WO2023159447A1 - 显示模组的参数调节方法及系统、显示模组、显示装置 - Google Patents

显示模组的参数调节方法及系统、显示模组、显示装置 Download PDF

Info

Publication number
WO2023159447A1
WO2023159447A1 PCT/CN2022/077770 CN2022077770W WO2023159447A1 WO 2023159447 A1 WO2023159447 A1 WO 2023159447A1 CN 2022077770 W CN2022077770 W CN 2022077770W WO 2023159447 A1 WO2023159447 A1 WO 2023159447A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
initialization signal
initialization
signal
light
Prior art date
Application number
PCT/CN2022/077770
Other languages
English (en)
French (fr)
Inventor
商广良
王丽
吴宝云
赵西玉
冯宇
刘利宾
史世明
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/077770 priority Critical patent/WO2023159447A1/zh
Priority to CN202280000289.XA priority patent/CN117337460A/zh
Publication of WO2023159447A1 publication Critical patent/WO2023159447A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a parameter adjustment method of a display module, electronic equipment, a parameter adjustment system of a display module, a display module, a display device, a computer-readable storage medium, and a computer program product.
  • AMOLED Active-matrix organic light-emitting diode
  • a parameter adjustment method of a display module is provided.
  • the display module can work in a low-frequency driving mode, and the low-frequency driving mode includes a plurality of low-frequency periods, and one low-frequency period includes one refresh frame and at least one hold frame.
  • the parameter adjustment method includes: setting an initial value of a light-emitting delay time and a plurality of designated gray scales; the light-emitting delay time is the time difference between the start of a charging phase and the start of a light-emitting phase in one frame. Based on the initial value of the light-emitting delay time, the light-emitting delay time is adjusted stepwise until the adjusted light-emitting delay time exceeds the preset range of the light-emitting delay time, and more than one within the preset range of the light-emitting delay time is obtained. light delay time. A plurality of flicker values of the display module under the plurality of specified gray scales are obtained at each of the light-emitting delay times. According to the multiple flicker values corresponding to the multiple light-emitting delay times, a preferred light-emitting delay time is determined from the multiple light-emitting delay times.
  • the acquiring multiple flicker values of the display module under the multiple specified gray scales at each of the light-emitting delay times includes: setting an initial value of the first sub-initialization signal value; the first sub-initialization signal is an initialization signal received by the light emitting device in the refresh frame.
  • the first sub-initialization signal Based on the initial value of the first sub-initialization signal, adjust the first sub-initialization signal in steps until the adjusted first sub-initialization signal exceeds the preset range of the first sub-initialization signal, and obtain the first sub-initialization signal in the first A plurality of first sub-initialization signals within the preset range of the sub-initialization signal; the number of the plurality of light-emitting delay times is M, the number of the plurality of first sub-initialization signals is N, and the number of light-emitting delay times is M M ⁇ N first parameter combinations are formed with the N first sub-initialization signals, and one first parameter combination includes a lighting delay time and a first sub-initialization signal. Under each of the first parameter combinations of the M ⁇ N first parameter combinations, multiple flicker values of the display module under the multiple specified gray scales are obtained.
  • a plurality of flicker values corresponding to a first parameter combination is a set of flicker values.
  • the determining the optimal light-emitting delay time from the multiple light-emitting delay times according to the multiple flicker values corresponding to the multiple light-emitting delay times includes: determining each first sub-initialization signal from the M light-emitting delay times The corresponding target light-emitting delay time obtains a plurality of target light-emitting delay times; the target light-emitting delay time is the one with the highest convergence among the M groups of flicker values corresponding to the M light-emitting delay times of the first sub-initialization signal The light delay time corresponding to the group blink value.
  • the target light-emitting delay time corresponding to the preferred first sub-initialization signal is determined as the preferred light-emitting delay time.
  • the determining a preferred first sub-initialization signal from the N first sub-initialization signals includes: obtaining a plurality of second sub-initialization signals, and using A second sub-initialization signal is determined as a preferred second sub-initialization signal; the second sub-initialization signal is an initialization signal received by the light emitting device in the maintaining frame.
  • N flicker values of target gray scales corresponding to the N first sub-initialization signals are acquired, and the target gray scale is one of a plurality of specified gray scales.
  • the first sub-initialization signal corresponding to the smallest flicker value among the N flicker values is determined as the preferred first sub-initialization signal.
  • the acquiring multiple second sub-initialization signals and determining one of the multiple second sub-initialization signals as the preferred second sub-initialization signal includes: setting the first sub-initialization signal The initial value of the second child initialization signal.
  • the second sub-initialization signal is adjusted in steps until the adjusted second sub-initialization signal exceeds the preset range of the second sub-initialization signal, and the second sub-initialization signal is obtained in the second A plurality of second sub-initialization signals within the preset range of the sub-initialization signal; the number of the plurality of first sub-initialization signals is N, the number of the plurality of second sub-initialization signals is K, and the number of Nth sub-initialization signals A sub-initialization signal and K second sub-initialization signals form N ⁇ K second parameter combinations, and a second parameter combination includes a first sub-initialization signal and a second sub-initialization signal.
  • one specified gray scale is selected from the plurality of specified gray scales.
  • the gray scale is used as the target gray scale; under any of the N first sub-initialization signals corresponding to the target gray scale under any second sub-initialization signal, the difference between the maximum flicker value and the minimum flicker value is within the first preset threshold range; And/or, in any second parameter combination, the flicker value is within a second preset threshold range. From the plurality of second sub-initialization signals, find out the second sub-initialization signal with the largest flicker value range of the display module under the target gray scale as the preferred second sub-initialization signal.
  • the acquiring multiple second sub-initialization signals and determining one of the multiple second sub-initialization signals as the preferred second sub-initialization signal includes: setting the first sub-initialization signal The second sub-initializes the initial value of the signal, and selects a specified gray level from the plurality of specified gray levels as the target gray level.
  • the second sub-initialization signal is adjusted in steps until the adjusted second sub-initialization signal exceeds the preset range of the second sub-initialization signal, and the second sub-initialization signal is obtained in the second A plurality of second sub-initialization signals within the preset range of the sub-initialization signal; the number of the plurality of first sub-initialization signals is N, the number of the plurality of second sub-initialization signals is K, and the number of Nth sub-initialization signals A sub-initialization signal and K second sub-initialization signals form N ⁇ K second parameter combinations, and a second parameter combination includes a first sub-initialization signal and a second sub-initialization signal.
  • each second parameter combination in the N ⁇ K second parameter combinations Based on one target luminescence delay time among the plurality of target luminescence delay times, under each second parameter combination in the N ⁇ K second parameter combinations, obtain the display module at the target grayscale Multiple blinking values under . From the plurality of second sub-initialization signals, find out the second sub-initialization signal corresponding to the minimum flicker value of the display module under the target gray scale as the preferred second sub-initialization signal.
  • the determining the optimal light-emitting delay time from the multiple light-emitting delay times according to the multiple flicker values corresponding to the multiple light-emitting delay times includes: reducing the multiple light-emitting delay times, The light-emitting delay time corresponding to the minimum flicker value of the display module under each specified gray scale is determined as the target light-emitting delay time. In a case where the target light emission delay time is one, the target light emission delay time is determined as the preferred light emission delay time.
  • one of the target light-emitting delay times among the multiple target light-emitting delay times is determined as the preferred light-emitting delay time; the minimum flicker value corresponding to the preferred light-emitting delay time The number is greater than or equal to the number of minimum flicker values corresponding to other target light-emitting delay times.
  • the parameter adjustment method further includes: setting an initial value of a first sub-initialization signal; the first sub-initialization signal is an initialization signal received by the light emitting device in the refresh frame. Based on the initial value of the first sub-initialization signal, adjust the first sub-initialization signal in steps until the adjusted first sub-initialization signal exceeds the preset range of the first sub-initialization signal, and obtain the first sub-initialization signal in the first A plurality of first sub-initialization signals within a preset range of the sub-initialization signals; the number of the plurality of first sub-initialization signals is N.
