WO2023159494A1 - 交通信息的发送、接收方法、装置、设备及存储介质 - Google Patents

交通信息的发送、接收方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023159494A1
WO2023159494A1 PCT/CN2022/078028 CN2022078028W WO2023159494A1 WO 2023159494 A1 WO2023159494 A1 WO 2023159494A1 CN 2022078028 W CN2022078028 W CN 2022078028W WO 2023159494 A1 WO2023159494 A1 WO 2023159494A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
signal
traffic information
sent
power consumption
Prior art date
Application number
PCT/CN2022/078028
Other languages
English (en)
French (fr)
Inventor
贺传峰
张治�
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/078028 priority Critical patent/WO2023159494A1/zh
Publication of WO2023159494A1 publication Critical patent/WO2023159494A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present application relates to the technical field of intelligent transportation, and in particular to a method, device, equipment and storage medium for sending and receiving traffic information.
  • Traffic Sign Recognition is a technology that collects and recognizes road traffic signs during vehicle driving.
  • the vehicle-mounted terminal with TSR function can remind the driver based on the recognition result, or directly control the vehicle according to the recognition result to ensure the driving safety of the vehicle.
  • Embodiments of the present application provide a method, device, device, and storage medium for sending and receiving traffic information. Described technical scheme is as follows:
  • an embodiment of the present application provides a method for sending traffic information, the method including:
  • the zero power consumption device receives the carrier signal
  • the zero-power consumption device sends traffic information to the vehicle-mounted terminal in a backscattering manner based on the carrier signal.
  • an embodiment of the present application provides a method for receiving traffic information, the method including:
  • the vehicle-mounted terminal receives the traffic information sent by the zero-power consumption device through backscattering.
  • an embodiment of the present application provides a method for receiving traffic information, the method including:
  • the zero-power consumption device set in the vehicle-mounted terminal receives the indication signal sent by the control device, and the indication signal is used to indicate traffic information.
  • an embodiment of the present application provides a method for sending traffic information, the method including:
  • the control device sends an indication signal to the zero-power consumption device set in the vehicle terminal, and the indication signal is used to indicate traffic information.
  • an embodiment of the present application provides a device for sending traffic information, the device comprising:
  • the receiving module is used to receive the carrier signal
  • the backscattering module is configured to send traffic information to the vehicle terminal in a backscattering manner based on the carrier signal.
  • an embodiment of the present application provides a device for receiving traffic information, the device comprising:
  • the receiving module is used to receive the traffic information sent by the zero-power consumption device through backscattering.
  • an embodiment of the present application provides a device for receiving traffic information, the device comprising:
  • the receiving module is configured to receive an indication signal sent by the control device, and the indication signal is used to indicate traffic information.
  • an embodiment of the present application provides a device for sending traffic information, the device comprising:
  • the sending module is configured to send an indication signal to the zero-power consumption device set in the vehicle terminal, and the indication signal is used to indicate traffic information.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a memory, and the memory has at least one program; the processor is configured to execute the at least one program in the memory.
  • a program to realize the sending method or receiving method of traffic information as described in the above aspects.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor, so as to implement traffic information as described in the above aspect. send method, or receive method.
  • an embodiment of the present application provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the method for sending traffic information as described in the above aspect, or receive method.
  • an embodiment of the present application provides a computer program product or computer program
  • the computer program product or computer program includes computer instructions
  • the computer instructions are stored in a computer-readable storage medium
  • the processor reads from the computer
  • the readable storage medium reads and executes the computer instructions, so as to implement the method for sending or receiving traffic information as described in the above aspects.
  • the zero-power device sends traffic information to the vehicle-mounted terminal through backscattering based on the received carrier signal, or sends a message indicating traffic information to the zero-power-consumption device installed in the vehicle-mounted terminal through the control device.
  • the indication signal enables the vehicle-mounted terminal to realize the rapid identification of traffic information; and, because the zero-power consumption device has the characteristics of power saving, low complexity and low cost, the solution provided by the embodiment of this application can ensure the accuracy of traffic information identification. At the same time, the implementation cost and complexity can be reduced.
  • FIG. 1 is a schematic diagram of a zero-power communication system provided by an exemplary embodiment of the present application
  • Fig. 2 is a schematic diagram of radio frequency energy harvesting
  • Fig. 3 is a schematic diagram of the backscatter communication process
  • Figure 4 is a schematic diagram of resistive load modulation
  • Fig. 5 is a schematic diagram of an encoding method
  • Fig. 6 is a schematic diagram of a traffic information transmission system provided by an exemplary embodiment of the present application.
  • FIG. 7 shows a flowchart of a method for sending and receiving traffic information provided by an embodiment of the present application
  • FIG. 8 shows a flowchart of a method for sending and receiving traffic information provided by another embodiment of the present application.
  • Fig. 9 is an implementation schematic diagram of a traffic information transmission process shown in an exemplary embodiment of the present application.
  • FIG. 10 shows a flowchart of a method for sending and receiving traffic information provided by another embodiment of the present application.
  • Fig. 11 is an implementation schematic diagram of a traffic information transmission process shown in another exemplary embodiment of the present application.
  • Fig. 12 shows a flowchart of a method for sending traffic information provided by another embodiment of the present application.
  • Fig. 13 is an implementation schematic diagram of a traffic information transmission process shown in another exemplary embodiment of the present application.
  • FIG. 14 shows a flowchart of a method for sending traffic information provided by another embodiment of the present application.
  • Fig. 15 is an implementation schematic diagram of a traffic information transmission process shown in another exemplary embodiment of the present application.
  • Fig. 16 is an implementation schematic diagram of a traffic information transmission process shown in another exemplary embodiment of the present application.
  • FIG. 17 shows a flowchart of a method for sending traffic information provided by another embodiment of the present application.
  • Fig. 18 is an implementation schematic diagram of a traffic information transmission process shown in another exemplary embodiment of the present application.
  • Fig. 19 shows a system structure diagram of a traffic information transmission system provided by another exemplary embodiment of the present application.
  • Fig. 20 shows a flowchart of a method for sending and receiving traffic information provided by an embodiment of the present application
  • Fig. 21 shows a flowchart of a method for sending and receiving traffic information provided by an embodiment of the present application
  • Fig. 22 is an implementation schematic diagram of a traffic information transmission process shown in another exemplary embodiment of the present application.
  • Fig. 23 shows a flowchart of a method for sending and receiving traffic information provided by an embodiment of the present application
  • Fig. 24 is an implementation schematic diagram of a traffic information transmission process shown in another exemplary embodiment of the present application.
  • Fig. 25 shows a block diagram of a device for sending traffic information provided by an exemplary embodiment of the present application
  • Fig. 26 shows a block diagram of a device for receiving traffic information provided by an exemplary embodiment of the present application
  • Fig. 27 shows a block diagram of a device for receiving traffic information provided by an exemplary embodiment of the present application
  • Fig. 28 shows a block diagram of a device for sending traffic information provided by an exemplary embodiment of the present application
  • Fig. 29 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first, second, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • a first parameter may also be called a second parameter, and similarly, a second parameter may also be called a first parameter.
  • the word "if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • FIG. 1 shows a schematic diagram of a zero-power communication system 100 .
  • the zero-power communication system 100 includes a network device 120 and a zero-power device 140 .
  • the network device 120 is used to send a wireless power supply signal to the zero-power device, a downlink communication signal and receive a backscatter signal of the zero-power device.
  • the zero-power device 140 includes an energy collection module 141 , a backscatter communication module 142 and a low-power computing module 143 .
  • the energy harvesting module 141 can collect energy carried by radio waves in space, which is used to drive the low power consumption computing module 143 of the zero power consumption device 140 and realize backscatter communication.
  • the zero-power consumption device 140 After the zero-power consumption device 140 obtains energy, it may receive the control signaling of the network device 120, and send data to the network device 120 in a backscattering manner according to the control signaling.
  • the sent data can come from the data stored by the zero-power device itself (such as identity identification or pre-written information, such as the production date, brand, manufacturer, traffic information, etc. of the product).
  • the zero power consumption device 140 may also include a sensor module 144 and a memory 145 .
  • the sensor module 144 may include various sensors, and the zero-power consumption device 140 may report data collected by various sensors based on a zero-power consumption mechanism.
  • the memory 145 is used to store some basic information (such as item identification, etc.) or obtain sensing data such as ambient temperature and ambient humidity.
  • the zero-power consumption device itself does not need a battery, and the low-power computing module can realize simple signal demodulation, decoding or encoding, modulation and other simple operations. Therefore, the low-power computing module only needs a minimalist hardware design, making Zero-power devices are low cost and small in size.
  • FIG. 2 shows a schematic diagram of RF energy harvesting.
  • the radio frequency energy collection is based on the principle of electromagnetic induction.
  • the radio frequency module RF is used to pass through electromagnetic induction, and connected with the capacitor C and the load resistance RL that maintain a parallel relationship, so as to realize the collection of space electromagnetic wave energy and obtain the power needed to drive zero-power consumption devices.
  • energy such as: used to drive low-power demodulation modules, modulation modules, sensors and memory reading, etc. Therefore, zero-power devices do not require conventional batteries.
  • FIG. 3 shows a schematic diagram of the backscatter communication process.
  • the zero-power consumption device 140 receives the wireless signal carrier 131 sent by the network device 120 sending module (Transmit, TX) 121 using the amplifier (amplifier, AMP) 122, and modulates the wireless signal carrier 131, and uses the logic processing module 141 to load the signal to be sent. information, and use the energy harvesting module 142 to harvest radio frequency energy.
  • the zero power consumption device 140 uses the antenna 143 to radiate the modulated reflected signal 132 , and this information transmission process is called backscatter communication.
  • the receiving module (Receive, RX) 123 of the network device 120 uses a low noise amplifier (Low Noise Amplifier, LNA) 124 to receive the modulated reflection signal 132.
  • LNA Low Noise Amplifier
  • the load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power consumption device 140 according to the beat of the data flow, so that the parameters such as the impedance of the electronic tag change accordingly, and the modulation process is completed.
  • Load modulation techniques mainly include resistive load modulation and capacitive load modulation.
  • Figure 4 shows a schematic diagram of resistive load modulation.
  • the load resistor R L is connected in parallel with the third resistor R 3 , and the switch S controlled based on the binary code is turned on or off. The on-off of the third resistor R 3 will cause the voltage on the circuit to change, and the load
  • the resistor RL is connected in parallel with the first capacitor C 1
  • the load resistor RL is connected in series with the second resistor R 2
  • the second resistor R 2 is connected in series with the first inductor L 1 .
  • the first inductor L 1 is coupled to the second inductor L 2 , and the second inductor L 2 and the second capacitor C 2 are connected in series.
  • Amplitude Shift Keying (ASK) can be realized, that is, the modulation and transmission of the signal can be realized by adjusting the amplitude of the backscattered signal of the zero-power consumption device.
  • the circuit resonant frequency can be changed by switching on and off the capacitor, and frequency keying modulation (Frequency Shift Keying, FSK) can be realized, that is, by adjusting the operating frequency of the backscattered signal of the zero-power consumption device Realize signal modulation and transmission.
  • FSK frequency Shift Keying
  • the zero-power consumption device uses the load modulation method to modulate the information of the incoming wave signal to realize the process of backscatter communication.
  • Zero-power devices have significant advantages: the terminal does not actively transmit signals, so it does not need complex radio frequency links, such as PAs, radio frequency filters, etc.; the terminal does not need to actively generate high-frequency signals, so high-frequency crystal oscillators are not required; For scattered communication, the terminal signal transmission does not need to consume the energy of the terminal itself.
  • Fig. 5 shows a schematic diagram of the encoding method.
  • the data transmitted by the electronic tag can use different forms of codes to represent binary "1" and "0".
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return to zero (Not Return to Zero, NRZ) encoding, Manchester encoding, unipolar return to zero (Unipolar Return to Zero, URZ) encoding, Differential Binary Phase (DBP) encoding, Miller (Miller) encoding and differential encoding. That is, different pulse signals can be used to represent 0 and 1.
  • ⁇ NRZ encoding uses a high level to represent a binary "1", and a low level to represent a binary "0".
  • the NRZ coding in Figure 5 shows a schematic diagram of the binary data encoded using the NRZ method: 101100101001011.
  • Manchester encoding is also known as split-phase encoding (Split-Phase Coding).
  • the binary value is represented by a level change (rising or falling) during half a bit period within the bit length, a negative transition during a half bit period represents a binary "1", and a half bit period Positive jumps represent binary "0”, and data transmission errors refer to when multiple electronic tags send data bits with different values at the same time, the rising and falling edges of the reception cancel each other out, resulting in uninterrupted transmission throughout the entire bit length carrier signal.
  • Manchester encoding is within the bit length, there can be no state without change. Using this error, the reader can determine the specific location of the collision.
  • Manchester encoding is helpful for finding errors in data transmission. When using carrier load modulation or backscatter modulation, it is usually used for data transmission from electronic tags to readers.
  • Manchester encoding in FIG. 5 shows a level schematic diagram of encoding binary data using the Manchester method: 101100101001011.
  • URZ Encoding shows a level diagram of encoding binary data using the URZ method: 101100101001011.
  • ⁇ DBP encoding differential biphase encoding represents binary "0" at any edge in half a bit period, and binary "1" without an edge. In addition, at the beginning of each bit period, the level must be inverted. Bit beats are relatively easy to reconstruct for the receiver.
  • the DBP encoding in FIG. 5 shows a level schematic diagram of encoding binary data using the DBP method: 101100101001011.
  • Miller encoding represents a binary "1" at any edge within half a bit period, and a binary "0" through a constant level in the next bit period. The level transition occurs at the beginning of the bit period, and the bit beat is relatively easy for the receiver to reconstruct.
  • Miller encoding in FIG. 5 shows a level schematic diagram of encoding binary data using the Miller method: 101100101001011.
  • zero-power devices Based on the energy sources and usage methods of zero-power devices, zero-power devices can be divided into the following types:
  • the zero-power device does not need a built-in battery.
  • the zero-power device When the zero-power device is close to the network device, the zero-power device is within the near-field range formed by the antenna radiation of the network device.
  • the network device is a radio frequency identification technology (Radio Frequency Identification, RFID ) system reader. Therefore, the antenna of the zero-power device generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power device. Realize the demodulation of the forward link signal and the signal modulation of the backward link.
  • zero-power devices use backscatter implementations for signal transmission. Passive zero-power devices do not need built-in batteries to drive either the forward link or the reverse link, and are truly zero-power devices.
  • Radio frequency circuit and baseband circuit are very simple, such as low noise amplifier (Low Noise Amplifier, LNA), power amplifier (Power Amplifier, PA), crystal oscillator, analog-to-digital converter (Analog to Digital Converter (ADC) and other devices have many advantages such as small size, light weight, very cheap price, and long service life.
  • LNA Low Noise Amplifier
  • PA Power Amplifier
  • ADC Analog to Digital Converter
  • the semi-passive zero-power consumption device itself does not install a conventional battery, and can use a radio frequency energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit.
  • the energy storage unit is a capacitor. After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power device. Realize the demodulation of the forward link signal and the signal modulation of the backward link. For backscatter links, zero-power devices use backscatter implementations for signal transmission.
  • Semi-passive zero-power consumption devices do not need a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor used in the work comes from the radio energy collected by the RF energy harvesting module, which is a real meaning zero-power devices.
  • Semi-passive zero-power devices inherit many advantages of passive zero-power devices, such as: small size, light weight, very cheap price, long service life and many other advantages.
