WO2023160714A1 - 多流感知信号生成方法、装置及系统 - Google Patents

多流感知信号生成方法、装置及系统 Download PDF

Info

Publication number
WO2023160714A1
WO2023160714A1 PCT/CN2023/078558 CN2023078558W WO2023160714A1 WO 2023160714 A1 WO2023160714 A1 WO 2023160714A1 CN 2023078558 W CN2023078558 W CN 2023078558W WO 2023160714 A1 WO2023160714 A1 WO 2023160714A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence set
odd
zcz
period
sequence
Prior art date
Application number
PCT/CN2023/078558
Other languages
English (en)
French (fr)
Inventor
沈炳声
杜瑞
周正春
唐小虎
刘辰辰
韩霄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023160714A1 publication Critical patent/WO2023160714A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular to a method, device and system for generating a multi-stream sensing signal.
  • MIMO pulsed radar technology combines transmit diversity technology with traditional array radar, which can make full use of the freedom of transmit dimension and improve the radar's detection ability in complex electromagnetic environments.
  • the MIMO pulse radar technology can rely on the MIMO system to transmit the MIMO pulse waveform to the environment, and analyze the echo signal of the transmitted pulse waveform to obtain the relevant parameters of the target (such as speed, distance, Angle, etc.), so as to achieve perception, this technology can be called MIMO pulse perception, which may be the core of future perception technology. But in the same way, in MIMO pulse sensing, the Doppler frequency shift generated by sensing target motion will make the sensing performance worse.
  • Embodiments of the present application provide a method, device, and system for generating multi-stream sensing signals, which are used to solve the problem that sensing echo signals have relatively high distance sidelobes when a target moves at high speed.
  • the embodiments of the present application adopt the following technical solutions:
  • a method for generating a multi-stream sensing signal is provided.
  • the method may be executed by the first communication device, or by components of the first communication device, such as a processor, a chip, or a chip system, or by a logic module or software that can realize all or part of the functions of the first communication device accomplish.
  • the method includes: generating a first multiple-input multiple-output MIMO sensing signal according to a first sequence set, wherein the first sequence set is constructed according to a periodic zero-correlation zone ZCZ sequence set or an odd-period ZCZ sequence set; sending the first MIMO sensing signal ; first MIMO
  • the perception signal is used to perceive the target object moving at high speed.
  • the first MIMO sensing signal after the first MIMO sensing signal is filtered by a filter, it can be represented by the periodic correlation function or odd-period correlation function of the sequences in the first sequence set to avoid the use of non-periodic function representation, so that the echo signal of the transmitted waveform
  • the distance sidelobe can be eliminated in the zero-correlation zone, or in other words, it is not affected by the Doppler frequency shift within the time delay.
  • the echo signal of the first MIMO sensing signal in this scheme is not affected by the Doppler frequency shift in any Doppler range, that is, the global anti-Doppler can be realized within the time delay, thus When sensing the target object moving at high speed, the performance is still not affected, which is beneficial to the detection of the target object moving at high speed.
  • the first sequence set is constructed based on the periodic ZCZ sequence set, including: the first sequence set is obtained by adding a cyclic prefix to each sequence in the periodic ZCZ sequence set.
  • the first sequence set satisfies the following relationship:
  • X is the first sequence set
  • x k is the kth sequence in the first sequence set
  • k ⁇ 0,1,...,N-1 ⁇ N is the number of sequences included in the periodic ZCZ sequence set
  • x k Satisfy the following relationship:
  • Z is the zero-correlation zone width of the periodic ZCZ sequence set
  • T 2 is the length of the sequence in the periodic ZCZ sequence set
  • S k is the kth sequence in the periodic ZCZ sequence set.
  • the first sequence set is constructed based on an odd-period ZCZ sequence set, including: the first sequence set is obtained by adding an odd-period cyclic prefix to each sequence in the odd-period ZCZ sequence set of.
  • the first sequence set satisfies the following relationship:
  • X is the first sequence set
  • x k is the kth sequence in the first sequence set
  • k ⁇ 0,1,...,N-1 ⁇ N is the number of sequences included in the odd-period ZCZ sequence set
  • x k satisfies the following relationship:
  • x k (-s k,LZ ,-s k,L-Z+1 ,...,-s k,L-1 ,s k,0 ,s k,1 ...,s k,L-1 );
  • Z is the zero-correlation zone width of the odd-period ZCZ sequence set
  • L is the length of the sequence in the odd-period ZCZ sequence set
  • S k is the kth sequence in the odd-period ZCZ sequence set.
  • a method for generating a multi-stream sensing signal is provided.
  • the method may be executed by the second communication device, or by a component of the second communication device, such as a processor, a chip, or a chip system, or by A logic module or software implementation that realizes all or part of the functions of the first communication device.
  • the method includes: receiving an echo signal of a first multiple-input multiple-output MIMO sensing signal; the echo signal is a signal reflected by a target object after the first MIMO sensing signal; the target object is moving at a high speed when reflecting the first MIMO sensing signal; according to The second sequence set processes the echo signal to obtain the second sensing signal; wherein, the second sequence set is constructed according to the periodic zero-correlation zone ZCZ sequence set or the odd-period ZCZ sequence set; the second sensing signal has no side in the zero-correlation zone valve.
  • the first MIMO sensing signal after the first MIMO sensing signal is filtered by a filter, it can be represented by the periodic correlation function or odd-period correlation function of the sequences in the first sequence set to avoid the use of non-periodic function representation, so that the echo signal of the transmitted waveform
  • the distance sidelobe can be eliminated in the zero-correlation zone, or in other words, it is not affected by the Doppler frequency shift within the time delay.
  • the echo signal of the first MIMO sensing signal in this scheme is not affected by the Doppler frequency shift in any Doppler range, that is, the global anti-Doppler can be realized within the time delay, thus When sensing the target object moving at high speed, the performance is still not affected, which is beneficial to the detection of the target object moving at high speed.
  • the second sequence set is constructed according to the periodic ZCZ sequence set or the odd periodic ZCZ sequence set, including: the second sequence set is to combine each of the periodic ZCZ sequence sets or the odd periodic ZCZ sequence set A sequence is obtained by adding a zero prefix.
  • This solution provides a method for constructing a second sequence set based on a periodic ZCZ sequence set or an odd-period ZCZ sequence set.
  • the second sequence set satisfies the following relationship:
  • Y is the second sequence set
  • y k is the kth sequence in the second sequence set
  • N is the periodic ZCZ sequence set used to construct the second sequence set Or the number of sequences included in the odd-period ZCZ sequence set
  • y k satisfies the following relationship:
  • T 2 is used to construct the period ZCZ sequence set of the second sequence set or the length of the sequence in the odd period
  • S k is used to construct the period ZCZ sequence of the second sequence set or the kth item in the odd period ZCZ sequence set sequence.
  • a communication device for implementing the above method.
  • the communication device (main body) includes corresponding modules and units for realizing the above method, and the modules and units can be realized by hardware, software, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a processing module and a transceiver module; the processing module is configured to generate a first MIMO sensing signal according to a first sequence set, wherein the first sequence set is based on period zero Constructed by a correlation zone ZCZ sequence set or an odd-period ZCZ sequence set; the transceiver module is used to send the first MIMO sensing signal: the first MIMO sensing signal is used for sensing a target object moving at high speed.
  • the first sequence set is constructed based on the periodic ZCZ sequence set, including: the first sequence set is obtained by adding a cyclic prefix to each sequence in the periodic ZCZ sequence set.
  • the first sequence set satisfies the following relationship:
  • X is the first sequence set
  • x k is the kth sequence in the first sequence set
  • k ⁇ 0,1,...,N-1 ⁇ N is the number of sequences included in the periodic ZCZ sequence set
  • x k Satisfy the following relationship:
  • Z is the zero-correlation zone width of the periodic ZCZ sequence set
  • T 2 is the length of the sequence in the periodic ZCZ sequence set
  • s k is the kth sequence in the periodic ZCZ sequence set.
  • the first sequence set is constructed based on an odd-period ZCZ sequence set, including: the first sequence set is obtained by adding an odd-period cyclic prefix to each sequence in the odd-period ZCZ sequence set of.
  • the first sequence set satisfies the following relationship:
  • X is the first sequence set
  • x k is the kth sequence in the first sequence set
  • k ⁇ 0,1,...,N-1 ⁇ N is the number of sequences included in the odd-period ZCZ sequence set
  • x k satisfies the following relationship:
  • x k (-s k,LZ ,-s k,L-Z+1 ,...,-s k,L-1 ,s k,0 ,s k,1 ...,s k,L-1 );
  • Z is the zero-correlation zone width of the odd-period ZCZ sequence set
  • L is the length of the sequence in the odd-period ZCZ sequence set
  • s k is the kth sequence in the odd-period ZCZ sequence set.
  • a communication device for implementing the above method.
  • the communication device (main body) includes corresponding modules and units for realizing the above method, and the modules and units can be realized by hardware, software, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a processing module and a transceiver module; the transceiver module is configured to receive an echo signal of the first MIMO sensing signal; the echo signal is the first MIMO sensing signal passed through the target The signal reflected by the object; the target object is moving at high speed when reflecting the first MIMO sensing signal; the processing module is used to process the echo signal according to the second sequence set to obtain the second sensing signal; wherein, the second sequence set is based on the period zero The correlation zone ZCZ sequence set or the odd period ZCZ sequence set is constructed; the second sensing signal has no side lobe in the zero correlation zone.
  • the second sequence set is constructed according to the periodic ZCZ sequence set or the odd periodic ZCZ sequence set, including: the second sequence set is to combine each of the periodic ZCZ sequence sets or the odd periodic ZCZ sequence set A sequence is obtained by adding a zero prefix.
  • the second sequence set satisfies the following relationship:
  • Y is the second sequence set
  • y k is the kth sequence in the second sequence set
  • N is the periodic ZCZ sequence set used to construct the second sequence set Or the number of sequences included in the odd-period ZCZ sequence set
  • y k satisfies the following relationship:
  • T 2 is the length of the sequence in the period ZCZ sequence set or the odd period for constructing the second sequence set
  • s k is the period ZCZ sequence or the odd period ZCZ sequence set for constructing the second sequence set. sequence.
  • the technical effect brought by any possible implementation manner in the third aspect to the fourth aspect may refer to the technical effect brought by different implementation manners in the above-mentioned first aspect to the second aspect, and details are not repeated here.
  • a communication device in a fifth aspect, includes a processor, configured to support the communication device to implement the functions involved in any one of the above first aspects.
  • the communication device further includes a memory, and the memory is used for storing necessary program instructions and data of the communication device.
  • the device may consist of a chip, or may include chips and other discrete components.
  • a communication device in a sixth aspect, includes a processor, configured to support the communication device to implement the functions involved in any one of the above second aspects.
  • the communication device further includes a memory, and the memory is used for storing necessary program instructions and data of the communication device.
  • the device may consist of a chip, or may include chips and other discrete components.
  • a communication device in a seventh aspect, includes: a processor and a memory.
  • the memory is used to store computer-executable instructions.
  • the processor executes the computer-executable instructions stored in the memory, so that the communication device executes the method for generating a multi-stream sensing signal as described in any one of the above first aspects.
  • a communication device in an eighth aspect, includes: a processor and a memory.
  • the memory is used to store computer-executable instructions.
  • the processor executes the computer-executable instructions stored in the memory, so that the communication device executes the method for generating a multi-stream sensing signal as described in any one of the third aspect above.
  • a communication device in a ninth aspect, includes: a processor; the processor is used for communicating with The memory is coupled, and after the instruction in the memory is read, the method for generating a multi-flow sensing signal according to any one of the above-mentioned first aspects is executed according to the instruction.
  • a communication device in a tenth aspect, includes: a processor; the processor is configured to be coupled with a memory, and after reading an instruction in the memory, execute the method for generating a multi-stream sensing signal according to any one of the above-mentioned second aspect according to the instruction.
  • a communication device in an eleventh aspect, includes: a processor, a memory and a transceiver.
  • the memory is used to store computer-executable instructions
  • the processor is used to execute the instructions stored in the memory.
  • the transceiver is used for the communication device to communicate with other devices in the communication network.
  • the processor executes the computer-executable instructions stored in the memory, and the transceiver communicates with other devices in the communication network, so that the communication device performs the method described in any one of the above-mentioned first aspects.
  • Multi-stream aware signal generation method may be an integrated device, or may include two devices, a transmitter and a receiver.
  • a communication device in a twelfth aspect, includes: a processor, a memory and a transceiver.
  • the memory is used to store computer-executable instructions
  • the processor is used to execute the instructions stored in the memory.
  • the transceiver is used for the communication device to communicate with other devices in the communication network.
  • the processor executes the computer-executable instructions stored in the memory, and the transceiver communicates with other devices in the communication network, so that the communication device performs the method described in any one of the above-mentioned second aspects.
  • Multi-stream aware signal generation method may be an integrated device, or may include two devices, a transmitter and a receiver.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • memory can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • a computer-readable storage medium stores instructions, which when executed by a computer cause the computer to execute the method for generating a multi-stream sensing signal as described in the first aspect above.
  • a computer-readable storage medium stores instructions, which when executed by a computer cause the computer to execute the method for generating a multi-stream sensing signal as described in any one of the above-mentioned second aspects.
  • a computer program product including instructions is provided. When it runs on a computer, the computer can execute the method for generating a multi-stream sensing signal as described in any one of the above first aspects.
  • a computer program product comprising instructions. When it runs on a computer, the computer can execute the method for generating a multi-stream sensing signal as described in any one of the above second aspects.
  • a communication system in a seventeenth aspect, includes a first communication device executing the method described in the first aspect above, and a second communication device executing the method described in the second aspect above.
  • a communication device in an eighteenth aspect, includes: an interface circuit and a processing circuit.
  • Interface circuitry may include input circuitry and output circuitry.
  • the processing circuit is used to receive signals through the input circuit and transmit signals through the output circuit, so that the method in any possible implementation manner of any one of the first aspect to the second aspect is realized.
  • the wireless communication device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • the wireless communication device may be a wireless communication device, that is, a computer device supporting a wireless communication function.
  • the wireless communication device may be a terminal such as a smart phone, or a wireless access network device such as a base station.
  • a system chip can also be called a system on chip (system on chip, SoC), or simply a SoC chip.
  • Communication chips may include baseband processing chips and radio frequency processing chips. Baseband processing chips are also sometimes referred to as modems or baseband chips.
  • RF processing chips are sometimes also referred to as RF transceivers or RF chips. In physical implementation, part or all of the chips in the communication chip can be integrated inside the SoC chip.
