WO2023160594A1 - 变焦镜头 - Google Patents
变焦镜头 Download PDFInfo
- Publication number
- WO2023160594A1 WO2023160594A1 PCT/CN2023/077773 CN2023077773W WO2023160594A1 WO 2023160594 A1 WO2023160594 A1 WO 2023160594A1 CN 2023077773 W CN2023077773 W CN 2023077773W WO 2023160594 A1 WO2023160594 A1 WO 2023160594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- zoom lens
- zoom
- wide
- angle end
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 239000004033 plastic Substances 0.000 claims description 15
- 229920003023 plastic Polymers 0.000 claims description 15
- 239000011521 glass Substances 0.000 claims description 13
- 239000006185 dispersion Substances 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 40
- 230000004075 alteration Effects 0.000 description 28
- 238000003384 imaging method Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 239000005357 flat glass Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/142—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
- G02B15/1425—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being negative
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/009—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/64—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B2003/0093—Simple or compound lenses characterised by the shape
Definitions
- the present application relates to lens technology, for example, to a zoom lens.
- optical imaging lenses are widely used in video conferencing, security monitoring, vehicle monitoring, drone aerial photography, smart transportation and other fields.
- the zoom lens can change the shooting range by changing the focal length without changing the shooting distance, so it is more and more widely used.
- the present application provides a zoom lens, which is a two-component zoom lens, so as to realize a high-resolution optical lens with a small volume and a large aperture.
- the zoom lens uses 7 lenses to realize a 1/2.7-inch complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) target surface, a high-performance compact day and night confocal zoom lens with a focal length from 3mm to 6mm.
- CMOS complementary Metal Oxide Semiconductor
- the present application provides a zoom lens, including a first lens group with negative refractive power and a second lens group with positive refractive power arranged in sequence along the optical axis from the object side to the image side, by changing the first lens group and the The position of the second lens group on the optical axis changes the focal length of the zoom lens;
- the first lens group includes a first lens, a second lens and a third lens arranged sequentially along the optical axis from the object side to the image side;
- the second lens group includes a fourth lens, a fifth lens, a sixth lens and a seventh lens arranged in sequence along the optical axis from the object side to the image side;
- the first lens has negative power
- the second lens has negative power
- the third lens has positive power
- the fourth lens has positive power
- the fifth lens has positive power degree
- the sixth lens has a negative refractive power
- the seventh lens has a positive refractive power.
- FIG. 1 is a schematic structural diagram of a wide-angle end of a zoom lens provided in an embodiment of the present application
- Fig. 2 is a schematic structural view of the telephoto end of the zoom lens in Fig. 1;
- FIG. 3 is a wide-angle end spherical aberration curve diagram of a zoom lens provided by an embodiment of the present application
- FIG. 4 is a spherical aberration curve at the telephoto end of a zoom lens provided in an embodiment of the present application
- FIG. 5 is a fan diagram of light rays at the wide-angle end of a zoom lens provided in an embodiment of the present application
- FIG. 6 is a fan diagram of light rays at the telephoto end of a zoom lens provided in an embodiment of the present application
- FIG. 7 is a field curvature distortion diagram at the wide-angle end of a zoom lens provided in an embodiment of the present application.
- FIG. 8 is a field curvature distortion diagram at the telephoto end of a zoom lens provided in an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of another zoom lens wide-angle end provided by an embodiment of the present application.
- Fig. 10 is a schematic structural view of the telephoto end of the zoom lens in Fig. 9;
- FIG. 11 is a wide-angle end spherical aberration curve diagram of another zoom lens provided by the embodiment of the present application.
- FIG. 12 is a spherical aberration curve at the telephoto end of another zoom lens provided in an embodiment of the present application.
- FIG. 13 is a fan diagram of light rays at the wide-angle end of another zoom lens provided in the embodiment of the present application.
- FIG. 14 is a fan diagram of light rays at the telephoto end of another zoom lens provided in an embodiment of the present application.
- FIG. 15 is a field curvature distortion diagram at the wide-angle end of another zoom lens provided by an embodiment of the present application.
- FIG. 16 is a field curvature distortion diagram at the telephoto end of another zoom lens provided in an embodiment of the present application.
- FIG. 17 is a schematic structural diagram of another wide-angle end of a zoom lens provided by an embodiment of the present application.
- Fig. 18 is a schematic structural view of the telephoto end of the zoom lens in Fig. 17;
- FIG. 19 is a wide-angle end spherical aberration curve diagram of another zoom lens provided by the embodiment of the present application.
- FIG. 20 is a spherical aberration curve at the telephoto end of another zoom lens provided by the embodiment of the present application.
- FIG. 21 is a fan diagram of light rays at the wide-angle end of another zoom lens provided in the embodiment of the present application.
- Fig. 22 is a fan diagram of light rays at the telephoto end of another zoom lens provided in the embodiment of the present application;
- FIG. 23 is a field curvature distortion diagram at the wide-angle end of another zoom lens provided by an embodiment of the present application.
- FIG. 24 is a field curvature distortion diagram at the telephoto end of another zoom lens provided by an embodiment of the present application.
- FIG. 1 is a schematic structural diagram of a wide-angle end of a zoom lens provided by an embodiment of the present application.
- the zoom lens provided by the embodiment of the present application includes a first lens group 10 of negative refractive power and a second lens group 20 of positive refractive power arranged in sequence along the optical axis from the object side to the image side.
- the second lens group 20 includes a fourth lens 201, a fifth lens 202, a sixth lens 203 and a seventh lens 204 arranged in sequence along the optical axis from the object side to the image side;
- the first lens 101 has negative optical focus degree
- the second lens 102 has a negative refractive power
- the third lens 103 has a positive refractive power
- the fourth lens 201 has a positive refractive power
- the fifth lens 202 has a positive refractive power
- the sixth lens 203 has a negative refractive power
- the fourth lens 201 has a positive refractive power.
- the seven lenses 204 have positive optical power.
- the optical power is the reciprocal of the focal length, which characterizes the ability of the optical system to deflect light.
- the focal power is positive, the refraction of light is converging; when the focal power is negative, the refraction of light is divergent.
- the first lens group 10 and the second lens group 20 can be arranged in a lens barrel (not shown in FIG. 1 ), and the movement of the first lens group 10 and the second lens group 20 realizes the lens focal length Change, by setting the focal power relationship of multiple lenses, the total effective focal length of the zoom lens can be zoomed continuously within the range of 3mm to 6mm.
- the zoom lens is at the wide-angle end when the focal length is the shortest, and the zoom lens is at the telephoto end when the focal length is the longest. length or shape.
- the zoom lens is switched between the wide-angle end and the telephoto end by moving the first lens group and the second lens group on the optical axis, wherein the total effective focal length of the zoom lens is continuous within the range of 3 mm to 6 mm Zoom; through reasonable design of the structure of multiple lenses and the matching relationship of optical power, the zoom lens realizes a high-performance small day and night confocal zoom lens under the 1/2.7-inch CMOS target surface. And 7 lenses are used, the number of lenses is small, which helps to reduce the size of the lens.