  • Active zero-power devices can have built-in batteries. Batteries are used to drive low-power chip circuits in zero-power devices. Realize the demodulation of the forward link signal and the signal modulation of the backward link. But for backscatter links, zero-power devices use backscatter implementations for signal transmission. The zero power consumption of active zero-power devices is mainly reflected in the fact that the signal transmission of the reverse link does not require the power of the terminal itself, and the backscattering method is used. In active zero-power consumption devices, the built-in battery supplies power to the RFID chip, increasing the reading and writing distance of the tag and improving the reliability of communication. It can be applied in some scenarios that require relatively high communication distance and read delay.
  • Fig. 6 shows a system structure diagram of a traffic information transmission system provided by an exemplary embodiment of the present application.
  • the system may include a zero-power consumption device 610 , a control device 620 and a vehicle terminal 630 .
  • the zero power consumption device 610 is used to collect radio wave energy through the RF energy collection module, and send traffic information to the vehicle terminal 630 by backscattering.
  • the zero-power consumption device may be a passive zero-power consumption device, an active zero-power consumption device, or a semi-passive zero-power consumption device, which is not limited in this embodiment of the present application.
  • the zero-power device 610 is bound to a traffic indicating device, and is used to send traffic information corresponding to the traffic indicating device through backscattering.
  • the traffic indicating device may include traffic lights, traffic signs or lanes, etc. .
  • the traffic information is traffic signal information (such as traffic light information, countdown information, turn information, etc.);
  • the traffic information Traffic information is traffic sign information (such as speed limit information, height limit information, etc.); ).
  • traffic information corresponding to the same traffic indication device may be sent by a single zero-power device 610, or by multiple zero-power devices 610, and different zero-power devices 610 are used to send different traffic information.
  • red light information, green light information, and yellow light information can be sent through the zero-power device;
  • red light information can be sent through the first zero-power consumption device, green light information can be sent through the second zero-power consumption device, yellow light information can be sent through the third zero-power consumption device, and so on.
  • the control device 620 is a device for controlling the zero-power device 610 (can control one or more zero-power devices), and is usually set in association with the zero-power device 610 .
  • both the control device 620 and the zero-power consumption device 610 are set on traffic lights.
  • the control device 620 is used to update the traffic information stored in the zero power consumption device 610 to ensure that the zero power consumption device 610 Provide real-time traffic information to the vehicle terminal, or the control device 620 is used to control a specific zero-power device 610 to perform backscattering, and the traffic information stored by the specific zero-power device 610 matches the real-time traffic information.
  • the vehicle-mounted terminal 630 is a terminal installed in the vehicle, and is used to receive traffic information reflected and scattered by the zero-power consumption device 610 .
  • the vehicle-mounted terminal 630 may receive traffic information sent by multiple zero-power consumption devices 610 at the same time, so as to determine the current driving environment based on the traffic information, and then perform driving control.
  • the vehicle-mounted terminal 630 can supply energy for the zero-power consumption device 610, or the control device 620 can also supply energy for the zero-power consumption device 610 (that is, send a carrier signal); the vehicle-mounted terminal 630 can trigger zero-power consumption
  • the power consumption device 610 performs backscattering, or the control device 620 may trigger the zero power consumption device 610 to perform backscattering (that is, send a carrier signal), or the zero power consumption device may perform backscattering by itself.
  • different situations will be described respectively.
  • Fig. 7 shows a flowchart of a method for sending and receiving traffic information provided by an embodiment of the present application. This method can be applied to the traffic information transmission system shown in Fig. 6, and the method includes:
  • Step 701 the zero-power consumption device receives a carrier signal.
  • the zero-power consumption device is bound to the traffic indicating device, and stores traffic information corresponding to the traffic indicating device.
  • the zero-power consumption device may be deployed on the bound traffic indication device, or the zero-power consumption device may be deployed near the bound traffic indication device.
  • the zero-power consumption device may be deployed on the traffic signal light or on a suspension arm at an intersection, which is not limited in this embodiment.
  • the carrier signal is used to power the zero-power device and backscatter it for the zero-power device (the zero-power device modulates the carrier signal and loads the information to be sent).
  • the carrier signal can be sent by the vehicle terminal, or sent by the control device.
  • the vehicle-mounted terminal sends a carrier signal when there is a need to obtain traffic information
  • the control device sends a carrier signal to a zero-power device according to a preset policy.
  • Step 702 based on the carrier signal, the zero power consumption device sends traffic information to the vehicle terminal through backscattering.
  • the zero-power device modulates the carrier signal based on the stored traffic information, so as to send the backscatter signal to the vehicle terminal through backscattering, and the backscattering signal is added with traffic information .
  • the traffic information stored by the zero-power device is related to the traffic indication device bound to it.
  • the traffic information includes at least one of the following:
  • the zero-power device when bound to traffic lights (such as traffic lights, railway crossing lights), the zero-power device backscatters traffic signal information to the vehicle-mounted terminal, so that the vehicle-mounted terminal can recognize the signal currently displayed by the traffic signal light.
  • traffic lights such as traffic lights, railway crossing lights
  • the zero-power device backscatters traffic signal information to the vehicle-mounted terminal, so that the vehicle-mounted terminal can recognize the signal currently displayed by the traffic signal light.
  • the traffic signal information includes signal light status information (such as red light, yellow light, green light, etc.).
  • the traffic signal information also includes status countdown information or progress percentage information.
  • the traffic signal information also includes signal light type information and signal light identification information (used to determine the orientation of the traffic signal light).
  • Using zero-power devices to backscatter traffic signal information can overcome the shortcomings of visual recognition, and can also ensure the accuracy of traffic signal recognition when traffic lights are blocked.
  • the zero-power device when bound to traffic signs (such as height limit signs, speed limit signs, and dangerous road section signs), the zero-power device backscatters traffic sign information to the vehicle terminal, so that the vehicle terminal can recognize traffic Identifies what is shown.
  • traffic signs such as height limit signs, speed limit signs, and dangerous road section signs
  • the zero power consumption device is built into a traffic sign.
  • Using zero-power devices to backscatter traffic sign information can overcome the defects of visual recognition, and can also ensure the accuracy of traffic sign recognition when traffic signs are blocked, blurred, defaced or covered.
  • the zero-power device when bound to a lane (such as lane markings), the zero-power device backscatters lane information to the vehicle-mounted terminal, so that the vehicle-mounted terminal can identify the current lane it is in.
  • the zero power device is embedded in a lane marking.
  • the lane information includes lane type information (such as left-turn lane, straight lane, right-turn lane, tidal lane, bus lane, etc.) and boundary type (such as white dashed line, white solid line, yellow dashed line , yellow solid line, double yellow line, etc.).
  • lane type information such as left-turn lane, straight lane, right-turn lane, tidal lane, bus lane, etc.
  • boundary type such as white dashed line, white solid line, yellow dashed line , yellow solid line, double yellow line, etc.
  • the lane information when the lanes are variable at different time periods, includes lane time period information.
  • the backscattered lane information of a zero-power device bound to a bus lane includes lane type information "bus lane” and lane time information "9:00 to 16:00".
  • Using zero-power devices to backscatter lane information can overcome the defects of visual recognition, and can also ensure the accuracy of lane recognition when lane lines are blocked, blurred, defaced or covered.
  • traffic information in addition to the above-mentioned traffic information, other information related to vehicle driving can be regarded as traffic information and backscattered by zero-power devices.
  • the embodiment of this application does not limit the specific type and content of traffic information. .
  • Step 703 the vehicle-mounted terminal receives the traffic information sent by the zero-power consumption device through backscattering.
  • the vehicle-mounted terminal receives the backscatter signal sent by the zero-power consumption device, and demodulates the backscatter signal to obtain the traffic information therein.
  • the vehicle-mounted terminal will simultaneously or successively receive backscattered traffic information from a plurality of zero-power consumption devices, because not all traffic information is valid information (for example, at a crossroad, the traffic information of the traffic lights in front of the vehicle Signal information is valid information, and traffic signal light information in other directions is invalid information), so the vehicle-mounted terminal determines valid traffic information from the traffic information, and then controls the driving state of the vehicle based on the valid traffic information.
  • the zero-power consumption device based on the received carrier signal, sends traffic information to the vehicle-mounted terminal through backscattering, so that the vehicle-mounted terminal can quickly identify traffic information; and, due to zero power consumption
  • the device has the characteristics of power saving, low complexity, and low cost. Therefore, the solution provided by the embodiment of the application can reduce the implementation cost and complexity while ensuring the accuracy of traffic information identification.
  • the traffic signal sent by the zero-power device through backscattering remains unchanged.
  • a zero-power device bound to a traffic sign sends fixed traffic sign information.
  • multiple zero-power devices bound to the same traffic signal light are used to send fixed signal light status information respectively.
  • five zero-power consumption devices bound to the same traffic signal light are used to send the first signal light status information ( Indicates that it is currently a red light), the second signal light status information (indicating that it is currently a yellow light), the third signal light status information (indicating that it is currently a green light), and the fourth signal light status information (indicating that the current signal light status is unknown, for example, the signal light status has not been updated or updating) and fifth signal light status information (indicating that the current traffic light is not working).
  • the traffic signal sent by the zero-power device through backscattering will change.
  • a zero-power device bound to a traffic signal light sends real-time signal light state information, and the real-time signal light state information is one of the first, second, third, fourth, and fifth signal light state information.
  • the same traffic light is bound to multiple zero-power devices, and different zero-power devices are used to send different signal light status information and real-time countdown information.
  • the zero-power consumption device in response to the information writing operation of the control device, updates the stored traffic information, so as to send the latest stored traffic information to the vehicle terminal through backscattering .
  • the control device may perform the information writing operation in a wired or wireless manner, which is not limited in this embodiment of the present application.
  • the zero-power device performs backscattering when it receives a trigger signal, or the zero-power device can also perform backscattering without a trigger signal. Backscatter.
  • the zero-power device performs backscattering when it receives a trigger signal, or the zero-power device can also perform backscattering without a trigger signal. Backscatter.
  • Fig. 8 shows a flowchart of a method for sending and receiving traffic information provided by another embodiment of the present application, the method includes:
  • Step 801 the control device sends a specific carrier signal.
  • the control device is used to control multiple zero-power devices, so that different zero-power devices perform backscattering at different times. For example, multiple zero-power devices bound to traffic lights, and different zero-power devices store different signal light status information, and the control device is used to control the corresponding zero-power devices according to the real-time signal status of traffic lights. Backscatter.
  • control device can send specific carrier signals for backscattering by specific zero-power devices.
  • the specific carrier signal may be a carrier signal of a specific frequency band, a carrier signal of a specific waveform, or a carrier signal modulated with specific information, etc., which is not limited in this embodiment of the present application.
  • traffic lights are respectively connected to a first zero-power consumption device 91 (which stores signal light status information indicating a red light), and a second zero-power consumption device 92 (which stores signal light status information indicating a green light)
  • the third zero-power consumption device 93 (stored with signal light status information indicating a yellow light) is bound, and the first carrier signal is used for backscattering by the first zero-power consumption device 91, and the second carrier signal is used for the second carrier signal
  • the 20-power consumption device 92 performs backscattering, and the third carrier signal is used for the third zero-power consumption device 93 to perform backscattering. If the traffic signal light is currently green, the control device 94 sends the second carrier signal.
  • step 802 the zero-power consumption device receives a carrier signal.
  • step 601 For the implementation manner of this step, reference may be made to step 601 , which will not be described again in this embodiment.
  • the first zero-power device 91 , the second zero-power device 92 and the third zero-power device 93 all receive the carrier signal sent by the control device 94 .
  • Step 803 when the carrier signal is a specific carrier signal, the zero-power device sends traffic information to the vehicle terminal through backscattering based on the specific carrier signal, wherein different carrier signals are used for different zero-power devices to perform backscattering. to scatter.
  • a specific carrier signal is used for backscattering by a specific zero-power device, that is, only a specific zero-power device can perform backscatter based on the specific carrier signal.
  • the zero-power device after receiving the carrier signal, the zero-power device detects whether the carrier signal is a specific carrier signal through a logic processing module. If the received carrier signal is a specific carrier signal, the zero-power device performs load modulation on the specific carrier signal, thereby backscattering traffic information to the vehicle terminal; if the received carrier signal is not a specific carrier signal, the zero-power device then Load modulation and backscatter will not be performed.
  • the second zero-power consumption device 92 after receiving the second carrier signal, the second zero-power consumption device 92 performs load modulation on the second carrier signal, and sends a signal light indicating a green light to the vehicle terminal 95 through backscattering. State information; the first zero-power consumption device 91 and the third zero-power consumption device 93 do not perform backscattering.
  • Step 804 the vehicle-mounted terminal receives the traffic information sent by the zero-power consumption device through backscattering.
  • control device sends a specific carrier signal for a specific zero-power device to perform backscattering, avoiding the need to frequently write traffic information when backscattering through a single zero-power device for a long time, resulting in zero power consumption.
  • the problem of short service life of power consumption equipment can help improve the service life of zero power consumption equipment.
  • Fig. 10 shows a flowchart of a method for sending and receiving traffic information provided by another embodiment of the present application, the method includes:
  • Step 1001 the vehicle-mounted terminal sends a specific carrier signal.
  • the vehicle terminal Since the vehicle may not need all zero-power devices to provide traffic information during driving, for example, the vehicle terminal only needs to obtain the signal light status information, and the traffic indication information such as the speed limit can be obtained from the online map. Therefore, in a possible implementation manner, the vehicle-mounted terminal can send a specific carrier signal as required, for backscattering by a specific zero-power consumption device.
  • the specific carrier signal may be a carrier signal of a specific frequency band, a carrier signal of a specific waveform, or a carrier signal modulated with specific information, etc., which is not limited in this embodiment of the present application.
  • the traffic signal light corresponds to the first zero-power consumption device 1001 (stored with signal light status information)
  • the speed limit sign corresponds to the second zero-power consumption device 1002 (stores speed limit information)
  • the first The carrier signal is used for backscattering by the first zero-power device 1001
  • the second carrier signal is used for backscattering by the second zero-power device 1002 .
  • the vehicle-mounted terminal 1003 only needs to identify the state of the signal light, it sends the first carrier signal.
  • Step 1002 the zero power consumption device receives a carrier signal.
  • step 601 For the implementation manner of this step, reference may be made to step 601 , which will not be described again in this embodiment.
  • Step 1003 when the carrier signal is a specific carrier signal, the zero-power device sends traffic information to the vehicle terminal through backscattering based on the specific carrier signal, wherein different carrier signals are used for different zero-power devices to perform feedback to scatter.
  • the first zero-power device 1001 after receiving the first carrier signal, the first zero-power device 1001 performs load modulation on the first carrier signal, and sends signal lamp status information to the vehicle terminal 1003 through backscattering; The second zero power consumption device 1002 does not perform backscattering.
  • Step 1004 the vehicle-mounted terminal receives the traffic information sent by the zero-power consumption device through backscattering.
  • the vehicle-mounted terminal sends a specific carrier signal for a specific zero-power device to perform backscattering, thereby obtaining traffic information corresponding to a specific traffic indicating device, and reducing unnecessary traffic information obtained by the vehicle-mounted terminal.
  • different carrier signals are used for backscattering by different zero-power devices as an example for illustration.
  • different zero-power devices can use the same carrier signal (that is, a common carrier signal), and all zero-power devices that receive the carrier signal can perform backscattering.
  • Fig. 12 shows a flowchart of a method for sending traffic information provided by another embodiment of the present application, the method including:
  • Step 1201 the zero power consumption device receives a carrier signal.
  • the carrier signal is a general carrier signal, which is used for backscattering by various zero-power consumption devices.
  • the carrier signal is sent by the control device, or sent by the vehicle terminal.
  • Step 1202 in the case of receiving the backscatter command, the zero-power consumption device sends traffic information to the vehicle terminal in a backscatter manner based on the carrier signal.
