WO2023160274A1 - 卷流燃烧室的喷油方法、卷流燃烧室、车辆及存储介质 - Google Patents

卷流燃烧室的喷油方法、卷流燃烧室、车辆及存储介质 Download PDF

Info

Publication number
WO2023160274A1
WO2023160274A1 PCT/CN2023/070957 CN2023070957W WO2023160274A1 WO 2023160274 A1 WO2023160274 A1 WO 2023160274A1 CN 2023070957 W CN2023070957 W CN 2023070957W WO 2023160274 A1 WO2023160274 A1 WO 2023160274A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
duration
combustion chamber
target
plume
Prior art date
Application number
PCT/CN2023/070957
Other languages
English (en)
French (fr)
Inventor
王德成
李志杰
孙振宇
张扬
侯建军
孙楠楠
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Publication of WO2023160274A1 publication Critical patent/WO2023160274A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present application relates to the technical field of diesel engine combustion systems, for example, to a fuel injection method for a plume combustion chamber, a plume combustion chamber, a vehicle and a medium.
  • the existing diesel engine electronic control system is more and more used, and the atomization quality of the fuel injector has been significantly improved, but the existing diesel engine combustion chamber cannot match the injection pressure.
  • the application provides a method for injecting fuel into a plume combustion chamber, a plume combustion chamber, a vehicle and a medium, which can deal with insufficient combustion of fuel in the combustion chamber.
  • a fuel injection method for a plume combustion chamber is provided, the axial cross-sectional profile of the plume combustion chamber is ⁇ -shaped, and the plume combustion chamber is used in conjunction with a fuel injector.
  • the fuel injector has a first fuel injection port and a second fuel injection port, and the fuel injection method of the plume combustion chamber includes:
  • obtaining the target fuel injection duration of the plume combustion chamber includes:
  • the current fuel injection start point is not earlier than the first fuel injection start point, and the current fuel injection end point is not later than the first fuel injection end point.
  • the first fuel injection duration and the current fuel injection duration are respectively determined.
  • Secondary target injection duration for ports including:
  • the target fuel injection duration is greater than the first fuel injection duration, then determine the first target fuel injection duration of the first fuel injection port as the first fuel injection duration, and the second fuel injection port The second target fuel injection duration is the difference between the target fuel injection duration and the first fuel injection duration;
  • the target fuel injection duration is less than or equal to the first fuel injection duration, then determine the first target fuel injection duration of the first fuel injection port as the current fuel injection duration.
  • the fuel injection method of the plume combustion chamber also includes:
  • the first fuel injection port performs fuel injection operation according to the first target fuel injection duration
  • the second fuel injection port performs fuel injection operation according to the second target fuel injection duration
  • a plume combustion chamber is provided, and the plume combustion chamber is used for performing the fuel injection method of the plume combustion chamber described in any embodiment of the present application;
  • the inner wall of the plume flow combustion chamber includes a central boss table top at the center, and an arc-shaped surface connected to the periphery of the central boss table top;
  • the inner wall of the plume combustion chamber to the throat position of the plume combustion chamber, the second oil jet sprayed from the second fuel injection port of the injector is directed towards the throat position, and the first oil jet colliding with the second oil beam at the throat position.
  • the first fuel injection port includes a plurality of first fuel injection holes
  • the second fuel injection port includes a plurality of second fuel injection holes
  • the first fuel injection hole and the second fuel injection hole The holes are the same.
  • the included angle between the busbars of the central boss table top is ⁇ ;
  • the two symmetrical first fuel injection holes of the first fuel injection port form the injector spray cone angle of the first fuel injector, and the spray cone angle of the fuel injector is greater than the included angle of the busbar alpha.
  • a vehicle which includes the plume combustion chamber described in any embodiment of the present application.
  • a computer-readable storage medium stores computer instructions, and the computer instructions are used to enable a processor to implement any of the embodiments described in the present application when executed.
  • the fuel injection method of the plume combustor is provided, the computer-readable storage medium stores computer instructions, and the computer instructions are used to enable a processor to implement any of the embodiments described in the present application when executed.
  • FIG. 1A is a flowchart of a fuel injection method for a plume combustion chamber according to Embodiment 1 of the present application;
  • Fig. 1B is a schematic diagram of a pair of main injection fuel injection rules provided in Embodiment 1 of the present application;
  • Fig. 1C is a schematic diagram of another dual main injection fuel injection schedule provided in Embodiment 1 of the present application.
  • Fig. 2 is a flow chart of a fuel injection method for a plume combustion chamber according to Embodiment 2 of the present application;
  • Fig. 3 is a schematic axial cross-sectional view of a plume combustion chamber provided according to Embodiment 3 of the present application;
  • Fig. 4 is a schematic diagram of a fuel injection direction of a plume combustion chamber according to Embodiment 3 of the present application.
  • Figure 1A is a flow chart of a fuel injection method for a plume combustion chamber provided by Embodiment 1 of the present application.
  • This embodiment can be applied to judging single and double main injection switching fuel injection according to the fuel injection duration to ensure sufficient fuel atomization situation
  • the fuel injection method of the plume combustion chamber is applied to the plume combustion chamber described in any embodiment of the present application, the axial cross-sectional profile of the plume combustion chamber is ⁇ -shaped, and the plume combustion chamber cooperates with A fuel injector with double-layer injection holes is used, the fuel injector has a first fuel injection port and a second fuel injection port, and the plume combustion chamber can be configured in a diesel vehicle.
  • the fuel injection method of the plume combustion chamber includes:
  • the target fuel injection duration is the sum of the fuel injection duration corresponding to the first fuel injection port and the second fuel injection port to ensure sufficient fuel atomization, that is, the target fuel injection duration is the fuel injection duration of the first fuel injection port and the sum of the injection duration of the second injection port.
  • the fuel injection duration is the range of rotation angles that the crankshaft of the injector rotates during fuel injection.
  • the fuel injection duration of the fuel injector is 25°CA, which means that the crankshaft of the fuel injector rotates through 25°CA, if the first injection of the injector is -5°CA before top dead center and ends at 5°C after top dead center, the second injection of the fuel injector is at 8°C after top dead center A starts fuel injection and ends at 23°CA after top dead center, then the fuel injection duration of the injector is the sum of the two fuel injection durations, which is 25°CA.
  • the rail pressure, cycle fuel injection volume and injector flow of the engine are obtained, and based on the Bernoulli equation according to the rail pressure, the The cycle fuel injection quantity and the fuel injector flow rate determine the target fuel injection duration of the plume combustion chamber.
  • calculation method of the fuel injection duration through the Bernoulli equation can adopt an existing calculation method, which is not limited in this embodiment.
  • the first fuel injection port and the second fuel injection port spray at a certain angle.