  • the second sub-initialization signal is an initialization signal received by the light-emitting device in the maintaining frame. Based on the initial value of the second sub-initialization signal, the second sub-initialization signal is adjusted in steps until the adjusted second sub-initialization signal exceeds the preset range of the second sub-initialization signal, and the second sub-initialization signal is obtained in the second A plurality of second sub-initialization signals within the preset range of the sub-initialization signal; the number of the plurality of second sub-initialization signals is K; N first sub-initialization signals and K second sub-initialization signals form N ⁇ K second parameter combinations, one second parameter combination includes a first sub-initialization signal and a second sub-initialization signal.
  • multiple flicker values of the display module under the multiple specified gray scales are acquired. From the plurality of designated gray scales, select a designated gray scale as the target gray scale; under the N first sub-initialization signals corresponding to any second sub-initialization signal of the target gray scale, the maximum flicker value and the minimum The difference between the flicker values is within a first preset threshold range; and/or, in any second parameter combination, the flicker value is within a second preset threshold range. From the plurality of second sub-initialization signals, find out the second sub-initialization signal with the largest flicker value range of the display module under the target gray scale as the preferred second sub-initialization signal.
  • the first preset threshold range is 10dB-15dB; and/or, the second preset threshold range is -40dB--70dB.
  • the parameter adjustment method further includes: setting an initial value of a first sub-initialization signal; the first sub-initialization signal is an initialization signal received by the light emitting device in the refresh frame. Based on the initial value of the first sub-initialization signal, adjust the first sub-initialization signal in steps until the adjusted first sub-initialization signal exceeds the preset range of the first sub-initialization signal, and obtain the first sub-initialization signal in the first A plurality of first sub-initialization signals within a preset range of the sub-initialization signals; the number of the plurality of first sub-initialization signals is N.
  • the second sub-initialization signal is the initialization received by the light-emitting device in the maintenance frame Signal.
  • the second sub-initialization signal is adjusted in steps until the adjusted second sub-initialization signal exceeds the preset range of the second sub-initialization signal, and the second sub-initialization signal is obtained in the second A plurality of second sub-initialization signals within the preset range of the sub-initialization signal; the number of the plurality of second sub-initialization signals is K; N first sub-initialization signals and K second sub-initialization signals form N ⁇ K second parameter combinations, one second parameter combination includes a first sub-initialization signal and a second sub-initialization signal. Under the preferred lighting delay time and each second parameter combination in the N ⁇ K second parameter combinations, a plurality of flicker values of the display module under the target gray scale are acquired.
  • the parameter adjustment method further includes: based on the preferred second sub-initialization signal, setting the minimum flicker of the target gray scale to the display module under the plurality of first sub-initialization signals The first sub-initialization signal corresponding to the value is determined as the preferred first sub-initialization signal.
  • the parameter adjustment method further includes: setting an initial value of a data holding signal; the data holding signal is a data signal received by a data signal terminal of the pixel driving circuit in the holding frame. Based on the initial value of the data holding signal, stepwise adjust the data holding signal until the adjusted data holding signal exceeds the preset range of the data holding signal, and obtain a plurality of data within the preset range of the data holding signal Keep the signal. Under the preferred lighting delay time, the preferred first sub-initialization signal and the preferred second sub-initialization signal, and each data hold signal, obtain the flicker value of the display module at the target gray scale . Under the plurality of data holding signals, the data holding signal corresponding to the minimum flicker value corresponding to the target gray scale is used to determine an optimal data holding signal.
  • the preset range of the first sub-initialization signal is -1V ⁇ -6V.
  • the preset range of the second sub-initialization signal is -1V ⁇ -6V.
  • the preset range of the data holding signal is 1V ⁇ 8V.
  • the preset range of the light emission delay time is 0-30 row scanning periods.
  • an electronic device including a processor and a memory
  • the memory stores computer program instructions
  • the processor executes the above-mentioned parameters. Adjust one or more steps in a method.
  • a parameter adjustment system of a display module includes a processor, test equipment and detection equipment.
  • the processor is configured to perform one or more steps in the parameter adjustment method as described above.
  • the test device is coupled to the processor; the test device is configured to, according to the first sub-initialization signal, the second sub-initialization signal, the light-emitting delay time and the data hold signal from the processor, send out a signal for Control the control commands displayed by the display module.
  • the detection device is coupled to the processor; the detection device is configured to measure the flicker value when the display module displays, and send the flicker value to the processor.
  • a display module in yet another aspect, includes a display panel and a driving chip; the optimal lighting delay time is stored in the driving chip, and the optimal lighting delay time is obtained according to the parameter adjustment method described in any of the above-mentioned embodiments; the driving chip is configured For, generating a lighting signal according to the preferred lighting delay time, and transmitting the lighting signal to the display panel.
  • At least one of the preferred first sub-initialization signal, the preferred second sub-initialization signal and the preferred data retention signal is stored in the drive chip; the preferred first sub-initialization signal according to the above-mentioned embodiment
  • the parameter adjustment method is obtained
  • the preferred second sub-initialization signal is obtained according to the parameter adjustment method described in the above embodiment
  • the preferred data retention signal is obtained according to the parameter adjustment method described in the above embodiment.
  • a display device in another aspect, includes the display module described in any one of the above embodiments.
  • a computer readable storage medium stores computer program instructions, and when the computer program instructions are run on a processor, the processor is made to execute one or more steps in the parameter adjustment method described in any of the above-mentioned embodiments.
  • a computer program product is provided.
  • the computer program product is stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer program instructions. When the computer program instructions are executed on a computer (for example, a display device), the computer program instructions cause the computer to execute the parameter adjustment method described in any of the above embodiments.
  • a computer program When the computer program is executed on a computer (for example, a display device), the computer program causes the computer to execute the method for adjusting the parameters of the display module as described in any of the above embodiments.
  • FIG. 1 is a structural diagram of a display device according to some embodiments.
  • FIG. 2 is a structural diagram of a display module according to some embodiments.
  • FIG. 3 is a structural diagram of a display panel according to some embodiments.
  • Fig. 4 is a sectional view along section line A-A' in Fig. 3;
  • FIG. 5 is a circuit diagram of a subpixel according to some embodiments.
  • FIG. 6 is a timing diagram of a pixel driving circuit according to some embodiments.
  • FIG. 7 is another timing diagram of a pixel driving circuit according to some embodiments.
  • Fig. 8 is a structural block diagram of a parameter adjustment system and a display module according to some embodiments.
  • 9 to 18 are flowcharts of a method for adjusting parameters of a display module according to some embodiments.
  • FIG. 19 is a graph of flicker value data of a display module under multiple lighting delay times, multiple first sub-initialization signals, and multiple specified gray scales according to some embodiments;
  • Fig. 20 is a graph of flicker value data of a display module under multiple lighting delay times and multiple specified gray scales according to some embodiments
  • Fig. 21 is a data diagram of flicker values of a display module under multiple first sub-initialization signals, multiple second sub-initialization signals, and multiple specified gray scales according to some embodiments;
  • Fig. 22 is a graph of flicker value data of a display module under multiple first sub-initialization signals and multiple second sub-initialization signals according to some embodiments;
  • FIG. 23 is a graph of flicker value data of a display module under a plurality of data holding signals and target gray scales according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations in shape from the drawings as a result, for example, of manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an etched region illustrated as a rectangle will, typically, have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • Some embodiments of the present disclosure provide a method for adjusting parameters of a display module, electronic equipment, a system for adjusting parameters of a display module, a display module, a display device, a computer-readable storage medium, and a computer program product.
  • the parameter adjustment method of the display module, the electronic equipment, the parameter adjustment system of the display module, the display module, the display device, the computer readable storage medium and the computer program product are respectively introduced below.
  • a display device 100 which may be any display device, whether moving (for example, video) or fixed (for example, still image) and regardless of text or text. device. More specifically, it is contemplated that the described embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs) , Handheld or Laptop Computers, GPS Receivers/Navigators, Cameras, MP4 Video Players, Camcorders, Game Consoles, Watches, Clocks, Calculators, Television Monitors, Flat Panel Displays, Computer Monitors, Automotive Displays (eg, odometer displays, etc.), navigators, cockpit controls and/or displays, displays for camera views (e.g., displays for rear-view cameras in vehicles), electronic photographs, electronic billboards or signage, projectors, building structures, packaging and aesthetic structures (for example, for a display of an image of a piece of jewelry), etc.
