WO2023159504A1 - 一种随机接入方法及设备、存储介质、装置 - Google Patents

一种随机接入方法及设备、存储介质、装置 Download PDF

Info

Publication number
WO2023159504A1
WO2023159504A1 PCT/CN2022/078062 CN2022078062W WO2023159504A1 WO 2023159504 A1 WO2023159504 A1 WO 2023159504A1 CN 2022078062 W CN2022078062 W CN 2022078062W WO 2023159504 A1 WO2023159504 A1 WO 2023159504A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
uplink synchronization
random access
trigger
synchronization assistance
Prior art date
Application number
PCT/CN2022/078062
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/078062 priority Critical patent/WO2023159504A1/zh
Priority to CN202280000373.1A priority patent/CN114731711A/zh
Publication of WO2023159504A1 publication Critical patent/WO2023159504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a random access method and device, storage medium, and device.
  • a UE User Equipment, user equipment
  • the UE when a UE (User Equipment, user equipment) is in an uplink out-of-sync state and/or in a non-connected state, if the UE needs to send uplink data to the base station or the base station needs to send downlink data to the UE, the UE usually needs to send The base station sends a RACH Preamble (Random Access Channel) preamble signal to trigger a random access process to re-access the network.
  • RACH Preamble Random Access Channel
  • the UE needs to determine the GNSS (Global Navigation Satellite System, Global Navigation Satellite System) position and uplink synchronization assistance information before sending the RACH, so that in the subsequent random access process
  • the frequency offset pre-compensation and the propagation delay pre-compensation may be performed based on the first position and the uplink synchronization assistance information.
  • the current 3GPP only stipulates how to determine the first location and uplink synchronization assistance information when the UE is in the connected state.
  • the UE is in the unconnected state, for example, in the random access process before accessing the base station, "how the UE obtains the uplink synchronization assistance information" and "how the UE obtains the first location” are problems that need to be solved urgently.
  • the random access method, equipment, storage medium, and device proposed in the present disclosure are to provide a method for determining a first position and uplink synchronization auxiliary information in a random access process of an NTN system.
  • the random access method proposed in an embodiment of the present disclosure is applied to UE, including:
  • Acquire trigger information where the trigger information is used to enable the UE to trigger a random access procedure
  • the random access method proposed in another embodiment of the present disclosure is applied to a base station, including:
  • An acquiring module configured to acquire trigger information, where the trigger information is used to enable the UE to trigger a random access procedure
  • a first determining module configured to determine uplink synchronization assistance information
  • a second determining module configured to determine the first location of the UE
  • a sending module configured to send a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • a random access device including:
  • a sending module configured to send trigger information to the UE, where the trigger information is used to enable the UE to trigger a random access procedure
  • the receiving module is configured to receive the RACH Preamble signal sent by the UE.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the above embodiment of another aspect.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in another embodiment.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • the UE can obtain trigger information, and the trigger information is used to enable the UE to trigger a random access procedure; and the UE
  • the uplink synchronization assistance information may be determined; and the first location of the UE may be determined; and a random access channel preamble RACH Preamble signal may be sent to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 1a is a schematic flowchart of a random access method provided by an embodiment of the present disclosure
  • FIG. 1b is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 1c is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • Fig. 1d is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • Fig. 1e is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a random access method provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a random access device provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a random access device provided by another embodiment of the present disclosure.
  • Fig. 13 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 14 is a block diagram of a base station provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • Figure 1a is a schematic flowchart of a random access method provided by an embodiment of the present disclosure, the method is performed by a UE, as shown in Figure 1a, the random access method may include the following steps:
  • Step 101a acquire trigger information, which is used to make the UE trigger a random access procedure.
  • a UE may be a device that provides voice and/or data connectivity to a user.
  • Terminal equipment can communicate with one or more core networks via RAN (Radio Access Network, wireless access network), and UE can be an IoT terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a
  • the computer of the networked terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • user terminal or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected externally to the trip computer.
  • the UE may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the above trigger information may be sent by the base station to the UE, or may be sent by a high layer of the UE to a physical layer of the UE.
  • the base station when the UE is in an uplink out-of-sync state and/or the UE is in a disconnected state, and the base station needs to send downlink data to the UE, the base station will send the trigger information to the UE,
  • the trigger information may be, for example, Paging information (paging information), or PDCCH (Physical Downlink Control Channel, physical downlink control channel) order RACH information.
  • the UE high layer will send the UE physical layer the Trigger information.
  • the UE may initiate a random access procedure.
  • Step 102a determine uplink synchronization assistance information.
  • the UE may start to determine the uplink synchronization assistance information after acquiring the trigger information.
  • the uplink synchronization assistance information may at least include ephemeris information and/or common TA (Common Timing Advance, common timing advance) related parameter information.
  • common TA Common Timing Advance, common timing advance
  • Step 103a determine the first location of the UE.
  • the first position includes but is not limited to: GPS (Global Positioning System, Global Positioning System) position, or GNSS position, etc., and the first position is the UE determined by the above two methods The current location at the moment.
  • the UE may start to determine the first location of the UE after acquiring the trigger information, and the above-mentioned method for determining the first location of the UE may include the following steps:
  • Step a determine whether the requirement of Te_NTN (Time error Non Terrestrial Networks, non-terrestrial network time error) is met when sending RACH Preamble (random access channel preamble) using the second position measured last time.
  • Te_NTN Time error Non Terrestrial Networks, non-terrestrial network time error
  • the UE will periodically or aperiodically measure the position, wherein the above-mentioned second position includes but not limited to: GPS position, or GNSS position, etc., and the second position is passed The position of the UE determined by the above two methods before the current time. And the UE will predetermine a Te_NTN. Based on this, the UE will first determine whether Te_NTN is satisfied when sending the RACH Preamble using the second position measured last time, and determine the first position of the UE based on the determination result.
  • the above-mentioned second position includes but not limited to: GPS position, or GNSS position, etc.
  • Step b If the requirement of Te_NTN is satisfied when the RACH Preamble is sent using the second location measured last time, determine the second location measured last time as the first location of the UE.
  • the RACH Preamble when the RACH Preamble is sent using the last measured second position and the requirement of Te_NTN is met, it means that the difference between the last measured second position and the current first position of the UE is small (That is, the movement range of the UE from the current time point during the last measurement of the first position is relatively small), at this time, the second position measured last time may be directly determined as the first position of the UE.
  • Step c If the requirement of Te_NTN is not met when sending the RACH Preamble using the second position measured last time, re-measure the first position of the UE, and determine the first position obtained from the re-measurement as the first position of the UE.
  • the second position measured last time is far from the current first position of the UE. large (that is, the movement range of the UE from the current time point is relatively large when the first position was measured last time), at this time, if the second position measured last time is determined as the first position of the UE, it will cause a large error, so it is necessary to Re-measure the first position of the UE, and determine the first position obtained from the re-measurement as the first position of the UE.
  • Step 104a sending a RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • the above-mentioned method for sending the RACH Preamble signal to the base station based on the UE's first location and uplink synchronization assistance information may include:
  • Step 1 Obtain the satellite position based on the ephemeris information in the uplink synchronization assistance information.
  • Step 2 Pre-compensate the frequency offset of the channel between the UE and the satellite based on the first position of the UE and the position of the satellite to obtain a transmission frequency.
  • Step 3 Based on the UE's first position, satellite position and common TA related parameters, pre-compensate the propagation delay of the channel between the UE and the satellite, and the channel between the satellite and the base station to obtain the uplink transmission timing position.
  • This solution does not rule out pre-compensating the propagation delay of the channel between the UE and the satellite and the channel between the satellite and the base station based on other uplink synchronization information except the satellite ephemeris and common TA related parameters to obtain the uplink transmission timing position.
  • Step 4 Send the RACH Preamble signal to the base station based on the transmission frequency and uplink transmission timing position.
  • the UE may specifically send the RACH Preamble signal to the base station through the physical layer.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 1b is a schematic flow diagram of a random access method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 1b, the random access method may include the following steps:
  • Step 101b acquiring the trigger information sent by the upper layer of the UE, where the trigger information is used to make the UE trigger a random access procedure.
  • step 101b for the detailed introduction of step 101b, reference may be made to the above-mentioned embodiments, and the embodiments of the present disclosure will not repeat them here.
  • Step 102b after obtaining the trigger information sent by the upper layer of the UE, the UE keeps monitoring the SIB (System Information Block, system information block) x or NTN-SIB sent by the base station to obtain the uplink synchronization assistance information and ensure the uplink synchronization assistance information Validity, where x is a positive integer, and SIB x includes uplink synchronization assistance information.
  • SIBx and NTN-SIB can be system information blocks used to carry uplink synchronization auxiliary information, which are not distinguished here, and are referred to as SIB-x in the following.
  • the uplink synchronization assistance information may at least include ephemeris information and/or common TA.
  • the UE starts to trigger the random access process, and at this time, the UE is still in the disconnected state, and the UE starts Monitor the SIB x periodically sent by the base station to ensure the validity of the uplink synchronization assistance information (that is, in this embodiment, after the UE in the unconnected state receives the trigger information, the UE in the unconnected state will start Monitor the SIB x periodically sent by the base station to ensure the validity of the uplink synchronization assistance information).
  • the UE may specifically monitor the SIB x based on the configuration information of the SIB x previously configured by the base station (for example, the configuration information of the SIB x previously configured by the RRC).
  • the configuration information of the SIB x previously configured by the base station may specifically be configured by the base station to the UE when the UE was in the connected state last time.
  • the above SIB x may specifically include the following information:
  • Ephemeris (ephemeris information);
  • t-Service (the timing information on when the serving cell is going to stop serving the area) (the timing information on when the serving cell is going to stop serving the area);
  • the above “4) t-Service (the timing information on when the serving cell is going to stop serving the area)" can only be broadcast by quasi-earth fixed cells, not by earth mobile cells;
  • the above “5) Cell reference location” can be broadcast by quasi-earth fixed cells (FFS is used for earth mobile cells).
  • the above-mentioned monitoring of the SIB x sent by the base station to ensure the validity of the uplink synchronization assistance information specifically means: when the monitored SIB x has validity When (that is, during the valid time), the SIB x will not be monitored again, and when the monitored SIB x fails (that is, the valid time expires), the SIB x will be monitored again.
  • the UE listens to SIB x for the first time, it will listen to SIB x for the second time after another 10s.
  • Step 103b determine the first location of the UE.
  • Step 104b Send a RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • the physical layer of the UE sends the RACH Preamble signal to the base station.
  • the RACH when sending the RACH Preamble signal, specifically, the RACH is sent to the base station based on the first location and the newly acquired uplink synchronization assistance information after the first location is determined. Preamble signal.
  • the UE obtains the trigger information sent by the upper layer in the 10s in the above step 102b, at this time, it starts to monitor the SIB x periodically sent by the base station, wherein the sending period of the SIB x is 4s, and the UE determines the first position The time required is 10s.
  • the UE heard SIB x for the first time and SIB x for the second time at the 14s and 18s, respectively, and the UE determined the first location of the UE at the 20s, wherein the first location was determined for the UE
  • the latest uplink synchronization assistance information currently obtained is the uplink synchronization assistance information included in the SIB x that the UE listens to for the second time at the 18th s. Therefore, the UE can 18sUE monitors the uplink synchronization assistance information included in SIB x for the second time to send the RACH Preamble signal to the base station.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 1c is a schematic flow diagram of a random access method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 1c, the random access method may include the following steps:
  • Step 101c acquire the trigger information sent by the high layer of the UE, the trigger information is used to make the UE trigger the random access procedure.
  • Step 102c when the UE is in the disconnected state, the UE keeps monitoring the SIB x sent by the base station to obtain the uplink synchronization assistance information and ensure the validity of the uplink synchronization assistance information.
  • the UE when the UE is in a non-connected state, the UE will still monitor the SIB x sent by the base station to ensure the validity of the uplink synchronization assistance information. Based on this, after the UE obtains the trigger information sent by the upper layer of the UE, it can use the uplink synchronization assistance information within the validity period.
  • the UE may specifically monitor the SIB x based on the configuration information of the SIB x previously configured by the base station.
  • the configuration information of the SIB x previously configured by the base station may specifically be configured by the base station to the UE when the UE was in the connected state last time.
  • the difference between the embodiment corresponding to FIG. 1c and the embodiment corresponding to FIG. 1b above is mainly: the UE monitors the SIB x sent periodically by the base station in the unconnected state The time is different. Specifically, in the embodiment corresponding to FIG. 1c, when the UE switches to the unconnected state, the UE will always monitor the SIB x periodically sent by the base station during the entire process of the UE being in the unconnected state to ensure that the uplink Availability of synchronization assistance information. And, in the above embodiment corresponding to FIG.
  • the UE when the UE switches to the unconnected state, it does not always monitor the SIB x periodically sent by the base station during the entire unconnected state to ensure the validity of the uplink synchronization assistance information. Instead, when the UE in the non-connected state receives the trigger information and triggers the random access process, it starts to monitor the SIB x periodically sent by the base station to ensure the validity of the uplink synchronization assistance information, that is, the implementation corresponding to Figure 1b In this example, the UE only listens to the SIB x periodically sent by the base station during the period from the start of the random access process to the successful access to the base station during the entire non-connected state process to ensure the uplink synchronization assistance information effectiveness.
  • the UE when the UE successfully accesses the base station and switches to the connected state, the UE will still monitor the SIB x periodically sent by the base station.
  • Step 103c determining the first location of the UE
  • Step 104c Send a RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • Fig. 1d is a schematic flowchart of a random access method provided by an embodiment of the present disclosure, the method is executed by the UE, as shown in Fig. 1d, the random access method may include the following steps:
  • Step 101d acquiring trigger information sent by the base station, where the trigger information is used to enable the UE to trigger a random access procedure.
  • Step 102d after obtaining the trigger information sent by the base station, the UE keeps monitoring the SIB x sent by the base station to obtain the uplink synchronization assistance information and ensure the validity of the uplink synchronization assistance information.
  • the uplink synchronization assistance information may at least include ephemeris information and/or common TA.
  • the UE starts to trigger the random access process.
  • the UE is still in the disconnected state, and the UE Start monitoring the SIB x periodically sent by the base station to ensure the validity of the uplink synchronization assistance information (that is, in this embodiment, after the UE in the unconnected state receives the trigger information, the UE in the unconnected state will start Monitor the SIB x periodically sent by the base station to ensure the validity of the uplink synchronization assistance information).
  • the UE may specifically monitor the SIB x based on the configuration information of the SIB x previously configured by the base station.
  • the configuration information of the SIB x previously configured by the base station may specifically be configured by the base station to the UE when the UE was in the connected state last time.
  • Step 103d determine the first location of the UE.
  • Step 104d sending a RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • Fig. 1e is a schematic flowchart of a random access method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in Fig. 1e, the random access method may include the following steps:
  • Step 101e acquiring trigger information sent by the base station, where the trigger information is used to enable the UE to trigger a random access procedure.
  • Step 102e when the UE is in the disconnected state, the UE keeps monitoring the SIB x sent by the base station to obtain the uplink synchronization assistance information and ensure the validity of the uplink synchronization assistance information, where x is a positive integer, and the SIB x includes the uplink synchronization assistance information.
  • the UE when the UE is in a non-connected state, the UE will still monitor the SIB x sent by the base station to ensure the validity of the uplink synchronization assistance information. Based on this, after the UE obtains the trigger information sent by the upper layer of the UE, it can use the uplink synchronization assistance information within the validity period.
  • the UE may specifically monitor the SIB x based on the configuration information of the SIB x previously configured by the base station.
  • the configuration information of the SIB x previously configured by the base station may specifically be configured by the base station to the UE when the UE was in the connected state last time.
  • the difference between the embodiment corresponding to FIG. 1e and the embodiment corresponding to the above-mentioned FIG. 1d is mainly: the UE monitors the SIB x sent periodically by the base station in the unconnected state The time is different. Specifically, in the embodiment corresponding to FIG. 1e, when the UE switches to the unconnected state, the UE will always monitor the SIB x periodically sent by the base station during the entire process of the UE being in the unconnected state to ensure that the uplink Availability of synchronization assistance information. And, in the above-mentioned embodiment corresponding to FIG.
  • the UE when the UE switches to the unconnected state, it does not always monitor the SIB x periodically sent by the base station during the entire unconnected state to ensure the validity of the uplink synchronization assistance information. Instead, when the UE in the non-connected state receives the trigger information and triggers the random access process, it starts to monitor the SIB x periodically sent by the base station to obtain the uplink synchronization assistance information, that is: in the embodiment corresponding to Figure 1d, the UE only It is to monitor the SIB x periodically sent by the base station during the time period from the start of the random access process to the successful access to the base station to ensure the validity of the uplink synchronization assistance information.
  • the UE when the UE successfully accesses the base station and switches to the connected state, the UE will still monitor the SIB x periodically sent by the base station.
  • Step 103e determining the first location of the UE
  • Step 104e sending a RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 2 is a schematic flowchart of a random access method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 2 , the random access method may include the following steps:
  • Step 201 acquire the trigger information sent by the base station, the trigger information is used to trigger the UE to trigger the random access process, the trigger information includes uplink synchronization assistance information, and the valid time of the uplink synchronization assistance information is longer than the time for the UE to complete a first location measurement T1.
  • the above synchronous auxiliary information may be included in SIB x, where x is a positive integer, and the SIB x is included in the above trigger information.
  • SIB x is a positive integer
  • SIB x is included in the above trigger information.
  • the valid time of the uplink synchronization assistance information is longer than the time T1 for the UE to complete a first location measurement in the unconnected state (for example, the valid time of the uplink synchronization assistance information may be longer than the UE sending the base station The difference between the time point when the RACH Preamble signal is sent and the time point when the UE receives the trigger information sent by the base station). In this way, it can be ensured that when the first location of the UE is subsequently determined, the uplink synchronization assistance information is still valid, thereby ensuring the subsequent "sending of the RACH Preamble signal to the base station based on the first location and the uplink synchronization assistance information" Steps can be executed successfully.
  • Step 202 Obtain uplink synchronization assistance information included in the trigger information.
  • Step 203 determine the first location of the UE
  • Step 204 Send a RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 3 is a schematic flowchart of a random access method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 3 , the random access method may include the following steps:
  • Step 301 Obtain trigger information sent by the base station, the trigger information is used to trigger the UE to trigger the random access process, the trigger information includes configuration information of SIB x, where x is a positive integer, and SIB x includes uplink synchronization assistance information.
  • Step 302 Acquire SIB x based on the configuration information of SIB x included in the trigger information, so as to obtain uplink synchronization assistance information.
  • the UE can read the new SIB x in the next SI window (window)/SI cycle based on the configuration information of the SIB x.
  • Step 303 determine the first location of the UE.
  • Step 304 Send a RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 4 is a schematic flow diagram of a random access method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 4 , the random access method may include the following steps:
  • Step 401 Acquire trigger information sent by the base station, the trigger information is used to trigger the UE to trigger a random access procedure, and the trigger information includes the time domain position and/or time-frequency domain position of SIB x.
  • Step 402 Obtain the SIB x based on the time-domain position and/or the time-frequency domain position of the SIB x included in the trigger information, so as to obtain uplink synchronization assistance information.
  • Step 403 determine the first location of the UE
  • Step 404 Send a RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 5 is a schematic flow diagram of a random access method provided by an embodiment of the present disclosure. The method is executed by a UE. As shown in FIG. 5 , the random access method may include the following steps:
  • Step 501 Report positioning capability information to the base station, where the positioning capability information includes the time T1 when the UE completes a first position measurement.
  • the positioning capability information includes the time T1 when the UE completes a first location measurement in a non-connected state.
  • Step 502. Acquire trigger information sent by the base station, where the trigger information is used to enable the UE to trigger a random access procedure.
  • Step 503 determine the first location of the UE
  • Step 504 Send a RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 6 is a schematic flowchart of a random access method provided by an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 6, the random access method may include the following steps:
  • Step 601. Send trigger information to the UE, where the trigger information is used to make the UE trigger a random access procedure.
  • Step 602 Receive the RACH Preamble signal sent by the UE.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 7 is a schematic flow diagram of a random access method provided by an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 7 , the random access method may include the following steps:
  • Step 701 Send trigger information to the UE, the trigger information is used to enable the UE to trigger a random access procedure, the trigger information includes uplink synchronization assistance information, and the validity time of the uplink synchronization assistance information is longer than the time for the UE to complete a first location measurement Time T1.
  • Step 702 Receive the RACH Preamble signal sent by the UE.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 8 is a schematic flow diagram of a random access method provided by an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 8, the random access method may include the following steps:
  • Step 801. Periodically send SIB x to UE, where x is a positive integer, and SIB x includes the uplink synchronization assistance information.
  • Step 802 Send trigger information to the UE, where the trigger information is used to enable the UE to trigger a random access procedure, where the trigger information includes configuration information of the SIB x.
  • Step 803 Receive the RACH Preamble signal sent by the UE.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 9 is a schematic flow diagram of a random access method provided by an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 9, the random access method may include the following steps:
  • Step 901 Periodically send SIB x to UE, where x is a positive integer, and SIB x includes the uplink synchronization assistance information.
  • Step 902 Send trigger information to the UE, the trigger information is used to enable the UE to trigger a random access procedure, the trigger information includes the time domain location and/or the time-frequency domain location of the SIB x.
  • Step 903 Receive the RACH Preamble signal sent by the UE.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • FIG. 10 is a schematic flowchart of a random access method provided by an embodiment of the present disclosure. The method is executed by a base station. As shown in FIG. 10 , the random access method may include the following steps:
  • Step 1001 obtain the positioning capability information reported by the UE, the positioning capability information includes the time T1 when the UE completes a first position measurement
  • Step 1002 Send trigger information to the UE, where the trigger information is used to make the UE trigger a random access procedure.
  • Step 1003 When the RACH Preamble signal is not received within a predetermined time after sending trigger information to the UE last time, send trigger information to the UE again, wherein the predetermined time is T+T1, and T is at least the RTT (Round-Trip Time, round trip delay) between the base station and the UE.
  • T is at least the RTT (Round-Trip Time, round trip delay) between the base station and the UE.
  • the RACH Preamble signal when the RACH Preamble signal is not received within a predetermined time after the trigger information is sent to the UE last time, it means that the triggering of the random access procedure of the UE fails. At this time, it is necessary to The trigger information is sent to the UE again to enable the UE to trigger the random access procedure again.
  • the first location of the UE needs to be determined when random access is performed in the NTN system, based on this, by making the above-mentioned predetermined time T+T1, it can ensure that the NTN system The upstream sending request in.
  • Step 1004 Receive the RACH Preamble signal sent by the UE.
  • the UE can obtain trigger information, and the trigger information is used to make the UE trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • the base station sends paging information to the UE to page the UE.
  • the UE parses the paging information, it finds that the base station has a call for itself; Read the uplink synchronization assistance information (the specific reading method can refer to the above-mentioned embodiment), and then send Msg1 to the base station based on its first position and uplink synchronization assistance information.
  • the Msg1 includes a contention based RACH (based on contention random access) RACH Preamble signal, and then obtain the Msg2 sent by the base station.
  • FIG. 11 is a schematic structural diagram of a random access device provided by an embodiment of the present disclosure. As shown in FIG. 11 , the device 1100 may include:
  • An acquiring module configured to acquire trigger information, where the trigger information is used to enable the UE to trigger a random access procedure
  • a first determining module configured to determine uplink synchronization assistance information
  • a second determining module configured to determine the first location of the UE
  • a sending module configured to send a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information.
  • the UE can obtain trigger information, and the trigger information is used to enable the UE to trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • the uplink synchronization assistance information at least includes at least one of ephemeris information and common timing advance common TA.
  • the acquisition module is also used to:
  • the first determining module is further configured to:
  • the UE After the acquisition of the trigger information, the UE keeps monitoring the SIB x sent by the base station to obtain the uplink synchronization assistance information and ensure the validity of the uplink synchronization assistance information, where x is a positive integer, and the SIB x includes the uplink synchronization assistance information.
  • the first determining module is further configured to:
  • the UE When the UE is in the disconnected state, the UE keeps monitoring the SIB x sent by the base station to obtain the uplink synchronization assistance information and ensure the validity of the uplink synchronization assistance information, where x is a positive integer, and the SIB x includes the uplink synchronization assistance information.
  • the acquisition module is also used to:
  • the trigger information includes uplink synchronization assistance information, and the valid time of the uplink synchronization assistance information is longer than the time T1 for the UE to complete a first location measurement;
  • the first determination module is also used for:
  • the trigger information includes configuration information of the SIB x;
  • the determination of uplink synchronization assistance information includes:
  • the SIB x is periodically acquired based on the configuration information of the SIB x included in the trigger information, so as to obtain the uplink synchronization assistance information.
  • the trigger information includes at least one of the time-domain position and the time-frequency domain position of the SIB x;
  • the determination of uplink synchronization assistance information includes:
  • the SIB x is periodically acquired based on at least one of the time-domain position and the time-frequency domain position of the SIB x included in the trigger information, so as to obtain the uplink synchronization assistance information.
  • the sending module is also used for:
  • the device is also used for:
  • the positioning capability information includes time T1 when the UE completes a first position measurement.
  • the first position of the UE is obtained by measuring the UE; the second determining module is further configured to:
  • FIG. 12 is a schematic structural diagram of a random access device provided by an embodiment of the present disclosure. As shown in FIG. 12 , the device 1200 may include:
  • a sending module configured to send trigger information to the UE, where the trigger information is used to enable the UE to trigger a random access procedure
  • the receiving module is configured to receive the RACH Preamble signal sent by the UE.
  • the UE can obtain trigger information, and the trigger information is used to enable the UE to trigger a random access procedure; and the UE can determine uplink synchronization assistance information; And determining the first location of the UE; sending a random access channel preamble RACH Preamble signal to the base station based on the first location of the UE and the uplink synchronization assistance information. Therefore, the embodiment of the present disclosure proposes a method for determining the first location and uplink synchronization assistance information during the random access process of the NTN system, so as to ensure that the UE can successfully access the base station in the NTN system.
  • the trigger information includes uplink synchronization assistance information
  • the valid time of the uplink synchronization assistance information is longer than the time T1 for the UE to complete a first location measurement.
  • SIB x is periodically sent to the UE, where x is a positive integer, and the SIB x includes the uplink synchronization assistance information.
  • the uplink synchronization assistance information includes at least one of ephemeris information and common TA.
  • the trigger information includes configuration information of the SIB x.
  • the trigger information includes at least one of the time-domain position and the time-frequency domain position of the SIB x.
  • the device is also used for:
  • the positioning capability information includes time T1 when the UE completes a first location measurement.
  • the device after sending the trigger information to the UE, the device is further configured to:
  • the trigger information is sent to the UE again, wherein the predetermined time is T+T1, and T is at least the base station and the UE Describe the RTT of the UE.
  • Fig. 13 is a block diagram of a user equipment UE1300 provided by an embodiment of the present disclosure.
  • the UE 1300 may be a mobile phone, a computer, a digital broadcasting terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE1300 may include at least one of the following components: a processing component 1302, a memory 1304, a power supply component 1306, a multimedia component 1308, an audio component 1310, an input/output (I/O) interface 1312, a sensor component 1313, and a communication component 1316.
  • a processing component 1302 a memory 1304, a power supply component 1306, a multimedia component 1308, an audio component 1310, an input/output (I/O) interface 1312, a sensor component 1313, and a communication component 1316.
  • the processing component 1302 generally controls the overall operations of the UE 1300, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1302 may include at least one processor 1320 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • processing component 1302 can include at least one module to facilitate interaction between processing component 1302 and other components.
  • processing component 1302 may include a multimedia module to facilitate interaction between multimedia component 1308 and processing component 1302 .
  • the memory 1304 is configured to store various types of data to support operations at the UE 1300 . Examples of such data include instructions for any application or method operating on UE1300, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1304 can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1306 provides power to various components of the UE 1300.
  • Power component 1306 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1300 .
  • the multimedia component 1308 includes a screen providing an output interface between the UE 1300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 1308 includes a front camera and/or a rear camera. When the UE1300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1310 is configured to output and/or input audio signals.
  • the audio component 1310 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1300 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1304 or sent via communication component 1316 .
  • the audio component 1310 also includes a speaker for outputting audio signals.
  • the I/O interface 1312 provides an interface between the processing component 1302 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1313 includes at least one sensor for providing various aspects of state assessment for the UE 1300 .
  • the sensor component 1313 can detect the open/closed state of the device 1300, the relative positioning of components, such as the display and the keypad of the UE1300, the sensor component 1313 can also detect the position change of the UE1300 or a component of the UE1300, and the user and Presence or absence of UE1300 contact, UE1300 orientation or acceleration/deceleration and temperature change of UE1300.
  • the sensor assembly 1313 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1313 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1313 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1316 is configured to facilitate wired or wireless communications between UE 1300 and other devices.
  • UE1300 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1316 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • UE 1300 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • Fig. 14 is a block diagram of a network-side device 1400 provided by an embodiment of the present application.
  • the network side device 1400 may be provided as a network side device.
  • the network side device 1400 includes a processing component 1411, which further includes at least one processor, and a memory resource represented by a memory 1432 for storing instructions executable by the processing component 1422, such as application programs.
  • the application programs stored in memory 1432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1417 is configured to execute instructions, so as to execute any of the aforementioned methods applied to the network side device, for example, the method shown in FIG. 1 .
  • the network side device 1400 may also include a power supply component 1417 configured to perform power management of the network side device 1400, a wired or wireless network interface 1450 configured to connect the network side device 1400 to the network, and an input/output (I/O ) interface 1457.
  • the network side device 1400 can operate based on the operating system stored in the memory 1432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device, the UE, and the RIS array respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device, the UE, and the RIS array respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the above method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program that processes data for a computer program.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the above method embodiment): the processor is configured to execute any of the methods shown in FIG. 1-FIG. 14 .
  • the communication device is a network device: the transceiver is used to execute any of the methods shown in FIGS. 15-21 .
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (Gas), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar CMOS
  • SiGe silicon germanium
  • Gas gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the above method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be affected by limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the above embodiment and a communication device as a network device, Alternatively, the system includes a communication device serving as a terminal device in the above embodiment (such as the first terminal device in the above method embodiment) and a communication device serving as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种随机接入方法及设备、存储介质、装置,属于通信技术领域。其中,获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;确定上行同步辅助信息;确定所述UE的当前全球导航卫星系统第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。在本公开提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。

Description

一种随机接入方法及设备、存储介质、装置 技术领域
本公开涉及通信技术领域,尤其涉及一种随机接入方法及设备、存储介质、装置。
背景技术
在通信系统中,当UE(User Equipment,用户设备)处于上行失步状态和/或非连接状态时,若UE需要向基站发送上行数据或基站需要向UE发送下行数据时,UE通常需要先向基站发送RACH Preamble(Random Access Channel,随机接入信道)前导码信号以触发随机接入过程来重新接入网络。其中,在NTN(Non-terrestrial Network,非地面网络)系统中,UE发送RACH前需要先确定GNSS(Global Navigation Satellite System,全球导航卫星系统)位置和上行同步辅助信息,以便在后续随机接入过程中可以基于第一位置和上行同步辅助信息来进行频偏预补偿和传播时延预补偿。
相关技术中,目前3GPP只规定了UE在连接态时如何确定第一位置和上行同步辅助信息。而UE在非连接态时,比如接入基站之前的随机接入过程中“UE如何获取上行同步辅助信息”和“UE如何获取第一位置”是亟需解决的问题。
发明内容
本公开提出的随机接入方法及设备、存储介质、装置,以提出一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法。
本公开一方面实施例提出的随机接入方法,应用于UE,包括:
获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;
确定上行同步辅助信息;
确定所述UE的第一位置;
基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。
本公开另一方面实施例提出的随机接入方法,应用于基站,包括:
向UE发送触发信息,所述触发信息用于使得所述UE触发随机接入过程;
接收所述UE发送的RACH Preamble信号。
本公开一方面实施例提出的随机接入装置,包括:
获取模块,用于获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;
第一确定模块,用于确定上行同步辅助信息;
第二确定模块,用于确定所述UE的第一位置;
发送模块,用于基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。
本公开又一方面实施例提出的随机接入装置,包括:
发送模块,用于向UE发送触发信息,所述触发信息用于使得所述UE触发随机接入过程;
接收模块,用于接收所述UE发送的RACH Preamble信号。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
综上所述,在本公开实施例提供的随机接入方法及设备/存储介质/装置之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1a为本公开实施例所提供的一种随机接入方法的流程示意图;
图1b为本公开另一个实施例所提供的一种随机接入方法的流程示意图;
图1c为本公开再一个实施例所提供的一种随机接入方法的流程示意图;
图1d为本公开再一个实施例所提供的一种随机接入方法的流程示意图;
图1e为本公开再一个实施例所提供的一种随机接入方法的流程示意图;
图2为本公开再一个实施例所提供的一种随机接入方法的流程示意图;
图3为本公开再一个实施例所提供的一种随机接入方法的流程示意图;
图4为本公开又一个实施例所提供的一种随机接入方法的流程示意图;
图5为本公开又一个实施例所提供的一种随机接入方法的流程示意图;
图6为本公开又一个实施例所提供的一种随机接入方法的流程示意图;
图7为本公开又一个实施例所提供的一种随机接入方法的流程示意图;
图8为本公开又一个实施例所提供的一种随机接入方法的流程示意图;
图9为本公开又一个实施例所提供的一种随机接入方法的流程示意图;
图10为本公开又一个实施例所提供的一种随机接入方法的流程示意图;
图11为本公开一个实施例所提供的随机接入装置的结构示意图;
图12为本公开另一个实施例所提供的随机接入装置的结构示意图;
图13为本公开一个实施例所提供的一种用户设备的框图;
图14为本公开一个实施例所提供的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下 文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图对本公开提供的随机接入方法及设备、存储介质、装置进行详细描述。
图1a为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由UE执行,如图1a所示,该随机接入方法可以包括以下步骤:
步骤101a、获取触发信息,该触发信息用于使得UE触发随机接入过程。
需要说明的是,在本公开的一个实施例之中,UE可以是指向用户提供语音和/或数据连通性的设备。终端设备可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,在本公开的一个实施例之中,上述触发信息可以是基站发送至UE的,也可以是UE的高层发送至UE物理层的。具体的,在本公开的一个实施例之中,当UE处于上行失步状态和/或UE处于非连接态,而此时基站需要向UE发送下行数据时,基站会向UE发送该触发信息,其中,该触发信息例如可以为Paging信息(寻呼信息),或者PDCCH(Physical Downlink Control Channel,物理下行控制信道)order RACH信息。以及,在本公开的另一个实施例之中,当UE处于上行失步状态和/或UE处于非连接态,而此时UE需要向基站发送上行数据时,UE高层会向UE物理层发送该触发信息。
进一步地,在本公开的一个实施例之中,当UE获取到该触发信息之后,可以发起随机接入过程。
步骤102a、确定上行同步辅助信息。
在本公开的一个实施例之中,UE可以在获取到触发信息之后,即开始确定上行同步辅助信息。其中,该上行同步辅助信息至少可以包括星历信息和/或common TA(Common Timing Advance,公共定时提前)相关参数信息。以及,当上述触发信息的发送主体不同时,确定上行同步辅助信息的方法也不相同,其中关于该部分内容会在后续实施例进行详细介绍。
步骤103a、确定UE的第一位置。
其中,在本公开的一个实施例之中,该第一位置包括但不限于:GPS(全球定位系统,GlobalPositioningSystem)位置,或者GNSS位置等,所述第一位置为通过上述两种方式确定的UE当前时刻所在的位置。
以及,在本公开的一个实施例之中,UE可以在获取到触发信息之后,即开始确定UE的第一位置,以及,上述的确定UE的第一位置的方法可以包括以下步骤:
步骤a、确定使用上次测量的第二位置发送RACH Preamble(随机接入信道前导码)时是否满足Te_NTN(Time error Non Terrestrial Networks,非陆地网络时间误差)的要求。
具体的,在本公开的一个实施例之中,UE会周期性或非周期性的测量位置,其中,上述第二位置包括但不限于:GPS位置,或者GNSS位置等,该第二位置为通过上述两种方式在当前时刻之前所确定的UE的位置。以及UE会预先确定一Te_NTN。基于此,UE会先确定使用上次测量的第二位置发送 RACH Preamble时是否满足Te_NTN,并基于该确定结果来确定UE的第一位置。
步骤b、若使用上次测量的第二位置发送RACH Preamble时满足Te_NTN的要求,将上次测量的第二位置确定为UE的第一位置。
其中,在本公开的一个实施例之中,当使用上次测量的第二位置发送RACH Preamble时满足Te_NTN的要求时,则说明上次测量的第二位置与UE当前的第一位置相差较小(即上次第一位置测量时距离当前时间点UE的移动范围较小),此时可以直接将上次测量的第二位置确定为UE的第一位置。
步骤c、若使用上次测量的第二位置发送RACH Preamble时不满足Te_NTN的要求,重新测量UE的第一位置,将重新测量所得的第一位置确定为UE的第一位置。
其中,在本公开的一个实施例之中,当使用上次测量的第二位置发送RACH Preamble时不满足Te_NTN的要求时,则说明上次测量的第二位置与UE当前的第一位置相差较大(即上次第一位置测量时距离当前时间点UE的移动范围较大),此时若将上次测量的第二位置确定为UE的第一位置,则会引起较大误差,因此需要重新测量UE的第一位置,将重新测量所得的第一位置确定为UE的第一位置。
步骤104a、基于UE的第一位置和上行同步辅助信息向基站发送RACH Preamble信号。
其中,在本公开的一个实施例之中,上述的基于UE的第一位置和上行同步辅助信息向基站发送RACH Preamble信号的方法可以包括:
步骤1、基于上行同步辅助信息中的星历信息获取卫星位置。
步骤2、基于UE的第一位置和卫星位置对UE与卫星之间的信道的频偏进行预补偿以得到发射频率。
步骤3、基于UE的第一位置、卫星位置和common TA相关参数对UE与卫星之间的信道、卫星与基站之间的信道的传播时延进行预补偿以得到上行发送定时位置。本方案不排除基于除了卫星星历和common TA相关参数外的其他上行同步信息对UE与卫星之间的信道、卫星与基站之间的信道的传播时延进行预补偿以得到上行发送定时位置。
步骤4、基于发射频率和上行发送定时位置向基站发送RACH Preamble信号。
以及,在本公开的一个实施例之中,UE具体可以是通过物理层向基站发送RACH Preamble信号的。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图1b为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由UE执行,如图1b所示,该随机接入方法可以包括以下步骤:
步骤101b、获取UE的高层发送的触发信息,该触发信息用于使得UE触发随机接入过程。
其中,关于步骤101b的详细介绍可以参考上述实施例,本公开实施例在此不做赘述。
步骤102b、在获取到UE的高层发送的触发信息之后,UE保持监听基站发送的SIB(System Information Block,系统信息块)x或者NTN-SIB,以获取上行同步辅助信息并保证上行同步辅助信息的有效性,其中,x为正整数,SIB x包括上行同步辅助信息。SIBx和NTN-SIB都可以是用来承载上行同步辅助信息的系统信息块,这里不做区分,以下用SIB-x代指。
其中,在本公开的一个实施例之中,上行同步辅助信息可以至少包括星历信息和/或common TA。
以及,在本公开的一个实施例之中,具体当UE的物理层获取到UE的高层发送的触发信息之后,UE开始触发随机接入过程,此时UE仍处于非连接态,并且,UE开始监听基站周期发送的SIB x以保证上行同步辅助信息的有效性(也即是,本实施例之中,当处于非连接态的UE接收到触发信息之后,该处于非连接态的UE才会开始监听基站周期发送的SIB x以保证上行同步辅助信息的有效性)。其中,UE具体可以基于基站之前配置的SIB x的配置信息(例如之前由RRC配置的SIB x的配置信息)来监听SIB x。其中,该基站之前配置的SIB x的配置信息具体可以是在UE上一次处于连接态时基站配置至UE的。
此外,需要说明的是,在本公开的一个实施例之中,上述SIB x具体可以包含以下信息:
1)Ephemeris(星历信息);
2)Common TA parameters(公共TA参数);
3)Validity duration for UL sync information(UL同步信息的有效期);
4)t-Service(the timing information on when the serving cell is going to stop serving the area)(服务小区何时停止服务该区域的时间信息);
5)Cell reference location(小区参考位置);
6)Epoch time(生效时间);
7)K_mac;
8)Cell-specific Koffset(小区特定偏移值);
9)Indication for network enabled/disabled TA report(网络启用/禁用TA报告的指示)。
需要说明的是,基于RAN2协议,上述“4)t-Service(the timing information on when the serving cell is going to stop serving the area)”只能由准地球固定小区广播,不能由地球移动小区广播;上述“5)Cell reference location”可以由准地球固定小区广播(FFS用于地球移动小区)。
需要说明的是,在本公开的一个实施例之中,上述的监听所述基站发送的SIB x以保证所述上行同步辅助信息的有效性具体意为:在所监听到的SIB x具备有效性时(即处于有效时间时),不会再监听SIB x,而当所监听到的SIB x失效时(即有效时间超时),则再次开始监听SIB x。
示例的,假设基站发送SIB x的周期为3s,SIB x的有效时间为10s,则当UE第一次监听到SIB x后,会再经过10s后,再第二次监听SIB x。
步骤103b、确定UE的第一位置。
步骤104b、基于UE的第一位置和上行同步辅助信息向基站发送RACH Preamble信号。
其中,在本公开的一个实施例之中,具体是由UE的物理层向基站发送RACH Preamble信号的。
以及,需要说明的是,在本公开的一个实施例之中,在发送RACH Preamble信号时,具体是基于第一位置以及在确定了第一位置之后最新获取的上行同步辅助信息来向基站发送RACH Preamble信号的。
具体而言,若上述步骤102b中UE在第10s获取到高层发送的触发信息,此时,开始监听基站周期发送的SIB x,其中,该SIB x的发送周期为4s,并且UE确定第一位置所需时间为10s。基于此,在第14s和第18sUE分别第一次监听到SIB x和第二次监听到SIB x,以及,UE在第20s确定出了UE的第一位置,其中,针对UE确定出第一位置这一时间点(即第20s)而言,当前最新获取的上行同步辅助信息为在第18sUE第二次监听到SIB x中所包括的上行同步辅助信息,因此,UE可以基于第一位置和第18sUE第二次监听到SIB x中所包括的上行同步辅助信息来向基站发送RACH Preamble信号。
此外,关于步骤103b-103c的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图1c为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由UE执行,如图1c所示,该随机接入方法可以包括以下步骤:
步骤101c、获取UE的高层发送的触发信息,该触发信息用于使得UE触发随机接入过程。
步骤102c、当UE处于非连接态,UE保持监听所述基站发送的SIB x以获取所述上行同步辅助信息并保证所述上行同步辅助信息的有效性。
其中,在本公开的一个实施例之中,当UE处于非连接态时,该UE仍然会保持监听基站发送的SIB x以保证上行同步辅助信息的有效性。基于此,当UE获取到UE的高层发送的触发信息之后,则可以使用在有效期内的上行同步辅助信息。
以及,在本公开的一个实施例之中,UE具体可以基于基站之前配置的SIB x的配置信息来监听SIB x。其中,该基站之前配置的SIB x的配置信息具体可以是在UE上一次处于连接态时基站配置至UE的。
需要说明的是,在本公开的一个实施例之中,图1c对应的实施例与上述图1b对应的实施例之间的区别主要是:UE在非连接态下监听基站周期发送的SIB x的时间不同。具体而言,在图1c对应的实施例中,当UE切换至非连接态时,在该UE处于非连接态的整个过程中,UE均会一直监听基站周期发送的SIB x以保证所述上行同步辅助信息的有效性。以及,上述图1b对应的实施例中,当UE切换至非连接态时,并非是在整个非连接态过程中都一直监听基站周期发送的SIB x以保证所述上行同步辅助信息的有效性,而是当处于非连接态的UE接收到触发信息而触发了随机接入过程后,才开始监听基站周期发送的SIB x以保证所述上行同步辅助信息的有效性,即:图1b对应的实施例中,UE仅是在整个非连接状态过程中的“随机接入过程开始至成功接入至基站”的这一时间段内才监听基站周期发送的SIB x以保证所述上行同步辅助信息的有效性。
进一步地,需要说明的是,当UE成功接入至基站而切换至连接态时,UE仍然会监听基站周期发送的SIB x。
步骤103c、确定UE的第一位置;
步骤104c、基于UE的第一位置和上行同步辅助信息向所述基站发送RACH Preamble信号。
此外,关于步骤101c-104c的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图1d为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由UE执行,如图1d所示,该随机接入方法可以包括以下步骤:
步骤101d、获取基站发送的触发信息,该触发信息用于使得UE触发随机接入过程。
步骤102d、在获取到基站发送的触发信息之后,UE保持监听所述基站发送的SIB x以获取所述上行同步辅助信息并保证所述上行同步辅助信息的有效性。
其中,在本公开的一个实施例之中,上行同步辅助信息可以至少包括星历信息和/或common TA。
以及,在本公开的一个实施例之中,具体是当UE的物理层获取到UE的高层发送的触发信息之后,UE开始触发随机接入过程,此时UE仍处于非连接态,并且,UE开始监听基站周期发送的SIB x以保证上行同步辅助信息的有效性(也即是,本实施例之中,当处于非连接态的UE接收到触发信息之后,该处于非连接态的UE会开始监听基站周期发送的SIB x以保证上行同步辅助信息的有效性)。其中,UE具体可以基于基站之前配置的SIB x的配置信息来监听SIB x。其中,该基站之前配置的SIB x的配置信息具体可以是在UE上一次处于连接态时基站配置至UE的。
步骤103d、确定UE的第一位置。
步骤104d、基于UE的第一位置和上行同步辅助信息向基站发送RACH Preamble信号。
其中,关于步骤103d-103d的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图1e为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由UE执行,如图1e所示,该随机接入方法可以包括以下步骤:
步骤101e、获取基站发送的触发信息,该触发信息用于使得UE触发随机接入过程。
步骤102e、当UE处于非连接态,UE保持监听所述基站发送的SIB x以获取所述上行同步辅助信 息并保证所述上行同步辅助信息的有效性,其中,x为正整数,所述SIB x包括所述上行同步辅助信息。
其中,在本公开的一个实施例之中,当UE处于非连接态时,该UE仍然会保持监听基站发送的SIB x以保证上行同步辅助信息的有效性。基于此,当UE获取到UE的高层发送的触发信息之后,则可以使用在有效期内的上行同步辅助信息。
以及,在本公开的一个实施例之中,UE具体可以基于基站之前配置的SIB x的配置信息来监听SIB x。其中,该基站之前配置的SIB x的配置信息具体可以是在UE上一次处于连接态时基站配置至UE的。
需要说明的是,在本公开的一个实施例之中,图1e对应的实施例与上述图1d对应的实施例之间的区别主要是:UE在非连接态下监听基站周期发送的SIB x的时间不同。具体而言,在图1e对应的实施例中,当UE切换至非连接态时,在该UE处于非连接态的整个过程中,UE均会一直监听基站周期发送的SIB x以保证所述上行同步辅助信息的有效性。以及,上述图1d对应的实施例中,当UE切换至非连接态时,并非是在整个非连接态过程中都一直监听基站周期发送的SIB x以保证所述上行同步辅助信息的有效性,而是当处于非连接态的UE接收到触发信息而触发了随机接入过程后,才开始监听基站周期发送的SIB x以获取上行同步辅助信息,即:图1d对应的实施例中,UE仅是在随机接入过程开始至成功接入至基站的这一时间段内监听基站周期发送的SIB x以保证所述上行同步辅助信息的有效性。
进一步地,需要说明的是,当UE成功接入至基站而切换至连接态时,UE仍然会监听基站周期发送的SIB x。
步骤103e、确定UE的第一位置;
步骤104e、基于UE的第一位置和上行同步辅助信息向所述基站发送RACH Preamble信号。
此外,关于步骤101e-104e的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图2为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由UE执行,如图2所示,该随机接入方法可以包括以下步骤:
步骤201、获取基站发送的触发信息,该触发信息用于使得UE触发随机接入过程,该触发信息中包括上行同步辅助信息,上行同步辅助信息的有效时间大于UE完成一次第一位置测量的时间T1。
其中,上述同步辅助信息可以是包含于SIB x中,x为正整数,以及,该SIB x包含于上述触发信息中。关于SIB x的相关介绍可以参考上述实施例描述,本公开在此不做赘述。
进一步地,在本公开的一个实施例之中,该上行同步辅助信息的有效时间大于UE在非连接态完成一次第一位置测量的时间T1(例如上行同步辅助信息的有效时间可以大于UE向基站发送RACH Preamble信号的时间点与UE接收到基站发送的触发信息的时间点之间的差值)。由此可以确保后续在确定出UE的第一位置时,该上行同步辅助信息仍然是有效的,进而可以确保后续的“基于第一位置和上行同步辅助信息向所述基站发送RACH Preamble信号”的步骤可以成功执行。
步骤202、获取包含于触发信息中的上行同步辅助信息。
步骤203、确定UE的第一位置;
步骤204、基于UE的第一位置和上行同步辅助信息向所述基站发送RACH Preamble信号。
此外,关于步骤201-204的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图3为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由UE执行,如图3所示, 该随机接入方法可以包括以下步骤:
步骤301、获取基站发送的触发信息,该触发信息用于使得UE触发随机接入过程,该触发信息包括SIB x的配置信息,其中,x为正整数,SIB x包括上行同步辅助信息。
步骤302、基于触发信息中包括的SIB x的配置信息获取SIB x,以得到上行同步辅助信息。
具体的,在本公开的一个实施例之中,UE可以基于SIB x的配置信息在下一个SI window(窗口)/SI周期去读取新的SIB x。
步骤303、确定UE的第一位置。
步骤304、基于UE的第一位置和上行同步辅助信息向所述基站发送RACH Preamble信号。
此外,关于步骤301-304的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图4为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由UE执行,如图4所示,该随机接入方法可以包括以下步骤:
步骤401、获取基站发送的触发信息,该触发信息用于使得UE触发随机接入过程,该触发信息包括SIB x的时域位置和/或时频域位置。
步骤402、基于触发信息中包括的SIB x的时域位置和/或时频域位置以获取SIB x,以得到上行同步辅助信息。
步骤403、确定UE的第一位置;
步骤404、基于UE的第一位置和上行同步辅助信息向所述基站发送RACH Preamble信号。
此外,关于步骤401-404的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图5为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由UE执行,如图5所示,该随机接入方法可以包括以下步骤:
步骤501、向基站上报定位能力信息,定位能力信息包括UE完成一次第一位置测量的时间T1。
具体的,在本公开的一个实施例之中,该定位能力信息包括UE在非连接态下完成一次第一位置测量的时间T1。
步骤502、获取基站发送的触发信息,该触发信息用于使得UE触发随机接入过程。
步骤503、确定UE的第一位置;
步骤504、基于UE的第一位置和上行同步辅助信息向所述基站发送RACH Preamble信号。
此外,关于步骤501-504的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图6为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由基站执行,如图6所示,该随机接入方法可以包括以下步骤:
步骤601、向UE发送触发信息,触发信息用于使得UE触发随机接入过程。
步骤602、接收UE发送的RACH Preamble信号。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图7为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由基站执行,如图7所示,该随机接入方法可以包括以下步骤:
步骤701、向UE发送触发信息,触发信息用于使得UE触发随机接入过程,所述触发信息中包括上行同步辅助信息,上行同步辅助信息的有效时间大于所述UE完成一次第一位置测量的时间T1。
步骤702、接收所述UE发送的RACH Preamble信号。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图8为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由基站执行,如图8所示,该随机接入方法可以包括以下步骤:
步骤801、向UE周期性发送SIB x,x为正整数,SIB x包括所述上行同步辅助信息。
步骤802、向UE发送触发信息,触发信息用于使得UE触发随机接入过程,所述触发信息包括所述SIB x的配置信息。
步骤803、接收所述UE发送的RACH Preamble信号。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图9为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由基站执行,如图9所示,该随机接入方法可以包括以下步骤:
步骤901、向UE周期性发送SIB x,x为正整数,SIB x包括所述上行同步辅助信息。
步骤902、向UE发送触发信息,触发信息用于使得UE触发随机接入过程,所述触发信息包括所述SIB x的时域位置和/或时频域位置。
步骤903、接收所述UE发送的RACH Preamble信号。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
图10为本公开实施例所提供的一种随机接入方法的流程示意图,该方法由基站执行,如图10所示,该随机接入方法可以包括以下步骤:
步骤1001、获取UE上报的定位能力信息,定位能力信息包括UE完成一次第一位置测量的时间T1
步骤1002、向UE发送触发信息,触发信息用于使得UE触发随机接入过程。
步骤1003、当在距离上次向UE发送触发信息之后的预定时间内未接收到RACH Preamble信号,再次向所述UE发送触发信息,其中,所述预定时间为T+T1,T至少为所述基站和所述UE的RTT (Round-Trip Time,往返时延)。
其中,在本公开的一个实施例之中,当在距离上次向UE发送触发信息之后的预定时间内未接收到RACH Preamble信号,则说明UE的随机接入过程触发失败,此时,则需要再次向UE发送触发信息以重新使得该UE触发随机接入过程。
以及,在本公开的一个实施例之中,由于在NTN系统中进行随机接入时,需要确定UE的第一位置,基于此,通过使得上述预定时间为T+T1,则可以确保满足NTN系统中的上行发送要求。
步骤1004、接收所述UE发送的RACH Preamble信号。
综上所述,在本公开实施例提供的随机接入方法之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
此外,对上述的随机接入方法进行一示例性的举例。
例如,基站向UE发送paging信息以寻呼UE,该UE解析paging信息时发现基站有针对自身的呼叫;此时,UE进行第一位置测量以得到自身的第一位置,并根据paging信息的指示读取上行同步辅助信息(具体读取方法可以参考上述实施例),之后,再基于自身的第一位置和上行同步辅助信息向基站发送Msg1,该Msg1中包括有用于发起contention based RACH(基于竞争的随机接入)RACH Preamble信号,随后会获取到基站发送的Msg2。
图11本公开一个实施例所提供的一种随机接入装置的结构示意图,如图11所示,装置1100可以包括:
获取模块,用于获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;
第一确定模块,用于确定上行同步辅助信息;
第二确定模块,用于确定UE的第一位置;
发送模块,用于基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。
综上所述,在本公开实施例提供的随机接入装置之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
在本公开一个实施例之中,所述上行同步辅助信息至少包括星历信息和公共定时提前common TA中的至少之一。
在本公开一个实施例之中,所述获取模块,还用于:
获取所述UE的高层发送的触发信息。
在本公开另一个实施例之中,所述第一确定模块,还用于:
在所述获取触发信息之后,所述UE保持监听所述基站发送的SIB x以获取所述上行同步辅助信息并保证所述上行同步辅助信息的有效性,其中,x为正整数,所述SIB x包括所述上行同步辅助信息。
在本公开一个实施例之中,所述第一确定模块,还用于:
当所述UE处于非连接态,所述UE保持监听所述基站发送的SIB x以获取所述上行同步辅助信息并保证所述上行同步辅助信息的有效性,其中,x为正整数,所述SIB x包括所述上行同步辅助信息。
在本公开一个实施例之中,所述获取模块,还用于:
获取所述基站发送的触发信息。
在本公开一个实施例之中,所述触发信息中包括上行同步辅助信息,所述上行同步辅助信息的有效时间大于所述UE完成一次第一位置测量的时间T1;
所述第一确定模块,还用于:
获取包含于所述触发信息中的上行同步辅助信息。
在本公开一个实施例之中,所述触发信息包括所述SIB x的配置信息;
所述确定上行同步辅助信息,包括:
基于所述触发信息中包括的SIB x的配置信息周期性获取所述SIB x,以得到所述上行同步辅助信息。
在本公开一个实施例之中,所述触发信息包括所述SIB x的时域位置和时频域位置中的至少之一;
所述确定上行同步辅助信息,包括:
基于所述触发信息中包括的SIB x的时域位置和时频域位置中的至少之一周期性获取所述SIB x,以得到所述上行同步辅助信息。
在本公开一个实施例之中,发送模块,还用于:
基于所述星历信息获取卫星位置;
基于所述UE的第一位置和所述卫星位置对所述UE与所述卫星之间的信道的频偏进行预补偿以得到发射频率;
基于所述UE的第一位置、所述卫星位置和所述上行同步辅助信息对所述UE与所述卫星之间的信道、所述卫星与所述基站之间的信道的传播时延进行预补偿以得到上行发送定时位置;
基于所述发射频率和上行发送定时位置向所述基站发送RACH Preamble信号。
在本公开一个实施例之中,所述装置,还用于:
向所述基站上报定位能力信息,所述定位能力信息包括所述UE完成一次第一位置测量的时间T1。
在本公开一个实施例之中,所述UE的第一位置为所述UE测量所得;所述第二确定模块,还用于:
确定使用上次测量的所述UE的第一位置发送RACH Preamble时是否满足非陆地网络时间误差Te_NTN的要求;
响应于使用上次测量的所述UE的第一位置发送RACH Preamble时满足Te_NTN的要求,将所述上次测量的所述UE的第一位置确定为所述UE的第一位置;
响应于使用上次测量的所述UE的第一位置发送RACH Preamble时不满足Te_NTN的要求,重新测量所述UE的第一位置,将重新测量所得的第一位置确定为所述UE的第一位置。
图12本公开一个实施例所提供的一种随机接入装置的结构示意图,如图12所示,装置1200可以包括:
发送模块,用于向UE发送触发信息,所述触发信息用于使得所述UE触发随机接入过程;
接收模块,用于接收所述UE发送的RACH Preamble信号。
综上所述,在本公开实施例提供的随机接入装置之中,UE可以获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;以及UE可以确定上行同步辅助信息;并确定所述UE的第一位置;基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。由此,在本公开实施例提出了一种NTN系统的随机接入过程中确定第一位置和上行同步辅助信息的方法,从而可以确保在NTN系统中UE能够成功接入基站。
在本公开一个实施例之中,所述触发信息中包括上行同步辅助信息,所述上行同步辅助信息的有效时间大于所述UE完成一次第一位置测量的时间T1。
在本公开一个实施例之中,向所述UE周期性发送SIB x,x为正整数,所述SIB x包括所述上行同步辅助信息。
在本公开一个实施例之中,所述上行同步辅助信息至少包括星历信息和common TA中的至少之一。
在本公开一个实施例之中,所述触发信息包括所述SIB x的配置信息。
在本公开一个实施例之中,所述触发信息包括所述SIB x的时域位置和时频域位置中的至少之一。
在本公开一个实施例之中,所述装置,还用于:
获取所述UE上报的定位能力信息,所述定位能力信息包括所述UE完成一次第一位置测量的时间T1。
在本公开一个实施例之中,在所述向UE发送触发信息之后,所述装置还用于:
当在距离上次向UE发送触发信息之后的预定时间内未接收到RACH Preamble信号,再次向所述UE发送触发信息,其中,所述预定时间为T+T1,T至少为所述基站和所述UE的RTT。
图13是本公开一个实施例所提供的一种用户设备UE1300的框图。例如,UE1300可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,UE1300可以包括以下至少一个组件:处理组件1302,存储器1304,电源组件1306,多媒体组件1308,音频组件1310,输入/输出(I/O)的接口1312,传感器组件1313,以及通信组件1316。
处理组件1302通常控制UE1300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1302可以包括至少一个处理器1320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1302可以包括至少一个模块,便于处理组件1302和其他组件之间的交互。例如,处理组件1302可以包括多媒体模块,以方便多媒体组件1308和处理组件1302之间的交互。
存储器1304被配置为存储各种类型的数据以支持在UE1300的操作。这些数据的示例包括用于在UE1300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1306为UE1300的各种组件提供电力。电源组件1306可以包括电源管理系统,至少一个电源,及其他与为UE1300生成、管理和分配电力相关联的组件。
多媒体组件1308包括在所述UE1300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1308包括一个前置摄像头和/或后置摄像头。当UE1300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1310被配置为输出和/或输入音频信号。例如,音频组件1310包括一个麦克风(MIC),当UE1300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1304或经由通信组件1316发送。在一些实施例中,音频组件1310还包括一个扬声器,用于输出音频信号。
I/O接口1312为处理组件1302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1313包括至少一个传感器,用于为UE1300提供各个方面的状态评估。例如,传感器组件1313可以检测到设备1300的打开/关闭状态,组件的相对定位,例如所述组件为UE1300的显示器和小键盘,传感器组件1313还可以检测UE1300或UE1300一个组件的位置改变,用户与UE1300接触的存在或不存在,UE1300方位或加速/减速和UE1300的温度变化。传感器组件1313可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1313还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1313还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1316被配置为便于UE1300和其他设备之间有线或无线方式的通信。UE1300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1300可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数 字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图14是本申请实施例所提供的一种网络侧设备1400的框图。例如,网络侧设备1400可以被提供为一网络侧设备。参照图14,网络侧设备1400包括处理组件1411,其进一步包括至少一个处理器,以及由存储器1432所代表的存储器资源,用于存储可由处理组件1422的执行的指令,例如应用程序。存储器1432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1417被配置为执行指令,以执行上述方法前述应用在所述网络侧设备的任意方法,例如,如图1所示方法。
网络侧设备1400还可以包括一个电源组件1417被配置为执行网络侧设备1400的电源管理,一个有线或无线网络接口1450被配置为将网络侧设备1400连接到网络,和一个输入输出(I/O)接口1457。网络侧设备1400可以操作基于存储在存储器1432的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从网络侧设备、UE、RIS阵列的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从网络侧设备、UE、RIS阵列的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如上述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如上述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如上述方法实施例中的终端设备):处理器用于执行图1-图14任一所示的方法。
通信装置为网络设备:收发器用于执行图15-图21任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现上述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(Gas)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如上述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的系统,该系统包括上述实施例中作为终端设备(如上述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括上述实施例中作为终端设备(如上述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例 如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (28)

  1. 一种随机接入方法,其特征在于,应用于用户设备UE,包括:
    获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;
    确定上行同步辅助信息;
    确定所述UE的第一位置;
    基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。
  2. 如权利要求1所述的方法,其特征在于,所述上行同步辅助信息至少包括星历信息和公共定时提前common TA中的至少之一。
  3. 如权利要求1所述的方法,其特征在于,所述获取触发信息,包括:
    获取所述UE的高层发送的触发信息。
  4. 如权利要求1或3所述的方法,其特征在于,所述确定上行同步辅助信息,包括:
    在所述获取触发信息之后,所述UE保持监听所述基站发送的SIB x以获取所述上行同步辅助信息并保证所述上行同步辅助信息的有效性,其中,x为正整数,所述SIB x包括所述上行同步辅助信息。
  5. 如权利要求1或3所述的方法,其特征在于,所述确定上行同步辅助信息,包括:
    当所述UE处于非连接态,所述UE保持监听所述基站发送的SIB x以获取所述上行同步辅助信息并保证所述上行同步辅助信息的有效性,其中,x为正整数,所述SIB x包括所述上行同步辅助信息。
  6. 如权利要求1所述的方法,其特征在于,所述获取触发信息,包括:
    获取所述基站发送的触发信息。
  7. 如权利要求6所述的方法,其特征在于,所述触发信息中包括上行同步辅助信息,所述上行同步辅助信息的有效时间大于所述UE完成一次第一位置测量的时间T1;
    所述确定上行同步辅助信息,包括:
    获取包含于所述触发信息中的上行同步辅助信息。
  8. 如权利要求6所述的方法,其特征在于,所述触发信息包括所述SIB x的配置信息;
    所述确定上行同步辅助信息,包括:
    基于所述触发信息中包括的SIB x的配置信息周期性获取所述SIB x,以得到所述上行同步辅助信息。
  9. 如权利要求6所述的方法,其特征在于,所述触发信息包括所述SIB x的时域位置和时频域位置中的至少之一;
    所述确定上行同步辅助信息,包括:
    基于所述触发信息中包括的SIB x的时域位置和时频域位置中的至少之一周期性获取所述SIB x,以得到所述上行同步辅助信息。
  10. 如权利要求2所述的方法,其特征在于,所述基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送RACH Preamble信号,包括:
    基于所述星历信息获取卫星位置;
    基于所述UE的第一位置和所述卫星位置对所述UE与所述卫星之间的信道的频偏进行预补偿以得到发射频率;
    基于所述UE的第一位置、所述卫星位置和所述common TA对所述UE与所述卫星之间的信道、所述卫星与所述基站之间的信道的传播时延进行预补偿以得到上行发送定时位置;
    基于所述发射频率和上行发送定时位置向所述基站发送RACH Preamble信号。
  11. 如权利要求1述的方法,其特征在于,所述方法还包括:
    向所述基站上报定位能力信息,所述定位能力信息包括所述UE完成一次第一位置测量的时间T1。
  12. 如权利要求1所述的方法,其特征在于,所述UE的第一位置为所述UE测量所得;
    所述确定所述UE的第一位置,包括:
    确定使用上次测量的所述UE的第二位置发送RACH Preamble时是否满足非陆地网络时间误差 Te_NTN的要求;
    响应于使用上次测量的所述UE的第二位置发送RACH Preamble时满足Te_NTN的要求,将所述上次测量的所述UE的第二位置确定为所述UE的第一位置;
    响应于使用上次测量的所述UE的第二位置发送RACH Preamble时不满足Te_NTN的要求,重新测量所述UE的第二位置,将重新测量所得的第二位置确定为所述UE的第一位置。
  13. 一种随机接入方法,其特征在于,应用于基站,包括:
    向UE发送触发信息,所述触发信息用于使得所述UE触发随机接入过程;
    接收所述UE发送的RACH Preamble信号。
  14. 如权利要求13所述的方法,其特征在于,所述触发信息中包括上行同步辅助信息,所述上行同步辅助信息的有效时间大于所述UE完成一次第一位置测量的时间T1。
  15. 如权利要求13所述的方法,其特征在于,向所述UE周期性发送SIB x,x为正整数,所述SIB x包括所述上行同步辅助信息。
  16. 如权利要求13-15任一所述的方法,其特征在于,所述上行同步辅助信息至少包括星历信息和common TA中的至少之一。
  17. 如权利要求15所述的方法,其特征在于,所述触发信息包括所述SIB x的配置信息。
  18. 如权利要求15所述的方法,其特征在于,所述触发信息包括所述SIB x的时域位置和时频域位置中的至少之一。
  19. 如权利要求13或14所述的方法,其特征在于,所述方法还包括:
    获取所述UE上报的定位能力信息,所述定位能力信息包括所述UE完成一次第一位置测量的时间T1。
  20. 如权利要求19所述的方法,其特征在于,在所述向UE发送触发信息之后,所述方法还包括:
    当在距离上次向UE发送触发信息之后的预定时间内未接收到RACH Preamble信号,再次向所述UE发送触发信息,其中,所述预定时间为T+T1,T至少为所述基站和所述UE的RTT。
  21. 一种随机接入装置,其特征在于,包括:
    获取模块,用于获取触发信息,所述触发信息用于使得所述UE触发随机接入过程;
    第一确定模块,用于确定上行同步辅助信息;
    第二确定模块,用于确定所述UE的第一位置;
    发送模块,用于基于所述UE的第一位置和所述上行同步辅助信息向所述基站发送随机接入信道前导码RACH Preamble信号。
  22. 一种随机接入装置,其特征在于,包括:
    发送模块,用于向UE发送触发信息,所述触发信息用于使得所述UE触发随机接入过程;
    接收模块,用于接收所述UE发送的RACH Preamble信号。
  23. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法。
  24. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至20中任一项所述的方法。
  25. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求13至20中任一项所述的方法。
  27. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中 任一项所述的方法被实现。
  28. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13至20中任一项所述的方法被实现。
PCT/CN2022/078062 2022-02-25 2022-02-25 一种随机接入方法及设备、存储介质、装置 WO2023159504A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/078062 WO2023159504A1 (zh) 2022-02-25 2022-02-25 一种随机接入方法及设备、存储介质、装置
CN202280000373.1A CN114731711A (zh) 2022-02-25 2022-02-25 一种随机接入方法及设备、存储介质、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078062 WO2023159504A1 (zh) 2022-02-25 2022-02-25 一种随机接入方法及设备、存储介质、装置

Publications (1)

Publication Number Publication Date
WO2023159504A1 true WO2023159504A1 (zh) 2023-08-31

Family

ID=82232824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078062 WO2023159504A1 (zh) 2022-02-25 2022-02-25 一种随机接入方法及设备、存储介质、装置

Country Status (2)

Country Link
CN (1) CN114731711A (zh)
WO (1) WO2023159504A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103385026A (zh) * 2011-02-22 2013-11-06 三星电子株式会社 用于随机接入的用户设备和功率控制方法
WO2018028436A1 (zh) * 2016-08-12 2018-02-15 电信科学技术研究院 一种随机接入的方法、网络侧设备及终端
WO2020092585A1 (en) * 2018-11-01 2020-05-07 Intel Corporation Secondary physical random access channel (prach) configuration for contention based random access in new radio systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103385026A (zh) * 2011-02-22 2013-11-06 三星电子株式会社 用于随机接入的用户设备和功率控制方法
WO2018028436A1 (zh) * 2016-08-12 2018-02-15 电信科学技术研究院 一种随机接入的方法、网络侧设备及终端
WO2020092585A1 (en) * 2018-11-01 2020-05-07 Intel Corporation Secondary physical random access channel (prach) configuration for contention based random access in new radio systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLE: "NTN-TN idle mode mobility", 3GPP DRAFT; R2-2202548, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. e-Meeting; 20220221 - 20220303, 14 February 2022 (2022-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052110481 *
MEDIATEK INC.: "Time and frequency synchronization Enhancements in IoT NTN", 3GPP DRAFT; R1-2109171, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 2 October 2021 (2021-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058130 *
NOKIA, NOKIA SHANGHAI BELL: "Remaining Rel-17 NTN open issues for IDLE mode", 3GPP DRAFT; R2-2202466, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20220221 - 20220303, 14 February 2022 (2022-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052110425 *

Also Published As

Publication number Publication date
CN114731711A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2021179326A1 (zh) 定位方法及装置、通信设备及存储介质
US20230134028A1 (en) METHOD AND APPARATUS OF POSITIONING BETWEEN UEs, COMMUNICATION DEVICE AND STORAGE MEDIUM
WO2023201760A1 (zh) PScell添加或改变的成功报告的记录方法、装置
CN115336296A (zh) 定位辅助终端设备的确定方法、装置
CN115004775A (zh) 成功PScell添加或更换报告的相关信息记录方法、装置
WO2022056847A1 (zh) 终端的定位方法、装置、通信设备及存储介质
WO2023159504A1 (zh) 一种随机接入方法及设备、存储介质、装置
WO2023000178A1 (zh) 一种信号接收方法、装置、用户设备、基站及存储介质
WO2023133686A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023028849A1 (zh) 参考信号测量方法、装置、用户设备、网络侧设备及存储介质
WO2023065075A1 (zh) 一种上报方法、装置、用户设备、网络侧设备及存储介质
WO2023150989A1 (zh) 一种定位方法及设备/存储介质/装置
WO2023133694A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023108574A1 (zh) 一种定位方法及设备/存储介质/装置
WO2023108374A1 (zh) 一种测量方法/装置/用户设备/网络侧设备及存储介质
WO2024016289A1 (zh) 时间信息交互方法、装置
WO2023150990A1 (zh) 一种定位方法/装置/设备及存储介质
WO2023102943A1 (zh) 一种随机接入资源配置的确定方法及设备/存储介质/装置
WO2023226053A1 (zh) 无线连接的保持方法、装置
WO2023060442A1 (zh) 一种有效信息指示方法、装置、用户设备、网络侧设备及存储介质
WO2023065339A1 (zh) 一种按需定位参考信号prs请求方法、装置、用户设备、网络侧设备及存储介质
WO2023102944A1 (zh) 一种非竞争随机接入cfra中阈值确定方法及设备/存储介质/装置
WO2023122987A1 (zh) 一种重复传输方法及设备/存储介质/装置
WO2023082279A1 (zh) 一种波束测量方法、装置、用户设备、网络侧设备及存储介质
CN115136538B (zh) 多prach传输配置方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927787

Country of ref document: EP

Kind code of ref document: A1