WO2023159539A1 - 一种信号功率池化装置 - Google Patents

一种信号功率池化装置 Download PDF

Info

Publication number
WO2023159539A1
WO2023159539A1 PCT/CN2022/078175 CN2022078175W WO2023159539A1 WO 2023159539 A1 WO2023159539 A1 WO 2023159539A1 CN 2022078175 W CN2022078175 W CN 2022078175W WO 2023159539 A1 WO2023159539 A1 WO 2023159539A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
adjustable coupler
adjustable
coupling coefficient
terminal
Prior art date
Application number
PCT/CN2022/078175
Other languages
English (en)
French (fr)
Inventor
任田昊
蔡梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/078175 priority Critical patent/WO2023159539A1/zh
Publication of WO2023159539A1 publication Critical patent/WO2023159539A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present application relates to the technical field of communications, and in particular to a signal power pooling device.
  • the horizontally polarized input signal and the vertically polarized input signal are input into the adjustable coupler, and the horizontally polarized output signal and the vertically polarized output signal are output.
  • the adjustable coupler is generally "unilaterally adjustable", that is, when the signal enters the input end of the adjustable coupler, the energy allocated to the coupled end cannot exceed the energy at the straight-through end, so this method can only achieve horizontally polarized signals and The one-way power borrowing between vertically polarized signals cannot flexibly adjust the polarization direction.
  • the present application provides a signal power pooling device for improving the flexibility of signal polarization direction control.
  • the first aspect of the present application provides a signal power pooling device, including a first adjustable coupler and a second adjustable coupler, the first adjustable coupler includes a first input end, a first through end, a first The coupling end and the first isolation end, the first input end is used to receive the first horizontal polarization signal, and the first straight-through end is used to output the second horizontal polarization signal;
  • the second adjustable coupler includes a second input end, a second Two straight-through terminals, a second coupling terminal and a second isolation terminal, the second isolation terminal is connected to the first coupling terminal, the second coupling terminal is connected to the first isolation terminal, the second input terminal is used to receive the first vertically polarized signal, and the second The through end is used for outputting the second vertically polarized signal.
  • the coupling coefficients of the first adjustable coupler and the second adjustable coupler can be adjusted to obtain the second horizontally polarized signal and the second vertically polarized signal of desired power. Since the first horizontally polarized signal and the first vertically polarized signal are input at different input terminals of the adjustable coupler, the power of the first horizontally polarized signal and the first vertically polarized signal can be borrowed from each other, and the second The horizontally polarized signal and the second vertically polarized signal are respectively output at the straight-through ends of different adjustable couplers, the phase difference does not change, no phase shifter is required for regulation, and the problem of dispersion is avoided.
  • the coupling coefficient of one adjustable coupler among the first adjustable coupler and the second adjustable coupler is fixed.
  • the power of the second vertically polarized signal can be adjusted to the second horizontally polarized signal. signal; when the coupling coefficient of the second adjustable coupler is fixed, in the case of adjusting the coupling coefficient of the first adjustable coupler, the power of the second horizontally polarized signal can be regulated to the second vertically polarized signal, which can realize Both sides borrow power from each other to improve the flexibility of signal power adjustment.
  • the coupling coefficient of the first adjustable coupler is fixed at 0.5
  • the coupling coefficient of the second adjustable coupler is adjustable within 0.137-0.5.
  • the coupling coefficient of the first adjustable coupler can be fixed at 0.5, and the coupling coefficient of the second adjustable coupler can be adjusted from 0.137 to 0.5, so that the output power difference can be between -2W and 0W.
  • the coupling coefficient of the first adjustable coupler can be fixed at 0.5
  • the coupling coefficient of the second adjustable coupler can be adjusted from 0.137 to 0.5, so that the output power difference can be between -2W and 0W.
  • the coupling coefficient of the second adjustable coupler when the coupling coefficient of the second adjustable coupler is fixed at 0.5, the coupling coefficient of the first adjustable coupler is adjustable within 0.137-0.5.
  • the coupling coefficient of the second adjustable coupler can be fixed at 0.5, and the coupling coefficient of the first adjustable coupler can be adjusted from 0.137 to 0.5, so that the output power difference is between 0W and 2W
  • the change can also be combined with the previous solution to realize the change of the output power difference between -2W and 2W, and improve the flexibility of signal polarization direction control.
  • the coupling coefficient of the first adjustable coupler is fixed at 0.309
  • the coupling coefficient of the second adjustable coupler is adjustable within 0.066-0.309.
  • the coupling coefficient of the first adjustable coupler can be fixed at 0.309, and the coupling coefficient of the second adjustable coupler can be adjusted from 0.066 to 0.309, so that the output power difference can be between -2W and 0W.
  • the coupling coefficient of the first adjustable coupler can be fixed at 0.309, and the coupling coefficient of the second adjustable coupler can be adjusted from 0.066 to 0.309, so that the output power difference can be between -2W and 0W.
  • the coupling coefficient of the second adjustable coupler is fixed at 0.309
  • the coupling coefficient of the first adjustable coupler is adjustable within 0.066-0.309.
  • the coupling coefficient of the second adjustable coupler can be fixed at 0.309, and the coupling coefficient of the first adjustable coupler can be adjusted from 0.066 to 0.309, so that the output power difference is between 0W and 2W
  • the change can also be combined with the previous solution to realize the change of the output power difference between -2W and 2W, and improve the flexibility of signal polarization direction control.
  • the first adjustable coupler and the second adjustable coupler are adjustable couplers of a 90° bridge.
  • the first through end and the first coupling end output signals with a phase difference of 90°
  • the first horizontal polarization signal and the first vertical polarization signal carry the same information.
  • the first horizontal polarization signal and the first vertical polarization signal need to carry the same information, so that the signal generated by combining the second horizontal polarization signal and the second vertical polarization signal is stable, so as to improve the signal Edge overlay effect.
  • the first horizontal polarization signal and the first vertical polarization signal are in phase.
  • the first horizontally polarized signal and the first vertically polarized signal may also be transmitted in phase, so that the phase difference between the second horizontally polarized signal and the second vertically polarized signal is 0, improving the signal Information merger effect after polarization.
  • the second aspect of the present application provides an electronic device, and the electronic device includes the first aspect and any signal power pooling device in any implementation manner of the first aspect.