  • the current fuel injection starting point is that the first fuel injection port sprays near the top dead center
  • the oil starting point is that the second fuel injection port injects after the top dead center.
  • the piston moves in the cylinder, and the top of the piston reaches the highest point, which is called the top dead center. Since the piston is reciprocating up and down, the crankshaft is rotating (one circle is 360 degrees, generally speaking, how many degrees before/after the top dead center to start the oil injection, which refers to the angle that the crankshaft turns when the oil is injected), through The connecting rod converts the rotary motion of the crankshaft into the reciprocating motion of the piston, and the fuel injector is fixed on the cylinder head.
  • Fig. 1B is a schematic diagram of the dual main injection fuel injection rule provided by Embodiment 1 of the present application.
  • the first fuel injection port is injected near the top dead center, that is, the current fuel injection starting point inj1
  • the second fuel injection port Injection after top dead center that is, the injection start point inj2 of the second fuel injection port
  • the fuel injection duration corresponding to the first fuel injection port and the fuel injection duration corresponding to the second fuel injection port are MI1 and MI2.
  • the fuel injection duration of the plume combustion chamber is the sum of the fuel injection duration MI1 corresponding to the first fuel injection port and the fuel injection duration MI2 corresponding to the second fuel injection port.
  • the three-dimensional cylinder The internal simulation calculation is used to obtain the first fuel injection start point and the first fuel injection end point of the first fuel injection port.
  • S120 Determine the first fuel injection duration of the first fuel injection port according to the first fuel injection start point and the first fuel injection end point, and determine the first fuel injection duration according to the current fuel injection start point and the current fuel injection The oil end point determines the current injection duration of the first injection port.
  • Fig. 1C is a schematic diagram of another dual main injection fuel injection rule provided by Embodiment 1 of the present application.
  • the first fuel injection start point ⁇ 1 and the first The fuel injection end point ⁇ 2 the first fuel injection starting point is the earliest fuel injection starting point where the first oil jet from the first fuel injection port can collide with the second oil jet from the second fuel injection port
  • the first fuel injection The fuel injection end point is the latest fuel injection end point at which the first oil beam sprayed out of the first fuel injection port can collide with the second oil beam sprayed out of the second fuel injection port.
  • the injection start point inj2 of the second fuel injection port is the fuel injection advance angle ⁇ 3 of the second fuel injection port.
  • the current fuel injection start point inj1 is not earlier than the first fuel injection start point ⁇ 1, the current fuel injection end point is not later than the first fuel injection end point ⁇ 2, and the corresponding second fuel injection port is at the
  • the first fuel injection duration of the first fuel injection port is first injection duration It is equal to the rotation angle interval of the crankshaft between the first fuel injection end point ⁇ 2 and the first fuel injection start point ⁇ 1, that is, the first fuel injection duration In order to start injection from the first fuel injection start point ⁇ 1, the injection ends at the first fuel injection end point ⁇ 2.
  • the current fuel injection duration of the first fuel injection port is determined according to the current fuel injection start point and the current fuel injection end point, and the current fuel injection duration is the actual first fuel injection port at The range of rotation angles that the crankshaft rotates during fuel injection. It should be noted that the current fuel injection duration is when the plume combustion chamber only uses a single main injection, and only the first fuel injection port is used.
  • the target fuel injection duration is greater than the first fuel injection duration, open the first fuel injection port and the second fuel injection port at the same time, and determine the first target fuel injection of the first fuel injection port.
  • the oil duration is the first fuel injection duration
  • the second target fuel injection duration of the second fuel injection port is the difference between the target fuel injection duration and the first fuel injection duration;
  • the target fuel injection duration is less than or equal to the first fuel injection duration, then open the first fuel injection port, close the second fuel injection port, and determine the first target fuel injection duration of the first fuel injection port The period is the current fuel injection duration.
  • the first fuel injection port performs the fuel injection operation according to the first target fuel injection duration.
  • a target fuel injection duration is the first fuel injection duration
  • the second fuel injection port executes the fuel injection operation according to the second target fuel injection duration, at this time, the second target fuel injection duration is the target fuel injection duration MI-the first fuel injection duration
  • the first target fuel injection duration is the current fuel injection duration MI1.
  • the target fuel injection duration of the plume combustion chamber, the first fuel injection start point of the first fuel injection port, the first fuel injection end point, the current fuel injection start point and the current fuel injection start point of the first fuel injection port are obtained.
  • FIG. 2 is a flow chart of a fuel injection method for a plume combustion chamber provided in Embodiment 2 of the present application. This embodiment provides a preferred embodiment on the basis of the foregoing embodiments. As shown in Figure 2, the fuel injection method of the plume combustion chamber includes:
  • the rail pressure, cycle fuel injection volume and injector flow of the engine are obtained, and based on the Bernoulli equation according to the rail pressure, the The cycle fuel injection quantity and the fuel injector flow rate determine the target fuel injection duration of the plume combustion chamber.
  • the current fuel injection start point is not earlier than the first fuel injection start point, and the current fuel injection end point is not later than the first fuel injection end point.
  • S230 Determine the first fuel injection duration of the first fuel injection port according to the first fuel injection start point and the first fuel injection end point, and determine the first fuel injection duration according to the current fuel injection start point and the current fuel injection The oil end point determines the current injection duration of the first injection port.
  • step S240 judging whether the target fuel injection duration is less than or equal to the first fuel injection duration, if yes, execute step S250 , if not, execute step S270 .
  • the plume combustion chamber is sufficient to ensure the atomization and mixing of the oil jets. Therefore, a single fuel injection is used at this time, that is, only the first Just a fuel injection port.
  • step S260 Determine that the first target fuel injection duration of the first fuel injection port is the current fuel injection duration, and execute step S290.
  • step S270 Simultaneously open the first fuel injection port and the second fuel injection port, and execute step S280.
  • the plume combustion chamber cannot guarantee the atomized mixing of the oil jets, Then open the first fuel injection port and the second fuel injection port simultaneously.
  • step S280 Determine that the first target fuel injection duration of the first fuel injection port is the first fuel injection duration, and the second target fuel injection duration of the second fuel injection port is the target fuel injection duration and For the difference of the first fuel injection duration, execute step S290.
  • the first fuel injection port performs the fuel injection operation according to the first target fuel injection duration.
