WO2023160427A1 - 一种co2地质封存泄露监测系统 - Google Patents

一种co2地质封存泄露监测系统 Download PDF

Info

Publication number
WO2023160427A1
WO2023160427A1 PCT/CN2023/075808 CN2023075808W WO2023160427A1 WO 2023160427 A1 WO2023160427 A1 WO 2023160427A1 CN 2023075808 W CN2023075808 W CN 2023075808W WO 2023160427 A1 WO2023160427 A1 WO 2023160427A1
Authority
WO
WIPO (PCT)
Prior art keywords
geological storage
gas
monitoring system
leakage monitoring
geological
Prior art date
Application number
PCT/CN2023/075808
Other languages
English (en)
French (fr)
Inventor
周娟
荆铁亚
朱明宇
张健
赵文韬
尹玉龙
刘练波
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023160427A1 publication Critical patent/WO2023160427A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Definitions

  • This application relates to the technical field of CO 2 geological storage, in particular to a CO 2 geological storage leakage monitoring system.
  • part of the CO 2 injected into the formation is fixed in the storage layer through physical and chemical effects, another part flows along the geological layer, and a small part flows along geological defects, well walls, etc. Penetration or leakage to soil, atmosphere, etc. Once a leak occurs, it will have an impact on the environment and surrounding organisms, and even destroy the balance of the ecological environment. Therefore, it is particularly important to monitor and identify CO 2 that may leak or seep in geological storage projects.
  • the traditional monitoring technology is mainly based on atmospheric environment monitoring, which indirectly monitors the leakage of CO 2 geological storage by monitoring the CO 2 concentration in the atmosphere.
  • concentration of CO 2 in the atmosphere fluctuates too much, It is difficult to guarantee the real-time and accuracy of detection. Therefore, how to more effectively monitor the leakage of CO 2 geological storage has become a technical problem to be solved urgently by those skilled in the art.
  • the present application provides a CO 2 geological storage leakage monitoring system, which can more effectively monitor the leakage of CO 2 geological storage.
  • a CO2 geological storage leakage monitoring system comprising:
  • a plurality of sampling pipes are distributed at sampling grid point positions on the surface of the CO2 geological storage area, and inserted into the surface soil;
  • the first gas detector is arranged in the sampling pipe and is used to detect the concentration of the tracer gas, which is the gas injected into the geological storage layer together with CO ;
  • a data acquisition and analysis device electrically connected to the first gas detector.
  • the above CO 2 geological storage leakage monitoring system also includes a second gas detector arranged in the sampling pipe for detecting the concentration of CO 2 , the second gas detector is connected with the data acquisition
  • the analysis device is electrically connected.
  • an alarm device electrically connected to the data acquisition and analysis device is also included, for sending out an alarm signal when the concentration of the tracer gas exceeds a preset value.
  • the alarm signal is a light signal and/or an acoustic signal.
  • the tracer gas is SF6.
  • the data acquisition and analysis device has a display screen for displaying gas concentration variation curves.
  • the sampling grid points are arranged in a matrix.
  • the sampling grid points are uniformly arranged with the same density.
  • the sampling pipes are distributed at the sampling grid point positions on the surface of the CO2 geological storage area, and inserted into the surface soil In the soil, the data acquisition and analysis device is electrically connected with the first gas detector in the sampling pipe, and the first gas detector can detect the concentration of the tracer gas. Therefore, after CO2 is sealed up, the concentration of the tracer gas in the atmospheric environment can be monitored. If there is a significant change in the tracer gas concentration, it can be judged that CO 2 has leaked. Since the concentration of the tracer gas in the atmosphere is not greatly affected by plant photosynthesis and respiration like CO 2 , the CO 2 geological storage leakage monitoring system can more effectively monitor the leakage of CO 2 geological storage.
  • Fig. 1 is the layout diagram of the CO2 geological storage leakage monitoring system provided by the embodiment of the present application;
  • Fig. 2 is a top view of the ground surface in Fig. 1;
  • FIG. 3 is a schematic diagram of the injection device 2 in FIG. 1 .
  • the present application provides a CO 2 geological storage leakage monitoring system, which can more effectively monitor the leakage of CO 2 geological storage.
  • the embodiment of the present application provides a CO2 geological storage leakage monitoring system, including a sampling tube 4, a first gas detector (not marked in the figure) and a data acquisition and analysis device 5,
  • the sampling tube 4 is a plurality of sampling grid points distributed on the surface of the CO2 geological storage area, and inserted into the surface soil;
