WO2023159908A1 - 电机启动控制方法 - Google Patents

电机启动控制方法 Download PDF

Info

Publication number
WO2023159908A1
WO2023159908A1 PCT/CN2022/117017 CN2022117017W WO2023159908A1 WO 2023159908 A1 WO2023159908 A1 WO 2023159908A1 CN 2022117017 W CN2022117017 W CN 2022117017W WO 2023159908 A1 WO2023159908 A1 WO 2023159908A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
preset condition
preset
phase
voltage
Prior art date
Application number
PCT/CN2022/117017
Other languages
English (en)
French (fr)
Inventor
张毅鸣
陈景俊
底振坤
张榜
孙责
Original Assignee
联合汽车电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联合汽车电子有限公司 filed Critical 联合汽车电子有限公司
Publication of WO2023159908A1 publication Critical patent/WO2023159908A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/21Open loop start
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping

Definitions

  • the invention relates to the technical field of motor control, in particular to a motor start control method.
  • the brushless DC motor without position sensor is driven by the conduction and shutdown of each phase current in the stator winding.
  • the moment when the on/off state of any two phases in the stator winding is switched is called the commutation moment.
  • the above method can be called the back electromotive force zero point method.
  • the back electromotive force zero-crossing method requires that the motor has reached a certain speed, so in the process from zero speed to a certain speed, the back electromotive force zero-crossing method cannot be applied. At this time, a motor start-up control method is also needed.
  • the brushless DC motor without a position sensor usually adopts a "three-stage" start-up scheme, that is, rotor positioning, external synchronous acceleration, and operating state switching to self-synchronous operation.
  • a "three-stage" start-up scheme that is, rotor positioning, external synchronous acceleration, and operating state switching to self-synchronous operation.
  • FIG 2 for the change trend of the rotational speed in each stage.
  • Rotor positioning stage (1 in Figure 2) determine the initial position of the motor rotor, the purpose is that the rotor can start from a fixed position each time when it is stationary.
  • Low-power brushless DC motors generally use magnetic brake rotor positioning under light load conditions. By conducting any two phases of the motor, the magnetic flux formed inside the motor can forcibly attract the motor rotor to the direction of its magnetic flux within a certain period of time. The conduction time and PWM duty cycle of any two sets of windings can be calibrated.
  • External synchronous open-loop acceleration stage (2 in Figure 2): Change the applied voltage and/or commutation signal of the motor through the open-loop control command sequence to make the motor gradually increase its speed from standstill.
  • the motor After the rotor is positioned successfully, the motor must be driven to accelerate by changing the applied voltage and the commutation signal.
  • the purpose is to accelerate to the speed required by the strength of the back electromotive force to detect the zero crossing point.
  • it is necessary to set the acceleration curve according to the specific motor characteristics and load to control the switching frequency of the commutation signal and the PWM duty cycle.
  • the external synchronous acceleration stage is the first guarantee for successful start-up, and the control performance after calibration of the acceleration curve (corresponding to the open-loop control command sequence) directly affects the success rate of operating state switching.
  • the acceleration curve relies on manual calibration according to specific working conditions and controlled objects, and has certain requirements for system stability. This step of calibration takes a long time.
  • Running state switching stage (3 in Figure 2): After reaching the required speed, switch from the external synchronous acceleration stage to the self-synchronous motor closed-loop control operation stage.
  • the motor reaches a certain speed through the external synchronous acceleration stage, the back electromotive force signal can be accurately detected, and the driving mode of commutation of the motor is triggered by judging its characteristic signal point (called zero-crossing point) to replace the artificially set commutation frequency.
  • targets such as current, speed, torque or position are regulated through a closed loop. This step is the key and difficult to achieve. Too early or too late switching will easily lead to control out-of-step and start-up failure, resulting in stalled or over-current events.
  • the existing technical solution mostly adopts the following two switching methods. One is to determine the switchable motor speed through offline calibration, and switch when it reaches this speed. The other is to detect the time to reach the predetermined switching speed through experiments, and switch when the software timer counts to the switching time.
  • the brushless DC motor without position sensor is started by the pre-calibrated open-loop control signal, the calibration cost is large, the working condition coverage is incomplete, the robustness is poor, the load change is limited, the start-up time is long, and the There is a problem that accurate calibration cannot be performed under certain working conditions.
  • the purpose of the present invention is to provide a motor starting control method to solve the problems of high calibration cost, incomplete coverage of working conditions, poor robustness, Support limited load changes, long start-up time, and the problem of not being able to perform accurate calibration under certain working conditions.
  • the present invention provides a motor starting control method, which is applied to a motor, and the motor is a brushless DC motor without a position sensor.
  • the motor starting control method includes the following steps: sequentially outputting a sequence of control commands ; Wherein, the control target of the control command sequence includes the commutation frequency and the current value of the conduction phase, and the control command sequence is an open-loop control command. It is judged whether the position of the rotor satisfies a preset condition based on the induced voltage of the suspended phase; wherein, the suspended phase is a non-conductive phase.
  • the motor starting control method further includes the following step: after outputting the nth control instruction of the control instruction sequence, outputting the nth control instruction in a loop; wherein, n is the control instruction in the control instruction sequence The total number of instructions. It is judged whether the position of the rotor satisfies a preset condition based on the induced voltage of the suspended phase. If the preset condition is not satisfied, then adjust the output control command sequence and continue to judge whether the position of the rotor satisfies the preset condition based on the induced voltage of the suspended phase. And, if the preset condition is satisfied, switch to the internal synchronous running state.
  • the motor starting control method further includes the following step: if the number of cycles of outputting the nth control command reaches a preset upper limit, outputting a stop signal to drive the motor to stop.
  • the preset condition is: the angle at which the rotor lags behind the magnetic potential of the stator is within a preset range.
  • the step of judging whether the position of the rotor satisfies a preset condition based on the induced voltage of the suspended phase includes: measuring the induced voltage e1 and Reference voltage U 1 , measuring the induced voltage e 2 of the floating phase and the reference voltage U 2 at the second preset moment of each commutation cycle; wherein, the reference voltage is based on the voltage of the two conducting phases Measured values are calculated. If (e 1 -0.5U 1 )(e 2 -0.5U 2 ) ⁇ 0 does not hold, the determination result is that the preset condition is not satisfied.
  • the step of judging whether the position of the rotor satisfies the preset condition based on the induced voltage of the suspended phase further includes: if (e 1 -0.5U 1 )(e 2 -0.5U 2 ) ⁇ 0 holds true, then The judgment result is that the preset condition is met.
  • the step of judging whether the position of the rotor satisfies a preset condition based on the induced voltage of the suspended phase further includes: measuring the induced voltage e 3,i of the suspended phase at the third preset moment of each commutation cycle and the reference voltage U 3,i ; wherein, the number of the third preset moment is at least one, and e 3,i represents the floating phase corresponding to the i-th moment in the third preset moment
  • the induced voltage, U 3,i represents the reference voltage corresponding to the i-th time in the third preset time, the value range of i is 1 to imax, and imax represents the total number of the third preset time.
  • (e 1 -0.5U 1 )(e 2 -0.5U 2 ) ⁇ 0 holds, further judgment is made based on all e 3,i and U 3,i to determine whether the judgment result satisfies the preset condition.
  • the step of adjusting the output control command sequence includes: if (e 1 ⁇ 0.5U 1 )&&(e 2 ⁇ 0.5U 2 ), on the basis of the control target of the control command sequence, an additional Increase the current value of the conduction phase and/or additionally reduce the commutation frequency. And, if (e 1 ⁇ 0.5U 1 )&&(e 2 ⁇ 0.5U 2 ), on the basis of the control target of the control command sequence, additionally reduce the current value of the conduction phase and/or additionally increase the commutation frequency.
  • the step of adjusting the output control command sequence further includes: selecting a unit correction amount from the parameter matrix according to the current power supply voltage and motor temperature for accumulation to obtain an accumulated adjustment amount; and, the accumulated adjustment amount and The control command sequences are superimposed to realize the regulation process.
  • the reference voltage is the absolute value of the difference between the measured voltage values of the two turned-on phases, or the absolute value of the sum of the measured voltage values of the two turned-on phases.
  • the first preset moment and the second preset moment are symmetrical about a midpoint moment of the commutation period.
  • the motor startup control method includes the following steps: sequentially outputting control instruction sequences. It is judged whether the position of the rotor satisfies a preset condition based on the induced voltage of the floating phase. If the preset condition is not satisfied, then adjust the output control command sequence and continue to judge whether the position of the rotor satisfies the preset condition based on the induced voltage of the suspended phase. And, if the preset condition is satisfied, switch to the internal synchronous running state.
  • Figure 1 is a control flow diagram of a brushless DC motor without a position sensor
  • Figure 2 is a trend diagram of rotational speed changes during three-stage startup
  • Fig. 3 is a schematic flow chart of a motor start control method according to an embodiment of the present invention.
  • Figure 4 shows the energization and magnetic field changes of the brushless DC motor under ideal conditions
  • Fig. 5 is a schematic diagram of the phase voltage waveform when any phase of the three-phase brushless DC motor is suspended
  • FIG. 6 is another schematic flow chart of a motor starting control method according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a first preset moment and a second preset moment according to an embodiment of the present invention.
  • Fig. 8 is a timing diagram of phase voltage sampling according to an embodiment of the present invention.
  • the singular forms “a”, “an” and “the” include plural objects, the term “or” is usually used in the sense of including “and/or”, and the term “several” Usually, the term “at least one” is used in the meaning of “at least one”, and the term “at least two” is usually used in the meaning of "two or more”.
  • the terms “first”, “second “Two” and “third” are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly indicating the quantity of the indicated technical features.
  • the features defined as “first”, “second”, and “third” may explicitly or implicitly include one or at least two of these features, the term “proximal end” is usually the end close to the operator, the term “Distal end” is usually the end close to the patient, “one end” and “other end” and “proximal end” and “distal end” usually refer to the corresponding two parts, which not only include the end point, the terms “installation”, “connected “, “connection” should be understood in a broad sense, for example, it can be a fixed connection, or a detachable connection, or integrated; it can be a mechanical connection, or an electrical connection; it can be a direct connection or an indirect connection through an intermediary To be connected may be the internal communication of two elements or the interaction relationship between two elements.