- the aberration balance of multiple focal lengths can be effectively achieved to ensure different focal lengths. Clear images in the distance state, so as to achieve higher image quality within a shorter overall length limit, reducing cost and weight.
- the first lens 101 is a convex-convex glass spherical lens
- the second lens 102 is a double-concave plastic aspheric lens
- the third lens 103 is a convex-concave or double-convex plastic aspheric lens
- the fourth lens 201 is a double-convex glass spherical lens.
- the fifth lens 202 is a double-convex plastic aspheric lens
- the sixth lens 203 is a double-concave plastic aspheric lens
- the seventh lens 204 is a double-convex or convex-concave plastic aspheric lens.
- the second lens 102, the third lens 103, the fifth lens 202, the sixth lens 203, and the seventh lens 204 as aspheric lenses, high-order aberrations can be effectively corrected.
- the cost of forming an aspheric lens made of plastic material is far lower than that of forming an aspheric lens made of glass material, the use of a plastic aspheric lens for the above lens can also reduce the cost of the zoom lens.
- the aspheric lens surface type satisfies the formula:
- Z represents the sagittal height of the aspheric surface
- c represents the basic curvature at the apex
- k represents the conic section constant
- r represents the radial coordinate in the direction perpendicular to the optical axis
- a i is the high-order term coefficient
- a i r 2i is the aspheric surface high order items.
- the lens made of glass has a strong ability to deflect light.
- the first lens 101 and the fourth lens 201 are glass spherical lenses, it is helpful to reduce the number of lenses, thereby reducing the volume of the lens.
- the two types of materials, glass and plastic can also compensate each other and balance high and low temperatures, so that the zoom lens has the characteristics of stable high and low temperature performance, which helps to improve the environmental adaptability of the zoom lens.
- the material of the plastic aspheric lens can be various plastics known to those skilled in the art, and the material of the glass spherical lens can be various types of glass known to those skilled in the art, which is not limited in this embodiment of the present application.
- the focal powers of the first lens 101 to the seventh lens 204 satisfy in sequence: in, and represent the refractive powers of the first lens 101 to the seventh lens 204 respectively, represents the optical power of the first lens group 10, Indicates the power of the second lens group 20 .
- the refractive index and dispersion coefficient of the third lens 103 to the seventh lens 204 satisfy in order: 1.497 ⁇ n3 ⁇ 1.710; 17.0 ⁇ v3 ⁇ 20.8; 1.400 ⁇ n4 ⁇ 1.730; 53.4 ⁇ v4 ⁇ 96.0; 1.402 ⁇ n5 ⁇ 1.702; 42.1 ⁇ v5 ⁇ 60.0; 1.498 ⁇ n6 ⁇ 1.710; 17.0 ⁇ v6 ⁇ 36.7; 1.425 ⁇ n7 ⁇ 1.710;
- the refractive index of the lens 103 to the seventh lens 204 The emissivity, v3, v4, v5, v6 and v7 represent the Abbe numbers of the third lens 103 to the seventh lens 204 respectively in sequence.
- the imaging effect of the zoom lens is improved by comprehensively setting parameters such as the focal power, refractive index, and Abbe number of each lens.
- the displacement amount G1_L of the first lens group 10 from the wide-angle end to the telephoto end the displacement amount of the second lens group 20 from the wide-angle end to the telephoto end
- the total lens length TTL_W of the G2_L and the zoom lens at the wide-angle end satisfies: 0.13 ⁇ G1_L/TTL_W ⁇ 0.25; 0.07 ⁇ G2_L/TTL_W ⁇ 0.19.
- the image plane diameter IC of the zoom lens and the focal length F_W of the zoom lens at the wide-angle end satisfy: F_W /IC ⁇ 0.51.
- the back focus BFL_W of the zoom lens at the wide-angle end and the total lens length TTL_W of the zoom lens at the wide-angle end satisfy: BFL_W/TTL_W ⁇ 0.10.
- the diameter D1 of the first lens 101 and the total lens length TTL_W of the zoom lens at the wide-angle end satisfy: D1/TTL_W ⁇ 0.58.
- the optical power of the zoom lens at the wide-angle end and optical power at the telephoto end satisfy:
- the zoom lens further includes an aperture 30 ; the aperture 30 is located between the third lens 103 and the fourth lens 201 .
- the aperture 30 is located between the third lens 103 and the fourth lens 201 .
- the zoom lens further includes a plate glass 40 disposed on the image side of the seventh lens 204 .
- a plate glass 40 disposed on the image side of the seventh lens 204 .
- FIG. 2 is a schematic structural view of the telephoto end of the zoom lens in FIG. 1, and Table 1 shows the parameters of the zoom lens corresponding to FIG. 1 and FIG. 2:
- Table 2 shows the design values of multiple lens parameters of the zoom lens in Figure 1 and Figure 2:
- the surface number 1 represents the front surface of the first lens 101 (the surface near the object side), and the surface number 2 represents the rear surface of the first lens 101 (the surface near the image side), and so on;
- Numerals 16 and 17 denote the front surface and the rear surface of the lens protection glass, respectively.
- the radius of curvature indicates the degree of curvature of the lens surface. A positive value indicates that the surface is bent toward the image plane, and a negative value indicates that the surface is bent towards the object plane.
- the thickness indicates The central axial distance from the current surface to the next surface, the radius of curvature and the thickness are in millimeters, and the material (nd) represents the refractive index, that is, the deflection ability of the material between the current surface and the next surface for light, and the material (vd) Indicates the Abbe number, the dispersion characteristic of the material between the current surface and the next surface for light.
- Table 3 is the zoom interval value in Table 2:
- Table 4 shows the parameters of the aspheric surface in the zoom lens in Figure 1 and Figure 2:
- Table 4 A design value of the aspheric coefficient in the fixed-focus lens
- Figure 3 is a wide-angle end spherical aberration curve diagram of a zoom lens provided in the embodiment of the present application.
- the spherical aberrations below are all within 0.05 mm, that is, the axial aberration of the zoom lens is relatively small, so it can be seen that the zoom lens provided by the embodiment of the present application can better correct aberrations at the wide-angle end.
- Fig. 4 is a spherical aberration curve diagram at the telephoto end of a zoom lens provided in an embodiment of the present application.
- the zoom lens has a ) are all within 0.1 mm, that is, the axial aberration of the zoom lens is relatively small, so it can be seen that the zoom lens provided by the embodiment of the present application can also better correct aberrations at the telephoto end.
- Figure 5 is a light fan diagram of a zoom lens at the wide-angle end provided by an embodiment of the present application
- Figure 6 is a fan diagram of a light beam at the telephoto end of a zoom lens provided by an embodiment of the present application, where the abscissa represents normalization Entrance pupil, the ordinate is the value of the ray deviating from the chief ray on the image plane.