  • FIG. 1 is a structural diagram of a polarization mode provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a signal processing method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another signal processing method provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a signal power pooling device provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a change in output power difference provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a variation of an output phase difference provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another variation of output power difference provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another output phase difference change provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another variation of output power difference provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another output phase difference change provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of another variation of output power difference provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of another output phase difference change provided by the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • An embodiment of the present application provides a signal power pooling device, which is used to improve the flexibility of signal polarization direction control.
  • Polarization In electromagnetic waves, it is to characterize the nature of the direction change of the electric field vector or magnetic field vector in space, and the polarization mode is explained by the trajectory of the end of the electric field vector. If the electromagnetic wave propagation direction is taken as the z-axis, and its trajectory is projected on the xy plane, the projection is an ellipse, and its polarization mode is elliptical polarization; the projection is a circle, which is circular polarization; the projection is a line segment, called linear polarization.
  • Linear polarization is further divided into vertical (V) polarization and horizontal (H) polarization.
  • Vertical polarization means that the electric field vector vibrates on the yz plane, and the projection from the z axis to the xy plane is a short line that coincides with the y axis. For example, if we shake a rope up and down, the waves generated fluctuate up and down;
  • the xz plane vibration, projected from the z axis to the xy plane is a short line that coincides with the x axis. For example, if we shake a rope from side to side, the wave generated is left and right.
  • Power pooling refers to the fact that two or more channels of power can be borrowed from each other, keeping the total output power unchanged (except for some line losses).
  • Adjustable coupler a coupler with adjustable coupling coefficient.
  • the two signals are input through the input terminal and the isolation terminal respectively, part of the energy of the two signals is output from the through terminal, and the other part of energy is coupled out through the coupling terminal.
  • the coupling coefficient can be adjusted.
  • the energy of the coupling end generally does not exceed 50%, that is, the straight-through end and the coupling end do not "exchange".
  • FIG. 1 is a structural diagram of a polarization mode provided by the embodiment of the present application.
  • the architecture diagram includes a power pool black box 1, the H polarized input signal and the V polarized input signal are input into the power pool black box 1, by adjusting the power of the H polarized input signal and the V polarized input signal ( For example, the power of the H-polarized input signal and the V-polarized input signal is mutually borrowed), and the H-polarized output signal and the V-polarized output signal are output, wherein, the combined polarization direction of the H-polarized output signal and the V-polarized output signal satisfies Optimal polarization direction for this weather condition.
  • the power of the H-polarized input signal and the V-polarized input signal are both sent at full power and are the same power.
  • the input refers to the signal before entering the power pool black box
  • the output refers to the signal after leaving the power pool black box.
  • Input phase difference V polarized input phase - H polarized input phase
  • Output power difference output power of V polarization - output power of H polarization
  • Output phase difference V polarized output phase - H polarized output phase.
  • FIG. 2 is a schematic diagram of a signal processing method provided by the embodiment of the present application.
  • the H-polarized input signal and the V-polarized input signal are input into the adjustable coupler 2, wherein the adjustable coupling
  • the device 2 includes an input end, a straight end, a coupling end and an isolation end, the input end receives an H polarized input signal, the isolation end receives a V polarized input signal, the straight end outputs an H polarized output signal, and the coupled end outputs a V polarized output signal .
  • the adjustable coupler is generally "unilaterally adjustable", that is, when the signal enters the input end, the energy allocated to the coupled end cannot exceed the energy at the through end, so this method can only achieve H and V One-way borrowing of power cannot achieve two-way mutual borrowing.
  • the coupler is a 90° bridge, if the phase difference between the H-polarized input signal and the V-polarized input signal is 0° or 180°, the simulation results show that no matter what the coupling coefficient is, the power of the two signals cannot be achieved. The effect of mutual borrowing.
  • phase shifter In order to achieve non-in-phase or non-inversion between H and V, it is often necessary to use a phase shifter to process the phases of the H-polarized input signal and the V-polarized input signal, and the phase shifter is narrow-band, so it will make the input
  • the signal to the tunable coupler has a dispersion problem, so the polarization power cannot be flexibly adjusted.
  • FIG. 3 is a schematic diagram of another signal processing method provided by the embodiment of the present application.
  • the H-polarized input signal and the V-polarized input signal are input into the fixed coupler 3 through an adjustable phase shifter , wherein the fixed coupler 3 includes an input terminal, a straight-through terminal, a coupling terminal and an isolation terminal, the input terminal receives the H polarized input signal passing through the adjustable phase shifter 31, and the isolation terminal receives the V polarized input signal passing through the adjustable phase shifter 32
  • the input signal is polarized, the straight-through terminal outputs an H-polarized output signal, and the coupled terminal outputs a V-polarized output signal.
  • the power pooling function can be realized by adjusting the phase difference of the two signals.
  • the input phase difference changes from 0° to 180°
  • there will be a jump of 180° in the output phase difference which will cause the synthesized polarization direction to change from ⁇ ° to - ⁇ ° from the original angle with the vertical, so it is necessary Limit the phase shift range of the adjustable phase shifter.
  • the phase shifter is often narrow-band, the amount of phase shifting will be different at different frequencies, resulting in different amounts of power for signals of different frequencies, resulting in the resultant polarization direction changing with frequency.
  • an embodiment of the present application provides a signal polarization device, which is described as follows.
  • FIG. 4 is a schematic structural diagram of a signal power pooling device 40 provided by an embodiment of the present application.
  • the device 40 includes a first adjustable coupler 41 and a second adjustable coupler 42.
  • An adjustable coupler 41 includes a first input terminal, a first straight-through terminal, a first coupled terminal and a first isolation terminal
  • a second adjustable coupler 42 includes a second input terminal, a second straight-through terminal, and a second coupled terminal and the second isolation terminal, wherein the first input terminal can be used to receive the first horizontally polarized signal (H polarized input signal), and the first straight-through terminal can output the second horizontally polarized signal (H polarized output signal) .
  • the second isolation terminal is connected to the first coupling terminal, the second coupling terminal is connected to the first isolation terminal, the second input terminal can receive the first vertical polarization signal (V polarization input signal), and the second through terminal can output the second Vertically polarized signal (V polarized output signal).
  • the first horizontally polarized signal is input into the first adjustable coupler 41, and can be shunted to the first through end and the first coupling end based on the coupling coefficient of the first adjustable coupler 41.