  • the first target fuel injection lasts Duration of the first fuel injection
  • the second fuel injection port executes the fuel injection operation according to the second target fuel injection duration, at this time, the second target fuel injection duration is the target fuel injection duration MI-the first fuel injection duration
  • the first target fuel injection duration is the current fuel injection duration MI1.
  • Fig. 3 provides a schematic axial cross-sectional view of a plume combustion chamber 100 in Embodiment 3 of the present application
  • Fig. 4 provides a schematic diagram of a fuel injection direction of a plume combustion chamber 100 in Embodiment 3 of the present application.
  • This embodiment can It is suitable for the case of promoting atomized combustion of fuel oil by changing the propagating direction of the oil beam, as shown in Figure 3 and Figure 4, the axial cross-sectional profile of the plume combustion chamber 100 is ⁇ -shaped, and the plume combustion chamber 100 Used in conjunction with a fuel injector, the fuel injector has a first fuel injection port and a second fuel injection port, the inner wall of the plume flow combustion chamber 100 includes a central boss platform 300 in the center, and a The arc-shaped surface around the table top 300; the first oil beam ejected from the first fuel injection port is along the inner wall of the plume combustion chamber 100 to the throat position of the plume combustion chamber 100, and the second The second oil beam ejected from the oil injection port is directed to the throat position, and the first oil beam and the second oil beam collide at the throat position.
  • the central boss surface 300 includes a circular surface 310 at the center and a conical surface 320 connected around the circular surface 310 , and the arc surface is connected with the conical surface 320 .
  • the circular surface 310 can be omitted, then the central area of the plume combustion chamber 100 is in the shape of a cone with a pointed end, and the pointed end can be replaced by a round head, which is not made in this embodiment. any restrictions.
  • the first oil beam sprayed out by the first oil injection port travels along the conical surface 320, spreads in a fan shape and atomizes into oil mist, and hits the arc surface to form an upward plume flow telescopically, so as to utilize the plume flow
  • the air outside the combustion chamber 100 is combusted.
  • the second oil beam ejected from the second fuel injection port faces the throat position and collides with the first oil beam at the throat position, which effectively ensures the atomization and mixing of the oil beams, accelerates the combustion speed in the cylinder, and reduces fuel consumption.
  • the fuel injector adopts a multi-hole fuel injector, then the first fuel injection port includes a plurality of first fuel injection holes, and the second fuel injection port includes a plurality of second fuel injection holes, And the first oil injection hole is the same as the second oil injection hole.
  • the injection holes of the injector are distributed in a 360-degree circumferential direction, and the angle between the oil jets sprayed out by two symmetrical injection holes is called the spray cone of the injector.
  • angle in this embodiment, the two symmetrical first fuel injection holes of the first fuel injection port form the injector spray cone angle of the first fuel injection port,
  • the included angle of the generatrix of the central boss table surface 300 is ⁇ , and the spray cone angle of the injector is greater than the included angle ⁇ of the generatrix, so that the first oil beam faces The busbar injection of the central boss table 300 then enters the plume combustion chamber 100 .
  • the opening diameter of the plume combustion chamber 100 is d
  • the depth of the plume combustion chamber 100 is h
  • the opening diameter d and the depth is 25%-30%
  • the cylinder diameter of the cylinder where the plume combustion chamber 100 is located is D, and the ratio of the opening diameter d to the cylinder diameter D is 75%-85%.
  • the shape of the plume combustion chamber 100 provided by this embodiment is formed on the piston 200 , such as the body of the piston 200 shown in FIG.
  • Embodiment 4 of the present application provides a vehicle, the vehicle includes the plume combustion chamber provided in any embodiment of the present application, has the corresponding functions and beneficial effects of the plume combustion chamber, and the plume combustion chamber is used to perform any A fuel injection method for a plume combustion chamber described in an embodiment.
  • the combustion chamber of the diesel engine is designed as the plume flow combustion chamber of the embodiment of the present application, and the first oil sprayed by the first fuel injection port is controlled through the plume flow combustion chamber whose axial cross-sectional profile is ⁇ -shaped.
  • the oil jet follows the inner wall of the plume combustion chamber to the throat position of the plume combustion chamber, the second oil jet ejected from the second fuel injection port faces the throat position, and the first oil jet and the second oil jet occur at the throat position hit. It solves the problem of insufficient combustion of fuel in the combustion chamber, achieves the use of two kinds of oil beam impact to promote the atomization of fuel injection in the combustion chamber, accelerates the combustion speed in the cylinder, and reduces fuel consumption.
  • the plume combustion chamber fuel injection method may be implemented as a computer program tangibly embodied on a computer readable storage medium.
  • Various implementations of the systems and techniques described above herein can be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips Implemented in a system of systems (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof.
  • programmable processor can be special-purpose or general-purpose programmable processor, can receive data and instruction from storage system, at least one input device, and at least one output device, and transmit data and instruction to this storage system, this at least one input device, and this at least one output device an output device.
  • Computer programs for implementing the methods of the present application may be written in any combination of one or more programming languages. These computer programs can be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing apparatus, so that the computer program causes the functions/operations specified in the flowcharts and/or block diagrams to be implemented when executed by the processor.
  • a computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a computer readable storage medium may be a tangible medium that may contain or store a computer program for use by or in conjunction with an instruction execution system, apparatus or device.
  • a computer readable storage medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing.
  • a computer readable storage medium may be a machine readable signal medium.
  • machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM compact disk read only memory
  • magnetic storage or any suitable combination of the foregoing.
  • the systems and techniques described herein can be implemented on an electronic device having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display)) for displaying information to the user. monitor); and a keyboard and pointing device (eg, a mouse or a trackball) through which the user can provide input to the electronic device.
  • a display device e.g., a CRT (cathode ray tube) or LCD (liquid crystal display)
  • keyboard and pointing device eg, a mouse or a trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input or, tactile input) to receive input from the user.
  • the systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: local area networks (LANs), wide area networks (WANs), blockchain networks, and the Internet.
  • a computing system can include clients and servers. Clients and servers are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • the server can be a cloud server, also known as a cloud computing server or a cloud host. It is a host product in the cloud computing service system to solve the problems of difficult management and weak business expansion in traditional physical hosts and VPS services. defect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

