WO2023160147A1 - 一种用于注水井的注水调控系统及方法 - Google Patents

一种用于注水井的注水调控系统及方法 Download PDF

Info

Publication number
WO2023160147A1
WO2023160147A1 PCT/CN2022/139235 CN2022139235W WO2023160147A1 WO 2023160147 A1 WO2023160147 A1 WO 2023160147A1 CN 2022139235 W CN2022139235 W CN 2022139235W WO 2023160147 A1 WO2023160147 A1 WO 2023160147A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water injection
wanderer
water distribution
wellhead
Prior art date
Application number
PCT/CN2022/139235
Other languages
English (en)
French (fr)
Inventor
曾皓
王海波
柯文奇
杨立红
岑学齐
汤敬飞
李小龙
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油勘探开发研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油勘探开发研究院 filed Critical 中国石油化工股份有限公司
Publication of WO2023160147A1 publication Critical patent/WO2023160147A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/068Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water

Definitions

  • the invention relates to the technical field of oil and gas field development, in particular to a water injection control system and method for water injection wells.
  • the prior art needs to provide a water injection control scheme for water injection wells, so as to effectively solve one or more of the above technical problems.
  • an embodiment of the present invention provides a water injection control system for water injection wells, including: a wanderer limit device, which is arranged at the wellhead, and is used to release the wanderer when an activation command is received, and automatically catch the floater The wanderer to the wellhead; the surface water delivery device, the outlet of which communicates with the inner space of the wanderer limiting device, and is used to inject water into the well through the wanderer limiting device; the wanderer, which is used in the water distribution working condition Next, receive the water distribution command used to control the water distribution of each downhole water distribution device, and enter the water injection pipe string with the water flow after being released, and actively float to the wellhead after completing data collection; multiple downhole water distribution devices, each water distribution device is set It is installed at the target layer and outside the side wall of the water injection pipe string, and is used to monitor the production data of the target layer, and when the wanderer is detected, combine the production data with the information carried by the wanderer about itself.
  • a wanderer limit device which is arranged at the
  • the wanderer limiting device includes: a wellhead device communicated with the outlet of the ground water delivery device, the bottom of which communicates with the wellhead, and is used to provide a wellhead accommodation space for the wanderer;
  • the upper end of the wellhead equipment is used to limit and fix the wanderer and release control;
  • the wellhead signal exchange device is arranged outside the wellhead equipment and installed on the capture device, and is used to communicate with the Said wanderer communication to urge said wanderer to obtain said water distribution instruction, and read all production data collected by said wanderer.
  • the wellhead signal exchange device also communicates with the capture device, and is used to send the activation command to the capture device under water distribution conditions, and detect in real time whether the wanderer is close to the capture device, and When the wanderer is detected, a capture instruction is generated, so that the capture instruction is sent to the capture device.
  • the swimmer includes: a pressure-bearing shell; a first signal transceiving device arranged inside the pressure-bearing shell, which is used to continuously send out a first detection signal; a first data storage device set inside the pressure-bearing shell And a processing device, which is connected with the first signal transceiving device, and is used to perform wireless communication with the current underground water distribution device with the cooperation of the first signal transceiving device when the underwater water distribution device is close to the corresponding target water distribution layer , so as to realize the information exchange of water distribution instructions and production data; the light-weight insulating filling part is arranged inside the pressure-bearing shell.
  • the downhole water distribution device includes: a water distribution nipple body arranged on the side wall of the water injection pipe string, and upper and lower ports are provided at both ends of the water distribution nipple body;
  • the water injection outlet, the water injection outlet is arranged on the side wall of the water distribution nipple body; the second signal transceiving device; the second data storage and processing device, which is connected with the second signal transceiving device for detecting
  • the first detection signal communicates wirelessly with the wanderer, so as to realize the information exchange of water distribution instructions and production data; at the same time, the power equipment connected to the water injection outlet and the second data storage and processing equipment is used for Under the control of the water distribution command, the flow rate and/or outlet diameter of the water injection outlet are regulated.
  • the water injection control system further includes: an anti-overflow closing device arranged at the bottom of the wellbore, and the anti-overflow closing device is used to limit the bottom of the well after the wanderer passes through all the downhole water distribution devices with the water flow.
  • a through hole penetrating between the top and the bottom is provided at the position of the central axis of the anti-overflow closing device, and the longitudinal edges on both sides of the axial section of the through hole are in the shape of a parabola opening outward, so
  • the minimum inner diameter of the through hole is smaller than the outer diameter of the rotor, and the largest inner diameter of the through hole is larger than the outer diameter of the rotor.
  • the ground water delivery device includes: a first water injection pipeline, the outlet of which communicates with the side wall of the wellhead equipment in the wanderer limiting device, for communicating with the wellhead equipment under water injection conditions, and Under the water distribution condition, it is not connected with the side wall of the wellhead equipment; the first end of the second water injection pipeline is connected with the side wall of the first water injection pipeline, and the second end of the second water injection pipeline is connected with the side wall of the first water injection pipeline.
  • the side wall of the wellhead equipment in the wanderer limiting device is connected to communicate with the wellhead equipment under the condition of water distribution.
  • the ground water delivery device further includes: a first injection valve close to the entrance of the first water injection pipeline; a second injection valve arranged in the second water injection pipeline; A third injection valve at the outlet of the water injection line.
  • the wanderer limiting device is also used to monitor the dynamic pressure of the internal space of the device to judge the timing when the wanderer reaches the bottom of the wellbore, and based on this, generate a stop water injection command, so that the water injection device stops water injection.
  • the swimmer is also used to move from the bottom of the well to the head of the well by relying on its own buoyancy in a still water environment after the water injection device stops injecting water.
  • a water injection control method for water injection wells is provided, the water injection control method is realized by using the above-mentioned water injection control system, wherein the water injection control method includes: connecting the ground water delivery device with the wanderer The limit device is connected, and water is injected into the well through the wanderer limit device; under the water distribution condition, the wanderer receives the water distribution command for controlling the water distribution of each underground water distribution device; the wanderer limit device is used to When an activation instruction is received, the swimmer is released, so that the swimmer enters the water injection string with the water flow after being released; each downhole water distribution device arranged at the target layer and installed outside the side wall of the water injection string is used to monitor the target layer production data, and when the wanderer is detected, the production data is exchanged with the water allocation instruction carried by the wanderer, so as to use the water allocation instruction to carry out water distribution regulation; the wanderer completes Actively float up to the wellhead after data collection; the wanderer that floats up to the wellhead is automatically captured by the wanderer
  • one or more embodiments in the above solutions may have the following advantages or beneficial effects:
  • the invention provides a water injection control system and method for water injection wells.
  • the system and method use intelligent wanderers to carry out downhole data transmission and intelligent water injection control for water injection control, and realize real-time wireless intelligent measurement and adjustment and data monitoring of each water injection section of a layered water injection well.
  • the present invention not only shortens the distance of data transmission and signal control by forming a special two-way transmission method of downhole data signals, but also makes the exchange and transmission scene of data and instructions less disturbed by the environment, and the data exchange speed is faster and more stable, which can solve the problem of Existing wireless transmission measurement and adjustment devices using electromagnetic wave or pulse conduction technology are subject to problems such as greater interference from environmental factors and limited depth of use, which have practical significance for realizing high-efficiency and low-cost smart oilfields.
  • FIG. 1 is a schematic diagram of the overall structure of a water injection control system for a water injection well according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the application environment and specific structure of the water injection control system for water injection wells according to the embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a wanderer in a water injection control system for a water injection well according to an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a downhole water distribution device used in a water injection control system for a water injection well according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the operation process of the water injection control system for the water injection well according to the embodiment of the present application.
  • FIG. 6 is a step diagram of a water injection control method for a water injection well according to an embodiment of the present application.
  • the steps shown in the flowcharts of the figures may be performed in a computer system, such as a set of computer-executable instructions. Also, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that shown or described herein.
  • Tan Shaoxu and others introduced a system equipment for layered water injection on offshore platforms.
  • the system performs real-time data collection and flow control through downhole pressure sensors and hydraulically controlled sliding sleeves, and realizes monitoring and data exchange between the surface and downhole.
  • the system data exchange uses a permanent downhole pressure gauge with two sensors that can detect slight pressure fluctuations, temperature fluctuations and flow fluctuations in the casing, and transmit the monitored data to the surface through cables.
  • using cable signal transmission tools to enter the well is complicated, and there are many pipelines, which are prone to problems such as pipeline damage and cable insulation failure, which increases the difficulty, time and cost of tripping into the well.
  • a cable-controlled intelligent layered water injection device system proposes a cable-controlled intelligent layered water injection device system.
  • the system uses cables to control the downhole intelligent injection tool string, so as to achieve automatic measurement and adjustment of water injection allocation for each layer and segmental flow during layered water injection.
  • the device uses cables as the electrical signal and energy transmission medium, and the construction is more complicated when the operation is started into the well, and the cables are easily damaged by the environment, and the operation and maintenance time after damage is long, which increases the operation and maintenance costs.
  • Application No. 201821544813.7 "A Intelligent Layered Water Injection System for Water Injection Well Pressure Wave Code” proposes a layered water injection system that uses pressure wave code for regulation and control in water injection wells.
  • the pressure wave code is transmitted to the water injection channel through the wellhead, and the downhole precise flow monitoring device orders the intelligent water injection system to adjust the water distribution after receiving the wave code.
  • the use of this method avoids the problems of high operating costs caused by traditional steel wire and cable control and cable intelligent water distribution systems.
  • the downhole flowmeter used in this method is unstable and easily damaged, and the environment in the well is complex, and the pressure wave is affected by the environment. The large influence makes it difficult to control the monitoring error, making it difficult to apply the signal control of this method to the complex wellbore and flow environment.
  • the embodiments of the present application propose a water injection control system and method for water injection wells.
  • the system and method include a ground intelligent wellhead wanderer limiting device, a ground water delivery device, oil pipe intelligent signal exchange floaters, and an underground intelligent layered water distribution measuring and adjusting device.
  • the wanderer can move up and down freely in the water injection string when in use, and can exchange data when moving to the intelligent measurement and adjustment device of the water injection section, and drive the measurement and adjustment device to control the nozzle.
  • it collects production monitoring data including downhole temperature, pressure, flow rate, etc.
  • the invention can solve the problems that the existing wireless transmission measurement and adjustment devices use electromagnetic wave or pulse conduction technology, which is greatly disturbed by environmental factors and limited in use depth, and has practical significance for realizing high-efficiency and low-cost intelligent oil fields.
  • FIG. 1 is a schematic diagram of the overall structure of a water injection control system for a water injection well according to an embodiment of the present application.
  • the water injection control system for water injection wells described in the embodiment of the present invention at least includes: a wanderer limiting device A, a ground water delivery device B, a wanderer C and a plurality of Downhole water distribution device D.
  • the wanderer limiting device A is arranged at the wellhead, specifically at the wellhead of the water injection string (water injection wellbore) 11 .
  • the inner space of the wanderer limiting device A is configured as a wellhead space, and the bottom (inside) of the wanderer limiting device A communicates with the wellhead of the water injection string 11 .
  • the ground water delivery device B is arranged on the ground, and the outlet of the ground water delivery device B communicates with the inner space of the swimmer limiting device A.
  • the perforation sections in different water injection layers are separated by setting packers (see packers 13 and 15 in Fig. 2) at different well depths between the casing 12 and the water injection string 11 .
  • Each downhole water distribution device D is respectively set in different water injection layers. Further, each downhole water distribution device D is set in the perforation section (see perforation section 13, target layer 2 of target layer 1 in Fig.
  • a corresponding downhole water distribution device D is installed on the outside of the corresponding water injection string 11 at the perforation section in each water injection layer.
  • the swimmer limiting device A is used to limit and fix the swimmer C arranged at the wellhead, wherein the swimmer C is released when an activation command (for the swimmer) is received.
  • the wanderer limiting device A is also used to automatically catch the wanderer C that floats up to the wellhead.
  • the surface water delivery device B is used to inject water downhole through the wanderer limiting device A and the water injection string 11 .
  • Wanderer C is used to receive water distribution instructions for water distribution (quantity) control of each downhole water distribution device D under water distribution conditions, and enter with the water flow after being released, and actively float to the wellhead after completing data collection to be
  • the swimmer limit device A performs limit and fixation.
  • the water injection control system has two working conditions respectively, which are the water injection working condition and the water distribution working condition.
  • the water distribution working condition is the process of water distribution command transmission and production data collection corresponding to one or more downhole water distribution devices D performing underground water distribution and/or production data collection; the water injection working condition is configured for the downhole water distribution device D according to the water distribution working conditions Water distribution parameters (including: water injection outlet flow rate and/or water injection outlet diameter) for the process of water injection operation.