  • PDAs personal data assistants
  • Cameras GPS Receivers/Navigators
  • the display device 100 includes a display module 110 and a casing 130 .
  • the display module 110 includes a display panel 10 , a flexible circuit board 20 , a driver chip, and other electronic accessories.
  • the above-mentioned display panel 10 may be an electroluminescence display panel, for example, may be an organic light emitting diode (Organic Light Emitting Diode, OLED for short) display panel, a quantum dot light emitting diode (Quantum Dot Light Emitting Diodes, QLED for short) display
  • OLED Organic Light Emitting Diode
  • QLED Quantum Dot Light Emitting Diodes
  • the display panel 10 has a display area A and a peripheral area B disposed on at least one side of the display area. Both FIG. 2 and FIG. 3 are illustrated by taking the peripheral area B surrounding the display area A as an example.
  • the display area A is an area for displaying images, and the display area A is configured to provide sub-pixels P.
  • the peripheral area B is an area where images are not displayed, and the peripheral area B is configured to provide a display driving circuit, for example, a gate driving circuit and a source driving circuit.
  • the display panel 10 includes a plurality of sub-pixels P disposed on one side of the substrate 1 and located in the display area A.
  • the plurality of sub-pixels P are arranged in multiple rows and columns, each row includes a plurality of sub-pixels P arranged in the first direction X, and each column includes a plurality of sub-pixels P arranged in the second direction Y.
  • each row of sub-pixels P may include a plurality of sub-pixels P
  • each column of sub-pixels P may include a plurality of sub-pixels P.
  • first direction X and the second direction Y cross each other.
  • the included angle between the first direction X and the second direction Y can be selected and set according to actual needs.
  • the included angle between the first direction X and the second direction Y may be 85°, 89° or 90° and so on.
  • the sub-pixel P includes a light emitting device 11 disposed on a substrate 1 and a pixel driving circuit 12
  • the pixel driving circuit 12 includes a plurality of thin film transistors 121 .
  • the thin film transistor 121 includes an active layer 1211 , a source 1212 , a drain 1213 and a gate 1214 , and the source 1212 and the drain 1213 are respectively in contact with the active layer 1211 .
  • the light-emitting device 11 includes a first electrode layer 111, a light-emitting functional layer 112, and a second electrode layer 113 arranged in sequence, the first electrode layer 111 and a plurality of thin film transistors 121
  • the source 1212 or the drain 1213 of the thin film transistor as a driving transistor is electrically connected, and in FIG. 4 the first electrode layer 111 is electrically connected to the source 1212 of the thin film transistor 121 for illustration.
  • source 1212 and drain 1213 can be interchanged, that is, 1212 in FIG. 4 represents a drain, and 1213 in FIG. 4 represents a source.
  • the light-emitting functional layer 112 only includes a light-emitting layer.
  • the luminescent functional layer 112 includes, in addition to the luminescent layer, an electron transport layer (election transporting layer, ETL for short), an electron injection layer (election injection layer, EIL for short), a hole transport layer (hole transporting layer). layer (HTL for short) and a hole injection layer (HIL for short).
  • the display panel 10 further includes a pixel defining layer 114 , the pixel defining layer 114 includes a plurality of opening regions, and one light emitting device 11 is disposed in one opening region.
  • the display panel 10 further includes a first flat layer 115 disposed between the thin film transistor 121 and the first electrode 111 .
  • the display panel 10 further includes an encapsulation layer 2 disposed on a side of the light emitting device 11 away from the substrate 1 .
  • the encapsulation layer 2 may be an encapsulation film, or an encapsulation cover plate.
  • the display panel 10 may further include a plurality of gate lines GL and a plurality of data lines DL disposed on one side of the substrate 1 and located in the display area A.
  • the plurality of gate lines GL extend along the first direction X
  • the plurality of data lines DL extend along the second direction Y.
  • sub-pixels P arranged in a row along the first direction X may be referred to as sub-pixels P in the same row
  • sub-pixels P arranged in a column along the second direction Y may be referred to as sub-pixels P in the same column.
  • the sub-pixels P in the same row may be electrically connected to one gate line GL
  • the sub-pixels P in the same column may be electrically connected to one data line DL.
  • one gate line GL may be electrically connected to multiple pixel driving circuits 12 in the same row of sub-pixels P
  • one data line DL may be electrically connected to multiple pixel driving circuits 12 in the same column of sub-pixels P.
  • the scan transistor and the reset transistor are turned off most of the time, requiring low leakage speed; the switching transistor and the driving transistor are turned on most of the time, requiring high charge mobility.
  • InGaZnO thin film transistor English: Thin Film Transistor, TFT for short
  • Crystal oxide English: Low Temperature Polycrystalline Oxide, LTPO for short
  • the scan transistor and the reset transistor use N-type InGaZnO TFTs, and the switch transistors and drive transistors use low-temperature polysilicon TFTs, which can achieve high charge mobility, stability and reliability at low production costs. scalability.
  • the pixel driving circuit 12 includes 8 transistors T and 1 capacitor CST.
  • the control poles of the first transistor T1 and the seventh transistor T7 of the pixel driving circuit 12 are both coupled to the reset signal terminal RESET, and the control poles of the second transistor T2 and the fourth transistor T4 are both coupled to the first scanning signal terminal GATE1.
  • the control electrodes of the eight transistors T8 are coupled to the second scan signal terminal GATE2.
  • Both the first transistor T1 and the seventh transistor T7 are reset transistors, and the second transistor T2 , the fourth transistor T4 and the eighth transistor T8 are scan transistors.
  • the control electrode of the third transistor T3 is coupled to one end of the capacitor CST, the control electrodes of the fifth transistor T5 and the sixth transistor T6 are both coupled to the enable signal terminal EM; the third transistor T3 is a driving transistor, and the fifth transistor T5 and The sixth transistor T6 is a switching transistor, and the first transistor T1, the second transistor T2, the third transistor T3, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6 and the seventh transistor T7 are all P-type low-temperature polysilicon TFTs , the eighth transistor T8 is an N-type InGaZnO TFT.
  • a frame period (shown as 1F in FIG. 6 ) includes a reset phase P1, a charging phase P2 and a light emitting phase P3.
  • both the first transistor T1 and the seventh transistor T7 are turned on under the control of the reset signal Reset from the reset signal terminal RESET, and the eighth transistor T8 is turned on under the control of the second scan signal Gate2 from the second scan signal terminal GATE2 Turning on under control, the first node N1 is reset to the voltage of the initialization voltage signal from the first initialization signal terminal VINT1, and the second node N2 is reset to the voltage of the initialization voltage signal from the second initialization signal terminal VINT2.
  • both the second transistor T2 and the fourth transistor T4 are turned on under the control of the first scanning signal Gate1 from the first scanning signal terminal GATE1, and the eighth transistor T8 is turned on under the control of the second scanning signal from the second scanning signal terminal GATE2.
  • the third transistor T3 is turned on under the control of the scan signal Gate2, the third transistor T3 is turned on under the control of the voltage of the first node N1, and the capacitor CST is written into the data signal Data from the data signal terminal DATA.
  • both the fifth transistor T5 and the sixth transistor T6 are turned on under the control of the enable signal Em of the enable signal terminal EM, and the third transistor T3 is turned on under the control of the first node N1 to emit light.
  • the device outputs a drive current signal.
  • the display panel 10 has a high-frequency driving mode and a low-frequency driving mode, wherein the low-frequency mode can be used for displaying static images.
  • the low frequency driving mode one low frequency period includes one refresh frame and multiple hold frames.
  • a refresh frame and a hold frame may both be the above-mentioned one frame period.
  • FIG. 7 a refresh frame and a hold frame are taken as examples for illustration.
  • the human eye is more sensitive to the flickering perception of the picture displayed on the display panel, thus causing the problem that the human eye can perceive the flickering of the picture displayed on the display panel .
  • the luminescence delay time Td (the time difference between the start of the charging phase of one frame and the start of the luminescence phase)
  • the voltage VINT2 of the anode of the light emitting device, and the source of the driving transistor T3 maintain the frame 1F ( 2)
  • the received hold voltage V will affect the flicker value of the screen.
