcheon's ''Detergents and Emulsifiers Annual", 1964, CHEM. PUBL. CO. INC.
VERFAHREN: "Spray-Drying Handbook", 1979, G. GOODWIN LTD.
WINNACKER-KÜCHLER: "Chemische Technologie", vol. 26, 1986, C. HANSER VERLAG, pages: 441 - 445

Similar Documents

Publication Publication Date Title
EP3810589A1 (en) Substituted 2-heteroaryloxypyridines and salts thereof and their use as herbicidal agents
EP4003981A1 (en) Substituted n-phenyl uracils, salts thereof and their use as herbicidal agents
EP3728235B1 (en) Substituted thiophenyluracils , their salts and use of said compounds as herbicidal agents
WO2020193474A1 (en) Substituted 2-heteroarylaminobenzenes and the salts thereof and their use as herbicidal agents
EP4003975A1 (en) Substituted n-phenyl-n-aminouarcils and salts thereof and use thereof as herbicidal agents
EP3728237B1 (en) Substituted thiophenyluracils , their salts and use of said compounds as herbicidal agents
WO2019025156A1 (en) Substituted pyrrolidinones, salts thereof and use thereof as herbicidal agents
WO2019081477A1 (en) Substituted pyrazoles, salts thereof and use thereof as herbicidal agents
WO2018177836A1 (en) N-cyclopropyl-2-oxopyrrolidine-3-carboxamide derivatives and related compounds as herbicidal plant protection agents
WO2018177837A1 (en) 4-cyclopentyl- and 4-cyclopropyl-2-oxopyrrolidine-3-carboxamide derivatives and related compounds as herbicidal plant protection agents
WO2018178008A1 (en) Substituted isoxazoline-5-ones and salts thereof and use thereof as herbicidal agents
WO2020002087A1 (en) Substituted 3-heteroaryloxypyridines and salts thereof and their use as herbicidal agents
EP3810588A1 (en) Substituted 4-heteroaryloxypyridines and salts thereof and their use as herbicidal agents
WO2019179928A1 (en) Substituted succinimide-3-carboxamides, salts thereof and the use thereof as herbicidal agents
WO2019016069A1 (en) Substituted 5-(het-)arylpyrazolamides and salts thereof and their use as herbicidal active substances
WO2019121547A1 (en) Substituted thiophenyl uracils, salts thereof and the use thereof as herbicidal agents
WO2018184890A1 (en) 4-substituted n-amino and n-hydroxy 2-oxo-pyrrolidie-3-carboxamide derivatives, salts thereof and use thereof as herbicidal agents
WO2019081485A1 (en) Substituted pyrazoles, salts thereof and use thereof as herbicidal agents
WO2023161172A1 (en) Substituted n-benzoic acid uracils and salts thereof, and use thereof as herbicidal active substances
EP3558975A1 (en) Substituted heteroaryl pyrrolones and salts thereof and use thereof as herbicidal active substances
EP4230620A1 (en) Substituted n-amino-n-benzoic acid uracils, their salts and use of said compounds as herbicidal agents
EP4230621A1 (en) Substituted n-benzoic acid uracils, their salts and use of said compounds as herbicidal agents
WO2024078906A1 (en) Substituted n-phenyluracils and salts thereof, and use thereof as herbicidal active substances
WO2021151976A1 (en) [(1,4,5-trisubstituted-1h-pyrazol-3-yl)sulfanyl]acetic acid derivatives, salts thereof, and use thereof as herbicidal ingredients
WO2022043205A1 (en) Substituted n-phenyluracils and salts thereof, and use thereof as herbicidal active substances

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23706334

Country of ref document: EP

Kind code of ref document: A1