  • an element is arranged on another element, usually only means that there is a connection, coupling, cooperation or transmission relationship between the two elements, and the relationship between the two elements can be direct or indirect through an intermediate element.
  • connection, coupling, fit or transmission but cannot be understood as indicating or implying the spatial positional relationship between two elements, that is, one element can be in any orientation such as inside, outside, above, below or on one side of another element, unless the content Also clearly point out.
  • the core idea of the present invention is to provide a motor start-up control method to solve the problem of high calibration cost, incomplete coverage of working conditions, and poor robustness when the brushless DC motor without a position sensor is started by a pre-calibrated open-loop control signal in the prior art. , support limited load changes, long start-up time, and the problem of inability to perform accurate calibration under certain working conditions.
  • FIG. 3 is a schematic flow chart of a motor starting control method according to an embodiment of the present invention
  • FIG. 4 is the energization and magnetic field changes of the brushless DC motor under ideal working conditions
  • FIG. 5 is a three-phase A schematic diagram of the phase voltage waveform when any phase of the brushless DC motor is suspended in the air
  • Fig. 6 is another schematic flow chart of the motor starting control method according to an embodiment of the present invention
  • Fig. 7 is a schematic diagram of the first preset time and the second Schematic diagram of preset time
  • FIG. 8 is a timing diagram of phase voltage sampling according to an embodiment of the present invention.
  • the present embodiment provides a motor startup control method, which is applied to a motor, and the motor is a brushless DC motor without a position sensor.
  • the motor startup control method includes the following steps:
  • control target of the control instruction sequence includes commutation frequency and the current value of the conduction phase, and the control instruction sequence is an open-loop control instruction.
  • S30 judges whether the position of the rotor satisfies a preset condition based on the induced voltage of the suspended phase; wherein, the suspended phase is a non-conductive phase.
  • step S30 only the induced voltage of the suspended phase is used to make a T/F Boolean judgment. While introducing additional errors, significant beneficial effects are obtained.
  • the motor start-up control method further includes: S10 outputting a ready-to-position command to drive the rotor to move to and stop at the start-up ready position.
  • step S10 is not a necessary step. Since the motor start-up control method adopted in this embodiment has the characteristics of closed-loop control, it is not sensitive to the initial position of the motor rotor, and at the same time, the overall time for motor start-up can be shortened without step S10. Even if step S10 is set, the time for waiting for the rotor to stand still can be set shorter, and the technical problems raised in the background art can also be solved.
  • the ready-to-start position is determined by the structure and working purpose of the motor. It is a position that is convenient for starting the motor.
  • the technical means to drive the rotor to move to and stay at the ready-to-start position can be set according to actual needs, for example: conduction pre-position Assuming that the two phases produce a constant magnetic field, other means can also be adopted.
  • the control command sequence can be understood as a pre-calibrated open-loop control command sequence.
  • the control target of the control command sequence includes the commutation frequency and the current value of the conduction phase.
  • one or more switch control signals can be used to control the commutation timing of the drive current, and the PWM wave can be used to control the current value of the conduction phase.
  • the preset condition refers to the condition of satisfying the switching.
  • the theoretical condition can be calculated first, and then the theoretical condition can be expanded or contracted according to reliability, safety and other perspectives to obtain the preset condition.
  • the correction signal is set based on the judgment result of S30, and finally superimposed on the control instruction sequence for output.
  • the internal synchronous running state refers to the state where the motor can work stably. At this time, the position of the rotor can be accurately reversed according to the induced voltage of the floating phase, so closed-loop control can be performed. After the motor is switched to the internal synchronous operation state, the motor startup process has ended, and any suitable position/speed feedback closed-loop control algorithm can be used to control the motor subsequently.
  • the motor startup control method also includes the following steps:
  • S31 judges whether the position of the rotor satisfies a preset condition based on the induced voltage of the suspended phase.
  • step S60 is to prolong the motor startup time by outputting the last control instruction in a cycle, thereby further increasing the robustness of the motor startup control method .
  • Steps S31-S51 can be understood according to the contents of S30-S50, and their specific details can be the same or different.
  • the motor startup control method further includes the following step: S70, if the number of cycles of outputting the nth control instruction reaches a preset upper limit, outputting a stop signal to drive the motor to stop. It is configured in this way to ensure that under extreme special working conditions, the motor will not be damaged due to startup, or cause other unexpected safety accidents.
  • the preset condition is: the angle at which the rotor lags behind the magnetic potential of the stator is within a preset range.
  • the angle at which the rotor lags behind the magnetic potential of the stator is a relative concept.
  • the angle formed by the north pole of the magnetic field of the rotor and the magnetic potential of the stator can be regarded as a backward angle
  • the angle of the rotor can also be regarded as The angle formed by the south pole of the magnetic field and the magnetic potential of the stator is regarded as a backward angle
  • the angle formed by a special structure in the rotor and the magnetic potential of the stator can also be regarded as a backward angle.
  • the specific measurement method of the backward angle is not limited here. It only needs to be able to correspond to each other between the preset range and the backward angle.
  • the judgment logic in step S30 is not necessarily the same as the preset range, for example, the preset range may be 60°-120°, but considering the error in judgment, it is actually judged according to the induced voltage of the suspended phase Whether the angle is within 75° ⁇ 105°, that is to say, whether a measured value is in the A range or not is used to judge whether the physical value corresponding to the measured value is in the B range. In some embodiments, it is also possible to determine whether the multiple measured values meet or fail to meet certain conditions, so as to comprehensively determine the relationship between the backward angle and the preset range.
  • Figure 4 shows the energization and magnetic field changes of the brushless DC motor in an ideal state; in Figure 4, x-A, y-B, and z-C respectively represent the three-phase windings of the motor, and the arrows in the figure point to the north pole of the stator magnetic field 4, while the shaded area is Indicates the best rotor position 5, when the rotor is at the best rotor position 5, a larger driving force can be obtained.
  • the optimal rotor position 5 in FIG. 4 can also be understood as the preset range. If the north pole of the rotor magnetic field and the north pole of the stator magnetic field 4 are used as reference directions, the preset range is 60°-120°.
  • the step of judging whether the position of the rotor satisfies the preset condition based on the induced voltage of the suspended phase in S30 includes: measuring the induced voltage e 1 of the suspended phase and the reference Voltage U 1 , measuring the induced voltage e 2 of the suspended phase and the reference voltage U 2 at the second preset moment of each commutation cycle; wherein the reference voltage is based on the measurement of the voltage of the two phases that are turned on value is calculated. If (e 1 -0.5U 1 )(e 2 -0.5U 2 ) ⁇ 0 does not hold, the determination result is that the preset condition is not satisfied.
  • Option 1 When (e 1 -0.5U 1 )(e 2 -0.5U 2 ) ⁇ 0 holds true, the condition is considered to be met directly, which is a solution more inclined to reduce design costs.
  • Option 2 Further design other measurement values and judgment logic for judgment. This is a solution that is more inclined to improve accuracy. However, no matter which solution is selected, it can be determined that if (e 1 -0.5U 1 )(e 2 -0.5U 2 ) ⁇ 0 does not hold, the judgment result must be that the preset condition is not satisfied.
  • the step of judging whether the position of the rotor satisfies the preset condition based on the induced voltage of the suspended phase in S30 further includes: if (e 1 -0.5U 1 )(e 2 -0.5U 2 ) ⁇ 0 holds true , the judgment result is that the preset condition is met.
  • the step of judging whether the position of the rotor satisfies the preset condition based on the induced voltage of the suspended phase in S30 further includes: measuring the induced voltage e of the suspended phase at the third preset moment of each commutation cycle , i and the reference voltage U 3,i ; wherein, the number of the third preset moment is at least one, and e 3,i represents the suspended phase corresponding to the i-th moment in the third preset moment U 3,i represents the reference voltage corresponding to the i-th moment in the third preset moment, the value range of i is 1 to imax, and imax represents the total number of the third preset moment . And, if (e 1 -0.5U 1 )(e 2 -0.5U 2 ) ⁇ 0 holds, further judgment is made based on all e 3,i and U 3,i to determine whether the judgment result satisfies the preset condition.
  • a third preset time may be set, which is located before the first preset time, if (e 1 -0.5U 1 )(e 2 -0.5U 2 ) ⁇ 0 holds true, on this basis, further Judging whether (e 1 -0.5U 1 )(e 3,1 -0.5U 3,1 )>0 is true, if true, the judgment result is that the preset condition is satisfied; otherwise, the judgment result is that the preset condition is not satisfied set conditions.
  • Two third preset moments may also be set, wherein the first of the third preset moments is located before the first preset moment, and the second of the third preset moments is The time is after the second preset time, if (e 1 -0.5U 1 )(e 2 -0.5U 2 ) ⁇ 0 holds true, on this basis, it is further judged that (e 1 -0.5U 1 )(e 3 ,1 -0.5U 3,1 )>0&&(e 2 -0.5U 2 )(e 3,2 -0.5U 3,2 )>0 is true, if true, the judgment result is that the preset condition is met; Otherwise, the judgment result is that the preset condition is not satisfied.
  • the step of adjusting the output control instruction sequence includes: if (e 1 ⁇ 0.5U 1 )&&(e 2 ⁇ 0.5U 2 ), additionally adding The current value of the conduction phase and/or additionally reduce the commutation frequency. And, if (e 1 ⁇ 0.5U 1 )&&(e 2 ⁇ 0.5U 2 ), on the basis of the control target of the control command sequence, additionally reduce the current value of the conduction phase and/or additionally increase the commutation frequency.
  • the reference voltage is the absolute value of the voltage difference between the two conducting phases.
  • the reference voltage is the absolute value of the sum of the voltages of the two conducting phases.
  • the second solution is adopted.
  • the first solution introduced in this paragraph can also be used to calculate the reference voltage, which can also solve the technical problems mentioned in the background art.
  • stator conduction mode conversion or commutation
  • stator conduction mode conversion or commutation
  • stator commutation frequency and the stator output duty cycle correction amount adopt the cumulative method
  • the initial value of each commutation cycle and output duty cycle comes from the calibrated acceleration curve
  • the final output commutation cycle and duty cycle comprehensive initial value and correction quantity If the switching condition is still not met after the number of commutations in the acceleration phase is completed, it will directly enter the switching phase of the running state and continue to adjust.
  • the zero-crossing point detected during the current commutation period can be used to calculate the commutation time and trigger the commutation, and then the zero-crossing detection method can be used to drive the motor.