  • the above parameters required by the display panel 10 (refer to FIG. 2 ) with different wiring arrangements may not be exactly the same.
  • the light emission delay time Td is also the characteristic recovery time of the driving transistor T3 , and the length of the characteristic recovery time affects the state of the driving transistor T3 , and further affects the brightness of the light emitting device 11 .
  • the voltage VINT2 of the anode of the light-emitting device 11 within one frame (including the initialization signal received by the light-emitting device 11 in the refresh frame 1F(1), that is, the first sub-initialization signal VINT 2-1 , and the voltage VINT2-1 received by the light-emitting device in the maintenance frame 1F(2)
  • the initialization signal received by 11 that is, the second sub-initialization signal VINT 2-2
  • the hold voltage V keep received from the data signal terminal in the hold frame 1F(2) will also affect the state of the driving transistor T3 , thereby affecting the brightness of the light emitting device 11 .
  • the driver chip 30 included in the display module 110 provided by the embodiment of the present disclosure stores the preferred light emission delay time PRTd, and the driver chip 30 is configured to generate light emission according to the preferred light emission delay time PRTd. signal, and transmit the light-emitting signal to the display panel 10 to drive the display panel 10 to emit light.
  • the fluctuation of the brightness of the picture displayed by the display panel 10 in the low-frequency drive mode can be reduced, thereby reducing the flicker value (Flicker) of the display panel 10, and improving the perception of flicker in the picture displayed by the display panel 10 by the human eye.
  • flicker flicker
  • the above-mentioned optimal light-emitting delay time PRTd can be obtained according to the parameter adjustment method of the display module 110 provided by the embodiment of the present disclosure, and details can be referred to below, and the present disclosure will not repeat them here.
  • At least one of the preferred first sub-initialization signal PR VINT 2-1 , the preferred second sub-initialization signal PR VINT 2-2 and the preferred data hold signal PR V keep is stored in the driver chip 30 .
  • the driver chip 30 further stores a preferred first sub-initialization signal PR VINT 2-1 , a preferred second sub-initialization signal PR VINT 2-2 and a preferred data hold signal PR V keep .
  • the driver chip 30 is configured to operate according to the preferred light emission delay time PR Td, the preferred first sub-initialization signal PR VINT 2-1 , the preferred second sub-initialization signal PR VINT 2-2 and the preferred data hold signal PR V keep , generate a light emitting signal, transmit the light emitting signal to the display panel 10, and drive the display panel 10 to emit light.
  • the light-up speed of the light-emitting device 11 can be controlled by preferably the first sub-initialization signal PR VINT 2-1 , preferably the second sub-initialization signal PR VINT 2-2 , so as to adjust the brightness of the final light-emitting device 11 to
  • the flicker value (Flicker) of the display panel 10 is further reduced, and the problem that human eyes perceive flicker in the picture displayed on the display panel 10 is improved.
  • the voltage of the source of the drive transistor T3 can be controlled by the optimal data hold signal PR V keep , and the state of the drive transistor T3 can be adjusted to adjust the brightness of the final light-emitting device 11 to further reduce the flicker value (Flicker) of the display panel 10. The problem of flickering in the picture displayed on the display panel 10 perceived by human eyes is improved.
  • the preferred first sub-initialization signal PR VINT 2-1 , the preferred second sub-initialization signal PR VINT 2-2 and the preferred data keep signal PR V keep can all be based on the parameters of the display module 110 provided by the embodiment of the present disclosure
  • the adjustment method is obtained.
  • the parameter adjustment method of the display module 110 provided by some embodiments of the present disclosure, referring to FIG. 7 and FIG. It includes one refresh frame 1F(1) and at least one hold frame 1F(2).
  • the parameter adjustment method includes S100-S400.
  • the initial value Td 0 of the light emission delay time may be 0 ⁇ 30 row scanning periods.
  • the initial value Td 0 of the light emission delay time is any one of 0 row scanning periods, 10 row scanning periods and 30 row scanning periods.
  • a plurality of designated gray scales 1 ⁇ S can be selected according to actual conditions, which is not limited in the present disclosure. In Fig. 19, five designated gray scales are used for illustration.
  • one row scanning period 1 second ⁇ refresh frequency ⁇ the number of scanning rows.
  • the refresh frequency of the display panel is 120HZ
  • the number of scanning lines is 1000 lines, so the scanning period of one line is 0.0083ms.
  • the preset range of the luminescence delay time Td is 0-30 row scanning periods.
  • the stepwise adjustment of the light-emitting delay time Td may be, based on the initial value Td 0 of the light-emitting delay time, adjusting the light-emitting delay time Td from low to high or from high to low with the first set step value Step 1 , each time The adjustments all obtain a luminescence delay time Td m .
  • the first set step value Step 1 can be 1h (row scanning period) ⁇ 5h, for example, the first set step value Step 1 can be any one of 1h, 2h, 3h, 4h and 5h .
  • the initial value Td 0 of the light-emitting delay time is 0 row scanning periods, and the first set step value Step 1 is 1h.
  • the luminescence delay time Td adjusts the luminescence delay time Td from low to high, 1 hour at a time, until the value of the adjusted luminescence delay time Td m is greater than 30 hours.
  • the initial value Td 0 of the light-emitting delay time is 30 row scanning periods, and the first setting step value Step 1 is 5h.
  • the light emission delay time Td is adjusted from high to low, 5h each time, until the adjusted light emission delay time Tdm is less than 0h.
  • S300 Obtain a plurality of flicker values of the display module 110 at a plurality of specified gray scales 1-S at each light-emitting delay time Td (Td 0 ⁇ Td m-1 ).
  • the multiple flicker values of the display module 110 under the multiple specified gray scales 1-S may be, the initial value VINT 2-1.0 of the display module 110 in the first sub-initialization signal and the multiple specified gray scales 1-S Multiple flicker values under multiple flicker values; it may also be multiple flicker values under multiple first sub-initialization signals VINT 2-1 and multiple specified gray scales 1-S of the display module 110, for details, please refer to the following, this disclosure I won't go into details here.
  • the first sub-initialization signal VINT 2-1 is an initialization signal received by the light emitting device 11 in a refresh frame.
  • S400 Determine the preferred light-emitting delay time PR Td from the multiple light-emitting delay times Td 0 -Td m-1 according to the multiple flicker values corresponding to the multiple light-emitting delay times Td 0 -Td m-1 .
  • the plurality of light-emitting delay times Td 0 The method for determining the preferred light-emitting delay time PR Td in ⁇ Td m-1 is related to the acquisition of multiple flicker values of the display module 110 under multiple first sub-initialization signals VINT 2-1 and multiple specified gray scales 1-S In the case of , the method of determining the preferred light-emitting delay time PR Td from the multiple light-emitting delay times Td 0 ⁇ Td m-1 is different, and details can be referred to below, and the present disclosure will not repeat them here.
  • the preferred light-emitting delay time PRTd can be stored in the driver chip 30, and the driver chip 30 can generate a light-emitting signal according to the preferred light-emitting delay time PRTd, and transmit the light-emitting signal to the display panel 10 to drive the display panel 10 to emit light.
  • the driver chip 30 can generate a light-emitting signal according to the preferred light-emitting delay time PRTd, and transmit the light-emitting signal to the display panel 10 to drive the display panel 10 to emit light.
  • the above S300 includes S310-S330.
  • the first sub-initialization signal VINT 2-1 is an initialization signal received by the light emitting device in a refresh frame.
  • the initial value VINT 2-1.0 of the first sub-initialization signal may be -6V ⁇ -1V.
  • the initial value VINT 2-1.0 of the first sub-initialization signal may be any one of -1V, -3V, -5V and -6V.
  • S320 Based on the initial value VINT 2-1.0 of the first sub-initialization signal, stepwise adjust the first sub-initialization signal VINT 2-1 until the adjusted first sub-initialization signal VINT 2-1.n exceeds the first sub-initialization signal VINT 2-1.n
  • the preset range of the signal VINT 2-1 is to obtain a plurality of first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n -1 within the preset range of the first sub-initialization signal VINT 2-1.
  • n ⁇ 1, and n is a positive integer.