  • the first gas detector is arranged in the sampling pipe 4, and the data acquisition and analysis device 5 is connected with the second
  • a gas detector is electrically connected, the first gas detector is used to detect the concentration of the tracer gas, this tracer gas is the gas injected into the geological storage layer together with CO
  • the present embodiment selects SF6 as the tracer gas, of course, in other
  • other gases that are easy to detect and can trace CO 2 can also be selected.
  • the tracer gas is preferably a gas with the following characteristics: colorless, odorless, non-corrosive, chemically stable, weak adsorption on rock surfaces, low solubility in water, strong injectability, diffusion speed in soil and air close to that of CO2 .
  • the injection device 2 shown in Figure 3 can be used to inject the tracer gas together with CO2 into the geological storage layer.
  • the injection device 2 includes a gas storage tank 21 connected in sequence through pipelines, a gas flow meter 22.
  • the pipeline extends into the injection well 1, as shown in FIG. 1 .
  • CO to be stored is housed in the gas storage tank 21 , and the tracer gas is pre-mixed, that is, the gas storage tank 21 is filled with a mixture of CO2 and the tracer gas, for example, it can be SF6 containing 0.04% SF6 and CO2 mixed gas.
  • the mixed gas containing the tracer gas is injected into the target reservoir through the injection well 1 through the booster pump 24, and the gas storage tank 21 and the injection well head are closed after the injection amount reaches the standard.
  • the above storage process can be used in a variety of CO 2 geological utilization and storage scenarios, including CO 2 oil flooding storage, CO 2 gas flooding storage, and CO 2 saline layer storage, etc., as shown in Figure 1, the production well 3 In saline layer storage, it is used as a water production well, in CO2 flooding storage, as an oil production well, and in CO2 gas flooding storage, as a gas production well. In addition, the production well 3 can also be omitted in small-scale saline layer storage.
  • the gas in the soil enters the lumen of the sampling tube 4 from the lower port of the sampling tube 4, because the first gas detector arranged in the sampling tube 4 can detect the concentration of the tracer gas, therefore, the CO 2
  • the concentration of the tracer gas in the atmospheric environment can be monitored. If the concentration of the tracer gas changes significantly, it can be judged that CO 2 has leaked. Based on the concentration difference of the tracer gas at different locations at the same time, the escape and leakage paths of CO2 can be judged, so that more targeted measures can be taken for blocking and countermeasures can be designed.
  • the length and pipe diameter of sampling pipe 4 can be set as required, and the length of sampling pipe 4 can be 20cm ⁇ 40cm, such as 30cm, and the pipe diameter of sampling pipe 4 can be 5cm ⁇ 20cm, such as 10cm. cm.
  • the height of the sampling pipe 4 exposed to the ground generally accounts for 1/2 to 3/4 of the total length of the sampling pipe 4, which can better reduce the influence of the external environment on the gas concentration detection.
  • the present embodiment makes the sampling grid points arranged in a matrix, certainly, the sampling grid points can also be arranged according to other graphic structures, in addition, at different positions on the surface of the CO2geological storage area, the sampling grid points It is preferable to arrange them evenly with the same density, and of course, the sampling grid points can also be set closer to the wellheads of the injection well 1 and the production well 3 .
  • the data acquisition and analysis device 5 includes at least a data acquisition unit and a data analysis unit, which can analyze the value after collecting the value of the gas concentration, for example, determine whether the value exceeds a preset value, etc.
  • a second gas detector can also be installed in the sampling tube 4 to detect the concentration of CO 2 , and likewise, the second gas detector is electrically connected to the data acquisition and analysis device 5 .
  • an alarm device electrically connected to the data acquisition and analysis device 5 can also be provided.
  • the alarm signal may be a light signal and/or an acoustic signal.
  • the present embodiment makes the data collection and analysis device 5 have a display screen, which is used to display the gas concentration change curve, that is, the data collection and analysis device 5 also includes a graphic drawing unit , can draw the curve of the gas concentration changing with the observation time according to the numerical recording time and numerical value, and the display screen will display this curve intuitively.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

本申请提供了一种CO2地质封存泄露监测系统,包括多个取样管、设置于取样管内的第一气体检测器,以及与第一气体检测器电连接的数据采集分析装置。取样管分布于CO2地质封存区域的地表上的取样网格点位置,并插于地表土壤中;第一气体检测器用于检测示踪气体的浓度,示踪气体为随CO2一同注入地质封存层的气体。本申请提供的CO2地质封存泄露监测系统能够更有效地监测CO2地质封存的泄漏情况。