  • the step of adjusting the output control instruction sequence further includes: selecting a unit correction amount from the parameter matrix according to the current power supply voltage and motor temperature for accumulation to obtain an accumulated adjustment amount;
  • the control command sequence described above is superimposed to realize the regulation process.
  • the relative position between the stator and rotor is estimated in real time during the external synchronous open-loop acceleration phase.
  • the motor software control module dynamically adjusts the relative position of the stator and rotor and the rotor speed by adjusting the commutation frequency on the stator side and the three-phase output drive voltage according to the adaptive algorithm.
  • the rotor When the rotor stably rotates with a fixed angle phase (60 ⁇ 120 electrical degrees) behind the stator magnetic potential, so as to meet the switching conditions from external synchronization to self-synchronization, it will trigger switching to the self-synchronization stage and reverse electromotive force zero-crossing detection commutation
  • the drive motor works.
  • the present invention adopts an intelligent control algorithm to judge whether the rotor has reached the preset range specified in the current stator conduction mode by detecting the motor suspension reverse electromotive force signal, reference voltage and zero-crossing point during the external synchronous acceleration phase . If the rotor position does not reach the preset range, it is considered that the rotor movement lags behind the stator commutation, and it is necessary to increase the stator magnetic field force or slow down the stator commutation frequency. If the rotor position exceeds the preset range, it is considered that the stator commutation lags behind the rotor movement, and it is necessary to reduce the stator magnetic field force or increase the stator commutation frequency. After multiple adjustments, the rotor motion conforms to the expected rotor position specified in the current stator conduction mode, that is, the switching condition is satisfied.
  • this embodiment has the following invention points:
  • the design idea is different: the existing technology strictly calibrates the motor trajectory in the external synchronous acceleration stage, and switches directly after completion, while the present invention realizes the closed-loop adjustment of the relative position of the stator and rotor through an algorithm during the external synchronous acceleration stage, and the goal is to correct the startup
  • the relative position error of the stator and rotor accumulated in the process meets the switching conditions.
  • the existing technology is suitable for application scenarios with constant load characteristics, good consistency and small external interference; for the sensorless brushless DC motor control with the technology of the present invention, it is not only suitable for the above application scenarios , and it is applicable to variable loads, external disturbances and various mechanical deviation aging effects, the goal is to enhance control robustness and anti-disturbance performance.
  • the zero-crossing judgment method is different: in the prior art, the zero-crossing point is detected by comparing the suspended phase voltage with the bus voltage, while the present invention detects the zero-crossing point by comparing the suspended phase voltage with the voltage difference between the other two phases. Because there may be considerable interference and noise on the three phases of the motor, the reference voltage calculated by the voltage of the other two phases is more accurate.
  • step S101 is used to trigger the motor starting control method
  • S102 motor pre-positioning
  • step S10 step solidifying the duty cycle and commutation frequency to update the actual duty cycle and commutation frequency, the xth commutation and duty cycle adjustment
  • step S111 x refers to in the control instruction sequence
  • steps S104 voltage sampling at time t1
  • S105 voltage sampling at time t2
  • S106 judging the deviation between the actual zero-crossing point and the expected zero-crossing point
  • S107 detection of the counter-EMF zero-crossing point
  • S108 deviceiation ⁇ capacity Limit value
  • step S30 step S109 (according to the current power supply voltage and motor temperature, select the unit correction amount accumulative adjustment amount from the parameter matrix) corresponds to step S40
  • step S110 acc
  • the determination method of key control parameters is as follows:
  • the external synchronous acceleration stage is a variable acceleration process in which the motor is accelerated from zero-speed open-loop to a certain speed. During the process, the continuous speed-up of the motor is achieved by gradually adjusting the duty cycle and commutation frequency.
  • the acceleration curve (duty ratio and commutation frequency of each step output) is solidified in the software in advance and obtained through manual calibration or theoretical calculation.
  • the commutation frequency f determines the change rate ⁇ of the desired included angle ⁇ of the stator pulling the rotor. In the external synchronous acceleration phase, the commutation frequency is gradually increased for each commutation to accelerate the rotor.
  • the duty ratio r directly determines the magnitude of the electromagnetic force generated on the stator winding, and in the external synchronous acceleration phase, each commutation matches the load characteristics to output an appropriate electromagnetic force.
  • the phase difference between the stator and the rotor angle (60-120 degrees) is controlled by adjusting the appropriate commutation frequency and duty ratio output to meet the drive speed without falling and continue to increase under the current load.
  • the electromagnetic force required for the xth step (x ⁇ [2,n]) mainly depends on the direction of the electromagnetic force of the stator and the rotor in the current commutation cycle 1/f x .
  • the angle ⁇ of the direction of the magnetic field changes and the magnitude of the load T L (torque form) changes.
  • the angular acceleration a of the fixed-axis rotation of the rigid body (the motor body and the dragged object) is proportional to the total external moment M it receives, and inversely proportional to the moment of inertia J of the rigid body.
  • the resulting external moment is determined by the electromagnetic torque T ⁇ , the load torque T L , the mass of the rigid body m, the vector d, and the angle ⁇ of the acting force.
  • the average angular velocity ⁇ x of the rigid body is determined by the average angular acceleration a x and the commutation period 1/f x . Since the motor supply voltage U DC directly affects the electromagnetic force on the stator side of the motor, and the motor temperature t m directly affects the electromagnetic characteristics of the motor, the duty cycle r x and the commutation frequency f x of the xth step are functions of the following parameters, Right now:
  • the commutation frequency increases step by step, and the duty cycle increases step by step.
  • the first commutation frequency in the acceleration phase should be at least equivalent to the minimum speed n BEMF-MIN that can be collected by the back electromotive force of the motor (provided by the motor supplier), so the initial commutation frequency f 1 needs to satisfy the function of the following parameters, namely:
  • p is the number of pole pairs of the motor.
  • the size of the primary correction determines how quickly the stator and rotor position correction can be completed during the acceleration phase.
  • the unit correction is related to the load change rate ⁇ T L , and the position deviation D e of the stator and rotor (D e + is the deviation of the actual position of the rotor behind the expected position, and D e - is the deviation of the actual position of the rotor ahead of the expected position) , and because the motor supply voltage U DC directly affects the electromagnetic force on the stator side of the motor, and the motor temperature t m directly affects the electromagnetic characteristics of the motor, so ⁇ r and ⁇ f are functions of the following parameters, namely:
  • the smaller U DC or the larger ⁇ T L or the larger t m or the larger De the larger
  • the actual output duty cycle and commutation frequency at step x in the external synchronous acceleration phase are the sum of the initial solidified value and the cumulative value of its unit correction value, that is
  • the ideal back EMF zero-crossing point should appear at the center moment t z of 30 degrees, the phase voltage before the center moment should be lower than half of the reference voltage and the phase voltage after the center point should be higher than half of the reference voltage, or before the center point The phase voltage should be higher than half of the reference voltage and the phase voltage after the center point should be lower than half of the reference voltage.
  • a pair of sampling moments (t 1 , t 2 ) may be set at an equidistant distance from the central point, where t 1 is the first preset moment, and t 2 is the second preset moment.
  • the error De of the actual zero-crossing point offset from the expected zero-crossing point (30-degree central point) is judged by two or more sets of voltage differences.
  • the sampling time needs to satisfy the following function, namely:
  • the first preset moment and the second preset moment are symmetrical about the midpoint moment of the commutation cycle.
  • an additional third preset moment can be set to improve the judgment accuracy, and the third preset moment can be set symmetrically or asymmetrically with respect to the center point, and the number can also be selected to be an odd number or even.
  • optional checkpoints are, for example, (15°, 45°), (20°, 40°) and so on.
  • Those skilled in the art may select an appropriate first preset moment and the second preset moment according to actual conditions. It should be understood that there is also a relationship between the specific time of the first preset moment and the second preset moment and the total duration of a single commutation cycle, and the specific measurement timing can be based on the total duration of a single commutation cycle and the corresponding checkpoint The angle value is calculated in real time. Finally, the method completes the sampling and calculation of two checkpoints between two commutation moments.
  • FIG. 8 shows the phase voltage sampling timing diagram.
  • the sampling time point is offset by a delay time D based on the rising edge of the motor control carrier frequency PWM output signal. The determination of this time is based on avoiding switching noise and hardware delay.
  • the frequency of the sampling trigger signal Trigger to ADC sample generated by the offset is the same as the motor control carrier frequency, and its rising edge triggers the hardware analog signal sampling module to simultaneously sample the three-phase voltages e u , e v and e w of the motor.
  • Ts represents the width of a single pulse. According to the three-phase conduction mode at the sampling time, it can be known which phase is the floating phase.
  • U DC
  • the calibration of the upper limit needs to be based on the system requirements of specific motor application scenarios.
  • the application of the transmission valve body oil pump system needs to ensure that the oil pressure is established from 0 bar to the target oil pressure within T 0 time, and the motor can satisfy the oil pressure rushing from 0 bar to the target oil pressure at T 1 time under the rated speed, then (T 0 -T 1 ) is the time allowed for the motor to try to start.
  • the position adjustment time of a running state switching is about f x -1 and the rotor pre-positioning time is T p
  • the allowable start-up time should include the sum of the rotor pre-positioning stage, the external synchronous acceleration stage and the running state switching stage, that is,
  • the present embodiment provides a motor start control method.
  • the method includes the following steps: sequentially outputting control instruction sequences. It is judged whether the position of the rotor satisfies a preset condition based on the induced voltage of the floating phase. If the preset condition is not satisfied, then adjust the output control command sequence and continue to judge whether the position of the rotor satisfies the preset condition based on the induced voltage of the suspended phase. And, if the preset condition is satisfied, switch to the internal synchronous running state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供了一种电机启动控制方法。所述方法包括如下步骤:依序输出控制指令序列。基于悬空相的感应电压判断所述转子的位置是否满足预设条件。若不满足所述预设条件,则调节输出的所述控制指令序列并继续判断;若满足所述预设条件,则切换至内同步运行状态。如此配置,基于悬空相的感应电压进行了定性的判断,使得输出的控制信号具有一部分的闭环特性,能够应对多种不同的工况和负载,并具有较高的鲁棒性;另一方面也降低了控制指令序列的标定难度,减少了控制器的设计成本;解决了现有技术中无位置传感器的无刷直流电机通过事先标定的开环控制信号启动所带来的一系列的问题。