  • the number of multiple light-emitting delay times Td 0 to Td m-1 is M
  • the number of multiple first sub-initialization signals VINT 2-1.0 to VINT 2-1.n-1 is N
  • the number of M light-emitting delay times Td 0 ⁇ Td m-1 and N first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 form M ⁇ N first parameter combinations
  • a first parameter combination includes a lighting delay time Td and a The first sub-initialization signal VINT 2-1 .
  • the preset range of the first sub-initialization signal VINT 2 - 1 is -6V ⁇ -1V.
  • the stepwise adjustment of the first sub-initialization signal VINT 2-1 refers to, based on the initial value VINT 2-1.0 of the first sub-initialization signal, with the second set step value Step 2 from low to high or from high to high. Low or adjust the first sub-initialization signal VINT 2-1 , each adjustment can get a first sub-initialization signal VINT 2-1.n .
  • the second set step value Step 2 can be 0.1V ⁇ 0.5V, for example, the second set step value Step 2 can be any of 0.1V, 0.2V, 0.3V, 0.4V and 0.5V one.
  • the initial value VINT 2-1.0 of the first sub-initialization signal is -6V
  • the second set step value Step 2 is 0.1V.
  • the first sub-initialization signal VINT 2-1 is adjusted from low to high, 0.1V each time, until the adjusted value of the first sub-initialization signal VINT 2-1.n is greater than -1V.
  • the initial value VINT 2-1.0 of the first sub-initialization signal is -1V
  • the second set step value Step 2 is 0.5V.
  • the first sub-initialization signal VINT 2-1 is adjusted from high to low by 0.5V each time until the adjusted value of the first sub-initialization signal VINT 2-1.n is less than -6V.
  • the display module 110 can obtain the pre-adjusted luminous delay time Td under the N first sub-initialization signals VINT 2-1 and a plurality of specified gray Multiple flicker values in steps 1 to S.
  • the first sub-initialization signal VINT 2-1 is firstly adjusted in steps, and each time the stepwise adjustment Before the first sub-initialization signal VINT 2-1 , obtain the pre-adjusted first sub-initialization signal VINT 2-1 at the same time, and display multiple flicker values of the module 110 under multiple specified gray scales 1-S, so that the While obtaining a plurality of luminous delay times Td 0 to Td m-1 , obtain the values of the display module 110 in a plurality of specified gray scales 1 to S under each of the first parameter combinations in the M ⁇ N first parameter combinations. Multiple blink values.
  • a plurality of flickering values corresponding to a first parameter combination is a set of flickering values.
  • the above S400 includes S410-S430.
  • the target lighting delay time AM Td is the most convergent blinking group among the M groups of blinking values corresponding to the first sub-initialization signal VINT 2-1 under the M lighting delay times Td 0 to Td m-1 The value corresponds to the luminous delay time Td.
  • the convergence of the flicker value group can be judged by the variance, and the smaller the variance, the higher the convergence.
  • the first sub-initialization signal is VINT 2-1.0 +Step 2 ⁇ 3
  • its corresponding target lighting delay time AM Td is Td 0 +Step 1 ⁇ 2.
  • the cross in Figure 19 is the flicker value corresponding to VINT 2-1.0 +Step 2 ⁇ 3.
  • S420 Determine a preferred first sub-initialization signal PR VINT 2-1 from the N first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 .
  • the preferred first sub-initialization signal PR VINT 2-1 is determined, so that in S430, the preferred light-emitting delay time PR Td is determined through the preferred first sub-initialization signal PR VINT 2-1 .
  • the preferred first sub-initialization signal PR VINT 2-1 reference may be made to the following for details, and the present disclosure will not elaborate here.
  • S430 Determine the target light-emitting delay time AM Td corresponding to the preferred first sub-initialization signal PR VINT 2-1 as the preferred light-emitting delay time PR Td.
  • the preferred target luminescence delay time AM Td corresponding to the first sub-initialization signal PR VINT 2-1 can be found. , as the preferred luminescence delay time PR Td.
  • the above S420 includes S421-S423.
  • S421 Obtain a plurality of second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-2.k-1 , and determine a preferred second sub-initialization signal PR VINT 2-2 therefrom.
  • the second sub-initialization signal VINT 2-2 is an initialization signal received by the light emitting device 11 in the sustain frame.
  • the process of obtaining a plurality of second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-1.k-1 , and determining the preferred second sub-initialization signal PR VINT 2-2 can refer to the following for details, and the present disclosure is here I won't go into details.
  • the second sub-initialization signal VINT 2-2 is an initialization signal received by the light-emitting device 11 in the sustaining frame, and the target gray scale is one of a plurality of specified gray scales 1-S.
  • the target gray scale is one of a plurality of specified gray scales 1-S.
  • the flicker value of the target gray scale meets the requirements
  • the flicker values of other gray scales among the multiple specified gray scales 1-S also meet the requirements.
  • different line layouts may correspond to different target gray scales.
  • the target gray scale can be selected according to the actual line layout, can be directly set according to empirical values, or can be determined based on multiple flicker values. With reference to the following, the present disclosure will not be described in detail here.
  • the N blinking values of the target gray scale corresponding to the N first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 can be selected in S4213 Find out the target gray values corresponding to N first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.
  • the N flicker values of the order can refer to the following for details, and the present disclosure will not repeat them here.
  • S423 Determine the first sub-initialization signal VINT 2-1 corresponding to the smallest flicker value among the N flicker values as the preferred first sub-initialization signal PR VINT 2-1 .
  • the first sub-initialization signal PR VINT 2-1 is preferably VINT 2 -1.0 +Step 2 ⁇ 2.
  • S421 includes S4211 ⁇ S4215.
  • the initial value VINT 2-2.0 of the second sub-initialization signal may be -6V ⁇ -1V.
  • the initial value VINT 2-2.0 of the second sub-initialization signal may be any one of -1V, -3V, -5V and -6V.
  • S4212 Based on the initial value VINT 2-2.0 of the second sub-initialization signal, stepwise adjust the second sub-initialization signal VINT 2-2 until the adjusted second sub-initialization signal VINT 2-2.k exceeds the second sub-initialization signal VINT 2-2.k
  • the preset range of the signal VINT 2-2 is to obtain a plurality of second sub- initialization signals VINT 2-2.0 ⁇ VINT 2-1.k -1 within the preset range of the second sub-initialization signal VINT 2-2.
  • k ⁇ 1, and k is a positive integer.
  • the number of multiple first sub-initialization signals VINT 2-1.0 to VINT 2-1.n-1 is N
  • the number of multiple second sub-initialization signals VINT 2-2.0 to VINT 2-1.k-1 is K N first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 and K second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-1.k-1 form N ⁇ K second
  • a second parameter combination includes a first sub-initialization signal VINT 2-1 and a second sub-initialization signal VINT 2-2 .
  • the preset range of the second sub-initialization signal VINT 2 - 2 is -6V ⁇ -1V.
  • the stepwise adjustment of the second sub-initialization signal VINT 2-2 refers to, based on the initial value VINT 2-2.0 of the second sub-initialization signal, with the third set step value Step 3 from low to high or from high to high. Low or adjust the second sub-initialization signal VINT 2-2 , each adjustment can get a second sub-initialization signal VINT 2-2.k .
  • the third set step value Step 3 can be 0.1V ⁇ 0.5V, for example, the third set step value Step 3 can be any of 0.1V, 0.2V, 0.3V, 0.4V and 0.5V one.
  • the initial value VINT 2-2.0 of the second sub-initialization signal is -6V
  • the third set step value Step 3 is 0.1V.
  • the second sub-initialization signal VINT 2-2 is adjusted from low to high, 0.1V each time, until the value of the adjusted second sub-initialization signal VINT 2-2.k is greater than -1V.
  • the initial value VINT 2-2.0 of the second sub-initialization signal is -1V
  • the third setting step value Step 3 is 0.5V.
  • the second sub-initialization signal VINT 2-2 is adjusted from high to low by 0.5V each time until the value of the adjusted second sub-initialization signal VINT 2-2.k is less than -6V.
  • one target lighting delay time AM Td can be any one of the N target lighting delay times AM Td corresponding to the N first sub-initialization signals VINT 2 - 1 in step S410 .