  • the control device is used to control multiple zero-power devices, so that different zero-power devices perform backscattering at different times. For example, multiple zero-power devices bound to traffic lights, and different zero-power devices store different signal light status information, and the control device is used to control the corresponding zero-power devices according to the real-time signal status of traffic lights. Backscatter.
  • the control device sends a backscatter command to a specific zero-power device, and accordingly, the specific zero-power device receives the backscatter After the command, backscatter is performed based on the carrier signal.
  • a zero-power device that receives a carrier signal but does not receive a backscatter command will not perform backscatter.
  • the backscatter command is different from the trigger signal, the trigger signal cannot be directional to trigger a specific zero-power consumption device to perform backscatter (the trigger signal cannot be sent only to a specific zero-power consumption device), while the backscatter command can be sent directional ( That is, only send a backscatter command to a specific zero-power device), and can instruct a specific zero-power device to perform backscattering.
  • the backscattering instructions used to instruct different zero-power devices to perform backscattering are the same.
  • the backscatter instruction can be sent in a wired or wireless manner.
  • the backscatter command is an interrupt signal sent by the control device in a wired manner.
  • the traffic lights are respectively connected to the first zero-power consumption device 1301 (which stores the status information of the signal lamp indicating the red light), and the second zero-power consumption device 1302 (which stores the status information of the signal lamp indicating the green light) And the third zero-power consumption device 1303 (stored with signal light status information indicating a yellow light) is bound.
  • the control device 1304 sends a backscatter instruction to the second zero-power consumption device 1302 .
  • the vehicle-mounted terminal 1305 needs to identify the state of the signal light, it sends a carrier signal.
  • the second zero-power device 1302 Since only the second zero-power device 1302 receives the backscatter command, only the second zero-power device 1302 backscatters the signal lamp information to the vehicle terminal 1305, and the first zero-power device 1301 and the third zero-power device 1303 Although the carrier signal is received, it is not backscattered.
  • the zero-power Send traffic information When it is necessary to trigger the zero-power consumption device to perform backscattering through the trigger signal, in a possible implementation, the zero-power Send traffic information.
  • the trigger signal can be sent by the control device, or can be sent later by the vehicle-mounted terminal;
  • the carrier signal can be sent by the control device, or can be sent by the vehicle-mounted terminal.
  • the control device is used to control multiple zero-power devices, so that different zero-power devices perform backscattering at different times. For example, multiple zero-power devices bound to traffic lights, and different zero-power devices store different signal light status information, and the control device is used to control the corresponding zero-power devices according to the real-time signal status of traffic lights. Backscatter.
  • control device may send a specific trigger signal to trigger the specific zero-power device to perform backscattering.
  • Fig. 14 shows a flow chart of a method for sending traffic information provided by another embodiment of the present application, the method including:
  • Step 1401 the zero power consumption device receives a carrier signal.
  • the carrier signal may be sent by a control device or a vehicle terminal.
  • the first zero-power device 91 , the second zero-power device 92 and the third zero-power device 93 all receive the carrier signal sent by the control device 94 .
  • Step 1402 when a specific trigger signal is received, the zero-power device sends traffic information to the vehicle terminal through backscattering based on the carrier signal, wherein different trigger signals are used to trigger different zero-power devices to perform backscattering .
  • the specific trigger signal is sent by the control device.
  • the specific trigger signal may be a trigger signal of a specific frequency band, a trigger signal of a specific waveform, or a trigger signal modulated with specific information, etc., which is not limited in this embodiment of the present application.
  • the trigger signals used to trigger different zero-power devices to perform backscattering are different, and the control device determines the specific zero-power devices that need to be backscattered based on the current traffic information, so as to send the A specific trigger signal corresponding to a specific zero-power device.
  • the zero-power consumption device uses a logic processing module to detect whether the trigger signal is a specific trigger signal. If the received trigger signal is a specific carrier signal, the zero-power device will load-modulate the received carrier signal to backscatter traffic information to the vehicle terminal; if the received trigger signal is not a specific trigger signal, the zero-power The device does not perform load modulation and backscatter.
  • the traffic lights are respectively connected to the first zero-power consumption device 1501 (which stores the status information of the signal lamp indicating the red light), and the second zero-power consumption device 1502 (which stores the status information of the signal lamp indicating the green light)
  • the third zero-power consumption device 1503 (stored with signal light status information indicating a yellow light) is bound, and the first trigger signal is used to trigger the first zero-power consumption device 1501 to perform backscattering, and the second trigger signal is used to trigger the second The 20-power consumption device 1502 performs backscattering, and the third trigger signal is used to trigger the third zero-power consumption device 1503 to perform backscattering.
  • the control device 1504 sends a second trigger signal to each zero-power consumption device.
  • the vehicle-mounted terminal 1505 needs to identify the state of the signal light, it sends a carrier signal to each zero-power consumption device to supply energy for each zero-power consumption device. Since the second trigger signal is used to trigger the second zero-power device 1502, the second zero-power device 1502 load-modulates the carrier signal, and backscatters the signal light status information indicating the green light to the vehicle-mounted terminal 1505, and the first zero-power
  • the power consumption device 1501 and the third zero power consumption device 1503 do not perform load modulation and backscattering.
  • the vehicle-mounted terminal can trigger a specific zero-power consumption device to perform backscattering by sending a specific trigger signal.
  • the carrier signal for backscattering by the zero-power consumption device may be sent by the control device or the vehicle terminal.
  • the traffic lights correspond to the first zero-power consumption device 1601 (stored with signal light status information)
  • the speed limit sign corresponds to the second zero-power consumption device 1602 (stores speed limit information)
  • the first The trigger signal is used to trigger the first zero-power device 1601 to perform backscattering
  • the second trigger signal is used to trigger the second zero-power device 1602 to perform backscattering.
  • the vehicle-mounted terminal 1603 only needs to identify the state of the signal light, it sends the first carrier signal.
  • the first zero-power device 1601 After receiving the first trigger signal, the first zero-power device 1601 performs load modulation on the carrier signal, and sends signal light status information to the vehicle terminal 1603 through backscattering; the second zero-power device 1602 does not perform reverse scattering.
  • control device can send a backscatter command to a specific zero-power device, indicating that a specific zero-power
  • the consumption device performs backscattering when it receives the trigger signal and the carrier signal.
  • Fig. 17 shows a flow chart of a method for sending traffic information provided by another embodiment of the present application, the method including:
  • Step 1701 the zero power consumption device receives a carrier signal.
  • the carrier signal is a common carrier signal, and the carrier signal is sent by a control device, or sent by a vehicle-mounted terminal.
  • Step 1702 when the trigger signal and the backscatter instruction are received, the zero-power consumption device sends the traffic information to the vehicle-mounted terminal by backscattering based on the carrier signal.
  • the trigger signal is a general trigger signal, and the trigger signal is sent by the control device, or sent by the vehicle terminal.
  • the control device sends a backscatter command to a specific zero-power device, and accordingly, the specific zero-power device receives the backscatter After the command and trigger signal, backscatter is performed based on the carrier signal.
  • a zero-power device that receives a carrier signal and a trigger signal but does not receive a backscatter command will not perform backscatter.
  • the traffic lights are respectively connected to the first zero-power consumption device 1801 (which stores signal light status information indicating a red light), and the second zero-power consumption device 1802 (which stores signal light status information indicating a green light) And the third zero-power consumption device 1803 (stored with signal light status information indicating a yellow light) is bound.
  • the control device 1804 sends a backscatter instruction to the second zero-power consumption device 1802 .
  • the vehicle-mounted terminal 1805 needs to identify the state of the signal light, it sends a carrier signal and a trigger signal.
  • the second zero-power device 1802 Since only the second zero-power device 1802 receives the backscatter command, only the second zero-power device 1802 backscatters the signal light information to the vehicle terminal 1805, and the first zero-power device 1801 and the third zero-power device 1803 Although the carrier signal and trigger signal are received, backscattering is not performed.
  • the zero power consumption device sends the traffic information through backscattering.
  • the zero-power consumption device can also be set in the vehicle-mounted terminal, and obtain traffic information from the control device, so that the vehicle-mounted terminal can identify the traffic information.
  • Fig. 19 shows a system structure diagram of a traffic information transmission system provided by another exemplary embodiment of the present application.
  • the system may include a zero-power consumption device 1910 , a control device 1920 and a vehicle terminal 1930 .
  • the zero-power consumption device 1910 is set in the vehicle-mounted terminal 1930, and is used to receive the indication signal sent by the control device 1920, so that the vehicle-mounted terminal 1930 can identify traffic information according to the indication signal.
  • the zero-power consumption device 1910 may be a passive zero-power consumption device, an active zero-power consumption device, or a semi-passive zero-power consumption device, which is not limited in this embodiment of the present application.
  • a single zero-power consumption device is set in the vehicle-mounted terminal 1930 for receiving different traffic information.
  • the vehicle-mounted terminal 1930 is provided with multiple zero-power devices, and different zero-power devices are used to receive different types of traffic information, or different zero-power devices are used to receive different types of traffic information of the same type.
  • three zero-power consumption devices are set in the vehicle-mounted terminal 1930, which are respectively used to receive traffic signal information, traffic sign information, and lane information.
  • the vehicle-mounted terminal 1930 is provided with three zero-power consumption devices, which are respectively used to receive the first signal light state information (indicating a red light), the second signal light state information (indicating a green light) and the third signal light state information ( yellow light).
  • different zero-power consumption devices may be provided at different positions of the vehicle.
  • a zero-power device for receiving traffic signal information and traffic sign information can be installed at the front of the vehicle
  • a zero-power device for receiving lane information can be installed at the bottom of the vehicle.
  • the embodiment of the present application does not limit the installation position of the zero-power consumption device.
  • the control device 1920 is a device for providing traffic information, and is usually set in association with traffic indicating devices.
  • the control device 1920 is set on a traffic signal light.
  • the control device 1920 is configured to send an indication signal of traffic information to the zero-power consumption device 1910 .
  • the traffic information is fixed traffic information, or the traffic information is real-time traffic information obtained from traffic indicating devices.
  • the traffic information is real-time signal light status information obtained from traffic lights.
  • the zero-power consumption device 1910 is also used to collect radio wave energy through the RF energy collection module, and request the control device 1920 to send an indication signal through backscattering, so as to reduce the power consumption of the control device 1920 (because only when needed In the case of providing traffic information, the instruction signal is sent, and there is no need to send the instruction signal all the time).
  • the carrier signal for backscattering by the zero-power device 1910 and the trigger signal for triggering backscattering may be sent by the control device 1920 or by the vehicle terminal 1930 .
  • the zero-power consumption device 1910 is also configured to send a response to the control device 1920 through backscattering, so as to inform the receiving status of the indication signal, so as to improve the accuracy of receiving the indication signal.
  • Fig. 20 shows a flowchart of a method for sending and receiving traffic information provided by an embodiment of the present application. This method can be applied to the traffic information transmission system shown in Fig. 19, and the method includes:
  • Step 2001 the control device sends an indication signal to the zero-power consumption device set in the vehicle terminal, and the indication signal is used to indicate traffic information.
  • control device determines the indication signal based on the traffic information to be provided, and then sends the indication signal to the zero-power consumption device.
  • different traffic information corresponds to different indication signals.
  • the traffic information may be fixed traffic information (such as traffic sign information corresponding to a traffic sign), or real-time traffic information obtained from a traffic indicating device (such as signal light status information corresponding to a traffic signal light).
  • fixed traffic information such as traffic sign information corresponding to a traffic sign
  • real-time traffic information obtained from a traffic indicating device (such as signal light status information corresponding to a traffic signal light).
  • the traffic indication device corresponding to the control device has the function of providing various traffic information, and correspondingly, the control device sends a target indication signal to the zero-power consumption device based on the target traffic information, wherein different indication signals It is used to indicate different traffic information, and different indication signals are used to trigger different zero-power consumption devices.
  • control device sends the first indication signal to the zero-power consumption device based on the traffic signal information, and sends the second indication signal to the zero-power consumption device based on the traffic identification information.
  • Step 2002 the zero-power consumption device set in the vehicle terminal receives the indication signal sent by the control device, and the indication signal is used to indicate traffic information.
  • the process for the control device to send the indication signal may be a writing process.
  • the zero-power consumption device cuts the traffic information indicated by the indication signal into its own memory.
  • the vehicle-mounted terminal obtains traffic information by reading the memory of the zero-power consumption device.
  • the process of the control device sending the indication signal may be a triggering or waking process.
  • the zero-power consumption device after receiving the indication signal, notifies the vehicle terminal of the traffic information indicated by the indication signal.
  • the vehicle-mounted terminal Traffic information is identified according to a specific indication signal received by a specific zero-power consumption device.
  • three zero-power consumption devices are set in the vehicle-mounted terminal.
  • the first zero-power consumption device determines that the traffic information is a red light
  • the second zero-power consumption device determines that the traffic information is a green light
  • the third zero-power consumption device determines that the traffic information is a yellow light.
  • the solution provided in this embodiment can avoid providing the zero-power device with a carrier signal for backscattering.
  • the control device sends an indication signal indicating traffic information to the zero-power consumption device installed in the vehicle-mounted terminal, so that the vehicle-mounted terminal can quickly identify traffic information; and, because the zero-power consumption device It has the characteristics of power saving, low complexity, and low cost. Therefore, the solution provided by the embodiment of the present application can reduce the implementation cost and complexity while ensuring the accuracy of traffic information identification.
  • the indication signal is sent by the control device itself according to a predetermined policy; in another possible implementation manner, the indication signal is requested by the zero-power device to send the indication signal through backscattering.
  • Fig. 21 shows a flowchart of a method for sending and receiving traffic information provided by an embodiment of the present application. This method can be applied to the traffic information transmission system shown in Fig. 19, and the method includes:
  • Step 2101 the zero power consumption device receives a carrier signal.
  • the carrier signal is sent by the vehicle terminal, or sent by the control device.
  • the vehicle-mounted terminal 2201 when traffic information needs to be obtained, the vehicle-mounted terminal 2201 sends a carrier signal to the internally configured power consumption device 2202 .
  • Step 2102 based on the carrier signal, the zero-power device sends an information acquisition request to the control device through backscattering, and the information acquisition request is used to trigger sending an indication signal.
  • the zero-power device when the zero-power device receives the carrier signal, it sends an information acquisition request to the control device by itself through backscattering; or, when receiving the trigger signal, through the reverse
  • the scattering method sends an information acquisition request to the control device, and the trigger signal can be sent by the vehicle terminal or the control device.
  • the information acquisition request includes an information type, that is, the information acquisition request is used to request acquisition of a specific type of traffic information.
  • the vehicle-mounted terminal sends a specific carrier signal to the zero-power device according to the information type of the traffic information to be obtained, and the specific carrier signal is used for backscattering by the specific zero-power device, and Different zero-power devices are used to obtain different traffic information.
  • a specific zero-power device receives a specific carrier signal, it sends an information acquisition request including the type of traffic information through backscattering.
  • Step 2103 the control device receives the information acquisition request sent by the zero power consumption device through backscattering.
  • Step 2104 the control device sends an indication signal to the zero-power consumption device set in the vehicle terminal, and the indication signal is used to indicate traffic information.
  • the control device When receiving the information acquisition request, the control device determines the indication signal according to the traffic information, and then sends the indication signal to the zero-power consumption device, thereby realizing the on-demand transmission of traffic information and helping to reduce the device power consumption of the control device.
  • the control device detects whether traffic information belonging to the information type is stored, and if there is traffic information belonging to the information type, the control device sends an indication signal ; If no traffic information belonging to the information type is stored, the control device does not respond to the information acquisition request, thereby realizing the acquisition of a specific type of traffic information.