Description

一种CO2地质封存泄露监测系统
本申请要求于2022年02月24日提交中国专利局、申请号为202220401839.6、发明名称为“一种CO2地质封存泄露监测系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及CO2地质封存技术领域,特别是涉及一种CO2地质封存泄露监测系统。
背景技术
在CO2地质封存的过程中,注入地层中的CO2一部分通过物理、化学作用被固定在封存层中,另外一部分沿着地质层流动,还有一小部分会沿着地质缺陷、井壁等部位渗透或泄漏到土壤、大气等其他地方。一旦发生泄漏,将会对环境以及周围生物造成影响,甚至破坏生态环境平衡。因此,对地质封存项目中可能泄漏或渗漏的CO2进行监测与识别尤为重要。
传统的监测技术以大气环境监测为主,通过监测大气中CO2浓度间接进行CO2地质封存泄漏的监测,但受植物光合作用和呼吸作用的影响,大气中CO2的浓度波动范围过大,很难保证检测的实时性和准确性。因此,如何更有效地监测CO2地质封存的泄漏情况,成为本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本申请提供了一种CO2地质封存泄露监测系统,能够更有效地监测CO2地质封存的泄漏情况。
为了达到上述目的,本申请提供如下技术方案:
一种CO2地质封存泄露监测系统,包括:
多个取样管,分布于CO2地质封存区域的地表上的取样网格点位置,并插于地表土壤中;
第一气体检测器,设置于所述取样管内,用于检测示踪气体的浓度,所述示踪气体为随CO2一同注入地质封存层的气体;以及
与所述第一气体检测器电连接的数据采集分析装置。
可选地,在上述CO2地质封存泄露监测系统中,还包括设置于所述取样管内的第二气体检测器,用于检测CO2的浓度,所述第二气体检测器与所述数据采集分析装置电连接。
可选地,在上述CO2地质封存泄露监测系统中,还包括与所述数据采集分析装置电连接的报警装置,用于当所述示踪气体的浓度超过预设值时发出报警信号。
可选地,在上述CO2地质封存泄露监测系统中,所述报警信号为光信号和/或声信号。
可选地,在上述CO2地质封存泄露监测系统中,所述示踪气体为SF6。
可选地,在上述CO2地质封存泄露监测系统中,所述数据采集分析装置具有显示屏,用于显示气体浓度变化曲线。
可选地,在上述CO2地质封存泄露监测系统中,所述取样网格点呈矩阵排列。
可选地,在上述CO2地质封存泄露监测系统中,在CO2地质封存区域的地表的不同位置,所述取样网格点以相同的疏密度均匀排列。
根据上述技术方案可知,本申请提供的CO2地质封存泄露监测系统中,取样管分布在CO2地质封存区域的地表上的取样网格点位置,并插于地表土 壤中,数据采集分析装置与取样管内的第一气体检测器电连接,第一气体检测器能够检测示踪气体的浓度,因此,将CO2封存后可以监测大气环境中示踪气体的浓度,如果示踪气体浓度有明显的变化则可以判断CO2发生了泄漏。由于示踪气体在大气中的浓度不像CO2似的受到植物光合作用和呼吸作用的很大影响,所以,该CO2地质封存泄露监测系统能够更有效地监测CO2地质封存的泄漏情况。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本申请实施例提供的CO2地质封存泄露监测系统的布置示意图;
图2是图1中地表的俯视图;
图3是图1中注入装置2的示意图。
图中标记为:
1、注入井;2、注入装置;21、储气罐;22、气体流量计;23、阀门;24、增压泵;25、气压表;3、生产井;4、取样管;5、数据采集分析装置。
具体实施方式
本申请提供了一种CO2地质封存泄露监测系统,能够更有效地监测CO2地质封存的泄漏情况。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1~图3所示,本申请实施例提供了一种CO2地质封存泄露监测系统,包括取样管4、第一气体检测器(图中未标记)和数据采集分析装置5,取样管4为多个,分布于CO2地质封存区域的地表上的取样网格点位置,并插于地表土壤中;第一气体检测器设置于取样管4内,而数据采集分析装置5则与第一气体检测器电连接,第一气体检测器用于检测示踪气体的浓度,此示踪气体为随CO2一同注入地质封存层的气体,本实施例选择SF6作为示踪气体,当然,在其他实施例中,也可以选择其他易检测且可以示踪CO2的气体。示踪气体优选具有以下特点的气体:无色、无味、无腐蚀性、化学性质稳定、在岩石表面吸附性弱、在水中溶解度低、注入性强、在土壤和空气中扩散速度与CO2接近。在封存CO2时可以利用如图3所示的注入装置2将示踪气体与CO2一同注入地质封存层,具体地,注入装置2包括通过管路依次相连的储气罐21、气体流量计22、阀门23、增压泵24和气压表25,最终管路伸入注入井1中,如图1所示。储气罐21中装有待封存的CO2,而且预先混入了示踪气体,即,储气罐21装的是CO2和示踪气体的混合气体,例如,可以是含0.04%SF6的SF6和CO2混合气体。打开储气罐21后,通过增压泵24将含有示踪气体的混合气体通过注入井1注入到目标储层,注入量达标之后关闭储气罐21和注入井口。上述封存过程可以用于多种CO2地质利用与封存的场景,包括CO2驱油封存、CO2驱气封存和CO2咸水层封存等,如图1所示,生产井3在CO2咸水层封存中作为产水井,在CO2驱油封存中作为产油井,在CO2驱气封存中作为产气井,此外,小规模咸水层封存中也可以省去生产井3。