  • Each downhole water distribution device D is used to monitor the production data of the target layer in real time, and detect in real time whether the wanderer C approaches and passes through the corresponding water distribution device D, wherein, when it is detected that the wanderer C approaches the perforation section of its corresponding target layer ( When the wanderer 3 is detected), the production data collected and stored by the current downhole water distribution device D is exchanged with the water distribution command carried by the wanderer C about itself (the current downhole water distribution device D), so that the current downhole water distribution device D uses After the exchange, the water distribution command for itself is obtained, and the water distribution control of the current water injection layer is carried out, and the wanderer C obtains the production data about itself after the information exchange, so as to complete the production data collection task for the current underground water distribution device D.
  • FIG. 2 is a schematic diagram of the application environment and specific structure of the water injection control system for water injection wells according to the embodiment of the present application. The specific structure and function of the water injection control system according to the embodiment of the present invention will be described below with reference to FIG. 1 and FIG. 2 .
  • the wanderer limiting device A as an intelligent wellhead device of the water injection control system, at least includes: a wellhead device 4 , a capture device 2 and a wellhead signal exchange device 1 .
  • the wellhead equipment 4 communicates with the outlet of the ground water delivery device B, and the bottom of the wellhead equipment 4 communicates with the wellhead of the water injection string 11 .
  • the capture device 2 is arranged on the upper end of the wellhead equipment 4 .
  • the wellhead signal exchange device 1 is arranged outside the wellhead equipment 4 and installed on the upper end surface of the capture device 2 .
  • the ground water delivery device B is connected with the water injection device (not shown), and the ground water delivery device B is used as the water delivery pipeline device of the water injection control system, and is mainly used to deliver the water stored in the water injection device to the wellhead of the water injection string 11 position to transport injection water downhole through the water injection string 11.
  • the wellhead device 4 is configured as a hollow shell for providing a wellhead accommodating space for the runner C (see component 3 in FIG. 2 ).
  • the capture device 2 is an intelligent wellhead wanderer capture device, which is used to limit, fix and release the wanderer 3 .
  • the wellhead signal exchange device 1 is an intelligent wellhead signal exchange device, and communicates with the wanderer 3 .
  • the wellhead signal exchange device 1 is used to communicate with the wanderer 3 to prompt the wanderer 3 to obtain water distribution instructions for one or more downhole water distribution devices D that require water distribution regulation, and to read all the production data collected by the wanderer.
  • the swimmer 3 passes through the capture device 2 to realize the limit and fixation of the wellhead.
  • the wellhead signal exchange device 1 sends an activation command to the capture device 2, so that the capture device 2 releases the wanderer 3 under the action of the activation command .
  • the wellhead signal exchange device 1 is equipped with a smart antenna, and since the wanderer 3 returns to the wellhead through its own buoyancy after completing the production data collection tasks of all the downhole water distribution devices D, the described embodiment of the present invention
  • the wellhead signal exchange device 1 is also used to detect in real time the signal strength of the following first detection signal sent by the wanderer 3 in real time through the smart antenna, so as to detect whether the wanderer 3 approaches the capture device 2 in real time according to the diagnosis result of the signal strength.
  • the wellhead signal exchange device 1 is used to generate a capture command immediately when it detects that the wanderer 3 is gradually approaching the capture device 2, so as to send the capture command to the capture device 2, and then make the capture device 2 complete the control under the action of the capture command.
  • Fig. 3 is a schematic structural diagram of a wanderer in a water injection control system for a water injection well according to an embodiment of the present application.
  • the swimmer 3 as the intelligent signal swimmer device of the water injection control system, at least includes: a pressure-bearing shell 301 , a first signal transceiving device 305 , a first data storage and processing device 304 and a lightweight insulating filling part 302 .
  • the pressure-bearing shell 301 is made of pressure-bearing material and is constructed as a hollow shell structure.
  • Both the first signal transceiving device 305 and the first data storage and processing device 304 are disposed inside the pressure-bearing housing 301 , and the inner (remaining) space of the pressure-bearing housing 301 is fully filled with the lightweight insulating filling part 302 .
  • the first data storage and processing device 304 is electrically connected with the first signal transceiving device 305 to realize communication.
  • the swimmer 3 described in the embodiment of the present invention further includes a first power supply device 303 .
  • the power supply device 303 provides the power supply energy required for normal operation for the first signal transceiving device 305 and the first data storage and processing device 304 .
  • the density of the smart signal swimmer 3 constructed in the embodiment of the present invention is lower than that of water, and it can float freely in low water flow or still water.
  • the size of the swimmer 3 is slightly smaller than the cross-sectional size of the water injection string 11 , so that the swimmer 3 can move up and down in the water injection string 11 . Under normal water injection conditions, it can move with the water flow according to the water injection speed, so as to move downhole through the water injection string 11 .
  • the first signal transceiving device 305 is configured to continuously send out the first detection signal.
  • the first signal transceiving device 305 is also configured to continuously send out the first detection signal when the activation instruction is received.
  • the first detection signal is preferably an ultrasonic signal. It should be noted that the signal strength of the first detection signal needs to be reduced as much as possible to ensure battery life under the condition of ensuring normal communication.
  • the first data storage and processing device 304 is in communication connection with the first signal transceiving device 305 .
  • the first data storage and processing device 304 is used to wirelessly communicate with the current underground water distribution device D when it is close to the underwater water distribution device D of the corresponding target water distribution layer, with the cooperation of the first signal transceiver device 305, so as to realize the current target water distribution device D.
  • Fig. 4 is a schematic structural diagram of a downhole water distribution device used in a water injection control system for a water injection well according to an embodiment of the present application.
  • each downhole water distribution device 9 and 10 has the same structure.
  • the downhole water distribution devices 9 and 10 at least include: a water distribution nipple body 907, an upper interface 901, a lower interface 909, a water injection outlet 908, a second signal transceiving device 904, a second data storage and processing device 903, and a power device 906.
  • the water distribution nipple body 907 is disposed on the side wall of the water injection pipe string 11 .
  • the second signal transceiving device 904 , the second data storage and processing device 903 and the power device 906 are all arranged on the inner wall of the water distribution nipple body 907 .
  • the second signal transceiving device 904 is electrically connected to the second data storage and processing device 903 to realize communication.
  • the water injection outlet 908 communicates with the water injection pipe string 11 , and the water injection outlet 908 is arranged on the side wall of the water distribution nipple body 901 .
  • the water injection outlet 908 is realized by an adjustable water nozzle.
  • the power device 906 adopts an adjustable motor.
  • the power device 906 is electrically connected to the water injection outlet 908 and the second data storage and processing device 903 at the same time.
  • the downhole water distribution devices 9 and 10 described in the embodiment of the present invention further include a second power supply device 902 and a production data monitoring device 905 .
  • the production data monitoring device 905 is connected with the second data storage and processing device 903, and is used to continuously monitor the dynamic production data such as the temperature, pressure and flow rate of the current water injection layer, and send the obtained dynamic production data to the second data storage and processing device 903 , to store the dynamic production data, so that the second data storage and processing device 903 directly transfers the stored dynamic production data to the first data storage and processing device 304 in the player 3 when exchanging information with the player 3 to store.
  • the second power supply device 902 provides power supply energy required for normal operation to the production data monitoring device 905 , the second signal transceiving device 904 , the second data storage and processing device 903 and the power device 906 .
  • the second signal transceiving device 904 is configured to detect the first detection signal in real time.
  • the second signal transceiving device 904 is further configured to send the signal to the second data storage and processing device 903 after detecting the first detection signal.
  • the second data storage and processing device 903 is in communication connection with the second signal transceiving device 904 .
  • the second data storage and processing device 903 is used to wirelessly communicate with the first data storage and processing device 304 in the wanderer 3 through the first signal transceiving device 305 and the second signal transceiving device 904 when the first detection signal is detected , so as to realize the information exchange of water distribution instructions and production data.
  • the second data storage and processing device 903 is also used to detect in real time the signal strength of the first detection signal sent by the wanderer 3 in real time through the second signal transceiving device 904, so as to detect in real time whether the wanderer 3 is Downhole water distribution device 9 or 10 close to the current water injection layer (target layer).
  • the second data storage and processing device 903 is used to generate an arrival feedback signal immediately when detecting that the wanderer 3 is gradually approaching the current downhole water distribution device 9 or 10 (for example: the signal strength of the first detection signal gradually increases), and The arrival feedback signal is transmitted to the first signal transceiving device 305 in the wanderer 3 through the second signal transceiving device 904 .
  • the first data storage and processing device 304 in the player 3 receives the arrival feedback signal from the current downhole water distribution device 9 or 10 through the first signal transceiver device 305, and immediately starts the communication between the player 3 and the current underground water injection layer. Information exchange task between water distribution installations.
  • the power equipment 906 in the current downhole water distribution device is also used to receive the water distribution for the current water injection layer sent from the second data storage and processing device 903 command, and under the action of the current water distribution command, adjust its own speed and/or the outlet diameter of the water injection outlet 908, so as to adjust the current water injection outlet flow rate and/or outlet diameter, so as to complete the water distribution control task of the current water injection layer.
  • the second data storage and processing device 903 in the current downhole water distribution device will detect that the wanderer 3 is gradually leaving the current downhole water distribution device 9 or 10 (for example: the first detection signal The signal strength gradually weakens until the first detection signal cannot be detected), so that Wanderer 3 completes the information exchange task with the current downhole water distribution device (on the one hand, completes the task of collecting production data of the current water injection layer, and at the same time, completes the water distribution of the current water injection layer control task), and then continue to move to the next water injection layer to complete the information exchange task with the downhole water distribution device in the next water injection layer.
  • the first detection signal The signal strength gradually weakens until the first detection signal cannot be detected
  • the first data storage and processing device 304 in Wanderer 3 obtains the arrival feedback command, it immediately sends the water distribution command for the downhole water distribution device at the current water injection layer to the current downhole water distribution device through the first signal transceiver device 305
  • the second signal transceiving device 904 in the device and then, after the second data storage and processing device 903 in the current downhole water distribution device obtains the water distribution command for the current water injection layer through the second signal transceiving device 904, on the one hand, the current water distribution The command is directly sent to the power equipment 906.
  • the power equipment 906 uses the current water distribution command to adjust the water distribution flow rate of the current water injection layer on demand, so as to complete the water distribution regulation task for the current water injection layer; at the same time, the second data storage and processing equipment 903 will also transmit the dynamic production data (not sent to the ground) stored by itself for the current water injection layer to the first signal transceiver device 305 in the wanderer 3 through the second signal transceiver device 904, and then the first signal transceiver device 305 in the wanderer 3 A data storage and processing device 304 obtains the dynamic production data for the current water injection layer (need to be transmitted to the ground) through the first signal transceiver device 305, and stores the current dynamic production data, thereby completing the production data for the current water injection layer Collect tasks.
  • the intelligent signal wanderer constructed by the present invention can exchange data with the signal transmission system in the underground intelligent water distribution device.
  • it can carry the underground feedback production data to the wellhead for production data feedback Transmission, so that the ground can obtain production parameter data obtained from downhole monitoring, including temperature, pressure, flow and so on.
  • the multiple downhole water distribution devices D described in the embodiment of the present invention are used as downhole intelligent water distribution devices for use with the smart wanderer C, which can not only monitor the downhole production data, but also exchange data with the smart wanderer C, and based on the received Adjust the water distribution according to the water distribution command.
  • the water injection control system described in the embodiment of the present invention further includes: an overflow-proof closing device 17 .
  • the anti-overflow closing device 17 is arranged at the bottom of the water injection column 11 .
  • the anti-overflow closing device 17 is used to limit the bottom of the well after the swimmer 3 passes through all the downhole water distribution devices with the water flow.
  • the anti-overflow closing device 17 is connected to the pipe string 11 and is configured as a cylindrical structure.
  • a through hole (not numbered) that runs through the top and the bottom is provided at the central axis of the anti-overflow closing device 17 .
  • the bottom of the anti-overflow closing device 17 has an anti-overflow screen cloth.
  • the upper and lower end surfaces of the through holes are horizontal and parallel to each other.
  • the longitudinal edges on both sides of the axial section of the through hole are in the shape of a parabola opening outward.
  • the minimum inner diameter of the through hole is slightly smaller than the outer diameter of the rotor 3 , and the largest inner diameter of the through hole is slightly larger than the outer diameter of the rotor 3 .
  • the anti-overflow closing device 17 described in the embodiment of the present invention can block the downward movement of the floater 3 to prevent the movement from leaving the pipe string 11, and it can also prevent the floater 3 from being blocked by the through hole limit.
  • the wellhead senses the sudden increase in pressure to further prompt the wanderer limiting device A to recognize the timing when the swimmer 3 reaches the bottom of the wellbore 11, thereby immediately generating a water injection stop command, and realizing the linkage control of the water injection control system and the water injection device.