Description

电机启动控制方法 技术领域
本发明涉及电机控制技术领域,特别涉及一种电机启动控制方法。
背景技术
无位置传感器的无刷直流电机是通过定子绕组中各相电流的导通和关断驱动的,可以将定子绕组中任意两相的导通/关断状态发生切换的时刻称为换相时刻。当电机稳定运行时,可以基于电机三相端电压采样判断反电动势是否经过零点,并通过判断结果决定合适的换相时刻,上述方法可以称为反电动势过零点法。反电动势过零点法要求电机已达到一定的转速,因此零速到一定转速的过程中,反电动势过零点法无法适用,此时,还需要一个电机的启动控制方法。
如图1所示,无位置传感器的无刷直流电机通常采用“三段式”启动方案,即转子定位、外同步加速和运行状态切换至自同步运行。各阶段的转速变化趋势可参考图2。
转子定位阶段(图2中①):确定电机转子的初始位置,目的是静止时转子每次可以从一个固定的位置启动。
小功率无刷直流电机在轻载条件下,一般采用磁制动转子定位方式。通过导通电机任意二相,其在电机内部形成的磁通就能在一定时间内将电机转子强行吸引到其磁通方向上。任意二组绕组上的通电时间和PWM占空比可标定。
外同步开环加速阶段(图2中②):通过开环控制指令序列改变电机的外施电压和/或换相信号,使电机由静止逐步增加转速。
转子定位成功后,必须通过改变电机的外施电压和换相信号来驱动电机 做加速运动,目的是加速到反电动势强度能够被用来检测过零点要求的速度。通常在实际应用中,需要依据具体电机特性和负载设定加速曲线来控制换相信号的切换频率和PWM占空比大小。外同步加速阶段是启动成功的第一道保障,加速曲线(对应于开环控制指令序列)标定后的控制性能直接影响运行状态切换的成功率。该加速曲线依赖人工根据具体工况和被控对象实验标定,且对系统稳定性有一定要求。这一步标定工作需要较长时间。
运行状态切换阶段(图2中③):达到要求的转速后,由外同步加速阶段切换到自同步电机闭环控制运行阶段。当电机通过外同步加速阶段达到一定的转速后,反电动势信号可以准确检测,通过判断其特征信号点(称为过零点)来触发电机换相的驱动方式来替代人为设定的换相频率,同时通过闭环对电流、转速、扭矩或位置等目标进行调节。这一步是关键也是比较难实现的一步,过早或过晚的切换易导致控制失步和启动失败,从而发生堵转或过流事件。
现有技术方案多采用如下外同步加速方法。通过在线标定确定合适的加速曲线。此方案下,仅仅标定过程是在线的,控制时仍然采用标定后的曲线进行开环控制。
现有技术方案多采用如下两种切换方法。一是通过离线标定确定可切换的电机转速,当达到这一转速时即可进行切换。另一种,通过试验检测出达到预定切换转速的时间,通过软件定时器计数到切换时间时即可进行切换。
可见,切换的成功率严重依赖标定和试验的精确性,且只对特定负载特定工况较为适用。然而,电机和负载特性会受环境(供电电压和温度)影响,电机本体也有其差异性,因此会存在如下不足之处。
1.依赖精确标定:任何标定的精确性受测试设备性能、测试对象和测试人员实际操作影响。例如,在双离合自动变速箱液压控制系统油泵电机应用中, 电机已经被集成在变速箱阀体内,其转速无法实测。控制器采用直接连接阀体接插件的方式,其三相电流也无法实测。
2.工况覆盖不全:任何标定只能在特定负载和测试条件下完成,考虑到成本、时间和技术限制,全应用工况和全环境工况下每个工作点的标定很难完全实现。举例,在双离合自动变速箱液压控制系统油泵电机应用中,全应用工况需要考虑油压(0~83bar)、4个拨叉和2个离合器的组合动作。全环境工况包括油温(-40度~125度)和供电电压(10.5V~14.8V,含稳态和波动)。全应用和环境工况组合过于复杂。
3.鲁棒性差:实际系统运行时还会受到其他因素影响,如电机本体差异、老化、振动、电磁干扰、负载非预期变化等。举例,在变速箱液压控制系统油泵电机应用中,电机工艺无法保证所有批次的产品性能一致,存在各种上下偏差和老化,相同的标定参数会产生不同的控制结果。油路中也可能混入杂质造成负载的偶然变化,原标定参数无法自适应这类扰动。
4.特定负载:因为启动参数是在特定负载和工况下标定产生且在生命周期不变,只能支持有限的负载容差和负载变化。
5.为了保证开环控制算法的有效性,依赖于电机的初始位置定位,从而必须设计转子定位阶段,以及在转子定位阶段等待足够长的时间(假设,理论上0.1s转子可定位,但是为了保证应对各种特殊情况,可能需要等待0.3s才进入外同步开环加速阶段,以保证转子在准确的位置上),从而延长了启动时间。
总之,现有技术中,无位置传感器的无刷直流电机通过事先标定的开环控制信号启动,标定成本大、工况覆盖不全、鲁棒性差、支持有限的负载变化、启动时间长,并在特定工况下存在无法进行精确标定的问题。
发明内容
本发明的目的在于提供一种电机启动控制方法,以解决现有技术中无位置传感器的无刷直流电机通过事先标定的开环控制信号启动,标定成本大、工况覆盖不全、鲁棒性差、支持有限的负载变化、启动时间长,并在特定工况下存在无法进行精确标定的问题。
为了解决上述技术问题,本发明提供了一种电机启动控制方法,应用于电机,所述电机为无位置传感器的无刷直流电机,所述电机启动控制方法包括如下步骤:依序输出控制指令序列;其中,所述控制指令序列的控制目标包括换相频率和导通相的电流值,所述控制指令序列为开环控制指令。基于悬空相的感应电压判断所述转子的位置是否满足预设条件;其中,所述悬空相是未导通的一相。若不满足所述预设条件,则调节输出的所述控制指令序列并继续基于所述悬空相的感应电压判断所述转子的位置是否满足预设条件。以及,若满足所述预设条件,则切换至内同步运行状态。
可选的,所述电机启动控制方法还包括如下步骤:输出所述控制指令序列的第n个控制指令之后,循环输出所述第n个控制指令;其中,n为所述控制指令序列中控制指令的总数。基于所述悬空相的感应电压判断所述转子的位置是否满足预设条件。若不满足所述预设条件,则调节输出的所述控制指令序列并继续基于所述悬空相的感应电压判断所述转子的位置是否满足预设条件。以及,若满足所述预设条件,则切换至内同步运行状态。
可选的,所述电机启动控制方法还包括如下步骤:若所述输出所述第n个控制指令的循环次数达到预设上限,输出停机信号以驱使所述电机停机。
可选的,所述预设条件为:所述转子落后于定子磁势的角度在预设范围内。
可选的,所述基于悬空相的感应电压判断所述转子的位置是否满足预设 条件的步骤包括:在每个换相周期的第一预设时刻测量所述悬空相的感应电压e 1及参考电压U 1,在每个换相周期的第二预设时刻测量所述悬空相的感应电压e 2及所述参考电压U 2;其中,所述参考电压基于导通的两相的电压的测量值计算得到。若(e 1-0.5U 1)(e 2-0.5U 2)<0不成立,则判断结果为不满足所述预设条件。
可选的,所述基于悬空相的感应电压判断所述转子的位置是否满足预设条件的步骤还包括:若(e 1-0.5U 1)(e 2-0.5U 2)<0成立,则判断结果为满足所述预设条件。
或者,所述基于悬空相的感应电压判断所述转子的位置是否满足预设条件的步骤还包括:在每个换相周期的第三预设时刻测量所述悬空相的感应电压e 3,i及所述参考电压U 3,i;其中,所述第三预设时刻的数量为至少一个,e 3,i表示所述第三预设时刻中第i个时刻所对应的所述悬空相的感应电压,U 3,i表示所述第三预设时刻中第i个时刻所对应的所述参考电压,i的取值范围为1到imax,imax表示所述第三预设时刻的总数。以及,若(e 1-0.5U 1)(e 2-0.5U 2)<0成立,基于所有的e 3,i和U 3,i进一步判断,确定判断结果是否为满足所述预设条件。
可选的,所述调节输出的所述控制指令序列的步骤包括:若(e 1≤0.5U 1)&&(e 2≤0.5U 2),在所述控制指令序列的控制目标的基础上额外增加所述导通相的电流值和/或额外减少所述换相频率。以及,若(e 1≥0.5U 1)&&(e 2≥0.5U 2),在所述控制指令序列的控制目标的基础上额外减少所述导通相的电流值和/或额外增加所述换相频率。
可选的,所述调节输出的所述控制指令序列的步骤还包括:根据当前供电电压和电机温度从参数矩阵中选择单位修正量进行累计,得到累计调节量;以及,所述累计调节量与所述控制指令序列相叠加以实现调节过程。
可选的,所述参考电压为导通的两相的电压的测量值之差的绝对值,或者,所述参考电压为导通的两相的电压的测量值之和的绝对值。
可选的,所述第一预设时刻和所述第二预设时刻关于所述换相周期的中点时刻对称。