- FIG. 7 is a diagram of field curvature distortion at the wide-angle end of a zoom lens provided by an embodiment of the present application, wherein the left side is field curvature, and the right side is distortion.
- the horizontal coordinates in the field curvature graph indicate the size of the field curvature, in mm; the vertical coordinates indicate the normalized image height, without units; where T represents the meridian, and S represents the arc loss. It can be seen from FIG. 7 that the field curvature of the zoom lens provided by this embodiment is effectively controlled, that is, the difference between the image quality at the center and the image quality at the periphery is small during imaging.
- the horizontal coordinate in the distortion graph represents the size of the distortion, represented by a percentage; the vertical coordinate represents the normalized image height, which has no unit; as can be seen from Figure 7, the distortion of the zoom lens provided in this embodiment is less than 70% at the wide-angle end, and the distortion satisfies Distortion requirements at this focal length.
- FIG. 8 is a diagram of field curvature distortion at the telephoto end of a zoom lens provided by an embodiment of the present application, wherein the field curvature is on the left and distortion is on the right.
- the horizontal coordinates in the field curvature graph indicate the size of the field curvature, in mm; the vertical coordinates indicate the normalized image height, without units; where T represents the meridian, and S represents the arc loss. It can be seen from FIG. 8 that the field curvature of the zoom lens provided by this embodiment is effectively controlled, that is, the difference between the image quality at the center and the image quality at the periphery is small during imaging.
- the horizontal coordinate in the distortion graph represents the size of the distortion, represented by a percentage; the vertical coordinate represents the normalized image height, without unit; as can be seen from Figure 8, the distortion of the zoom lens provided by this embodiment at the telephoto end is less than 14%, and the distortion Meet the distortion requirements at this focal length.
- the zoom lens provided by the embodiment of the present application has good imaging capability.
- FIG. 9 is a schematic diagram of the structure of another zoom lens at the wide-angle end provided by the embodiment of the present application.
- FIG. 10 is a schematic diagram of the structure of the telephoto end of the zoom lens in FIG. parameter:
- Table 6 shows the design values of multiple lens parameters of the zoom lens in Fig. 9 and Fig. 10:
- the surface number 1 represents the front surface of the first lens 101 (the surface near the object side), and the surface number 2 represents the rear surface of the first lens 101 (the surface near the image side), and so on;
- Numerals 16 and 17 denote the front surface and the rear surface of the lens protection glass, respectively.
- the radius of curvature indicates the lens table
- the degree of curvature of the surface a positive value means that the surface is bent to the side of the image plane, a negative value means that the surface is bent to the side of the object plane, where "infinity" means that the surface is a plane, and the radius of curvature is infinite;
- the thickness means that the current surface is to the bottom
- the material (nd) represents the refractive index, that is, the deflection ability of the material between the current surface and the next surface for light
- the material (vd) represents the Abbe number , the light dispersion properties of the material between the current surface and the next surface.
- Table 7 shows the zoom interval values in Table 2:
- Table 8 is the parameters of the aspheric surface in the zoom lens in Figure 9 and Figure 10:
- Table 8 A design value of the aspheric coefficient in the fixed-focus lens
- -6.809413E-04 indicates that the a 2 coefficient of plane number 3 is -6.809413 ⁇ 10 -4 .
- Figure 11 is a wide-angle end spherical aberration curve diagram of another zoom lens provided by the embodiment of the present application.
- the zoom lens has a ) under the spherical aberration are all within 0.05mm, that is, the axial aberration of the zoom lens is small, thus It can be seen that the zoom lens provided in the embodiment of the present application can better correct aberrations at the wide-angle end.
- Fig. 12 is a spherical aberration curve at the telephoto end of another zoom lens provided by the embodiment of the present application. Referring to Fig. nm) are all within 0.1 mm, that is, the axial aberration of the zoom lens is relatively small, so it can be seen that the zoom lens provided by the embodiment of the present application can also better correct the aberration at the telephoto end.
- Fig. 13 is a fan diagram of light rays at the wide-angle end of another zoom lens provided by an embodiment of the present application
- Fig. 14 is a fan diagram of light rays at the telephoto end of another zoom lens provided by an embodiment of the present application, where the abscissa represents normalization Integrate into the entrance pupil, and the ordinate is the value of the ray deviating from the chief ray on the image plane.
- FIG. 15 is a diagram of field curvature distortion at the wide-angle end of another zoom lens provided by an embodiment of the present application, wherein the field curvature is on the left side and distortion is on the right side.
- the horizontal coordinates in the field curvature graph represent the size of the field curvature, in mm; the vertical coordinates represent the normalized image height, without units; T represents the meridian, and S represents the arc loss. It can be seen from FIG. 15 that the field curvature of the zoom lens provided by this embodiment is effectively controlled, that is, the difference between the image quality at the center and the image quality at the periphery is small during imaging.
- the horizontal coordinate in the distortion graph represents the size of the distortion, expressed as a percentage; the vertical coordinate represents the normalized image height, which has no unit; as can be seen from Figure 15, the distortion of the zoom lens provided by this embodiment is less than 70% at the wide-angle end, and the distortion satisfies Distortion requirements at this focal length.
- FIG. 16 is a diagram of field curvature distortion at the telephoto end of another zoom lens provided in an embodiment of the present application, wherein the field curvature is on the left side and distortion is on the right side.
- the horizontal coordinates in the field curvature graph indicate the size of the field curvature, in mm; the vertical coordinates indicate the normalized image height, without units; where T represents the meridian, and S represents the arc loss. It can be seen from FIG. 16 that the field curvature of the zoom lens provided by this embodiment is effectively controlled, that is, the difference between the image quality at the center and the image quality at the periphery is small during imaging.
- the horizontal coordinate in the distortion graph represents the size of the distortion, expressed in percentage; the vertical coordinate represents the normalized image height, without unit; as can be seen from Figure 16, the distortion of the zoom lens provided in this embodiment at the telephoto end is less than 16%, and the distortion Meet the distortion requirements at this focal length.
- the zoom lens provided by the embodiment of the present application has good imaging capability.
- FIG. 17 is a schematic structural diagram of another zoom lens at the wide-angle end provided by an embodiment of the present application.
- FIG. 18 is a schematic structural diagram of the telephoto end of the zoom lens in FIG. parameter:
- Table 10 shows the design values of multiple lens parameters of the zoom lens in Figure 17 and Figure 18:
- the surface number 1 represents the front surface of the first lens 101 (the surface near the object side), and the surface number 2 represents the rear surface of the first lens 101 (the surface near the image side), and so on;
- Numerals 16 and 17 denote the front surface and the rear surface of the lens protection glass, respectively.