  • the wanderer limiting device A described in the present invention is also used for real-time monitoring of the dynamic pressure in the inner space of the device, judging the timing when the wanderer 3 reaches the bottom of the wellbore according to the monitored dynamic pressure, and detecting that the wanderer 3 reaches the pipe string 11, a stop water injection command is generated so that the water injection device (not shown) connected to the ground water transfer device B stops water injection.
  • the swimmer 3 is also used to move from the bottom of the well to the head of the well by relying on its own buoyancy in a still water environment after the water injection device stops injecting water.
  • the intelligent wellhead signal exchange device 1 in the wanderer limiting device A can monitor the internal dynamic pressure of the wellhead equipment 4 in real time, and after the wanderer 3 reaches the overflow prevention closing device 17 at the bottom of the wellbore 11, the wellhead pressure will change significantly, thereby
  • a stop water injection command is generated immediately, and the stop water injection command is sent to the water injection device, so that the water injection device stops delivering injected water to the ground water delivery device B.
  • the flow rate of the injected water in the water injection pipe string 11 gradually decreases and tends to be static.
  • the wanderer 3 relies on its own buoyancy in the still water environment to move from the bottom of the well to the wellhead, thus in the wellhead signal exchange device 1
  • the capture device 2 is controlled to limit and fix the wanderer 3 at the wellhead.
  • the wellhead signal exchange device 1 directly reads the dynamic production data stored by the wanderer 3 for all downhole water distribution devices. In this way, Wanderer 3 has completed the task of issuing a water distribution order and collecting production data.
  • the wanderer limiting device A described in the embodiment of the present invention is an intelligent wellhead that can be used with the wanderer C.
  • the wellhead realizes the capture, fixation, release, signal exchange and data reading functions of the wanderer, ensuring that the feedback data of the intelligent wanderer Efficient transmission, effectively improve work efficiency and reduce operating costs.
  • the ground water transfer device B includes: a first water injection pipeline (not numbered) and a second water injection pipeline (not numbered).
  • the outlet of the first water injection pipeline communicates with the side wall of the wellhead equipment 4 in the wanderer limiting device A.
  • the inlet of the first water injection pipeline is used as the water injection inlet of the water injection operation, and communicates with the above-mentioned water injection device (the water storage tank);
  • the first end of the second water injection pipeline communicates with the side wall of the first water injection pipeline, and the first end of the second water injection pipeline The two ends communicate with the side wall of the wellhead equipment 4 in the wanderer limiting device A.
  • the second end of the second water injection line is located at the outlet of the first water injection line.
  • the first end of the second water injection pipeline is connected to the side wall of the first water injection pipeline so that the first end of the second water injection pipeline divides the first water injection pipeline into two sections, which are the first pipeline inlet section and the first water injection pipeline respectively.
  • Pipeline outlet section Further, the second water injection pipeline serves as a bypass of the outlet section of the first pipeline and is connected in parallel with the outlet section of the first pipeline.
  • the first water injection pipeline is used to communicate with the wellhead equipment 4 under the water injection condition, and not communicate with the side wall of the wellhead equipment under the water distribution condition.
  • the second water injection pipeline is used to communicate with the wellhead equipment 4 under the condition of water distribution. That is to say, under the normal water injection condition of the water injection control system, the injection water is transported to the wellhead through the first water injection pipeline to be injected downhole; under the water distribution condition of the water injection control system, the inlet section of the first pipeline and The second water injection pipeline is connected, and the injection water is delivered to the wellhead through the connected first pipeline inlet section and the second water injection pipeline, so as to be injected downhole.
  • switching from the communication relationship between the first water injection pipeline and the wellhead equipment 4 to the communication relationship between the second water injection pipeline and the wellhead equipment 4 is realized through the capture command sent by the wellhead signal exchange device 1 in the wanderer limiting device A.
  • the ground water transfer device B further includes: a first injection valve 5 , a second injection valve 7 and a third injection valve 8 respectively connected to the smart wellhead (the wanderer limiting device A).
  • the first injection valve 5 is arranged close to the inlet of the first water injection pipeline, that is, arranged in the inlet section of the first pipeline.
  • the second injection valve 7 is arranged in the second water injection pipeline.
  • the third injection valve 8 is arranged close to the outlet of the first water injection pipeline, that is, arranged in the outlet section of the first pipeline.
  • the embodiments of the present invention control the injection valves 5, 7, and 8 through different opening and closing control of the wanderer limiting device A, so that the water in the water injection device can be delivered to the wellhead by using different injection water delivery lines under different system operating conditions.
  • the embodiments of the present invention control the injection valves 5, 7, and 8 through different opening and closing control of the wanderer limiting device A, so that the water in the water injection device can be delivered to the wellhead by using different injection water delivery lines under different system operating conditions.
  • the above-mentioned wanderer limiting device A further includes a limiting member 20 arranged in the middle of the inner cavity of the wellhead equipment 4, and the limiting member 20 is made of elastic material.
  • the limiting member 20 is installed on the inner wall of the middle part of the wellhead equipment 4, and is located between the outlet end of the first water injection pipeline and the outlet end of the second water injection pipeline.
  • the stopper 20 and the capture device 2 jointly form a stopper chamber for the stopper 3 inside the wellhead equipment 4 .
  • the first injection valve 5 and the second injection valve 7 are opened, and the third injection valve 8 is closed.
  • the wanderer moves away from the limit device 2 and moves downhole, and then completes the task of water distribution command and production data exchange;
  • the signal sent by the wellhead signal exchange device 1 Capture command control the ground control system to close the second injection valve 7 and open the third injection valve 8, at this time, the water flow enters the well through the second water injection pipeline, and the wanderer will enter the capture device 2 under the action of water pressure, and Make the capture device 2 complete the capture action.
  • the ground water transfer device B described in the embodiment of the present invention further includes: a flow meter 6 connected to the intelligent wellhead (the wanderer limiting device A). Wherein, the flow meter 6 is arranged in the inlet section of the first pipeline. Further, the wanderer limiting device A described in the embodiment of the present invention is also used for real-time detection of the dynamic flow at the inlet end of the surface water delivery device B, so as to use the dynamic flow to control the water injection device to the surface water delivery device B (the first pipeline inlet section) The flow rate of the pumped injection water can be adjusted dynamically so that the flow rate of the injected water can be dynamically controlled, and the required water flow rate can be flexibly controlled by the swimmer 3 moving up and down in the water injection pipe string.
  • a flow meter 6 connected to the intelligent wellhead (the wanderer limiting device A).
  • the flow meter 6 is arranged in the inlet section of the first pipeline.
  • the wanderer limiting device A described in the embodiment of the present invention is also used for real-time detection
  • Fig. 5 is a schematic diagram of the operation process of the water injection control system for the water injection well according to the embodiment of the present application. Referring to Fig. 5, various operating states of the water injection control system according to the embodiment of the present invention will be described.
  • the smart swimmer 3 Under normal water injection conditions, the smart swimmer 3 is in a standby state, as shown in state 1 in FIG. 5 .
  • the injected water enters the water injection string 11 through the injection valve 1 5, the flow meter 6, the injection valve 3 8, and the wellhead equipment 4, and enters the target water injection formation after deployment through the downhole intelligent water distribution device 1 9 and the downhole intelligent water distribution device 2 10;
  • the smart wanderer 3 When underground water distribution and/or production data collection is required, the smart wanderer 3 needs to be used.
  • the intelligent wanderer 3 is wrapped with a pressure-bearing shell 301, which contains a power supply device 303, a data storage and processing system 304, and a signal transceiver device 305. It is filled with lightweight insulating filler 302.
  • the overall density of the swimmer is lower than that of water, and it can float in still water. Slightly smaller than the water injection oil pipe, it can move up and down in the water injection oil pipe.
  • the wanderer limiting device sends an activation command through the smart wellhead antenna 1, and the smart wellhead wanderer capture device 2 releases the smart wanderer 3.
  • the injection valve three 8 is closed, and the injection valve two 7 is opened to change the inlet of the water injection wellhead.
  • the signal transceiver device 305 will continue to send weak signals to detect whether it is close enough to the underground smart water distribution device 1 or 2;
  • the intelligent wanderer 3 will inject water through the underground intelligent water distribution device one 9 and the underground intelligent water distribution device two 10 during operation.
  • the intelligent water distribution device 9/10 includes an energy supply device 902 with a built-in rechargeable battery, which can provide electric energy for the data processing and storage system 903, the signal transceiver device 904, the production data monitoring system 905, and the control motor 906;
  • the production data monitoring system 905 will continuously monitor temperature, pressure, flow and other data, and store them in the processing and storage system 903 .
  • the signal transceiver device 904 in the smart water distribution device receives the signal sent by the smart wanderer 3, and processes and stores the data. After the system 903 performs corresponding signal processing, it sends the arrival feedback signal through the signal transceiver device 904. After receiving the feedback signal, the intelligent wanderer 3 will start to exchange information with the downhole intelligent water injection device 9/10. After the information is exchanged, the intelligent water distribution system will drive the control motor 906 to adjust the water injection outlet 908 according to the collected water distribution instructions, thereby completing the water distribution regulation. After the information exchange, the intelligent wanderer 3 will store the downhole production parameter data transmitted by the intelligent water distribution device 9/10.
  • the smart wanderer 3 will continue to move to the bottom of the oil pipe, and will be blocked by the anti-overflow closing device 17 to prevent the movement from leaving the oil outlet pipe, as shown in state 3 in FIG. 5 .
  • the pressure of the wellhead tubing will change, and the system can monitor and judge the time when the wanderer 3 reaches the bottom of the pipe string based on the pressure monitoring;
  • the intelligent wellhead signal exchange system 1 will sense the approach of the wanderer 3, and order the intelligent wellhead wanderer capture device 2 to capture and fix the wanderer;
  • the intelligent wanderer 3 and the intelligent wellhead signal exchange system 1 perform data transfer.
  • the wanderer transmits the production parameter data carried by the intelligent wellhead signal exchange system to the intelligent wellhead signal exchange system 1, and the intelligent wellhead signal exchange system 1 further transfers the collected data to the intelligent wellhead signal exchange system.
  • the production data is transmitted to the ground computer for effective storage, and then the storage space in the wanderer 3 is emptied to enter the standby mode and wait for the next startup.
  • the water injection control system described in the embodiment of the present invention completes a single operation.
  • downhole water distribution control is required to reduce the water injection rate to target layer 1 and increase the water injection rate to target layer 2, and collect downhole pressure, temperature and flow data at the same time.
  • step 1 activate the smart swimmer and give the swimmer the required command information, release the swimmer so that it can continue to move downward in the tubing under the action of the water flow;
  • the smart wanderer and the intelligent water distribution device corresponding to the target layer 1 perform command transmission and data exchange, and issue an instruction to reduce the water distribution valve to the water distributor; after the water distributor processes the signal, it changes the water outlet through mechanical action, And transmit the temperature, pressure and flow data of the target layer 1 to the wanderer;
  • the intelligent wanderer After receiving and storing the set of data, the intelligent wanderer continues to move to the target layer 2, and also performs command transmission and data exchange with the intelligent water distribution device corresponding to the target layer 2, and issues an instruction to increase the water distribution valve to the water distributor; after the water distributor processes the signal Change the water outlet through mechanical action, and transmit the temperature, pressure and flow data of the target layer 2 to the wanderer;
  • step 5 After the wanderer moves to the bottom of the tubing, it is sensed by the pressure system, and the water injection is stopped to allow it to float freely. As described in step 5, and then as described in step 6, the wanderer moves to the wellhead and is fixed and data released. This operation is over and the adjustment is successful.
  • the water distribution of the target layer was determined and the temperature, pressure and flow data of a certain period of time were collected downhole.
  • FIG. 6 is a step diagram of a water injection control method for a water injection well according to an embodiment of the present application. As shown in Figure 6, the water injection control method described in the embodiment of the present invention is implemented according to the following steps:
  • Step S601 connecting the ground water delivery device B with the wanderer limiting device A, and injecting water downhole through the wanderer limiting device A;
  • the wanderer C receives a water distribution command for controlling the water distribution of each underground water distribution device
  • Step S603 using the swimmer limiting device A to release the swimmer C when the activation command is received, so that the swimmer C enters the water injection column with the water flow after being released;
  • Step S604 use each downhole water distribution device D set at the target layer and installed outside the side wall of the water injection string to monitor the production data of the target layer, and when the wanderer C is detected, compare the current production data with the value of the wanderer C. Exchange the water distribution instructions carried about itself, so as to use the exchanged water distribution instructions to control the water distribution of the current layer;
  • Step S605 Wanderer C actively floats up to the wellhead after completing the data collection
  • Step S606 the wanderer C floating up to the wellhead is automatically caught by the wanderer limiting device A.
  • the invention discloses a water injection control system and method for water injection wells.
  • the system and method use intelligent wanderers to carry out downhole data transmission and intelligent water injection control for water injection control, and realize real-time wireless intelligent measurement and adjustment and data monitoring of each water injection section of a layered water injection well.
  • the present invention not only shortens the distance of data transmission and signal control by forming a special two-way transmission method of downhole data signals, but also makes the exchange and transmission scene of data and instructions less disturbed by the environment, and the data exchange speed is faster and more stable, which can solve the problem of Existing wireless transmission measurement and adjustment devices using electromagnetic wave or pulse conduction technology are subject to problems such as greater interference from environmental factors and limited depth of use, which have practical significance for realizing high-efficiency and low-cost smart oilfields.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Flow Control (AREA)