  • the baseband processing chip is integrated in the SoC chip, and the radio frequency processing chip is not integrated with the SoC chip.
  • the interface circuit may be a radio frequency processing chip in the wireless communication device, and the processing circuit may be a baseband processing chip in the wireless communication device.
  • the wireless communication device may be a part of a wireless communication device.
  • Integrated circuit products such as system chips or communication chips.
  • the interface circuit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • a processor may also be embodied as processing circuitry or logic circuitry.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 5 is an interactive schematic diagram of a method for generating a multi-stream sensing signal provided in an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a method for generating a multi-stream sensing signal provided in an embodiment of the present application
  • FIG. 7 is a schematic diagram of a self-ambiguity function of a first MIMO sensing signal provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a mutual ambiguity function between first MIMO sensing signals provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another self-ambiguity function of a first MIMO sensing signal provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another mutual ambiguity function between the first MIMO sensing signals provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a first communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a second communication device provided by an embodiment of the present application.
  • MIMO technology refers to the use of multiple transmitting antennas and receiving antennas at the transmitting end and receiving end, respectively, so that signals are transmitted and received through multiple antennas at the transmitting end and receiving end, thereby improving communication quality.
  • the transmitting end can map the data signal to be sent to multiple transmitting antennas, and convert it into multiple data streams for transmission.
  • the multiple receiving antennas on the receiving end can respectively receive the corresponding data streams. Therefore, a MIMO signal is a multi-stream signal.
  • MIMO pulse radar technology combines transmit diversity technology with traditional array radar, which can make full use of the degrees of freedom in the transmit dimension and improve radar detection capabilities in complex electromagnetic environments. It plays an important role in many fields.
  • an example is given to introduce a scheme for sensing a target object based on a phase-encoded MIMO pulse radar model.
  • a MIMO sensing system has N transmitters and M receivers (or N transmit antennas and M receive antennas), where K transmit pulses are used as coherent processing time, that is, after the transmitter sends K groups of signals , the receiver then processes the received K groups of signals in a unified manner.
  • K transmit pulses are used as coherent processing time, that is, after the transmitter sends K groups of signals , the receiver then processes the received K groups of signals in a unified manner.
  • the output of the filter at the receiver is the aperiodic ambiguity function of the phase encoding. It is assumed that the perceived distance of the target object from the transmitter does not exceed the maximum unambiguous distance, that is, within a pulse repetition interval (PRI).
  • PRI pulse repetition interval
  • the reflection signal generated by the target object reflecting the transmitted signal may be called the echo signal of the transmitted signal.
  • the echo signal received by each receiver is a linear combination of the transmitted waveforms transmitted by all transmitters, and each receiver is equipped with a filter bank, the echo received by each receiver After the signal is output through the filter bank, it is the superposition of N 2 fuzzy functions.
  • phase encoding used to generate the transmit waveform is:
  • each row in the matrix represents the transmit pulses transmitted by the antenna of each transmitter, for example, in the nth row, the K transmit pulses transmitted by the antenna of the nth transmitter are expressed as:
  • Each column in this matrix represents the pulse waveforms transmitted by the transmitting antennas on all transmitters in each PRI, for example, the k+1th pulse, the pulses transmitted by all transmitters are expressed as:
  • the waveform received by the filter bank equipped at the receiver is the waveform transmitted by N transmitters, and the output of the filter bank is the phase encoding self-ambiguity function and mutual ambiguity function
  • the linear superposition of , where the self-ambiguity function of the nth transmitter's transmitted waveform is defined as:
  • a n ( ⁇ , ⁇ ) represents the self-ambiguity function of the waveform transmitted by the nth transmitter, Indicates the perceptual signal emitted by the kth PRI
  • the aperiodic autocorrelation function at time delay ⁇ , ⁇ 2 ⁇ f d T, represents the Doppler frequency of the echo signal of the transmitted waveform.
  • the mutual ambiguity function between the transmitted waveforms transmitted by the n 1 , n 2 transmitters is defined as
  • non-periodic zero correlation zone zero correlation zone, ZCZ
  • the non-periodic function realizes the global anti-Doppler in the ZCZ area (that is, the zero correlation area) and achieves the optimal effect.
  • aperiodic ZCZ sequence sets do not exist at present. Therefore, it is currently impossible to achieve global anti-Doppler in the ZCZ region based on the aperiodic ZCZ sequence set, and can only relatively eliminate the influence of Doppler frequency shift within a certain range based on other sequence sets.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, a and b and c, where a, b, c Can be single or multiple.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner for easy understanding.
  • the communication system may be a third generation partnership project (3rd generation partnership project, 3GPP) communication system, for example, a fifth generation (5th generation, 5G) communication system, 6th generation (6G) communication system, vehicle to everything (V2X) system, or device-to-device (D2D) communication system, machine to machine (M2M) communication systems, Internet of things (IoT), and other next-generation communications letter system.
  • 3GPP third generation partnership project
  • 5G fifth generation
  • 6G 6th generation
  • V2X vehicle to everything
  • D2D device-to-device
  • M2M machine to machine
  • IoT Internet of things
  • the communication system may also be a non-3GPP communication system, such as a wireless local area network (wireless local area network, WLAN) system such as Wi-Fi, without limitation.
  • WLAN wireless local area network
  • the technical solutions of the embodiments of the present application may be applied to various communication scenarios, for example, may be applied to one or more of the following communication scenarios: communication scenarios such as smart home, D2D, V2X, and IoT.
  • communication scenarios such as smart home, D2D, V2X, and IoT.
  • a communication system 10 a provided by an embodiment of the present application includes a first communication device 101 and a second communication device 102 .
  • the communication system 10a shown in FIG. 1 is only a reference example.
  • the embodiment of the present application does not limit the number of first communication devices 101 and/or second communication devices 102 included in the communication system 10a, and the communication system 10a may include multiple first communication devices 101 and/or second communication devices 102 .
  • the first communication device 101 and the second communication device 102 may be different types of devices.
  • one of the first communication device 101 and the second communication device 102 is a network device, and the other for terminal equipment.
  • the first communication device 101 and the second communication device 102 may also be devices of the same type, for example, as shown in FIG.
  • Both the communication device 101 and the second communication device 102 are network devices, which are not specifically limited in this embodiment of the present application.
  • the first communication device 101 generates a first MIMO sensing signal according to the first sequence set, and sends The first MIMO sensing signal is used for sensing a high-speed moving target object.
  • the second communication device 102 receives the echo signal of the first MIMO sensing signal, and the echo signal is a signal reflected by the target object from the first MIMO sensing signal, and processes the echo signal according to the second sequence set to obtain Second sensory signal.
  • the first sequence set and the second sequence set are constructed based on a periodic ZCZ sequence set or an odd periodic ZCZ sequence set.
  • FIG. 4 is a schematic diagram of a hardware structure of a communication device 400 provided by the present application.
  • the communication device 400 includes a processor 401, a communication line 402, and at least one communication interface (the communication interface 404 is included as an example in FIG. 4 for illustration only).
  • the communication device 400 may further include a memory 403 .
  • the processor 401 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the implementation of the application program program integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 402 may include a pathway for communicating information between the above-described components.
  • Communication interface 404 using any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), etc. .
  • a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), etc. .
  • the memory 403 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types that can store information and instructions It can also be an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser CD, CD, Digital Versatile Disc, Blu-ray Disc, etc.), magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer , but not limited to this.
  • the memory may exist independently and be connected to the processor through the communication line 402 . Memory can also be integrated with the processor.
  • the memory 403 is used to store computer-executed instructions for implementing the solution of the present application, and the execution is controlled by the processor 401 .
  • the processor 401 is configured to execute computer-executed instructions stored in the memory 403, so as to implement the signal generating method provided in the following embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes or computer program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 401 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 4 .
  • the communication device 400 may include multiple processors, for example, the processor 401 and the processor 408 in FIG. 4 .
  • Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication apparatus 400 may further include an output device 405 and an input device 406 .
  • Output device 405 is in communication with processor 401 and may display information in a variety of ways.
  • the output device 405 may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector), etc.
  • the input device 406 communicates with the processor 401 and can receive user input in various ways.
  • the input device 406 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the structure shown in FIG. 4 does not constitute a specific limitation on the communication device 400 .
  • the communication device 400 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the terminal device may be a device for implementing a communication function.
  • Terminal equipment may also be called user equipment (user equipment, UE), terminal, access terminal, subscriber unit, subscriber station, mobile station (mobile station, MS), remote station, remote terminal, mobile terminal (mobile terminal, MT) , user terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be, for example, an IoT, V2X, D2D, M2M, fifth generation (5th generation, 5G) network, or a wireless terminal in a future evolved public land mobile network (public land mobile network, PLMN).
  • PLMN public land mobile network
  • a wireless terminal can refer to a device with wireless transceiver functions, which can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a drone, an IoT device (for example, a sensor, an electric meter, a water meter, etc.), a V2X device, a station (station, ST) in a wireless local area network (wireless local area networks, WLAN), a cell phone, Cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to a wireless modem, in-vehicle devices, wearable devices (also known as wearable smart devices), tablets, or Computers with functions, virtual reality (VR) terminals, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, vehicle-mounted terminals, vehicle-to-vehicle Vehicles with (vehicle-to-vehicle, V2V) communication capabilities, intelligent networked
  • the network device is a device that connects the terminal device to the wireless network, and may be an evolved base station (evolutionary base station) in LTE or an evolved LTE system (LTE-Advanced, LTE-A).
  • evolved base station evolutionary base station
  • LTE-A evolved LTE system
  • Node B, eNB or eNodeB such as traditional macro base station eNB and micro base station eNB in heterogeneous network scenarios; or it can be the next generation node B (next generation node B, gNodeB or gNB) in the 5G system; or it can be Transmission reception point (transmission reception point, TRP); or it can be a base station in the future evolution of PLMN; or it can be a broadband network gateway (broadband network gateway, BNG), an aggregation switch or a non-3GPP access device; or it can be a cloud A wireless controller in a wireless access network (cloud radio access network, CRAN); or it may be an access node (access point, AP) in a WiFi system; or it may be a wireless relay node or a wireless backhaul node; or it may be It is a device that implements the base station function in IoT, V2X, D2D, or M2M, which is not specifically limited in this embodiment of the present application.
  • the base stations in the embodiments of the present application may include various forms of base stations, for example: macro base stations, micro base stations (also called small stations), relay stations, access points, etc., which are not specifically limited in the embodiments of the present application .
  • the method for generating a multi-stream sensing signal provided by the embodiment of the present application will be described below with reference to FIG. 1 to FIG. 3 , taking the interaction between the first communication device 101 and the second communication device 102 shown in FIG. 1 as an example.
  • the first communication device and/or the second communication device may perform some or all of the steps in the embodiment of the application, these steps or operations are only examples, and the embodiment of the application may also perform other Operations or variants of operations.
  • each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all operations in the embodiment of the present application.
  • the multi-stream sensing signal generation method includes the following steps:
  • the first communication device generates a first MIMO sensing signal according to a first sequence set, where the first sequence set is constructed according to a periodic ZCZ sequence set or an odd-period ZCZ sequence set.
  • the first communication device sends a first MIMO sensing signal, where the first MIMO sensing signal is used to sense a high-speed moving target object.
  • the second communication device receives the echo signal of the first MIMO sensing signal, and the echo signal is a signal reflected by the target object from the first MIMO sensing signal.
  • the second communication device processes the echo signal of the first MIMO sensing signal according to the second sequence set to obtain the second sensing signal.
  • the second sequence set is constructed according to the periodic ZCZ sequence set or the odd periodic ZCZ sequence set.
  • the first Second the perceptual signal has no sidelobes in the zero-correlation region.
  • the first MIMO sensing signal is the first sequence based on the first communication device set generated. Specifically, the first communication device assigns each sequence in the first sequence set to a corresponding pulse modulator, and the pulse modulator determines a plurality of corresponding pulse waveforms according to the assigned sequence to obtain a first MIMO sensing signal.
  • the first sequence set is used to generate the transmitted first MIMO sensing signal, and the first sequence set may also be referred to as a transmit waveform set.
  • the first MIMO sensing signal is a multi-stream sensing signal and is used for sensing a target object, so the first MIMO sensing signal is a multi-stream sensing signal.
  • the first sequence set is constructed based on the ZCZ sequence set.
  • the first sequence set may be constructed based on a periodic ZCZ sequence set.
  • the embodiment of the present application does not limit the construction method of the periodic ZCZ sequence set, and any periodic ZCZ sequence set can be used to construct the first sequence set.
  • the first sequence set may be obtained by adding a cyclic prefix to each sequence in the periodic ZCZ sequence set.
  • the following uses a specific example to describe in detail how the first communication device generates the first MIMO sensing signal according to the first sequence set in this implementation manner.
  • Step 1 Construct a set of periodic ZCZ sequences with parameters (N, L, Z)
  • the steps of constructing the periodic ZCZ sequence set S may include:
  • k (0,1,...,N-1); circshift(f,x) means to cyclically shift the sequence f to the left by x bits.
  • Step 2 Add a cyclic prefix to each sequence in the sequence set S obtained in the first step to obtain a new sequence set
  • the length of the cyclic prefix is the width Z of the zero correlation zone.
  • the sequence set X is the first sequence set, as shown in the following formula (8):
  • Step 3 The first communication device distributes the sequence x k in the sequence set X generated in the second step to the pulse modulator of the link where the kth transmitting antenna is located, so that the pulse modulator can generate the sequence x k according to the sequence x k
  • the first sequence set may be constructed based on an odd-period ZCZ sequence set.
  • the embodiment of the present application does not limit the construction method of the odd-period ZCZ sequence set, and any odd-period ZCZ sequence set can be used to construct the first sequence set.
  • the first sequence set may be obtained by adding an odd-period cyclic prefix to each sequence in the periodic ZCZ sequence set.
  • the following uses a specific example to describe in detail how the first communication device generates the first MIMO sensing signal according to the first sequence set in this implementation manner.
  • Step 1 Construct an odd-period ZCZ sequence set with parameters (N, L, Z)
  • the step of constructing the odd-period ZCZ sequence set S may include:
  • 2L modulo 4 has a remainder of 2, a and L are mutually prime, and a+b is an odd number.
  • 2L modulo 4 has a remainder of 0, and both a and b are odd numbers.
  • Step 2 Add an odd-period cyclic prefix to each sequence in the sequence set S obtained in the first step to obtain a new sequence set
  • the length of the odd-period cyclic prefix is the width Z of the zero-correlation zone.