  • the display module 110 can obtain the pre-adjusted second sub-initialization signal VINT 2-2 , and the display module 110 can display N first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 and multiple flicker values under multiple specified gray scales 1 ⁇ S.
  • the display module 110 will display in a plurality of designated gray levels 1 ⁇ Multiple flicker values under S, so as to obtain each second parameter in N ⁇ K second parameter combinations while obtaining multiple second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-2.k-1 In combination, multiple flicker values of the display module 110 under multiple specified gray scales 1 ⁇ S are displayed.
  • the target gray scale is under any second sub-initialization signal VINT 2-2 (any one of VINT 2-2.0 ⁇ VINT 2-2.k-1 ) corresponding to N first sub-initialization signals VINT 2 -1.0 ⁇ VINT 2-1.n-1 , the difference between the maximum flicker value and the minimum flicker value is within the first preset threshold range, for example, the first preset threshold range can be 10dB ⁇ 15dB, and/or, in any In the second parameter combination, the flicker value has a second preset threshold range, for example, the second preset threshold range may be -40dB ⁇ -70dB.
  • the target grayscale is the specified grayscale 5 .
  • S4215 From the plurality of second sub-initialization signals VINT 2-2.0 to VINT 2-2.k-1 , find out the second sub-initialization signal VINT 2 with the largest flicker value range of the display module 110 under the target gray scale -2 , as the preferred second sub-initialization signal PR VINT 2-2 .
  • the target grayscale is the designated grayscale 5
  • the second sub-initialization signal PR VINT 2-2 is VINT 2-1.0 +Step 3 .
  • the above S421 includes S4216-S4219.
  • S4216 Set an initial value VINT 2-2.0 of the second sub-initialization signal, and select a designated gray scale from a plurality of designated gray scales 1 ⁇ S as a target gray scale.
  • the meaning of the second sub-initialization signal VINT 2 - 2 , the value range of the initial value, and the meaning of the target gray scale can be referred to above, and the present disclosure will not repeat them here.
  • different line layouts may correspond to different target gray scales.
  • the target gray scale can be selected according to the actual line layout, that is, a specified gray scale can be directly selected from multiple specified gray scales 1 to S according to empirical values. level as the target gray level.
  • S4217 Based on the initial value VINT 2-2.0 of the second sub-initialization signal, stepwise adjust the second sub-initialization signal VINT 2-2 until the adjusted second sub-initialization signal VINT 2-2.k exceeds the second sub-initialization signal VINT 2-2.k
  • the preset range of the signal VINT 2-2 is used to obtain a plurality of second sub- initialization signals VINT 2-2.0 ⁇ VINT 2-2.k -1 within the preset range of the second sub-initialization signal VINT 2-2.
  • the number of multiple first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 is N
  • the multiple second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-1.k-1 The number is K
  • N first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 and K second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-1.k-1 form N ⁇ K second parameter combinations
  • one second parameter combination includes a first sub-initialization signal VINT 2-1 and a second sub-initialization signal VINT 2-2 .
  • the preset range of the second sub-initialization signal VINT 2-2 can refer to the above.
  • the process of stepwise adjusting the second sub-initialization signal VINT 2-2 until the adjusted second sub-initialization signal VINT 2-2.k exceeds the preset range of the second sub-initialization signal VINT 2-2 can refer to the above The present disclosure will not go into details here.
  • S4218 Based on a target lighting delay time AM Td, under each second parameter combination in the N ⁇ K second parameter combinations, acquire multiple flicker values of the display module 110 at the target gray scale.
  • the display module 110 can obtain the pre-adjusted second sub-initialization signal VINT 2-2 , and the display module 110 can perform N first sub-initialization Signals VINT 2-1.0 to VINT 2-1.n-1 and multiple flickering values under the target gray scale.
  • the display module 110 flashes multiple times in the target gray scale value, so as to obtain a plurality of second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-2.k-1 at the same time, to obtain each second parameter combination in N ⁇ K second parameter combinations, the display module 110 Multiple flicker values at the target grayscale.
  • the second sub-initialization signal PR VINT 2-2 is preferably the second sub-initialization signal corresponding to the lowest point in the circle in FIG. 22 VINT 2-2 , namely VINT 2-2.0 +Step 3 ⁇ 2.
  • the above S400 includes S440-S460.
  • S440 Determine the light-emitting delay time Td corresponding to the minimum flicker value of the display module 110 in each specified gray scale (1-S) under multiple light-emitting delay times Td 0 to Td m-1 as the target light-emitting delay Time AM Td.
  • the target luminescence delay time AM Td corresponding to the specified grayscale 1 is Td 0 + Step 1 ⁇ 2;
  • the target luminescence delay time AM Td corresponding to the specified grayscale 2 is Td 0 + Step 1 ⁇ 2;
  • S450 Determine the target light-emitting delay time AMTd as the preferred light-emitting delay time PR Td.
  • the minimum flicker values of all the specified gray scales 1-S are located under the same light emission delay time Td, which is the target light emission delay time AM Td, that is, the preferred light emission delay time PR Td.
  • S460 Determine one target light-emitting delay time AMTd among the plurality of target light-emitting delay times AMTd as the preferred light-emitting delay time PRTd.
  • the number of minimum flicker values corresponding to the light-emitting delay time PR Td is greater than or equal to the number of minimum flicker values corresponding to other target light-emitting delay times AM Td.
  • the light emission delay time PR Td is preferably Td 0 +Step 1 ⁇ 2.
  • the above parameter adjustment method further includes S500-S560.
  • S500 Set an initial value VINT 2-1.0 of the first sub-initialization signal.
  • S510 Based on the initial value VINT 2-1.0 of the first sub-initialization signal, stepwise adjust the first sub-initialization signal VINT 2-1 until the adjusted first sub-initialization signal VINT 2-1.n exceeds the first sub-initialization signal VINT 2-1.n
  • the preset range of the signal VINT 2-1 is to obtain a plurality of first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n -1 within the preset range of the first sub-initialization signal VINT 2-1.
  • the number of the plurality of first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 is N.
  • the preset range of the first sub-initialization signal VINT 2 - 1 can refer to the above, and the present disclosure will not repeat it here.
  • the process of stepwise adjusting the first sub-initialization signal VINT 2-1 until the adjusted first sub-initialization signal VINT 2-1.n exceeds the preset range of the first sub-initialization signal VINT 2-1 can refer to the above Document S320, the present disclosure will not be repeated here.
  • S530 Based on the initial value VINT 2-2.0 of the second sub-initialization signal, stepwise adjust the second sub-initialization signal VINT 2-2 until the adjusted second sub-initialization signal VINT 2-2.k exceeds the second sub-initialization signal VINT 2-2.k
  • the preset range of the signal VINT 2-2 is to obtain a plurality of second sub- initialization signals VINT 2-2.0 ⁇ VINT 2-1.k -1 within the preset range of the second sub-initialization signal VINT 2-2.
  • the number of multiple first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 is N, and the multiple second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-1.k-1
  • the number is K; N first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 and K second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-1.k-1 form N ⁇ K second parameter combinations, one second parameter combination includes a first sub-initialization signal VINT 2-1 and a second sub-initialization signal VINT 2-2 .
  • the preset range of the second sub-initialization signal VINT 2-2 can refer to the above.
  • the process of stepwise adjusting the second sub-initialization signal VINT 2-2 until the adjusted second sub-initialization signal VINT 2-2.k exceeds the preset range of the second sub-initialization signal VINT 2-2.k can refer to For the above, the present disclosure will not be described in detail here.
  • the display module 110 can obtain the pre-adjusted second sub-initialization signal VINT 2-2 , and the display module 110 can perform N first sub-initialization Signals VINT 2-1.0 ⁇ VINT 2-1.n-1 and multiple flicker values at multiple specified gray scales 1-S.
  • the display module 110 will display in a plurality of designated gray levels 1 ⁇ Multiple flicker values under S, so as to obtain each second parameter in N ⁇ K second parameter combinations while obtaining multiple second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-2.k-1 In combination, multiple flicker values of the display module 110 under multiple specified gray scales 1 ⁇ S are displayed.
  • S550 Select a specified grayscale from multiple specified grayscales 1-S as the target grayscale.