- the radius of curvature indicates the degree of curvature of the lens surface. A positive value indicates that the surface is bent toward the image plane, and a negative value indicates that the surface is bent towards the object plane.
- the thickness indicates The central axial distance from the current surface to the next surface, the radius of curvature and the thickness are in millimeters, and the material (nd) represents the refractive index, that is, the deflection ability of the material between the current surface and the next surface for light, and the material (vd) Indicates the Abbe number, the dispersion characteristic of the material between the current surface and the next surface for light.
- Table 11 shows the zoom interval values in Table 10:
- Table 12 shows the parameters of the aspheric surface in the zoom lens in Figure 17 and Figure 18:
- Table 12 A design value of the aspheric coefficient in the fixed-focus lens
- -3.962468E-03 indicates that the a 2 coefficient of plane number 3 is -3.962468 ⁇ 10 -3 .
- Fig. 19 is a wide-angle end spherical aberration curve diagram of another zoom lens provided by the embodiment of the present application.
- the zoom lens has a ) are all within 0.05mm, that is, the axial aberration of the zoom lens is relatively small, so it can be seen that the zoom lens provided by the embodiment of the present application can better correct the aberration at the wide-angle end.
- Fig. 20 is a spherical aberration curve at the telephoto end of another zoom lens provided by the embodiment of the present application. Referring to Fig. nm) are all within 0.12mm, that is, the axial aberration of the zoom lens is relatively small, so it can be seen that the zoom lens provided by the embodiment of the present application can also better correct the aberration at the telephoto end.
- Fig. 21 is a fan diagram of light rays at the wide-angle end of another zoom lens provided in an embodiment of the present application
- Fig. 22 is a fan diagram of light rays at the telephoto end of another zoom lens provided in an embodiment of the present application, where the abscissa represents normalization Integrate into the entrance pupil, and the ordinate is the value of the ray deviating from the chief ray on the image plane.
- FIG. 23 is another field curvature distortion diagram at the wide-angle end of the zoom lens provided by the embodiment of the present application, wherein the field curvature is on the left side, and the distortion is on the right side.
- the horizontal coordinate in the field curvature graph represents the size of the field curvature, in mm; the vertical coordinate represents the normalized image height, without a unit; where T represents the meridian, and S represents the arc loss. It can be seen from FIG. 23 that the field curvature of the zoom lens provided by this embodiment is effectively controlled, that is, the difference between the image quality at the center and the image quality at the periphery is small during imaging.
- the horizontal coordinate in the distortion graph represents the size of the distortion, expressed as a percentage; the vertical coordinate represents the normalized image height, without units; as can be seen from Figure 23, the distortion of the zoom lens provided in this embodiment at the wide-angle end is less than 70%, and the distortion satisfies Distortion requirements at this focal length.
- FIG. 24 is another field curvature distortion diagram at the telephoto end of the zoom lens provided by the embodiment of the present application, where the field curvature is on the left and the distortion is on the right.