  • Step 3 The first communication device distributes the sequence x k in the sequence set X generated in the second step to the pulse modulator of the link where the kth transmitting antenna is located, so that the pulse modulator can generate the sequence x k according to the sequence x k
  • the pulse waveforms transmitted by the k transmitting antennas are the first MIMO sensing signals, and so on until all the sequences in the sequence set X are allocated. After each sequence in the sequence set X is allocated to the corresponding pulse modulator, the pulse waveforms obtained by the encoders of each pulse modulator together constitute the first MIMO sensing signal.
  • the periodic ZCZ sequence set, the odd periodic ZCZ sequence set and/or the first sequence set may be constructed by the first communication device, or configured in the first communication device after being constructed by other communication devices Yes, this embodiment of the present application does not limit it.
  • the first sequence set used to generate the first MIMO sensing signal is unique in each PRI.
  • the first The communication device controls each transmitting antenna to transmit the same pulse waveform (the first MIMO sensing signal).
  • the first communication device transmits a first MIMO sensing signal to the environment through a transmitting antenna, where the first MIMO sensing signal is used to sense a target object moving at a high speed.
  • the first MIMO sensing signal After the first MIMO sensing signal reaches the target object, A reflection signal generated by the target object reflecting the first MIMO sensing signal may be referred to as an echo signal of the first MIMO sensing signal.
  • the receiving antenna on the second communication device receives the echo signal of the first MIMO sensing signal.
  • the first communication device in each PRI, after the first communication device successfully transmits the first MIMO sensing signal for the first time, within the remaining time of the PRI, the first communication device does not send any signal, but Waiting for the second communication device to receive the echo signal of the first MIMO sensing signal.
  • the first MIMO sensing signal is used to sense the high-speed moving target object, which can be understood as: for the high-speed moving target object, compared with the existing scheme of transmitting waveform design based on complementary codes, through the first MIMO Sensing signals to perceive high-speed moving target objects can achieve better performance.
  • the existing schemes for designing transmitting waveforms based on complementary codes can only support that the signal output by the receiving end is not affected by the Doppler frequency shift when the moving speed of the target object is within a certain range .
  • the first MIMO sensing signal can be used to perceive the target object at any speed, and its echo signal is not affected by Doppler frequency shift (the specific reason will be introduced below), therefore, when the target object When moving at high speed, the technical solutions of the embodiments of the present application have better performance than the existing technical solutions, and can perceive the target object more accurately without being affected by Doppler frequency shift.
  • the high-speed moving target object that the MIMO system can perceive may be a driving car, a flying plane, and the like.
  • the solution of the embodiment of the present application can still be applied to perceive the target object without being affected by Doppler frequency shift.
  • the embodiment of the present application does not limit the moving speed of the target object.
  • the second communication device processes the echo signal according to the second sequence set to obtain a second sensing signal. Specifically, the second communication device assigns each sequence in the second sequence set to a corresponding filter, and these multiple filters together form a filter bank, and the second communication device receives the echo signal of the first MIMO sensing signal Afterwards, the echo signal is processed by the filter to obtain the second sensing signal.
  • the second sensing signal is a superposition function of the self-ambiguity function and the mutual ambiguity function of the first MIMO sensing signal.
  • the second sensing signal is obtained after multiple filters process the echo signal of the first MIMO signal, and the second sensing signal is also a multi-stream signal.
  • the second sequence set is constructed based on the ZCZ sequence set, and the ZCZ sequence set used to construct the second sequence set is the same as the ZCZ sequence set used to construct the first sequence set. Therefore, the ZCZ sequence set used to construct the first sequence set can be a periodic ZCZ sequence set or an odd-period ZCZ sequence set, and the ZCZ sequence set used to construct the second sequence set can also be a periodic ZCZ sequence set or an odd-period ZCZ sequence set.
  • the second sensing signal is a superposition function of the self-ambiguity function and mutual ambiguity function of the first MIMO sensing signal
  • the sequence set used to generate the first MIMO sensing signal and the second sensing signal is a periodic ZCZ sequence set or an odd-period ZCZ sequence set
  • the second perceptual signal is in the zero-correlation zone (the zero-correlation zone here is different from the zero-correlation zone width Z from the mathematical perspective, which is the zero-correlation zone ZT c of the waveform angle, and T c is the continuous chip There is no side lobe in time), which will be introduced in detail below.
  • the following describes in detail how the second communication device processes the received first MIMO sensing signal according to the second sequence set to obtain the second sensing signal with reference to a specific example.
  • Step 1 Construct a periodic ZCZ sequence set or an odd periodic ZCZ sequence set.
  • a periodic ZCZ sequence set or an odd periodic ZCZ sequence set For details, please refer to the introduction to S501 above.
  • Step 2 Add zeros to each sequence in the sequence set obtained in the first step to obtain a new sequence set
  • the length of the zero suffix is the width of the zero correlation zone
  • the sequence set Y is the second sequence set, as shown in the following formula (11):
  • the third step assign the sequence y k in the sequence set Y generated in the second step to the kth filter, and so on until all the sequences in the sequence set Y are assigned to the filters in the filter bank.
  • the filter performs pulse compression on the digital signal input to the filter according to the assigned sequence, and sums the compressed signals to obtain the second sensing signal.
  • the transmitted pulse waveform (the first MIMO sensing signal) is filtered by a filter
  • it can be represented by the periodic correlation function or the odd periodic correlation function of the original phase encoding sequence (the sequence in the first sequence set) (that is, the above formula 4, 5 functions is a periodic correlation function or an odd periodic correlation function), avoiding the use of non-periodic function representation, so that the echo signal of the transmitted waveform can be in the zero-correlation zone, or in other words, it will not be subject to Doppler frequency shift within the time delay ZT c influence to eliminate distance sidelobes.
  • the echo signal in this scheme is not affected by the Doppler frequency shift in any Doppler range, that is, the global anti-Doppler can be realized within the time delay ZT c , so that the perception of high-speed motion When the target object is detected, the performance is still not affected, which is beneficial to the detection of high-speed moving target objects.
  • this scheme uses a periodic ZCZ sequence set or an odd-period ZCZ sequence set to generate the transmitted first MIMO sensing signal and the output The second sensing signal, therefore, the self-ambiguity function and the mutual ambiguity function of the first MIMO sensing signal are ideal when the time delay does not exceed ZT c , and there is no range side lobe.
  • the number of transmitted pulses in order to achieve the effect of complementarity, the number of transmitted pulses must be the same as the power of the size of the complementary set, and it can be seen from the above formulas 4 and 5 that , if the aperiodic correlation function in the fuzzy function If it is equal to 0, the value of K (the number of transmitted pulse perception waveforms) does not matter, but based on this scheme, the filter can avoid outputting aperiodic correlation functions Instead, it is transformed into a periodic correlation function or an odd periodic correlation function. Therefore, in the technical solution of the present application, the number of transmitted pulse sensing waveforms is not limited, and can be any number.
  • the MIMO system includes a first communication device and a second communication device. It is assumed that the first communication device is a transmitter with 4 transmitting antennas, where 64 pulses can be transmitted on each transmitting antenna.
  • the second communication device is a receiver with four receiving antennas.
  • the first communication device transmits the first MIMO sensing signal to the environment, and the second communication device receives the echo signal of the first MIMO sensing signal to observe the vehicle running at high speed.
  • the flow of the method for generating a multi-stream sensing signal provided in this application includes S601-S612:
  • S601 a timing signal, precisely timing the time interval of the PRI.
  • Each pulse modulator determines a pulse waveform transmitted in the PRI according to the first sequence set, that is, the first MIMO sensing signal.
  • S603 The high-power radio frequency oscillator loads the input pulse waveform onto the transmitting antenna.
  • the transmitting antenna transmits the first MIMO sensing signal.
  • the target radar detects target echo signals (echo signals of the first MIMO sensing signal).
  • S606 The receiving antenna receives the target echo signal.
  • S607 The mixer mixes the high-frequency target echo signal and the local oscillation signal.
  • the mixer outputs the mixed intermediate frequency signal to an analog to digital converter (analog to digital converter, ADC).
  • ADC analog to digital converter
  • S609 the ADC converts the input analog signal into a digital signal.
  • the ADC inputs the digital signal to the filter in the filter bank, and the filter in the filter bank performs pulse compression and summation on the input digital signal according to the sequence in the allocated second sequence set to obtain a second sensing signal.
  • S611 The receiver performs phase adjustment to adjust the phase of the second sensing signal.
  • S612 The receiver accumulates multiple phase-adjusted second sensing signals and performs target detection.
  • the embodiment of the present application does not limit the quantity of the first communication device and/or the number of the second communication device.
  • the four transmitting antennas may also be respectively located on multiple transmitters (first communication devices), and the four receiving antennas may also be respectively located on multiple receivers (second communication devices).
  • the technical solution of the embodiment can still be applied and solve the technical problem.
  • x 1 to the pulse modulator of the link with the 1st transmit antenna
  • x 2 to the pulse modulator of the link with the 2nd transmit antenna
  • x 3 to the pulse modulator of the link with the 3rd transmit antenna
  • x 4 is assigned to the pulse modulator of the link where the 4th transmit antenna is located. Therefore, the pulse modulator performs phase encoding in the PRI according to the allocated sequence to obtain the first MIMO sensing signal.
  • the filter performs pulse compression and summation on the digital signals input to the filter according to the assigned sequence, to obtain the second MIMO sensing signal.
  • the chip duration T C is 10 -6 seconds
  • the self-ambiguity function graph of the first MIMO sensing signal is obtained as shown in Fig. 7, the distance between the first MIMO sensing signals transmitted by two different transmitting antennas
  • the graph of the mutual ambiguity function is shown in Fig. 8 .
  • the second sensing signal is the superposition function of the self-ambiguity function and the mutual ambiguity function of the first MIMO sensing signal. It can be seen that based on this scheme, the output waveform of the filter at the receiver (the second sensing signal) is in the zero-correlation region ZT C time is not affected by Doppler frequency shift and has no side lobes, which is conducive to the detection of high-speed moving targets. Compared with the existing schemes of transmitting waveforms based on complementary codes, there is a significant improvement.
  • x 1 (- ⁇ f(75) ,- ⁇ f(76) ,...,- ⁇ f(99) , ⁇ f(0) , ⁇ f(1) , ⁇ f(2) ,..., ⁇ f( 99) )
  • x 2 (- ⁇ f(50) ,- ⁇ f(51) ,...,- ⁇ f(99) , ⁇ f(0) , ⁇ f (1) , ⁇ f(2) ,..., ⁇ f( 74) )
  • x 3 (- ⁇ f(25) ,- ⁇ f(26) ,...,- ⁇ f(99) , ⁇ f(0) , ⁇ f (1) , ⁇ f(2) ,..., ⁇ f( 49) )
  • x 4 (- ⁇ f(0) ,- ⁇ f(1) ,...
  • the pulse modulator performs phase encoding in the PRI according to the allocated sequence to obtain the first MIMO sensing signal.
  • the filter performs pulse compression and summation on the digital signals input to the filter according to the assigned sequence, to obtain the second MIMO sensing signal.
  • the chip duration T C is 10 -6 seconds
  • the self-ambiguity function graph of the first MIMO sensing signal is obtained as shown in Fig. 9, the distance between the first MIMO sensing signals transmitted by two different transmitting antennas
  • the graph of mutual ambiguity function is shown in Fig.10.
  • the second sensing signal is the superposition function of the self-ambiguity function and the mutual ambiguity function of the first MIMO sensing signal. It can be seen that based on this scheme, the output waveform of the filter at the receiver (the second sensing signal) is in the zero-correlation region ZT C time is not affected by Doppler frequency shift and has no side lobes, which is conducive to the detection of high-speed moving targets. Compared with the existing schemes of transmitting waveforms based on complementary codes, there is a significant improvement.
  • the methods and/or steps implemented by the first communication device may also be implemented by components (such as chips or circuits) that can be used in the first communication device, and the methods and/or steps implemented by the second communication device The methods and/or steps can also be implemented by components that can be used in the second communication device.
  • the embodiment of the present application further provides a communication device, and the communication device is used to implement the above-mentioned various methods.
  • the communication device may be the terminal device in the above method embodiment, or a device including the above terminal device, or a component that can be used in the terminal device; or, the communication device may be the network device in the above method embodiment, or include the above A device for a network device, or a component that can be used for a network device.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the embodiment of the present application may divide the functional modules of the communication device according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 11 shows a schematic structural diagram of a first communication device 110 .
  • the first communication device 110 includes a processing module 1101 and a transceiver module 1102 .
  • the transceiver module 1102 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 1102 may include a receiving module and a sending module, which are respectively used to perform the receiving and sending steps performed by the first communication device in the above method embodiments, and the processing module 1101 may be used to perform the steps in the above method embodiments Steps performed by the first communication device other than receiving and sending type steps.
  • the processing module 1101 is configured to generate a first MIMO sensing signal according to a first sequence set, wherein the first sequence set is constructed according to a periodic zero-correlation zone ZCZ sequence set or an odd-period ZCZ sequence set; a transceiver module 1102 is configured to Sending a first MIMO sensing signal; the first MIMO sensing signal is used for sensing a high-speed moving target object.
  • the first communication device 190 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the terminal device is used as the first communication device, those skilled in the art can imagine that the first communication device 190 may take the form of the communication device 400 shown in FIG. 4 .
  • the processor 401 in the communication device 400 shown in FIG. 4 may invoke the computer-executed instructions stored in the memory 403 to make the communication device 400 execute the method for generating a multi-stream sensing signal in the foregoing method embodiments.
  • the functions/implementation process of the processing module 1101 and the transceiver module 1102 in FIG. 11 can be realized by calling the computer-executed instructions stored in the memory 403 by the processor 401 in the communication device 400 shown in FIG. 4 .
  • the function/implementation process of the processing module 1101 in FIG. 11 can be realized by the processor 401 in the communication device 400 shown in FIG. /The implementation process can be implemented through the communication interface 404 in the communication device 400 shown in FIG. 4 .
  • the first communication device 110 provided in this embodiment can execute the above method for generating a multi-stream sensing signal, the technical effect it can obtain can refer to the above method embodiment, and details are not repeated here.
  • FIG. 12 shows a schematic structural diagram of a second communication device 120 .
  • the second communication device 120 includes a processing module 1201 and a transceiver module 1202 .