如图1所示,土壤中的气体由取样管4的下端口进入取样管4的管腔中,由于取样管4内设置的第一气体检测器能够检测示踪气体的浓度,因此,将CO2封存后可以监测大气环境中示踪气体的浓度,如果示踪气体浓度有明显的变化则可以判断CO2发生了泄漏。基于相同时间不同位置上示踪气体的浓度差别,可以判断CO2的逃逸和泄露路径,从而更有针对性地采取封堵措施和设计应对方案。取样管4的长度和管径可以根据需要设置,取样管4的长度可以为20cm~40cm,例如30cm,取样管4的管径可以为5cm~20cm,例如10 cm。取样管4露出地表的高度一般占取样管4全长的二分之一至四分之三,如此能够更好地减小外界环境对气体浓度检测的影响。如图2所示,本实施例令取样网格点呈矩阵排列,当然,取样网格点也可以按其他图形结构排列,此外,在CO2地质封存区域的地表的不同位置,取样网格点优选以相同的疏密度均匀排列,当然,也可以在离注入井1和生产井3的井口近的位置将取样网格点设置得更密集一些。
数据采集分析装置5至少包括数据采集单元和数据分析单元,采集气体浓度的数值后能够对数值进行分析,例如,判断数值是否超出预设值等。为了进一步加强监测效果,还可以在取样管4内设置第二气体检测器用来检测CO2的浓度,同样地,第二气体检测器与数据采集分析装置5电连接。为了能够提醒工作人员及早采取封堵措施,还可以设置与数据采集分析装置5电连接的报警装置,当示踪气体的浓度超过预设值时,此报警装置发出报警信号。具体地,报警信号可以为光信号和/或声信号。为了能够更直观地向工作人员展示气体浓度的变化,本实施例令数据采集分析装置5具有显示屏,此显示屏用于显示气体浓度变化曲线,即,数据采集分析装置5还包括图形绘制单元,能够根据数值记录时间及数值大小绘制气体浓度随观测时间变化的曲线,显示屏将此曲线直观地展示出来。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种CO2地质封存泄露监测系统,其特征在于,包括:
    多个取样管,分布于CO2地质封存区域的地表上的取样网格点位置,并插于地表土壤中;
    第一气体检测器,设置于所述取样管内,用于检测示踪气体的浓度,所述示踪气体为随CO2一同注入地质封存层的气体;以及
    与所述第一气体检测器电连接的数据采集分析装置。
  2. 根据权利要求1所述的CO2地质封存泄露监测系统,其特征在于,还包括设置于所述取样管内的第二气体检测器,用于检测CO2的浓度,所述第二气体检测器与所述数据采集分析装置电连接。
  3. 根据权利要求1所述的CO2地质封存泄露监测系统,其特征在于,还包括与所述数据采集分析装置电连接的报警装置,用于当所述示踪气体的浓度超过预设值时发出报警信号。
  4. 根据权利要求3所述的CO2地质封存泄露监测系统,其特征在于,所述报警信号为光信号和/或声信号。
  5. 根据权利要求1所述的CO2地质封存泄露监测系统,其特征在于,所述示踪气体为SF6。
  6. 根据权利要求1所述的CO2地质封存泄露监测系统,其特征在于,所述数据采集分析装置具有显示屏,用于显示气体浓度变化曲线。
  7. 根据权利要求1~6中任意一项所述的CO2地质封存泄露监测系统,其特征在于,所述取样网格点呈矩阵排列。
  8. 根据权利要求7所述的CO2地质封存泄露监测系统,其特征在于,在CO2地质封存区域的地表的不同位置,所述取样网格点以相同的疏密度均匀排列。
PCT/CN2023/075808 2022-02-24 2023-02-14 一种co2地质封存泄露监测系统 WO2023160427A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220401839.6U CN216869918U (zh) 2022-02-24 2022-02-24 一种co2地质封存泄露监测系统
CN202220401839.6 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023160427A1 true WO2023160427A1 (zh) 2023-08-31