  • the target gray scale is under any second sub-initialization signal VINT 2-2 (any one of VINT 2-2.0 ⁇ VINT 2-2.k-1 ) corresponding to N first sub-initialization signals VINT 2 -1.0 ⁇ VINT 2-1.n-1 , the difference between the maximum flicker value and the minimum flicker value is within the first preset threshold range, for example, the first preset threshold range can be 10dB ⁇ 15dB, and/or, in any In the second parameter combination, the flicker value has a second preset threshold range, for example, the second preset threshold range may be -40dB ⁇ -70dB.
  • the target grayscale is the specified grayscale 5 .
  • S560 From the plurality of second sub-initialization signals VINT 2-2.0 to VINT 2-2.k-1 , find out the second sub-initialization signal VINT 2 with the largest flicker value range of the display module 110 under the target gray scale -2 , as the preferred second sub-initialization signal PR VINT 2-2 .
  • the target grayscale is the designated grayscale 5
  • the second sub-initialization signal PR VINT 2-2 is VINT 2-1.0 +Step 3 .
  • the above parameter adjustment method further includes S600-S650.
  • S610 Based on the initial value VINT 2-1.0 of the first sub-initialization signal, stepwise adjust the first sub-initialization signal VINT 2-1 until the adjusted first sub-initialization signal VINT 2-1.n exceeds the first sub-initialization signal VINT 2-1.n
  • the preset range of the signal VINT 2-1 is to obtain a plurality of first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n -1 within the preset range of the first sub-initialization signal VINT 2-1.
  • the number of the plurality of first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 is N.
  • the preset range of the first sub-initialization signal VINT 2 - 1 can refer to the above.
  • the process of stepwise adjusting the first sub-initialization signal VINT 2-1 until the adjusted first sub-initialization signal VINT 2-1.n exceeds the preset range of the first sub-initialization signal VINT 2-1 can refer to the above The present disclosure will not go into details here.
  • S620 Set an initial value VINT 2-2.0 of the second sub-initialization signal, and select a designated gray scale from a plurality of designated gray scales 1 ⁇ S as a target gray scale.
  • the meaning of the second sub-initialization signal VINT 2 - 2 , the value range of the initial value, and the meaning of the target gray scale can be referred to above, and the present disclosure will not repeat them here.
  • different line layouts may correspond to different target gray scales.
  • the target gray scale can be selected according to the actual line layout, that is, a specified gray scale can be directly selected from multiple specified gray scales 1 to S according to empirical values. level as the target gray level.
  • S630 Based on the initial value VINT 2-2.0 of the second sub-initialization signal, stepwise adjust the second sub-initialization signal VINT 2-2 until the adjusted second sub-initialization signal VINT 2-2.k exceeds the second sub-initialization signal VINT 2-2.k
  • the preset range of the signal is to obtain a plurality of second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-2.k-1 within the preset range of the second sub-initialization signal VINT 2-2.
  • the number of multiple second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-2.k-1 is K; N first sub-initialization signals VINT 2-1.0 ⁇ VINT 2-1.n-1 and K second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-2.k-1 form N ⁇ K second parameter combinations, one second parameter combination includes a first sub-initialization signal VINT 2-1 and a first sub-initialization signal VINT 2-1 Second child initialization signal VINT 2-2 .
  • the preset range of the second sub-initialization signal VINT 2-2 can refer to the above.
  • the process of stepwise adjusting the second sub-initialization signal VINT 2-2 until the adjusted second sub-initialization signal VINT 2-2.k exceeds the preset range of the second sub-initialization signal VINT 2-2 can refer to the above The present disclosure will not go into details here.
  • the display module 110 can obtain the pre-adjusted second sub-initialization signal VINT 2-2 , and the display module 110 can perform N first sub-initialization Signals VINT 2-1.0 to VINT 2-1.n-1 and multiple flickering values under the target gray scale.
  • the display module 110 flashes multiple times in the target gray scale value, so as to obtain a plurality of second sub-initialization signals VINT 2-2.0 ⁇ VINT 2-2.k-1 at the same time, to obtain each second parameter combination in N ⁇ K second parameter combinations, the display module 110 Multiple flicker values at the target grayscale.
  • the second sub-initialization signal PR VINT 2-2 is preferably the second sub-initialization signal corresponding to the lowest point in the circle in FIG. 22 VINT 2-2 , namely VINT 2-2.0 +Step 3 ⁇ 2.
  • the above parameter adjustment method further includes S700.
  • the target grayscale is the specified grayscale 5
  • the preferred second sub-initialization signal PR VINT 2-2 is VINT 2-2.0 + Step 3 ⁇ 2
  • the first sub-initialization signal PR VINT 2-2 is preferably VINT 2-2.0 + Step 3 ⁇ 2.
  • the initialization signal PR VINT 2-1 is VINT 2-1 +Step 2 ⁇ 3.
  • the above parameter adjustment method further includes S800-S830.
  • the data keeping signal V keep is the data signal received by the data signal terminal of the pixel driving circuit 12 in the keeping frame.
  • the initial value V keep.0 of the data keeping signal may be 1V ⁇ 8V.
  • the initial value V keep.0 of the data keep signal is any one of 1V, 3V, 5V and 8V.
  • the stepwise adjustment of the data keeping signal V keep can be, based on the initial value V keep.0 of the data keeping signal, adjusting the data keeping signal V from low to high or from high to low with the fourth set step value Step 4 keep , a data keep signal V keep.x is obtained for each adjustment.
  • the fourth set step value Step 4 can be 0.1V ⁇ 0.5V, for example, the fourth set step value Step 4 can be any of 0.1V, 0.2V, 0.3V, 0.4V and 0.5V one.
  • the initial value V keep.0 of the data keeping signal is 1V
  • the fourth set step value Step 4 is 0.1V.
  • the data keeping signal V keep is adjusted from low to high, 0.1V each time, until the value of the adjusted data keeping signal V keep.x is greater than 8V.
  • the initial value V keep.0 of the data keeping signal is 8V
  • the fourth set step value Step 4 is 0.5V.
  • the data keeping signal V keep is adjusted from high to low, 0.5V each time, until the value of the adjusted data keeping signal V keep.x is less than 1V.
  • the flickering value of the display module 110 at the target gray scale under the pre-adjustment data hold signal V keep can be acquired before each stepwise adjustment of the data hold signal V keep . That is to say, during the stepwise adjustment of the data hold signal V keep , the flicker value of the corresponding data hold signal V keep before each adjustment under the target gray scale is obtained at the same time, so as to obtain multiple data hold signals V keep .0 ⁇ V keep.x , obtain the flicker value of the display module 110 under the target gray scale under each data hold signal V keep (V keep.0 ⁇ V keep.x ).
  • the data keep signal PR V keep is the data keep signal V keep corresponding to the lowest point in the circle in FIG. 23 , that is, V keep.0 + Step 4 ⁇ 2.
  • the electronic equipment includes a processor and a memory, the memory stores computer program instructions, and when the computer program instructions are run on the processor, the processor performs the parameter adjustment as described in any of the above-mentioned embodiments One or more steps in a method.
  • the parameter adjustment system 120 of the display module 110 provided by some embodiments of the present disclosure includes a processor 40 , a test device 50 and a detection device 60 .
  • the processor 40 is configured to execute one or more steps in the parameter adjustment method described in any one of the above-mentioned embodiments.
  • the processor 40 may be the processor 40 on the motherboard of the display device 100 (see FIG. 1 ).
  • the test device 50 is coupled to the processor 40, and the test device 50 is configured to, according to the light emission delay time Td from the processor 40, the first sub-initialization signal VINT 2-1 , the second sub-initialization signal VINT 2-2 and the data hold The signal V keep sends a control instruction for controlling the display of the display module 110 .
  • the test device 50 is a frame generator.
  • the detection device 60 is coupled to the processor 40 .
  • the detection device 60 is configured to measure the flicker value when the display module 110 is displayed, and send the flicker value to the processor 40 .
  • the detection device 60 is a color analyzer.
  • Some embodiments of the present disclosure provide a computer-readable storage medium (for example, a non-transitory computer-readable storage medium), where computer program instructions are stored in the computer-readable storage medium, and the computer program instructions are displayed on a computer (for example, a display device) ) to make the computer execute the parameter adjustment method described in any one of the above-mentioned embodiments.