  • the zero-power device 2202 sends an information acquisition request to the control device 2203 through backscattering.
  • the control device 2203 sends indication information to the zero-power consumption device 2202 according to the information acquisition request.
  • Step 2105 the zero-power consumption device receives the indication signal sent by the control device, and the indication signal is used to indicate traffic information.
  • the zero-power consumption device requests the control device to obtain traffic information through backscattering, so that the control device can provide traffic information on demand according to the needs of the vehicle terminal, which helps to reduce the device power consumption of the control device.
  • the indication signal reception may be abnormal due to the signal transmission environment, resulting in the in-vehicle terminal being unable to correctly identify the traffic information.
  • the zero-power consumption device also feeds back the receiving condition of the indication signal to the control device through backscattering.
  • Fig. 23 shows a flowchart of a method for sending and receiving traffic information provided by an embodiment of the present application. This method can be applied to the traffic information transmission system shown in Fig. 19, and the method includes:
  • Step 2301 the control device sends an indication signal to the zero-power consumption device set in the vehicle terminal, and the indication signal is used to indicate traffic information.
  • Step 2302 the zero-power consumption device set in the vehicle-mounted terminal receives an indication signal sent by the control device, and the indication signal is used to indicate traffic information.
  • steps 2301 to 2302 For the implementation of steps 2301 to 2302, reference may be made to the above steps 2201 to 2202, and details are not described in this embodiment here.
  • Step 2303 the zero power consumption device receives the carrier signal.
  • the carrier signal is sent by the vehicle terminal, or sent by the control device.
  • the vehicle-mounted terminal 2403 after obtaining the traffic signal indicated by the indication signal, the vehicle-mounted terminal 2403 sends a carrier signal to the zero-power device 2402 so that the zero-power device 2402 performs backscattering based on the carrier signal.
  • Step 2034 based on the carrier signal, the zero-power device sends a response signal to the control device through backscattering, and the response signal is used to represent the reception of the indication signal.
  • the reception status of the indication signal may be determined by the zero-power device itself, or may be fed back to the zero-power device by the vehicle-mounted terminal, which is not limited in this embodiment.
  • the zero-power consumption device when the zero-power consumption device receives the carrier signal, it sends a response signal to the control device by itself through backscattering; or, when receiving the trigger signal, through backscattering way to send a response signal to the control device, the trigger signal can be sent by the vehicle terminal or the control device.
  • the zero-power device 2402 sends a response signal to the control device 2401 through backscattering.
  • Step 2305 the control device receives the response signal sent by the zero-power consumption device through backscattering.
  • the control device when the traffic information indicated by the indication signal is fixed traffic information, when the response signal indicates that the indication signal is received correctly, the control device stops sending the indication signal; when the response signal indicates that the indication signal is not received correctly, The control device resends the indication signal.
  • the zero-power device feeds back the reception of the indication signal to the control device through backscattering, and the control device determines whether to retransmit the indication signal based on the reception, which helps to improve the robustness of traffic information transmission .
  • Fig. 25 shows a block diagram of a device for sending traffic information provided by an exemplary embodiment of the present application, the device includes:
  • a receiving module 2510 configured to receive a carrier signal
  • the backscatter module 2520 is configured to send traffic information to the vehicle terminal in a backscatter manner based on the carrier signal.
  • the backscatter module 2520 is used for:
  • the carrier signal is a specific carrier signal
  • the traffic information is sent to the vehicle terminal in a backscattering manner, wherein different carrier signals are used for different zero-power consumption devices to carry out Backscatter.
  • the specific carrier signal is sent by a control device, or sent by the vehicle-mounted terminal.
  • the backscatter module 2520 is used for:
  • the traffic information is sent to the vehicle terminal in a backscatter manner based on the carrier signal.
  • the backscatter command is sent by a control device
  • the carrier signal is sent by the control device, or sent by the vehicle terminal.
  • the backscatter module 2520 is used for:
  • the traffic information is sent to the vehicle terminal in a backscattering manner.
  • the backscatter module 2520 is used for:
  • the traffic information is sent to the vehicle terminal in a backscattering manner, wherein different trigger signals are used to trigger different zero-power consumption devices to perform backscattering.
  • the specific trigger signal is sent by the control device, or sent by the vehicle terminal;
  • the carrier signal is sent by the control device, or sent by the vehicle terminal.
  • the backscatter module 2520 is used for:
  • the zero-power consumption device In the case of receiving the trigger signal and the backscatter instruction, the zero-power consumption device sends the traffic information to the vehicle-mounted terminal in a backscatter manner based on the carrier signal.
  • the backscatter command is sent by a control device
  • the carrier signal is sent by the control device, or sent by the vehicle terminal;
  • the trigger signal is sent by the control device, or sent by the vehicle terminal;
  • the device also includes:
  • the storage module 2530 is configured to update the stored traffic information in response to the information writing operation of the control device.
  • the traffic information includes at least one of the following:
  • Fig. 26 shows a block diagram of a device for receiving traffic information provided by an exemplary embodiment of the present application, and the device includes:
  • the receiving module 2610 is configured to receive traffic information sent by the zero-power consumption device through backscattering.
  • the device also includes:
  • the sending module 2620 is configured to send a carrier signal, and the carrier signal is used for backscattering by the zero power consumption device.
  • the carrier signal is a general carrier signal, or the carrier signal is a specific carrier signal, and the specific carrier signal is used for backscattering by a specific zero-power consumption device.
  • the device also includes:
  • the sending module 2620 is configured to send a trigger signal, where the trigger signal is used to trigger the zero power consumption device to perform backscattering.
  • the trigger signal is a general trigger signal, or the trigger signal is a specific trigger signal, and the specific trigger signal is used to trigger a specific zero-power consumption device to perform backscattering.
  • Fig. 27 shows a block diagram of a device for receiving traffic information provided by an exemplary embodiment of the present application, and the device includes:
  • the receiving module 2710 is configured to receive an indication signal sent by the control device, where the indication signal is used to indicate traffic information.
  • the receiving module 2710 is also configured to receive a carrier signal
  • the device also includes:
  • the backscatter module 2720 is configured to send a response signal to the control device in a backscatter manner based on the carrier signal, where the response signal is used to represent the receiving condition of the indication signal.
  • the receiving module 2710 is also configured to receive a carrier signal
  • the device also includes:
  • the backscatter module 2720 is configured to send an information acquisition request to the control device in a backscatter manner based on the carrier signal, so that the control device sends the indication signal based on the information acquisition request.
  • the carrier signal is sent by the vehicle terminal, or sent by the control device.
  • the traffic information includes at least one of the following:
  • Fig. 28 shows a block diagram of a device for sending traffic information provided by an exemplary embodiment of the present application, the device includes:
  • the sending module 2810 is configured to send an indication signal to the zero-power consumption device set in the vehicle terminal, where the indication signal is used to indicate traffic information.
  • the sending module 2810 is configured to:
  • a target indication signal is sent to the zero-power consumption device, wherein different indication signals are used to indicate different traffic information.