Abstract

一种用于注水井的注水调控系统,包括:游子限位装置(A),其设置在井口,用于在接收到激活指令时释放游子(C、3),以及自动捕捉上浮至井口的游子(C、3);地面输水装置(B),其出口与游子限位装置(A)的内部空间连通,用于通过游子限位装置(A)向井下注水;游子(C、3),其用于在配水工况下,接收用来对各井下配水装置(D、9、10)进行配水调控的配水指令,并在被释放后随水流进入注水管柱(11),以及完成数据收集后上浮至井口;每个井下配水装置(D、9、10)设置于目标层处并安装在注水管柱(11)的侧壁外,用于监测目标层的生产数据,并在探测到游子(C、3)时,将生产数据与游子(C、3)所携带的配水指令进行交换,以利用配水指令进行配水调控。

Description

一种用于注水井的注水调控系统及方法 技术领域
本发明涉及油气田开发技术领域,尤其是涉及一种用于注水井的注水调控系统及方法。
背景技术
在油田开发后期,注水开发是为地层补能的重要手段,然而由于油藏层间矛盾的存在,笼统注水会产生各层间吸水不均,达不到良好的水驱效果,因此分层注水工艺尤为重要。分层注水技术历经固定式分层注水、活动式分层注水、偏心分层注水、桥式同心分层注水以及最新一代的智能化分层注水等技术发展阶段。
常规分层注水需要使用钢丝作业实现分层调控,作业耗时长、效率低;而井下智能调控设备多使用电缆进行供电及数据传输,起下工艺复杂且作业成本较高。现有井下智能注水装置一般使用电磁波或者压力脉冲进行指令控制及数据传输,受井筒及地层环境影响较大,对于复杂及较深储层、复杂井身结构井适应性较差。因而更需要发明一种受环境影响小、数据传输效率高的井下智能数据传输方法,以及所配套适用的高稳定性、低作业施工运用难度、低操作成本且不需频繁维护的智能注水系统。
因而,现有技术需要提供一种用于注水井的注水调控方案,从而有效解决上述一个或多个技术问题。
发明内容
为了解决上述技术问题,本发明实施例提供了一种用于注水井的注水调控系统,包括:游子限位装置,其设置在井口,用于在接收到激活指令时释放游子,以及自动捕捉上浮至井口的所述游子;地面输水装置,其出口与所述游子限位装置的内部空间连通,用于通过所述游子限位装置向井下注水;所述游子,其用于在配水工况下,接收用来对各井下配水装置进行配水调控的配水指令,并在被释放后随水流进入注水管柱,以及完成数据收集后主动上浮至井口;多个井下配水装置,每个配水装置设置于目标层处并安装在所述注水管柱的侧壁外,用于监测目标层的生产数据,并在探测到所述游子时,将所述生产数据与所 述游子所携带的关于自身的所述配水指令进行交换,以利用所述配水指令进行配水调控。
优选地,所述游子限位装置包括:与所述地面输水装置的出口相连通的井口设备,其底部与井口连通,用于为所述游子提供井口容纳空间;捕捉装置,其设置在所述井口设备的上端部,用于对所述游子进行限位固定控制及释放控制;井口信号交换装置,其设置在所述井口设备的外部并安装在所述捕捉装置上,用于通过与所述游子通讯,来促使所述游子获得所述配水指令,并读取所述游子收集到的所有生产数据。
优选地,所述井口信号交换装置,其还与所述捕捉装置通讯,用于在配水工况下向所述捕捉装置发送所述激活指令,以及实时探测所述游子是否靠近捕捉装置,并在探测到所述游子时,生成捕捉指令,从而将所述捕捉指令发送至所述捕捉装置。
优选地,所述游子包括:承压外壳;设置于所述承压外壳内部的第一信号收发设备,其用于持续发出第一探测信号;设置于所述承压外壳内部的第一数据存储及处理设备,其与所述第一信号收发设备连接,用于在靠近相应目标配水层的水下配水装置时,在所述第一信号收发设备的配合下,与当前井下配水装置进行无线通讯,以实现配水指令与生产数据的信息交换;设置于所述承压外壳内部的轻质绝缘填充部。
优选地,所述井下配水装置包括:设置于注水管柱的侧壁上的配水短节本体,所述配水短节本体的两端设置有上接口和下接口;与所述注水管柱连通的注水出口,所述注水出口设置在所述配水短节本体的侧壁上;第二信号收发设备;第二数据存储及处理设备,其与所述第二信号收发设备连接,用于在探测到所述第一探测信号时与所述游子进行无线通讯,从而实现配水指令与生产数据的信息交换;同时与所述注水出口和所述第二数据存储及处理设备连接的动力设备,其用于在所述配水指令的控制下,对所述注水出口的流速和/或出口口径进行调控。
优选地,所述注水调控系统还包括:设置于所述井筒底部的防溢收口装置,所述防溢收口装置用于在所述游子随水流经过所有井下配水装置后进行井底限位。
优选地,所述防溢收口装置的中心轴线位置处设置有一贯穿于顶部与底部之间的通孔,所述通孔的轴向截面的两侧纵向边缘均呈开口向外的抛物线状,所述通孔的最小内径小于所述游子的外径,并且所述通孔的最大内径大于所述游子的外径。
优选地,所述地面输水装置包括:第一注水管线,其出口与所述游子限位装置内的井口设备的侧壁连通,用于在注水工况下与所述井口设备连通,并在所述配水工况下不与所 述井口设备的侧壁连通;第二注水管线,其第一端与所述第一注水管线的侧壁连通,所述第二注水管线的第二端与所述游子限位装置内的井口设备的侧壁连通,用于在配水工况下与所述井口设备连通。
优选地,所述地面输水装置,还包括:靠近于所述第一注水管线的入口处的第一注入阀;设置于所述第二注水管线内的第二注入阀;靠近于所述第一注水管线的出口处的第三注入阀。
优选地,所述游子限位装置,其还用于监测装置内部空间的动态压力,以判断所述游子到达井筒底部的时机,基于此,生成停止注水指令,以使得注水装置停止注水。
优选地,所述游子,其还用于在所述注水装置停止注水后,在静水环境中依靠自身浮力,从井底向井口移动。
另一方面,提供了一种用于注水井的注水调控方法,所述注水调控方法利用如上述所述的注水调控系统来实现,其中,所述注水调控方法包括:将地面输水装置与游子限位装置连通,并通过所述游子限位装置向井下注水;在配水工况下,所述游子接收用来对各井下配水装置进行配水调控的配水指令;利用所述游子限位装置来在接收到激活指令时释放游子,使得所述游子在被释放后随水流进入注水管柱;利用每个设置于目标层处并安装在所述注水管柱的侧壁外的井下配水装置来监测目标层的生产数据,并在探测到所述游子时,将所述生产数据与所述游子所携带的关于自身的所述配水指令进行交换,以利用所述配水指令进行配水调控;所述游子完成数据收集后主动上浮至井口;由所述游子限位装置自动捕捉上浮至井口的所述游子。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
本发明提出了一种用于注水井的注水调控系统及方法。该系统及方法使用智能游子进行井下数据传输及注水调控的智能注水调控,实现对分层注水井各注水段实时无线智能测调及数据监控。本发明通过形成一种特殊的井下数据信号双向传输方法,不仅缩短了数据传输及信号控制的距离,使得数据与指令的交换传输场景受环境干扰弱,数据交换速度更快、更稳定,可解决现有无线传输测调装置使用电磁波或脉冲传导等技术受环境因素干扰较大、使用深度受限等难题,对实现高效、低成本智能油田具备现实意义。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要 求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本申请实施例的用于注水井的注水调控系统的整体结构示意图。
图2为本申请实施例的用于注水井的注水调控系统的应用环境及具体结构示意图。
图3为本申请实施例的用于注水井的注水调控系统中的游子的结构示意图。
图4为本申请实施例的用于注水井的注水调控系统中的井下配水装置的结构示意图。
图5为本申请实施例的用于注水井的注水调控系统的运行过程示意图。
图6为本申请实施例的用于注水井的注水调控方法的步骤图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
另外,附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在油田开发后期,注水开发是为地层补能的重要手段,然而由于油藏层间矛盾的存在,笼统注水会产生各层间吸水不均,达不到良好的水驱效果,因此分层注水工艺尤为重要。分层注水技术历经固定式分层注水、活动式分层注水、偏心分层注水、桥式同心分层注水以及最新一代的智能化分层注水等技术发展阶段。
常规分层注水需要使用钢丝作业实现分层调控,作业耗时长、效率低;而井下智能调控设备多使用电缆进行供电及数据传输,起下工艺复杂且作业成本较高。现有井下智能注水装置一般使用电磁波或者压力脉冲进行指令控制及数据传输,受井筒及地层环境影响较 大,对于复杂及较深储层、复杂井身结构井适应性较差。因而更需要发明一种受环境影响小、数据传输效率高的井下智能数据传输方法,以及所配套适用的高稳定性、低作业施工运用难度、低操作成本且不需频繁维护的智能注水系统。
2019年,谭绍栩等介绍了一种海上平台分层注水的系统设备。该套系统通过井下压力传感器和液控滑套进行数据实时采集和流量控制,实现地面与井下的监控与数据交换。该套系统数据交换使用了一种永久式井下压力计,该压力计带有两个传感器可以检测套管中轻微的压力波动、温度波动及流量波动,并讲所监测数据通过电缆传输至地面。然而使用有缆信号传输工具入井作业复杂,管线较多,易出现管线破损、电缆绝缘失效等问题,增加了起下井作业难度及时间及成本。
申请号201220122870.2的《油田注水井细分注水投球调剖一体化管柱》提出了一种使用投球调剖的一体化管柱,该管柱可通过井口投球进行井下分层注水的配水调控。然而该方法只能进行特定的注水量调控,且调控次数有限,并且无法同时进行井下生产数据的监控与传输反馈。
申请号201821966297.7的《一种缆控式智能分层注水装置系统》提出了一种缆控式智能分层注水装置系统。该系统使用电缆对井下智能配注工具串进行控制,以达到对分层注水时各层段注水调配及分段流量的自动测调。然而该装置使用电缆作为电信号及能源传输媒体,起入井作业时施工较为复杂,且电缆易受环境影响损坏,损坏后作业维修时间长,增大了运营维护成本。
申请号201821544813.7的《一种注水井压力波码智能分层注水系统》提出了一种在注水井运用的使用压力波码进行调控的分层注水系统。该方法通过井口向注水通道发射压力波码,井下精准流量监测装置收到波码后命令智能注水系统进行配水调节。该方法的使用避免了传统钢丝及电缆调控及有缆智能配水系统所带来的作业费用高等问题,然后该方法所使用的井下流量计不稳定、易损坏,且井内环境复杂,压力波受环境影响大导致监测误差调控难度大,使得该方法信号调控较难适用于复杂井筒及流量环境。
因此,为了解决上述一个或多个技术问题,本申请实施例提出了一种用于注水井的注水调控系统及方法。该系统及方法包括作为地面智能井口的游子限位装置、地面输水装置、油管智能信号交换游子、井下智能分层配水测调装置。通过特制的一般停留在井口处的信号交换游子,使用时该游子能在注水管柱内自由上下移动,移动至注水段智能测调装置时 可以进行数据交换,驱动测调装置进行水嘴调控,并同时收集包括井下温压、流量等生产监测数据,完成所有测调装置的信息交换及生产数据收集任务后,通过浮力快速返回井口并传输所携带数据。本发明能够解决现有无线传输测调装置使用电磁波或脉冲传导等技术受环境因素干扰较大、使用深度受限等难题,对实现高效、低成本智能油田具备现实意义。
需要说明的是,在本发明实施例中所涉及的“上方”、“下方”均为相对方向,具体地,将指向天空的方向称为“上方”,将指向井下的方向称为“下方”。