  • the power of the first horizontally polarized signal is 1W and the coupling coefficient of the first adjustable coupler is 0.7, then the shunt of the first horizontally polarized signal at the first straight-through end is 0.7W, and the shunt at the first coupling end 0.3W.
  • the signal shunted by the first coupling end is input to the second isolation end, and then shunted to the second through end and the second coupling end, and the second coupling end inputs the signal shunted by the second isolation end and the signal shunted by the second input end to the first
  • the power of the second horizontally polarized signal and the second vertically polarized signal is in a state of dynamic change and tends to be stable.
  • the coupling coefficients of the first adjustable coupler 41 and the second adjustable coupler 42 can be adjusted to obtain the second horizontally polarized signal and the second vertically polarized signal of desired power.
  • the power of the first horizontally polarized signal and the first vertically polarized signal can be borrowed from each other, and the second The horizontally polarized signal and the second vertically polarized signal are respectively output at the straight-through ends of different adjustable couplers, the phase difference does not change, no phase shifter is required for regulation, and the problem of dispersion is avoided.
  • the first horizontal polarization signal and the first vertical polarization signal need to carry the same information to improve the signal Edge overlay effect.
  • the first horizontally polarized signal and the first vertically polarized signal can also be transmitted in the same phase, so that the phase difference between the second horizontally polarized signal and the second vertically polarized signal is 0, so as to improve the information combination effect after signal polarization.
  • the first adjustable coupler and the second adjustable coupler may be adjustable couplers of a 90° bridge, and the first through end and the first coupled end output signals with a phase difference of 90°, The second through end and the second coupling end output signals with a phase difference of 90°.
  • Both the coupling coefficients of the first adjustable coupler and the second adjustable coupler can be adjusted.
  • the coupling coefficient of one of the adjustable couplers can be fixed, and the coupling coefficient of the other adjustable coupler can be adjusted to adjust The power of the second horizontally polarized signal output from the first through end and the second vertically polarized signal output from the second through end.
  • the coupling coefficient of the first adjustable coupler is fixed, in the case of adjusting the coupling coefficient of the second adjustable coupler, the power of the second vertically polarized signal can be regulated to the second horizontally polarized signal; when the second When the coupling coefficient of the adjustable coupler is fixed, when the coupling coefficient of the first adjustable coupler is adjusted, the power of the second horizontally polarized signal can be regulated to the second vertically polarized signal, and mutual borrowing of power between the two sides can be realized. Improve the flexibility of signal power adjustment.
  • the coupling coefficient of the first adjustable coupler can be fixed at 0.5, and the coupling coefficient of the second adjustable coupler can be adjusted at this time, as shown in Figure 5, a schematic diagram of the change of output power difference, the second The coupling coefficient of the adjustable coupler is the abscissa, and the output power difference is the ordinate. Adjusting the coupling coefficient of the second adjustable coupler can control the output power difference, wherein the coupling coefficient of the second adjustable coupler gradually changes from 0.137 to When the value is 0.5, the output power difference gradually changes from -2W to 0W. At this time, the output phase difference is shown in Figure 6.
  • the coupling coefficient of the second adjustable coupler is the abscissa, and the output phase difference is the ordinate. As the coupling coefficient of the second adjustable coupler gradually changes from 0.137 to 0.5, the output The phase difference is always 0.
  • the output power difference can be adjusted by adjusting the coupling coefficient of the first adjustable coupler
  • the coupling coefficient of the first adjustable coupler is the abscissa
  • the output power difference is the ordinate.
  • the coupling coefficient of the first adjustable coupler gradually changes from 0.137 to 0.5
  • the output power difference gradually changes from 2W to 0W.
  • FIG 8. Another schematic diagram of the change of the output phase difference is shown in Figure 8.
  • the coupling coefficient of the first adjustable coupler is the abscissa, and the output phase difference is the ordinate. As the coupling coefficient of the first adjustable coupler changes from 0.137 Gradually becomes 0.5, and the output phase difference is always 0.
  • the coupling coefficient of one of the adjustable couplers can be fixed at 0.5, and the coupling coefficient of the other adjustable coupler can be adjusted from 0.137 to 0.5, so that the output power difference can be varied between -2W and 2W , to improve the flexibility of signal polarization direction control.
  • the coupling coefficient of the first adjustable coupler can be fixed at 0.309, and the coupling coefficient of the second adjustable coupler can be adjusted at this time, as shown in Figure 9, another schematic diagram of the change of output power difference,
  • the coupling coefficient of the second adjustable coupler is the abscissa, and the output power difference is the ordinate.
  • Adjusting the coupling coefficient of the second adjustable coupler can control the output power difference, wherein the coupling coefficient of the second adjustable coupler gradually changes from 0.066 to When it becomes 0.309, the output power difference gradually changes from -2W to 0W.
  • the output phase difference is shown in Figure 10.
  • the coupling coefficient of the second adjustable coupler is the abscissa, and the output phase difference is the ordinate. As the coupling coefficient of the second adjustable coupler gradually changes from 0.066 to 0.309, the output The phase difference is always 0.
  • the output power difference can be adjusted by adjusting the coupling coefficient of the first adjustable coupler
  • the coupling coefficient of the first adjustable coupler is the abscissa
  • the output power difference is the ordinate.
  • the coupling coefficient of the first adjustable coupler gradually changes from 0.066 to 0.309
  • the output power difference gradually changes from 2W to 0W.
  • FIG. 12 Another schematic diagram of the change of the output phase difference is shown in Figure 12.
  • the coupling coefficient of the first adjustable coupler is the abscissa, and the output phase difference is the ordinate. As the coupling coefficient of the first adjustable coupler changes from 0.066 to Gradually becomes 0.309, and the output phase difference is always 0.
  • the coupling coefficient of one of the adjustable couplers can be fixed to 0.309, and the coupling coefficient of the other adjustable coupler can be adjusted from 0.066 to 0.309, so that the output power difference can be varied between -2W and 2W , to improve the flexibility of signal polarization direction control.
  • the structure shown in Figure 4 of the embodiment of the present application is applicable to the scene where the power of two signals is borrowed.
  • the scene where the power of multiple signals is borrowed it is possible to process the two signals in the structure shown in Figure 4, and then combine the generated signal with the Other signals continue to be fed to another signal power pooling device until all signals in the multiplex are processed.
  • FIG. 13 is a schematic structural diagram of a possible structure of an electronic device 130 provided by an embodiment of the present application.
  • the electronic device may be a signal processor, and the signal processor may include the signal power pooling device shown in FIG. 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