Family

ID=82160630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075808 WO2023160427A1 (zh) 2022-02-24 2023-02-14 一种co2地质封存泄露监测系统

Country Status (2)

Country Link
CN (1) CN216869918U (zh)
WO (1) WO2023160427A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216869918U (zh) * 2022-02-24 2022-07-01 中国华能集团清洁能源技术研究院有限公司 一种co2地质封存泄露监测系统
CN116265891B (zh) * 2023-01-10 2023-08-29 北京科技大学 二氧化碳驱油封存工程的地质渗漏平面监测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6035701A (en) * 1998-04-15 2000-03-14 Lowry; William E. Method and system to locate leaks in subsurface containment structures using tracer gases
JP2010243178A (ja) * 2009-04-01 2010-10-28 National Maritime Research Institute 漏洩co2検出方法及び漏洩co2検出装置、地中貯留co2の漏洩モニタリング方法
CN102410908A (zh) * 2011-08-04 2012-04-11 北京市华云分析仪器研究所有限公司 一种二氧化碳地质封存泄漏的监测系统
CN102519679A (zh) * 2011-12-26 2012-06-27 中国科学院地质与地球物理研究所 一种co2地质封存中钻孔泄漏的测定方法
CN216869918U (zh) * 2022-02-24 2022-07-01 中国华能集团清洁能源技术研究院有限公司 一种co2地质封存泄露监测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6035701A (en) * 1998-04-15 2000-03-14 Lowry; William E. Method and system to locate leaks in subsurface containment structures using tracer gases
JP2010243178A (ja) * 2009-04-01 2010-10-28 National Maritime Research Institute 漏洩co2検出方法及び漏洩co2検出装置、地中貯留co2の漏洩モニタリング方法
CN102410908A (zh) * 2011-08-04 2012-04-11 北京市华云分析仪器研究所有限公司 一种二氧化碳地质封存泄漏的监测系统
CN102519679A (zh) * 2011-12-26 2012-06-27 中国科学院地质与地球物理研究所 一种co2地质封存中钻孔泄漏的测定方法
CN216869918U (zh) * 2022-02-24 2022-07-01 中国华能集团清洁能源技术研究院有限公司 一种co2地质封存泄露监测系统

Also Published As

Publication number Publication date
CN216869918U (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2023160427A1 (zh) 一种co2地质封存泄露监测系统
CN107271110B (zh) 一种基于北斗定位的埋地燃气管道泄漏点定位检测方法
Capasso et al. A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island.
CN108533968B (zh) 基于示踪气体的埋地燃气管道泄漏点定位方法
CN108871876B (zh) 用于监测注气驱油井场包气带土壤二氧化碳通量的采气柱
US8950243B2 (en) Method of testing for leaks in a contained system
Roy et al. Effects of unconventional gas development on groundwater: a call for total dissolved gas pressure field measurements.
CN107389530A (zh) 一种适用于低渗透性土的弥散试验设备
CN108061696A (zh) 一种室内测试泥膜渗透系数的装置及方法
Xu et al. Effective utilization of tracer gas in characterization of underground mine ventilation networks
CN103979238B (zh) 加油站埋地罐区多通道泄漏监测方法
CN106246166A (zh) 一种注入井漏失测试方法
CN210738534U (zh) 一种二氧化碳驱油与封存中测量二氧化碳运移规律的装置
CA2714125C (en) Method of testing for leaks in a contained system
CN207020049U (zh) 一种适用于低渗透性土的弥散试验设备
CN102519679A (zh) 一种co2地质封存中钻孔泄漏的测定方法
Ball et al. Gas movement and air-filled porosity
JP2014066690A (ja) 地下に貯留した二酸化炭素の地表面への漏出の早期検出装置および方法
CN200975605Y (zh) 灭火剂瓶组的检漏装置
KR101981650B1 (ko) 지하수관정의 라돈 실시간 모니터링 장치
AU2012211379A1 (en) System and Method for monitoring unsaturated zone gas and near-surface atmosphere in real time by using isotope analyzer
CN112798196A (zh) 监测地下储气库泄漏的方法及装置
KR101729900B1 (ko) 지하수 추적 시스템 및 방법
CN113551849B (zh) 采用示踪气体喷射电缆沟防小动物封堵墙的光声分析装置
CN112461726A (zh) 一种致密气藏砂岩岩石渗吸水驱前缘速度评价方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759052

Country of ref document: EP

Kind code of ref document: A1