WO2023160231A1 - 芯式可控电抗器 - Google Patents
芯式可控电抗器 Download PDFInfo
- Publication number
- WO2023160231A1 WO2023160231A1 PCT/CN2022/143194 CN2022143194W WO2023160231A1 WO 2023160231 A1 WO2023160231 A1 WO 2023160231A1 CN 2022143194 W CN2022143194 W CN 2022143194W WO 2023160231 A1 WO2023160231 A1 WO 2023160231A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- winding
- phase
- iron core
- type controllable
- reactance
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/30—Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
- H01F27/306—Fastening or mounting coils or windings on core, casing or other support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/324—Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Definitions
- the application belongs to the technical field of transformers, in particular to core-type controllable reactors.
- Static Var Compensator (SVC for short) is the best method and way to solve the above problems.
- SVC is developed on the basis of mechanical switching capacitors and reactors, using large-capacity thyristors instead of mechanical switches. It can quickly change the reactive power it sends out, and has strong reactive power adjustment capabilities.
- the power system provides dynamic reactive power to compensate the system voltage to a reasonable level. By dynamically adjusting reactive power, SVC suppresses bus voltage fluctuations caused by impact load operation, which is conducive to transient voltage recovery and improves system voltage stability.
- SVC includes thyristor controlled reactor (Thyristor Controlled Reactor, referred to as TCR), magnetic valve type controllable reactor (Megnetic Controlled Reactor, referred to as MCR), among them, each phase of TCR adopts a pair of antiparallel thyristor valves and a linear Air-core reactors are connected in series; although TCR can provide dynamic reactive power compensation for power systems, reduce voltage fluctuations, stabilize system voltage levels, and solve problems such as charging power and reactive power transfer, but both ends of the TCR thyristor valve group are directly borne
- the system voltage, and the air-core reactor used has a large magnetic flux leakage, resulting in a large overall equipment footprint, and the traditional shunt compensation reactor has a large footprint.
- the purpose of this application is to provide a core-type controllable reactor, which solves the defect that the existing reactor has relatively large overall equipment.
- a core-type controllable reactor provided by this application includes phase A, phase B and phase C, and the iron core columns of each phase are wound with a first winding, a second winding and a third winding, wherein the second winding , the first winding and the third winding are sequentially sleeved on the iron core columns of each phase from the inside to the outside; and, there is an iron core insulation between the second winding and the iron core columns; the first winding and the second winding A first insulation is provided between them; a second insulation is provided between the first winding and the third winding.
- the first windings of each phase are sequentially connected from end to end to form a triangular structure.
- the tail end of the first winding on the A-phase iron core leg is connected to the first end of the first winding on the B-phase iron core leg; the tail end of the first winding on the B-phase iron core leg is connected to the C-phase The first end of the first winding on the iron core column is connected; the tail end of the first winding on the C-phase iron core column is connected to the first end of the first winding on the A-phase iron core column.
- the tail ends of the second windings of each phase are connected and led out to form a star structure with a neutral line.
- the tail end of the second winding on the A-phase iron core leg is connected to the tail end of the second winding on the B-phase iron core leg and the tail end of the second winding on the C-phase iron core leg and drawn out.
- the second winding is connected to a thyristor control gate.
- the tail ends of the third windings of each phase are connected and led out to form a star structure with a neutral line.
- the tail end of the third winding on the A-phase iron core leg is connected with the tail end of the third winding on the B-phase iron core leg and the third winding on the C-phase iron core leg and drawn out.
- the third winding is connected to a thyristor control gate.
- the core-type controllable reactor uses the method of increasing the size of the flux leakage channel to increase the distance between the first winding and the third winding on the basis of satisfying the insulation distance, thereby increasing the reactance value of the reactor, the first The distance between the winding and the second winding is the insulation distance, thereby increasing the reactance value of the reactor, which is recorded as reactance 1; the distance between the first winding and the third winding is the insulation distance, thereby increasing the reactance value of the reactor, denoted as Reactance 2; the second winding and the third winding are loosely coupled, so that the second winding is basically not affected by the third winding.
- the reactance percentages of reactance 1 and reactance 2 are both greater than 50%.
- the reactance and transformer are integrated to reduce the size of the reactor, and the reactance 1 and reactance 2 can be controlled separately, so that the output can be controlled by various control methods.