一种信号功率池化装置,用于提高信号极化方向控制的灵活度。本申请实施例中该装置包括第一可调耦合器和第二可调耦合器,第一可调耦合器包括第一输入端、第一直通端、第一耦合端和第一隔离端,第二可调耦合器包括第二输入端、第二直通端、第二耦合端和第二隔离端,其中,第一输入端可以用来接收第一水平极化信号,第一直通端可以输出第二水平极化信号。第二隔离端与第一耦合端连接,第二耦合端与第一隔离端连接,第二输入端可以接收第一垂直极化信号,第二直通端可以输出第二垂直极化信号。

Description

一种信号功率池化装置 技术领域
本申请涉及通信技术领域,尤其涉及一种信号功率池化装置。
背景技术
电磁波在传输的过程中,天气情况的不同对电磁波的损耗不同,其中,以下雨为例,雨滴是一种介质,电磁波以不同的极化角度穿越雨滴时,损耗各不相同。在雨区和频率相同时,电磁波的水平极化的路损要大于垂直极化。实际中的无线通信系统,当天气状况不好时,往往是将两流电磁波合并成一流电磁波,即两个极化方向传输同样的数据,双极化满功率发射,从而提升边缘覆盖效果。此时空间中只能合成出一个固定极化,无法保证该极化是当前天气所需的最佳极化,且不可随着天气状况的不同而进行调整。
水平极化输入信号和垂直极化输入信号输入到可调耦合器中,输出水平极化输出信号和垂直极化输出信号。由于可调耦合器一般是“单边可调”,即信号进入可调耦合器输入端时,分配给耦合端的能量是不可能超过直通端的能量,所以这种方式只能实现水平极化信号与垂直极化信号之间的单向借功率,无法灵活地调控极化方向。
发明内容
本申请提供了一种信号功率池化装置,用于提高信号极化方向控制的灵活度。
本申请第一方面提供了一种信号功率池化装置,包括第一可调耦合器和第二可调耦合器,第一可调耦合器包括第一输入端、第一直通端、第一耦合端和第一隔离端,第一输入端用于接收第一水平极化信号,第一直通端用于输出第二水平极化信号;第二可调耦合器包括第二输入端、第二直通端、第二耦合端和第二隔离端,第二隔离端连接第一耦合端,第二耦合端连接第一隔离端,第二输入端用于接收第一垂直极化信号,第二直通端用于输出第二垂直极化信号。
上述方面中,可以调节第一可调耦合器和第二可调耦合器的耦合系数,以获得想要的功率的第二水平极化信号和第二垂直极化信号。由于第一水平极化信号和第一垂直极化信号分别在不同的可调耦合器的输入端输入,则第一水平极化信号和第一垂直极化信号的功率可以互相借用,且第二水平极化信号和第二垂直极化信号分别在不同的可调耦合器的直通端输出,相位差没有变化,不需要移相器调控,避免色散问题。
在一种可能的实施方式中,第一可调耦合器和第二可调耦合器中一个可调耦合器的耦合系数固定。
上述可能的实施方式中,第一可调耦合器的耦合系数固定的话,调节第二可调耦合器的耦合系数的情况下,可以将第二垂直极化信号的功率调控给第二水平极化信号;当第二可调耦合器的耦合系数固定时,调节第一可调耦合器的耦合系数的情况下,可以将第二水平极化信号的功率调控给第二垂直极化信号,可以实现两边互借功率,提高信号功率调节灵活度。
在一种可能的实施方式中,当第一可调耦合器的耦合系数固定为0.5时,第二可调耦 合器的耦合系数在0.137~0.5内可调。
上述可能的实施方式中,可以通过固定第一可调耦合器的耦合系数为0.5,第二可调耦合器的耦合系数在0.137~0.5可调的方式,使得输出功率差在-2W到0W之间变化,提高信号极化方向控制的灵活度。
在一种可能的实施方式中,当第二可调耦合器的耦合系数固定为0.5时,第一可调耦合器的耦合系数在0.137~0.5内可调。
上述可能的实施方式中,可以通过固定第二可调耦合器的耦合系数为0.5,第一可调耦合器的耦合系数在0.137~0.5可调的方式,使得输出功率差在0W到2W之间变化,也可以与上一个方案结合,实现输出功率差在-2W到2W之间变化,提高信号极化方向控制的灵活度。
在一种可能的实施方式中,当第一可调耦合器的耦合系数固定为0.309时,第二可调耦合器的耦合系数在0.066~0.309内可调。
上述可能的实施方式中,可以通过固定第一可调耦合器的耦合系数为0.309,第二可调耦合器的耦合系数在0.066~0.309可调的方式,使得输出功率差在-2W到0W之间变化,提高信号极化方向控制的灵活度。
在一种可能的实施方式中,当第二可调耦合器的耦合系数固定为0.309时,第一可调耦合器的耦合系数在0.066~0.309内可调。
上述可能的实施方式中,可以通过固定第二可调耦合器的耦合系数为0.309,第一可调耦合器的耦合系数在0.066~0.309可调的方式,使得输出功率差在0W到2W之间变化,也可以与上一个方案结合,实现输出功率差在-2W到2W之间变化,提高信号极化方向控制的灵活度。
在一种可能的实施方式中,第一可调耦合器和第二可调耦合器为90°电桥的可调耦合器。
上述可能的实施方式中,第一直通端和第一耦合端输出具有90°相位差的信号,第二直通端和第二耦合端输出具有90°相位差的信号。
在一种可能的实施方式中,第一水平极化信号和第一垂直极化信号携带相同的信息。