与现有技术相比,本发明提供的一种电机启动控制方法包括如下步骤:依序输出控制指令序列。基于悬空相的感应电压判断所述转子的位置是否满足预设条件。若不满足所述预设条件,则调节输出的所述控制指令序列并继续基于所述悬空相的感应电压判断所述转子的位置是否满足预设条件。以及,若满足所述预设条件,则切换至内同步运行状态。如此配置,基于悬空相的感应电压进行了定性的判断,使得输出的控制信号具有一部分的闭环特性,能够应对多种不同的工况和负载,并具有较高的鲁棒性;另一方面也降低了控制指令序列的标定难度,减少了控制器的设计成本;解决了现有技术中无位置传感器的无刷直流电机通过事先标定的开环控制信号启动,标定成本大、工况覆盖不全、鲁棒性差、支持有限的负载变化、启动时间长,并在特定工况下存在无法进行精确标定的问题。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是无位置传感器的无刷直流电机控制流程图;
图2是三段式启动时转速变化趋势图;
图3是本发明一实施例的电机启动控制方法的流程示意图;
图4是理想工况下无刷直流电机的通电及磁场变化情况;
图5是三相无刷直流电机任一相悬空时相电压波形示意图;
图6是本发明一实施例的电机启动控制方法的又一流程示意图;
图7是本发明一实施例的第一预设时刻和第二预设时刻的示意图;
图8是本发明一实施例的相电压采样时序图。
附图中:
4-定子磁场北极;5-转子最佳位置。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征,术语“近端”通常是靠近操作者的一端,术语“远端”通常是靠近患者的一端,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连, 可以是两个元件内部的连通或两个元件的相互作用关系。此外,如在本发明中所使用的,一元件设置于另一元件,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的核心思想在于提供一种电机启动控制方法,以解决现有技术中无位置传感器的无刷直流电机通过事先标定的开环控制信号启动,标定成本大、工况覆盖不全、鲁棒性差、支持有限的负载变化、启动时间长,并在特定工况下存在无法进行精确标定的问题。
以下参考附图进行描述。
请参考图3至图8,其中,图3是本发明一实施例的电机启动控制方法的流程示意图;图4是理想工况下无刷直流电机的通电及磁场变化情况;图5是三相无刷直流电机任一相悬空时相电压波形示意图;图6是本发明一实施例的电机启动控制方法的又一流程示意图;图7是本发明一实施例的第一预设时刻和第二预设时刻的示意图;图8是本发明一实施例的相电压采样时序图。
如图3所示,本实施例提供了一种电机启动控制方法,应用于电机,所述电机为无位置传感器的无刷直流电机,所述电机启动控制方法包括如下步骤:
S20依序输出控制指令序列;其中,所述控制指令序列的控制目标包括换相频率和导通相的电流值,所述控制指令序列为开环控制指令。
S30基于悬空相的感应电压判断所述转子的位置是否满足预设条件;其 中,所述悬空相是未导通的一相。
S40若不满足所述预设条件,则调节输出的所述控制指令序列并继续基于所述悬空相的感应电压判断所述转子的位置是否满足预设条件。
以及,S50若满足所述预设条件,则切换至内同步运行状态。
在本申请背景技术部分已经介绍了现有技术采用事先标定的开环控制指令序列对无位置传感器的无刷直流电机进行启动控制,而本实施例利用了悬空相的感应电压进行判断,并根据判断结果对输出的控制信号进行修正,从而使得控制信号具有了一定程度的闭环特性,改善了启动性能,并增加了系统的鲁棒性。需理解,在电机启动阶段,悬空相的感应电压并不能准确地、稳定地反馈转子的准确位置,因此无法直接实现基于悬空相的感应电压的闭环控制算法。发明人基于创造性的思考得到如下结论:尽管悬空相的感应电压不精确,但是仍然能够以定性的方式提供一定的反馈信息,并基于上述设计思路设计了本实施例。在步骤S30中,仅利用悬空相的感应电压进行一个T/F的布尔判断,一方面合理利用了悬空相的感应电压中蕴含的信息,另一方面又不至于因为悬空相的感应电压的精度而引入额外的误差,获得了显著的有益效果。
在一些实施例中,所述电机启动控制方法还包括:S10输出准备定位指令以驱使转子移动至并静止于启动准备位置。但是步骤S10并非是必须的步骤。由于本实施例所采用的所述电机启动控制方法具有闭环控制的特性,因而对电机转子的初始位置不敏感,同时,不设置步骤S10也可以缩短电机启动的整体时间。即使设置了步骤S10,等待转子静止的时间也可以设置得较短,也可以解决背景技术中提出的技术问题。
在步骤S10中,启动准备位置由电机的结构和工作目的决定,为一个便于电机启动的位置,驱使转子移动至并静止于启动准备位置的技术手段可以 根据实际需要进行设置,例如:导通预设的两相产生一个恒定不变的磁场,也可以采取其他手段。在步骤S20中,所述控制指令序列可以理解为事先标定的开环控制指令序列。在现有技术中,由于电机能否正常启动完全取决于所述控制指令序列的控制效果,因此,需要花费大量的人力物力进行标定;在本实施例中,尽管也需要对所述控制指令序列进行标定,但是,由于在后续步骤中会根据反馈信息修正控制信号,因此,标定流程可以从简,或者可以采用离线方式标定所述控制指令序列,从而降低了设计成本。所述控制指令序列的控制目标包括换相频率和导通相的电流值,例如,可以采用一个或者多个开关控制信号控制驱动电流的换相时机,采用PWM波控制导通相的电流值。其具体的方案可以根据电机的驱动电路类型和电机的工作工况进行设定,在此不进行展开描述。在步骤S30中,所述预设条件是指满足切换的条件,可以先计算出理论条件,再根据可靠性、安全性等角度对理论条件进行扩展或者收缩从而得到所述预设条件。在步骤S40中,修正信号基于S30的判断结果进行设定,并最终叠加于所述控制指令序列上进行输出。在步骤S50中,内同步运行状态是指电机可以稳定工作的状态,此时,可以根据悬空相的感应电压准确地反推到转子的位置,因此可以进行闭环控制。电机切换至内同步运行状态后,电机启动过程已经结束,后续可以采用任意一种合适的位置/速度反馈闭环控制算法控制电机。
请继续参考图3,所述电机启动控制方法还包括如下步骤:
S60输出所述控制指令序列的第n个控制指令之后,循环输出所述第n个控制指令;其中,n为所述控制指令序列中控制指令的总数。
S31基于所述悬空相的感应电压判断所述转子的位置是否满足预设条件。
S41若不满足所述预设条件,则调节输出的所述控制指令序列并继续基 于所述悬空相的感应电压判断所述转子的位置是否满足预设条件。
以及,S51若满足所述预设条件,则切换至内同步运行状态。
其中,步骤S60是为了当所述控制指令序列输出完毕后尚未能切换成功的情况下,通过循环输出最后一个控制指令以延长电机启动时间,从而进一步增加所述电机启动控制方法的鲁棒性。步骤S31~S51可以按照S30~S50的内容进行理解,它们的具体细节可以相同,也可以不同。
另外,所述电机启动控制方法还包括如下步骤:S70若所述输出所述第n个控制指令的循环次数达到预设上限,输出停机信号以驱使所述电机停机。如此配置,以保证在极端特殊工况下,电机不至于因为启动而损坏,或者导致其他意想不到的安全事故。
进一步地,所述预设条件为:所述转子落后于定子磁势的角度在预设范围内。需理解,所述转子落后于定子磁势的角度是一个相对的概念,例如,可以将所述转子的磁场北极和所述定子磁势所成的角度视为落后的角度,也可以将转子的磁场南极和所述定子磁势所成的角度视为落后的角度,也可以将转子中某个特殊结构和所述定子磁势所成的角度视为落后的角度。因此,此处不限定落后的角度的具体测量方法。只需要预设范围和落后的角度之间能够相互对应即可。需理解,步骤S30中的判断逻辑和所述预设范围不一定相同,例如,所述预设范围可能为60°~120°,但是考虑到判断时有误差,实际根据悬空相的感应电压判断角度是否在75°~105°之内,也就是说,用一个测量值是否在A区间,判断这个测量值对应的物理值是否在B区间。在一些实施例中,也可能判断多个测量值是否分别符合或者不符合某些条件,从而综合判断落后的角度与所述预设范围之间的关系。
关于所述预设范围,请参考图4进行理解。图4示出了理想状态下无刷直流电机的通电及磁场变化情况;在图4中,x-A、y-B、z-C分别表示电机的 三相绕组,图中箭头指向定子磁场北极4,而阴影区域则表示转子最佳位置5,当转子处于转子最佳位置5时,可以获得较大的驱动力。当转子从一个最佳位置离开时,需要同步地切换定子的电流导通状态,使得定子磁场北极4进行移动,从而转子最佳位置5也进行相应的移动,从而使得转子始终受到较大的力。图4中的转子最佳位置5也可以理解为所述预设范围。若采用转子磁场北极和定子磁场北极4作为参考方向,则所述预设范围为60°~120°。