一种卷流燃烧室的喷油方法,包括:通过获取卷流燃烧室的目标喷油持续期、第一喷油口的第一喷油起始点、第一喷油结束点、当前喷油起始点和当前喷油结束点;确定第一喷油口的第一喷油持续期,并确定第一喷油口的当前喷油持续期;根据目标喷油持续期、第一喷油持续期和当前喷油持续期分别确定第一喷油口的第一目标喷油持续期和第二喷油口的第二目标喷油持续期。还公开了包含上述方法的卷流燃烧室、车辆及存储介质。解决了现有燃烧室形状只针对一次主喷设计,不能满足两次主喷的要求;且现有燃烧系统没有利用两种油束的撞击促进燃油的雾化燃烧的方案,根据喷油持续期判断单双主喷的切换,从而加快缸内燃烧速度,改善柴油机燃油耗。

Description

卷流燃烧室的喷油方法、卷流燃烧室、车辆及存储介质
本申请要求于2022年02月25日提交中国专利局、申请号为202210174142.4、发明名称为“一种卷流燃烧室的喷油方法、卷流燃烧室、车辆及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及柴油发动机燃烧系统技术领域,例如涉及一种卷流燃烧室的喷油方法、卷流燃烧室、车辆及介质。
背景技术
随着燃油价格的不断上涨,在车用动力系统的竞争中,人们开始越来越多地关注发动机节能降耗问题。目前,柴油机广泛应用于汽车及非道路产品中,而且在相当长的一段时间内还将继续发挥作用。
而现有的柴油机电控系统越来越多被采用,喷油器雾化质量得到明显改善,但是现有柴油机燃烧室与喷射压力不能匹配,研究发现,合理的喷雾撞击能够改善喷雾的空间分布和雾化效果,提高空气利用率和混合气均匀度。因此,如何实际利用加强雾化来降低燃油机油耗,是现在需要持续解决的问题。
发明内容
本申请提供了一种卷流燃烧室的喷油方法、卷流燃烧室、车辆及介质,能够处理燃油在燃烧室内燃烧不充分的情况。
根据本申请的一方面,提供了一种卷流燃烧室的喷油方法,所述卷流燃烧室的轴向截面轮廓呈ω字型,所述卷流燃烧室配合喷油器使用,所述喷油器具有第一喷油口和第二喷油口,所述卷流燃烧室的喷油方法包括:
获取所述卷流燃烧室的目标喷油持续期、第一喷油口的第一喷油起始点、第一喷油结束点、当前喷油起始点和当前喷油结束点;
根据所述第一喷油起始点和所述第一喷油结束点确定所述第一喷油口的第一喷油持续期,并根据所述当前喷油起始点和所述当前喷油结束点确定所述第一喷油口的当前喷油持续期;
根据所述目标喷油持续期、所述第一喷油持续期和所述当前喷油持续期分别确定所述第一喷油口的第一目标喷油持续期和第二喷油口的第二目标喷油持续期。
可选的,获取所述卷流燃烧室的目标喷油持续期,包括:
在发动机处于当前工况点下,获取所述发动机的轨压、循环喷油量以及喷油器流量,并基于伯努利方程根据所述轨压、所述循环喷油量以及所述喷油器流量确定所述卷流燃烧室的目标喷油持续期。
可选的,所述当前喷油起始点不早于所述第一喷油起始点,所述当前喷油结束点不晚于所述第一喷油结束点。
可选的,根据所述目标喷油持续期、所述第一喷油持续期和所述当前喷油持续期分别确定所述第一喷油口的第一目标喷油持续期和第二喷油口的第二目标喷油持续期,包括:
若所述目标喷油持续期大于所述第一喷油持续期,则确定所述第一喷油口的第一目标喷油持续期为所述第一喷油持续期,第二喷油口的第二目标喷油持续期为所述目标喷油持续期和所述第一喷油持续期的差值;
若所述目标喷油持续期小于等于所述第一喷油持续期,则确定所述第一喷油口的第一目标喷油持续期为所述当前喷油持续期。
可选的,所述卷流燃烧室的喷油方法还包括:
所述第一喷油口根据所述第一目标喷油持续期执行喷油操作,所述第二喷油口根据所述第二目标喷油持续期执行喷油操作。
根据本申请的另一方面,提供了一种卷流燃烧室,所述卷流燃烧室用于执行本申请任一实施例所述的卷流燃烧室的喷油方法;
所述卷流燃烧室的内壁包括位于中心的中心凸台台面,以及连接于所述中心凸台台面四周的弧形面;喷油器的第一喷油口喷出的第一油束沿所述卷流燃烧室的内壁至所述卷流燃烧室的喉口位置,所述喷油器的第二喷油口喷出的第二油束朝向所述喉口位置,所述第一油束与所述第二油束在 所述喉口位置发生撞击。
可选的,所述第一喷油口包括多个第一喷油孔,所述第二喷油口包括多个第二喷油孔,所述第一喷油孔和所述第二喷油孔相同。
可选的,所述中心凸台台面的母线夹角为α;
所述第一喷油口的相对称的两个所述第一喷油孔形成所述第一喷油口的喷油器喷雾锥角,所述喷油器喷雾锥角大于所述母线夹角α。
根据本申请的另一方面,提供了一种车辆,该车辆包括本申请任一实施例所述的卷流燃烧室。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本申请任一实施例所述的卷流燃烧室的喷油方法。
附图说明
图1A是根据本申请实施例一提供了一种卷流燃烧室的喷油方法的流程图;
图1B为本申请实施例一提供的一双主喷喷油规律的示意图;
图1C为本申请实施例一提供的另一双主喷喷油规律的示意图;
图2是根据本申请实施例二提供的一种卷流燃烧室的喷油方法的流程图;
图3是根据本申请实施例三提供了一种卷流燃烧室的轴向截面示意图;
图4是根据本申请实施例三提供了一种卷流燃烧室的燃油喷射方向示意图。
具体实施方式
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描 述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
图1A为本申请实施例一提供了一种卷流燃烧室的喷油方法的流程图,本实施例可适用于根据喷油持续期判断单双主喷切换喷油以保证燃油雾化足够的情况,该卷流燃烧室的喷油方法应用于本申请任一实施例所述的卷流燃烧室,所述卷流燃烧室的轴向截面轮廓呈ω字型,所述卷流燃烧室配合具有双层喷孔的喷油器使用,所述喷油器具有第一喷油口和第二喷油口,该卷流燃烧室可配置于柴油车辆中。如图1A所示,该卷流燃烧室的喷油方法包括:
S110、获取所述卷流燃烧室的目标喷油持续期、第一喷油口的第一喷油起始点、第一喷油结束点、当前喷油起始点和当前喷油结束点。
其中,目标喷油持续期为保证足够燃油雾化的第一喷油口和第二喷油口对应的喷油持续期之和,即目标喷油持续期为第一喷油口的喷油持续期和第二喷油口的喷油持续期之和。