上述可能的实施方式中,第一水平极化信号和第一垂直极化信号需要携带相同的信息,使得第二水平极化信号和第二垂直极化信号合并生成的信号稳定,以提升信号的边缘覆盖效果。
在一种可能的实施方式中,第一水平极化信号和第一垂直极化信号同相。
在一种可能的实施方式中,第一水平极化信号和第一垂直极化信号也可以同相传输,以使得第二水平极化信号和第二垂直极化信号的相位差为0,提高信号极化后的信息合并效果。
本申请第二方面提供了一种电子设备,该电子设备包括如第一方面和第一方面任意实施方式中的任意信号功率池化装置。
附图说明
图1为本申请实施例提供的一种极化方式的架构图;
图2为本申请实施例提供的一种信号处理方式的示意图;
图3为本申请实施例提供的另一种信号处理方式的示意图;
图4为本申请实施例提供的一种信号功率池化装置的结构示意图;
图5为本申请实施例提供的一种输出功率差的变化示意图;
图6为本申请实施例提供的一种输出相位差的变化示意图;
图7为本申请实施例提供的另一种输出功率差的变化示意图;
图8为本申请实施例提供的另一种输出相位差的变化示意图;
图9为本申请实施例提供的另一种输出功率差的变化示意图;
图10为本申请实施例提供的另一种输出相位差的变化示意图;
图11为本申请实施例提供的另一种输出功率差的变化示意图;
图12为本申请实施例提供的另一种输出相位差的变化示意图;
图13为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
本申请实施例提供了一种信号功率池化装置,用于提高信号极化方向控制的灵活度。
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面对本申请实施例中的一些术语进行解释。
极化:在电磁波中,就是表征电场矢量或磁场矢量在空间指向变化的性质,通过电场矢量末端的轨迹来说明极化方式。若以电磁波传播方向作为z轴,将其运动轨迹在xy平面上做投影,则,投影为椭圆的,其极化方式为椭圆极化;投影为圆的为圆极化;投影为线段的,称为线极化。
线极化:线极化又分为垂直(V)极化和水平(H)极化。垂直极化是电场矢量在yz平面振动,从z轴往xy平面上投影,就是一条与y轴重合的短线,例如:我们拿一条绳子上下抖动,产生的波是上下波动;水平极化是在xz平面振动,从z轴往xy平面上投影,就是一条与x轴重合的短线,例如:我们拿一条绳子左右抖动,产生的波是左右波动。
功率池化:指的是两路或多路的功率可以实现互借,保持总的输出功率不变(除了一些线路损耗外)。
可调耦合器:即耦合系数可调整的耦合器。一般来说,两路信号分别由输入端和隔离端输入,两路信号的一部分能量从直通端输出,另一部分能量由耦合端耦合出来。通过特定的控制手段,可以调节耦合系数。其中,耦合端的能量一般不会超过50%,即直通端和耦合端不会“互换”。
电磁波在传输的过程中,天气情况的不同对电磁波的损耗不同,其中,以下雨为例,雨滴是一种介质,电磁波以不同的极化角度穿越雨滴时,损耗各不相同。在雨区和频率相同时,H极化的路损要大于V极化。实际中的无线通信系统,当天气状况不好时,往往是将两流电磁波合并成一流电磁波,即两个极化方向传输同样的数据,双极化满功率发射,从而提升边缘覆盖效果。此时空间中只能合成出一个固定极化,无法保证该极化是当前天气所需的最佳极化,且不可随着天气状况的不同而进行调整。不同的天气条件(风吹大小、降雨程度等),存在不同的最佳极化方向。如图1所示为本申请实施例提供的一种极化方式的架构图。该架构图包括一个功率池黑盒1,将H极化输入信号和V极化输入信号输入到该功率池黑盒1中,通过对H极化输入信号和V极化输入信号功率的调整(例如H极化输入信号和V极化输入信号的功率互借),输出H极化输出信号和V极化输出信号,其中,H极化输出信号和V极化输出信号的合并极化方向满足该天气条件下的最佳极化方向。
H极化输入信号和V极化输入信号的功率都是满功率发,且是同功率的。输入指的是进入功率池黑盒前的信号,输出指的是离开功率池黑盒后的信号。其中,
输入相位差=V极化输入的相位-H极化输入的相位;
输出功率差=V极化输出的功率-H极化输出的功率;
输出相位差=V极化输出的相位-H极化输出的相位。
请参阅图2,如图2所示为本申请实施例提供的一种信号处理方式的示意图,H极化输入信号和V极化输入信号输入到可调耦合器2中,其中,可调耦合器2包括输入端、直通端、耦合端和隔离端,输入端接收H极化输入信号,隔离端接收V极化输入信号,直通端输出H极化输出信号,耦合端输出V极化输出信号。
该实施方式中,由于可调耦合器一般是“单边可调”,即信号进入输入端时,分配给耦合端的能量是不可能超过直通端的能量,所以这种方式只能实现H与V的单向借功率,无法实现双向的互借。且当耦合器为90°电桥时,若H极化输入信号和V极化输入信号的相位差是0°或者180°,由仿真结果可知不论耦合系数是多少,均无法达到两路信号功率互借的效果。为了使H和V之间实现非同相或非反相,往往需要使用移相器对H极化输入信号和V极化输入信号的相位进行处理,而移相器是窄带的,所以会使得输入到可调耦合器的信号存在色散问题,因此无法灵活地调控极化功率。