- FIG. 1 is a schematic diagram of a winding connection method in an embodiment of the present application.
- Fig. 2 is a voltage vector diagram in the embodiment of the present application.
- Fig. 3 is a schematic diagram of the winding structure in the embodiment of the present application.
- First winding 2.
- Second winding 3.
- Third winding 4.
- Iron core post 5.
- Iron core insulation 6.
- First insulation 7.
- a core-type controllable reactor provided by the present application includes phase A, phase B, phase C, a first winding 1, a second winding 2 and a third winding 3, wherein each A first winding 1 , a second winding 2 and a third winding 3 are wound on the iron core columns of each phase.
- the head and tail ends of the first winding 1 of phase A, phase B and phase C are sequentially connected to form a triangular structure; the tail ends of the second winding 2 of phase A, phase B and phase C are connected and lead out to form a star with a center line shaped structure; the tail ends of the third winding 3 of phase A, phase B and phase C are connected and lead out to form a star structure with a center line.
- the head end of the first winding 1 has the same name as the head end of the second winding 2 and the head end of the third winding 3 .
- the head and tail ends of the first winding 1 of each phase are connected to form a triangular structure, specifically:
- the tail end of the first winding on the A-phase iron core column is connected to the first end of the first winding on the B-phase iron core column, which is marked as end point B;
- the tail end of the first winding on the B-phase iron core column is connected to the first end of the first winding on the C-phase iron core column, which is recorded as end point C;
- the tail end of the first winding on the C-phase iron core leg is connected to the first end of the first winding on the A-phase iron core leg, which is marked as end point A, forming a triangular structure.
- Terminals A, B, and C are connected to the grid to be compensated.
- the first end of the second winding on the A-phase iron core column is marked as endpoint a1; the first end of the second winding on the B-phase iron core column is marked as endpoint b1; the first end of the second winding on the C-phase iron core column is marked as endpoint c1 .
- the tail end of the second winding on the A-phase iron core leg is connected with the tail end of the second winding on the B-phase iron core leg and the tail end of the second winding on the C-phase iron core leg, which is marked as the terminal n1.
- a1, b1, c1 and n1 are connected to the thyristor control gate.
- the first end of the third winding on the A-phase iron core leg is marked as endpoint a2; the first end of the third winding on the B-phase iron core leg is marked as end point b2; the first end of the third winding on the C-phase iron core leg is marked as end point c2 .
- the tail end of the third winding on the A-phase iron core leg is connected with the tail end of the third winding on the B-phase iron core leg and the tail end of the third winding on the C-phase iron core leg, which is marked as the end point n2.
- a2, b2, c2, and n2 are connected to the thyristor control gate.
- the distance between the first winding 1 and the second winding 2 depends on the insulation distance between them
- the distance between the first winding 1 and the third winding 3 depends on the reactance value between them, which is much larger than that between them insulation distance between them.
- This application uses the method of increasing the size of the flux leakage channel to increase the distance between the first winding 1 and the third winding 3 on the basis of satisfying the insulation distance, thereby increasing the reactance value of the reactor, the first winding 1 and the second winding 2
- the distance between them is an insulation distance, and its reactance value can meet the requirements of the second winding 2 to connect the capacitor;
- the second winding 2 and the third winding 3 are loosely coupled, so that the second winding 2 is basically not affected by the third winding 3 Influence;
- the first winding 1 is delta-connected, which can effectively reduce the harmonics generated by the second winding 2 and the third winding 3 and injected into the grid;
- the second winding and the third winding are loosely coupled, so that the second winding is basically not affected by the third winding.
- Reactance 1 and reactance 2 can be controlled separately.
- the reactance percentages of reactance 1 and reactance 2 are both greater than 50 %, not only effectively integrate the reactance and the transformer, reduce the volume of the reactor, but also the reactance 1 and reactance 2 can be controlled separately, so that the output can be controlled by a variety of control methods.
- the primary side of the TCT in this application can be directly hung on the high-voltage bus, and the design voltage of the secondary winding is 15% to 50% of the bus voltage, thereby reducing the voltage of the control system;
- the TCT of this application adopts the integrated structure of the transformer and the reactor, which effectively solves the problem that the overall equipment occupies a large area; at the same time, it is equivalent to the ordinary transformer in terms of maintenance, and basically does not need maintenance.