  • the device also includes:
  • the receiving module 2820 is configured to receive a response signal sent by the zero-power consumption device through backscattering, and the response signal is used to represent the receiving condition of the indication signal.
  • the device also includes:
  • the receiving module 2820 is configured to receive an information acquisition request sent by the zero-power consumption device through backscattering, and the information acquisition request is used to trigger sending the indication signal.
  • the carrier signal used for backscattering is sent by the control device, or sent by the vehicle terminal.
  • the device provided by the above embodiment realizes its functions, it only uses the division of the above-mentioned functional modules as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • Fig. 29 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may include: a processor 2901 , a receiver 2902 , a transmitter 2903 , a memory 2904 and a bus 2905 .
  • the processor 2901 includes one or more processing cores, and the processor 2901 executes various functional applications and information processing by running software programs and modules.
  • the receiver 2902 and the transmitter 2903 can be implemented as a transceiver, which can be a communication chip.
  • the memory 2904 is connected to the processor 2901 through the bus 2905; for example, the processor 2901 can be implemented as a first IC chip, and the processor 2901 and the memory 2904 can be jointly implemented as a second IC chip; the first chip or the second chip can be It is an Application Specific Integrated Circuit (ASIC) chip.
  • ASIC Application Specific Integrated Circuit
  • the memory 2904 may be used to store at least one computer program, and the processor 2901 is used to execute the at least one computer program, so as to implement various steps in the foregoing method embodiments.
  • the memory 2904 can be realized by any type of volatile or non-volatile storage device or their combination, and the volatile or non-volatile storage device includes but not limited to: random-access memory (Random-Access Memory, RAM) , Read-Only Memory (Read-Only Memory, ROM), Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), flash memory or other solid-state storage technology, compact disc read-only memory (CD-ROM), high-density digital video disc (Digital Video Disc, DVD) or other optical storage, tape cartridges, tapes, disks storage or other magnetic storage devices.
  • random-access memory Random-Access Memory
  • RAM Random-Access Memory
  • ROM Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory or other solid-state storage technology compact disc read-only memory
  • An embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a communication device, so as to realize the sending of the traffic information provided by the above-mentioned embodiments method, or receive method.
  • the computer-readable storage medium may include: a read-only memory (Read-Only Memory, ROM), a random-access memory (Random-Access Memory, RAM), a solid-state hard drive (Solid State Drives, SSD) or an optical disc.
  • the random access memory may include resistive random access memory (Resistance Random Access Memory, ReRAM) and dynamic random access memory (Dynamic Random Access Memory, DRAM).
  • An embodiment of the present application also provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip is run on a communication device, it is used to implement the traffic information sending method provided by the above embodiment, or receive method.
  • the embodiment of the present application also provides a computer program product or computer program, the computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and the processor of the communication device reads from the computer The readable storage medium reads and executes the computer instructions to implement the traffic information sending method or receiving method provided in the above embodiments.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • the "plurality” mentioned herein means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the numbering of the steps described herein only exemplarily shows a possible sequence of execution among the steps.
  • the above-mentioned steps may not be executed according to the order of the numbers, such as two different numbers
  • the steps are executed at the same time, or two steps with different numbers are executed in the reverse order as shown in the illustration, which is not limited in this embodiment of the present application.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本申请公开了一种交通信息的发送、接收方法、装置、设备及存储介质,涉及智慧交通领域。所述方法包括:零功耗设备接收载波信号,基于载波信号,通过反向散射方式向车载终端发送交通信息;或,设置在车载终端中的零功耗设备接收控制设备发送的指示信号,指示信号用于指示交通信息。采用本申请实施例提供的方案,在保证交通信息识别准确率的同时,能够降低实现成本和复杂度。

Description

交通信息的发送、接收方法、装置、设备及存储介质 技术领域
本申请涉及智慧交通技术领域,特别涉及一种交通信息的发送、接收方法、装置、设备及存储介质。
背景技术
交通标志识别(Traffic Sign Recognition,TSR)是一种在车辆行驶过程中对道路交通标志进行采集和识别的技术。
具有TSR功能的车载终端可以基于识别结果提醒驾驶员,或者直接根据识别结果对车辆进行控制,保证车辆行驶安全。
发明内容
本申请实施例提供了一种交通信息的发送、接收方法、装置、设备及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种交通信息的发送方法,所述方法包括:
零功耗设备接收载波信号;
所述零功耗设备基于所述载波信号,通过反向散射方式向车载终端发送交通信息。
另一方面,本申请实施例提供了一种交通信息的接收方法,所述方法包括:
车载终端接收零功耗设备通过反向散射方式发送的交通信息。
另一方面,本申请实施例提供了一种交通信息的接收方法,所述方法包括:
设置在车载终端中的零功耗设备接收控制设备发送的指示信号,所述指示信号用于指示交通信息。
另一方面,本申请实施例提供了一种交通信息的发送方法,所述方法包括:
控制设备向车载终端中设置的零功耗设备发送指示信号,所述指示信号用于指示交通信息。
另一方面,本申请实施例提供了一种交通信息的发送装置,所述装置包括:
接收模块,用于接收载波信号;
反向散射模块,用于基于所述载波信号,通过反向散射方式向车载终端发送交通信息。
另一方面,本申请实施例提供了一种交通信息的接收装置,所述装置包括:
接收模块,用于接收零功耗设备通过反向散射方式发送的交通信息。
另一方面,本申请实施例提供了一种交通信息的接收装置,所述装置包括:
接收模块,用于接收控制设备发送的指示信号,所述指示信号用于指示交通信息。
另一方面,本申请实施例提供了一种交通信息的发送装置,所述装置包括:
发送模块,用于向车载终端中设置的零功耗设备发送指示信号,所述指示信号用于指示交通信息。
另一方面,本申请实施例提供了一种通信设备,所述通信设备包括处理器和存储器,所述存储器中有至少一段程序;所述处理器,用于执行所述存储器中的所述至少一段程序以实现如上述方面所述的交通信息的发送方法,或接收方法。
另一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如上述方面所述的交通信息的发送方法,或接收方法。
另一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如上述方面所述的交通信息的发送方法,或接收方法。
另一方面,本申请实施例提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如上述方面所述的交通信息的发送方法,或接收方法。
本申请实施例中,零功耗设备基于接收到的载波信号,通过反向散射方式向车载终端发送交通信息,或者,通过控制设备向设置在车载终端中的零功耗设备发送指示交通信息的指示信号,使车载终端实现交通信息的快速识别;并且,由于零功耗设备具有省电、低复杂度以及低成本的特点,因此采用本申请实施例提供的方案,在保证交通信息识别准确率的同时,能够降低实现成本和复杂度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的零功耗通信系统的示意图;
图2是射频能量采集的原理图;
图3是反向散射通信过程的原理图;
图4是电阻负载调制的原理图;
图5是编码方式的示意图;
图6是本申请一个示例性实施例提供的交通信息传输系统的示意图;
图7示出了本申请一个实施例提供的交通信息的发送、接收方法的流程图;
图8示出了本申请另一个实施例提供的交通信息的发送、接收方法的流程图;
图9是本申请一个示例性实施例示出的交通信息传输过程的实施示意图;
图10示出了本申请另一个实施例提供的交通信息的发送、接收方法的流程图;
图11是本申请另一个示例性实施例示出的交通信息传输过程的实施示意图;
图12示出了本申请另一个实施例提供的交通信息的发送方法的流程图;
图13是本申请另一个示例性实施例示出的交通信息传输过程的实施示意图;
图14示出了本申请另一个实施例提供的交通信息的发送方法的流程图;
图15是本申请另一个示例性实施例示出的交通信息传输过程的实施示意图;
图16是本申请另一个示例性实施例示出的交通信息传输过程的实施示意图;
图17示出了本申请另一个实施例提供的交通信息的发送方法的流程图;
图18是本申请另一个示例性实施例示出的交通信息传输过程的实施示意图;
图19示出了本申请另一个示例性实施例提供的交通信息传输系统的系统结构图;
图20示出了本申请一个实施例提供的交通信息的发送、接收方法的流程图;
图21示出了本申请一个实施例提供的交通信息的发送、接收方法的流程图;
图22是本申请另一个示例性实施例示出的交通信息传输过程的实施示意图;
图23示出了本申请一个实施例提供的交通信息的发送、接收方法的流程图;
图24是本申请另一个示例性实施例示出的交通信息传输过程的实施示意图;
图25示出了本申请一个示例性实施例提供的交通信息的发送装置的框图;
图26示出了本申请一个示例性实施例提供的交通信息的接收装置的框图;
图27示出了本申请一个示例性实施例提供的交通信息的接收装置的框图;
图28示出了本申请一个示例性实施例提供的交通信息的发送装置的框图;
图29是本申请一个实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一参数也可以被称为第二参数,类似地,第二参数也可以被称为第一参数。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1示出了零功耗通信系统100的示意图,零功耗通信系统100包括网络设备120和零功耗设备140。
网络设备120用于向零功耗设备发送无线供能信号,下行通信信号以及接收零功耗设备的反向散射信号。零功耗设备140包含能量采集模块141,反向散射通信模块142以及低功耗计算模块143。能量采集模块141可以采集空间中的无线电波携带的能量,用于驱动零功耗设备140的低功耗计算模块143和实现反向散射通信。零功耗设备140获得能量后,可以接收网络设备120的控制信令,并根据控制信令基于反向散射的方式向网络设备120发送数据。发送数据可以来自于零功耗设备自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家、交通信息等)。
零功耗设备140还可以包括传感器模块144和存储器145。传感器模块144可以包括各类传感器,零功耗设备140可以基于零功耗机制将各类传感器采集的数据上报。存储器145用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
零功耗设备自身不需要电池,同时采用低功耗计算模块可实现简单的信号解调,解码或编码,调制等 简单的运算工作,因此低功耗计算模块仅需要极简的硬件设计,使得零功耗设备成本很低、体积很小。
接下来,对零功耗通信的关键技术进行介绍:
·射频能量采集(Radio Frequency Power Harvesting)
图2示出了射频能量采集的原理图。射频能量采集是基于电磁感应原理,利用射频模块RF通过电磁感应,并与保持并联关系的电容C、负载电阻R L进行连接,实现对空间电磁波能量的采集,获得驱动零功耗设备工作所需的能量,比如:用于驱动低功耗解调模块、调制模块、传感器和内存读取等。因此,零功耗设备无需传统电池。
·反向散射通信(Back Scattering)
图3示出了反向散射通信过程的原理图。零功耗设备140接收网络设备120发送模块(Transmit,TX)121使用放大器(amplifier,AMP)122发送的无线信号载波131,并对无线信号载波131进行调制,使用逻辑处理模块141加载需要发送的信息,并使用能量采集模块142采集射频能量。零功耗设备140使用天线143辐射调制后的反射信号132,这个信息传输过程称为反向散射通信。网络设备120接收模块(Receive,RX)123使用低噪声放大器(Low Noise Amplifier,LNA)124接收调制后的反射信号132。反向散射和负载调制功能密不可分。负载调制通过对零功耗设备140的振荡回路的电路参数按照数据流的节拍进行调节和控制,使电子标签阻抗的大小等参数随之改变,完成调制的过程。
负载调制技术主要包括电阻负载调制和电容负载调制。图4示出了电阻负载调制的原理图。在电阻负载调制中,负载电阻R L并联第三电阻R 3,基于二进制编码的控制的开关S实现接通或断开,第三电阻R 3的通断会导致电路上的电压产生变化,负载电阻R L与第一电容C 1保持并联的连接关系,负载电阻R L与第二电阻R 2保持串联的连接关系,第二电阻R 2与第一电感L 1保持串联的连接关系。第一电感L 1与第二电感L 2之间耦合,第二电感L 2与第二电容C 2保持串联的连接关系。可以实现幅度键控调制(Amplitude Shift Keying,ASK),即通过调整零功耗设备的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(Frequency Shift Keying,FSK),即通过调整零功耗设备的反向散射信号的工作频率实现信号的调制与传输。
零功耗设备借助负载调制的方式,对来波信号进行信息调制,实现了反向散射通信的过程。零功耗设备具有显著的优点:终端不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;终端不需要主动产生高频信号,因此不需要高频晶振;借助反向散射通信,终端信号传输不需要消耗终端自身能量。
接下来,对零功耗通信的编码方式进行介绍:
图5示出了编码方式的示意图。电子标签传输的数据,可以使用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(Not Return to Zero,NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar Return to Zero,URZ)编码、差动双相(Differential Binary Phase,DBP)编码、米勒(Miller)编码和差动编码。即可以使用不同的脉冲信号表示0和1。
·NRZ编码;反向不归零编码用高电平表示二进制“1”,低电平表示二进制“0”,图5中NRZ编码示出了使用NRZ方法编码二进制数据:101100101001011的电平示意图。