  • the transceiver module 1202 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 1202 may include a receiving module and a sending module, which are respectively used to perform the receiving and sending steps performed by the second communication device in the above method embodiments, and the processing module 1201 may be used to perform the steps in the above method embodiments Steps performed by the second communication device other than receiving and sending type steps.
  • the transceiver module 1202 is configured to receive an echo signal of the first MIMO sensing signal; the echo signal is a signal reflected by the first MIMO sensing signal from the target object; the target object is moving at a high speed when reflecting the first MIMO sensing signal; processing Module 1201, configured to process the echo signal according to the second sequence set to obtain the second sensing signal; wherein, the second sequence set is constructed according to the periodic zero-correlation zone ZCZ sequence set or the odd-period ZCZ sequence set; The second sensing signal has no sidelobes in the zero-correlation region.
  • the second communication device 120 is presented in a form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the network device is used as the second communication device, those skilled in the art can imagine that the second communication device 120 may take the form of the communication device 400 shown in FIG. 4 .
  • the processor 401 in the communication device 400 shown in FIG. 4 may invoke the computer-executed instructions stored in the memory 403 to make the communication device 400 execute the method for generating a multi-stream sensing signal in the foregoing method embodiments.
  • the functions/implementation process of the processing module 1201 and the transceiver module 1202 in FIG. 12 can be realized by calling the computer-executed instructions stored in the memory 403 by the processor 401 in the communication device 400 shown in FIG. 4 .
  • the function/implementation process of the processing module 1201 in FIG. 12 can be realized by the processor 401 in the communication device 400 shown in FIG. /The implementation process can be implemented through the communication interface 404 in the communication device 400 shown in FIG. 4 .
  • the second communication device 120 provided in this embodiment can execute the above-mentioned method for generating a multi-stream sensing signal, the technical effect it can obtain can refer to the above-mentioned method embodiment, and details are not repeated here.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor, configured to implement the method in any one of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any one of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device further includes an interface circuit, the interface circuit is a code/data read and write interface circuit, and the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in the memory, and may be directly read from memory read, or possibly through other devices) and transferred to the processor.
  • the communication device is a system-on-a-chip, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • the embodiment of the present application also provides a communication device, which may include a processor and an interface circuit, where the interface circuit is used to communicate with other modules other than the communication device, and the processor may be used to execute A computer program or an instruction, so that the communication device implements the method in any one of the above method embodiments.
  • the communication device may be a chip or a chip system.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center By wire (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or Wireless (eg, infrared, wireless, microwave, etc.) transmission to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the computer may include the aforementioned apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种多流感知信号生成方法、装置及系统,可以在感知高速运动的目标对象时,依然可以实现低距离旁瓣。该方法包括:根据第一序列集生成第一多输入多输出MIMO感知信号,其中,第一序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的;发送第一MIMO感知信号;第一MIMO感知信号用于感知高速运动的目标对象。本申请适用于通信技术领域。

Description

多流感知信号生成方法、装置及系统
本申请要求于2022年02月28日提交国家知识产权局、申请号为202210193498.2、申请名称为“多流感知信号生成方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及多流感知信号生成方法、装置及系统。
背景技术
多输入多输出(multiple input multiple output,MIMO)脉冲雷达技术将发射分集技术与传统的阵列雷达相结合,能够充分的利用发射维的自由度,提升雷达在复杂的电磁环境下的探测能力,在许多领域都发挥着重要作用,但是它仍然存在由多普勒频移引起的较高的距离旁瓣问题。其中,较高的距离旁瓣会对雷达检测产生巨大影响,使弱目标淹没在强目标的旁瓣中,进而造成漏检概率增大。
若将MIMO脉冲雷达技术应用于感知目标对象,可以依托于MIMO系统,向环境中发射MIMO脉冲波形,通过对发射的脉冲波形的回波信号进行分析,获取目标的相关参数(如速度,距离,角度等),从而实现感知,该技术可以称为MIMO脉冲感知,其可能是未来感知技术的核心。但同样的,MIMO脉冲感知中,感知目标运动产生的多普勒频移会使得感知性能变差。
为了消除MIMO脉冲感知中多普勒频移的影响,现有的方法采用互补码设计一种抗多普勒频移的MIMO脉冲感知波形,其原理是发射多组脉冲,利用互补码的互补性在多普勒频移为零处产生高阶零点,进而在多普勒频移为零处的附近消除多普勒的影响,实现较低的距离旁瓣。然而,基于互补码的MIMO脉冲感知波形仅能够在小范围内消除多普勒的影响,一旦多普勒频移超出这个范围,目标感知回波又会产生较高的距离旁瓣,这会严重降低感知性能。这意味着,当目标对象的运动速度在一定范围之内,现有方法仍可以较好的工作。但是当目标对象在高速运动时,现有的方法就存在性能无法满足的情况。
综上所述,如何设计在较大区域内或者全局抗多普勒的MIMO脉冲感知波形,从而当目标对象高速运动时,依然可以实现低距离旁瓣,是目前亟待解决的问题。
发明内容
本申请实施例提供一种多流感知信号生成方法、装置及系统,用于解决目标高速运动时感知回波信号有较高距离旁瓣的问题。为了解决上述的技术问题,本申请的实施例采用如下技术方案:
第一方面,提供了一种多流感知信号生成方法。该方法可以由第一通信装置执行,也可以由第一通信装置的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一通信装置功能的逻辑模块或软件实现。该方法包括:根据第一序列集生成第一多输入多输出MIMO感知信号,其中,第一序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的;发送第一MIMO感知信号;第一MIMO 感知信号用于感知高速运动的目标对象。
基于本方案,第一MIMO感知信号在经过滤波器滤波后,可以采用第一序列集中的序列的周期相关函数或者奇周期相关函数表示避免了使用非周期函数表示,从而使发射波形的回波信号可以在零相关区内,或者说在时延内不受多普勒频移的影响,消除距离旁瓣。相比现有方法,本方案中第一MIMO感知信号的回波信号在任意多普勒范围内均不受多普勒频移的影响,即可以在时延内实现全局抗多普勒,从而在感知高速运动的目标对象时,性能依然不受影响,有利于检测高速运动的目标对象。
结合第一方面,在某些实施方式中,第一序列集是根据周期ZCZ序列集构建的,包括:第一序列集是将周期ZCZ序列集中的每一条序列添加循环前缀后得到的。本方案提供了一种基于周期ZCZ序列集构建第一序列集的方法。
结合第一方面,在某些实施方式中,第一序列集满足以下关系:其中,X为第一序列集,xk为第一序列集中的第k条序列,k∈{0,1,…,N-1},N为周期ZCZ序列集包括的序列的数量;xk满足如下关系:
其中,Z为周期ZCZ序列集的零相关区宽度,T2为周期ZCZ序列集中的序列的长度;Sk为周期ZCZ序列集中的第k条序列。本方案提供了一种第一序列集的数学表达方式。
结合第一方面,在某些实施方式中,奇周期ZCZ序列集是根据以下步骤构建的:设函数f(x)=ax2+bx,其中a∈{1,2,…,2L-1},b∈{0,1,2,…,2L-1};L、a、b满足以下条件之一:2L模4余2,a与L互素,且a+b是奇数;或者,2L模4余0,a与b都是奇数;生成序列其中,c∈{0,1,…,L-1};以序列f作为基序列,生成N条序列f的奇周期循环移位版本,N条序列f的奇周期循环移位版本满足如下关系:sk=ocircshift(f,(k-1)L/N);其中,k=(0,1,…,N-1),ocircshift表示奇周期移位算子,根据sk构建奇周期ZCZ序列集,奇周期ZCZ序列集满足如下关系:其中,S为奇周期ZCZ序列集,sk为奇周期ZCZ序列集中的第k条序列;奇周期ZCZ序列集中的序列的长度为L,L=NZ;N为奇周期ZCZ序列集包括的序列的数量;Z为奇周期ZCZ序列集的零相关区宽度。本方案提供了一种奇周期ZCZ序列集的构建方法。
结合第一方面,在某些实施方式中,第一序列集是根据奇周期ZCZ序列集构建的,包括:第一序列集是将奇周期ZCZ序列集中的每一条序列添加奇周期循环前缀后得到的。本方案提供了一种基于奇周期ZCZ序列集构建第一序列集的方法。
结合第一方面,在某些实施方式中,第一序列集满足如下关系:其中,X为第一序列集,xk为第一序列集中的第k条序列,k∈{0,1,…,N-1},N为奇周期ZCZ序列集包括的序列的数量;xk满足如下关系:
xk=(-sk,L-Z,-sk,L-Z+1,…,-sk,L-1,sk,0,sk,1…,sk,L-1);其中,Z为奇周期ZCZ序列集的零相关区宽度,L为奇周期ZCZ序列集中的序列的长度;Sk为奇周期ZCZ序列集中的第k条序列。本方案提供了一种第一序列集的数学表达方式。
第二方面,提供了一种多流感知信号生成方法。该方法可以由第二通信装置执行,也可以由第二通信装置的部件,例如处理器、芯片、或芯片系统等执行,还可以由能 实现全部或部分第一通信装置功能的逻辑模块或软件实现。该方法包括:接收第一多输入多输出MIMO感知信号的回波信号;回波信号为第一MIMO感知信号经目标对象反射后的信号;目标对象反射第一MIMO感知信号时正在高速运动;根据第二序列集处理回波信号,得到第二感知信号;其中,第二序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的;第二感知信号在零相关区内无旁瓣。
基于本方案,第一MIMO感知信号在经过滤波器滤波后,可以采用第一序列集中的序列的周期相关函数或者奇周期相关函数表示避免了使用非周期函数表示,从而使发射波形的回波信号可以在零相关区内,或者说在时延内不受多普勒频移的影响,消除距离旁瓣。相比现有方法,本方案中第一MIMO感知信号的回波信号在任意多普勒范围内均不受多普勒频移的影响,即可以在时延内实现全局抗多普勒,从而在感知高速运动的目标对象时,性能依然不受影响,有利于检测高速运动的目标对象。
结合第二方面,在某些实施方式中,奇周期ZCZ序列集是根据以下步骤构建的:设函数f(x)=ax2+bx,其中a∈{1,2,…,2L-1},b∈{0,1,2,…,2L-1};L、a、b满足以下条件之一:2L模4余2,a与L互素,且a+b是奇数;或者,2L模4余0,a与b都是奇数;生成序列其中,c∈{0,1,…,L-1};以序列f作为基序列,生成N条序列f的奇周期循环移位版本,N条序列f的奇周期循环移位版本满足如下关系:sk=ocircshift(f,(k-1)L/N);其中,k=(0,1,…,N-1),ocircshift表示奇周期移位算子,ocircshift(x,a)=(-xL-a,-xL-a+1,…,-xL-1,x0,x1,…,xL-a-1);根据sk构建奇周期ZCZ序列集,奇周期ZCZ序列集满足如下关系:其中,S为奇周期ZCZ序列集,sk为奇周期ZCZ序列集中的第k条序列;奇周期ZCZ序列集中的序列的长度为L,L=NZ;N为奇周期ZCZ序列集包括的序列的数量;Z为奇周期ZCZ序列集的零相关区宽度。本方案提供了一种奇周期ZCZ序列集的构建方法。
结合第二方面,在某些实施方式中,第二序列集是根据周期ZCZ序列集或者奇周期ZCZ序列集构建的包括:第二序列集是将周期ZCZ序列集或者奇周期ZCZ序列集中的每一条序列添加零前缀后得到的。本方案提供了一种基于周期ZCZ序列集或者奇周期ZCZ序列集构建第二序列集的方法。