- the second winding and the third winding are loosely coupled, so that the second winding and the third winding will not affect each other.
- Reactance 1 and reactance 2 can be controlled separately, so that the output can be controlled by various control methods.
- reactance percentages of reactance 1 and reactance 2 are both greater than 50%, which not only effectively integrates the reactance and transformer, but also reduces the volume of the reactor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本申请提供的一种芯式可控电抗器,包括A相、B相和C相,各相的铁芯柱上均绕组有第一绕组、第二绕组和第三绕组,其中,第二绕组、第一绕组和第三绕组自内至外依次套装在各相的铁芯柱上;且,第二绕组和铁芯柱之间设置有铁芯绝缘;所述第一绕组和第二绕组之间设置有第一绝缘,它们之间形成有电抗;第一绕组和第三绕组之间设置有第二绝缘,它们之间形成有电抗;第二绕组或第三绕组分布在第一绕组两侧,因此两个电抗不会相互影响,且能够分别控制,作为电抗器时,两个电抗的电抗百分数均大于50%,不仅有效的把电抗和变压器集成于一体,减少电抗器的体积,两个电抗还能够分别控制,从而可以采用多种控制方式控制输出。
Description
相关申请的交叉引用
本申请要求在2022年02月28日提交中国专利局、申请号为202210196119.5、发明名称为“一种芯式可控电抗器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于变压器技术领域,尤其涉及芯式可控电抗器。
我国配电网建设相对落后,很多地区的电网存在功率因数低、电压波动大、电压偏高、无功倒送等问题,不仅不符合电能质量标准相关要求,影响电力用户正常用电,还给电网带来严重的隐患,影响电网的可靠、稳定运行。
静止无功补偿器(Static Var Compensator,简称SVC)是解决上述问题的最佳方法和途径。SVC是在机械投切式电容器和电抗器的基础上,采用大容量晶闸管代替机械开关而发展起来的,它可以快速地改变其发出的无功功率,具有较强的无功调节能力,可为电力系统提供动态无功电源,将系统电压补偿到一个合理水平。SVC通过动态调节无功功率,抑制冲击负荷运行时引起的母线电压波动,有利于暂态电压恢复,提高系统电压稳定水平。
SVC包括晶闸管控制电抗器(Thyristor Controlled Reactor,简称TCR)、磁阀式可控电抗器(Megnetic Controlled Reactor,简称MCR)等,其中,TCR的每相都采用一对反并联的晶闸管阀与一个线性的空心电抗器相串联组成;虽然,TCR可以为电力系统动态无功补偿、减少电压波动、稳定系统电压水平、解决充电功率和无功倒送等问题,但是,TCR晶闸管阀组两端直接承受系统电压,且采用的空心电抗器漏磁大,导致设备整体占地面积大,并且传统并联补偿电抗器占地面积较大。
发明内容
本申请的目的在于提供芯式可控电抗器,该芯式可控电抗器解决了现有的电抗器存在整体设备较大的缺陷。
为了达到上述目的,本申请采用的技术方案是:
本申请提供的一种芯式可控电抗器,包括A相、B相和C相,各相的铁芯柱上均绕组有第一绕组、第二绕组和第三绕组,其中,第二绕组、第一绕组和第三绕组自内至外依次套装在各相的铁芯柱上;且,第二绕组和铁芯柱之间设置有铁芯绝缘;所述第一绕组和第二绕组之间设置有第一绝缘;第一绕组和第三绕组之间设置有第二绝缘。
可选地,各相的第一绕组的首尾依次连接形成三角形结构。
可选地,A相铁芯柱上的第一绕组的尾端与B相铁芯柱上的第一绕组的首端相接;B相铁芯柱上的第一绕组的尾端与C相铁芯柱上的第一绕组的首端相接;C相铁芯柱上的第一绕组的尾端与A相铁芯柱上的第一绕组的首端相接。
可选地,各相的第二绕组的尾端相连并引出形成带中线的星形结构。
可选地,A相铁芯柱上的第二绕组的尾端与B相铁芯柱上的第二绕组的尾端及C相铁芯柱上的第二绕组的尾端相连并引出。
可选地,所述第二绕组与晶闸管控制闸连接。
可选地,各相的第三绕组的尾端相连并引出形成带中线的星形结构。