图1为本申请实施例的用于注水井的注水调控系统的整体结构示意图。如图1所示,本发明实施例所述的用于注水井的注水调控系统(以下简称“注水调控系统”)至少包括:游子限位装置A、地面输水装置B、游子C和多个井下配水装置D。游子限位装置A设置在井口,具体设置在注水管柱(注水井筒)11的井口处。进一步,游子限位装置A的内部空间构造成井口空间,游子限位装置A的底部(内部)与注水管柱11的井口相连通。地面输水装置B设置在地面,并且地面输水装置B的出口与游子限位装置A的内部空间相连通。其中,通过在套管12与注水管柱11之间设置位于不同井深位置处的封隔器(参见图2中的封隔器13、15)来将不同注水层内的射孔段间隔开来。每个井下配水装置D分别设置于不同注水层内。进一步,每个井下配水装置D均设置在不同目标层(参见图2中的目标层1、目标层2)的射孔段(参见图2中的目标层1的射孔段13、目标层2的射孔段16)处,并且,环绕安装在相应目标层所在注水管柱11的侧壁外。也就是说,每个注水层内的射孔段处所对应的注水管柱11的外侧均安装有相对应的井下配水装置D。
具体地,游子限位装置A用于对设置在井口的游子C进行限位固定,其中,在接收到(游子)激活指令时,释放游子C。另外,游子限位装置A还用于自动捕捉上浮至井口的游子C。地面输水装置B用来通过游子限位装置A和注水管柱11向井下注水。
游子C用于在配水工况下,接收用来对各个井下配水装置D进行配水(量)调控的配水指令,并在被释放后随水流进入,以及完成数据收集后主动上浮至井口,以被游子限位装置A进行限位固定。需要说明的是,在本发明实施例中,注水调控系统分别具有两种工况,分别为注水工况和配水工况。配水工况为一个或多个井下配水装置D进行井下配水和/或生产数据采集时所对应的配水指令传输及生产数据收集过程;注水工况为按照配水工况为井下配水装置D所配置的配水参数(包括:注水出口流速和/或注水出口口径)进行注水作业的过程。
每个井下配水装置D均用于实时监测所在目标层的生产数据,并实时检测游子C是否靠近并经过相应配水装置D,其中,在检测到游子C靠近自身相应目标层的射孔段时(在探测到游子3时),将当前井下配水装置D所收集并存储的生产数据与游子C所携带的关于自身(当前井下配水装置D)的配水指令进行信息交换,使得当前井下配水装置D利用交换后所得到的针对自身的配水指令,对当前注水层段进行配水调控,并使得游子C在信息交换后获得关于自身的生产数据,以完成针对当前井下配水装置D的生产数据收集任务。
图2为本申请实施例的用于注水井的注水调控系统的应用环境及具体结构示意图。下面结合图1和图2,对本发明实施例所述的注水调控系统的具体结构及功能进行说明。
如图2所示,游子限位装置A作为注水调控系统的智能井口装置,至少包括:井口设备4、捕捉装置2和井口信号交换装置1。井口设备4与地面输水装置B的出口相连通,并且,井口设备4的底部与注水管柱11的井口相连通。捕捉装置2设置在井口设备4的上端部。井口信号交换装置1设置在井口设备4的外部,并且,安装在捕捉装置2的上端面上。地面输水装置B与注水装置(未图示)相连通,地面输水装置B作为注水调控系统的水输送管线装置,主要用来将注水装置中所存储的水输送至注水管柱11的井口位置,以通过注水管柱11向井下输送注入水。
井口设备4构造为中空壳体,用于为游子C(参见图2中的部件3)提供井口容纳空间。捕捉装置2为智能井口游子捕捉装置,用于对游子3进行限位固定控制及释放控制。井口信号交换装置1为智能井口信号交换装置,并与游子3进行通讯。井口信号交换装置1用于通过与游子3的通讯来促使游子3获得针对需要进行配水调控的一个或多个井下配水装置D的配水指令,以及读取游子收集到的所有生产数据。
具体地,在正常注水工况下,游子3通过捕捉装置2而实现井口限位固定。其中,在需要对一个或多个井下配水装置进行井下配水和/或生产数据采集时,井口信号交换装置1向捕捉装置2发送激活指令,使得捕捉装置2在激活指令的作用下,释放游子3。
另外,在本发明实施例中,井口信号交换装置1具备智能天线,由于游子3在完成所有井下配水装置D的生产数据收集任务后通过自身浮力返回至井口,因此,本发明实施例所述的井口信号交换装置1还用于通过智能天线来实时检测游子3所实时发出的下述第一探测信号的信号强度,从而根据信号强度的诊断结果来实时探测游子3是否靠近捕捉装 置2。其中,井口信号交换装置1用于在检测到游子3正在逐渐靠近捕捉装置2时,立即生成捕捉指令,从而将捕捉指令发送至捕捉装置2,继而使得捕捉装置2在捕捉指令的作用下完成对游子3的井口限位固定操作。
图3为本申请实施例的用于注水井的注水调控系统中的游子的结构示意图。如图3所示,游子3作为注水调控系统的智能信号游子装置,至少包括:承压外壳301、第一信号收发设备305、第一数据存储及处理设备304和轻质绝缘填充部302。承压外壳301采用承压材料制成,构造为中空外壳结构。第一信号收发设备305和第一数据存储及处理设备304均设置于承压外壳301的内部,并且承压外壳301的内部(剩余)空间全部利用轻质绝缘填充部302来实现填充。其中,第一数据存储及处理设备304与第一信号收发设备305电连接,并实现通信。另外,本发明实施例所述的游子3还包括第一供电装置303。供电装置303为第一信号收发设备305和第一数据存储及处理设备304提供正常工作所需的电源能量。
进一步,本发明实施例所构造的智能信号游子3的密度小于水,并可在水流速较小或静水中自由上浮。而且,游子3的尺寸略小于注水管柱11的截面尺寸,使得游子3可在注水管柱11中上下移动。在正常注水工况条件下可依据注水速度随水流移动,从而通过注水管柱11向井下移动。
进一步,第一信号收发设备305用于持续发出第一探测信号。优选地,第一信号收发设备305还用于在接收到激活指令时持续发出第一探测信号。第一探测信号优选为超声波信号。需要说明的是,第一探测信号在保证正常通信的情况下需要尽量降低信号强度以保证电池续航。
进一步,第一数据存储及处理设备304与第一信号收发设备305通讯连接。第一数据存储及处理设备304用于在靠近相应目标配水层的水下配水装置D时,在第一信号收发设备305的配合下,与当前井下配水装置D进行无线通讯,以实现针对当前正在经过的井下配水装置D的配水指令与生产数据的信息交换。
图4为本申请实施例的用于注水井的注水调控系统中的井下配水装置的结构示意图。如图4所示,在多个井下配水装置D(参见图2中的部件9、10)中,每个井下配水装置9、10的结构均相同。具体地,井下配水装置9、10至少包括:配水短节本体907、上接口901、下接口909、注水出口908、第二信号收发设备904、第二数据存储及处理设备 903和动力设备906。
如图2所示,配水短节本体907设置于注水管柱11的侧壁上。如图4所示,第二信号收发设备904、第二数据存储及处理设备903和动力设备906均设置于配水短节本体907的内壁上。第二信号收发设备904与第二数据存储及处理设备903电连接,并实现通信。注水出口908与注水管柱11相连通,并且注水出口908设置在配水短节本体901的侧壁上。注水出口908通过可调水嘴来实现。动力设备906采用可调电机。动力设备906同时与注水出口908和第二数据存储及处理设备903电连接。
另外,本发明实施例所述的井下配水装置9、10还包括第二供电装置902和生产数据监测装置905。生产数据监测装置905与第二数据存储及处理设备903连接,用来持续监测当前注水层的温度、压力和流量等动态生产数据,并将获得动态生产数据发送至第二数据存储及处理设备903,以对动态生产数据进行存储,从而使得第二数据存储及处理设备903在与游子3进行信息交换时,直接将所存储的动态生产数据传递至游子3内的第一数据存储及处理设备304进行存储。第二供电装置902为生产数据监测装置905、第二信号收发设备904、第二数据存储及处理设备903和动力设备906提供正常工作所需的电源能量。
进一步,第二信号收发设备904用于实时探测第一探测信号。优选地,第二信号收发设备904还用于在探测到第一探测信号后将该信号发送至第二数据存储及处理设备903。第二数据存储及处理设备903与第二信号收发设备904通讯连接。第二数据存储及处理设备903用于在探测到第一探测信号时,通过第一信号收发设备305和第二信号收发设备904来与游子3内的第一数据存储及处理设备304进行无线通讯,从而实现配水指令与生产数据的信息交换。
进一步,第二数据存储及处理设备903还用于通过第二信号收发设备904来实时检测游子3所实时发出的第一探测信号的信号强度,从而根据信号强度的诊断结果来实时探测游子3是否靠近当前注水层(目标层)的井下配水装置9或10。其中,第二数据存储及处理设备903用于在检测到游子3正在逐渐靠近当前井下配水装置9或10(例如:第一探测信号的信号强度逐渐增强)时,立即生成到达反馈信号,并将该到达反馈信号通过第二信号收发设备904传输至游子3内的第一信号收发设备305。此时,游子3内的第一数据存储及处理设备304通过第一信号收发设备305接收到当前井下配水装置9或10发出的到达反馈信号,立即启动游子3与当前所到达注水层内的井下配水装置之间的信息交换 任务。
另外,在完成游子3与当前井下配水装置之间的信息交换任务后,当前井下配水装置内的动力设备906还用于接收来自第二数据存储及处理设备903所发送的针对当前注水层的配水指令,并在当前配水指令的作用下,对自身转速和/或注水出口908的出口口径进行调节,以对当前注水出口流速和/或出口口径进行调节,从而完成当前注水层的配水调控任务。此时,由于游子3随水流逐渐向井下移动,当前井下配水装置内的第二数据存储及处理设备903会检测到游子3正在逐渐离开当前井下配水装置9或10(例如:第一探测信号的信号强度逐渐减弱直至无法检测到第一探测信号),从而使得游子3与当前井下配水装置完成信息交换任务(一方面,完成当前注水层的生产数据的收集任务,同时,完成当前注水层的配水调控任务),继而继续向下一注水层移动,以完成与下一注水层内的井下配水装置的信息交换任务。
更进一步地说,在游子3内的第一数据存储及处理设备304获得到达反馈指令后,立即将针对当前注水层处的井下配水装置的配水指令通过第一信号收发设备305发送至当前井下配水装置内的第二信号收发设备904,而后,当前井下配水装置内的第二数据存储及处理设备903在通过第二信号收发设备904而获得针对当前注水层的配水指令后,一方面将当前配水指令直接发送至动力设备906,此时,动力设备906利用当前配水指令对当前注水层的配水流量进行按需调节,以完成针对当前注水层的配水调控任务;同时,第二数据存储及处理设备903还会将自身存储的针对当前注水层的(未向地面发送的)动态生产数据,通过第二信号收发设备904传输至游子3内的第一信号收发设备305,而后,游子3内的第一数据存储及处理设备304通过第一信号收发设备305而获得针对当前注水层的(需要传输至地面的)动态生产数据,并对当前动态生产数据进行存储,从而完成针对当前注水层的生产数据收集任务。这样,便完成了游子3所携带的针对当前注水层的配水指令与井下配水装置所收集的生产数据的信息交换任务,使得游子3完成了针对当前注水层的生产数据的收集,同时使得当前井下配水装置按照交换所得到的针对当注水层的配水指令完成按需配水调控。
由此,本发明所构造的智能信号游子可与井下智能配水装置内信号传输系统进行数据交换,同时,利用自身芯片具备数据读写与存储功能,可携带井下反馈生产数据至井口进行生产数据反馈传输,从而使得地面获得井下监测所得到的包括温度、压力、流量等生产参数数据。
进一步,本发明实施例所述的多个井下配水装置D作为配合智能游子C使用的井下智能配水装置,不仅可以对井下生产数据进行监测,还可与智能游子C进行数据交换,并依据所收的配水指令进行配水调整。
进一步,本发明实施例所述的注水调控系统还包括:防溢收口装置17。防溢收口装置17设置于注水管柱11的底部。防溢收口装置17用于在游子3随水流经过所有井下配水装置后进行井底限位。