结合第二方面,在某些实施方式中,第二序列集满足以下关系:其中,Y为第二序列集,yk为第二序列集中的第k条序列,k∈{0,1,…,N-1},N为用于构建第二序列集的周期ZCZ序列集或者奇周期ZCZ序列集包括的序列的数量;yk满足如下关系:其中,T2为用于构建第二序列集的周期ZCZ序列集或者奇周期中的序列的长度;Sk为用于构建第二序列集的周期ZCZ序列或者奇周期ZCZ序列集中的第k条序列。本方案提供了一种第二序列集的数学表达方式。
第三方面,提供了一种通信装置用于实现上述方法。该通信装置(主体)包括实现上述方法相应的模块、单元,该模块、单元可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合第三方面,在某些实施方式中,该通信装置包括:处理模块和收发模块;处理模块,用于根据第一序列集生成第一MIMO感知信号,其中,第一序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的;收发模块,用于发送第一 MIMO感知信号;第一MIMO感知信号用于感知高速运动的目标对象。
结合第三方面,在某些实施方式中,第一序列集是根据周期ZCZ序列集构建的,包括:第一序列集是将周期ZCZ序列集中的每一条序列添加循环前缀后得到的。
结合第三方面,在某些实施方式中,第一序列集满足以下关系:其中,X为第一序列集,xk为第一序列集中的第k条序列,k∈{0,1,…,N-1},N为周期ZCZ序列集包括的序列的数量;xk满足如下关系:
其中,Z为周期ZCZ序列集的零相关区宽度,T2为周期ZCZ序列集中的序列的长度;sk为周期ZCZ序列集中的第k条序列。
结合第三方面,在某些实施方式中,奇周期ZCZ序列集是根据以下步骤构建的:设函数f(x)=ax2+bx,其中a∈{1,2,…,2L-1},b∈{0,1,2,…,2L-1};L、a、b满足以下条件之一:2L模4余2,a与L互素,且a+b是奇数;或者,2L模4余0,a与b都是奇数;生成序列其中,c∈{0,1,…,L-1};以序列f作为基序列,生成N条序列f的奇周期循环移位版本,N条序列f的奇周期循环移位版本满足如下关系:sk=ocircshift(f,(k-1)L/N);其中,k=(0,1,…,N-1),ocircshift表示奇周期移位算子,ocircshift(x,a)=(-xL-a,-xL-a+1,…,-xL-1,x0,x1,…,xL-a-1);根据sk构建所述奇周期ZCZ序列集,所述奇周期ZCZ序列集满足如下关系:其中,S为奇周期ZCZ序列集,sk为奇周期ZCZ序列集中的第k条序列;奇周期ZCZ序列集中的序列的长度为L,L=NZ;N为奇周期ZCZ序列集包括的序列的数量;Z为奇周期ZCZ序列集的零相关区宽度。
结合第三方面,在某些实施方式中,第一序列集是根据奇周期ZCZ序列集构建的,包括:第一序列集是将奇周期ZCZ序列集中的每一条序列添加奇周期循环前缀后得到的。
结合第三方面,在某些实施方式中,第一序列集满足如下关系:其中,X为第一序列集,xk为第一序列集中的第k条序列,k∈{0,1,…,N-1},N为奇周期ZCZ序列集包括的序列的数量;xk满足如下关系:
xk=(-sk,L-Z,-sk,L-Z+1,…,-sk,L-1,sk,0,sk,1…,sk,L-1);其中,Z为奇周期ZCZ序列集的零相关区宽度,L为奇周期ZCZ序列集中的序列的长度;sk为奇周期ZCZ序列集中的第k条序列。
第四方面,提供了一种通信装置用于实现上述方法。该通信装置(主体)包括实现上述方法相应的模块、单元,该模块、单元可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合第四方面,在某些实施方式中,该通信装置包括:处理模块和收发模块;收发模块,用于接收第一MIMO感知信号的回波信号;回波信号为第一MIMO感知信号经目标对象反射后的信号;目标对象反射第一MIMO感知信号时正在高速运动;处理模块,用于根据第二序列集处理回波信号,得到第二感知信号;其中,第二序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的;第二感知信号在零相关区内无旁瓣。
结合第四方面,在某些实施方式中,奇周期ZCZ序列集是根据以下步骤生成的:设函数f(x)=ax2+bx,其中a∈{1,2,…,2L-1},b∈{0,1,2,…,2L-1};L、a、b满足以下条件之一:2L模4余2,a与L互素,且a+b是奇数;或者,2L模4余0,a与b都是奇数;生成序列其中,c∈{0,1,…,L-1};以序列f作为基序列,生成N条序列f的奇周期循环移位版本,N条序列f的奇周期循环移位版本满足如下关系:sk=ocircshift(f,(k-1)L/N);其中,k=(0,1,…,N-1),ocircshift表示奇周期移位算子,ocircshift(x,a)=(-xL-a,-xL-a+1,…,-xL-1,x0,x1,…,xL-a-1);根据sk获取奇周期ZCZ序列集,奇周期ZCZ序列集满足如下关系:其中,S为奇周期ZCZ序列集,sk为奇周期ZCZ序列集中的第k条序列;奇周期ZCZ序列集中的序列的长度为L,L=NZ;N为奇周期ZCZ序列集包括的序列的数量;Z为奇周期ZCZ序列集的零相关区宽度。
结合第四方面,在某些实施方式中,第二序列集是根据周期ZCZ序列集或者奇周期ZCZ序列集构建的包括:第二序列集是将周期ZCZ序列集或者奇周期ZCZ序列集中的每一条序列添加零前缀后得到的。
结合第四方面,在某些实施方式中,第二序列集满足以下关系:其中,Y为第二序列集,yk为第二序列集中的第k条序列,k∈{0,1,…,N-1},N为用于构建第二序列集的周期ZCZ序列集或者奇周期ZCZ序列集包括的序列的数量;yk满足如下关系:其中,T2为用于构建第二序列集的周期ZCZ序列集或者奇周期中的序列的长度;sk为用于构建第二序列集的周期ZCZ序列或者奇周期ZCZ序列集中的第k条序列。
其中,第三方面至第四方面中任一种可能的实施方式所带来的技术效果可参见上述第一方面至第二方面中不同实施方式所带来的技术效果,此处不再赘述。
第五方面,提供了一种通信装置。该通信装置包括处理器,用于支持通信装置实现上述第一方面中任一项所涉及的功能。
在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存通信装置必要的程序指令和数据。该装置可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,提供了一种通信装置。该通信装置包括处理器,用于支持通信装置实现上述第二方面中任一项所涉及的功能。
在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存通信装置必要的程序指令和数据。该装置可以由芯片构成,也可以包含芯片和其他分立器件。
第七方面,提供了一种通信装置。该通信装置包括:处理器和存储器。该存储器用于存储计算机执行指令。当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面中任一项所述的多流感知信号生成方法。
第八方面,提供了一种通信装置。该通信装置包括:处理器和存储器。该存储器用于存储计算机执行指令。当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第三方面中任一项所述的多流感知信号生成方法。
第九方面,提供了一种通信装置。该通信装置包括:处理器;所述处理器用于与 存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第一方面中任一项所述的多流感知信号生成方法。
第十方面,提供了一种通信装置。该通信装置包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第二方面中任一项所述的多流感知信号生成方法。
第十一方面,提供了一种通信装置。该通信装置包括:处理器、存储器以及收发器。该存储器用于存储计算机执行指令,该处理器用于执行该存储器存储的指令。该收发器用于该通信装置与通信网络中的其他设备进行通信。当该通信装置运行时,该处理器执行该存储器存储的计算机执行指令,该收发器与通信网络中的其他设备进行通信,以使该通信装置执行如上述第一方面中任一项所述的多流感知信号生成方法。可选地,收发器可以为集成的一个装置,也可以包括发送器和接收器两个装置。
第十二方面,提供了一种通信装置。该通信装置包括:处理器、存储器以及收发器。该存储器用于存储计算机执行指令,该处理器用于执行该存储器存储的指令。该收发器用于该通信装置与通信网络中的其他设备进行通信。当该通信装置运行时,该处理器执行该存储器存储的计算机执行指令,该收发器与通信网络中的其他设备进行通信,以使该通信装置执行如上述第二方面中任一项所述的多流感知信号生成方法。可选地,收发器可以为集成的一个装置,也可以包括发送器和接收器两个装置。
在以上第五至第十二方面中,可选的,处理器为一个或多个,存储器为一个或多个。可选的,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。可选的,存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。
第十三方面,提供了一种计算机可读存储介质。该计算机可读存储介质中存储有指令,当其被计算机执行时使得计算机执行如上述第一方面所述的多流感知信号生成方法。
第十四方面,提供了一种计算机可读存储介质。该计算机可读存储介质中存储有指令,当其被计算机执行时使得计算机执行如上述第二方面中任一项所述的多流感知信号生成方法。
第十五方面,提供了一种包含指令的计算机程序产品。当其在计算机上运行时,使得计算机可以执行如上述第一方面中任一项所述的多流感知信号生成方法。
第十六方面,提供了一种包含指令的计算机程序产品。当其在计算机上运行时,使得计算机可以执行如上述第二方面中任一项所述的多流感知信号生成方法。
第十七方面,提供了一种通信系统。该通信系统包括执行上述第一方面所述的方法的第一通信装置,以及执行上述第二方面所述的方法的第二通信装置。
第十八方面,提供了一种通信装置。该通信装置包括:接口电路和处理电路。接口电路可以包括输入电路和输出电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得第一方面至第二方面任一方面中任一种可能实现方式中的方法被实现。
在具体实现过程中,无线通信装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。 输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
在一种实现方式中,无线通信装置可以是无线通信设备,即支持无线通信功能的计算机设备。具体地,无线通信设备可以是诸如智能手机这样的终端,也可以是诸如基站这样的无线接入网设备。系统芯片也可称为片上系统(system on chip,SoC),或简称为SoC芯片。通信芯片可包括基带处理芯片和射频处理芯片。基带处理芯片有时也被称为调制解调器(modem)或基带芯片。射频处理芯片有时也被称为射频收发机(transceiver)或射频芯片。在物理实现中,通信芯片中的部分芯片或者全部芯片可集成在SoC芯片内部。例如,基带处理芯片集成在SoC芯片中,射频处理芯片不与SoC芯片集成。接口电路可以为无线通信设备中的射频处理芯片,处理电路可以为无线通信设备中的基带处理芯片。
在又一种实现方式中,无线通信装置可以是无线通信设备中的部分器件。如系统芯片或通信芯片等集成电路产品。接口电路可以为该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器也可以体现为处理电路或逻辑电路。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的另一种通信系统的结构示意图;
图3为本申请实施例提供的又一种通信系统的结构示意图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5为本申请实施例提供的一种多流感知信号生成方法的交互示意图;
图6为本申请实施例提供的一种多流感知信号生成方法的流程示意图;
图7为本申请实施例提供的一种第一MIMO感知信号的自模糊函数示意图;
图8为本申请实施例提供的一种第一MIMO感知信号间的互模糊函数示意图;
图9为本申请实施例提供的另一种第一MIMO感知信号的自模糊函数示意图;
图10为本申请实施例提供的另一种第一MIMO感知信号间的互模糊函数示意图;
图11为本申请实施例提供的一种第一通信装置的结构示意图;
图12为本申请实施例提供的一种第二通信装置的结构示意图。
具体实施方式
为了便于理解本申请实施例的技术方案,首先给出本申请涉及的相关技术的简要介绍如下。
1、MIMO:
MIMO技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。MIMO系统中,发射端可以将要发送的数据信号映射到多根发射天线上,转化为多个数据流发送出去,相对应的,接收端上的多根接收天线可以分别接收对应的数据流。因此,MIMO信号是一种多流信号。
2、MIMO感知系统:
MIMO脉冲雷达技术将发射分集技术与传统的阵列雷达相结合,能够充分的利用发射维的自由度,提升雷达在复杂的电磁环境下的探测能力,在许多领域都发挥着重要作用。以下结合示例,对基于相位编码的MIMO脉冲雷达模型对目标对象进行感知的方案进行介绍。
假设一个MIMO感知系统具有N个发射机和M个接收机(或者说具有N个发射天线和M个接收天线),其中,K个发射脉冲作为相参处理时间,即发射机发送K组信号后,接收机再统一处理接收的K组信号。假设MIMO感知系统中,发射机发射的所有的发射信号(发射波形)都是经过相位编码技术得到的,接收机处的滤波器输出的就是相位编码的非周期模糊函数。假设所感知的目标对象离发射机的距离不超过最大无模糊距离,即在一个脉冲重复间隔(pulse repetition interval,PRI)内。
发射信号到达感知的目标对象后,目标对象反射发射信号所产生的反射信号可以称为发射信号的回波信号。在MIMO感知系统中,由于每个接收机接收到的回波信号是所有发射机发射的发射波形的线性组合,且在每个接收机处配备滤波器组,因此每个接收机接收的回波信号经过滤波器组输出后是N2个模糊函数的叠加。
假设用于生成发射波形的相位编码为:
其中,该矩阵中的每行表示每个发射机的天线所发射的发射脉冲,例如在第n行,第n个发射机的天线所发射的K个发射脉冲一次表示为:
(xn,0 xn,1 … xn,K-1)       公式(2)
该矩阵中的每列表示每个PRI内,所有发射机上的发射天线发射的脉冲波形,例如在第k+1个脉冲,所有发射机发射的脉冲表示为:
假设脉冲重复间隔内的多普勒频移不变,在接收机处配备的滤波器组接收的波形是N个发射机发射的波形,则滤波器组输出是相位编码自模糊函数和互模糊函数的线性叠加,其中,第n个发射机发射波形的自模糊函数定义为:
其中,An(τ,θ)表示第n个发射机发射波形的自模糊函数,表示第k个PRI发射的感知信号在时延τ处的非周期自相关函数,θ=2πfdT,表示发射波形的回波信号的多普勒频率。
第n1,n2个发射机发射的发射波形间的互模糊函数定义为
其中,表示第n1,n2个发射机发射的发射波形间的互模糊函数,表示第k个PRI发射的感知信号在时延τ处的非周期自相关函数,θ=2πfdT,表示发射波形的回波信号的多普勒频率。
根据上述公式(4)和上述公式(5)可以看出,使用非周期零相关区(zero correlation zone,ZCZ)序列集生成发射波形,可以避免接收机处的滤波器输出原始的相位编码序列的非周期函数,在ZCZ区域(即零相关区)内实现全局抗多普勒,达到最优的效果。但是目前这类非周期ZCZ序列集并不存在。因此,目前无法实现基于非周期ZCZ序列集在ZCZ区域内实现全局抗多普勒,仅能基于其他序列集在一定范围内相对地消除多普勒频移的影响。
目前,为了相对地消除MIMO脉冲感知中多普勒频移的影响,现有的方法采用互补码设计一种抗多普勒频移的MIMO脉冲感知波形,其原理是发射多组脉冲,利用互补码的互补性在多普勒频移为零处产生高阶零点,进而在多普勒频移为零处的附近消除多普勒的影响,实现低的距离旁瓣。但是,该种基于互补码的波形设计存在以下两个问题:首先是发射的脉冲数必须是发射机数量的幂次,灵活性较差;其次是仅能在零多普勒轴附近的一个范围内实现低距离旁瓣。而感知的目标对象的运动速度越高,其多普勒频移范围越大,现有的方案就会导致产生高的距离旁瓣,严重降低感知性能。
因此,为了更好地感知高速运动的目标对象,如何设计在较大区域内或者全局抗多普勒的MIMO脉冲感知波形是目前亟待解决的问题。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,a和b和c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例的技术方案可用于各种通信系统,该通信系统可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)通信系统,例如,第五代(5th generation,5G)通信系统、第六代(6th generation,6G)通信系统、车联网(vehicle to everything,V2X)系统,或者设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of things,IoT),以及其他下一代通 信系统。该通信系统也可以为非3GPP通信系统,例如Wi-Fi等无线局域网(wireless local area network,WLAN)系统,不予限制。
本申请实施例的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:智能家居、D2D、V2X、和IoT等通信场景。
其中,上述适用本申请的通信系统和通信场景仅是举例说明,适用本申请的通信系统和通信场景不限于此,在此统一说明,以下不再赘述。
以下结合附图,对本申请提供的通信系统进行介绍。参考图1,本申请实施例提供的一种通信系统10a包括第一通信装置101和第二通信装置102。