示例性的,喷油持续期是喷油器在喷油期间曲轴转过的转角区间,例如,喷油器的喷油持续期为25℃A,表示喷油器在喷油过程中曲轴转过了25℃A,若喷油器的第一次喷射在上止点前-5℃A,在上止点后5℃A结束,喷油器的第二次喷油在上止点后8℃A开始喷油,在上止点后23℃A结束,则喷油器的喷油持续期为两次喷油持续期之和,即为25℃A。
在本申请提供的一实施例中,在发动机处于当前工况点下,获取所述发动机的轨压、循环喷油量以及喷油器流量,并基于伯努利方程根据所述轨压、所述循环喷油量以及所述喷油器流量确定所述卷流燃烧室的目标喷油持续期。
可以理解的是,喷油持续期通过伯努利方程的计算方法可以采用现有计算方法,本实施例对此不作任何限制。
其中,第一喷油口和第二喷油口间隔一定角度进行喷射,在本实施例 中,当前喷油起始点是第一喷油口在上止点附近喷射,第二喷油口的喷油起始点是第二喷油口在上止点后喷射。
活塞在气缸内运动,其活塞顶部达到最高点处的位置,称为上止点。由于活塞在做上下往复运动,曲轴在做旋转运动(一圈为360度,一般所说的上止点前/后多少度开始喷油,就是指喷油时,曲轴转过的角度),通过连杆将曲轴的旋转运动转换为活塞的往复运动,喷油器在缸盖上是固定不动的。
图1B为本申请实施例一提供的双主喷喷油规律的示意图,如图1B所示,第一喷油口在上止点附近喷射,即当前喷油起始点inj1,第二喷油口在上止点后喷射,即第二喷油口的喷油起始点inj2,相应的,第一喷油口对应的喷油持续期和第二喷油口对应的喷油持续期分别为MI1和MI2。
进一步的,可知,卷流燃烧室的喷油持续期为第一喷油口对应的喷油持续期MI1和第二喷油口对应的喷油持续期MI2之和。
考虑对喷射过程的影响因素包括燃烧室形状、尺寸及喷油器喷孔位置及喷雾锥角的角度,通过对燃烧室形状、尺寸及喷油器喷孔位置及喷雾锥角的角度进行三维缸内仿真计算,获取第一喷油口的第一喷油起始点和第一喷油结束点。
S120、根据所述第一喷油起始点和所述第一喷油结束点确定所述第一喷油口的第一喷油持续期,并根据所述当前喷油起始点和所述当前喷油结束点确定所述第一喷油口的当前喷油持续期。
在上述基础上,图1C为本申请实施例一提供的另一双主喷喷油规律的示意图,如图1C所示,确定所述第一喷油口的第一喷油起始点φ1和第一喷油结束点φ2,第一喷油起始点为第一喷油口喷出的第一油束可以与第二喷油口喷出的第二油束发生撞击的最早喷油起始点,第一喷油结束点为第一喷油口喷出的第一油束可以与第二喷油口喷出的第二油束发生撞击的最晚喷油结束点。
可以理解的是,若本实施例采取两次主喷,则继续结合图1C所示,此时第二喷油口的喷油起始点inj2即为第二喷油口的喷油提前角φ3。
具体的,当前喷油起始点inj1不早于第一喷油起始点φ1,当前喷油结束点不晚于第一喷油结束点φ2,对应的第二喷油口在第二喷油口的喷油起 始点inj2=φ3开始喷射,则可以实现第一油束与第二油束的撞击,保证油束足够混合雾化,加快缸内燃烧速度,降低油耗。
进一步的,在上述基础上,第一喷油口的第一喷油持续期为
Figure PCTCN2023070957-appb-000001
第一喷油持续期
Figure PCTCN2023070957-appb-000002
等于第一喷油结束点φ2与第一喷油起始点φ1之间的曲轴转过的转角区间,即第一喷油持续期
Figure PCTCN2023070957-appb-000003
为从第一喷油起始点φ1开始喷射,在第一喷油结束点φ2结束喷射。
综上所述,根据所述当前喷油起始点和所述当前喷油结束点确定所述第一喷油口的当前喷油持续期,当前喷油持续期即为实际第一喷油口在喷油期间曲轴转过的转角区间,需要说明的是,当前喷油持续期为卷流燃烧室仅采用单次主喷时,只开启第一喷油口使用的情况。
S130、根据所述目标喷油持续期、所述第一喷油持续期和所述当前喷油持续期分别确定所述第一喷油口的第一目标喷油持续期和第二喷油口的第二目标喷油持续期。
具体的,若所述目标喷油持续期大于所述第一喷油持续期,则同时开启第一喷油口和第二喷油口,并确定所述第一喷油口的第一目标喷油持续期为所述第一喷油持续期,第二喷油口的第二目标喷油持续期为所述目标喷油持续期和所述第一喷油持续期的差值;
若所述目标喷油持续期小于等于所述第一喷油持续期,则开启第一喷油口,关闭第二喷油口,并确定所述第一喷油口的第一目标喷油持续期为所述当前喷油持续期。
在上述实施例的基础上,在同时开启第一喷油口和第二喷油口之时,所述第一喷油口根据所述第一目标喷油持续期执行喷油操作,此时第一目标喷油持续期为第一喷油持续期
Figure PCTCN2023070957-appb-000004
所述第二喷油口根据所述第二目标喷油持续期执行喷油操作,此时第二目标喷油持续期为目标喷油持续期MI-第一喷油持续期
Figure PCTCN2023070957-appb-000005
在开启第一喷油口,关闭第二喷油口之时,此时只采用第一喷油口进行喷射,第一喷油口根据所述第一目标喷油持续期执行喷油操作,此时第一目标喷油持续期为当前喷油持续期MI1。
本申请实施例的技术方案,获取所述卷流燃烧室的目标喷油持续期、第一喷油口的第一喷油起始点、第一喷油结束点、当前喷油起始点和当前 喷油结束点;根据所述第一喷油起始点和所述第一喷油结束点确定所述第一喷油口的第一喷油持续期,并根据所述当前喷油起始点和所述当前喷油结束点确定所述第一喷油口的当前喷油持续期;根据所述目标喷油持续期、所述第一喷油持续期和所述当前喷油持续期分别确定所述第一喷油口的第一目标喷油持续期和第二喷油口的第二目标喷油持续期。解决了现有燃烧室形状只针对一次主喷设计,不能满足两次主喷的要求,且现有燃烧系统也没有利用两种油束的撞击促进燃油的雾化燃烧的方案,根据喷油持续期判断单双主喷的切换,从而加快缸内燃烧速度,改善柴油机燃油耗。
实施例二
图2为本申请实施例二提供的一种卷流燃烧室的喷油方法的流程图,本实施例在上述实施例的基础上,提供一种优选实施例。如图2所示,该卷流燃烧室的喷油方法包括:
S210、开始。
在本步骤中为启动发动机,对发动机进行打火操作。
S220、获取所述卷流燃烧室的目标喷油持续期、第一喷油口的第一喷油起始点、第一喷油结束点、当前喷油起始点和当前喷油结束点。
在本申请提供的一实施例中,在发动机处于当前工况点下,获取所述发动机的轨压、循环喷油量以及喷油器流量,并基于伯努利方程根据所述轨压、所述循环喷油量以及所述喷油器流量确定所述卷流燃烧室的目标喷油持续期。
所述当前喷油起始点不早于所述第一喷油起始点,所述当前喷油结束点不晚于所述第一喷油结束点。