如图2所示,防溢收口装置17连接于管柱11之上,并构造为圆柱形结构。防溢收口装置17的中心轴线位置处设置有一贯穿于顶部与底部之间的通孔(未编号)。防溢收口装置17的底部具有可防溢的筛网。所述通孔的上、下端面水平且相互平行。所述通孔的轴向截面的两侧纵向边缘均呈开口向外的抛物线状。所述通孔的最小内径略小于游子3的外径,并且通孔的最大内径略大于游子3的外径。在实际应用过程中,当游子3通过最后一个井下配水装置并进入防溢收口短节时,由于此段内径明显缩小(由井筒11的内径突变为通孔内径),故而流体流动面积将会变小,在注入流量保持不变的情况下,井口注入压力将增大,进而可知该游子3已到达井筒11底部。
这样,本发明实施例所述的被防溢收口装置17一方面能够对游子3的向下移动进行阻拦,以防止运动脱离出管柱11,还能在游子3被通孔限位卡住时使得井口通过感知压力的突然增加而进一步促使游子限位装置A识别出游子3到达井筒11底部的时机,从而立即生成停止注水指令,实现注水调控系统与注水装置的联动控制。
另外,本发明所述的游子限位装置A中还用于实时监测装置内部空间的动态压力,根据所监测的动态压力来判断游子3到达井筒底部的时机,并在检测出游子3到达管柱11的底部时,生成停止注水指令,以使得与地面输水装置B连接的注水装置(未图示)停止注水。进一步,游子3还用于在注水装置停止注水后,在静水环境中依靠自身浮力,从井底向井口移动。
具体地,游子限位装置A中的智能井口信号交换装置1能够实时监测井口设备4的内部动态压力,在游子3达到井筒11底部的防溢收口装置17后,井口压力会发生显著变化,从而检测到游子到达井筒11的底部的时机,而后立即生成停止注水指令,并将停止注水指令发送至注水装置,使得注水装置停止向地面输水装置B输送注入水。在注水装置停止注水后,注水管柱11内的注入水流速逐渐降低并趋于静止,此时,游子3在静水 环境中依靠自身浮力,从井底向井口移动,从而在井口信号交换装置1检测到游子3逐渐接近捕捉装置2时,控制捕捉装置2对游子3进行井口限位固定。最后,井口信号交换装置1直接读取游子3所存储的针对所有井下配水装置的动态生产数据。这样,游子3便完成了一趟配水指令的下发与生产数据的收集任务。
进一步,本发明实施例所述的游子限位装置A为能够配合游子C使用的智能井口,该井口实现了对游子的捕捉、固定、释放、信号交换与数据读取功能,确保智能游子反馈数据的高效传输,有效提高工作效率并降低运行成本。
再次如图2所示,本发明实施例所述的地面输水装置B包括:第一注水管线(未编号)和第二注水管线(未编号)。第一注水管线的出口与游子限位装置A内的井口设备4的侧壁连通。第一注水管线的入口作为注水作业的注水入口,与上述注水装置(的储水罐)连通;第二注水管线的第一端与第一注水管线的侧壁连通,并且第二注水管线的第二端与游子限位装置A内的井口设备4的侧壁连通。第二注水管线的第二端位于第一注水管线出口。其中,通过第二注水管线的第一端与第一注水管线的侧壁连通来使得第二注水管线的第一端将第一注水管线划分为两段,分别为第一管线入口段和第一管线出口段。进一步,第二注水管线作为第一管线出口段的旁路,与第一管线出口段并联。
具体地,第一注水管线用于在注水工况下与井口设备4连通,并在配水工况下不与井口设备的侧壁连通。另外,第二注水管线用于在配水工况下与井口设备4连通。也就是说,在注水调控系统的正常注水工况下,通过第一注水管线来将注入水输送至井口,以向井下注入;在注水调控系统的配水工况下,将第一管线入口段与第二注水管线连通,通过连通后的第一管线入口段和第二注水管线来将注入水输送至井口,以向井下注入。其中,通过游子限位装置A中的井口信号交换装置1所发送的捕捉指令实现从第一注水管线与井口设备4的连通关系切换至第二注水管线与井口设备4的连通关系。
进一步,本发明实施例所述的地面输水装置B,还包括:分别与智能井口(游子限位装置A)连接的第一注入阀5、第二注入阀7和第三注入阀8。第一注入阀5设置在靠近于第一注水管线的入口处,即设置于第一管线入口段内。第二注入阀7设置于第二注水管线内。第三注入阀8设置在靠近于第一注水管线的出口处,即设置于第一管线出口段内。这样,本发明实施例通过游子限位装置A对注入阀5、7、8的不同的开闭控制,使得在不同系统工况下利用不同注入水输送线路将注水装置内的水输送至井口,以辅助注水作业和分层配水操作的实施。
另外,上述游子限位装置A还包括设置在井口设备4内腔中部的限位件20,所述限位件20采用弹性材料制成。限位件20安装于井口设备4的中部的内壁上,位于第一注水管线的出口端与第二注水管线的出口端之间。限位件20与捕捉装置2共同形成游子3在井口设备4内部的游子限位腔。
在游子3需要作业时,第一注入阀5、第二注入阀7打开,第三注入阀8关闭,此时,水流通过第一注水管线进入井口捕捉装置2的游子限位腔中,在水压力的作用下迫使游子运动脱离限位装置2并向井下运动,而后,完成配水指令与生产数据交换任务;待游子3结束井下信号交换并上浮运行至井口时,通过井口信号交换装置1发出的捕捉指令,控制地面控制系统将第二注入阀7关闭并将第三注入阀8打开,此时,水流通过第二注水管线进入井内,游子将在水压力的作用下进入捕捉装置2中,并使得捕捉装置2完成捕捉动作。
另外,本发明实施例所述的地面输水装置B,还包括:与智能井口(游子限位装置A)连接的流量计6。其中,流量计6设置于第一管线入口段内。进一步,本发明实施例所述的游子限位装置A还用于实时检测地面输水装置B的入口端的动态流量,以利用动态流量对注水装置向地面输水装置B(第一管线入口段)所泵入的注入水的流速,从而动态调节注入水的流速,灵活控制游子3在注水管柱内上下运动做需要的水流速度。
图5为本申请实施例的用于注水井的注水调控系统的运行过程示意图。下面参照图5,对本发明实施例所述的注水调控系统的多种运行状态进行说明。
S1、正常注水工况时,智能游子3处于待机状态,如图5中的状态1所示。所注水经由注入阀一5、流量计6、注入阀三8、井口设备4后进入注水管柱11中,并通过井下智能配水装置一9和井下智能配水装置二10调配后进入目标注水地层;
S2、在需要进行井下配水和/或生产数据采集时,则需要运用智能游子3。智能游子3外包裹承压外壳301,内含供电装置303、数据存储及处理系统304及信号收发装置305,填充为轻质绝缘填充302,游子整体密度小于水,可在静水中上浮,且尺寸略小于注水油管,可在注水油管中上下移动。在指令激活时,游子限位装置通过智能井口天线1发送激活指令,智能井口游子捕捉装置2释放智能游子3。此时,注入阀三8关闭,并开启注入阀二7改变注水井口入口。智能游子3被释放后将由水流冲离井口,并进入注水管柱11中,如图5中的状态2所示。智能游子3被释放后,信号收发装置305将持续发送弱信号,以探测是否与井下智能配水装置一或二接近至足够距离;
S3、智能游子3在运行过程中会随所注水通过井下智能配水装置一9及井下智能配 水装置二10。智能配水装置9/10包含供能装置902,内置可充电电池,可为数据处理及存储系统903、信号收发装置904、生产数据监测系统905及调控电机906等提供电能;正常注水工况时,生产数据监测系统905将持续监控温度、压力、流量等数据,并存储于处理及存储系统903中。智能游子3被释放后持续发出弱探测信号以确定是否与智能配水装置足够接近,当靠近智能配水装置时,智能配水装置中信号收发装置904接收到智能游子3所发送信号,与数据处理及存储系统903进行相应信号处理后通过信号收发装置904发送到达反馈信号,智能游子3收到反馈信号后会与井下智能注水装置9/10开始进行信息交换。信息交换后,智能配水系统将依据所收集配水指令,驱动调控电机906来调整注水出口908,从而完成配水调节。智能游子3在信息交换后将储存智能配水装置9/10所传输来的井下生产参数数据。
S4、随着注水持续,智能游子3将继续运动到油管底端,并被防溢收口装置17所阻拦以防运动脱离出油管,如图5中的状态3所示。此时,井口油管压力将会产生变化,本系统可监测依据压力监控判别游子3到达管柱底部的时间;
S5、智能游子3运动至管柱底部后,暂停注水,智能游子3将凭借浮力在管柱11中自由上浮,如图5中的状态4所示,直至井口设备4中。智能井口信号交换系统1将感应游子3的接近,并命令智能井口游子捕捉装置2对游子进行捕捉和固定;
S6、智能游子3与智能井口信号交换系统1进行数据传递,游子将所携带生产参数数据通过智能井口信号交换系统传至智能井口信号交换系统1,进一步智能井口信号交换系统1将所收集到的生产数据传输至地面计算机来进行有效存储,而后清空游子3内的储存空间,从而进入待机模式并等待下一次启动,本发明实施例所述的注水调控系统完成单次运行。
示例一
由于地层压力变化,需要进行一次井下配水调控,减小对目标层1的注水量并增大对目标层2的注水量,同时进行一次井下压力、温度及流量数据的收集。
依照步骤1开启系统,激活智能游子并赋予游子所需指令信息,释放游子使其在水流作用下持续在油管中向下运动;
当智能游子接近目标层1时,智能游子与目标层1所对应的智能配水装置进行指令传输与数据交换,向该配水器发布缩小配水阀指令;配水器处理信号后通过机械作用改变流 水出口,并向游子传输该目标层段1的温压、流量数据;
智能游子接收并存储该组数据后继续运动至目标层2,同样与目标层2所对应的智能配水装置进行指令传输与数据交换,向该配水器发布增大配水阀指令;配水器处理信号后通过机械作用改变流水出口,并向游子传输该目标层段2的温压、流量数据;
游子运动到油管底部后被压力系统所感应,停止注水使其自由上浮,如步骤5所述,后如步骤6所述,游子运动至井口并进行固定与数据释放,本次运行结束,成功调整了目标层配水并收集了井下一定时间段内的温度、压力及流量数据。
另一方面,基于上述注水调控系统,本发明实施例还提供了一种用于注水井的注水调控方法(以下简称“注水调控方法”)。图6为本申请实施例的用于注水井的注水调控方法的步骤图。如图6所示,本发明实施例所述的注水调控方法按照如下步骤实施:
步骤S601、将地面输水装置B与游子限位装置A连通,并通过游子限位装置A向井下注水;
步骤S602、在配水工况下,游子C接收用来对各井下配水装置进行配水调控的配水指令;
步骤S603、利用游子限位装置A来在接收到激活指令时释放游子C,使得游子C在被释放后随水流进入注水管柱;
步骤S604、利用每个设置于目标层处并安装在注水管柱的侧壁外的井下配水装置D来监测目标层的生产数据,并在探测到游子C时,将当前生产数据与游子C所携带的关于自身的配水指令进行交换,以利用交换后的配水指令对当前层段进行配水调控;
步骤S605、游子C完成数据收集后主动上浮至井口;
步骤S606、由游子限位装置A自动捕捉上浮至井口的游子C。
本发明公开了一种用于注水井的注水调控系统及方法。该系统及方法使用智能游子进行井下数据传输及注水调控的智能注水调控,实现对分层注水井各注水段实时无线智能测调及数据监控。本发明通过形成一种特殊的井下数据信号双向传输方法,不仅缩短了数据传输及信号控制的距离,使得数据与指令的交换传输场景受环境干扰弱,数据交换速度更快、更稳定,可解决现有无线传输测调装置使用电磁波或脉冲传导等技术受环境因素干扰较大、使用深度受限等难题,对实现高效、低成本智能油田具备现实意义。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人员在本发明所揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
应该理解的是,本发明所公开的实施例不限于这里所公开的特定结构、处理步骤或材料,而应当延伸到相关领域的普通技术人员所理解的这些特征的等同替代。还应当理解的是,在此使用的术语仅用于描述特定实施例的目的,而并不意味着限制。
说明书中提到的“一个实施例”或“实施例”意指结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一个实施例”或“实施例”并不一定均指同一个实施例。
虽然本发明所披露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (12)