需要说明的是,图1所示的通信系统10a仅为一种参考的示例。本申请实施例并不限制通信系统10a包括的第一通信装置101和/或第二通信装置102的数量,通信系统10a可以包括多个第一通信装置101和/或第二通信装置102。
可选的,第一通信装置101和第二通信装置102可以为不同类型的设备,例如,如图2所示,第一通信装置101和第二通信装置102中的一个为网络设备,另一个为终端设备。或者,第一通信装置101和第二通信装置102也可以为相同类型的设备,例如,如图3所示,为第一通信装置101和第二通信装置102均为终端设备,或,第一通信装置101和第二通信装置102均为网络设备,本申请实施例对此不做具体限定。
以图1、图2或图3所示的第一通信装置101和第二通信装置102交互为例,本申请中,第一通信装置101根据第一序列集生成第一MIMO感知信号,并发送该第一MIMO感知信号,第一MIMO感知信号用于感知高速运动的目标对象。相应的,第二通信装置102接收第一MIMO感知信号的回波信号,回波信号为第一MIMO感知信号经目标对象反射后的信号,并根据第二序列集对回波信号进行处理,得到第二感知信号。其中,第一序列集和第二序列集是基于周期ZCZ序列集或者奇周期ZCZ序列集构建的。
可选的,第一通信装置101或第二通信装置102可以通过图4中的通信装置来实现。图4所示为本申请提供的通信装置400的硬件结构示意图。该通信装置400包括处理器401,通信线路402,以及至少一个通信接口(图4中仅是示例性的以包括通信接口404为例进行说明)。可选的,该通信装置400还可以包括存储器403。
处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路402可包括一通路,在上述组件之间传送信息。
通信接口404,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光 碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路402与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。处理器401用于执行存储器403中存储的计算机执行指令,从而实现本申请下述实施例提供的信号生成方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置400可以包括多个处理器,例如图4中的处理器401和处理器408。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置400还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接收用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图4所示的结构并不构成对通信装置400的具体限定。比如,在本申请另一些实施例中,通信装置400可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
可选的,本申请实施例中,终端设备可以是用于实现通信功能的设备。终端设备也可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal,MT)、用户终端、无线通信设备、用户代理或用户装置等。终端设备例如可以是IoT、V2X、D2D、M2M、第五代(5th generation,5G)网络、或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的无线终端。无线终端可以是指一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
示例性的,终端设备可以是无人机、IoT设备(例如,传感器,电表,水表等)、V2X设备、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)、平板电脑或带无线收 发功能的电脑、虚拟现实(virtual reality,VR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有车对车(vehicle-to-vehicle,V2V)通信能力的车辆、智能网联车、具有无人机对无人机(UAV to UAV,U2U)通信能力的无人机等等。终端可以是移动的,也可以是固定的,本申请对此不作具体限定。
可选的,本申请实施例中,网络设备是一种将终端设备接入到无线网络的设备,可以是LTE或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolutional Node B,eNB或eNodeB),如传统的宏基站eNB和异构网络场景下的微基站eNB;或者可以是5G系统中的下一代节点B(next generation node B,gNodeB或gNB);或者可以是传输接收点(transmission reception point,TRP);或者可以是未来演进的PLMN中的基站;或者可以是宽带网络业务网关(broadband network gateway,BNG)、汇聚交换机或非3GPP接入设备;或者可以是云无线接入网络(cloud radio access network,CRAN)中的无线控制器;或者可以是WiFi系统中的接入节点(access point,AP);或者可以是无线中继节点或无线回传节点;或者可以是IoT、V2X、D2D、或者M2M中实现基站功能的设备,本申请实施例对此不作具体限定。
示例性的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
下面将结合图1至图3,以图1所示的第一通信装置101与第二通信装置102进行交互为例,对本申请实施例提供的多流感知信号生成方法进行展开说明。
可以理解的,本申请实施例中,第一通信装置和/或第二通信装置可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
需要说明的是,本申请下述实施例中各个装置之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图5所示,为本申请实施例提供的多流感知信号生成方法,该方法包括如下步骤:
S501、第一通信装置根据第一序列集生成第一MIMO感知信号,第一序列集是根据周期ZCZ序列集或者奇周期ZCZ序列集构建的。
S502、第一通信装置发送第一MIMO感知信号,第一MIMO感知信号用于感知高速运动的目标对象。相应的,第二通信装置接收第一MIMO感知信号的回波信号,回波信号为第一MIMO感知信号经目标对象反射后的信号。
S503、第二通信装置根据第二序列集对第一MIMO感知信号的回波信号进行处理,得到第二感知信号,第二序列集是根据周期ZCZ序列集或者奇周期ZCZ序列集构建的,第二感知信号在零相关区内无旁瓣。
对于S501,本申请实施例中,第一MIMO感知信号是第一通信装置基于第一序列 集生成的。具体地,第一通信装置将第一序列集中的每个序列分配给对应的脉冲调制器,脉冲调制器根据分配的序列确定对应的多个脉冲波形,得到第一MIMO感知信号。换言之,第一序列集用于生成发射的第一MIMO感知信号,第一序列集也可以称为发射波形集。
本申请实施例中,第一MIMO感知信号为多流信号,且用于感知目标对象,因此第一MIMO感知信号为多流感知信号。
本申请实施例中,第一序列集是基于ZCZ序列集构建的。一种可能的实现方式中,第一序列集可以是基于周期ZCZ序列集构建的。其中,本申请实施例不限制周期ZCZ序列集的构建方法,任一周期ZCZ序列集均可用于构建第一序列集。
可选的,第一序列集可以是将周期ZCZ序列集中的每一条序列添加循环前缀后得到的。
以下以一个具体的示例,详细介绍该实现方式中,第一通信装置如何根据第一序列集生成第一MIMO感知信号。
第一步:构建一个参数为(N,L,Z)的周期ZCZ序列集示例性的,构建该周期ZCZ序列集S的步骤可以包括:
(1)、生成一个阶数为T=tN的傅里叶矩阵F,其中,t可以取任意整数,如下公式(6):
(2)、将该傅里叶矩阵F按行向量排成一条长度为L=T2的序列并以序列f作为基序列,生成N条序列f的循环移位版本,如下公式(7):
sk=circshift(f,(k-1)T2/N)        公式(7)
其中,k=(0,1,…,N-1);circshift(f,x)表示将序列f循环左移x位。
将上述公式(7)的结果sk作为序列,构建周期ZCZ序列集其零相关区宽度Z=T2/N=t2N,N为序列集S包括的序列数量,L为序列集S中序列的长度。
第二步:将第一步所得到的序列集S中的每一条序列都添加循环前缀得到一个新的序列集其中,循环前缀的长度为零相关区宽度Z。该序列集X即为第一序列集,如下公式(8):
第三步:第一通信装置将第二步产生得到的序列集X中的序列xk分配给第k根发射天线所在链路的脉冲调制器,以使该脉冲调制器根据序列xk产生第k根发射天线所发射的脉冲波形,以此类推,直至序列集X中的序列均被分配。将序列集X中的每个序列均分配给对应的脉冲调制器后,每个脉冲调制器编码器得到的脉冲波形共同构成第一MIMO感知信号。
另一种可能的实现方式中,第一序列集可以是基于奇周期ZCZ序列集构建的。其中,本申请实施例不限制奇周期ZCZ序列集的构建方法,任一奇周期ZCZ序列集均可用于构建第一序列集。
可选的,第一序列集可以是将周期ZCZ序列集中的每一条序列添加奇周期循环前缀后得到的。
以下以一个具体的示例,详细介绍该实现方式中,第一通信装置如何根据第一序列集生成第一MIMO感知信号。
第一步:构建一个参数为(N,L,Z)的奇周期ZCZ序列集示例性的,构建该奇周期ZCZ序列集S的步骤可以包括:
(1)、假设函数f(x)=ax2+bx,其中a∈{1,2,…,2L-1},b∈{0,1,2,…,2L-1};
(2)、将c代入f(x),得到f(c);定义一个序列其中,c∈{0,1,…,L-1}。
如果上述序列f中的参数满足以下条件之一:
2L模4余2,a与L互素,且a+b是奇数。
或者,2L模4余0,a与b都是奇数。
则确定序列f是一条奇周期完备序列,继续执行之后的步骤(2)。
(3)、以序列f作为基序列,生成N条序列f的奇周期循环移位版本,如下公式(9):
sk=ocircshift(f,(k-1)L/N)        公式(9)
其中,k=(0,1,…,N-1);ocircshift表示奇周期移位算子,ocircshift(x,a)=(-xL-a,-xL-a+1,…,-xL-1,x0,x1,…,xL-a-1)。
将上述公式(9)的结果sk作为序列,构建奇周期ZCZ序列集其序列长度为L=NZ,N为奇周期ZCZ序列集S包括的序列的数量;Z为奇周期ZCZ序列集S的零相关区宽度。
第二步:将第一步所得到的序列集S中的每一条序列都添加奇周期循环前缀得到一个新的序列集其中,奇周期循环前缀的长度为零相关区宽度Z。该序列集X即为第一序列集,如下公式(10):
xk=(-sk,L-Z,-sk,L-Z+1,…,-sk,L-1,sk,0,sk,1…,sk,L-1)      公式(10)
第三步:第一通信装置将第二步产生得到的序列集X中的序列xk分配给第k根发射天线所在链路的脉冲调制器,以使该脉冲调制器根据序列xk产生第k根发射天线所发射的脉冲波形,即第一MIMO感知信号,以此类推,直至序列集X中的序列均被分配。将序列集X中的每个序列均分配给对应的脉冲调制器后,每个脉冲调制器编码器得到的脉冲波形共同构成第一MIMO感知信号。
需要说明的是,上文对上述两种实现方式中第一序列集的构建方法仅为示例性的说明,在实际应用中,本申请实施例对第一序列集的构建方法不做限制。
可选的,上述步骤中,周期ZCZ序列集、奇周期ZCZ序列集和/或第一序列集,可以是第一通信装置构建的,或是其他通信装置构建后再配置在第一通信装置中的,本申请实施例对此不做限制。
需要说明的是,本申请实施例中,在每个PRI内,用于生成第一MIMO感知信号的第一序列集是唯一的,换言之,每个PRI内,若发射天线存在多个,第一通信装置控制每个发射天线发射相同的脉冲波形(第一MIMO感知信号)。
对于S502,第一通信装置通过发射天线向环境中发射第一MIMO感知信号,第一MIMO感知信号用于感知高速运动的目标对象。第一MIMO感知信号到达目标对象后, 目标对象反射第一MIMO感知信号产生的反射信号可以称为第一MIMO感知信号的回波信号。相对应的,第二通信装置上的接收天线接收第一MIMO感知信号的回波信号。
需要说明的是,本申请实施例中,在每个PRI内,第一通信装置初次成功发射第一MIMO感知信号后,在该PRI的剩余时间内,第一通信装置不发送任何信号,而是等待第二通信装置接收第一MIMO感知信号的回波信号。
本申请实施例中,第一MIMO感知信号用于感知高速运动的目标对象,可以理解为:对于目标对象高速运动的情况,相对于现有的基于互补码设计发射波形的方案,通过第一MIMO感知信号感知高速运动的目标对象,可以达到更好的性能。具体地,由上文可知,现有的基于互补码设计发射波形的方案,仅能支持当目标对象的运动速度在一定范围之内时,接收端输出的信号不受多普勒频移的影响。而本申请实施例中,第一MIMO感知信号可以用于感知任意速度的目标对象,其回波信号均不受多普勒频移的影响(具体原因在下文进行介绍),因此,当目标对象高速运动时,本申请实施例的技术方案相比于现有的技术方案性能更好,可以不受多普勒频移的影响,更准确地感知目标对象。示例性的,本申请实施例中,MIMO系统可以感知的高速运动的目标对象可以为行驶的汽车,飞行的飞机等。
当然,目标对象低速运动时,本申请实施例的方案依然可以应用来感知目标对象,且不受多普勒频移的影响,本申请实施例并不限定目标对象的运动速度。
对于S503,第二通信装置接收到回波信号后,根据第二序列集对回波信号进行处理,得到第二感知信号。具体地,第二通信装置将第二序列集中的每个序列分配给对应的滤波器,这多个滤波器共同形成一个滤波器组,第二通信装置接收到第一MIMO感知信号的回波信号后,由滤波器对回波信号进行处理,得到第二感知信号。其中,第二感知信号是第一MIMO感知信号的自模糊函数和互模糊函数的叠加函数。
本申请实施例中,第二感知信号是多个滤波器对第一MIMO信号的回波信号进行处理后得到的,第二感知信号同样是多流信号。
本申请实施例中,第二序列集是基于ZCZ序列集构建的,且用于构建第二序列集的ZCZ序列集与用于构建第一序列集的ZCZ序列集相同。因此,对应用于构建第一序列集的ZCZ序列集可以为周期ZCZ序列集或者奇周期ZCZ序列集,用于构建第二序列集的ZCZ序列集同样可以为周期ZCZ序列集或者奇周期ZCZ序列集。
本申请实施例中,因为第二感知信号是第一MIMO感知信号的自模糊函数和互模糊函数的叠加函数,且用于生成第一MIMO感知信号和第二感知信号的序列集为周期ZCZ序列集或者奇周期ZCZ序列集,因此第二感知信号在零相关区(这里的零相关区与数学角度的零相关区宽度Z不同,为波形角度的零相关区ZTc,Tc是码片持续时间)内无旁瓣,具体在下文进行介绍。
以下结合一个具体的示例,详细介绍第二通信装置如何根据第二序列集对接收的第一MIMO感知信号进行处理,得到第二感知信号。
第一步:构建一个周期ZCZ序列集或者奇周期ZCZ序列集,具体可以参考上文对S501的介绍。
第二步:将第一步所得到的序列集中的每一条序列都添加零缀得到一个新的序列集其中,零缀的长度为零相关区宽度,该序列集Y即第二序列集,如下公式(11):
第三步:将第二步产生得到的序列集Y中的序列yk分配给第k个滤波器,以此类推,直至序列集Y中的序列均被分配至滤波器组中的滤波器。滤波器根据被分配的序列,对输入滤波器的数字信号进行脉冲压缩,并对压缩后的信号进行求和,得到第二感知信号。
基于本方案,发射的脉冲波形(第一MIMO感知信号)在经过滤波器滤波后,可以采用原始相位编码序列(第一序列集中的序列)的周期相关函数或者奇周期相关函数表示(即上述公式4、5中函数为周期相关函数或者奇周期相关函数),避免了使用非周期函数表示,从而使发射波形的回波信号可以在零相关区内,或者说在时延ZTc内不受多普勒频移的影响,消除距离旁瓣。相比现有方法,本方案中回波信号在任意多普勒范围内均不受多普勒频移的影响,即可以在时延ZTc内实现全局抗多普勒,从而在感知高速运动的目标对象时,性能依然不受影响,有利于检测高速运动的目标对象。换言之,由于滤波器组输出的是第一MIMO感知信号的自模糊函数和互模糊函数的叠加,而本方案采用周期ZCZ序列集或者奇周期ZCZ序列集生成发射的第一MIMO感知信号以及输出的第二感知信号,因此第一MIMO感知信号的自模糊函数和互模糊函数在时延不超过ZTc时是理想的,没有距离旁瓣。
另一方面,在目前的基于互补码设计波形的方案中,因为要达到互补的效果,所以发射的脉冲数量必须与互补集大小的方幂的数量相同,而从上述公式4、5可以看出,如果模糊函数中的非周期相关函数等于0的话,K(发射的脉冲感知波形的数量)取值多少都无所谓,而基于本方案,可以使滤波器避免输出非周期相关函数而是转变为周期相关函数或者奇周期相关函数。因此,本申请的技术方案中,发射的脉冲感知波形的数量不受限制,可以为任意数。
为了便于理解,以下结合具体的实例,对本申请实施例提供的信号生成方法进行介绍。
如图6所示,假设本申请提供的多流感知信号生成方法应用于V2X场景下的MIMO系统中。该MIMO系统包括第一通信装置和第二通信装置,假设第一通信装置为发射机,具有4根发射天线,其中每个发射天线上可以发射64个脉冲。第二通信装置为接收机,具有4根接收天线。该第一通信装置向环境中发射第一MIMO感知信号,第二通信装置接收第一MIMO感知信号的回波信号,来观测正在高速行驶的车辆。本申请提供的多流感知信号生成方法的流程包括S601-S612:
S601:定时信号,精确定时PRI的时间间隔。
S602:每个脉冲调制器根据第一序列集确定PRI内发射的脉冲波形,即第一MIMO感知信号。
S603:大功率射频振荡器将输入的脉冲波形加载到发射天线上。
S604:发射天线发射第一MIMO感知信号。
S605:目标雷达探测目标回波信号(第一MIMO感知信号的回波信号)。
S606:接收天线接收目标回波信号。
S607:混频器将高频率的目标回波信号与本地振荡信号进行混频。