S230、根据所述第一喷油起始点和所述第一喷油结束点确定所述第一喷油口的第一喷油持续期,并根据所述当前喷油起始点和所述当前喷油结束点确定所述第一喷油口的当前喷油持续期。
S240、判断所述目标喷油持续期是否小于等于所述第一喷油持续期,若是,则执行步骤S250,若否,则执行步骤S270。
S250、开启第一喷油口,关闭第二喷油口,执行步骤S260。
具体的,在目标喷油持续期小于等于所述第一喷油持续期的工况,卷流燃烧室足够保证油束的雾化混合,因此,此时采用单次喷油,即只开启 第一喷油口即可。
S260、确定所述第一喷油口的第一目标喷油持续期为所述当前喷油持续期,执行步骤S290。
S270、同时开启第一喷油口和第二喷油口,执行步骤S280。
具体的,在喷油器喷油持续期较长的工况,即在目标喷油持续期大于所述第一喷油持续期的工况,卷流燃烧室无法保证油束的雾化混合,则同时开启第一喷油口和第二喷油口。
S280、确定所述第一喷油口的第一目标喷油持续期为所述第一喷油持续期,第二喷油口的第二目标喷油持续期为所述目标喷油持续期和所述第一喷油持续期的差值,执行步骤S290。
S290、执行喷油操作。
具体的,在同时开启第一喷油口和第二喷油口之时,所述第一喷油口根据所述第一目标喷油持续期执行喷油操作,此时第一目标喷油持续期为第一喷油持续期
Figure PCTCN2023070957-appb-000006
所述第二喷油口根据所述第二目标喷油持续期执行喷油操作,此时第二目标喷油持续期为目标喷油持续期MI-第一喷油持续期
Figure PCTCN2023070957-appb-000007
在开启第一喷油口,关闭第二喷油口之时,此时只采用第一喷油口进行喷射,第一喷油口根据所述当前目标喷油持续期执行喷油操作,此时第一目标喷油持续期为当前喷油持续期MI1。
实施例三
图3为本申请实施例三提供了一种卷流燃烧室100的轴向截面示意图,图4为本申请实施例三提供了一种卷流燃烧室100的燃油喷射方向示意图,本实施例可适用于通过改变油束的传播方向促进燃油的雾化燃烧的情况,如图3和图4所示,该卷流燃烧室100的轴向截面轮廓呈ω字型,所述卷流燃烧室100配合喷油器使用,所述喷油器具有第一喷油口和第二喷油口,所述卷流燃烧室100的内壁包括位于中心的中心凸台台面300,以及连接于所述中心凸台台面300四周的弧形面;所述第一喷油口喷出的第一油束沿所述卷流燃烧室100的内壁至所述卷流燃烧室100的喉口位置,所述第二喷油口喷出的第二油束朝向所述喉口位置,所述第一油束与所述第二油束在所述喉口位置发生撞击。
可选的,中心凸台台面300包括位于中心的圆形面310以及连接于圆形面310四周的圆锥面320,弧形面与圆锥面320连接。可以理解的是,在其他实施例中,圆形面310可以取消,则卷流燃烧室100的中心区域呈带尖头的圆锥形状,且尖头可替代为圆头,本实施例对此不作任何限制。
继续参见图4,第一喷油口喷出的第一油束沿圆锥面320,到达呈扇形扩散并雾化为油雾,并撞击弧形面形成向上的卷流远动,以利用卷流燃烧室100外侧的空气燃烧。第二喷油口喷出的第二油束朝向喉口位置,与第一油束在喉口位置发生撞击,有效保证油束的雾化混合,加快缸内燃烧速度,降低油耗。
在上述实施例的基础上,喷油器采用多孔喷油器,则所述第一喷油口包括多个第一喷油孔,所述第二喷油口包括多个第二喷油孔,且所述第一喷油孔和所述第二喷油孔相同。
可知的,自上往下看,喷油器的喷油孔是360度周向分布的,相对称的两个喷油孔喷出的油束之间的夹角称之为喷油器喷雾锥角,在本实施例中,所述第一喷油口的相对称的两个所述第一喷油孔形成所述第一喷油口的喷油器喷雾锥角,
继续参见图3,在上述实施例的基础上,所述中心凸台台面300的母线夹角为α,所述喷油器喷雾锥角大于所述母线夹角α,以使第一油束朝向中心凸台台面300的母线喷射,进而进入卷流燃烧室100。
进一步的,继续参见图3,在上述实施例的基础上,所述卷流燃烧室100的开口直径为d,所述卷流燃烧室100的深度为h,所述开口直径d与所述深度h的比值为25%-30%;
所述卷流燃烧室100所在气缸的气缸直径为D,所述开口直径d与所述气缸直径D的比值为75%-85%。
在上述实施例的基础上,本实施例提供的卷流燃烧室100形状是在活塞200上加工形成的,如图3所示中的活塞200本体,卷流燃烧室100围绕活塞200中心对称。
实施例四
本申请实施例四提供了一种车辆,该车辆包括本申请任一实施例提供的卷流燃烧室,具有卷流燃烧室相应功能和有益效果,所述卷流燃烧室用 于执行本申请任一实施例所述的卷流燃烧室的喷油方法。
本申请实施例提供的车辆上将柴油机燃烧室设计为本申请实施例的卷流燃烧室,通过轴向截面轮廓呈ω字型的卷流燃烧室,控制第一喷油口喷出的第一油束沿卷流燃烧室的内壁至卷流燃烧室的喉口位置,第二喷油口喷出的第二油束朝向喉口位置,第一油束与第二油束在喉口位置发生撞击。解决了燃油在燃烧室内燃烧不充分的问题,取得了利用两种油束撞击促进喷油在燃烧室内的雾化,加快了缸内燃烧速度,降低了油耗。
实施例五
在一些实施例中,卷流燃烧室的喷油方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质。本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本申请的方法的计算机程序可以采用一个或多个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和/或框图中所规定的功能/操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是 机器可读信号介质。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在电子设备上实施此处描述的系统和技术,该电子设备具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)、区块链网络和互联网。
计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与VPS服务中,存在的管理难度大,业务扩展性弱的缺陷。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果, 本文在此不进行限制。