- the horizontal coordinates in the field curve represent the magnitude of the field curvature, and the unit is is mm; the vertical coordinate represents the normalized image height, without unit; where T represents the meridian, and S represents the arc loss. It can be seen from FIG. 24 that the field curvature of the zoom lens provided by this embodiment is effectively controlled, that is, when imaging, the difference between the image quality at the center and the image quality at the periphery is small.
- the horizontal coordinate in the distortion diagram represents the size of the distortion, expressed in percentage; the vertical coordinate represents the normalized image height, without unit; as can be seen from Figure 24, the distortion of the zoom lens provided by this embodiment at the telephoto end is less than 16%, and the distortion Meet the distortion requirements at this focal length.
- FIGS. 19 to 24 it can be known from FIGS. 19 to 24 that the zoom lens provided by the embodiment of the present application has good imaging capability.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Lenses (AREA)
Abstract
一种变焦镜头。变焦镜头包括沿光轴从物方到像方依次排列的负光焦度的第一透镜组(10)和正光焦度的第二透镜组(20),通过改变第一透镜组(10)和第二透镜组(20)在光轴上的位置改变变焦镜头的焦距;第一透镜组(10)包括沿光轴从物方至像方依次排列的第一透镜(101)、第二透镜(102)和第三透镜(103);第二透镜组(20)包括沿光轴从物方至像方依次排列的第四透镜(201)、第五透镜(202)、第六透镜(203)和第七透镜(204)。第一透镜(101)具有负光焦度,第二透镜(102)具有负光焦度,第三透镜(103)具有正光焦度,第四透镜(201)具有正光焦度,第五透镜(202)具有正光焦度,第六透镜(203)具有负光焦度,第七透镜(204)具有正光焦度。
Description
本申请要求在2022年02月24日提交中国专利局、申请号为202210171280.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及镜头技术,例如涉及一种变焦镜头。
随着社会的不断发展和科学技术的不断进步,光学成像镜头也得到了迅猛发展,光学成像镜头被广泛的应用在视频会议、安防监控、车载监控、无人机航拍、智慧交通等多个领域。变焦镜头在不改变拍摄距离的情况下,可以通过变动焦距来改变拍摄范围,因此被越来越广泛的使用。
但市场上设置为安防监控、无人机航拍等领域的变焦镜头还存在许多的不足,如透镜数量多,成像分辨率低,成像面小,体积大等等,因此需要对其进行改进。
发明内容
本申请提供一种变焦镜头,该变焦镜头为一种二组元变焦镜头,以实现一种小体积、大光圈的高分辨率光学镜头。该变焦镜头使用7枚镜片,实现1/2.7英寸互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)靶面下,焦距从3mm到6mm的高性能小型日夜共焦变焦镜头。
本申请提供一种变焦镜头,包括沿光轴从物方到像方依次排列的负光焦度的第一透镜组和正光焦度的第二透镜组,通过改变所述第一透镜组和所述第二透镜组在所述光轴上的位置改变所述变焦镜头的焦距;
所述第一透镜组包括沿光轴从物方至像方依次排列的第一透镜、第二透镜和第三透镜;
所述第二透镜组包括沿光轴从物方至像方依次排列的第四透镜、第五透镜、第六透镜和第七透镜;
所述第一透镜具有负光焦度,所述第二透镜具有负光焦度,所述第三透镜具有正光焦度,所述第四透镜具有正光焦度,所述第五透镜具有正光焦度,所述第六透镜具有负光焦度,所述第七透镜具有正光焦度。
图1为本申请实施例提供的一种变焦镜头广角端的结构示意图;
图2为图1中变焦镜头长焦端的结构示意图;
图3为本申请实施例提供的一种变焦镜头的广角端球差曲线图;
图4为本申请实施例提供的一种变焦镜头的长焦端球差曲线图;
图5为本申请实施例提供的一种变焦镜头的广角端光线光扇图;
图6为本申请实施例提供的一种变焦镜头的长焦端光线光扇图;
图7为本申请实施例提供的一种变焦镜头广角端的场曲畸变图;
图8为本申请实施例提供的一种变焦镜头长焦端的场曲畸变图;
图9为本申请实施例提供的另一种变焦镜头广角端的结构示意图;
图10为图9中变焦镜头长焦端的结构示意图;
图11为本申请实施例提供的另一种变焦镜头的广角端球差曲线图;
图12为本申请实施例提供的另一种变焦镜头的长焦端球差曲线图;
图13为本申请实施例提供的另一种变焦镜头的广角端光线光扇图;
图14为本申请实施例提供的另一种变焦镜头的长焦端光线光扇图;
图15为本申请实施例提供的另一种变焦镜头广角端的场曲畸变图;
图16为本申请实施例提供的另一种变焦镜头长焦端的场曲畸变图;
图17为本申请实施例提供的又一种变焦镜头广角端的结构示意图;
图18为图17中变焦镜头长焦端的结构示意图;
图19为本申请实施例提供的又一种变焦镜头的广角端球差曲线图;
图20为本申请实施例提供的又一种变焦镜头的长焦端球差曲线图;
图21为本申请实施例提供的又一种变焦镜头的广角端光线光扇图;
图22为本申请实施例提供的又一种变焦镜头的长焦端光线光扇图;
图23为本申请实施例提供的又一种变焦镜头广角端的场曲畸变图;
图24为本申请实施例提供的又一种变焦镜头长焦端的场曲畸变图。
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅
用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的。本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的。此外在上下文中,当提到一个元件被形成在另一个元件“上”或“下”时,其不仅能够直接形成在另一个元件“上”或者“下”,也可以通过中间元件间接形成在另一元件“上”或者“下”。术语“第一”、“第二”等仅用于描述目的,并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。对于本领域的普通技术人员而言,可以根据根据情况理解上述术语在本申请中的含义。
图1为本申请实施例提供的一种变焦镜头广角端的结构示意图。参考图1,本申请实施例提供的变焦镜头包括沿光轴从物方到像方依次排列的负光焦度的第一透镜组10和正光焦度的第二透镜组20,通过改变第一透镜组10和第二透镜组20在光轴上的位置改变变焦镜头的焦距;第一透镜组10包括沿光轴从物方至像方依次排列的第一透镜101、第二透镜102和第三透镜103;第二透镜组20包括沿光轴从物方至像方依次排列的第四透镜201、第五透镜202、第六透镜203和第七透镜204;第一透镜101具有负光焦度,第二透镜102具有负光焦度,第三透镜103具有正光焦度,第四透镜201具有正光焦度,第五透镜202具有正光焦度,第六透镜203具有负光焦度,第七透镜204具有正光焦度。
光焦度为焦距的倒数,表征光学系统偏折光线的能力。光焦度的绝对值越大,对光线的弯折能力越强,光焦度的绝对值越小,对光线的弯折能力越弱。光焦度为正数时,光线的屈折是汇聚性的;光焦度为负数时,光线的屈折是发散性的。在本实施例中,可以将第一透镜组10和第二透镜组20设置于一个镜筒(图1中未示出)内,第一透镜组10和第二透镜组20的移动实现镜头焦距变化,通过设置多个透镜的光焦度关系,变焦镜头的总有效焦距可以在3mm到6mm的范围内连续变焦。