可选地,A相铁芯柱上的第三绕组的尾端与B相铁芯柱上的第三绕组的尾端及C相铁芯柱上的第三绕组的尾端相连并引出。
可选地,所述第三绕组与晶闸管控制闸连接。
与现有技术相比,本申请的有益效果是:
本申请提供的芯式可控电抗器,利用增加漏磁通道尺寸的方法,在满足绝缘距离的基础上增加第一绕组与第三绕组之间的距离,从而增加电抗器的电抗值,第一绕组与第二绕组之间的距离为绝缘距离,从而增加电抗器的电抗值,记作电抗1;第一绕组与第三绕组之间的距离为绝缘距离,从而增加电抗器的电抗值,记作电抗2;第二绕组与第三绕组为松耦合,从而使第二绕组基本不受第三绕组的影响,作为电抗器时,电抗1和电抗2的电抗百分数均大于50%,不仅有效的把电抗和变压器集成于一体,减少电抗器的体积,电抗1和电抗2还可以分别控制,从而可以采用多种控制方式控制输出。
图1是本申请实施例中的绕组连接方式示意图。
图2是本申请实施例中的电压矢量图。
图3是本申请实施例中的绕线结构示意图。
其中,1、第一绕组 2、第二绕组 3、第三绕组 4、铁芯柱 5、铁芯绝缘 6、第一绝缘 7、第二绝缘。
下面结合附图对本申请做详细叙述。
如图1至图3所示,本申请提供的一种芯式可控电抗器,包括A相、B相、C相、第一绕组1、第二绕组2和第三绕组3,其中,各相的铁芯柱上均绕制有第一绕组1、第二绕组2和第三绕组3。
所述A相、B相和C相的第一绕组1的首尾端依次连接形成三角形结构;所述A相、B相和C相的第二绕组2的尾端相连并引出形成带中线的星形结构;所述A相、B相和C相的第三绕组3的尾端相连并引出形成带中线的星形结构。
第一绕组1的首端与第二绕组2的首端和第三绕组3的首端为同名端。
所述各相第一绕组1的首尾端相连形成三角形结构,具体为:
A相铁芯柱上的第一绕组的尾端与B相铁芯柱上的第一绕组的首端相接,记为端点B;
B相铁芯柱上的第一绕组的尾端与C相铁芯柱上的第一绕组的首端相接,记为端点C;
C相铁芯柱上的第一绕组的尾端与A相铁芯柱上的第一绕组的首端相接,记为端点A,形成三角形结构。
端点A、B、C与待补偿电网相连。
所述相的第二绕组2尾端相连并引出形成带中线的星形结构,具体为:
A相铁芯柱上第二绕组的首端记为端点a1;B相铁芯柱上第二绕组的首端记为端点b1;C相铁芯柱上第二绕组的首端记为端点c1。
A相铁芯柱上的第二绕组的尾端与B相铁芯柱上的第二绕组的尾端及C相铁芯柱上的第二绕组的尾端相连并引出,记为端点n1。
当第二绕组作为电抗器时,a1、b1、c1、n1与晶闸管控制闸连接。
所述各相的第三绕组尾端相连并引出形成带中线的星形结构,具体为:
A相铁芯柱上第三绕组的首端记为端点a2;B相铁芯柱上第三绕组的首端记为端点b2;C相铁芯柱上第三绕组的首端记为端点c2。
A相铁芯柱上的第三绕组的尾端与B相铁芯柱上的第三绕组的尾端及C相铁芯柱上的第三绕组的尾端相连并引出,记为端点n2。
当第三绕组作为电抗器时,a2、b2、c2、n2与晶闸管控制闸连接。
参照图3,在A相、B相和C相的每一相铁芯柱上各绕三个绕组,各相的第二绕组2靠近铁芯柱4,第二绕组1与铁芯柱4之间为铁芯绝缘5,第一绕组1位于中间,第一绕组1与第二绕组2之间为第一绝缘6,第三绕组3在最外侧,第一绕组1与第三绕组3之间为第二绝缘7。
其中:第一绕组1与第二绕组2之间的距离取决于它们之间的绝缘距离,第一绕组1与第三绕组3之间的距离取决于它们之间的电抗值,远大于它们之间的绝缘距离。
本申请的工作原理为:
本申请利用增加漏磁通道尺寸的方法,在满足绝缘距离的基础上增加第一绕组1与第三绕组3之间的距离,从而增加电抗器的电抗值,第一绕组1与第二绕组2之间的距离为绝缘距离,其电抗值满足第二绕组2连接电容器的要求即可;第二绕组2与第三绕组3为松耦合,从而使第二绕组2基本不受第三绕组3的影响;第一绕组1为三角形联结可有效的减少第二绕组2与第三绕组3产生并注入电网的谐波;
第二绕组与第三绕组为松耦合,从而使第二绕组基本不受第三绕组的影响,电抗1和电抗2可以分别控制,作为电抗器时,电抗1和电抗2的电抗百分数均大于50%,不仅有效地把电抗和变压器集成于一体,减少电抗器的体积,电抗1和电抗2还可以分别控制,从而可以采用多种控制方式控制输出。
与现有技术相比,本申请的有益效果是:
1.本申请TCT的原边可以直接挂在高压母线上,而副边绕组的设计电压为15%~50%母线电压,从而降低了控制系统的电压;
2.本申请TCT采用变压器与电抗器集成一体的结构,有效地解决设备整体占地面积大的问题;同时在维护方面与普通变压器相当,基本不需要维护。
3.本申请第二绕组与第三绕组为松耦合,从而使第二绕组与第三绕组之间不会相互影响。
4.电抗1和电抗2可以分别控制,从而可以采用多种控制方式控制输出。
5.本申请作为电抗器时,电抗1和电抗2的电抗百分数均大于50%,不仅有效地把电抗和变压器集成于一体,还减小了电抗器的体积。