  1. 一种用于注水井的注水调控系统,其特征在于,包括:
    游子限位装置,其设置在井口,用于在接收到激活指令时释放游子,以及自动捕捉上浮至井口的所述游子;
    地面输水装置,其出口与所述游子限位装置的内部空间连通,用于通过所述游子限位装置向井下注水;
    所述游子,其用于在配水工况下,接收用来对各井下配水装置进行配水调控的配水指令,并在被释放后随水流进入注水管柱,以及完成数据收集后主动上浮至井口;
    多个井下配水装置,每个配水装置设置于目标层处并安装在所述注水管柱的侧壁外,用于监测目标层的生产数据,并在探测到所述游子时,将所述生产数据与所述游子所携带的关于自身的所述配水指令进行交换,以利用所述配水指令进行配水调控。
  2. 根据权利要求1所述的注水调控系统,其特征在于,所述游子限位装置包括:
    与所述地面输水装置的出口相连通的井口设备,其底部与井口连通,用于为所述游子提供井口容纳空间;
    捕捉装置,其设置在所述井口设备的上端部,用于对所述游子进行限位固定控制及释放控制;
    井口信号交换装置,其设置在所述井口设备的外部并安装在所述捕捉装置上,用于通过与所述游子通讯,来促使所述游子获得所述配水指令,并读取所述游子收集到的所有生产数据。
  3. 根据权利要求2所述的注水调控系统,其特征在于,所述井口信号交换装置,其还与所述捕捉装置通讯,用于在配水工况下向所述捕捉装置发送所述激活指令,以及实时探测所述游子是否靠近捕捉装置,并在探测到所述游子时,生成捕捉指令,从而将所述捕捉指令发送至所述捕捉装置。
  4. 根据权利要求1~3中任一项所述的注水调控系统,其特征在于,所述游子包括:
    承压外壳;
    设置于所述承压外壳内部的第一信号收发设备,其用于持续发出第一探测信号;
    设置于所述承压外壳内部的第一数据存储及处理设备,其与所述第一信号收发设备连接,用于在靠近相应目标配水层的水下配水装置时,在所述第一信号收发设备的配合下,与当前井下配水装置进行无线通讯,以实现配水指令与生产数据的信息交换;
    设置于所述承压外壳内部的轻质绝缘填充部。
  5. 根据权利要求4所述的注水调控系统,其特征在于,所述井下配水装置包括:
    设置于注水管柱的侧壁上的配水短节本体,所述配水短节本体的两端设置有上接口和下接口;
    与所述注水管柱连通的注水出口,所述注水出口设置在所述配水短节本体的侧壁上;
    第二信号收发设备;
    第二数据存储及处理设备,其与所述第二信号收发设备连接,用于在探测到所述第一探测信号时与所述游子进行无线通讯,从而实现配水指令与生产数据的信息交换;
    同时与所述注水出口和所述第二数据存储及处理设备连接的动力设备,其用于在所述配水指令的控制下,对所述注水出口的流速和/或出口口径进行调控。
  6. 根据权利要求1~5中任一项所述的注水调控系统,其特征在于,所述注水调控系统还包括:设置于所述井筒底部的防溢收口装置,所述防溢收口装置用于在所述游子随水流经过所有井下配水装置后进行井底限位。
  7. 根据权利要求6所述的注水调控系统,其特征在于,所述防溢收口装置的中心轴线位置处设置有一贯穿于顶部与底部之间的通孔,所述通孔的轴向截面的两侧纵向边缘均呈开口向外的抛物线状,所述通孔的最小内径小于所述游子的外径,并且所述通孔的最大内径大于所述游子的外径。
  8. 根据权利要求1~7中任一项所述的注水调控系统,其特征在于,所述地面输水装置包括:
    第一注水管线,其出口与所述游子限位装置内的井口设备的侧壁连通,用于在注水工况下与所述井口设备连通,并在所述配水工况下不与所述井口设备的侧壁连通;
    第二注水管线,其第一端与所述第一注水管线的侧壁连通,所述第二注水管线的第二 端与所述游子限位装置内的井口设备的侧壁连通,用于在配水工况下与所述井口设备连通,其中,通过所述游子限位装置发送的捕捉指令实现从所述第一注水管线与所述井口设备的连通关系切换至所述第二注水管线与所述井口设备的连通关系。
  9. 根据权利要求8所述的注水调控系统,其特征在于,所述地面输水装置,还包括:
    靠近于所述第一注水管线的入口处的第一注入阀;
    设置于所述第二注水管线内的第二注入阀;
    靠近于所述第一注水管线的出口处的第三注入阀。
  10. 根据权利要求1~9中任一项所述的注水调控系统,其特征在于,所述游子限位装置,其还用于监测装置内部空间的动态压力,以判断所述游子到达井筒底部的时机,基于此,生成停止注水指令,以使得注水装置停止注水。
  11. 根据权利要求10所述的注水调控系统,其特征在于,
    所述游子,其还用于在所述注水装置停止注水后,在静水环境中依靠自身浮力,从井底向井口移动。
  12. 一种用于注水井的注水调控方法,其特征在于,所述注水调控方法利用如权利要求1~11中任一项所述的注水调控系统来实现,其中,所述注水调控方法包括:
    将地面输水装置与游子限位装置连通,并通过所述游子限位装置向井下注水;
    在配水工况下,所述游子接收用来对各井下配水装置进行配水调控的配水指令;
    利用所述游子限位装置来在接收到激活指令时释放游子,使得所述游子在被释放后随水流进入注水管柱;
    利用每个设置于目标层处并安装在所述注水管柱的侧壁外的井下配水装置来监测目标层的生产数据,并在探测到所述游子时,将所述生产数据与所述游子所携带的关于自身的所述配水指令进行交换,以利用所述配水指令进行配水调控;
    所述游子完成数据收集后主动上浮至井口;
    由所述游子限位装置自动捕捉上浮至井口的所述游子。
PCT/CN2022/139235 2022-02-28 2022-12-15 一种用于注水井的注水调控系统及方法 WO2023160147A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210189059.4 2022-02-28
CN202210189059.4A CN116696295A (zh) 2022-02-28 2022-02-28 一种用于注水井的注水调控系统及方法