变焦镜头在变焦的过程中,焦距最短时变焦镜头位于广角端,而焦距最长时变焦镜头位于长焦端,在广角端和长焦端,变焦镜头具有不同的焦距和光焦度,也具有不同的长度或形态。
本实施例的技术方案,通过第一透镜组和第二透镜组在光轴上移动来使变焦镜头在广角端和长焦端进行切换,其中变焦镜头的总有效焦距在3mm~6mm范围内连续变焦;通过合理设计多个透镜的结构以及光焦度搭配关系,使得变焦镜头实现1/2.7英寸CMOS靶面下的高性能小型日夜共焦变焦镜头。并采用7枚透镜,透镜数量较少,从而有助于减小镜头体积。通过合理搭配两个透镜组以及其中多个透镜的光焦度,可以有效实现多个焦段的像差平衡,保证不同焦
距状态下图像的清晰,从而在较短的全长限制内实现较高像质,降低了成本和重量。
一实施例中,第一透镜101为凸凹玻璃球面透镜,第二透镜102为双凹塑料非球面透镜,第三透镜103为凸凹或双凸塑料非球面透镜,第四透镜201为双凸玻璃球面透镜,第五透镜202为双凸塑料非球面透镜,第六透镜203为双凹塑料非球面透镜,第七透镜204为双凸或凸凹塑料非球面透镜。
通过设置第二透镜102、第三透镜103、第五透镜202、第六透镜203和第七透镜204为非球面透镜,可有效地矫正高级次像差。同时,由于塑料材质形成非球面透镜的成本远低于玻璃材质的形成非球面透镜成本,上述透镜采用塑料非球面透镜还可降低变焦镜头的成本。
非球面透镜面型满足公式:
其中,Z表示非球面的矢高,c表示顶点处的基本曲率,k表示圆锥曲线常数,r表示垂直光轴方向的径向坐标,ai为高次项系数,air2i为非球面的高次项。
玻璃材质的透镜的光线转折能力较强,通过设置第一透镜101和第四透镜201为玻璃球面透镜,有助于减少透镜数量,从而降低镜头体积。
同时,玻璃和塑料这两类材质还可以起到互相补偿作用,可以平衡高低温,使得变焦镜头具有高低温性能稳定的特点,有助于提高变焦镜头的环境适应性。
塑料非球面透镜的材质可为本领域技术人员可知的多种塑胶,玻璃球面透镜的材质为本领域技术人员可知的多种类型的玻璃,本申请实施例对此不作限定。
另外,通过合理设置每个透镜的形状,满足上述实施例中光焦度要求的同时,还可以保证整个变焦镜头结构紧凑,集成度高。
一实施例中,第一透镜101至第七透镜204的光焦度依次满足:
其中,
和分别表示第一透镜101至第七透镜204的光焦度,表示第一透镜组10的光焦度,表示第二透镜组20的光焦度。
一实施例中,第三透镜103至第七透镜204的折射率和色散系数依次满足:1.497≤n3≤1.710;17.0≤v3≤20.8;1.400≤n4≤1.730;53.4≤v4≤96.0;1.402≤n5≤1.702;42.1≤v5≤60.0;1.498≤n6≤1.710;17.0≤v6≤36.7;1.425≤n7≤1.710;17.0≤v7≤60.0;其中,n3、n4、n5、n6和n7依顺序分别表示第三透镜103至第七透镜204的折
射率,v3、v4、v5、v6和v7依顺序分别表示第三透镜103至第七透镜204的阿贝数。
通过综合设置每个透镜的光焦度、折射率以及阿贝数等参数,以提高变焦镜头的成像效果。
为了使变焦镜头具有足够的变倍数且能够合焦清晰,一实施例中,第一透镜组10从广角端到长焦端的位移量G1_L、第二透镜组20从广角端到长焦端的位移量G2_L和变焦镜头在广角端的镜头总长TTL_W满足:0.13≤G1_L/TTL_W≤0.25;0.07≤G2_L/TTL_W≤0.19。
为了使变焦镜头具有更大的成像靶面,能够保证光学系统具有更好的成像质量,画面更清晰,一实施例中,变焦镜头的像面直径IC与变焦镜头在广角端的焦距F_W满足:F_W/IC≤0.51。
为了保证成像传感器足够的安装空间,一实施例中,变焦镜头在广角端的后焦BFL_W与变焦镜头在广角端的镜头总长TTL_W满足:BFL_W/TTL_W≥0.10。
为了避免变焦镜头的口径过大,满足最终产品的安装空间要求,一实施例中,第一透镜101的直径D1与变焦镜头在广角端的镜头总长TTL_W满足:D1/TTL_W<0.58。
为了保证变焦镜头在拥有高成像质量的同时也能满足较高的变倍倍率,一实施例中,变焦镜头在广角端的光焦度和在长焦端的光焦度满足:
一实施例中,变焦镜头还包括光阑30;光阑30位于第三透镜103和第四透镜201之间。通过增设光阑30可以遮挡边缘光线,有利于提高成像质量。
继续参考图1,变焦镜头还包括平板玻璃40,平板玻璃40设置在第七透镜204的像侧面一侧。通过在第七透镜204和像面之间设置具有一定厚度的平板玻璃40,起到保护作用的同时,还可滤除不需要的杂散光,从而提高变焦镜头的成像质量,例如,通过平板玻璃40在白天滤除红外光来提高变焦镜头的成像质量。
示例性的,图2为图1中变焦镜头长焦端的结构示意图,表1为与图1和图2对应变焦镜头的参数:
表1变焦镜头的参数
表2为图1和图2中的变焦镜头的多个透镜参数设计值:
表2变焦镜头的多个透镜参数设计值
表2中,面序号1表示第一透镜101的前表面(靠近物方一侧的表面),面序号2表示第一透镜101的后表面(靠近像方一侧的表面),依次类推;面序号16和17分别表示镜头保护玻璃的前表面和后表面。曲率半径表示透镜表面的弯曲程度,正值表示该表面弯向像面一侧,负值表示该表面弯向物面一侧,其中“无限”表示该表面为平面,曲率半径为无穷大;厚度表示当前表面到下一表面的中心轴向距离,曲率半径和厚度单位为毫米,材料(nd)表示折射率,即当前表面到下一表面之间的材料对光线的偏折能力,材料(vd)表示阿贝数,当前表面到下一表面之间的材料对光线的色散特性。
表3为表2中变焦间隔值:
表3变焦间隔的一种设计值
表4为图1和图2中变焦镜头中非球面面型参数:
表4定焦镜头中非球面系数的一种设计值
表4中,-4.392853E-03表示面序号3的a2系数为-4.392853×10-3。
图3为本申请实施例提供的一种变焦镜头的广角端球差曲线图,参考图3,该变焦镜头在不同波长(0.850μm、0.656μm、0.588μm、0.546μm、0.486μm和0.436nm)下的球差均在0.05mm以内,即该变焦镜头的轴向像差较小,从而可知,本申请实施例提供的变焦镜头在广角端能够较好地校正像差。
图4为本申请实施例提供的一种变焦镜头的长焦端球差曲线图,参考图4,该变焦镜头在不同波长(0.850μm、0.656μm、0.588μm、0.546μm、0.486μm和0.436nm)下的球差均在0.1mm以内,即该变焦镜头的轴向像差较小,从而可知,本申请实施例提供的变焦镜头在长焦端也能够较好地校正像差。
图5为本申请实施例提供的一种变焦镜头的广角端光线光扇图,图6为本申请实施例提供的一种变焦镜头的长焦端光线光扇图,其中横坐标表示归一化入瞳,纵坐标是光线在像面偏离主光线的值。
图7为本申请实施例提供的一种变焦镜头广角端的场曲畸变图,其中左侧为场曲,右侧为畸变。参考图7,场曲图中水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失。由图7可以看出,本实施例提供的变焦镜头在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。畸变图中水平坐标表示畸变的大小,用百分数表示;垂直坐标表示归一化像高,没有单位;由图7可以看出,本实施例提供的变焦镜头在广角端的畸变小于70%,畸变满足该焦段下的畸变要求。
图8为本申请实施例提供的一种变焦镜头长焦端的场曲畸变图,其中左侧为场曲,右侧为畸变。参考图8,场曲图中水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失。由图8可以看出,本实施例提供的变焦镜头在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。畸变图中水平坐标表示畸变的大小,用百分数表示;垂直坐标表示归一化像高,没有单位;由图8可以看出,本实施例提供的变焦镜头在长焦端的畸变小于14%,畸变满足该焦段下的畸变要求。
综上,由图3~图8可知,本申请实施例提供的变焦镜头具有良好的成像能力。
示例性的,图9为本申请实施例提供的另一种变焦镜头广角端的结构示意图,图10为图9中变焦镜头长焦端的结构示意图,表5为与图9和图10对应变焦镜头的参数:
表5变焦镜头的参数
表6为图9和图10中的变焦镜头的多个透镜参数设计值:
表6变焦镜头的多个透镜参数设计值
表6中,面序号1表示第一透镜101的前表面(靠近物方一侧的表面),面序号2表示第一透镜101的后表面(靠近像方一侧的表面),依次类推;面序号16和17分别表示镜头保护玻璃的前表面和后表面。曲率半径表示透镜表