·曼彻斯特编码;曼彻斯特编码也被称为分相编码(Split-Phase Coding)。在曼彻斯特编码中,二进制数值由该位长度内半个位周期时电平的变化(上升或下降)表示,在半个位周期时的负跳变表示二进制“1”,半个位周期时的正跳变表示二进制“0”,数据传输的错误是指在当多个电子标签同时发送的数据位有不同值时,接收的上升边和下降边互相抵消,导致在整个位长度内是不间断的载波信号。曼彻斯特编码在位长度内,不可能存在没有变化的状态。读写器利用该错误就可以判定碰撞发生的具体位置。曼彻斯特编码有利于发现数据传输的错误,在采用载波的负载调制或者反向散射调制时,通常用于从电子标签到读写器的数据传输。图5中曼彻斯特编码示出了使用曼彻斯特方法编码二进制数据:101100101001011的电平示意图。
·URZ编码;单极性归零编码在第一个半个位周期中的高电平表示二进制“1”,而持续整个位周期内的低电平信号表示二进制“1”,图5中URZ编码示出了使用URZ方法编码二进制数据:101100101001011的电平示意图。
·DBP编码;差动双相编码在半个位周期中的任意的边沿表示二进制“0”,没有边沿表示二进制“1”,此外,在每个位周期开始时,电平都要反相。对接收器来说,位节拍比较容易重建。图5中DBP编码示出了使用DBP方法编码二进制数据:101100101001011的电平示意图。
·米勒编码;米勒编码在半个位周期内的任意边沿表示二进制“1”,而经过下一个位周期中不变的电平表示二进制“0”。位周期开始时产生电平交变,对接收器来说,位节拍比较容易重建。图5中米勒编码示出了使用米勒方法编码二进制数据:101100101001011的电平示意图。
·差动编码;差动编码中,每个要传输的二进制“1”都会引起信号电平的变化,而对于二进制“0”, 信号电平保持不变。
接下来,对零功耗设备进行详细介绍。基于零功耗设备的能量来源以及使用方式可以将零功耗设备分为如下类型:
·无源零功耗设备;
零功耗设备不需要内装电池,零功耗设备接近网络设备时,零功耗设备处于网络设备天线辐射形成的近场范围内,示例性的,网络设备是射频识别技术(Radio Frequency Identification,RFID)系统的读写器。因此,零功耗设备天线通过电磁感应产生感应电流,感应电流驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗设备。无源零功耗设备不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪声放大器(Low Noise Amplifier,LNA)、功率放大器(Power Amplifier,PA)、晶振、模数转换器(Analog to Digital Converter,ADC)等器件,具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
·半无源零功耗设备;
半无源零功耗设备自身不安装常规电池,可使用射频能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元中,示例性的,储能单元是电容。储能单元获得能量后,可以驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。
半无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,工作中使用的电容储存的能量来源于射频能量采集模块采集的无线电能量,是一种真正意义的零功耗设备。半无源零功耗设备继承了无源零功耗设备的诸多优点,比如:具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
·有源零功耗设备;
有源零功耗设备可以内置电池。电池用于驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及后向链路的信号调制等工作。但对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。有源零功耗设备的零功耗主要体现于反向链路的信号传输不需要终端自身功率,使用了反向散射的方式。在有源零功耗设备中,内置电池向RFID芯片供电,增加标签的读写距离,提高通信的可靠性。在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
由于零功耗设备具有省电、低复杂度以及低成本的特点,因此本申请实施例提出了一种基于零功耗设备实现交通信息传输的方案。图6示出了本申请一个示例性实施例提供的交通信息传输系统的系统结构图。该系统中可以包括零功耗设备610、控制设备620以及车载终端630。
零功耗设备610用于通过RF能量采集模块采集无线电波能量,并通过反向散射方式向车载终端630发送交通信息。该零功耗设备可以为无源零功耗设备、有源零功耗设备或者半无源零功耗设备,本申请实施例对此不作限定。
在一些实施例中,零功耗设备610与交通指示设备绑定,用于通过反向散射方式发送交通指示设备所对应的交通信息,该交通指示设备可以包括交通信号灯、交通标识或者车道等等。其中,当零功耗设备610与交通信号灯绑定时,该交通信息为交通信号信息(比如红绿灯信息、倒计时信息、转向信息等等);当零功耗设备610与交通标识绑定时,该交通信息为交通标识信息(比如限速信息、限高信息等等);当零功耗设备610与车道绑定时,该交通信息为车道信息(比如直行车道、左转车道、专用车道等等)。
可选的,同一交通指示设备对应的交通信息可以由单个零功耗设备610发送,也可以由多个零功耗设备610发送,且不同零功耗设备610用于发送不同的交通信息。比如,当交通信号灯与单个零功耗设备绑定时,可以通过该零功耗设备发送红灯信息、绿灯信息以及黄灯信息等等;当交通信号灯与多个零功耗设备绑定时,可以通过第一零功耗设备发送红灯信息,通过第二零功耗设备发送绿灯信息,通过第三零功耗设备发送黄灯信息等等。
控制设备620是用于控制零功耗设备610的设备(可以控制单个或多个零功耗设备),通常与零功耗设备610关联设置。比如,控制设备620和零功耗设备610均设置在交通信号灯上。
在一些实施例中,当零功耗设备610绑定的交通指示设备所表征的交通信息固定时(比如与交通指示牌绑定),零功耗设备610发送的交通信息保持不变;当零功耗设备610绑定的交通指示信息所表征的交通信号不固定时(比如与交通信号灯绑定),控制设备620用于更新零功耗设备610中存储的交通信息,保证零功耗设备610向车载终端提供实时交通信息,或者,控制设备620用于控制特定的零功耗设备610进行反向散射,该特定的零功耗设备610存储的交通信息与实时交通信息相匹配。
车载终端630是设置在车辆中的终端,用于接收零功耗设备610反射散射的交通信息。在一些实施例中,车载终端630可能同时接收到多个零功耗设备610发送的交通信息,从而基于交通信息确定当前行驶环境,进而进行驾驶控制。
如图6所示,可以由车载终端630为零功耗设备610供能,或者,也可以由控制设备620为零功耗设备610供能(即发送载波信号);可以由车载终端630触发零功耗设备610进行反向散射,或者,也可以由控制设备620触发零功耗设备610进行反向散射(即发送载波信号),或者,也可以由零功耗设备自行进行反向散射。下述实施例中,将对不同情况分别进行阐述。
图7示出了本申请一个实施例提供的交通信息的发送、接收方法的流程图,本方法可以应用于图6所示的交通信息传输系统,该方法包括:
步骤701,零功耗设备接收载波信号。
本申请实施例中,零功耗设备与交通指示设备绑定,存储有交通指示设备对应的交通信息。可选的,零功耗设备可以部署在绑定的交通指示设备上,或者,零功耗设备可以部署在绑定的交通指示设备附近。比如,当零功耗设备与交通信号灯绑定时,该零功耗设备可以部署在交通信号灯上,也可以部署在路口的悬挂臂上,本实施例对此不作限定。
载波信号用于为零功耗设备供能,并供零功耗设备进行反向散射(零功耗设备对载波信号进行调制,加载所需发送的信息)。
可选的,该载波信号可以由车载终端发送,或者,由控制设备发送。比如,车载终端在具有获取交通信息的需求时发送载波信号,或者,控制设备按照预设策略向零功耗设备发送载波信号。
步骤702,基于载波信号,零功耗设备通过反向散射方式向车载终端发送交通信息。
在一种可能的实施方式中,零功耗设备基于存储的交通信息对载波信号进行调制,从而通过反向散射方式向车载终端发送反向散射信号,该反向散射信号中即添加有交通信息。
零功耗设备存储的交通信息与其绑定的交通指示设备相关。可选的,该交通信息包括如下至少一种:
1、交通信号信息。
可选的,当与交通信号灯(比如红绿灯、铁路道口指示灯)绑定时,零功耗设备向车载终端反向散射交通信号信息,使车载终端能够识别交通信号灯当前展示的信号。
在一些实施例中,该交通信号信息包括信号灯状态信息(比如红灯、黄灯、绿灯等等)。
在一些实施例中,对于具备倒计时或进度展示功能的交通信号灯,该交通信号信息中还包括状态倒计时信息或进度百分比信息。
由于存在不同类型的交通信号灯(比如直行信号灯、左转信号灯、右转信号灯等等),且可能同时存在多个零功耗设备向车载终端发送交通信息(比如在十字路口,四个方位的交通信号灯对应的零功耗设备同时反向散射交通信号信息),因此为了使车载终端能够区分不同类型交通信号灯的交通信号信息,或,不同方位的交通信号信息,从而选取有效的交通信号信息,在一些实施例中,该交通信号信息还包含信号灯类型信息以及信号灯标识信息(用于确定交通信号灯的方位)。
利用零功耗设备反向散射交通信号信息,可以克服视觉识别的缺陷,在交通信号灯被遮挡的情况下,也能够保证交通信号灯识别的准确性。
2、交通标识信息。
可选的,当与交通标识(比如限高指示牌、限速指示牌、危险路段指示牌)绑定时,零功耗设备向车载终端反向散射交通标识信息,使车载终端能够识别出交通标识所展示的内容。
在一些实施例中,该零功耗设备内置在交通标识中。
利用零功耗设备反向散射交通标识信息,可以克服视觉识别的缺陷,在交通标识被遮挡、模糊、污损或覆盖等情况下,也能够保证交通标识识别的准确性。
3、车道信息。
可选的,当与车道(比如车道标线)绑定时,零功耗设备向车载终端反向散射车道信息,使车载终端能够识别出当前所处的车道。
在一些实施例中,该零功耗设备内嵌在车道标线上。
在一些实施例中,该车道信息包括车道类型信息(比如左转车道、直行车道、右转车道、潮汐车道、公交专用车道等等)和分界线类型(比如白色虚线、白色实线、黄色虚线、黄色实线、双黄线等等)中的至少一种。
在一些实施例中,当不同时段下车道可变时,该车道信息中包含包括车道时间段信息。比如,与公交车道绑定的零功耗设备反向散射的车道信息中,包含车道类型信息“公交专用车道”以及车道时间段信息“9:00至16:00”。
利用零功耗设备反向散射车道信息,可以克服视觉识别的缺陷,在车道线被遮挡、模糊、污损或覆盖等情况下,也能够保证车道识别的准确性。
当然,除了上述几种交通信息,其他与车辆行驶相关的信息均可以被视为交通信息,并由零功耗设备进行反向散射,本申请实施例并不对交通信息的具体类型和内容构成限定。
步骤703,车载终端接收零功耗设备通过反向散射方式发送的交通信息。
可选的,车载终端接收零功耗设备发送的反向散射信号,并对反向散射信号进行解调,得到其中的交通信息。
在一些实施例中,车载终端会同时或先后接收到多个零功耗设备反向散射的交通信息,由于并非所有的交通信息均为有效信息(比如在十字路口,车辆前方的交通信号灯的交通信号信息为有效信息,其他方位的交通信号灯信息为无效信息),因此车载终端从交通信息中确定出有效交通信息,进而基于有效交通信息控制车辆的行驶状态。
综上所述,本申请实施例中,零功耗设备基于接收到的载波信号,通过反向散射方式向车载终端发送交通信息,使车载终端实现交通信息的快速识别;并且,由于零功耗设备具有省电、低复杂度以及低成本的特点,因此采用本申请实施例提供的方案,在保证交通信息识别准确率的同时,能够降低实现成本和复杂度。
在一种可能的应用场景下,零功耗设备通过反向散射方式发送的交通信号保持不变。比如,与交通标识绑定的零功耗设备发送固定的交通标识信息。又比如,与同一交通信号灯绑定的多个零功耗设备分别用于发送固定的信号灯状态信息,例如,同一交通信号灯绑定5个零功耗设备,分别用于发送第一信号灯状态信息(表明当前为红灯)、第二信号灯状态信息(表明当前为黄灯)、第三信号灯状态信息(表明当前为绿灯)、第四信号灯状态信息(表明当前信号灯状态未知,比如信号灯状态长时间未更新或正在更新)和第五信号灯状态信息(表明当前交通信号灯不工作)。
在另一种可能的应用场景下,零功耗设备通过反向散射方式发送的交通信号会发生变化。比如,与交通信号灯绑定的零功耗设备发送实时信号灯状态信息,该实时信号灯状态信为第一、第二、第三、第四和第五信号灯状态信息中的一种。又比如,同一交通信号灯绑定多个零功耗设备,且不同零功耗设备用于发送不同信号灯状态信息以及实时倒计时信息。
针对这种应用场景,在一种可能的实施方式中,响应于控制设备的信息写入操作,零功耗设备更新存储的交通信息,从而通过反向散射方式向车载终端发送存储的最新交通信息。其中,控制设备可以通过有线或无线方式进行信息写入操作,本申请实施例对此不作限定。
关于零功耗设备进行反向散射的时机,在一种可能的实施方式中,零功耗设备在接收到触发信号的情况下进行反向散射,或者,零功耗设备无需触发信号也可以进行反向散射。下面采用示例性的实施例对上述两种情况分别进行说明。
图8示出了本申请另一个实施例提供的交通信息的发送、接收方法的流程图,该方法包括:
步骤801,控制设备发送特定载波信号。
在一种可能的应用场景下,控制设备用于控制多个零功耗设备,从而使不同的零功耗设备在不同时刻下进行反向散射。比如,与交通信号灯绑定的多个零功耗设备,且不同零功耗设备存储有不同的信号灯状态信息,控制设备则用于根据交通信号灯的实时信号状态,控制对应的零功耗设备进行反向散射。
由于零功耗设备进行反向散射时需要基于载波信号,因此控制设备可以通过发送特定载波信号,供特定的零功耗设备进行反向散射。
可选的,特定载波信号可以为特定频段的载波信号、特定波形的载波信号或者调制有特定信息的载波信号等等,本申请实施例并不对此进行限定。
示意性的,如图9所示,交通信号灯分别与第一零功耗设备91(存储有指示红灯的信号灯状态信息)、第二零功耗设备92(存储有指示绿灯的信号灯状态信息)以及第三零功耗设备93(存储有指示黄灯的信号灯状态信息)绑定,且第一载波信号用于供第一零功耗设备91进行反向散射,第二载波信号用于供第二零功耗设备92进行反向散射,第三载波信号用于供第三零功耗设备93进行反向散射。若交通信号灯当前为绿灯,控制设备94则发送第二载波信号。
步骤802,零功耗设备接收载波信号。
本步骤的实施方式可以参考步骤601,本实施例在此不再赘述。
示意性的,如图9所示,第一零功耗设备91、第二零功耗设备92以及第三零功耗设备93均接收到控制设备94发送的载波信号。
步骤803,在载波信号为特定载波信号的情况下,零功耗设备基于特定载波信号,通过反向散射方式向车载终端发送交通信息,其中,不同载波信号用于供不同零功耗设备进行反向散射。
由于特定载波信号用于供特定零功耗设备进行反向散射,即只有特定零功耗设备才能够基于特定载波信号进行反向散射。
在一种可能的实施方式中,零功耗设备接收到载波信号后,通过逻辑处理模块检测该载波信号是否为特定载波信号。若接收到的载波信号为特定载波信号,零功耗设备则对特定载波信号进行负载调制,从而向车载终端反向散射交通信息;若接收到的载波信号不是特定载波信号,零功耗设备则不会进行负载调制 和反向散射。
示意性的,如图9所示,第二零功耗设备92接收到第二载波信号后,即对第二载波信号进行负载调制,并通过反向散射方式向车载终端95发送指示绿灯的信号灯状态信息;第一零功耗设备91和第三零功耗设备93则不进行反向散射。
步骤804,车载终端接收零功耗设备通过反向散射方式发送的交通信息。
本步骤的实施方式可以参考上述步骤603,本实施例在此不作赘述。
本实施例中,控制设备通过发送特定载波信号,供特定零功耗设备进行反向散射,避免长时间通过单一零功耗设备进行反向散射时,需要频繁写入交通信息,导致零功耗设备使用寿命较短的问题,有助于提高零功耗设备的使用寿命。
图10示出了本申请另一个实施例提供的交通信息的发送、接收方法的流程图,该方法包括:
步骤1001,车载终端发送特定载波信号。
由于车辆在行驶过程中可能并不需要所有零功耗设备提供交通信息,比如,车载终端仅需要获取信号灯状态信息,车速限制等交通指示信息可以从在线地图中获取得到。因此在一种可能的实施方式中,车载终端可以根据需求发送特定载波信号,供特定的零功耗设备进行反向散射。
可选的,特定载波信号可以为特定频段的载波信号、特定波形的载波信号或者调制有特定信息的载波信号等等,本申请实施例并不对此进行限定。
示意性的,如图11所示,交通信号灯对应第一零功耗设备1001(存储有信号灯状态信息),限速指示牌对应第二零功耗设备1002(存储有限速信息),且第一载波信号用于供第一零功耗设备1001进行反向散射,第二载波信号用于供第二零功耗设备1002进行反向散射。当车载终端1003仅需要识别信号灯状态时,即发送第一载波信号。
步骤1002,零功耗设备接收载波信号。
本步骤的实施方式可以参考步骤601,本实施例在此不再赘述。
步骤1003,在载波信号为特定载波信号的情况下,零功耗设备基于特定载波信号,通过反向散射方式向车载终端发送交通信息,其中,不同载波信号用于供不同零功耗设备进行反向散射。
本步骤的实施方式可以参考上述步骤803,本实施例在此不作赘述。
示意性的,如图11所示,第一零功耗设备1001接收到第一载波信号后,即对第一载波信号进行负载调制,并通过反向散射方式向车载终端1003发送信号灯状态信息;第二零功耗设备1002则不进行反向散射。
步骤1004,车载终端接收零功耗设备通过反向散射方式发送的交通信息。
本步骤的实施方式可以参考上述步骤603,本实施例在此不作赘述。
本实施例中,车载终端通过发送特定载波信号,供特定零功耗设备进行反向散射,从而获取特定交通指示设备对应的交通信息,减少车载终端获取到的非必须交通信息。
需要说明的是,图8、图10所示的实施例中,以不同载波信号用于供不同零功耗设备进行反向散射为例进行说明。在其他可能的应用场景下,不同零功耗设备可以采用相同的载波信号(即通用载波信号),接收到载波信号的零功耗设备均能够进行反向散射。
图12示出了本申请另一个实施例提供的交通信息的发送方法的流程图,该方法包括:
步骤1201,零功耗设备接收载波信号。
本实施例中,该载波信号为通用载波信号,用于供各种零功耗设备进行反向散射。可选的,该载波信号由控制设备发送,或者,由车载终端发送。
步骤1202,在接收到反向散射指令的情况下,零功耗设备基于载波信号,通过反向散射方式向车载终端发送交通信息。
在一种可能的应用场景下,控制设备用于控制多个零功耗设备,从而使不同的零功耗设备在不同时刻下进行反向散射。比如,与交通信号灯绑定的多个零功耗设备,且不同零功耗设备存储有不同的信号灯状态信息,控制设备则用于根据交通信号灯的实时信号状态,控制对应的零功耗设备进行反向散射。
为了实现特定零功耗设备进行反向散射,在一种可能的实施方式中,控制设备向特定的零功耗设备发送反向散射指令,相应的,特定的零功耗设备接收到反向散射指令后,基于载波信号进行反向散射。而接收到载波信号,但是未接收到反向散射指令的零功耗设备则不会进行反向散射。
其中,该反向散射指令不同于触发信号,触发信号无法定向触发特定零功耗设备进行反向散射(无法仅向特定零功耗设备发送触发信号),而反向散射指令则能够定向发送(即仅向特定零功耗设备发送反向散射指令),能够定向指示特定零功耗设备进行反向散射。
可选的,用于指示不同零功耗设备进行反向散射的反向散射指令相同。
可选的,该反向散射指令可以通过有线或无线方式发送。比如,该反向散射指令为控制设备通过有线 方式发送的中断信号。
示意性的,如图13所示,交通信号灯分别与第一零功耗设备1301(存储有指示红灯的信号灯状态信息)、第二零功耗设备1302(存储有指示绿灯的信号灯状态信息)以及第三零功耗设备1303(存储有指示黄灯的信号灯状态信息)绑定。若交通信号灯当前为绿灯,控制设备1304则向第二零功耗设备1302发送反向散射指令。车载终端1305需要识别信号灯状态时,即发送载波信号。由于仅第二零功耗设备1302接收到反向散射指令,因此仅第二零功耗设备1302向车载终端1305反向散射信号灯信息,第一零功耗设备1301和第三零功耗设备1303虽然接收到载波信号,但是不进行反向散射。
当需要通过触发信号触发零功耗设备进行反向散射时,在一种可能的实施方式中,零功耗设备在接收到触发信号的情况下,基于载波信号,通过反向散射方式向车载终端发送交通信息。
可选的,该触发信号可以由控制设备发送,也可以后由车载终端发送;该载波信号可以由控制设备发送,也可以由车载终端发送。
在一种可能的应用场景下,控制设备用于控制多个零功耗设备,从而使不同的零功耗设备在不同时刻下进行反向散射。比如,与交通信号灯绑定的多个零功耗设备,且不同零功耗设备存储有不同的信号灯状态信息,控制设备则用于根据交通信号灯的实时信号状态,控制对应的零功耗设备进行反向散射。
为了实现控制特定零功耗设备进行反向散射,在一种可能的实施方式中,控制设备可以通过发送特定触发信号,以此触发特定零功耗设备进行反向散射。
图14示出了本申请另一个实施例提供的交通信息的发送方法的流程图,该方法包括:
步骤1401,零功耗设备接收载波信号。
可选的,该载波信号可以由控制设备或车载终端发送。
示意性的,如图15所示,第一零功耗设备91、第二零功耗设备92以及第三零功耗设备93均接收到控制设备94发送的载波信号。
步骤1402,在接收到特定触发信号的情况下,零功耗设备基于载波信号,通过反向散射方式向车载终端发送交通信息,其中,不同触发信号用于触发不同零功耗设备进行反向散射。
本实施例中,该特定触发信号由控制设备发送。
可选的,特定触发信号可以为特定频段的触发信号、特定波形的触发信号或者调制有特定信息的触发信号等等,本申请实施例并不对此进行限定。