请参阅图3,如图3所示为本申请实施例提供的另一种信号处理方式的示意图,H极化输入信号和V极化输入信号通过可调移相器输入到固定耦合器3中,其中,固定耦合器3包括输入端、直通端、耦合端和隔离端,输入端接收经过可调移相器31的H极化输入信号,隔离端接收经过可调移相器32的V极化输入信号,直通端输出H极化输出信号,耦合端输出V极化输出信号。
该实施方式中,以该固定耦合器3是90°电桥,耦合系数为50%为例,通过调整两路信号的相位差,可以实现功率池化的功能。但若是输入相位差从0°变到180°,存在输出相位差的跳变180°,该跳变会导致合成的极化方向从原本与垂直夹角为α°变为-α°,因此需要限定可调移相器的移相范围。并且由于移相器往往是窄带的,所以在不同的频率下,移相量会不同,导致不同频率的信号借不同量的功率,从而导致合成的极化方向随频率变化。
为解决上述问题,本申请实施例提供了一种信号极化装置,该装置如下所述。
请参阅图4,如图4所示为本申请实施例提供的一种信号功率池化装置40的结构示意图,该装置40包括第一可调耦合器41和第二可调耦合器42,第一可调耦合器41包括第一输入端、第一直通端、第一耦合端和第一隔离端,第二可调耦合器42包括第二输入端、第二直通端、第二耦合端和第二隔离端,其中,第一输入端可以用来接收第一水平极化信号(H极化输入信号),第一直通端可以输出第二水平极化信号(H极化输出信号)。第二隔离端与第一耦合端连接,第二耦合端与第一隔离端连接,第二输入端可以接收第一垂直极化信号(V极化输入信号),第二直通端可以输出第二垂直极化信号(V极化输出信号)。
本申请实施例中,第一水平极化信号输入到第一可调耦合器41中,可以基于第一可调耦合器41的耦合系数分流到第一直通端和第一耦合端,示例性的,假如第一水平极化信号的功率为1W,第一可调耦合器的耦合系数为0.7,则第一水平极化信号在第一直通端的分流为0.7W,在第一耦合端的分流为0.3W。并且,第一耦合端分流的信号输入第二隔离端,分流到第二直通端和第二耦合端,第二耦合端将第二隔离端分流的信号和第二输入端分流的信号输入到第一隔离端中,以影响第一直通端和第一耦合端输出的信号的功率,第二水平极化信号和第二垂直极化信号的功率处于动态变化并趋于稳定的状态,本申请实施例可以调节第一可调耦合器41和第二可调耦合器42的耦合系数,以获得想要的功率的第二水平极化信号和第二垂直极化信号。由于第一水平极化信号和第一垂直极化信号分别在不同的可调耦合器的输入端输入,则第一水平极化信号和第一垂直极化信号的功率可以互相借用,且第二水平极化信号和第二垂直极化信号分别在不同的可调耦合器的直通端输出,相位差没有变化,不需要移相器调控,避免色散问题。
本申请实施例中,为了使得第二水平极化信号和第二垂直极化信号合并生成的信号稳定,第一水平极化信号和第一垂直极化信号需要携带相同的信息,以提升信号的边缘覆盖效果。第一水平极化信号和第一垂直极化信号也可以同相传输,以使得第二水平极化信号和第二垂直极化信号的相位差为0,提高信号极化后的信息合并效果。
本申请实施例中,第一可调耦合器和第二可调耦合器可以是90°电桥的可调耦合器,第一直通端和第一耦合端输出具有90°相位差的信号,第二直通端和第二耦合端输出具有90°相位差的信号。
第一可调耦合器和第二可调耦合器的耦合系数都可以调节,本申请实施例可以将其中一个可调耦合器的耦合系数固定,调节另一个可调耦合器的耦合系数,以调节第一直通端输出的第二水平极化信号和第二直通端输出的第二垂直极化信号的功率。其中,第一可调 耦合器的耦合系数固定的话,调节第二可调耦合器的耦合系数的情况下,可以将第二垂直极化信号的功率调控给第二水平极化信号;当第二可调耦合器的耦合系数固定时,调节第一可调耦合器的耦合系数的情况下,可以将第二水平极化信号的功率调控给第二垂直极化信号,可以实现两边互借功率,提高信号功率调节灵活度。
在一个示例中,可以固定第一可调耦合器的耦合系数为0.5,此时可以调节第二可调耦合器的耦合系数,如图5所示的一种输出功率差的变化示意图,第二可调耦合器的耦合系数为横坐标,输出功率差为纵坐标,调节第二可调耦合器的耦合系数可以控制输出功率差,其中,第二可调耦合器的耦合系数由0.137逐渐变成0.5时,输出功率差从-2W逐渐变成0W。此时输出相位差如图6所示,第二可调耦合器的耦合系数为横坐标,输出相位差为纵坐标,随着第二可调耦合器的耦合系数由0.137逐渐变成0.5,输出相位差始终为0。
相应的,当固定第二可调耦合器的耦合系数为0.5时,通过调节第一可调耦合器的耦合系数,可以调节输出功率差,请参阅图7所示的另一种输出功率差变化图,第一可调耦合器的耦合系数为横坐标,输出功率差为纵坐标,第一可调耦合器的耦合系数由0.137逐渐变成0.5时,输出功率差从2W逐渐变成0W。此时另一种输出相位差的变化示意图如图8所示,第一可调耦合器的耦合系数为横坐标,输出相位差为纵坐标,随着第一可调耦合器的耦合系数由0.137逐渐变成0.5,输出相位差始终为0。