面的弯曲程度,正值表示该表面弯向像面一侧,负值表示该表面弯向物面一侧,其中“无限”表示该表面为平面,曲率半径为无穷大;厚度表示当前表面到下一表面的中心轴向距离,曲率半径和厚度单位为毫米,材料(nd)表示折射率,即当前表面到下一表面之间的材料对光线的偏折能力,材料(vd)表示阿贝数,当前表面到下一表面之间的材料对光线的色散特性。
表7为表2中变焦间隔值:
表7变焦间隔的一种设计值
表8为图9和图10中变焦镜头中非球面面型参数:
表8定焦镜头中非球面系数的一种设计值
表8中,-6.809413E-04表示面序号3的a2系数为-6.809413×10-4。
图11为本申请实施例提供的另一种变焦镜头的广角端球差曲线图,参考图11,该变焦镜头在不同波长(0.850μm、0.656μm、0.588μm、0.546μm、0.486μm和0.436nm)下的球差均在0.05mm以内,即该变焦镜头的轴向像差较小,从而
可知,本申请实施例提供的变焦镜头在广角端能够较好地校正像差。
图12为本申请实施例提供的另一种变焦镜头的长焦端球差曲线图,参考图12,该变焦镜头在不同波长(0.850μm、0.656μm、0.588μm、0.546μm、0.486μm和0.436nm)下的球差均在0.1mm以内,即该变焦镜头的轴向像差较小,从而可知,本申请实施例提供的变焦镜头在长焦端也能够较好地校正像差。
图13为本申请实施例提供的另一种变焦镜头的广角端光线光扇图,图14为本申请实施例提供的另一种变焦镜头的长焦端光线光扇图,其中横坐标表示归一化入瞳,纵坐标是光线在像面偏离主光线的值。
图15为本申请实施例提供的另一种变焦镜头广角端的场曲畸变图,其中左侧为场曲,右侧为畸变。参考图15,场曲图中水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失。由图15可以看出,本实施例提供的变焦镜头在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。畸变图中水平坐标表示畸变的大小,用百分数表示;垂直坐标表示归一化像高,没有单位;由图15可以看出,本实施例提供的变焦镜头在广角端的畸变小于70%,畸变满足该焦段下的畸变要求。
图16为本申请实施例提供的另一种变焦镜头长焦端的场曲畸变图,其中左侧为场曲,右侧为畸变。参考图16,场曲图中水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失。由图16可以看出,本实施例提供的变焦镜头在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。畸变图中水平坐标表示畸变的大小,用百分数表示;垂直坐标表示归一化像高,没有单位;由图16可以看出,本实施例提供的变焦镜头在长焦端的畸变小于16%,畸变满足该焦段下的畸变要求。
综上,由图11~图16可知,本申请实施例提供的变焦镜头具有良好的成像能力。
示例性的,图17为本申请实施例提供的又一种变焦镜头广角端的结构示意图,图18为图17中变焦镜头长焦端的结构示意图,表9为与图17和图18对应变焦镜头的参数:
表9变焦镜头的参数
表10为图17和图18中的变焦镜头的多个透镜参数设计值:
表10变焦镜头的多个透镜参数设计值
表10中,面序号1表示第一透镜101的前表面(靠近物方一侧的表面),面序号2表示第一透镜101的后表面(靠近像方一侧的表面),依次类推;面序号16和17分别表示镜头保护玻璃的前表面和后表面。曲率半径表示透镜表面的弯曲程度,正值表示该表面弯向像面一侧,负值表示该表面弯向物面一侧,其中“无限”表示该表面为平面,曲率半径为无穷大;厚度表示当前表面到下一表面的中心轴向距离,曲率半径和厚度单位为毫米,材料(nd)表示折射率,即当前表面到下一表面之间的材料对光线的偏折能力,材料(vd)表示阿贝数,当前表面到下一表面之间的材料对光线的色散特性。
表11为表10中变焦间隔值:
表11变焦间隔的一种设计值
表12为图17和图18中变焦镜头中非球面面型参数:
表12定焦镜头中非球面系数的一种设计值
表12中,-3.962468E-03表示面序号3的a2系数为-3.962468×10-3。
图19为本申请实施例提供的又一种变焦镜头的广角端球差曲线图,参考图19,该变焦镜头在不同波长(0.850μm、0.656μm、0.588μm、0.546μm、0.486μm和0.436nm)下的球差均在0.05mm以内,即该变焦镜头的轴向像差较小,从而可知,本申请实施例提供的变焦镜头在广角端能够较好地校正像差。
图20为本申请实施例提供的又一种变焦镜头的长焦端球差曲线图,参考图20,该变焦镜头在不同波长(0.850μm、0.656μm、0.588μm、0.546μm、0.486μm和0.436nm)下的球差均在0.12mm以内,即该变焦镜头的轴向像差较小,从而可知,本申请实施例提供的变焦镜头在长焦端也能够较好地校正像差。
图21为本申请实施例提供的又一种变焦镜头的广角端光线光扇图,图22为本申请实施例提供的又一种变焦镜头的长焦端光线光扇图,其中横坐标表示归一化入瞳,纵坐标是光线在像面偏离主光线的值。
图23为本申请实施例提供的又一种变焦镜头广角端的场曲畸变图,其中左侧为场曲,右侧为畸变。参考图23,场曲图中水平坐标表示场曲的大小,单位为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失。由图23可以看出,本实施例提供的变焦镜头在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。畸变图中水平坐标表示畸变的大小,用百分数表示;垂直坐标表示归一化像高,没有单位;由图23可以看出,本实施例提供的变焦镜头在广角端的畸变小于70%,畸变满足该焦段下的畸变要求。
图24为本申请实施例提供的又一种变焦镜头长焦端的场曲畸变图,其中左侧为场曲,右侧为畸变。参考图24,场曲图中水平坐标表示场曲的大小,单位
为mm;垂直坐标表示归一化像高,没有单位;其中T表示子午,S表示弧失。由图24可以看出,本实施例提供的变焦镜头在场曲上被有效地控制,即在成像时,中心的像质和周边的像质差距较小。畸变图中水平坐标表示畸变的大小,用百分数表示;垂直坐标表示归一化像高,没有单位;由图24可以看出,本实施例提供的变焦镜头在长焦端的畸变小于16%,畸变满足该焦段下的畸变要求。
综上,由图19~图24可知,本申请实施例提供的变焦镜头具有良好的成像能力。
Claims (10)
- 一种变焦镜头,包括沿光轴从物方到像方依次排列的负光焦度的第一透镜组和正光焦度的第二透镜组,通过改变所述第一透镜组和所述第二透镜组在所述光轴上的位置改变所述变焦镜头的焦距;所述第一透镜组包括沿所述光轴从物方至像方依次排列的第一透镜、第二透镜和第三透镜;所述第二透镜组包括沿所述光轴从物方至像方依次排列的第四透镜、第五透镜、第六透镜和第七透镜;所述第一透镜具有负光焦度,所述第二透镜具有负光焦度,所述第三透镜具有正光焦度,所述第四透镜具有正光焦度,所述第五透镜具有正光焦度,所述第六透镜具有负光焦度,所述第七透镜具有正光焦度。
- 根据权利要求1所述的变焦镜头,其中,所述第一透镜为凸凹玻璃球面透镜,所述第二透镜为双凹塑料非球面透镜,所述第三透镜为凸凹或双凸塑料非球面透镜,所述第四透镜为双凸玻璃球面透镜,所述第五透镜为双凸塑料非球面透镜,所述第六透镜为双凹塑料非球面透镜,所述第七透镜为双凸或凸凹塑料非球面透镜。
- 根据权利要求1所述的变焦镜头,其中,所述第一透镜至所述第七透镜的光焦度依次满足:
其中,和分别表示所述第一透镜至所述第七透镜的光焦度,表示所述第一透镜组的光焦度,表示所述第二透镜组的光焦度。 - 根据权利要求1所述的变焦镜头,其中,所述第三透镜至所述第七透镜的折射率和色散系数依次满足:1.497≤n3≤1.710;17.0≤v3≤20.8;1.400≤n4≤1.730;53.4≤v4≤96.0;1.402≤n5≤1.702;42.1≤v5≤60.0;1.498≤n6≤1.710;17.0≤v6≤36.7;1.425≤n7≤1.710;17.0≤v7≤60.0;其中,n3、n4、n5、n6和n7依顺序分别表示所述第三透镜至所述第七透镜的折射率,v3、v4、v5、v6和v7依顺序分别表示所述第三透镜至所述第七透镜的阿贝数。
- 根据权利要求1所述的变焦镜头,其中,所述第一透镜组从广角端到长焦端的位移量G1_L、所述第二透镜组从广角端到长焦端的位移量G2_L和所述变焦镜头在广角端的镜头总长TTL_W满足:0.13≤G1_L/TTL_W≤0.25;0.07≤G2_L/TTL_W≤0.19。
- 根据权利要求1所述的变焦镜头,其中,所述变焦镜头的像面直径IC与所述变焦镜头在广角端的焦距F_W满足:F_W/IC≤0.51。
- 根据权利要求1所述的变焦镜头,其中,所述变焦镜头在广角端的后焦BFL_W与所述变焦镜头在广角端的镜头总长TTL_W满足:BFL_W/TTL_W≥0.10。