Claims (10)

  1. 一种卷流燃烧室的喷油方法,所述卷流燃烧室的轴向截面轮廓呈ω字型,所述卷流燃烧室配合喷油器使用,所述喷油器具有第一喷油口和第二喷油口,所述方法包括:
    获取所述卷流燃烧室的目标喷油持续期、第一喷油口的第一喷油起始点、第一喷油结束点、当前喷油起始点和当前喷油结束点;
    根据所述第一喷油起始点和所述第一喷油结束点确定所述第一喷油口的第一喷油持续期,并根据所述当前喷油起始点和所述当前喷油结束点确定所述第一喷油口的当前喷油持续期;
    根据所述目标喷油持续期、所述第一喷油持续期和所述当前喷油持续期分别确定所述第一喷油口的第一目标喷油持续期和第二喷油口的第二目标喷油持续期。
  2. 根据权利要求1所述的卷流燃烧室的喷油方法,其中,获取所述卷流燃烧室的目标喷油持续期,包括:
    在发动机处于当前工况点下,获取所述发动机的轨压、循环喷油量以及喷油器流量,并基于伯努利方程根据所述轨压、所述循环喷油量以及所述喷油器流量确定所述卷流燃烧室的目标喷油持续期。
  3. 根据权利要求1所述的卷流燃烧室的喷油方法,其中,所述当前喷油起始点不早于所述第一喷油起始点,所述当前喷油结束点不晚于所述第一喷油结束点。
  4. 根据权利要求1所述的卷流燃烧室的喷油方法,其中,根据所述目标喷油持续期、所述第一喷油持续期和所述当前喷油持续期分别确定所述第一喷油口的第一目标喷油持续期和第二喷油口的第二目标喷油持续期,包括:
    若所述目标喷油持续期大于所述第一喷油持续期,则确定所述第一喷油口的第一目标喷油持续期为所述第一喷油持续期,第二喷油口的第二目标喷油持续期为所述目标喷油持续期和所述第一喷油持续期的差值;
    若所述目标喷油持续期小于等于所述第一喷油持续期,则确定所述第一喷油口的第一目标喷油持续期为所述当前喷油持续期。
  5. 根据权利要求1所述的卷流燃烧室的喷油方法,其中,所述卷流燃烧室的喷油方法还包括:
    所述第一喷油口根据所述第一目标喷油持续期执行喷油操作,所述第二喷油口根据所述第二目标喷油持续期执行喷油操作。
  6. 一种卷流燃烧室,设置为执行如权利要求1-5中任一项所述的卷流燃烧室的喷油方法;
    所述卷流燃烧室的内壁包括位于中心的中心凸台台面,以及连接于所述中心凸台台面四周的弧形面;喷油器的第一喷油口喷出的第一油束沿所述卷流燃烧室的内壁至所述卷流燃烧室的喉口位置,所述喷油器的第二喷油口喷出的第二油束朝向所述喉口位置,所述第一油束与所述第二油束在所述喉口位置发生撞击。
  7. 根据权利要求6所述的卷流燃烧室,其中,所述第一喷油口包括多个第一喷油孔,所述第二喷油口包括多个第二喷油孔,所述第一喷油孔和所述第二喷油孔相同。
  8. 根据权利要求6所述的卷流燃烧室,其中,所述中心凸台台面的母线夹角为α;
    所述第一喷油口的相对称的两个所述第一喷油孔形成所述第一喷油口的喷油器喷雾锥角,所述喷油器喷雾锥角大于所述母线夹角α。
  9. 一种车辆,包括如权利要求6-8中任一项所述的卷流燃烧室。
  10. 一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令用于使处理器执行时实现权利要求1-5中任一项所述的卷流燃烧室的喷油方法。
PCT/CN2023/070957 2022-02-25 2023-01-06 卷流燃烧室的喷油方法、卷流燃烧室、车辆及存储介质 WO2023160274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210174142.4 2022-02-25
CN202210174142.4A CN114233505B (zh) 2022-02-25 2022-02-25 卷流燃烧室的喷油方法、卷流燃烧室、车辆及存储介质