请参考图5,在理想状态下,可以根据悬空相的相电压是否经过“过零点”判断转子的磁场北极和定子磁场北极4是否恰好为90°或者270°。图5中,U DC代表参考电压,e A代表悬空相的感应电压的最小值。一般可以根据悬空相的相电压与0.5U DC的大小判断当前是否经过“过零点”。
即,S30所述基于悬空相的感应电压判断所述转子的位置是否满足预设条件的步骤包括:在每个换相周期的第一预设时刻测量所述悬空相的感应电压e 1及参考电压U 1,在每个换相周期的第二预设时刻测量所述悬空相的感应电压e 2及所述参考电压U 2;其中,所述参考电压基于导通的两相的电压的测量值计算得到。若(e 1-0.5U 1)(e 2-0.5U 2)<0不成立,则判断结果为不满足所述预设条件。当(e 1-0.5U 1)(e 2-0.5U 2)<0成立时,若处于理想状态,e 1和e 2恰好位于0.5U DC的两侧,那么,在所述第一预设时刻和所述第二预设时刻之间的某一时刻,转子磁场北极和定子磁场北极恰好经过90°,那么转子在一段时间内必然位于所述预设范围之内。但是实际情况下,由于测量精度的影响以及物理状态本身不够稳定,测量值可能无法100%地反映真实情况。此时,可以进行如下两种方案选择。选择一:当(e 1-0.5U 1)(e 2-0.5U 2)<0成立时,直接认为符合条件,这是一种更倾向于降低设计成本的方案。选择二:进一步设计其他的测量值和判断逻辑进行判断,这是一种更倾向于提高精度的方案。但是无论选择何种方案,可以确定的是,若(e 1-0.5U 1)(e 2-0.5U 2)<0不成立, 则判断结果必定为不满足所述预设条件。
基于上述设计思路,S30所述基于悬空相的感应电压判断所述转子的位置是否满足预设条件的步骤还包括:若(e 1-0.5U 1)(e 2-0.5U 2)<0成立,则判断结果为满足所述预设条件。
或者,S30所述基于悬空相的感应电压判断所述转子的位置是否满足预设条件的步骤还包括:在每个换相周期的第三预设时刻测量所述悬空相的感应电压e 3,i及所述参考电压U 3,i;其中,所述第三预设时刻的数量为至少一个,e 3,i表示所述第三预设时刻中第i个时刻所对应的所述悬空相的感应电压,U 3,i表示所述第三预设时刻中第i个时刻所对应的所述参考电压,i的取值范围为1到imax,imax表示所述第三预设时刻的总数。以及,若(e 1-0.5U 1)(e 2-0.5U 2)<0成立,基于所有的e 3,i和U 3,i进一步判断,确定判断结果是否为满足所述预设条件。
例如,可以设置一个所述第三预设时刻,位于所述第一预设时刻之前,若(e 1-0.5U 1)(e 2-0.5U 2)<0成立,在此基础上,进一步判断(e 1-0.5U 1)(e 3,1-0.5U 3,1)>0是否成立,若成立,则判断结果为满足所述预设条件;否则,判断结果为不满足所述预设条件。也可以设置一个所述第三预设时刻,位于所述第二预设时刻之后,若(e 1-0.5U 1)(e 2-0.5U 2)<0成立,在此基础上,进一步判断(e 2-0.5U 2)(e 3,1-0.5U 3,1)>0是否成立,若成立,则判断结果为满足所述预设条件;否则,判断结果为不满足所述预设条件。也可以设置两个所述第三预设时刻,其中,所述第三预设时刻中的第一个时刻位于所述第一预设时刻之前,所述第三预设时刻中的第二个时刻位于所述第二预设时刻之后,若(e 1-0.5U 1)(e 2-0.5U 2)<0成立,在此基础上,进一步判断(e 1-0.5U 1)(e 3,1-0.5U 3,1)>0&&(e 2-0.5U 2)(e 3,2-0.5U 3,2)>0是否成立,若成立,则判断结果为满足所述预设条件;否则,判断结果为不满足所述预设条件。
上述具体方案仅为举例说明,本领域技术人员还可以根据实际需要设置其他数量、时间点的所述第三预设时刻,以及设置其他的额外判断逻辑,以提高判断精度。
进一步地,所述调节输出的所述控制指令序列的步骤包括:若(e 1≤0.5U 1)&&(e 2≤0.5U 2),在所述控制指令序列的控制目标的基础上额外增加所述导通相的电流值和/或额外减少所述换相频率。以及,若(e 1≥0.5U 1)&&(e 2≥0.5U 2),在所述控制指令序列的控制目标的基础上额外减少所述导通相的电流值和/或额外增加所述换相频率。
所述参考电压为导通的两相的电压之差的绝对值。或者,所述参考电压为导通的两相的电压之和的绝对值。在本实施例中,考虑到三相相电压采样时存在噪声和干扰,采用第二种方案。有益效果如下:假定噪声和干扰同时存在在三相上,即每次实际采集到的电压为e u+Δδ、e v+Δδ、e w+Δδ。不妨设e v为悬空相,e u、e w为导通的两相,U DC=|e u+e w+2Δδ|,e v+Δδ和U DC的一半比较可以消除Δδ的误差。其中,Δδ为噪声和干扰导致的误差项。在其他一些情况下也可以采用本段介绍的第一种方案计算所述参考电压,也能够解决背景技术中提及的技术问题。
在每个定子换相周期期间,都执行一次如上检测和调节,当未满足预设条件时,继续按照每次算法更新后的定子换相频率来触发定子导通模式变换(或称换相),定子换相频率和定子输出占空比修正量采用累加方式,每次换相周期和输出占空比初值来自标定的加速曲线,最终输出的换相周期和占空比综合初值和修正量。若在完成加速阶段换相次数后仍未满足切换条件则直接进入运行状态切换阶段继续进行调节,若调节次数到达上限仍未满足切换条件,可停止当前电机启动并尝试重新启动电机。当满足预设条件后即可采用当前换相周期期间检测到的过零点来计算换相时刻并触发换相,然后就 可以开始使用过零点检测方法来驱动电机运行。
也即,所述调节输出的所述控制指令序列的步骤还包括:根据当前供电电压和电机温度从参数矩阵中选择单位修正量进行累计,得到累计调节量;以及,所述累计调节量与所述控制指令序列相叠加以实现调节过程。
本实施例的实现原理主要是针对外同步开环加速到切换自同步环节提出了一种自适应控制算法:
1.在外同步开环加速阶段实时估算定转子间相对位置,电机软件控制模块根据自适应算法通过调节定子侧的换相频率和三相输出驱动电压,来动态调整定转子相对位置和转子速度。当转子稳定跟随定子磁势落后一固定角相位(60~120电角度)旋转,从而达到满足从外同步到自同步的切换条件时,即触发切换到自同步阶段反向电动势过零点检测换相驱动电机工作。
2.若在完成外同步开环加速阶段都没有触发切换,则进入运行状态切换阶段,继续依据定转子间相对位置的检测,通过调节定子侧的换相频率和三相输出驱动电压来动态调整定转子相对位置和转子速度,使转子转速确切达到阈值要求并稳定跟随定子磁势落后一固定角相位(60~120电角度)旋转,从而达到满足从外同步到自同步的切换条件,使电机可以顺利平稳过渡到反向电动势过零点检测换相驱动电机工作。
3.若在运行状态切换阶段多次调节均不满足切换条件,则触发重新启动。
相对于现有技术,本发明采用智能控制算法,在外同步加速阶段期间,通过检测电机悬空相反电动势信号、参考电压和过零点来判断转子是否到达当前定子导通模式下指定的所述预设范围。若转子位置未到达所述预设范围,即认为转子运动落后于定子换相,需要加大定子磁场力或减慢定子换相频率。若转子位置超出所述预设范围,即认为定子换相落后于转子运动, 需要减小定子磁场力或加快定子换相频率。通过多次调节后达到转子运动符合当前定子导通模式下指定的预期转子位置,即满足切换条件。
与现有技术相比,本实施例具有如下发明点:
1.设计思路不同:现有技术通过严格标定外同步加速阶段的电机运动轨迹,在完成后直接切换,而本发明在外同步加速阶段期间通过算法实现定转子相对位置的闭环调节,目标是修正启动过程累计的定转子相对位置误差以满足切换条件。
2.标定策略不同:现有技术为了保证在全应用工况和全环境工况下满足启动性能,需要在各种极限样件下尽可能全的工况点标定出最合适的加速曲线参数;而本发明只需要离线理论计算出加速曲线参数初值,针对下限样件选取几个关键工况进行参数标定,其他参数通过线性插值算法可以获得,目标是确定不同工况下一次动态修正定转子相对位置的控制量。通过启动自适应算法来补偿加速曲线的标定误差。
3.适用工况不同:现有技术适合负载特性不变、一致性好且外部干扰小的应用场景;对于带有本发明技术的无位置传感器无刷直流电机控制而言,不但适合如上应用场景,而且适用可变负载、有外部干扰和各种机械偏差老化的影响,目标是增强控制鲁棒性和抗干扰性能。
4.过零点判断方式不同:现有技术采用悬空相电压和母线电压比较检测出过零点,而本发明采用悬空相电压和另两相电压差比较检测出过零点。因为电机三相上可能存在相当的干扰和噪声,通过另两相电压计算得出的参考电压更准确。