- 根据权利要求1所述的变焦镜头,其中,所述第一透镜的直径D1与所述变焦镜头在广角端的镜头总长TTL_W满足:D1/TTL_W<0.58。
- 根据权利要求1所述的变焦镜头,其中,所述变焦镜头在广角端的光焦度和在长焦端的光焦度满足:
- 根据权利要求1所述的变焦镜头,还包括光阑;所述光阑位于所述第三透镜和所述第四透镜之间。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237023219A KR20230129021A (ko) | 2022-02-24 | 2023-02-23 | 줌 렌즈 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210171280.7A CN116699816A (zh) | 2022-02-24 | 2022-02-24 | 一种变焦镜头 |
CN202210171280.7 | 2022-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023160594A1 true WO2023160594A1 (zh) | 2023-08-31 |
Family
ID=87764769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/077773 WO2023160594A1 (zh) | 2022-02-24 | 2023-02-23 | 变焦镜头 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20230129021A (zh) |
CN (1) | CN116699816A (zh) |
WO (1) | WO2023160594A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5963379A (en) * | 1996-12-12 | 1999-10-05 | Nikon Corporation | Compact zoom lens |
JP2008310133A (ja) * | 2007-06-15 | 2008-12-25 | Konica Minolta Opto Inc | 変倍光学系、撮像装置およびデジタル機器 |
JP2009204699A (ja) * | 2008-02-26 | 2009-09-10 | Tamron Co Ltd | ズームレンズ |
CN102262291A (zh) * | 2010-05-26 | 2011-11-30 | Hoya株式会社 | 变焦透镜系统 |
CN104181683A (zh) * | 2013-05-23 | 2014-12-03 | 佳能株式会社 | 变焦透镜以及包括该变焦透镜的摄像装置 |
US20170045720A1 (en) * | 2015-08-10 | 2017-02-16 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including the same |
CN110262021A (zh) * | 2019-06-20 | 2019-09-20 | 东莞市宇瞳光学科技股份有限公司 | 一种变焦镜头 |
CN111856699A (zh) * | 2020-08-25 | 2020-10-30 | 中山联合光电科技股份有限公司 | 变焦镜头 |
CN216927244U (zh) * | 2022-02-24 | 2022-07-08 | 东莞市宇瞳光学科技股份有限公司 | 一种变焦镜头 |
-
2022
- 2022-02-24 CN CN202210171280.7A patent/CN116699816A/zh active Pending
-
2023
- 2023-02-23 KR KR1020237023219A patent/KR20230129021A/ko unknown
- 2023-02-23 WO PCT/CN2023/077773 patent/WO2023160594A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5963379A (en) * | 1996-12-12 | 1999-10-05 | Nikon Corporation | Compact zoom lens |
JP2008310133A (ja) * | 2007-06-15 | 2008-12-25 | Konica Minolta Opto Inc | 変倍光学系、撮像装置およびデジタル機器 |
JP2009204699A (ja) * | 2008-02-26 | 2009-09-10 | Tamron Co Ltd | ズームレンズ |
CN102262291A (zh) * | 2010-05-26 | 2011-11-30 | Hoya株式会社 | 变焦透镜系统 |
CN104181683A (zh) * | 2013-05-23 | 2014-12-03 | 佳能株式会社 | 变焦透镜以及包括该变焦透镜的摄像装置 |
US20170045720A1 (en) * | 2015-08-10 | 2017-02-16 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including the same |
CN110262021A (zh) * | 2019-06-20 | 2019-09-20 | 东莞市宇瞳光学科技股份有限公司 | 一种变焦镜头 |
CN111856699A (zh) * | 2020-08-25 | 2020-10-30 | 中山联合光电科技股份有限公司 | 变焦镜头 |
CN216927244U (zh) * | 2022-02-24 | 2022-07-08 | 东莞市宇瞳光学科技股份有限公司 | 一种变焦镜头 |
Also Published As
Publication number | Publication date |
---|---|
KR20230129021A (ko) | 2023-09-05 |
CN116699816A (zh) | 2023-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020073702A1 (zh) | 光学成像镜片组 | |
CN110007447B (zh) | 一种定焦镜头 | |
WO2023116600A1 (zh) | 变焦镜头 | |
CN105334598B (zh) | 一种光学镜头 | |
CN109188654B (zh) | 广角镜头 | |
CN109725406B (zh) | 光学镜头 | |
CN111123493A (zh) | 一种变焦镜头 | |
CN216927244U (zh) | 一种变焦镜头 | |
WO2021057228A1 (zh) | 光学成像镜头 | |
CN218497250U (zh) | 一种变焦镜头 | |
CN111239984A (zh) | 一种定焦镜头 | |
WO2019024490A1 (zh) | 光学成像镜头 | |
CN112526711A (zh) | 光学系统 | |
CN111562664B (zh) | 一种变焦镜头 | |
CN111562662A (zh) | 一种变焦镜头 | |
CN110488472B (zh) | 变焦距光学系统 | |
CN112666689B (zh) | 一种变焦镜头 | |
CN116520541A (zh) | 变焦镜头 | |
CN211426903U (zh) | 一种变焦镜头 | |
CN211014817U (zh) | 变焦镜头 | |
CN209895076U (zh) | 一种定焦镜头 | |
CN217879799U (zh) | 变焦镜头 | |
WO2023160594A1 (zh) | 变焦镜头 | |
CN117055190A (zh) | 一种变焦镜头 | |
CN114089519B (zh) | 变焦镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20237023219 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23759218 Country of ref document: EP Kind code of ref document: A1 |