Claims (9)
- 一种芯式可控电抗器,其特征在于,包括A相、B相和C相,各相的铁芯柱(4)上均绕组有第一绕组(1)、第二绕组(2)和第三绕组(3),其中,第二绕组、第一绕组和第三绕组自内至外依次套装在各相的铁芯柱(4)上;且,第二绕组(2)和铁芯柱(4)之间设置有铁芯绝缘;所述第一绕组(1)和第二绕组(2)之间设置有第一绝缘(6);第一绕组和第三绕组之间设置有第二绝缘。
- 根据权利要求1所述的芯式可控电抗器,其特征在于,各相的第一绕组(1)的首尾依次连接形成三角形结构。
- 根据权利要求1或2所述的芯式可控电抗器,其特征在于,A相铁芯柱上的第一绕组的尾端与B相铁芯柱上的第一绕组的首端相接;B相铁芯柱上的第一绕组的尾端与C相铁芯柱上的第一绕组的首端相接;C相铁芯柱上的第一绕组的尾端与A相铁芯柱上的第一绕组的首端相接。
- 根据权利要求1所述的芯式可控电抗器,其特征在于,各相的第二绕组(2)的尾端相连并引出形成带中线的星形结构。
- 根据权利要求1或4所述的芯式可控电抗器,其特征在于,A相铁芯柱上的第二绕组的尾端与B相铁芯柱上的第二绕组的尾端及C相铁芯柱上的第二绕组的尾端相连并引出。
- 根据权利要求1或4所述的芯式可控电抗器,其特征在于,所述第二绕组与晶闸管控制闸连接。
- 根据权利要求1所述的芯式可控电抗器,其特征在于,各相的第三绕组(3)的尾端相连并引出形成带中线的星形结构。
- 根据权利要求1所述的芯式可控电抗器,其特征在于,A相铁芯柱上的第三绕组的尾端与B相铁芯柱上的第三绕组的尾端及C相铁芯柱上的第三绕组的尾端相连并引出。
- 根据权利要求1所述的芯式可控电抗器,其特征在于,所述第三绕组与晶闸管控制闸连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210196119.5 | 2022-02-28 | ||
CN202210196119.5A CN114530318A (zh) | 2022-02-28 | 2022-02-28 | 一种芯式可控电抗器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023160231A1 true WO2023160231A1 (zh) | 2023-08-31 |
Family
ID=81627517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/143194 WO2023160231A1 (zh) | 2022-02-28 | 2022-12-29 | 芯式可控电抗器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114530318A (zh) |
WO (1) | WO2023160231A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114530318A (zh) * | 2022-02-28 | 2022-05-24 | 西安热工研究院有限公司 | 一种芯式可控电抗器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2166508Y (zh) * | 1993-08-21 | 1994-05-25 | 朱跃钢 | 10/6kv自耦变压器 |
JP2003168612A (ja) * | 2001-12-03 | 2003-06-13 | Tohoku Electric Power Co Inc | 三相形電磁機器 |
CN102881435A (zh) * | 2012-09-05 | 2013-01-16 | 尤大千 | 三相24脉波单输出绕组移相整流变压器 |
CN102891000A (zh) * | 2011-07-18 | 2013-01-23 | 尤大千 | 防雷消谐无功功率补偿容性变压器 |
CN103065780A (zh) * | 2013-01-28 | 2013-04-24 | 尤大千 | 三相24脉波双延边三角形输出绕组移相整流变压器 |
CN114530318A (zh) * | 2022-02-28 | 2022-05-24 | 西安热工研究院有限公司 | 一种芯式可控电抗器 |
-
2022
- 2022-02-28 CN CN202210196119.5A patent/CN114530318A/zh active Pending