请参考图6,本实施例的流程也可以按照图6进行理解。其中,步骤S101用于触发所述电机启动控制方法;S102(电机预定位)与步骤S10相对应;步骤S103(第一次换相和占空比调节)、S111(根据累计调节量和第x 步固化占空比和换相频率更新实际占空比和换相频率,第x次换相和占空比调节)与步骤S20相对应,步骤S111中,x指代所述控制指令序列中的控制指令的序号;步骤S104(t1时刻电压采样)、S105(t2时刻电压采样)、S106(判断实际过零点和预期过零点的偏差)、S107(反电动势过零点检测)、S108(偏差<容限值?)与步骤S30相对应;步骤S109(根据当前供电电压和电机温度从参数矩阵中选择单位修正量累计调节量)与步骤S40相对应;步骤S110(加速次数<上限n?)、S112(根据累计调节量和第n步固化占空比和换相频率更新实际占空比和换相频率,第n次换相和占空比调节)与步骤S60相对应;步骤S113(t1时刻电压采样)、S114(t2时刻电压采样)、S115(判断实际过零点和预期过零点的偏差)、S116(反电动势过零点检测)、S117(偏差<容限值?)、S118(调节次数<上限m?)与步骤S31相对应,步骤S120(根据当前供电电压和电机温度从参数矩阵中选择单位调节量更新占空比和换相频率)与步骤S41相对应,步骤S118、S119(等待重新启动)、S100(关闭电机三相输出)与步骤S70相对应,步骤S121(电机闭环正常工作)与步骤S50、S51相对应。需理解,图6中的步骤S102也并非是必须的步骤。
本实施例中,关键控制参数的确定方法如下:
1.外同步加速阶段各换相点占空比和换相频率的确定:
外同步加速阶段是将电机从零速开环加速到一定转速的变加速过程,过程中通过逐步调节占空比和换相频率实现对电机的持续增速。该加速曲线(每步输出的占空比和换相频率)事先固化在软件中,通过人工标定或理论计算获得。换相频率f决定了定子牵引转子的期望夹角θ变化速率ω,在外同步加速阶段每次换相逐步增加换相频率实现对转子的加速。占空比r直接决定了定子绕组上产生的电磁力的大小,在外同步加速阶段每次换相配合负载 特性输出合适的电磁力。在加速阶段通过调节合适的换相频率和占空比输出来控制定转子夹角相位差(60~120度)以满足驱动当前负载下转速不跌落并持续增速。
假定加速阶段可允许加速次数上限为n步,第x步(x∈[2,n])所需的电磁力主要取决于适配当前换相周期1/f x内定子电磁作用力方向与转子磁场方向的夹角θ变化和负载大小T L(扭矩形式)变化。刚体(电机本体和被拖动对象)定轴转动的角加速度a与它所受的合外力矩M成正比,与刚体的转动惯量J成反比。合外力矩是由电磁转矩T θ、负载转矩T L、刚体质量m、矢径d、和作用力夹角θ决定。在一个换相周期内,刚体的平均角速度ω x由平均角加速度a x和换相周期1/f x决定。由于电机供电电压U DC直接影响到电机定子侧的电磁力,电机温度t m又直接影响到电机电磁特性,因此第x步的占空比r x和换相频率f x是如下参数的函数,即:
Figure PCTCN2022117017-appb-000001
通常,根据一条加速曲线,换相频率逐步增大,占空比逐步增大。
2.外同步加速阶段初始定子换相频率的确定:
加速阶段首个换相频率应该至少等价于电机反电动势可以采集的最低转速n BEMF-MIN(电机供应商提供),因此初始换相频率f 1需满足如下参数的函数,即:
Figure PCTCN2022117017-appb-000002
p是电机极对数。
3.外同步加速阶段一次占空比和定子换相频率单位修正量的确定:
一次修正量的大小决定了多快可以完成加速阶段定转子位置修正。在调节过程中单位修正量与负载变化率ΔT L相关,与定转子位置偏差D e相关(D e + 为转子实际位置落后预期位置的偏差,D e -为转子实际位置超前预期位置的偏差),且由于电机供电电压U DC直接影响到电机定子侧的电磁力,电机温度t m又直接影响到电机电磁特性,因此Δr和Δf是如下参数的函数,即:
Figure PCTCN2022117017-appb-000003
通常,U DC越小或ΔT L越大或t m越大或D e越大,则|Δr|越大和|Δf|越大。通过对加速阶段占空比和换相频率的修正最终使电机的启动运行状态满足切换条件直接切换到自同步闭环阶段。
4.外同步加速阶段实际输出占空比和定子换相频率的确定:
外同步加速阶段在第x步实际输出占空比和换相频率是初始固化值和其单位修正量累计值之和,即
Figure PCTCN2022117017-appb-000004
5.外同步加速阶段和运行状态切换阶段转子预期位置检查点的确定:
如图7所示为一个60度的换相周期,其中,
Figure PCTCN2022117017-appb-000005
理想的反电动势过零点应该出现在30度的中心时刻t z,中心时刻之前的相电压应该低于参考电压的一半和中心点之后的相电压应该高于参考电压的一半,或中心点之前的相电压应该高于参考电压的一半和中心点之后的相电压应该低于参考电压的一半。可以在离中心点等距的前后设置一对采样时刻(t 1,t 2),t 1即所述第一预设时刻,t 2即所述第二预设时刻。通过两组或多组电压差判断实际过零点偏移预期过零点(30度中心点)的误差D e。采样时刻需 满足如下函数,即:
|t 1-t z|=|t 2-t z|。
上述逻辑也可以总结为,所述第一预设时刻和所述第二预设时刻关于所述换相周期的中点时刻对称。当然,前文中也已经描述了可以设置额外的所述第三预设时刻以提高判断精度,所述第三预设时刻可以关于中心点对称设置,也可以不对称设置,数量也可以选择奇数或者偶数。
通常,依据系统允许的偏差容限,可选的检查点,例如有(15°,45°),(20°,40°)等。检查点越靠近中心点,切换条件越严苛,相对而言可靠性更高,检查点越远离中心点,切换条件越宽松,相对而言可靠性较低。本领域技术人员可以根据实际情况选择合适的所述第一预设时刻和所述第二预设时刻。需理解,所述第一预设时刻和所述第二预设时刻的具体时间与单个换相周期的总时长也存在关系,具体测量时机可以根据单个换相周期的总时长和检查点对应的角度值进行实时计算得到。最后,本方法在两次换相时刻之间完成两个检查点的采样和计算。
6.悬空相相电压e A和参考电压U DC的确定:
如图8所示为相电压采样时序图,采样时间点基于电机控制载波频率PWM output信号的上升沿偏移一个延时时间D,该时间的确定基于避开开关噪声和硬件延时。偏移产生的采样触发信号Trigger to ADC sample的频率和电机控制载波频率相同,其上升沿触发硬件模拟信号采样模块同时采样电机三相相电压e u、e v和e w。图8中,Ts代表单个脉冲的宽度。根据采样时刻三相导通模式可知哪相为悬空相,如某一采样时刻未导通相(又称悬空相)为V相,可得悬空相相电压为e A=e v,参考电压为U DC=|e u+e w|。在一个电机控制载波周期高占空比期间,可以完成一次或多次的电压采样,并对采样数据可以均值处理以获取更高精度的采样值。
7.外同步加速阶段可允许加速次数上限n和运行状态切换阶段可允许调节次数上限m(即所述预设上限)的确定:
上限的标定需根据具体电机应用场景的系统需求。例如变速箱阀体油泵系统应用需保证T 0时间内从0bar建立油压到目标油压,电机在额定转速工作下在T 1时间可以满足将油压从0bar冲到目标油压,则(T 0-T 1)的时间为允许电机尝试启动的时间。已知一次运行状态切换位置调节时间约为f x -1和转子预定位时间为T p,则允许的启动时间应包括转子预定位阶段、外同步加速阶段和运行状态切换阶段时间之和,即
Figure PCTCN2022117017-appb-000006
综上所述,本实施例提供了一种电机启动控制方法。所述方法包括如下步骤:依序输出控制指令序列。基于悬空相的感应电压判断所述转子的位置是否满足预设条件。若不满足所述预设条件,则调节输出的所述控制指令序列并继续基于所述悬空相的感应电压判断所述转子的位置是否满足预设条件。以及,若满足所述预设条件,则切换至内同步运行状态。如此配置,基于悬空相的感应电压进行了定性的判断,使得输出的控制信号具有一部分的闭环特性,能够应对多种不同的工况和负载,并具有较高的鲁棒性;另一方面也降低了控制指令序列的标定难度,减少了控制器的设计成本;解决了现有技术中无位置传感器的无刷直流电机通过事先标定的开环控制信号启动,标定成本大、工况覆盖不全、鲁棒性差、支持有限的负载变化、启动时间长,并在特定工况下存在无法进行精确标定的问题。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本发明技术方案的保护范围。