Publications (1)

Publication Number Publication Date
WO2023160147A1 true WO2023160147A1 (zh) 2023-08-31

Family

ID=87764618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139235 WO2023160147A1 (zh) 2022-02-28 2022-12-15 一种用于注水井的注水调控系统及方法

Country Status (2)

Country Link
CN (1) CN116696295A (zh)
WO (1) WO2023160147A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117027744A (zh) * 2023-10-07 2023-11-10 东营华辰石油装备有限公司 测调一体化同心配水调节器
CN117569781A (zh) * 2024-01-16 2024-02-20 西安洛科电子科技股份有限公司 一种一封双配智能注水仪
CN117703325A (zh) * 2024-02-06 2024-03-15 西安思坦仪器股份有限公司 油田波码分注注水地面控制系统
CN117888868A (zh) * 2024-03-18 2024-04-16 西安洛科电子科技股份有限公司 一种井下集成式可充电高速波码配水装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170159417A1 (en) * 2014-07-18 2017-06-08 Schlumberger Technology Corporation Intelligent water flood regulation
CN106988734A (zh) * 2016-01-20 2017-07-28 中国石油化工股份有限公司 一种井下数据转存装置、数据上传系统及数据上传方法
CN110735621A (zh) * 2018-07-18 2020-01-31 中国石油化工股份有限公司 一种用于智能测调井下无线分层配水的方法及系统
CN111927361A (zh) * 2020-08-04 2020-11-13 中国石油天然气股份有限公司 一种气动智能捕捉气井柱塞装置及其捕捉和释放方法
CN213392117U (zh) * 2020-09-27 2021-06-08 中国石油化工股份有限公司 基于近距离无线通信的井下配注控制与数据采集系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170159417A1 (en) * 2014-07-18 2017-06-08 Schlumberger Technology Corporation Intelligent water flood regulation
CN106988734A (zh) * 2016-01-20 2017-07-28 中国石油化工股份有限公司 一种井下数据转存装置、数据上传系统及数据上传方法
CN110735621A (zh) * 2018-07-18 2020-01-31 中国石油化工股份有限公司 一种用于智能测调井下无线分层配水的方法及系统
CN111927361A (zh) * 2020-08-04 2020-11-13 中国石油天然气股份有限公司 一种气动智能捕捉气井柱塞装置及其捕捉和释放方法
CN213392117U (zh) * 2020-09-27 2021-06-08 中国石油化工股份有限公司 基于近距离无线通信的井下配注控制与数据采集系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117027744A (zh) * 2023-10-07 2023-11-10 东营华辰石油装备有限公司 测调一体化同心配水调节器
CN117027744B (zh) * 2023-10-07 2023-12-05 东营华辰石油装备有限公司 测调一体化同心配水调节器
CN117569781A (zh) * 2024-01-16 2024-02-20 西安洛科电子科技股份有限公司 一种一封双配智能注水仪
CN117569781B (zh) * 2024-01-16 2024-04-12 西安洛科电子科技股份有限公司 一种一封双配智能注水仪
CN117703325A (zh) * 2024-02-06 2024-03-15 西安思坦仪器股份有限公司 油田波码分注注水地面控制系统
CN117703325B (zh) * 2024-02-06 2024-05-07 西安思坦仪器股份有限公司 油田波码分注注水地面控制系统
CN117888868A (zh) * 2024-03-18 2024-04-16 西安洛科电子科技股份有限公司 一种井下集成式可充电高速波码配水装置
CN117888868B (zh) * 2024-03-18 2024-05-28 西安洛科电子科技股份有限公司 一种井下集成式可充电高速波码配水装置

Also Published As

Publication number Publication date
CN116696295A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2023160147A1 (zh) 一种用于注水井的注水调控系统及方法
US20180155991A1 (en) Well completion system
CN105422062B (zh) 一种桥式同心集成式验封单层直测调节仪器
WO2018000470A1 (zh) 一种用于储层改造、生产监测与控制的智能开关阀及其施工方法
KR101178148B1 (ko) 이산화탄소 지중 주입을 위한 압력 및 온도 조절 기능이 향상된 이산화탄소 분배 장치
CN101270647B (zh) 海上油田注水井配注量自动调节方法
CN205713966U (zh) 一种复合式海洋天然气水合物地层勘探钻具
RU2587205C2 (ru) Поршневая тянущая система, используемая в подземных скважинах
CN108756838A (zh) 预埋电缆的非金属连续管测控分层注水系统及其操作方法
CN112081548A (zh) 自主通过的管状井下穿梭机
WO2024078506A1 (zh) 一种煤矿瓦斯深孔区域化抽采方法与装置
CN107780905A (zh) 一种压力流量双载波井下与地面通讯装置
CN213574034U (zh) 一种分层采油智能配产控制系统
CN112412369B (zh) 钻井平台热量供应系统
CN102536179A (zh) 自反馈注水井调控装置及其控制方法
CN205154150U (zh) 旋转导向钻井工具钻井液脉冲信号下传装置
CN106089162A (zh) 一种双向无线识别控制的分层段开采生产管柱及调控装置
CN207332851U (zh) 一种缆控井下智能配水器
CN207048773U (zh) 一种自浮式数据读取装置
CN203822220U (zh) 水平井测试仪器可控式注水推进器
CN207437036U (zh) 一种压力流量双载波井下与地面通讯装置
CN108755694B (zh) 止浆器及针对多个溶洞的全孔注浆方法
CN2929158Y (zh) 同心双管注水井口装置
CN209603954U (zh) 一种水平井过电缆智能配水器及水平井井下分段注水管柱
CN110080731B (zh) 双通道式同心大压差井下分层注水调节控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928401

Country of ref document: EP

Kind code of ref document: A1