在一种可能的实施方式中,用于触发不同零功耗设备进行反向散射的触发信号不同,控制设备基于当前交通信息,确定出需要进行反向散射的特定零功耗设备,从而发送该特定零功耗设备对应的特定触发信号。
在一种可能的实施方式中,零功耗设备接收到触发信号后,通过逻辑处理模块检测该触发信号是否为特定触发信号。若接收到的触发信号为特定载波信号,零功耗设备则对接收到的载波信号进行负载调制,从而向车载终端反向散射交通信息;若接收到的触发信号不是特定触发信号,零功耗设备则不会进行负载调制和反向散射。
示意性的,如图15所示,交通信号灯分别与第一零功耗设备1501(存储有指示红灯的信号灯状态信息)、第二零功耗设备1502(存储有指示绿灯的信号灯状态信息)以及第三零功耗设备1503(存储有指示黄灯的信号灯状态信息)绑定,且第一触发信号用于触发第一零功耗设备1501进行反向散射,第二触发信号用于触发第二零功耗设备1502进行反向散射,第三触发信号用于触发第三零功耗设备1503进行反向散射。若交通信号灯当前为绿灯,控制设备1504则发送向各个零功耗设备发送第二触发信号。车载终端1505需要识别信号灯状态时,即向各个零功耗设备发送载波信号,为各个零功耗设备供能。由于第二触发信号用于触发第二零功耗设备1502,因此第二零功耗设备1502对载波信号进行负载调制,并向车载终端1505反向散射指示绿灯的信号灯状态信息,第一零功耗设备1501和第三零功耗设备1503则不进行负载调制和反向散射。
在另一种可能的应用场景下,由于车辆在行驶过程中可能并不需要所有零功耗设备提供交通信息,比如,车载终端仅需要获取信号灯状态信息,车速限制等交通指示信息可以从在线地图中获取得到。因此在一种可能的实施方式中,车载终端可以通过发送特定触发信号,触发特定的零功耗设备进行反向散射。可选的,供零功耗设备进行反向散射的载波信号可以由控制设备或车载终端发送。
示意性的,如图16所示,交通信号灯对应第一零功耗设备1601(存储有信号灯状态信息),限速指示牌对应第二零功耗设备1602(存储有限速信息),且第一触发信号用于触发第一零功耗设备1601进行反向散射,第二触发信号用于触发第二零功耗设备1602进行反向散射。当车载终端1603仅需要识别信号灯状态时,即发送第一载波信号。第一零功耗设备1601接收到第一触发信号后,即对载波信号进行负载调制,并通过反向散射方式向车载终端1603发送信号灯状态信息;第二零功耗设备1602则不进行反向散射。
除了采用发送特定触发信号这一方式触发特定零功耗设备进行反向散射外,在另一种可能的实施方式 中,控制设备可以向特定零功耗设备发送反向散射指令,指示特定零功耗设备在接收到触发信号以及载波信号的情况下进行反向散射。
图17示出了本申请另一个实施例提供的交通信息的发送方法的流程图,该方法包括:
步骤1701,零功耗设备接收载波信号。
可选的,本实施例中,该载波信号为通用载波信号,且该载波信号由控制设备发送,或者,由车载终端发送。
步骤1702,在接收到触发信号以及反向散射指令的情况下,零功耗设备基于载波信号,通过反向散射方式向车载终端发送交通信息。
可选的,本实施例中,该触发信号为通用触发信号,且该触发信号由控制设备发送,或者,由车载终端发送。
为了实现特定零功耗设备进行反向散射,在一种可能的实施方式中,控制设备向特定的零功耗设备发送反向散射指令,相应的,特定的零功耗设备接收到反向散射指令以及触发信号后,基于载波信号进行反向散射。而接收到载波信号以及触发信号,但是未接收到反向散射指令的零功耗设备则不会进行反向散射。
示意性的,如图18所示,交通信号灯分别与第一零功耗设备1801(存储有指示红灯的信号灯状态信息)、第二零功耗设备1802(存储有指示绿灯的信号灯状态信息)以及第三零功耗设备1803(存储有指示黄灯的信号灯状态信息)绑定。若交通信号灯当前为绿灯,控制设备1804则向第二零功耗设备1802发送反向散射指令。车载终端1805需要识别信号灯状态时,即发送载波信号以及触发信号。由于仅第二零功耗设备1802接收到反向散射指令,因此仅第二零功耗设备1802向车载终端1805反向散射信号灯信息,第一零功耗设备1801和第三零功耗设备1803虽然接收到载波信号和触发信号,但是不进行反向散射。
上述实施例中均由零功耗设备通过反向散射方式发送交通信息。在另一种可能的实施方式中,该零功耗设备还可以设置在车载终端中,并从控制设备获取交通信息,使车载终端能够识别出交通信息。图19示出了本申请另一个示例性实施例提供的交通信息传输系统的系统结构图。该系统中可以包括零功耗设备1910、控制设备1920以及车载终端1930。
零功耗设备1910设置在车载终端1930中,用于接收控制设备1920发送的指示信号,使车载终端1930可以根据该指示信号识别出交通信息。该零功耗设备1910可以为无源零功耗设备、有源零功耗设备或者半无源零功耗设备,本申请实施例对此不作限定。
在一些实施例中,车载终端1930中设置有单个零功耗设备,用于接收不同交通信息。
在一些实施例中,车载终端1930中设置有多个零功耗设备,不同零功耗设备用于接收不同类型的交通信息,或者,不同零功耗设备用于接收同类型的不同交通信息。比如,车载终端1930中设置有三个零功耗设备,分别用于接收交通信号信息、交通标识信息和车道信息。又比如,车载终端1930中设置有三个零功耗设备,分别用于接收交通信号灯对应的第一信号灯状态信息(指示红灯)、第二信号灯状态信息(指示绿灯)和第三信号灯状态信息(指示黄灯)。
可选的,当车载终端设置有多个零功耗设备时,不同零功耗设备可以设置在车辆的不同位置。比如,用于接收交通信号信息以及交通标识信息的零功耗设备可以设置在车辆前部,用于接收车道信息的零功耗设备可以设置在车辆底部。本申请实施例并不对零功耗设备的设置位置进行限定。
控制设备1920是用于提供交通信息的设备,通常与交通指示设备关联设置。比如,控制设备1920设置在交通信号灯上。本申请实施例中,控制设备1920用于向零功耗设备1910发送交通信息的指示信号。
可选的,该交通信息为固定交通信息,或者,该交通信息是从交通指示设备处获取的实时交通信息。比如,该交通信息是从交通信号灯处获取的实时信号灯状态信息。
可选的,零功耗设备1910还用于通过RF能量采集模块采集无线电波能量,并通过反向散射方式请求控制设备1920发送指示信号,以此降低控制设备1920的功耗(因为仅在需要提供交通信息的情况下发送指示信号,无需时刻发送指示信号)。其中,供零功耗设备1910进行反向散射的载波信号以及触发反向散射的触发信号可以由控制设备1920发送,也可以由车载终端1930发送。
可选的,零功耗设备1910还用于通过反向散射方式向控制设备1920发送应答,以此告知指示信号的接收状态,以提高指示信号的接收准确率。
图20示出了本申请一个实施例提供的交通信息的发送、接收方法的流程图,本方法可以应用于图19所示的交通信息传输系统,该方法包括:
步骤2001,控制设备向车载终端中设置的零功耗设备发送指示信号,指示信号用于指示交通信息。
在一种可能的实施方式中,控制设备基于所需提供的交通信息确定指示信号,进而向零功耗设备发送指示信号。其中,不同交通信息对应不同指示信号。
可选的,该交通信息可以为固定交通信息(比如交通指示牌对应的交通标识信息),或者,从交通指示设备处获取的实时交通信息(比如交通信号灯对应的信号灯状态信息)。
在一种可能的实施方式中,控制设备对应的交通指示设备具有提供多种交通信息的功能,相应的,控制设备基于目标交通信息,向零功耗设备发送目标指示信号,其中,不同指示信号用于指示不同交通信息,且不同指示信号用于触发不同零功耗设备。
比如,控制设备基于交通信号信息,向零功耗设备发送第一指示信号,基于交通标识信息,向零功耗设备发送第二指示信号。
步骤2002,设置在车载终端中的零功耗设备接收控制设备发送的指示信号,指示信号用于指示交通信息。
在一种可能的实施方式中,控制设备发送指示信号的过程可以是写入过程。相应地,零功耗设备将指示信号所指示的交通信息切入自身的存储器中。车载终端通过读取零功耗设备的存储器来获取交通信息。
在另一种可能的实施方式中,控制设备发送指示信号的过程可以为触发或唤醒过程。相应的,零功耗设备接收到指示信号后,将指示信号所指示的交通信息通知给车载终端。
在一种可能的应用场景下,当车载终端中设置有多个零功耗设备,且特定指示信号用于触发特定零功耗设备时(即特定零功耗设备识别特定交通信息),车载终端根据特定零功耗设备接收到的特定指示信号识别交通信息。
比如,车载终端中设置有三个零功耗设备。当接收到第一指示信号时,第一零功耗设备确定交通信息为红灯,当接收到第二指示信号时,第二零功耗设备确定交通信息为绿灯,当接收到第三指示信号时,第三零功耗设备确定交通信息为黄灯。
相较于上述通过零功耗设备反向散射交通信息的方案,采用本实施例提供的方案,可以免去向零功耗设备提供用于反向散射的载波信号。
综上所述,本申请实施例中,通过控制设备向设置在车载终端中的零功耗设备发送指示交通信息的指示信号,使车载终端实现交通信息的快速识别;并且,由于零功耗设备具有省电、低复杂度以及低成本的特点,因此采用本申请实施例提供的方案,在保证交通信息识别准确率的同时,能够降低实现成本和复杂度。
在一种可能的实施方式中,该指示信号由控制设备根据预定策略自行发送;在另一种可能的实施方式中,该指示信号由零功耗设备通过反向散射方式请求控制设备发送。
图21示出了本申请一个实施例提供的交通信息的发送、接收方法的流程图,本方法可以应用于图19所示的交通信息传输系统,该方法包括:
步骤2101,零功耗设备接收载波信号。
在一种可能的实施方式中,该载波信号由车载终端发送,或者,由控制设备发送。
示意性的,如图22所示,当需要获取交通信息时,车载终端2201即向内部设置功耗设备2202发送载波信号。
步骤2102,零功耗设备基于载波信号,通过反向散射方式向控制设备发送信息获取请求,信息获取请求用于触发发送指示信号。
在一种可能的实施方式中,零功耗设备在接收到载波信号的情况下,自行通过反向散射方式向控制设备发送信息获取请求;或者,在接收到触发信号的情况下,通过反向散射方式向控制设备发送信息获取请求,该触发信号可以由车载终端或控制设备发送。
在一些实施例中,该信息获取请求中包含信息类型,即信息获取请求用于请求获取特定类型的交通信息。在一种可能的实施方式中,车载终端根据所需获取的交通信息的信息类型,向零功耗设备发送特定载波信号,该特定载波信号用于供特定零功耗设备进行反向散射,且不同零功耗设备用于获取不同交通信息。特定零功耗设备接收到特定载波信号后,即通过反向散射方式发送包含交通信息类型的信息获取请求。
步骤2103,控制设备接收零功耗设备通过反向散射方式发送的信息获取请求。
步骤2104,控制设备向车载终端中设置的零功耗设备发送指示信号,指示信号用于指示交通信息。
在接收到信息获取请求的情况下,控制设备根据交通信息确定指示信号,从而向零功耗设备发送指示信号,从而实现交通信息的按需发送,有助于降低控制设备的设备功耗。
在一种可能的实施方式中,当信息获取请求中包含信息类型时,控制设备检测是否存储有属于该信息类型的交通信息,若存储有属于该信息类型的交通信息,控制设备则发送指示信号;若未存储属于该信息类型的交通信息,控制设备则不响应该信息获取请求,从而实现获取特定类型的交通信息。
示意性的,如图22所示,车载终端2201向零功耗设备2202发送载波信号和触发信号后,零功耗设备2202通过反向散射方式向控制设备2203发送信息获取请求。控制设备2203根据该信息获取请求,向零功耗设备2202发送指示信息。
步骤2105,零功耗设备接收控制设备发送的指示信号,指示信号用于指示交通信息。
本步骤的实施方式可以参考上述步骤2002,本实施例在此不作赘述。
本实施例中,零功耗设备通过反向散射方式向控制设备请求获取交通信息,使控制设备能够根据车载终端的需求按需提供交通信息,有助于降低控制设备的设备功耗。
在一些可能的情况下,可能因信号传输环境导致指示信号接收异常,导致车载终端无法正确识别交通信息。为了进一步提高交通信息传输系统的鲁棒性,在一种可能的实施方式中,零功耗设备还会通过反向散射方式向控制设备反馈指示信号的接收情况。
图23示出了本申请一个实施例提供的交通信息的发送、接收方法的流程图,本方法可以应用于图19所示的交通信息传输系统,该方法包括:
步骤2301,控制设备向车载终端中设置的零功耗设备发送指示信号,指示信号用于指示交通信息。
步骤2302,设置在车载终端中的零功耗设备接收控制设备发送的指示信号,指示信号用于指示交通信息。
步骤2301至2302的实施方式可以参考上述步骤2201至2202,本实施例在此不作赘述。
步骤2303,零功耗设备接收载波信号。
在一种可能的实施方式中,该载波信号由车载终端发送,或者,由控制设备发送。
示意性的,如图24所示,车载终端2403获取到指示信号所指示的交通信号后,向零功耗设备2402发送载波信号,以便零功耗设备2402基于该载波信号进行反向散射。
步骤2034,零功耗设备基于载波信号,通过反向散射方式向控制设备发送应答信号,应答信号用于表征指示信号的接收情况。
可选的,该指示信号的接收情况可以由零功耗设备自行确定,也可以车载终端反馈给零功耗设备,本实施例对此不作限定。
在一种可能的实施方式中,零功耗设备在接收到载波信号的情况下,自行通过反向散射方式向控制设备发送应答信号;或者,在接收到触发信号的情况下,通过反向散射方式向控制设备发送应答信号,该触发信号可以由车载终端或控制设备发送。
示意性的,如图24所示,车载终端2403向零功耗设备2402发送载波信号和触发信号后,零功耗设备2402通过反向散射方式向控制设备2401发送应答信号。
步骤2305,控制设备接收零功耗设备通过反向散射方式发送的应答信号。
在一种可能的实施方式中,当指示信号指示的交通信息为固定交通信息时,当应答信号表征指示信号正确接收时,控制设备停止发送指示信号;当应答信号表征指示信号未正确接收时,控制设备重新发送指示信号。
本实施例中,零功耗设备通过反向散射方式向控制设备反馈指示信号的接收情况,由控制设备基于接收情况确定是否需要进行指示信号重传,有助于提高交通信息传输的鲁棒性。
本领域普通技术人员可以理解,上述实施例可以独立实施,也可以将上述实施例进行自由组合,组合出新的实施例,本申请对此不加以限制。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图25示出了本申请一个示例性实施例提供的交通信息的发送装置的框图,该装置包括:
接收模块2510,用于接收载波信号;
反向散射模块2520,用于基于所述载波信号,通过反向散射方式向车载终端发送交通信息。
可选的,所述反向散射模块2520,用于:
在所述载波信号为特定载波信号的情况下,基于所述特定载波信号,通过反向散射方式向所述车载终端发送所述交通信息,其中,不同载波信号用于供不同零功耗设备进行反向散射。
可选的,所述特定载波信号由控制设备发送,或者,由所述车载终端发送。
可选的,所述反向散射模块2520,用于:
在接收到反向散射指令的情况下,基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息。
可选的,所述反向散射指令由控制设备发送;
所述载波信号由所述控制设备发送,或者,由所述车载终端发送。
可选的,所述反向散射模块2520,用于:
在接收到触发信号的情况下,基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息。
可选的,所述反向散射模块2520,用于:
在接收到特定触发信号的情况下,基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息,其中,不同触发信号用于触发不同零功耗设备进行反向散射。
可选的,所述特定触发信号由控制设备发送,或者,由所述车载终端发送;
所述载波信号由所述控制设备发送,或者,由所述车载终端发送。
可选的,所述反向散射模块2520,用于:
在接收到所述触发信号以及反向散射指令的情况下,所述零功耗设备基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息。
可选的,所述反向散射指令由控制设备发送;
所述载波信号由所述控制设备发送,或者,由所述车载终端发送;
所述触发信号由所述控制设备发送,或者,由所述车载终端发送;
可选的,所述装置还包括:
存储模块2530,用于响应于控制设备的信息写入操作,更新存储的所述交通信息。
可选的,所述交通信息包括如下至少一种:
交通信号信息;
交通标识信息;
车道信息。
图26示出了本申请一个示例性实施例提供的交通信息的接收装置的框图,该装置包括:
接收模块2610,用于接收零功耗设备通过反向散射方式发送的交通信息。
可选的,所述装置还包括:
发送模块2620,用于发送载波信号,所述载波信号用于供所述零功耗设备进行反向散射。
可选的,所述载波信号为通用载波信号,或者,所述载波信号为特定载波信号,所述特定载波信号用于供特定零功耗设备进行反向散射。
所述装置还包括:
发送模块2620,用于发送触发信号,所述触发信号用于触发所述零功耗设备进行反向散射。
可选的,所述触发信号为通用触发信号,或者,所述触发信号为特定触发信号,所述特定触发信号用于触发特定零功耗设备进行反向散射。
图27示出了本申请一个示例性实施例提供的交通信息的接收装置的框图,该装置包括:
接收模块2710,用于接收控制设备发送的指示信号,所述指示信号用于指示交通信息。
可选的,所述接收模块2710,还用于接收载波信号;
所述装置还包括:
反向散射模块2720,用于基于所述载波信号,通过反向散射方式向所述控制设备发送应答信号,所述应答信号用于表征所述指示信号的接收情况。
可选的,所述接收模块2710,还用于接收载波信号;
所述装置还包括:
反向散射模块2720,用于基于所述载波信号,通过反向散射方式向所述控制设备发送信息获取请求,以便所述控制设备基于所述信息获取请求发送所述指示信号。
可选的,所述载波信号由所述车载终端发送,或者,由所述控制设备发送。
可选的,所述交通信息包括如下至少一种:
交通信号信息;
交通标识信息;
车道信息。
图28示出了本申请一个示例性实施例提供的交通信息的发送装置的框图,该装置包括:
发送模块2810,用于向车载终端中设置的零功耗设备发送指示信号,所述指示信号用于指示交通信息。
可选的,所述发送模块2810,用于:
基于目标交通信息,向所述零功耗设备发送目标指示信号,其中,不同指示信号用于指示不同交通信息。
可选的,所述装置还包括:
接收模块2820,用于接收所述零功耗设备通过反向散射方式发送的应答信号,所述应答信号用于表征所述指示信号的接收情况。
可选的,所述装置还包括:
接收模块2820,用于接收所述零功耗设备通过反向散射方式发送的信息获取请求,所述信息获取请求用于触发发送所述指示信号。
可选的,用于反向散射的载波信号由所述控制设备发送,或者,由所述车载终端发送。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图29示出了本申请一个实施例提供的通信设备的结构示意图。该通信设备可以包括:处理器2901、接收器2902、发射器2903、存储器2904和总线2905。
处理器2901包括一个或者一个以上处理核心,处理器2901通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器2902和发射器2903可以实现为一个收发器,该收发器可以是一块通信芯片。
存储器2904通过总线2905与处理器2901相连;示例性的,可以将处理器2901实现为第一IC芯片,将处理器2901和存储器2904共同实现为第二IC芯片;第一芯片或第二芯片可以是一种专用集成电路(Application Specific Integrated Circuit,ASIC)芯片。
存储器2904可用于存储至少一个计算机程序,处理器2901用于执行该至少一个计算机程序,以实现上述方法实施例中的各个步骤。
此外,存储器2904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:随机存储器(Random-Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦写可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他固态存储其技术、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、高密度数字视频光盘(Digital Video Disc,DVD)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被通信设备的处理器执行,以实现上述实施例提供的交通信息的发送方法,或接收方法。
可选地,该计算机可读存储介质可以包括:只读存储器(Read-Only Memory,ROM)、随机存储器(Random-Access Memory,RAM)、固态硬盘(Solid State Drives,SSD)或光盘等。其中,随机存取记忆体可以包括电阻式随机存取记忆体(Resistance Random Access Memory,ReRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在通信设备上运行时,用于实现上述实施例提供的交通信息的发送方法,或接收方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,通信设备的处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述实施例提供的交通信息的发送方法,或接收方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,本文中描述的步骤编号,仅示例性示出了步骤间的一种可能的执行先后顺序,在一些其它实施例中,上述步骤也可以不按照编号顺序来执行,如两个不同编号的步骤同时执行,或者两个不同编号的步骤按照与图示相反的顺序执行,本申请实施例对此不作限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (58)