- 2022-12-29 WO PCT/CN2022/143194 patent/WO2023160231A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2166508Y (zh) * | 1993-08-21 | 1994-05-25 | 朱跃钢 | 10/6kv自耦变压器 |
JP2003168612A (ja) * | 2001-12-03 | 2003-06-13 | Tohoku Electric Power Co Inc | 三相形電磁機器 |
CN102891000A (zh) * | 2011-07-18 | 2013-01-23 | 尤大千 | 防雷消谐无功功率补偿容性变压器 |
CN102881435A (zh) * | 2012-09-05 | 2013-01-16 | 尤大千 | 三相24脉波单输出绕组移相整流变压器 |
CN103065780A (zh) * | 2013-01-28 | 2013-04-24 | 尤大千 | 三相24脉波双延边三角形输出绕组移相整流变压器 |
CN114530318A (zh) * | 2022-02-28 | 2022-05-24 | 西安热工研究院有限公司 | 一种芯式可控电抗器 |
Also Published As
Publication number | Publication date |
---|---|
CN114530318A (zh) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107294100B (zh) | 一种配电网柔性交流互联装置 | |
WO2023160231A1 (zh) | 芯式可控电抗器 | |
CN104538966A (zh) | 一种高速铁路中负序电流的混合补偿系统 | |
Dai et al. | Characteristic analysis of reactive power compensation device at HVDC converter station | |
CN103094912A (zh) | 一种750kV磁控式可控并联电抗器励磁系统及其实现方法 | |
CN105977972A (zh) | 一种串补与换流器结合的静止同步串联补偿装置 | |
CN102074962A (zh) | 复合开关型分级式可控并联电抗器装置 | |
CN205724898U (zh) | 串联混合型静止同步串联补偿器 | |
CN201797318U (zh) | 电抗可调式无功功率补偿器 | |
CN102074960A (zh) | 采用阀串联型配置的晶闸管阀控型可控并联电抗器装置 | |
CN102263413B (zh) | 多柱本体独立控制晶闸管阀控型可控并联电抗器装置 | |
CN102074961A (zh) | 采用串联公共电抗器配置的分级式可控并联电抗器装置 | |
CN102237687A (zh) | 多柱本体独立控制复合开关型分级式可控并联电抗器装置 | |
WO2012126271A1 (zh) | 电气化铁路牵引变电所无功补偿装置 | |
CN202696159U (zh) | 一种智能高压动态无功补偿装置 | |
CN208126991U (zh) | 一种双柱磁通直接耦合可控电抗器 | |
Awad et al. | Reduction of harmonics generated by thyristor controlled reactor for RL loads | |
CN108777219B (zh) | 一种双柱磁通直接耦合可控电抗器 | |
CN112018781A (zh) | 智能型变压器式可控电抗器 | |
Peng et al. | Design requirement and DC bias analysis on HVDC converter transformer | |
CN112886593A (zh) | 一种混合型有源滤波器电路结构 | |
CN2671200Y (zh) | 可控硅控制磁阀电抗器型动态无功补偿装置 | |
Yan et al. | Summary of research on new type transformers with reactive power compensation capability | |
CN115085210A (zh) | 改进型svc静止无功补偿装置 | |
CN201369569Y (zh) | 高压无功动态补偿装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22928470 Country of ref document: EP Kind code of ref document: A1 |