Publications (1)

Publication Number Publication Date
WO2023160274A1 true WO2023160274A1 (zh) 2023-08-31

Family

ID=80748135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070957 WO2023160274A1 (zh) 2022-02-25 2023-01-06 卷流燃烧室的喷油方法、卷流燃烧室、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN114233505B (zh)
WO (1) WO2023160274A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233505B (zh) * 2022-02-25 2022-05-20 潍柴动力股份有限公司 卷流燃烧室的喷油方法、卷流燃烧室、车辆及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276375A (ja) * 2001-03-21 2002-09-25 Isuzu Motors Ltd ディーゼルエンジンの燃焼システム
JP2002349267A (ja) * 2001-05-28 2002-12-04 Isuzu Motors Ltd ディーゼルエンジンの燃焼システム
CN111734522A (zh) * 2020-07-23 2020-10-02 南京工业大学 一种燃用正辛醇内燃机的燃烧室
CN112879146A (zh) * 2021-01-25 2021-06-01 华中科技大学 一种适用于高功率密度柴油机的主副喷油器系统
CN114233505A (zh) * 2022-02-25 2022-03-25 潍柴动力股份有限公司 卷流燃烧室的喷油方法、卷流燃烧室、车辆及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540915A (ja) * 2013-10-15 2016-12-28 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. ガスアシスト式流体微粒化インジェクタ
CN110145405A (zh) * 2019-04-23 2019-08-20 上海交通大学 多孔喷油嘴双喷射汽油稀燃发动机
JP7379966B2 (ja) * 2019-09-10 2023-11-15 マツダ株式会社 ディーゼルエンジンの制御装置
CN111520247B (zh) * 2020-03-25 2022-05-10 吉利汽车研究院(宁波)有限公司 一种基于喷油器的喷射脉宽确定空燃比的方法及系统
CN212479397U (zh) * 2020-07-23 2021-02-05 南京工业大学 一种燃用正辛醇内燃机的燃烧室
CN113123892B (zh) * 2021-06-17 2021-08-20 潍柴动力股份有限公司 一种燃烧系统的控制方法、燃烧系统及发动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276375A (ja) * 2001-03-21 2002-09-25 Isuzu Motors Ltd ディーゼルエンジンの燃焼システム
JP2002349267A (ja) * 2001-05-28 2002-12-04 Isuzu Motors Ltd ディーゼルエンジンの燃焼システム
CN111734522A (zh) * 2020-07-23 2020-10-02 南京工业大学 一种燃用正辛醇内燃机的燃烧室
CN112879146A (zh) * 2021-01-25 2021-06-01 华中科技大学 一种适用于高功率密度柴油机的主副喷油器系统
CN114233505A (zh) * 2022-02-25 2022-03-25 潍柴动力股份有限公司 卷流燃烧室的喷油方法、卷流燃烧室、车辆及存储介质

Also Published As

Publication number Publication date
CN114233505B (zh) 2022-05-20
CN114233505A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023160274A1 (zh) 卷流燃烧室的喷油方法、卷流燃烧室、车辆及存储介质
US5941207A (en) Direct injection spark ignition engine
RU116905U1 (ru) Поршень с неглубокой чашей и форсунка для бензинового двигателя с прямым впрыском (варианты)
CN106640338A (zh) 一种顶置气门二冲程缸内直喷汽油机燃烧室
US20110067671A1 (en) Non-soot emitting fuel combustion chamber
Tang et al. Experimental study on the effect of injector nozzle K factor on the spray characteristics in a constant volume chamber: Near nozzle spray initiation, the macroscopic and the droplet statistics
WO2022262275A1 (zh) 一种燃烧系统的控制方法、燃烧系统及发动机
Zheng et al. Numerical study of the effect of piston top contour on GDI engine performance under catalyst heating mode
CN112112725A (zh) 一种适用于高功率密度柴油机的燃烧室系统
CN105804856A (zh) 一种对置活塞二冲程缸内直喷汽油机燃烧室
JP2008157197A (ja) 筒内噴射式火花点火内燃機関
Jennings et al. Analysis of the injection process in direct injected natural gas engines: Part II—effects of injector and combustion chamber design
Li et al. Enhancement of stratified charge for DISI engines through split injection (Effect and its mechanism)
Liao et al. Effect of injection strategy on an air-assisted direct injection aviation kerosene two-stroke engine
CN114635814A (zh) 一种加强高强化柴油机油气混合的缩放喷管加速混合器
Kim et al. Effects of intake flow on the spray structure of a multi-hole injector in a DISI engine
Fan et al. Spray characteristics and wall-impingement process with different piston tops for the multi-hole injector of DISI gasoline engines
CN103362691B (zh) 分层稀燃喷雾-壁面复合引导lpg缸内直喷增压发动机的混合气形成方法
Kim et al. Effects of positive or negative dwell times of split injection on diesel spray development and mixture formation processes
JP3596351B2 (ja) 圧縮着火式内燃機関
JP5136255B2 (ja) 火花点火式直噴エンジン
US20240141823A1 (en) Spray guided stratification for fueling a passive pre-chamber
CN103590889B (zh) 一种用于直喷汽油机两段预混压燃的燃烧系统及燃烧方法
Tomoda et al. Numerical analysis of mixture formation of a direct injection gasoline engine
CN115370465B (zh) 共享喷油点火的汽油机射流预燃室、控制方法、系统及发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23758899

Country of ref document: EP

Kind code of ref document: A1