Claims (11)

  1. 一种电机启动控制方法,其特征在于,应用于电机,所述电机为无位置传感器的无刷直流电机,所述电机启动控制方法包括如下步骤:
    依序输出控制指令序列;其中,所述控制指令序列的控制目标包括换相频率和导通相的电流值,所述控制指令序列为开环控制指令;
    基于悬空相的感应电压判断所述转子的位置是否满足预设条件;其中,所述悬空相是未导通的一相;
    若不满足所述预设条件,则调节输出的所述控制指令序列并继续基于所述悬空相的感应电压判断所述转子的位置是否满足预设条件;以及,
    若满足所述预设条件,则切换至内同步运行状态。
  2. 根据权利要求1所述的电机启动控制方法,其特征在于,所述电机启动控制方法还包括如下步骤:
    输出所述控制指令序列的第n个控制指令之后,循环输出所述第n个控制指令;其中,n为所述控制指令序列中控制指令的总数;
    基于所述悬空相的感应电压判断所述转子的位置是否满足预设条件;
    若不满足所述预设条件,则调节输出的所述控制指令序列并继续基于所述悬空相的感应电压判断所述转子的位置是否满足预设条件;以及,
    若满足所述预设条件,则切换至内同步运行状态。
  3. 根据权利要求2所述的电机启动控制方法,其特征在于,所述电机启动控制方法还包括如下步骤:
    若所述输出所述第n个控制指令的循环次数达到预设上限,输出停机信号以驱使所述电机停机。
  4. 根据权利要求1所述的电机启动控制方法,其特征在于,所述预设条 件为:所述转子落后于定子磁势的角度在预设范围内。
  5. 根据权利要求4所述的电机启动控制方法,其特征在于,所述基于悬空相的感应电压判断所述转子的位置是否满足预设条件的步骤包括:
    在每个换相周期的第一预设时刻测量所述悬空相的感应电压e 1及参考电压U 1,在每个换相周期的第二预设时刻测量所述悬空相的感应电压e 2及所述参考电压U 2;其中,所述参考电压基于导通的两相的电压的测量值计算得到;
    若(e 1-0.5U 1)(e 2-0.5U 2)<0不成立,则判断结果为不满足所述预设条件。
  6. 根据权利要求5所述的电机启动控制方法,其特征在于,所述基于悬空相的感应电压判断所述转子的位置是否满足预设条件的步骤还包括:
    若(e 1-0.5U 1)(e 2-0.5U 2)<0成立,则判断结果为满足所述预设条件。
  7. 根据权利要求5所述的电机启动控制方法,其特征在于,所述基于悬空相的感应电压判断所述转子的位置是否满足预设条件的步骤还包括:
    在每个换相周期的第三预设时刻测量所述悬空相的感应电压e 3,i及所述参考电压U 3,i;其中,所述第三预设时刻的数量为至少一个,e 3,i表示所述第三预设时刻中第i个时刻所对应的所述悬空相的感应电压,U 3,i表示所述第三预设时刻中第i个时刻所对应的所述参考电压,i的取值范围为1到imax,imax表示所述第三预设时刻的总数;以及,
    若(e 1-0.5U 1)(e 2-0.5U 2)<0成立,基于所有的e 3,i和U 3,i进一步判断,确定判断结果是否为满足所述预设条件。
  8. 根据权利要求5所述的电机启动控制方法,其特征在于,所述调节输出的所述控制指令序列的步骤包括:
    若(e 1≤0.5U 1)&&(e 2≤0.5U 2),在所述控制指令序列的控制目标的基础上额外增加所述导通相的电流值和/或额外减少所述换相频率;以及,
    若(e 1≥0.5U 1)&&(e 2≥0.5U 2),在所述控制指令序列的控制目标的基础上额外减少所述导通相的电流值和/或额外增加所述换相频率。
  9. 根据权利要求8所述的电机启动控制方法,其特征在于,所述调节输出的所述控制指令序列的步骤还包括:
    根据当前供电电压和电机温度从参数矩阵中选择单位修正量进行累计,得到累计调节量;以及,
    所述累计调节量与所述控制指令序列相叠加以实现调节过程。
  10. 根据权利要求5所述的电机启动控制方法,其特征在于,所述参考电压为导通的两相的电压的测量值之差的绝对值,或者,所述参考电压为导通的两相的电压的测量值之和的绝对值。
  11. 根据权利要求5所述的电机启动控制方法,其特征在于,所述第一预设时刻和所述第二预设时刻关于所述换相周期的中点时刻对称。
PCT/CN2022/117017 2022-02-23 2022-09-05 电机启动控制方法 WO2023159908A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210167641.0A CN114553070A (zh) 2022-02-23 2022-02-23 电机启动控制方法
CN202210167641.0 2022-02-23

Publications (1)

Publication Number Publication Date
WO2023159908A1 true WO2023159908A1 (zh) 2023-08-31

Family

ID=81678387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117017 WO2023159908A1 (zh) 2022-02-23 2022-09-05 电机启动控制方法

Country Status (2)

Country Link
CN (1) CN114553070A (zh)
WO (1) WO2023159908A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114553070A (zh) * 2022-02-23 2022-05-27 联合汽车电子有限公司 电机启动控制方法
CN117614339B (zh) * 2023-10-16 2024-06-18 广州星际悦动股份有限公司 电机的控制方法、装置、存储介质以及口腔护理设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137069A (ja) * 2003-10-29 2005-05-26 Hitachi Home & Life Solutions Inc Dcブラシレスモータの起動制御方法
CN105680742A (zh) * 2016-03-23 2016-06-15 北京航空航天大学 一种无刷直流电机无位置传感器转子位置识别系统及方法
CN110943653A (zh) * 2019-12-30 2020-03-31 联合汽车电子有限公司 一种电机启动阶段转子位置调整方法
CN113364368A (zh) * 2021-05-21 2021-09-07 联合汽车电子有限公司 电机启动方法及可读存储介质
CN114553070A (zh) * 2022-02-23 2022-05-27 联合汽车电子有限公司 电机启动控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137069A (ja) * 2003-10-29 2005-05-26 Hitachi Home & Life Solutions Inc Dcブラシレスモータの起動制御方法
CN105680742A (zh) * 2016-03-23 2016-06-15 北京航空航天大学 一种无刷直流电机无位置传感器转子位置识别系统及方法
CN110943653A (zh) * 2019-12-30 2020-03-31 联合汽车电子有限公司 一种电机启动阶段转子位置调整方法
CN113364368A (zh) * 2021-05-21 2021-09-07 联合汽车电子有限公司 电机启动方法及可读存储介质
CN114553070A (zh) * 2022-02-23 2022-05-27 联合汽车电子有限公司 电机启动控制方法

Also Published As

Publication number Publication date
CN114553070A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023159908A1 (zh) 电机启动控制方法
CN110943653B (zh) 一种电机启动阶段转子位置调整方法
WO2022242708A1 (zh) 电机启动方法及可读存储介质
CN101369796B (zh) 检测永磁同步电机转子磁极初始位置的方法和系统
EP2020743B1 (en) Sensorless controlling apparatus for controlling a brushless motor
CN105305914B (zh) 角度估算方法及装置、电机矢量控制方法及系统和电机
KR102588927B1 (ko) 모터 제어방법
CN101478281A (zh) 基于电流反馈的无位置传感器无刷直流电机起动方法
CN108712127B (zh) 一种开关磁阻电机无位置传感器控制方法及装置
WO2015041321A1 (ja) 3相ブラシレスモータの駆動装置
CN110492798B (zh) 一种无刷直流电机的自适应过零点检测方法
CN106160609A (zh) 一种永磁无刷电机控制方法
CN110729703A (zh) 基于foc电机控制的堵转保护方法及电机控制装置
TWI577127B (zh) 交流馬達的驅動方法及應用其之馬達驅動裝置
WO2013131460A1 (zh) 电机启动的控制方法和装置
CN110365261B (zh) 无刷直流电机顺滑起动控制方法及控制系统
KR100289496B1 (ko) 고속모터의 센서리스 속도제어방법
JP2018186640A (ja) モータ制御装置およびモータ制御装置の制御方法
JP5493546B2 (ja) リニア型永久磁石同期モータの制御装置
KR20070076854A (ko) 센서리스 영구자석 동기모터의 기동제어방법
US11418138B2 (en) Driving circuit and driving method of stepping motor and electronic machine using the same
JPH09215382A (ja) 永久磁石同期モータの駆動方法
US20230246571A1 (en) Electric motor control
US6922028B2 (en) Controller for permanent magnet motor
US10651769B2 (en) Motor drive control device and motor drive control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE