WO2023159684A1 - 适用于极限环境的通信线缆加热控制装置及其控制方法 - Google Patents

适用于极限环境的通信线缆加热控制装置及其控制方法 Download PDF

Info

Publication number
WO2023159684A1
WO2023159684A1 PCT/CN2022/080413 CN2022080413W WO2023159684A1 WO 2023159684 A1 WO2023159684 A1 WO 2023159684A1 CN 2022080413 W CN2022080413 W CN 2022080413W WO 2023159684 A1 WO2023159684 A1 WO 2023159684A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication cable
area
tension
sensing mechanism
copper sheet
Prior art date
Application number
PCT/CN2022/080413
Other languages
English (en)
French (fr)
Inventor
郭志宏
代康
钱熙文
肖可成
唐青
郭雪雅
Original Assignee
江苏俊知技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏俊知技术有限公司 filed Critical 江苏俊知技术有限公司
Publication of WO2023159684A1 publication Critical patent/WO2023159684A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Definitions

  • the invention relates to the technical field of communication cables, in particular to a communication cable heating control device and a control method suitable for extreme environments.
  • the technical problem to be solved by the present invention is: to solve the technical problem in the prior art that the communication cable cannot run stably for a long time in an extreme environment.
  • the invention provides a communication cable heating control device suitable for extreme environments and a control method thereof, which can realize long-term stable operation of communication cables in extreme environments.
  • a communication cable heating control device suitable for extreme environments, including: a control box, the control box has an accommodating space inside; a communication cable, the communication cable The cable is arranged outside the accommodating space, and a heating element is arranged inside the communication cable; a tension sensing mechanism, the tension sensing mechanism is installed in the accommodating space, and the tension sensing mechanism is connected with the communication line Cable connection, the tension sensing mechanism is used to monitor the tension F of the communication cable; the temperature sensing mechanism, at least part of the temperature sensing mechanism is installed in the accommodating space, and the temperature sensing mechanism is used to monitor Ambient temperature T; wherein, when the tension F reaches a tension warning value and the ambient temperature T reaches a temperature warning value, the heating element can load a current to heat the communication cable.
  • a heating element is arranged inside the communication cable, and the tension change of the communication cable due to the change of the environment temperature is monitored through the tension sensing mechanism, and the change of the environment temperature is monitored through the temperature sensing mechanism.
  • the tension and the environment temperature reach the warning value at the same time, the The conduction current energizes the heating element, and the heating element generates heat to heat the communication cable, so that the communication cable can still run stably in extreme environments.
  • it further includes: a first partition board and a second partition board, both of the first partition board and the second partition board are installed in the accommodating space, and the first partition board Both the plate and the second partition plate are fixedly connected with the side wall of the control box.
  • a passage is provided between the first partition board and the second partition board, and the passage is arranged along the length direction of the control box.
  • the tension sensing mechanism includes:
  • one end of the elastic member is fixedly connected to the side wall of the control box;
  • one end of the sliding plate is fixedly connected to the other end of the elastic member
  • a steel wire one end of the steel wire is fixedly connected to the other end of the sliding plate, and the other end of the steel wire is connected to the communication cable.
  • the tension sensing mechanism further includes:
  • the guide rail is installed on the bottom surface of the control box, and the sliding plate is slidably connected with the guide rail;
  • a guide wheel the guide wheel is installed at one end of the guide rail, and the steel wire is connected to the communication cable after passing around the guide wheel.
  • the temperature sensing mechanism includes:
  • the bottom end of the standpipe is connected to the tension sensing mechanism, and the top end of the standpipe passes through the control box;
  • a bimetallic temperature sensor is installed on the top of the piston rod.
  • it also includes:
  • the first copper sheet is installed on the front side of the bottom of the piston rod, and the first copper sheet passes through the side wall of the standpipe, the first copper sheet is located on the first below the divider;
  • the second copper sheet, the second copper sheet is installed on the rear side of the bottom of the piston rod, and the second copper sheet passes through the side wall of the standpipe, the second copper sheet is located on the second below the divider;
  • the first copper sheet and the second copper sheet are respectively connected to the heating element through wires.
  • the lower surface of the first partition plate includes a first area, a second area and a third area, the second area is located between the first area and the third area, and A gap is left between the first area and the second area, and a gap is left between the second area and the third area.
  • both the second area and the third area are covered with a copper electrode plate, the second area is connected to the positive pole of the power supply with low current, and the third area is connected to the positive pole of the power supply with high current.
  • the lower surface of the second partition plate includes a fourth area, a fifth area and a sixth area, the fifth area is located between the fourth area and the sixth area, and A gap is left between the fourth area and the fifth area, and a gap is left between the fifth area and the sixth area.
  • both the fifth area and the sixth area are covered with a copper electrode plate, the fifth area is connected to the negative pole of the power supply with low current, and the sixth area is connected to the negative pole of the power supply with high current.
  • the bottom of the piston rod is provided with a first installation groove and a second installation groove, and the first installation groove and the second installation groove are opposite to each other; one side of the first copper sheet is embedded It is installed in the first installation groove, and the other side of the first copper sheet protrudes from the outside of the vertical pipe; one side of the second copper sheet is installed inside the second installation groove, and the first copper sheet is installed inside the second installation groove. The other side of the two copper sheets protrudes from the outside of the standpipe.
  • the temperature sensing mechanism further includes: a spring and a spring fixing part, both of the spring and the spring fixing part are installed in the vertical tube, the spring is sleeved on the piston rod, and the spring The fixing part is fixed on the inner wall of the vertical pipe.
  • the bimetallic temperature sensor includes an active layer and a passive layer, the active layer is fixedly connected to the top of the piston rod, and the passive layer is fixedly connected to the top of the vertical pipe.
  • the present invention also provides a communication cable heating control method suitable for extreme environments, using the above-mentioned communication cable heating control device suitable for extreme environments, the method includes the following steps:
  • the beneficial effect of the present invention is that the communication cable heating control device and its control method applicable to the extreme environment of the present invention, by setting the heating element inside the communication cable, monitoring the tension change of the communication cable through the tension sensing mechanism, through The temperature sensing mechanism monitors the change of the ambient temperature. When the tension and the ambient temperature reach the warning value at the same time, the current can be turned on to energize the heating element, and the heating element generates heat to heat the communication cable.
  • the control process of the present invention can be automatically triggered according to changes in the external environment temperature, and is suitable for use in extreme environments such as low temperature, ice, snow, freezing rain, etc., and can be applied in remote and unattended areas.
  • the invention can realize long-term and stable operation of the communication cable in an extreme environment.
  • the invention is simple in structure, low in cost, does not need expensive and complicated analytical instruments and software control programs, can operate automatically according to ambient temperature changes, and has a wide range of applications.
  • Fig. 1 is a schematic structural diagram of a communication cable heating control device suitable for extreme environments according to the present invention.
  • Fig. 2 is a top view of the first partition board and the second partition board of the present invention.
  • Fig. 3 is a structural schematic diagram of the temperature sensing mechanism of the present invention.
  • Fig. 4 is a structural schematic diagram of the piston rod of the present invention.
  • Fig. 5 is a flow chart of the communication cable heating control method suitable for extreme environments of the present invention.
  • Control box 1. Control box; 2. Communication cable; 3. Heating element; 4. Tension sensing mechanism; 5. Temperature sensing mechanism; 6. First partition board; 7. Second partition board; 8. Channel ; 9, the first copper sheet; 10, the second copper sheet; 11, wire; 101, accommodation space; 41, elastic member; 42, sliding plate; 43, steel wire; 44, guide rail; 45, guide wheel; 51, Standpipe; 52, piston rod; 53, bimetallic temperature sensor; 54, spring; 55, spring fixing member; 521, first installation groove; 522, second installation groove; 531, active layer; 532, passive layer; 61. First area; 62. Second area; 63. Third area; 71. Fourth area; 72. Fifth area; 73. Sixth area.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • the communication cable heating control device suitable for extreme environments of the present invention includes: a control box 1, a communication cable 2, a tension sensing mechanism 4 and a temperature sensing mechanism 5, and the control box 1 has a An accommodating space 101, the communication cable 2 is arranged outside the accommodating space 101, the heating element 3 is arranged inside the communication cable 2, the tension sensing mechanism 4 is installed in the accommodating space 101, the tension sensing mechanism 4 and the communication cable 2 connection, the tension sensing mechanism 4 is used to monitor the tension F of the communication cable 2, at least part of the temperature sensing mechanism 5 is installed in the accommodation space 101, and the temperature sensing mechanism 5 is used to monitor the ambient temperature T, wherein, when the tension F reaches the tension When the warning value is reached and the ambient temperature T reaches the temperature warning value, the heating element 3 can load current to heat the communication cable 2 .
  • the present invention can respectively monitor the tension F and the ambient temperature T of the communication cable 2 through the tension sensing mechanism 4 and the temperature sensing mechanism 5.
  • the communication cable 2 will expand with heat and contract with cold, so that the tension F
  • the heating element 3 will be triggered to heat the communication cable 2, so that the communication cable 2 can still be used in extreme environments (such as extreme cold, ice and snow, freezing rain, etc.) Normal use.
  • control box 1 may be a rectangular box-packed structure with a hollow interior and may be made of stainless steel. Because the control box 1 needs to be placed outdoors for a long time, and electronic devices are installed inside, the waterproof level of the control box 1 must reach at least IP67 level, so as to reduce the damage of the internal electronic devices and prolong the service life of the control box 1 .
  • the communication cable 2 is a special communication cable made of materials that can withstand high and low temperatures to withstand the heat generated by the heating element 3 .
  • the communication cable heating control device suitable for extreme environments further includes: a first partition plate 6 and a second partition plate 7, each of the first partition plate 6 and the second partition plate 7 Installed in the accommodating space 101 , both the first partition plate 6 and the second partition plate 7 are fixedly connected to the side wall of the control box 1 .
  • a channel 8 is arranged between the first partition plate 6 and the second partition plate 7, and the channel 8 is arranged along the length direction of the control box 1.
  • the first partition plate 6 and the second partition plate 7 divide the accommodating space 101 into an upper chamber and a lower chamber, the tension sensing mechanism 4 is located in the lower chamber, and the temperature sensing mechanism 5 is located in the two chambers at the same time.
  • Both the first partition board 6 and the second partition board 7 are made of insulating and moisture-resistant materials, which can improve the service life of the first partition board 6 and the second partition board 7 .
  • the tension sensing mechanism 4 includes: an elastic member 41, a sliding plate 42 and a steel wire 43, one end of the elastic member 41 is fixedly connected to the side wall of the control box 1, and one end of the sliding plate 42 is connected to the other end of the elastic member 41. Fixedly connected, one end of the steel wire 43 is fixedly connected to the other end of the sliding plate 42 , and the other end of the steel wire 43 is connected to the communication cable 2 .
  • the tension sensing mechanism 4 also includes a guide rail 44 and a guide wheel 45.
  • the guide rail 44 is installed on the bottom surface of the control box 1.
  • the sliding plate 42 is slidably connected with the guide rail 44.
  • the guide wheel 45 is installed at one end of the guide rail 44.
  • the steel wire 43 After the steel wire 43 walks around the guide wheel 45 Connect with communication cable 2. Specifically, when the tension of the communication cable 2 changes, the steel wire 43 will be pulled, so that the sliding plate 42 will move on the guide rail 44, and at this time, the elastic member 41 will receive the pulling force of the sliding plate 42. When the communication cable 2 When the tension returns to its original state, the sliding plate 42 will return to the initial position under the pull of the elastic member 41 , and the moving distance of the sliding plate 42 will be different due to different tensions.
  • the orthographic projection of the channel 8 overlaps with the orthographic projection of the guide rail 44 , so as to ensure the stability and precision of the movement of the temperature sensing mechanism 5 .
  • the steel wire 43 can be made of a material that is not easy to corrode and has stable tension, such as 304 or 302 stainless steel wire with a diameter of 0.4mm-0.8mm, and the overall length of the steel wire 43 can be 5m-10m.
  • An aperture can be offered on the side wall of the control box 1 for the steel wire 43 to pass through.
  • the guide wheel 45 can guide the movement of the steel wire 43 .
  • the other end of the steel wire 43 can be fixed on the communication cable 2 by a clamp to prevent the steel wire 43 from shifting.
  • the length of the steel wire 43 is an important indicator for monitoring the tension of the communication cable 2.
  • the length range of the steel wire 43 of the present invention is determined after simulating the actual laying environment of the communication cable in the high and low temperature test box according to the specification, structure and environment of the communication cable 2 .
  • the temperature sensing mechanism 5 includes: a vertical pipe 51, a piston rod 52 and a bimetallic temperature sensor 53, the bottom end of the vertical pipe 51 is connected with the tension sensing mechanism 4, and the top end of the vertical pipe 51 runs through the control box 1.
  • the piston rod 52 is installed in the standpipe 51
  • the bimetallic temperature sensor 53 is installed on the top of the piston rod 52 .
  • the bottom end of the vertical pipe 51 is fixedly connected with the sliding plate 42, and when the sliding plate 42 moves, it can drive the vertical pipe 51 to move together.
  • Standpipe 51 and piston rod 52 all adopt insulating material, and the length of standpipe 51 is greater than the height of control box 1, and standpipe 51 preferably adopts non-conductive, non-absorbent, smooth hard engineering plastics, such as nylon.
  • the top surface of the control box 1 is provided with a through hole for the vertical pipe 51 to pass through.
  • the width of the channel 8 should be greater than the outer diameter of the standpipe 51 to facilitate the smooth movement of the standpipe 51 in the channel 8 .
  • the communication cable heating control device suitable for extreme environments further includes: a first copper sheet 9 and a second copper sheet 10, the first copper sheet 9 is installed on the front side of the bottom of the piston rod 52, and The first copper sheet 9 passes through the sidewall of the standpipe 51, the first copper sheet 9 is located below the first partition plate 6, the second copper sheet 10 is installed on the rear side of the piston rod 52 bottom, and the second copper sheet 10 Through the side wall of the standpipe 51 , the second copper sheet 10 is located under the second partition plate 7 , and the first copper sheet 9 and the second copper sheet 10 are respectively connected to the heating element 3 through wires 11 .
  • first copper sheet 9 and the second copper sheet 10 are kept at the same level, and the first partition plate 6 and the second partition plate 7 are kept at the same level.
  • the heating Element 3 is in the de-energized state.
  • the surfaces of the first copper sheet 9 and the second copper sheet 10 are smooth.
  • Lead wire 11 can adopt two-core soft, bending-resistant power cord, and heating element 3 can be two alloy wires, and an alloy wire is connected with the first copper sheet 9 by wire 11, and another alloy wire is connected with the second copper sheet by wire 11.
  • the copper sheets 10 are connected, and the two alloy wires are connected at the end of the communication cable to form a current loop.
  • the bottom of the piston rod 52 is provided with a first installation groove 521 and a second installation groove 522, the first installation groove 521 and the second installation groove 522 are oppositely arranged, and one side of the first copper sheet 9 is embedded in the first installation groove.
  • the groove 521 the other side of the first copper sheet 9 protrudes from the outside of the vertical pipe 51
  • one side of the second copper sheet 10 is installed in the second installation groove 522
  • the other side of the second copper sheet 10 extends out of the vertical pipe 51 outside.
  • the second copper sheet 10 may be in contact with the lower surface of the second partition plate 7 .
  • the temperature sensing mechanism 5 also includes a spring 54 and a spring fixing part 55, the spring 54 and the spring fixing part 55 are installed in the vertical pipe 51, the spring 54 is sleeved on the piston rod 52, and the spring fixing part 55 is fixed on the inner wall of the vertical pipe 51 superior.
  • the spring 54 can ensure that the first copper sheet 9 connected to the piston rod 52 is separated from the lower surface of the first dividing plate 6, and the second copper sheet 10 and the lower surface of the first partition plate 6 are separated. The lower surface of the second partition plate 7 is separated, the current is interrupted, and the heating element 3 does not heat.
  • the lower surface of the first partition plate 6 includes a first area 61, a second area 62 and a third area 63, the second area 62 is located between the first area 61 and the third area 63, And there is a gap between the first area 61 and the second area 62 , and there is a gap between the second area 62 and the third area 63 .
  • Both the second area 62 and the third area 63 are covered with a copper electrode plate, the second area 62 is connected to the positive pole of the power supply with low current, and the third area 63 is connected to the positive pole of the power supply with high current.
  • the lower surface of the second partition plate 7 includes a fourth area 71, a fifth area 72 and a sixth area 73, the fifth area 72 is located between the fourth area 71 and the sixth area 73, and the fourth area 71 and the fifth area A gap is left between the regions 72 , and a gap is left between the fifth region 72 and the sixth region 73 .
  • Both the fifth area 72 and the sixth area 73 are covered with a copper electrode plate, the fifth area 72 is connected to the negative pole of the power supply with low current, and the sixth area 73 is connected to the negative pole of the power supply with high current.
  • the heating element 3 when the first copper sheet 9 is in contact with the second region 62, and the second copper sheet 10 is in contact with the fifth region 72, the heating element 3 can be loaded with a low current (for example, 300A-350A) through the wire 11 to the At the heating element 3 , the heating element 3 can generate heat to heat the communication cable 2 at a low temperature.
  • the heating element 3 When the first copper sheet 9 is in contact with the third area 63, and the second copper sheet 10 is in contact with the sixth area 73, the heating element 3 can be loaded with a high current, and the high current (for example, 500A-550A) passes through the wire 11 to the heating element At 3, the heating element 3 can generate heat to heat the communication cable 2 at a high temperature.
  • Copper electrode plates cover the lower surfaces of the first partition plate 6 and the second partition plate 7 , which can reduce the problem of short circuits caused by external water vapor entering the control box 1 .
  • the first partition plate 6 and the second partition plate 7 are divided into regions, and the regions are insulated from each other, so that the heating element 3 can be powered off, low-current and high-current according to the tension of the communication cable 2. There are three levels of current energization, the higher the current, the higher the temperature of the heating element 3 .
  • the smooth surface of the copper electrode plate facilitates the smooth sliding of the first copper sheet 9 and the second copper sheet 10 .
  • the first copper sheet 9 and the second copper sheet 10 can come into contact with different areas of the first partition plate 6 and the second partition plate 7, thereby realizing heating element heating.
  • 3 is power off or power on, and the conduction current is low current or high current.
  • the elastic member 41 is arranged at the left end of the guide rail 44, and the steel wire 43 is arranged at the right end of the guide rail 44.
  • the elastic member 41 and the sliding plate 42 are located in the area formed by the first area 61 and the fourth area 71 At this time, if the temperature sensing mechanism 5 detects a change in the ambient temperature T, the heating element 3 cannot be triggered.
  • the first copper sheet 9 can be in contact with the third area 63
  • the second copper sheet 10 can be in contact with the sixth area 73 , so that the heating element 3 is turned on with a high current.
  • the present invention can automatically adjust the current gear that the heating element 3 is turned on according to the tension on the communication cable 2, so as to realize different heating temperatures for the communication cable 2, which is safer and more reliable.
  • the bimetal temperature sensor 53 includes an active layer 531 and a passive layer 532 , the active layer 531 is fixedly connected to the top of the piston rod 52 , and the passive layer 532 is fixedly connected to the top of the vertical pipe 51 .
  • the length contraction of the active layer 531 drives the piston rod 52 to move upward to realize current conduction; when the ambient temperature rises, the length expansion of the active layer 531 can push the piston rod 52 to move downward to realize current interruption.
  • the communication cable heating control method suitable for extreme environments of the present invention adopts the above-mentioned communication cable heating control device suitable for extreme environments, and the control method includes the following steps:
  • the tension warning value F0 and the ambient temperature warning value T0 have been calibrated in the high and low temperature test box in advance.
  • the tension warning value F0 can be calibrated by the length of the steel wire 43, and the ambient temperature warning value T0 can be moved by the piston rod 52 The distance is calibrated.
  • the tension warning value F0 can be calibrated by designing the length of the steel wire 43 and the width of different regions on the partition plate, and the ambient temperature warning value T0 can pull the piston rod 52 up and down due to the deformation of the bimetallic temperature sensor 53 due to temperature. Move to calibrate. All the calibration process is carried out in the high and low temperature test box to simulate the characteristics of the communication cable and the environmental conditions of the actual laying of the communication cable.
  • the other end of the steel wire 43 is fixed on the communication cable 2.
  • the communication cable 2 will shrink, thereby pulling the steel wire 43 to move to the right, and the steel wire 43 then pulls the sliding plate 42 to slide to the right.
  • the sliding plate 42 slides to the right, it can drive the standpipe 51 to move to the right in the channel 8.
  • the piston rod 52 will drive the first copper sheet 9 and the second copper sheet 10 to move to the right.
  • the first copper sheet 9 and the second copper sheet 10 can move to below the second area 62 and the fifth area 72; when the communication cable 2 bears When the tension reaches the tension warning value and the tension is relatively high, the first copper sheet 9 and the second copper sheet 10 can move below the third area 63 and the sixth area 73 .
  • the bimetallic temperature sensor 53 continuously monitors the external ambient temperature. When the ambient temperature decreases, the length contraction of the active layer 531 will drive the piston rod 52 to move upward, so that the first copper sheet 9 and the second copper sheet 10 will also move upward.
  • the first copper sheet 9 can just be attached to the lower surface of the first partition plate 6
  • the second copper sheet 10 can just be attached to the lower surface of the second partition plate 7 .
  • the heating element 3 may be loaded with current, and the heating element 3 can heat the communication cable 2 by heating and increase the temperature of the communication cable 2 .
  • the magnitude of the energizing current can be automatically adjusted to realize low-temperature or high-temperature heating.
  • the communication cable heating control device and its control method applicable to extreme environments of the present invention by setting the heating element 3 inside the communication cable 2, monitor the tension change of the communication cable 2 through the tension sensing mechanism 4 , the ambient temperature change is monitored by the temperature sensing mechanism 5, when the tension and the ambient temperature reach the warning value at the same time, the current can be turned on to energize the heating element 3, and the heating element 3 generates heat to heat the communication cable 2.
  • the control process of the present invention can be automatically triggered according to changes in the external environment temperature, and is suitable for use in extreme environments such as low temperature, ice, snow, freezing rain, etc., and can be applied in remote and unattended areas.
  • the invention can realize long-term and stable operation of the communication cable in an extreme environment.
  • the invention has simple structure and low cost, does not need expensive and complicated analytical instruments and software control programs, can be automatically operated according to the change of ambient temperature, and has a wide range of applications.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Resistance Heating (AREA)

Abstract

本发明公开了一种适用于极限环境的通信线缆加热控制装置及其控制方法,适用于极限环境的通信线缆加热控制装置包括:控制盒内部具有一容置空间,通信线缆设置在容置空间外部,通信线缆内部设有加热元件,张力感应机构安装在容置空间内,张力感应机构与通信线缆连接,张力感应机构用于监测通信线缆的张力F,温度感应机构的至少部分安装在容置空间内,温度感应机构用于监测环境温度T,其中,当张力F达到张力预警值且环境温度T达到温度预警值时,能够使加热元件加载电流实现对通信线缆进行加热。本发明能够实现通信线缆在极端环境中仍然可以长期、稳定运行,且结构简单、成本低,可根据环境温度变化自动操作,应用范围广。

Description

适用于极限环境的通信线缆加热控制装置及其控制方法 技术领域
本发明涉及通信线缆技术领域,尤其涉及一种适用于极限环境的通信线缆加热控制装置及其控制方法。
背景技术
随着通信覆盖范围的不断延伸,导致实现通信传输的重要媒介——通信线缆需要适应架设在不同极限环境中,且需要保证长期稳定运行。在极端环境中,诸如:极寒温度的漠北、昼夜温差大的荒漠、冰雪冻雨频发的山区等区域铺设的通信线缆,常常因温度、雨雪等气候因素,通信线缆故障频繁出现,且维护工作难以有效开展。因此,急需提供一种能适应上述极端环境中的传感控制装置来保障通信线缆的稳定运行。
发明内容
本发明要解决的技术问题是:为了解决现有技术中通信线缆在极端环境中无法长期稳定运行的技术问题。本发明提供一种适用于极限环境的通信线缆加热控制装置及其控制方法,能够实现通信线缆在极端环境中无法长期稳定运行。
本发明解决其技术问题所采用的技术方案是:一种适用于极限环境的通信线缆加热控制装置,包括:控制盒,所述控制盒内部具有一容置空间;通信线缆,所述通信线缆设置在所述容置空间外部,所述通信线缆内部设有加热元件;张力感应机构,所述张力感应机构安装在所述容置空间内,所述张力感应机构与所述通信线缆连接,所述张力感应机构用于监测所述通信线缆承受的张力F;温度感应机构,所述温度感应机构的至少部分安装在所述容置空间内,所述温度感应机构用于监测环境温度T;其中,当所述张力F达到张力预警值且环境温度T达到温度预警值时,所述加热元件能够加载电流对所述通信线缆进行加热。 本发明通过在通信线缆内部设置加热元件,通过张力感应机构监测通信线缆因环境温度变化承受的张力变化,通过温度感应机构监测环境温度变化,当张力和环境温度同时达到预警值时,可以导通电流给加热元件通电,加热元件产生热量给通信线缆加热,使得通信线缆在极端环境中仍然可以稳定运行。
在一实施例中,还包括:第一分隔板和第二分隔板,所述第一分隔板和第二分隔板均安装在所述容置空间内,所述第一分隔板和第二分隔板均与所述控制盒侧壁固定连接。
在一实施例中,所述第一分隔板与所述第二分隔板之间设有通道,所述通道沿所述控制盒的长度方向设置。
在一实施例中,所述张力感应机构包括:
弹性件,所述弹性件一端与所述控制盒侧壁固定连接;
滑动板,所述滑动板的一端与所述弹性件的另一端固定连接;
钢丝,所述钢丝的一端与所述滑动板的另一端固定连接,所述钢丝的另一端与所述通信线缆连接。
在一实施例中,所述张力感应机构还包括:
导轨,所述导轨安装在所述控制盒的底面,所述滑动板与所述导轨滑动连接;
导轮,所述导轮安装在所述导轨的一端,所述钢丝绕过所述导轮后与所述通信线缆连接。
在一实施例中,所述温度感应机构包括:
竖管,所述竖管的底端与所述张力感应机构连接,所述竖管的顶端贯穿所述控制盒;
活塞杆,所述活塞杆安装在所述竖管内,
双金属温度感应器,所述双金属温度感应器安装在所述活塞杆的顶部。
在一实施例中,还包括:
第一铜片,所述第一铜片安装在所述活塞杆底部的前侧,且所述第一铜片穿过所述竖管的侧壁,所述第一铜片位于所述第一分隔板的下方;
第二铜片,所述第二铜片安装在所述活塞杆底部的后侧,且所述第二铜片穿过所述竖管的侧壁,所述第二铜片位于所述第二分隔板的下方;
所述第一铜片和所述第二铜片分别通过导线与所述加热元件连接。
在一实施例中,所述第一分隔板的下表面包括第一区域、第二区域及第三区域,所述第二区域位于所述第一区域和所述第三区域之间,且所述第一区域和所述第二区域之间留有间隙,所述第二区域和所述第三区域之间留有间隙。
在一实施例中,所述第二区域和第三区域均覆盖一铜电极板,所述第二区域与电源低电流的正极连接,所述第三区域与电源高电流的正极连接。
在一实施例中,所述第二分隔板的下表面包括第四区域、第五区域及第六区域,所述第五区域位于所述第四区域和所述第六区域之间,且所述第四区域和第五区域之间留有间隙,所述第五区域和第六区域之间留有间隙。
在一实施例中,所述第五区域和第六区域均覆盖一铜电极板,所述第五区域与电源低电流的负极连接,所述第六区域与电源高电流的负极连接。
在一实施例中,所述活塞杆的底部开设有第一安装槽和第二安装槽,所述第一安装槽和所述第二安装槽相对设置;所述第一铜片的一侧嵌设在所述第一安装槽内,所述第一铜片的另一侧伸出所述竖管外部;所述第二铜片的一侧安装在所述第二安装槽内部,所述第二铜片的另一侧伸出所述竖管外部。
在一实施例中,所述温度感应机构还包括:弹簧以及弹簧固定件,所述弹簧和弹簧固定件均安装在所述竖管内,所述弹簧套设在所述活塞杆上,所述弹 簧固定件固定在所述竖管的内壁上。
在一实施例中,所述双金属温度感应器包括主动层和被动层,所述主动层与所述活塞杆顶部固定连接,所述被动层与所述竖管顶部固定连接。
本发明还提供一种适用于极限环境的通信线缆加热控制方法,采用上述的适用于极限环境的通信线缆加热控制装置,所述方法包括以下步骤:
S1、通过张力感应机构监测通信线缆的张力F,
S2、通过温度感应机构监测通信线缆所在的环境温度T,
S3、判断所述张力F和环境温度T是否同时达到预警值,若所述张力F达到张力预警值且环境温度T达到温度预警值,则导通加热元件,使得加热元件对通信线缆进行加热;否则继续监测。
本发明的有益效果是,本发明的适用于极限环境的通信线缆加热控制装置及其控制方法,通过在通信线缆内部设置加热元件,通过张力感应机构监测通信线缆承受的张力变化,通过温度感应机构监测环境温度变化,当张力和环境温度同时达到预警值时,可以导通电流给加热元件通电,加热元件产生热量给通信线缆加热。本发明的控制过程可根据外部环境温度变化而自动触发,适用于在低温、冰雪、冻雨等极限环境中使用,可应用在荒僻、无人值守的区域。本发明能够实现通信线缆在极端环境中仍然可以长期、稳定运行。本发明结构简单、成本低,无需昂贵、复杂的分析仪器和软件控制程序,可根据环境温度变化自动操作,应用范围广。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的适用于极限环境的通信线缆加热控制装置的结构示意图。
图2是本发明的第一分隔板和第二分隔板的俯视图。
图3是本发明的温度感应机构的结构示意图。
图4是本发明的活塞杆的结构示意图。
图5是本发明的适用于极限环境的通信线缆加热控制方法的流程图。
图中:1、控制盒;2、通信线缆;3、加热元件;4、张力感应机构;5、温度感应机构;6、第一分隔板;7、第二分隔板;8、通道;9、第一铜片;10、第二铜片;11、导线;101、容置空间;41、弹性件;42、滑动板;43、钢丝;44、导轨;45、导轮;51、竖管;52、活塞杆;53、双金属温度感应器;54、弹簧;55、弹簧固定件;521、第一安装槽;522、第二安装槽;531、主动层;532、被动层;61、第一区域;62、第二区域;63、第三区域;71、第四区域;72、第五区域;73、第六区域。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆 卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1至图4所示,本发明的适用于极限环境的通信线缆加热控制装置,包括:控制盒1、通信线缆2、张力感应机构4及温度感应机构5,控制盒1内部具有一容置空间101,通信线缆2设置在容置空间101外部,通信线缆2内部设有加热元件3,张力感应机构4安装在容置空间101内,张力感应机构4与通信线缆2连接,张力感应机构4用于监测通信线缆2的张力F,温度感应机构5的至少部分安装在容置空间101内,温度感应机构5用于监测环境温度T,其中,当张力F达到张力预警值且环境温度T达到温度预警值时,加热元件3能够加载电流对通信线缆2进行加热。本发明通过张力感应机构4和温度感应机构5可以分别监测通信线缆2承受的张力F以及环境温度T,当环境温度T改变时,通信线缆2会发生热胀冷缩,从而使得张力F改变,当张力F和环境温度T同时达到预警值时,会触发加热元件3对通信线缆2进行加热,使得通信线缆2在极限环境下(例如极寒、冰雪、冻雨等环境)仍然可以正常使用。
具体的,控制盒1可以是长方形盒装结构,内部中空,可以采用不锈钢板制成。由于控制盒1需要长期放在室外,而内部安装有电子器件,因此,控制盒1的防水等级至少需要达到IP67等级,减少内部电子器件的损坏,延长控制盒1的使用寿命。通信线缆2选用特种通信线缆,其采用可承受高、低温的材料制成,以承受加热元件3产生的热量。
根据本发明的一实施例,适用于极限环境的通信线缆加热控制装置还包括:第一分隔板6和第二分隔板7,第一分隔板6和第二分隔板7均安装在容置空间101内,第一分隔板6和第二分隔板7均与控制盒1侧壁固定连接。第一分隔板 6与第二分隔板7之间设有通道8,通道8沿控制盒1的长度方向设置。具体的,第一分隔板6和第二分隔板7将容置空间101分成上腔室和下腔室,张力感应机构4位于下腔室内,温度感应机构5同时位于两个腔室内,且温度感应机构5穿过通道8,温度感应机构5可以在通道8内左右滑动。第一分隔板6和第二分隔板7均采用绝缘且耐潮湿的材料制成,可以提高第一分隔板6和第二分隔板7的使用寿命。
根据本发明的一实施例,张力感应机构4包括:弹性件41、滑动板42及钢丝43,弹性件41一端与控制盒1侧壁固定连接,滑动板42的一端与弹性件41的另一端固定连接,钢丝43的一端与滑动板42的另一端固定连接,钢丝43的另一端与通信线缆2连接。张力感应机构4还包括导轨44和导轮45,导轨44安装在控制盒1的底面,滑动板42与导轨44滑动连接,导轮45安装在导轨44的一端,钢丝43绕过导轮45后与通信线缆2连接。具体的,当通信线缆2承受的张力改变时,钢丝43会被拉动,从而使得滑动板42在导轨44上移动,此时弹性件41会受到滑动板42的拉力,当通信线缆2的张力恢复原状时,滑动板42会在弹性件41的拉动下回到初始位置,张力不同使得滑动板42移动的距离也会不同。优选的,通道8的正投影与导轨44的正投影重叠,这样可以保证温度感应机构5移动的稳定性及精度。具体的,钢丝43可以采用不易腐蚀且张力稳定的材质,例如是直径为0.4mm-0.8mm的304或302不锈钢丝,钢丝43的整体长度可以是5m-10m。控制盒1的侧壁上可以开设一个小孔,供钢丝43穿过。导轮45可以对钢丝43的移动起到导向作用。钢丝43的另一端可以通过夹具固定在通信线缆2上,防止钢丝43移位。钢丝43的长度是监测通信线缆2承受张力大小的重要指标,如果钢丝43太长,会导致滑动板42无法被拉动,如果钢丝43太短,会导致钢丝43在受力时出现断裂,或者监测不准确的问题。 本发明的钢丝43的长度范围是根据通信线缆2的规格、结构及放置的环境在高低温测试箱中模拟通信线缆实际铺设环境的因素后确定的。
根据本发明的一实施例,温度感应机构5包括:竖管51、活塞杆52及双金属温度感应器53,竖管51的底端与张力感应机构4连接,竖管51的顶端贯穿控制盒1,活塞杆52安装在竖管51内,双金属温度感应器53安装在活塞杆52的顶部。具体的,竖管51的底端与滑动板42固定连接,当滑动板42移动时,可以带动竖管51一起移动。竖管51和活塞杆52均采用绝缘材料,竖管51的长度大于控制盒1的高度,竖管51优选采用不导电、不吸水、光滑的硬质工程塑料,例如尼龙。控制盒1顶面开设有供竖管51穿过的通孔。通道8的宽度应大于竖管51的外径,便于竖管51在通道8内顺利移动。
根据本发明的一实施例,适用于极限环境的通信线缆加热控制装置还包括:第一铜片9和第二铜片10,第一铜片9安装在活塞杆52底部的前侧,且第一铜片9穿过竖管51的侧壁,第一铜片9位于第一分隔板6的下方,第二铜片10安装在活塞杆52底部的后侧,且第二铜片10穿过竖管51的侧壁,第二铜片10位于第二分隔板7的下方,第一铜片9和第二铜片10分别通过导线11与加热元件3连接。具体的,第一铜片9和第二铜片10保持在同一水平面,第一分隔板6和第二分隔板7保持在同一水平面。在通信线缆2不受力的状态下,第一铜片9与第一分隔板6是不接触的,第二铜片10与第二分隔板7是不接触的,此时,加热元件3处于断电状态。第一铜片9和第二铜片10表面光滑。导线11可以采用两芯柔软、耐弯曲的电源线,加热元件3可以是两根合金丝,一根合金丝通过导线11与第一铜片9连接,另一根合金丝通过导线11与第二铜片10连接,两根合金丝在通信线缆末端连通,形成电流回路。
进一步地,活塞杆52的底部开设有第一安装槽521和第二安装槽522,第 一安装槽521和第二安装槽522相对设置,第一铜片9的一侧嵌设在第一安装槽521内,第一铜片9的另一侧伸出竖管51外部,第二铜片10的一侧安装在第二安装槽522内部,第二铜片10的另一侧伸出竖管51外部。当活塞杆52上下移动时,第一铜片9和第二铜片10也会跟着上下移动,当活塞杆52移动至一定位置时,第一铜片9可以和第一分隔板6的下表面相接触,第二铜片10可以和第二分隔板7的下表面接触。具体的,竖管51的前后两侧开设有供第一铜片9和第二铜片10上下移动的缺口,缺口的长度可根据实际需求进行设置。温度感应机构5还包括弹簧54以及弹簧固定件55,弹簧54和弹簧固定件55均安装在竖管51内,弹簧54套设在活塞杆52上,弹簧固定件55固定在竖管51的内壁上。当双金属温度感应器53监测到环境温度未达到预警值时,弹簧54可确保与活塞杆52连接的第一铜片9和第一分隔板6的下表面分离,第二铜片10和第二分隔板7的下表面分离,中断电流,加热元件3不进行加热。
根据本发明的一实施例,第一分隔板6的下表面包括第一区域61、第二区域62及第三区域63,第二区域62位于第一区域61和第三区域63之间,且第一区域61和第二区域62之间留有间隙,第二区域62和第三区域63之间留有间隙。第二区域62和第三区域63均覆盖一铜电极板,第二区域62与电源低电流的正极连接,第三区域63与电源高电流的正极连接。第二分隔板7的下表面包括第四区域71、第五区域72及第六区域73,第五区域72位于第四区域71和第六区域73之间,且第四区域71和第五区域72之间留有间隙,第五区域72和第六区域73之间留有间隙。第五区域72和第六区域73均覆盖一铜电极板,第五区域72与电源低电流的负极连接,第六区域73与电源高电流的负极连接。换言之,当第一铜片9与第二区域62接触,且第二铜片10与第五区域72接触时,加热元件3可以加载低电流,低电流(例如是300A~350A)通过导线11 到加热元件3处,加热元件3可以产生热量对通信线缆2进行低温加热。当第一铜片9与第三区域63接触,且第二铜片10与第六区域73接触时,加热元件3可以加载高电流,高电流(例如是500A~550A)通过导线11到加热元件3处,加热元件3可以产生热量对通信线缆2进行高温加热。铜电极板覆盖在第一分隔板6和第二分隔板7的下表面,可以减少外部水汽进入控制盒1内引起电路短路的问题。对第一分隔板6和第二分隔板7进行区域划分,各区域之间相互绝缘隔离,可以根据通信线缆2受到的张力不同实现对加热元件3的不通电、低电流通电及高电流通电三种档位,电流越高,加热元件3的温度越高。铜电极板表面光滑便于第一铜片9和第二铜片10的顺利滑动。
换言之,当竖管51移动至通道8不同位置时,第一铜片9和第二铜片10可以与第一分隔板6和第二分隔板7的不同区域产生接触,从而实现加热元件3是断电或通电,以及导通电流是低电流或高电流。例如,弹性件41设置在导轨44的左端,钢丝43设置在导轨44的右端,通信线缆2不受张力时,弹性件41和滑动板42位于第一区域61和第四区域71组成的区域的正下方,此时,如果温度感应机构5监测到环境温度T变化,也无法触发加热元件3,这种情况表明,虽然环境温度T发生了改变,但是对通信线缆2并未产生严重影响,通信线缆2还能正常工作,这样可以减少误加热的情况产生,减少能源浪费。当通信线缆2受到张力时,钢丝43会牵引着滑动板42向右移动,若通信线缆2受到的张力较小,那么滑动板42会停留在第二区域62和第五区域72组成的区域的正下方,此时,如果温度感应机构5正好也监测到环境温度变化且达到预警值,那么第一铜片9可以和第二区域62接触,第二铜片10可以和第五区域72接触,使得加热元件3被低电流导通。若通信线缆2受到的张力较大,那么滑动板42会停留在第三区域63和第六区域73组成的区域的正下方,此时,如果温度感应机 构5正好也监测到环境温度变化且达到预警值,那么第一铜片9可以和第三区域63接触,第二铜片10可以和第六区域73接触,使得加热元件3被高电流导通。换言之,本发明可以根据通信线缆2受到张力的大小,自动调节加热元件3被导通的电流挡位,实现对通信线缆2不同的加热温度,更加安全可靠。
根据本发明的一实施例,双金属温度感应器53包括主动层531和被动层532,主动层531与活塞杆52顶部固定连接,被动层532与竖管51顶部固定连接。当环境温度降低时,主动层531的长度收缩带动活塞杆52向上移动,实现电流导通;当环境温度升高时,主动层531的长度膨胀可以推动活塞杆52向下移动,实现电流中断。
如图5所示,本发明的适用于极限环境的通信线缆加热控制方法,采用上述的适用于极限环境的通信线缆加热控制装置,该控制方法包括以下步骤:
S1、通过张力感应机构4监测通信线缆2的张力F。
S2、通过温度感应机构5监测通信线缆2所在的环境温度T。
S3、判断张力F和环境温度T是否同时达到预警值,若张力F达到张力预警值且环境温度T达到温度预警值,则导通加热元件3,使得加热元件3对通信线缆2进行加热;否则继续监测。
具体的,张力预警值F0和环境温度预警值T0已提前在高低温实验箱内进行标定,例如,张力预警值F0可以通过钢丝43的长度进行标定,环境温度预警值T0可以通过活塞杆52移动的距离进行标定。换言之,张力预警值F0可以通过对钢丝43的长度设计以及分隔板上不同区域的宽度进行标定,环境温度预警值T0可以通过双金属温度感应器53因温度发生的形变而拉动活塞杆52上下移动来进行标定。所有的标定过程均在高低温实验箱内模拟通信线缆的特性以及通信线缆实际铺设的环境条件进行的。
钢丝43的另一端固定在通信线缆2上,当外部环境温度降低时,通信线缆2会收缩,从而拉动钢丝43向右移动,钢丝43再拉动滑动板42向右滑动。滑动板42向右滑动时,可以带动竖管51在通道8内向右移动,此时,活塞杆52会带动第一铜片9和第二铜片10也跟着向右移动。当通信线缆2承受的张力达到张力预警值且张力较小时,第一铜片9和第二铜片10可移动至第二区域62和第五区域72的下方;当通信线缆2承受的张力达到张力预警值且张力较大时,第一铜片9和第二铜片10可移动至第三区域63和第六区域73的下方。双金属温度感应器53持续监测外部环境温度,当环境温度降低时,主动层531的长度收缩会带动活塞杆52向上移动,使得第一铜片9和第二铜片10也向上移动,当环境温度达到环境预警值时,第一铜片9刚好能够与第一分隔板6下表面贴合,第二铜片10刚好能够与第二分隔板7下表面贴合。换言之,只有当张力F和环境温度T同时达到预警值时,加热元件3才可能会被加载电流,加热元件3通过发热可以给通信线缆2加热,提高通信线缆2的温度。并且,根据张力F的大小可以自动调整通电电流的大小,实现低温或高温加热。当双金属温度感应器53监测到环境温度上升时,主动层531的长度膨胀以及在弹簧54的作用下,可以推动活塞杆52向下移动,实现电流中断,减少能源的浪费。
综上所述,本发明的适用于极限环境的通信线缆加热控制装置及其控制方法,通过在通信线缆2内部设置加热元件3,通过张力感应机构4监测通信线缆2承受的张力变化,通过温度感应机构5监测环境温度变化,当张力和环境温度同时达到预警值时,可以导通电流给加热元件3通电,加热元件3产生热量给通信线缆2加热。本发明的控制过程可根据外部环境温度变化而自动触发,适用于在低温、冰雪、冻雨等极限环境中使用,可应用在荒僻、无人值守的区域。本发明能够实现通信线缆在极端环境中仍然可以长期、稳定运行。本发明结构 简单、成本低,无需昂贵、复杂的分析仪器和软件控制程序,可根据环境温度变化自动操作,应用范围广。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要如权利要求范围来确定其技术性范围。

Claims (15)

  1. 一种适用于极限环境的通信线缆加热控制装置,其特征在于,包括:
    控制盒(1),所述控制盒(1)内部具有一容置空间(101);
    通信线缆(2),所述通信线缆(2)设置在所述容置空间(101)外部,所述通信线缆(2)内部设有加热元件(3);
    张力感应机构(4),所述张力感应机构(4)安装在所述容置空间(101)内,所述张力感应机构(4)与所述通信线缆(2)连接,所述张力感应机构(4)用于监测所述通信线缆(2)承受的张力F;
    温度感应机构(5),所述温度感应机构(5)的至少部分安装在所述容置空间(101)内,所述温度感应机构(5)用于监测环境温度T;
    其中,当所述张力F达到张力预警值且环境温度T达到温度预警值时,所述加热元件(3)能够加载电流对所述通信线缆(2)进行加热。
  2. 如权利要求1所述的适用于极限环境的通信线缆加热控制装置,其特征在于,还包括:第一分隔板(6)和第二分隔板(7),所述第一分隔板(6)和第二分隔板(7)均安装在所述容置空间(101)内,所述第一分隔板(6)和第二分隔板(7)均与所述控制盒(1)侧壁固定连接。
  3. 如权利要求2所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述第一分隔板(6)与所述第二分隔板(7)之间设有通道(8),所述通道(8)沿所述控制盒(1)的长度方向设置。
  4. 如权利要求1所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述张力感应机构(4)包括:
    弹性件(41),所述弹性件(41)一端与所述控制盒(1)侧壁固定连接;
    滑动板(42),所述滑动板(42)的一端与所述弹性件(41)的另一端固定连接;
    钢丝(43),所述钢丝(43)的一端与所述滑动板(42)的另一端固定连接,所述钢丝(43)的另一端与所述通信线缆(2)连接。
  5. 如权利要求4所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述张力感应机构(4)还包括:
    导轨(44),所述导轨(44)安装在所述控制盒(1)的底面,所述滑动板(42)与所述导轨(44)滑动连接;
    导轮(45),所述导轮(45)安装在所述导轨(44)的一端,所述钢丝(43)绕过所述导轮(45)后与所述通信线缆(2)连接。
  6. 如权利要求2所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述温度感应机构(5)包括:
    竖管(51),所述竖管(51)的底端与所述张力感应机构(4)连接,所述竖管(51)的顶端贯穿所述控制盒(1);
    活塞杆(52),所述活塞杆(52)安装在所述竖管(51)内,
    双金属温度感应器(53),所述双金属温度感应器(53)安装在所述活塞杆(52)的顶部。
  7. 如权利要求6所述的适用于极限环境的通信线缆加热控制装置,其特征在于,还包括:
    第一铜片(9),所述第一铜片(9)安装在所述活塞杆(52)底部的前侧,且所述第一铜片(9)穿过所述竖管(51)的侧壁,所述第一铜片(9)位于所述第一分隔板(6)的下方;
    第二铜片(10),所述第二铜片(10)安装在所述活塞杆(52)底部的后侧,且所述第二铜片(10)穿过所述竖管(51)的侧壁,所述第二铜片(10)位于所述第二分隔板(7)的下方;
    所述第一铜片(9)和所述第二铜片(10)分别通过导线(11)与所述加热元件(3)连接。
  8. 如权利要求7所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述第一分隔板(6)的下表面包括第一区域(61)、第二区域(62)及第三区域(63),所述第二区域(62)位于所述第一区域(61)和所述第三区域(63)之间,且所述第一区域(61)和所述第二区域(62)之间留有间隙,所述第二区域(62)和所述第三区域(63)之间留有间隙。
  9. 如权利要求8所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述第二区域(62)和第三区域(63)均覆盖一铜电极板,所述第二区域(62)与电源低电流的正极连接,所述第三区域(63)与电源高电流的正极连接。
  10. 如权利要求7所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述第二分隔板(7)的下表面包括第四区域(71)、第五区域(72)及第六区域(73),所述第五区域(72)位于所述第四区域(71)和所述第六区域(73)之间,且所述第四区域(71)和第五区域(72)之间留有间隙,所述第五区域(72)和第六区域(73)之间留有间隙。
  11. 如权利要求10所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述第五区域(72)和第六区域(73)均覆盖一铜电极板,所述第五区域(72)与电源低电流的负极连接,所述第六区域(73)与电源高电流的负极连接。
  12. 如权利要求7所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述活塞杆(52)的底部开设有第一安装槽(521)和第二安装槽(522),所述第一安装槽(521)和所述第二安装槽(522)相对设置;所述第一铜片(9) 的一侧嵌设在所述第一安装槽(521)内,所述第一铜片(9)的另一侧伸出所述竖管(51)外部;所述第二铜片(10)的一侧安装在所述第二安装槽(522)内部,所述第二铜片(10)的另一侧伸出所述竖管(51)外部。
  13. 如权利要求12所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述温度感应机构(5)还包括:弹簧(54)以及弹簧固定件(55),所述弹簧(54)和弹簧固定件(55)均安装在所述竖管(51)内,所述弹簧(54)套设在所述活塞杆(52)上,所述弹簧固定件(55)固定在所述竖管(51)的内壁上。
  14. 如权利要求6所述的适用于极限环境的通信线缆加热控制装置,其特征在于,所述双金属温度感应器(53)包括主动层(531)和被动层(532),所述主动层(531)与所述活塞杆(52)顶部固定连接,所述被动层(532)与所述竖管(51)顶部固定连接。
  15. 一种适用于极限环境的通信线缆加热控制方法,其特征在于,采用如权利要求1-14任一项所述的适用于极限环境的通信线缆加热控制装置,所述方法包括以下步骤:
    S1、通过张力感应机构(4)监测通信线缆(2)的张力F,
    S2、通过温度感应机构(5)监测通信线缆(2)所在的环境温度T,
    S3、判断所述张力F和环境温度T是否同时达到预警值,若所述张力F达到张力预警值且环境温度T达到温度预警值,则导通加热元件(3),使得加热元件(3)对通信线缆(2)进行加热;否则继续监测。
PCT/CN2022/080413 2022-02-28 2022-03-11 适用于极限环境的通信线缆加热控制装置及其控制方法 WO2023159684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210185749.2A CN114783672A (zh) 2022-02-28 2022-02-28 适用于极限环境的通信线缆加热控制装置及其控制方法
CN202210185749.2 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023159684A1 true WO2023159684A1 (zh) 2023-08-31

Family

ID=82423590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080413 WO2023159684A1 (zh) 2022-02-28 2022-03-11 适用于极限环境的通信线缆加热控制装置及其控制方法

Country Status (2)

Country Link
CN (1) CN114783672A (zh)
WO (1) WO2023159684A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201886828U (zh) * 2010-12-09 2011-06-29 无锡成电光纤传感科技有限公司 一种可温度与应力同时分布式监测的光电混合缆
CN204330025U (zh) * 2015-01-21 2015-05-13 重庆大学 架空电缆运行安全在线监控系统
EP3249766A1 (en) * 2016-05-27 2017-11-29 Ampacimon S.A. Method and system for measuring/detecting ice or snow atmospheric accretion on overhead power lines
CN207320789U (zh) * 2017-11-11 2018-05-04 柳晓晖 一种电力线缆防积雪装置
CN109936103A (zh) * 2019-04-24 2019-06-25 淮阴师范学院 一种电力输送塔线缆安装安全防护结构及其使用方法
CN209641411U (zh) * 2019-02-25 2019-11-15 无锡市新宇线缆有限公司 一种基于石墨烯的自发热电缆
CN214748590U (zh) * 2021-05-28 2021-11-16 杭州传感器有限公司 线缆重力传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157526A (en) * 1977-02-22 1979-06-05 Davies John S Multi-stage heat sensing cable and emergency communication system
CN208606805U (zh) * 2018-08-20 2019-03-15 四川大学 嵌入绝缘材料自制热导线在线监测设备
CN109781181A (zh) * 2019-02-02 2019-05-21 深圳市恺恩科技有限公司 一种可视化移动式覆冰在线监测设备及系统
CN210778004U (zh) * 2019-10-11 2020-06-16 浙江万马股份有限公司 一种防冰架空电缆装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201886828U (zh) * 2010-12-09 2011-06-29 无锡成电光纤传感科技有限公司 一种可温度与应力同时分布式监测的光电混合缆
CN204330025U (zh) * 2015-01-21 2015-05-13 重庆大学 架空电缆运行安全在线监控系统
EP3249766A1 (en) * 2016-05-27 2017-11-29 Ampacimon S.A. Method and system for measuring/detecting ice or snow atmospheric accretion on overhead power lines
CN207320789U (zh) * 2017-11-11 2018-05-04 柳晓晖 一种电力线缆防积雪装置
CN209641411U (zh) * 2019-02-25 2019-11-15 无锡市新宇线缆有限公司 一种基于石墨烯的自发热电缆
CN109936103A (zh) * 2019-04-24 2019-06-25 淮阴师范学院 一种电力输送塔线缆安装安全防护结构及其使用方法
CN214748590U (zh) * 2021-05-28 2021-11-16 杭州传感器有限公司 线缆重力传感器

Also Published As

Publication number Publication date
CN114783672A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
US6951114B2 (en) Reliable outdoor instrument cooling system
CN103412592A (zh) 一种惯性测量系统三级温控系统
CN102095295B (zh) 一种基于霜层厚度的除霜探测器及除霜控制方法
US6990861B2 (en) Stratified hot water heated depth display system
US9797786B2 (en) Device for calibrating temperature, and methods for calibrating the temperature of and positioning a fiber-optic temperature sensor
US11333399B2 (en) Apparatus for managing hot water in a hot water storage tank heating system and associated method
WO2023159684A1 (zh) 适用于极限环境的通信线缆加热控制装置及其控制方法
CN102176377A (zh) 一种控制电解电容温度的方法及使用该方法可控温的电解电容
CN101777589A (zh) Apd温控装置
CN115389045A (zh) 防爆灯具最不利条件下温度测试系统及测试方法
CN111555132A (zh) 一种地埋式的光伏箱变式开关柜
KR101449308B1 (ko) 광센서 케이블이 구비된 전력 케이블 및 이를 이용한 히팅 시스템
JP5555123B2 (ja) 露点計、湿度計、露点導出装置、湿度導出装置、露点測定方法、及び湿度測定方法
CN203606033U (zh) 变压器温度计温包防护装置
CN103499396A (zh) 一种无线测温模块
CN203502124U (zh) 一种无线测温模块
CN113659246B (zh) 适应于极地超低温环境的电池系统及其控温方法
CN201741048U (zh) 温度控制器
CN111366812B (zh) 高压输电线路动态增容方法及检测装置
CN101457541A (zh) 一种水管内电加热装置
RU2505830C1 (ru) Датчик для непрерывного контроля изоляции проводов
CN103353195A (zh) 制冷设备
CN1949430B (zh) 温度调节器
CN112484907A (zh) 一种基于激光调阻温度补偿技术的压力变送器
KR101662293B1 (ko) 전기전도 측정에 의한 결빙방식과 가스히트펌프를 이용한 빙축열 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927963

Country of ref document: EP

Kind code of ref document: A1