  1. 一种交通信息的发送方法,其特征在于,所述方法包括:
    零功耗设备接收载波信号;
    所述零功耗设备基于所述载波信号,通过反向散射方式向车载终端发送交通信息。
  2. 根据权利要求1所述的方法,其特征在于,所述零功耗设备基于所述载波信号,通过反向散射方式向车载终端发送交通信息,包括:
    在所述载波信号为特定载波信号的情况下,所述零功耗设备基于所述特定载波信号,通过反向散射方式向所述车载终端发送所述交通信息,其中,不同载波信号用于供不同零功耗设备进行反向散射。
  3. 根据权利要求2所述的方法,其特征在于,所述特定载波信号由控制设备发送,或者,由所述车载终端发送。
  4. 根据权利要求1所述的方法,其特征在于,所述零功耗设备基于所述载波信号,通过反向散射方式向车载终端发送交通信息,包括:
    在接收到反向散射指令的情况下,所述零功耗设备基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息。
  5. 根据权利要求4所述的方法,其特征在于,
    所述反向散射指令由控制设备发送;
    所述载波信号由所述控制设备发送,或者,由所述车载终端发送。
  6. 根据权利要求1所述的方法,其特征在于,所述零功耗设备基于所述载波信号,通过反向散射方式向车载终端发送交通信息,包括:
    在接收到触发信号的情况下,所述零功耗设备基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息。
  7. 根据权利要求6所述的方法,其特征在于,所述在接收到触发信号的情况下,所述零功耗设备基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息,包括:
    在接收到特定触发信号的情况下,所述零功耗设备基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息,其中,不同触发信号用于触发不同零功耗设备进行反向散射。
  8. 根据权利要求7所述的方法,其特征在于,
    所述特定触发信号由控制设备发送,或者,由所述车载终端发送;
    所述载波信号由所述控制设备发送,或者,由所述车载终端发送。
  9. 根据权利要求6所述的方法,其特征在于,所述在接收到触发信号的情况下,所述零功耗设备基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息,包括:
    在接收到所述触发信号以及反向散射指令的情况下,所述零功耗设备基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息。
  10. 根据权利要求9所述的方法,其特征在于,
    所述反向散射指令由控制设备发送;
    所述载波信号由所述控制设备发送,或者,由所述车载终端发送;
    所述触发信号由所述控制设备发送,或者,由所述车载终端发送。
  11. 根据权利要求1至10任一所述的方法,其特征在于,所述方法还包括:
    响应于控制设备的信息写入操作,所述零功耗设备更新存储的所述交通信息。
  12. 根据权利要求1至10任一所述的方法,其特征在于,所述交通信息包括如下至少一种:
    交通信号信息;
    交通标识信息;
    车道信息。
  13. 一种交通信息的接收方法,其特征在于,所述方法包括:
    车载终端接收零功耗设备通过反向散射方式发送的交通信息。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述车载终端发送载波信号,所述载波信号用于供所述零功耗设备进行反向散射。
  15. 根据权利要求14所述的方法,其特征在于,所述载波信号为通用载波信号,或者,所述载波信号为特定载波信号,所述特定载波信号用于供特定零功耗设备进行反向散射。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述车载终端发送触发信号,所述触发信号用于触发所述零功耗设备进行反向散射。
  17. 根据权利要求16所述的方法,其特征在于,所述触发信号为通用触发信号,或者,所述触发信号为特定触发信号,所述特定触发信号用于触发特定零功耗设备进行反向散射。
  18. 一种交通信息的接收方法,其特征在于,所述方法包括:
    设置在车载终端中的零功耗设备接收控制设备发送的指示信号,所述指示信号用于指示交通信息。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述零功耗设备接收载波信号;
    所述零功耗设备基于所述载波信号,通过反向散射方式向所述控制设备发送应答信号,所述应答信号用于表征所述指示信号的接收情况。
  20. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述零功耗设备接收载波信号;
    所述零功耗设备基于所述载波信号,通过反向散射方式向所述控制设备发送信息获取请求,以便所述控制设备基于所述信息获取请求发送所述指示信号。
  21. 根据权利要求19或20所述的方法,其特征在于,所述载波信号由所述车载终端发送,或者,由所述控制设备发送。
  22. 根据权利要求18所述的方法,其特征在于,所述交通信息包括如下至少一种:
    交通信号信息;
    交通标识信息;
    车道信息。
  23. 一种交通信息的发送方法,其特征在于,所述方法包括:
    控制设备向车载终端中设置的零功耗设备发送指示信号,所述指示信号用于指示交通信息。
  24. 根据权利要求23所述的方法,其特征在于,所述控制设备向零功耗设备发送指示信号,包括:
    所述控制设备基于目标交通信息,向所述零功耗设备发送目标指示信号,其中,不同指示信号用于指示不同交通信息。
  25. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    所述控制设备接收所述零功耗设备通过反向散射方式发送的应答信号,所述应答信号用于表征所述指示信号的接收情况。
  26. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    所述控制设备接收所述零功耗设备通过反向散射方式发送的信息获取请求,所述信息获取请求用于触发发送所述指示信号。
  27. 根据权利要求25或26所述的方法,其特征在于,用于反向散射的载波信号由所述控制设备发送,或者,由所述车载终端发送。
  28. 一种交通信息的发送装置,其特征在于,所述装置包括:
    接收模块,用于接收载波信号;
    反向散射模块,用于基于所述载波信号,通过反向散射方式向车载终端发送交通信息。
  29. 根据权利要求28所述的装置,其特征在于,所述反向散射模块,用于:
    在所述载波信号为特定载波信号的情况下,基于所述特定载波信号,通过反向散射方式向所述车载终端发送所述交通信息,其中,不同载波信号用于供不同零功耗设备进行反向散射。
  30. 根据权利要求29所述的装置,其特征在于,所述特定载波信号由控制设备发送,或者,由所述车载终端发送。
  31. 根据权利要求28所述的装置,其特征在于,所述反向散射模块,用于:
    在接收到反向散射指令的情况下,基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息。
  32. 根据权利要求31所述的装置,其特征在于,
    所述反向散射指令由控制设备发送;
    所述载波信号由所述控制设备发送,或者,由所述车载终端发送。
  33. 根据权利要求28所述的装置,其特征在于,所述反向散射模块,用于:
    在接收到触发信号的情况下,基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息。
  34. 根据权利要求33所述的装置,其特征在于,所述反向散射模块,用于:
    在接收到特定触发信号的情况下,基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息,其中,不同触发信号用于触发不同零功耗设备进行反向散射。
  35. 根据权利要求34所述的装置,其特征在于,
    所述特定触发信号由控制设备发送,或者,由所述车载终端发送;
    所述载波信号由所述控制设备发送,或者,由所述车载终端发送。
  36. 根据权利要求33所述的装置,其特征在于,所述反向散射模块,用于:
    在接收到所述触发信号以及反向散射指令的情况下,所述零功耗设备基于所述载波信号,通过反向散射方式向所述车载终端发送所述交通信息。
  37. 根据权利要求36所述的装置,其特征在于,
    所述反向散射指令由控制设备发送;
    所述载波信号由所述控制设备发送,或者,由所述车载终端发送;
    所述触发信号由所述控制设备发送,或者,由所述车载终端发送。
  38. 根据权利要求28至37任一所述的装置,其特征在于,所述装置还包括:
    存储模块,用于响应于控制设备的信息写入操作,更新存储的所述交通信息。
  39. 根据权利要求28至37任一所述的装置,其特征在于,所述交通信息包括如下至少一种:
    交通信号信息;
    交通标识信息;
    车道信息。
  40. 一种交通信息的接收装置,其特征在于,所述装置包括:
    接收模块,用于接收零功耗设备通过反向散射方式发送的交通信息。
  41. 根据权利要求40所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送载波信号,所述载波信号用于供所述零功耗设备进行反向散射。
  42. 根据权利要求41所述的装置,其特征在于,所述载波信号为通用载波信号,或者,所述载波信号为特定载波信号,所述特定载波信号用于供特定零功耗设备进行反向散射。
  43. 根据权利要求40所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送触发信号,所述触发信号用于触发所述零功耗设备进行反向散射。
  44. 根据权利要求43所述的装置,其特征在于,所述触发信号为通用触发信号,或者,所述触发信号为特定触发信号,所述特定触发信号用于触发特定零功耗设备进行反向散射。
  45. 一种交通信息的接收装置,其特征在于,所述装置包括:
    接收模块,用于接收控制设备发送的指示信号,所述指示信号用于指示交通信息。
  46. 根据权利要求45所述的装置,其特征在于,
    所述接收模块,还用于接收载波信号;
    所述装置还包括:
    反向散射模块,用于基于所述载波信号,通过反向散射方式向所述控制设备发送应答信号,所述应答信号用于表征所述指示信号的接收情况。
  47. 根据权利要求45所述的装置,其特征在于,
    所述接收模块,还用于接收载波信号;
    所述装置还包括:
    反向散射模块,用于基于所述载波信号,通过反向散射方式向所述控制设备发送信息获取请求,以便所述控制设备基于所述信息获取请求发送所述指示信号。
  48. 根据权利要求46或47所述的装置,其特征在于,所述载波信号由所述车载终端发送,或者,由所述控制设备发送。
  49. 根据权利要求45所述的装置,其特征在于,所述交通信息包括如下至少一种:
    交通信号信息;
    交通标识信息;
    车道信息。
  50. 一种交通信息的发送装置,其特征在于,所述装置包括:
    发送模块,用于向车载终端中设置的零功耗设备发送指示信号,所述指示信号用于指示交通信息。
  51. 根据权利要求50所述的装置,其特征在于,所述发送模块,用于:
    基于目标交通信息,向所述零功耗设备发送目标指示信号,其中,不同指示信号用于指示不同交通信息。
  52. 根据权利要求50所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述零功耗设备通过反向散射方式发送的应答信号,所述应答信号用于表征所述指示信号的接收情况。
  53. 根据权利要求50所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述零功耗设备通过反向散射方式发送的信息获取请求,所述信息获取请求用于触发发送所述指示信号。
  54. 根据权利要求52或53所述的装置,其特征在于,用于反向散射的载波信号由所述控制设备发送,或者,由所述车载终端发送。
  55. 一种通信设备,其特征在于,所述通信设备包括处理器和存储器,所述存储器中有至少一段程序;所述处理器,用于执行所述存储器中的所述至少一段程序以实现如权利要求1至12任一所述的交通信息的发送方法,或,权利要求13至17任一所述的交通信息的接收方法,或,权利要求18至22任一所述的交通信息的接收方法,或,权利要求23至27任一所述的交通信息的发送方法。
  56. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至12任一所述的交通信息的发送方法,或,权利要求13至17任一所述的交通信息的接收方法,或,权利要求18至22任一所述的交通信息的接收方法,或,权利要求23至27任一所述的交通信息的发送方法。
  57. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至12任一所述的交通信息的发送方法,或,权利要求13至17任一所述的交通信息的接收方法,或,权利要求18至22任一所述的交通信息的接收方法,或,权利要求23至27任一所述的交通信息的发送方法。
  58. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至12任一所述的交通信息的发送方法,或,权利要求13至17任一所述的交通信息的接收方法,或,权利要求18至22任一所述的交通信息的接收方法,或,权利要求23至27任一所述的交通信息的发送方法。
PCT/CN2022/078028 2022-02-25 2022-02-25 交通信息的发送、接收方法、装置、设备及存储介质 WO2023159494A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078028 WO2023159494A1 (zh) 2022-02-25 2022-02-25 交通信息的发送、接收方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078028 WO2023159494A1 (zh) 2022-02-25 2022-02-25 交通信息的发送、接收方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023159494A1 true WO2023159494A1 (zh) 2023-08-31

Family

ID=87764262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078028 WO2023159494A1 (zh) 2022-02-25 2022-02-25 交通信息的发送、接收方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023159494A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1737875A (zh) * 2005-08-01 2006-02-22 周幼龙 车辆交通自动化监管系统
CN105303137A (zh) * 2015-10-29 2016-02-03 北京交通大学 一种环境反向散射系统的读写器的门限值的确定方法
CN107014499A (zh) * 2017-05-19 2017-08-04 华东交通大学 一种超低功耗无线无源温度传感器
US20170373892A1 (en) * 2016-06-23 2017-12-28 University Of Massachusetts Systems and methods for backscatter communication
CN108597045A (zh) * 2018-05-04 2018-09-28 深圳市方格尔科技有限公司 一种基于无源车载标签的停车收费装置及方法
WO2020070529A1 (en) * 2018-10-05 2020-04-09 Thomas Ralph A method to enable autonomous guidance of vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1737875A (zh) * 2005-08-01 2006-02-22 周幼龙 车辆交通自动化监管系统
CN105303137A (zh) * 2015-10-29 2016-02-03 北京交通大学 一种环境反向散射系统的读写器的门限值的确定方法
US20170373892A1 (en) * 2016-06-23 2017-12-28 University Of Massachusetts Systems and methods for backscatter communication
CN107014499A (zh) * 2017-05-19 2017-08-04 华东交通大学 一种超低功耗无线无源温度传感器
CN108597045A (zh) * 2018-05-04 2018-09-28 深圳市方格尔科技有限公司 一种基于无源车载标签的停车收费装置及方法
WO2020070529A1 (en) * 2018-10-05 2020-04-09 Thomas Ralph A method to enable autonomous guidance of vehicles

Similar Documents

Publication Publication Date Title
US8676277B2 (en) Communication device, communication method, program and communication system
US9325387B2 (en) Communication device, communication method, program and communication system
CN101796528B (zh) 回射有限标签
US20110012723A1 (en) Embedded in tire self-powered semi-passive rfid transponder
US10870322B2 (en) Code writing device, tire pressure monitoring unit and control method
US8451119B1 (en) RFID reader system capable of adjusting tags to modify internal operations for a sensed environment
US7994921B2 (en) Method for wireless data transmission and a transponder
KR20050040451A (ko) 무선주파수 식별 기능을 가지는 이동통신 단말기 및 그이동통신 단말기에서의 무선주파수 식별 프로그래밍 방법
CN102394340B (zh) 车用有源rfid天线调节装置、车用控制器及方法
US20080093463A1 (en) Rfid tags, rfid electronic devices and related methods for anti-theft and data transmission purposes
JP2008015855A (ja) メータ用rfidタグシステム、rfidタグ、リーダ/ライタ、メータ用rfidタグ通信方法、及びメータ用rfidタグ通信用プログラム
WO2023159494A1 (zh) 交通信息的发送、接收方法、装置、设备及存储介质
CN101923629B (zh) 基于llrp协议的路面射频识别方法、系统及阅读器
CN102222210A (zh) 基于低频触发的rfid通讯装置及通讯方法
CN203276293U (zh) 一种试管智能定位管理装置
CN103226718A (zh) 用于管理rfid标签的系统和方法
CN203100349U (zh) 冷柜及其管理监控系统
CN102055482B (zh) 一种应用于无源射频识别系统中标签端的数据编码方法
WO2023168605A1 (zh) 零功耗通信的方法、装置、设备及介质
CN100424723C (zh) 一种用于机车监控装置数据读写与存储的无线ic卡
CN205139952U (zh) 一种中远距离rfid智能终端读写系统
US11797787B2 (en) Methods, apparatuses, and systems for power control on vehicle mounted RFID system
JP2021022109A (ja) 送信機
CN204496239U (zh) 一种具有跟踪识别和定位功能的智能化监管设备
CN201742511U (zh) 应用在电信机房机柜管理中的无线射频识别系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927778

Country of ref document: EP

Kind code of ref document: A1