S608:混频器输出混频后的中频信号至模数转换器(analog to digital converter,ADC)。
S609:ADC将输入的模拟信号转换为数字信号。
S610:ADC将数字信号输入滤波器组中的滤波器,滤波器组中的滤波器根据分配的第二序列集中的序列,将输入的数字信号进行脉冲压缩并求和,得到第二感知信号。
S611:接收机进行相位调整,调整第二感知信号的相位。
S612:接收机将多个相位调整后的第二感知信号进行积累并进行目标检测。
其中,S601、S603-S609、S611-S112的具体实现可参考现有方法,在此不再赘述。本申请实施例的技术方案主要涉及S602及S610,以下分两种不同的情况对S602及S610进行展开介绍。
需要说明的是,本申请实施例不限定第一通信装置和/或第二通信装置的数量。上述V2X系统的MIMO场景中,4根发射天线也可以分别位于多个发射机(第一通信装置)上,4根接收天线也可以分别位于多个接收机(第二通信装置)上,本申请实施例的技术方案依然可以应用并解决技术问题。
情况1:第一序列集以及第二序列集是基于周期ZCZ序列集构建的。假设该周期ZCZ序列集X的参数为(N,L,Z),其中,N=4,L=144,Z=36。
对于S602,参考上文对S501的介绍,可以得到第一序列集X中,包括的序列xk分别为:
x1=(ξ09182736455463728190990102030405060708090100110,
ξ0112233445566778899110121000000000000012345678910110246810121416182022036912151821242730330481216202428323640440510152025303540455055061218243036424854606607142128354249566370770816243240485664728088091827364554637281909901020304050607080901001100112233445566778899110121)
x2=(ξ06121824303642485460660714212835424956637077,
ξ0816243240485664728088091827364554637281909901020304050607080901001100112233445566778899110121000000000000012345678910110246810121416182022036912151821242730330481216202428323640440510152025303540455055061218243036424854606607142128354249566370770816243240485664728088)
x3=(ξ03691215182124273033048121620242832364044,
ξ0510152025303540455055061218243036424854606607142128354249566370770816243240485664728088091827364554637281909901020304050607080901001100112233445566778899110121000000000000012345678910110246810121416182022036912151821242730330481216202428323640440510152025303540455055)
x4=(ξ00000000000001234567891011,
ξ024681012141618202203691215182124273033048121620242832364044051015202530354045505506121824303642485460660714212835424956637077081624324048566472808809182736455463728190990102030405060708090101100112233445566778899110121000000000000012345678910110246810121416182022)
其中,将x1分配给第1根发射天线所在链路的脉冲调制器,x2分配给第2根发射天线所在链路的脉冲调制器,x3分配给第3根发射天线所在链路的脉冲调制器,x4分配给第4根发射天线所在链路的脉冲调制器。从而脉冲调制器在PRI内根据分配的序列进行相位编码,得到第一MIMO感知信号。
对于S610,参考上文对S503的介绍,可以得到第二序列集Y中,包括的序列yk分别为:
y1=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
ξ000000000000012345678910110246810121416182022036912151821242730330481216202428323640440510152025303540455055061218243036424854606607142128354249566370770816243240485664728088091827364554637281909901020304050607080901001100112233445566778899110121)
y2=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
ξ091827364554637281909901020304050607080901001100112233445566778899110121000000000000012345678910110246810121416182022036912151821242730330481216202428323640440510152025303540455055061218243036424854606607142128354249566370770816243240485664728088) y3=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,ξ061218243036424854606607142128354249566370770816243240485664728088091827364554637281909901020304050607080901001100112233445566778899110121000000000000012345678910110246810121416182022036912151821242730330481216202428323640440510152025303540455055)
y4=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
ξ03691215182124273033048121620242832364044051015202530354045505506121824303642485460660714212835424956637077081624324048566472808809182736455463728190990102030405060708090101100112233445566778899110121000000000000012345678910110246810121416182022)
将y1分给滤波器组中的第1个滤波器,将y2分给滤波器组中的第2个滤波器,将y3分给滤波器组中的第3个滤波器,将y4分给滤波器组中的第4个滤波器。
从而滤波器根据分配的序列对输入滤波器的数字信号进行脉冲压缩和求和,得到第二MIMO感知信号。假设相位编码中,码片持续时间TC为10-6秒,则得到第一MIMO感知信号的自模糊函数图形如图7所示,两个不同的发射天线发射的第一MIMO感知信号间的互模糊函数图形如图8所示。如图7所示,第一MIMO感知信号的自模糊函数在tau=0外没有旁瓣,如图8所示,两个不同的发射天线发射的第一MIMO感知信号间的互模糊函数在全局没有值。由上文可知第二感知信号是第一MIMO感知信号的自模糊函数和互模糊函数的叠加函数,可见,基于本方案,接收机处滤波器的输出波形(第二感知信号)在零相关区ZTC时间内不受多普勒频移的影响,没有旁瓣,有利于检测高速运动的目标对象,相比于现有的基于互补码设计发射波形的方案,存在显著的进步。
情况2:第一序列集以及第二序列集是基于奇周期ZCZ序列集构建的。假设该奇周期ZCZ序列集X的参数为(N,L,Z),其中,N=4,L=100,Z=25。
对于S602,参考上文对S501的介绍,假设f(x)=x2+3x,则可以得到第一序列集X中,包括的序列xk分别为:
x1=(-ξf(75),-ξf(76),…,-ξf(99)f(0)f(1)f(2),…,ξf(99))
x2=(-ξf(50),-ξf(51),…,-ξf(99)f(0)f(1)f(2),…,ξf(74))
x3=(-ξf(25),-ξf(26),…,-ξf(99)f(0)f(1)f(2),…,ξf(49))
x4=(-ξf(0),-ξf(1),…,-ξf(99)f(0)f(1)f(2),…,ξf(24))
其中,将x1分配给第1根天线所在链路的脉冲调制器,x2分配给第2根天线所在链路的脉冲调制器,x3分配给第3根天线所在链路的脉冲调制器,x4分配给第4根天线所在链路的脉冲调制器。从而脉冲调制器在PRI内根据分配的序列进行相位编码,得到第一MIMO感知信号。
对于S610,参考上文对S503的介绍,可以得到第二序列集Y中,包括的序列yk分 别为:
y1=(0,0,…,0,ξf(0)f(1)f(2),…,ξf(99))
y2=(0,0,…,0,-ξf(75),-ξf(76),…,-ξf(99)f(0)f(1),…,ξf(74))
y3=(0,0,…,0,-ξf(50),-ξf(51),…,-ξf(99)f(0)f(1),…,ξf(49))
将y1分给滤波器组中的第1个滤波器,将y2分给滤波器组中的第2个滤波器,将y3分给滤波器组中的第3个滤波器,将y4分给滤波器组中的第4个滤波器。从而滤波器根据分配的序列对输入滤波器的数字信号进行脉冲压缩和求和,得到第二MIMO感知信号。假设相位编码中,码片持续时间TC为10-6秒,则得到第一MIMO感知信号的自模糊函数图形如图9所示,两个不同的发射天线发射的第一MIMO感知信号间的互模糊函数图形如图10所示。如图9所示,第一MIMO感知信号的自模糊函数在tau=0外没有旁瓣,如图10所示,两个不同的发射天线发射的第一MIMO感知信号间的互模糊函数在全局没有值。由上文可知第二感知信号是第一MIMO感知信号的自模糊函数和互模糊函数的叠加函数,可见,基于本方案,接收机处滤波器的输出波形(第二感知信号)在零相关区ZTC时间内不受多普勒频移的影响,没有旁瓣,有利于检测高速运动的目标对象,相比于现有的基于互补码设计发射波形的方案,存在显著的进步。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由第一通信装置实现的方法和/或步骤,也可以由可用于第一通信装置的部件(例如芯片或者电路)实现,由第二通信装置实现的方法和/或步骤,也可以由可用于第二通信装置的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的第一通信装置为例。图11示出了一种第一通信装置110的结构示意图。该第一通信装置110包括处理模块1101和收发模块1102。所述收发模块1102,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块1102,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由第一通信装置执行的接收和发送类的步骤,处理模块1101,可以用于执行上述方法实施例中由第一通信装置执行的除接收和发送类步骤之外的其他步骤。
例如,处理模块1101,用于根据第一序列集生成第一MIMO感知信号,其中,第一序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的;收发模块1102,用于发送第一MIMO感知信号;第一MIMO感知信号用于感知高速运动的目标对象。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第一通信装置190以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,若终端设备作为第一通信装置,本领域的技术人员可以想到该第一通信装置190可以采用图4所示的通信装置400的形式。
比如,图4所示的通信装置400中的处理器401可以通过调用存储器403中存储的计算机执行指令,使得通信装置400执行上述方法实施例中的多流感知信号生成方法。
具体的,图11中的处理模块1101和收发模块1102的功能/实现过程可以通过图4所示的通信装置400中的处理器401调用存储器403中存储的计算机执行指令来实现。或者,图11中的处理模块1101的功能/实现过程可以通过图4所示的通信装置400中的处理器401调用存储器403中存储的计算机执行指令来实现,图11中的收发模块1102的功能/实现过程可以通过图4所示的通信装置400中的通信接口404来实现。
由于本实施例提供的第一通信装置110可执行上述的多流感知信号生成方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的第二通信装置为例。图12示出了一种第二通信装置120的结构示意图。该第二通信装置120包括处理模块1201和收发模块1202。所述收发模块1202,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块1202,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由第二通信装置执行的接收和发送类的步骤,处理模块1201,可以用于执行上述方法实施例中由第二通信装置执行的除接收和发送类步骤之外的其他步骤。
例如,收发模块1202,用于接收第一MIMO感知信号的回波信号;回波信号为第一MIMO感知信号经目标对象反射后的信号;目标对象反射第一MIMO感知信号时正在高速运动;处理模块1201,用于根据第二序列集处理回波信号,得到第二感知信号;其中,第二序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的; 第二感知信号在零相关区内无旁瓣。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第二通信装置120以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,若网络设备作为第二通信装置,本领域的技术人员可以想到该第二通信装置120可以采用图4所示的通信装置400的形式。
比如,图4所示的通信装置400中的处理器401可以通过调用存储器403中存储的计算机执行指令,使得通信装置400执行上述方法实施例中的多流感知信号生成方法。
具体的,图12中的处理模块1201和收发模块1202的功能/实现过程可以通过图4所示的通信装置400中的处理器401调用存储器403中存储的计算机执行指令来实现。或者,图12中的处理模块1201的功能/实现过程可以通过图4所示的通信装置400中的处理器401调用存储器403中存储的计算机执行指令来实现,图12中的收发模块1202的功能/实现过程可以通过图4所示的通信装置400中的通信接口404来实现。
由于本实施例提供的第二通信装置120可执行上述的多流感知信号生成方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。在另一种可能的设计中,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
可选的,本申请实施例还提供一种通信装置,该通信装置可以包括处理器和接口电路,该接口电路,用于与该通信装置之外的其他模块通信,该处理器可以用于执行计算机程序或指令,以使该通信装置实现上述任一方法实施例中的方法。在一些场景下,该通信装置可以为芯片或芯片系统。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或 无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种多流感知信号生成方法,其特征在于,所述方法包括:
    根据第一序列集生成第一多输入多输出MIMO感知信号,其中,所述第一序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的;
    发送所述第一MIMO感知信号;所述第一MIMO感知信号用于感知高速运动的目标对象。
  2. 根据权利要求1所述的方法,其特征在于,所述第一序列集是根据周期ZCZ序列集构建的,包括:
    所述第一序列集是将所述周期ZCZ序列集中的每一条序列添加循环前缀后得到的。
  3. 根据权利要求2所述的方法,其特征在于,所述第一序列集满足以下关系:
    其中,X为所述第一序列集,xk为所述第一序列集中的第k条序列,k∈{0,1,…,N-1},N为所述周期ZCZ序列集包括的序列的数量;
    xk满足如下关系:
    其中,Z为所述周期ZCZ序列集的零相关区宽度,T2为所述周期ZCZ序列集中的序列的长度;sk为所述周期ZCZ序列集中的第k条序列。
  4. 根据权利要求1所述的方法,其特征在于,所述奇周期ZCZ序列集是根据以下步骤构建的:
    设函数f(x)=ax2+bx,其中a∈{1,2,…,2L-1},b∈{0,1,2,…,2L-1};L、a、b满足以下条件之一:
    2L模4余2,a与L互素,且a+b是奇数;
    或者,2L模4余0,a与b都是奇数;
    生成序列其中,
    以序列f作为基序列,生成N条序列f的奇周期循环移位版本,所述N条序列f的奇周期循环移位版本满足如下关系:
    sk=ocircshift(f,(k-1)L/N);
    其中,k=(0,1,…,N-1),ocircshift表示奇周期移位算子,
    ocircshift(x,a)=(-xL-a,-xL-a+1,…,-xL-1,x0,x1,…,xL-a-1);
    根据sk构建所述奇周期ZCZ序列集,所述奇周期ZCZ序列集满足如下关系:
    其中,S为所述奇周期ZCZ序列集,sk为所述奇周期ZCZ序列集中的第k条序列;所述奇周期ZCZ序列集中的序列的长度为L,L=NZ;N为所述奇周期ZCZ序列集包括的序列的数量;Z为所述奇周期ZCZ序列集的零相关区宽度。
  5. 根据权利要求1或4所述的方法,其特征在于,所述第一序列集是根据奇周期ZCZ序列集构建的,包括:
    所述第一序列集是将所述奇周期ZCZ序列集中的每一条序列添加奇周期循环前缀后得到的。
  6. 根据权利要求5所述的方法,其特征在于,所述第一序列集满足如下关系:
    其中,X为所述第一序列集,xk为所述第一序列集中的第k条序列,k∈{0,1,…,N-1},N为所述奇周期ZCZ序列集包括的序列的数量;
    xk满足如下关系:
    xk=(-sk,L-Z,-sk,L-Z+1,…,-sk,L-1,sk,0,sk,1…,sk,L-1);
    其中,Z为所述奇周期ZCZ序列集的零相关区宽度,L为所述奇周期ZCZ序列集中的序列的长度;sk为所述奇周期ZCZ序列集中的第k条序列。
  7. 一种多流感知信号生成方法,其特征在于,所述方法包括:
    接收第一多输入多输出MIMO感知信号的回波信号;所述回波信号为所述第一MIMO感知信号经目标对象反射后的信号;所述目标对象反射所述第一MIMO感知信号时正在高速运动;
    根据第二序列集处理所述回波信号,得到第二感知信号;其中,所述第二序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的;所述第二感知信号在零相关区内无旁瓣。
  8. 根据权利要求7所述的方法,其特征在于,所述奇周期ZCZ序列集是根据以下步骤构建的:
    设函数f(x)=ax2+bx,其中a∈{1,2,…,2L-1},b∈{0,1,2,…,2L-1};L、a、b满足以下条件之一:
    2L模4余2,a与L互素,且a+b是奇数;
    或者,2L模4余0,a与b都是奇数;
    生成序列其中,
    以序列f作为基序列,生成N条序列f的奇周期循环移位版本,所述N条序列f的奇周期循环移位版本满足如下关系:
    sk=ocircshift(f,(k-1)L/N);
    其中,k=(0,1,…,N-1),ocircshift表示奇周期移位算子,
    ocircshift(x,a)=(-xL-a,-xL-a+1,…,-xL-1,x0,x1,…,xL-a-1);
    根据sk构建所述奇周期ZCZ序列集,所述奇周期ZCZ序列集满足如下关系:
    其中,S为所述奇周期ZCZ序列集,sk为所述奇周期ZCZ序列集中的第k条序列;所述奇周期ZCZ序列集中的序列的长度为L,L=NZ;N为所述奇周期ZCZ序列集包括的序列的数量;Z为所述奇周期ZCZ序列集的零相关区宽度。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第二序列集是根据周期ZCZ序列集或者奇周期ZCZ序列集构建的包括:
    所述第二序列集是将所述周期ZCZ序列集或者所述奇周期ZCZ序列集中的每一条序列添加零前缀后得到的。
  10. 根据权利要求9所述的方法,其特征在于,所述第二序列集满足以下关系:
    其中,Y为所述第二序列集,yk为所述第二序列集中的第k条序列,k∈{0,1,…, N-1},N为用于构建所述第二序列集的所述周期ZCZ序列集或者所述奇周期ZCZ序列集包括的序列的数量;
    yk满足如下关系:
    其中,T2为用于构建所述第二序列集的所述周期ZCZ序列集或者所述奇周期中的序列的长度;sk为用于构建所述第二序列集的所述周期ZCZ序列或者所述奇周期ZCZ序列集中的第k条序列。
  11. 一种通信装置,其特征在于,所述装置包括:处理模块和收发模块;
    所述处理模块,用于根据第一序列集生成第一MIMO感知信号,其中,所述第一序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的;
    所述收发模块,用于发送所述第一MIMO感知信号;所述第一MIMO感知信号用于感知高速运动的目标对象。
  12. 根据权利要求11所述的装置,其特征在于,所述第一序列集是根据周期ZCZ序列集构建的,包括:
    所述第一序列集是将所述周期ZCZ序列集中的每一条序列添加循环前缀后得到的。
  13. 根据权利要求12所述的装置,其特征在于,所述第一序列集满足以下关系:
    其中,X为所述第一序列集,xk为所述第一序列集中的第k条序列,k∈{0,1,…,N-1},N为所述周期ZCZ序列集包括的序列的数量;
    xk满足如下关系:
    其中,Z为所述周期ZCZ序列集的零相关区宽度,T2为所述周期ZCZ序列集中的序列的长度;sk为所述周期ZCZ序列集中的第k条序列。
  14. 根据权利要求11所述的装置,其特征在于,所述奇周期ZCZ序列集是根据以下步骤构建的:
    设函数f(x)=ax2+bx,其中a∈{1,2,…,2L-1},b∈{0,1,2,…,2L-1};L、a、b满足以下条件之一:
    2L模4余2,a与L互素,且a+b是奇数;
    或者,2L模4余0,a与b都是奇数;
    生成序列其中,
    以序列f作为基序列,生成N条序列f的奇周期循环移位版本,所述N条序列f的奇周期循环移位版本满足如下关系:
    sk=ocircshift(f,(k-1)L/N);
    其中,k=(0,1,…,N-1),ocircshift表示奇周期移位算子,
    ocircshift(x,a)=(-xL-a,-xL-a+1,…,-xL-1,x0,x1,…,xL-a-1);
    根据sk构建所述奇周期ZCZ序列集,所述奇周期ZCZ序列集满足如下关系:
    其中,S为所述奇周期ZCZ序列集,sk为所述奇周期ZCZ序列集中的第k条序列;所述奇周期ZCZ序列集中的序列的长度为L,L=NZ;N为所述奇周期ZCZ序列集包括的序列的数量;Z为所述奇周期ZCZ序列集的零相关区宽度。
  15. 根据权利要求11或14所述的装置,其特征在于,所述第一序列集是根据奇周期ZCZ序列集构建的,包括:
    所述第一序列集是将所述奇周期ZCZ序列集中的每一条序列添加奇周期循环前缀后得到的。
  16. 根据权利要求15所述的装置,其特征在于,所述第一序列集满足如下关系:
    其中,X为所述第一序列集,xk为所述第一序列集中的第k条序列,k∈{0,1,…,N-1},N为所述奇周期ZCZ序列集包括的序列的数量;
    xk满足如下关系:
    xk=(-sk,L-Z,-sk,L-Z+1,…,-sk,L-1,sk,0,sk,1…,sk,L-1);
    其中,Z为所述奇周期ZCZ序列集的零相关区宽度,L为所述奇周期ZCZ序列集中的序列的长度;sk为所述奇周期ZCZ序列集中的第k条序列。
  17. 一种通信装置,其特征在于,所述装置包括:处理模块和收发模块;
    所述收发模块,用于接收第一MIMO感知信号的回波信号;所述回波信号为所述第一MIMO感知信号经目标对象反射后的信号;所述目标对象反射所述第一MIMO感知信号时正在高速运动;
    所述处理模块,用于根据第二序列集处理所述回波信号,得到第二感知信号;其中,所述第二序列集是根据周期零相关区ZCZ序列集或者奇周期ZCZ序列集构建的;所述第二感知信号在零相关区内无旁瓣。
  18. 根据权利要求17所述的装置,其特征在于,所述奇周期ZCZ序列集是根据以下步骤生成的:
    设函数f(x)=ax2+bx,其中a∈{1,2,…,2L-1},b∈{0,1,2,…,2L-1};L、a、b满足以下条件之一:
    2L模4余2,a与L互素,且a+b是奇数;
    或者,2L模4余0,a与b都是奇数;
    生成序列其中,
    以序列f作为基序列,生成N条序列f的奇周期循环移位版本,所述N条序列f的奇周期循环移位版本满足如下关系:
    sk=ocircshift(f,(k-1)L/N);
    其中,k=(0,1,…,N-1),ocircshift表示奇周期移位算子,
    ocircshift(x,a)=(-xL-a,-xL-a+1,…,-xL-1,x0,x1,…,xL-a-1);
    根据sk获取所述奇周期ZCZ序列集,所述奇周期ZCZ序列集满足如下关系:
    其中,S为所述奇周期ZCZ序列集,sk为所述奇周期ZCZ序列集中的第k条序列;所述奇周期ZCZ序列集中的序列的长度为L,L=NZ;N为所述奇周期ZCZ序列集包括的序列的数量;Z为所述奇周期ZCZ序列集的零相关区宽度。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第二序列集是根据周期ZCZ序列集或者奇周期ZCZ序列集构建的包括:
    所述第二序列集是将所述周期ZCZ序列集或者所述奇周期ZCZ序列集中的每一条序列添加零前缀后得到的。
  20. 根据权利要求19所述的装置,其特征在于,所述第二序列集满足以下关系:
    其中,Y为所述第二序列集,yk为所述第二序列集中的第k条序列,k∈{0,1,…,N-1},N为用于构建所述第二序列集的所述周期ZCZ序列集或者所述奇周期ZCZ序列集包括的序列的数量;
    yk满足如下关系:
    其中,T2为用于构建所述第二序列集的所述周期ZCZ序列集或者所述奇周期中的序列的长度;sk为用于构建所述第二序列集的所述周期ZCZ序列或者所述奇周期ZCZ序列集中的第k条序列。
  21. 一种通信装置,其特征在于,包括:处理器以及存储器,所述存储器用于存储计算机执行指令,所述处理器用于执行所述存储器存储的所述指令;当所述指令被所述处理器运行时,使得所述通信装置执行上述权利要求1-6中任一项所述的方法。
  22. 一种通信装置,其特征在于,包括:处理器以及存储器,所述存储器用于存储计算机执行指令,所述处理器用于执行所述存储器存储的所述指令;当所述指令被所述处理器运行时,使得所述通信装置执行上述权利要求7-10中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,其上存储有计算机指令,当所述计算机指令被计算机执行时使得所述计算机执行权利要求1-6中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,当所述计算机程序被计算机执行时使得所述计算机执行权利要求7-10中任一项所述的方法。
  25. 一种通信系统,其特征在于,所述通信系统包括第一通信装置和第二通信装置;所述第一通信装置,用于执行权利要求1-6中任一项所述的方法;所述第二通信装置,用于执行权利要求7-10中任一项所述的方法。
PCT/CN2023/078558 2022-02-28 2023-02-27 多流感知信号生成方法、装置及系统 WO2023160714A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210193498.2 2022-02-28
CN202210193498.2A CN116699594A (zh) 2022-02-28 2022-02-28 多流感知信号生成方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023160714A1 true WO2023160714A1 (zh) 2023-08-31

Family

ID=87764893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078558 WO2023160714A1 (zh) 2022-02-28 2023-02-27 多流感知信号生成方法、装置及系统

Country Status (2)

Country Link
CN (1) CN116699594A (zh)
WO (1) WO2023160714A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702017A (zh) * 2009-11-30 2010-05-05 中国人民解放军空军雷达学院 一种多输入多输出雷达波形设计与处理方法
CN104468038A (zh) * 2014-11-27 2015-03-25 江苏中兴微通信息科技有限公司 一种基于zcz序列的mimo前导序列生成方法及接收装置
US20170207931A1 (en) * 2016-01-19 2017-07-20 National Instruments Corporation Channel Sounding Techniques
CN107505596A (zh) * 2017-07-24 2017-12-22 浙江大学 基于双扩展水声信道环境下的mimo主动探测信号设计与检测系统和方法
CN112003808A (zh) * 2019-05-27 2020-11-27 成都华为技术有限公司 信号处理方法及装置
CN112068081A (zh) * 2020-09-10 2020-12-11 西安电子科技大学 基于循环前缀的ofdm频率捷变发射信号设计方法
US20210392703A1 (en) * 2019-02-28 2021-12-16 Huawei Technologies Co., Ltd. Random Access Method and Apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702017A (zh) * 2009-11-30 2010-05-05 中国人民解放军空军雷达学院 一种多输入多输出雷达波形设计与处理方法
CN104468038A (zh) * 2014-11-27 2015-03-25 江苏中兴微通信息科技有限公司 一种基于zcz序列的mimo前导序列生成方法及接收装置
US20170207931A1 (en) * 2016-01-19 2017-07-20 National Instruments Corporation Channel Sounding Techniques
CN107505596A (zh) * 2017-07-24 2017-12-22 浙江大学 基于双扩展水声信道环境下的mimo主动探测信号设计与检测系统和方法
US20210392703A1 (en) * 2019-02-28 2021-12-16 Huawei Technologies Co., Ltd. Random Access Method and Apparatus
CN112003808A (zh) * 2019-05-27 2020-11-27 成都华为技术有限公司 信号处理方法及装置
CN112068081A (zh) * 2020-09-10 2020-12-11 西安电子科技大学 基于循环前缀的ofdm频率捷变发射信号设计方法

Also Published As

Publication number Publication date
CN116699594A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
EP3488648B1 (en) Apparatus, system and method of multi user resource allocation
WO2020164601A1 (zh) 传输配置编号状态指示的方法和通信装置
CN110933749B (zh) 指示波束的方法和装置
CN110651495A (zh) 一种通信方法和装置
CN109391391B (zh) 一种用于传输参考信号的方法及装置
CN111385824B (zh) 一种信息传输方法、网络设备、终端设备及存储介质
CN111262667B (zh) 信道探测的配置方法及装置
EP4027736B1 (en) Timing advance (ta) processing method and device for terminal
WO2021134626A1 (zh) 传输同步信号块的方法和装置
TW202239230A (zh) 通訊方法以及通訊裝置
WO2023160714A1 (zh) 多流感知信号生成方法、装置及系统
CN112533291B (zh) 一种资源调度方法以及相关设备
KR102298616B1 (ko) 비-트리거-기반 레인징을 위한 절전
WO2023111752A1 (en) Configuring an artificial intelligence based framework
WO2022121746A1 (zh) 信道信息反馈方法及通信装置
WO2023019596A1 (zh) 基于轨道角动量oam的通信方法及其装置
CN115942500A (zh) 一种通信方法以及装置
CN110149189B (zh) 一种信息传输方法和装置
CN117713883A (zh) 一种数据传输方法和装置
WO2024087028A1 (zh) 一种信道测量方法及装置
WO2022242335A1 (zh) 信号发送、接收方法及装置
CN112243246A (zh) 用于信道测量的接收参数的确定方法和装置
WO2023207969A1 (zh) 一种信道测量的方法和通信装置
WO2024032562A1 (zh) 一种通信方法及装置
WO2023029000A1 (en) Codebook design for high doppler cases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759335

Country of ref document: EP

Kind code of ref document: A1