即本申请实施例可以通过固定其中一个可调耦合器的耦合系数为0.5,另一个可调耦合器的耦合系数在0.137~0.5可调的方式,使得输出功率差在-2W到2W之间变化,提高信号极化方向控制的灵活度。
在另一个示例中,可以固定第一可调耦合器的耦合系数为0.309,此时可以调节第二可调耦合器的耦合系数,如图9所示的另一种输出功率差的变化示意图,第二可调耦合器的耦合系数为横坐标,输出功率差为纵坐标,调节第二可调耦合器的耦合系数可以控制输出功率差,其中,第二可调耦合器的耦合系数由0.066逐渐变成0.309时,输出功率差从-2W逐渐变成0W。此时输出相位差如图10所示,第二可调耦合器的耦合系数为横坐标,输出相位差为纵坐标,随着第二可调耦合器的耦合系数由0.066逐渐变成0.309,输出相位差始终为0。
相应的,当固定第二可调耦合器的耦合系数为0.309时,通过调节第一可调耦合器的耦合系数,可以调节输出功率差,请参阅图11所示的另一种输出功率差变化图,第一可调耦合器的耦合系数为横坐标,输出功率差为纵坐标,第一可调耦合器的耦合系数由0.066逐渐变成0.309时,输出功率差从2W逐渐变成0W。此时另一种输出相位差的变化示意图如图12所示,第一可调耦合器的耦合系数为横坐标,输出相位差为纵坐标,随着第一可调耦合器的耦合系数由0.066逐渐变成0.309,输出相位差始终为0。
即本申请实施例可以通过固定其中一个可调耦合器的耦合系数为0.309,另一个可调耦合器的耦合系数在0.066~0.309可调的方式,使得输出功率差在-2W到2W之间变化,提高信号极化方向控制的灵活度。
本申请实施例图4的结构适用于两路信号功率互借的场景,对于多路信号功率互借的场景,可以通过将其中两路信号在图4结构上处理后,将处理生成的信号与其他信号继续 输入到另一个信号功率池化装置,直到多路信号中的所有信号都处理完。
请参阅图13,如图13所示为本申请的实施例提供的电子设备130的一种可能的结构示意图。该电子设备可以是一个信号处理器,该信号处理器可以包括图4所示的信号功率池化装置。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种信号功率池化装置,其特征在于,包括第一可调耦合器和第二可调耦合器,
    所述第一可调耦合器包括第一输入端、第一直通端、第一耦合端和第一隔离端,所述第一输入端用于接收第一水平极化信号,所述第一直通端用于输出第二水平极化信号;
    所述第二可调耦合器包括第二输入端、第二直通端、第二耦合端和第二隔离端,所述第二隔离端连接所述第一耦合端,所述第二耦合端连接所述第一隔离端,所述第二输入端用于接收第一垂直极化信号,所述第二直通端用于输出第二垂直极化信号。
  2. 根据权利要求1所述的装置,其特征在于,所述第一可调耦合器和所述第二可调耦合器中一个可调耦合器的耦合系数固定。
  3. 根据权利要求2所述的装置,其特征在于,当所述第一可调耦合器的耦合系数固定为0.5时,所述第二可调耦合器的耦合系数在0.137~0.5内可调。
  4. 根据权利要求2或3所述的装置,其特征在于,当所述第二可调耦合器的耦合系数固定为0.5时,所述第一可调耦合器的耦合系数在0.137~0.5内可调。
  5. 根据权利要求2所述的装置,其特征在于,当所述第一可调耦合器的耦合系数固定为0.309时,所述第二可调耦合器的耦合系数在0.066~0.309内可调。
  6. 根据权利要求2或5所述的装置,其特征在于,当所述第二可调耦合器的耦合系数固定为0.309时,所述第一可调耦合器的耦合系数在0.066~0.309内可调。
  7. 根据权利要求1-6任一项所述的装置,其特征在于,所述第一可调耦合器和所述第二可调耦合器为90°电桥的可调耦合器。
  8. 根据权利要求1-7任一项所述的装置,其特征在于,所述第一水平极化信号和所述第一垂直极化信号携带相同的信息。
  9. 根据权利要求8所述的装置,其特征在于,所述第一水平极化信号和所述第一垂直极化信号同相。
  10. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-9任一项所述的信号功率池化装置。
PCT/CN2022/078175 2022-02-28 2022-02-28 一种信号功率池化装置 WO2023159539A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078175 WO2023159539A1 (zh) 2022-02-28 2022-02-28 一种信号功率池化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078175 WO2023159539A1 (zh) 2022-02-28 2022-02-28 一种信号功率池化装置

Publications (1)

Publication Number Publication Date
WO2023159539A1 true WO2023159539A1 (zh) 2023-08-31

Family

ID=87764345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078175 WO2023159539A1 (zh) 2022-02-28 2022-02-28 一种信号功率池化装置

Country Status (1)

Country Link
WO (1) WO2023159539A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105974383A (zh) * 2016-06-21 2016-09-28 珠海纳睿达科技有限公司 一种相控阵雷达系统收发单元及其误差校准方法
JP2017011570A (ja) * 2015-06-24 2017-01-12 日本無線株式会社 方向性結合器
US10298336B1 (en) * 2016-10-20 2019-05-21 Google Llc Isolating dual polarized patch antennas
CN112448176A (zh) * 2020-11-09 2021-03-05 西北工业大学 一种宽角度极化非敏感整流天线
US20210392005A1 (en) * 2020-06-12 2021-12-16 At&T Intellectual Property I, L.P. Method and apparatus for managing power being provided to a waveguide system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011570A (ja) * 2015-06-24 2017-01-12 日本無線株式会社 方向性結合器
CN105974383A (zh) * 2016-06-21 2016-09-28 珠海纳睿达科技有限公司 一种相控阵雷达系统收发单元及其误差校准方法
US10298336B1 (en) * 2016-10-20 2019-05-21 Google Llc Isolating dual polarized patch antennas
US20210392005A1 (en) * 2020-06-12 2021-12-16 At&T Intellectual Property I, L.P. Method and apparatus for managing power being provided to a waveguide system
CN112448176A (zh) * 2020-11-09 2021-03-05 西北工业大学 一种宽角度极化非敏感整流天线

Similar Documents

Publication Publication Date Title
US6861907B2 (en) Power amplifier
US4047128A (en) System filter for double frequency utilization
CN102571655B (zh) 一种干扰对消的方法、装置和一种滤波器
US20080068274A1 (en) Polarization transformation
US8816930B2 (en) Waveguide orthomode transducer
CN103594769B (zh) 自适应变极化功率分配器
WO2020155817A1 (zh) 一种下行载波聚合射频电路、天线装置和电子设备
WO2023159539A1 (zh) 一种信号功率池化装置
JP3456164B2 (ja) アンテナ給電装置
TW202133489A (zh) 單波束掃描系統及多波束掃描系統
US5959508A (en) Electromagnetic wave combining device and television broadcast transmission system using same
CN102611469B (zh) 一种移相滤波方法
JPH07131438A (ja) 交差偏波補償装置
US6937112B2 (en) S/N enhancer
US11862862B2 (en) Communication device
CN110048754B (zh) 分立式车载天线系统及基于该系统的信号传输方法
CN108616476B (zh) 一种适合高阶调制方式的交叉极化干扰消除系统和方法
US6188446B1 (en) Dual diplexer combining device and television broadcast transmission system using same
JP5018637B2 (ja) アンテナ共用装置及び周波数分離装置及び帯域通過フィルタ装置
CN219513307U (zh) 一种用于分频的新型波导圆极化器
JPS6047775B2 (ja) 包絡線遅延補償器
JP2001086025A (ja) 無線機
JPH06197137A (ja) ベクトル変調器
KR20090011227U (ko) 커플러 방식을 이용한 하이브리드 접속기
JP3275667B2 (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927822

Country of ref document: EP

Kind code of ref document: A1