  • a computer for example, a display device
  • the above-mentioned computer-readable storage medium may include, but is not limited to: magnetic storage devices (such as hard disks, floppy disks, or magnetic tapes, etc.), optical disks (such as CDs (Compact Disks, compact disks), DVDs (Digital Versatile Disks, Digital Versatile Disk), etc.), smart cards and flash memory devices (for example, EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), card, stick or key drive, etc.).
  • Various computer-readable storage media described in this disclosure can represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the computer program product provided by some embodiments of the present disclosure is stored on a non-transitory computer-readable storage medium.
  • the computer program product includes computer program instructions.
  • the computer program instructions When the computer program instructions are executed on a computer (eg, a display device), the computer program instructions cause the computer to execute the parameter adjustment method described in the above-mentioned embodiments.
  • Some embodiments of the present disclosure also provide a computer program.
  • the computer program When the computer program is executed on a computer (for example, a display device), the computer program causes the computer to execute the parameter adjustment method described in the above-mentioned embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示模组(110)的参数调节方法。显示模组(110)能够在低频驱动模式下工作,低频驱动模式包括多个低频周期,一个低频周期包括一个刷新帧(1F(1))和至少一个保持帧(1F(2))。参数调节方法包括:设定发光延迟时间(Td)的初始值(Td0)和多个指定灰阶(S100);发光延迟时间(Td)为一帧的充电阶段(P2)开始与发光阶段(P3)开始的时间差。基于发光延迟时间(Td)的初始值(Td0),步进式调整发光延迟时间(Td),直至调整后的发光延迟时间超出发光延迟时间(Td)的预设范围,得到在发光延迟时间(Td)的预设范围内的多个发光延迟时间(S200)。在每个发光延迟时间(Td)下,获取显示模组(110)在多个指定灰阶下的多个闪烁值(S300)。根据多个发光延迟时间对应的多个闪烁值,从多个发光延迟时间中确定优选发光延迟时间(S400)。

Description

显示模组的参数调节方法及系统、显示模组、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示模组的参数调节方法、电子设备、显示模组的参数调节系统、显示模组、显示装置、计算机可读存储介质及计算机程序产品。
背景技术
有源矩阵有机发光二极管(Active-matrix organic light-emitting diode,AMOLED)显示模组由于具有自发光、低功耗、宽视角、响应速度快以及高对比度等优点,因而广泛应用于手机、电视、笔记本电脑等智能产品中。此外,AMOLED显示模组由于具有质量轻、厚度薄以及抗弯折性能的特点,因此成为目前国内外众多学者的研究重点。
发明内容
一方面,提供一种显示模组的参数调节方法。所述显示模组能够在低频驱动模式下工作,所述低频驱动模式包括多个低频周期,一个低频周期包括一个刷新帧和至少一个保持帧。
所述参数调节方法包括:设定发光延迟时间的初始值和多个指定灰阶;所述发光延迟时间为一帧的充电阶段开始与发光阶段开始的时间差。基于所述发光延迟时间的初始值,步进式调整所述发光延迟时间,直至调整后的发光延迟时间超出发光延迟时间的预设范围,得到在所述发光延迟时间的预设范围内的多个发光延迟时间。在每个所述发光延迟时间下,获取所述显示模组在所述多个指定灰阶下的多个闪烁值。根据所述多个发光延迟时间对应的多个闪烁值,从所述多个发光延迟时间中确定优选发光延迟时间。
在一些实施例中,所述在每个所述发光延迟时间下,获取所述显示模组在所述多个指定灰阶下的多个闪烁值,包括:设定第一子初始化信号的初始值;所述第一子初始化信号为在所述刷新帧发光器件所接收的初始化信号。基于所述第一子初始化信号的初始值,步进式调整所述第一子初始化信号,直至调整后的第一子初始化信号超出第一子初始化信号的预设范围,得到在所述第一子初始化信号的预设范围内的多个第一子初始化信号;所述多个发光延迟时间的数量为M个,所述多个第一子初始化信号的数量为N个,M个发光延迟时间和N个第一子初始化信号组成M×N个第一参数组合,一个第一参数组合包括一个发光延迟时间和一个第一子初始化信号。在所述M×N个第一参数组合中的每个所述第一参数组合下,获取所述显示模组在所述多 个指定灰阶下的多个闪烁值。
在一些实施例中,一个第一参数组合对应的多个闪烁值为一组闪烁值。所述根据所述多个发光延迟时间对应的多个闪烁值,从所述多个发光延迟时间中确定优选发光延迟时间,包括:从M个发光延迟时间中,确定每个第一子初始化信号对应的目标发光延迟时间,得到多个目标发光延迟时间;所述目标发光延迟时间为,所述第一子初始化信号在M个发光延迟时间下对应的M组闪烁值中,收敛性最高的一组闪烁值所对应的发光延迟时间。确定优选第一子初始化信号;所述优选第一子初始化信号为所述N个第一子初始化信号中的一个。将与所述优选第一子初始化信号对应的目标发光延迟时间,确定为优选发光延迟时间。
在一些实施例中,所述从N个第一子初始化信号中,确定优选第一子初始化信号,包括:获取多个第二子初始化信号,并将所述多个第二子初始化信号中的一个第二子初始化信号确定为优选第二子初始化信号;所述第二子初始化信号为在所述保持帧发光器件所接收的初始化信号。基于所述优选第二子初始化信号,获取N个第一子初始化信号对应的目标灰阶的N个闪烁值,所述目标灰阶为多个指定灰阶的一个。将所述N个闪烁值中的最小闪烁值所对应的第一子初始化信号,确定为优选第一子初始化信号。
在一些实施例中,所述获取多个第二子初始化信号,并将所述多个第二子初始化信号中的一个第二子初始化信号确定为优选第二子初始化信号,包括:设定第二子初始化信号的初始值。基于所述第二子初始化信号的初始值,步进式调整所述第二子初始化信号,直至调整后的第二子初始化信号超出第二子初始化信号的预设范围,得到在所述第二子初始化信号的预设范围内的多个第二子初始化信号;所述多个第一子初始化信号的数量为N个,所述多个第二子初始化信号的数量为K个,N个第一子初始化信号和K个第二子初始化信号形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号和一个第二子初始化信号。在所述多个目标发光延迟时间中的一个目标发光延迟时间及所述N×K个第二参数组合中的每个第二参数组合下,从所述多个指定灰阶中,选取一个指定灰阶作为目标灰阶;所述目标灰阶在任一第二子初始化信号下所对应的N个第一子初始化信号下,最大闪烁值与最小闪烁值之差在第一预设阈值范围内;和/或,在任一第二参数组合中,闪烁值在第二预设阈值范围内。从所述多个第二子初始化信号中,找出所述显示模组在所述目标灰阶下的闪烁值的范围最大的第二子初始化信号,作为优选第二子初始化信号。
在一些实施例中,所述获取多个第二子初始化信号,并将所述多个第二子初始化信号中的一个第二子初始化信号确定为优选第二子初始化信号,包括:设定第二子初始化信号的初始值,并从所述多个指定灰阶中选取一个指定灰阶作为目标灰阶。基于所述第二子初始化信号的初始值,步进式调整所述第二子初始化信号,直至调整后的第二子初始化信号超出第二子初始化信号的预设范围,得到在所述第二子初始化信号的预设范围内的多个第二子初始化信号;所述多个第一子初始化信号的数量为N个,所述多个第二子初始化信号的数量为K个,N个第一子初始化信号和K个第二子初始化信号形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号和一个第二子初始化信号。基于所述多个目标发光延迟时间中的一个目标发光延迟时间,在所述N×K个第二参数组合中的每个第二参数组合下,获取所述显示模组在所述目标灰阶下的多个闪烁值。从所述多个第二子初始化信号中,找出所述显示模组在所述目标灰阶下的最小闪烁值所对应的第二子初始化信号,作为优选第二子初始化信号。
在一些实施例中,所述根据所述多个发光延迟时间对应的多个闪烁值,从所述多个发光延迟时间中确定优选发光延迟时间,包括:将所述多个发光延迟时间下,所述显示模组在每个指定灰阶下的最小闪烁值所对应的发光延迟时间,确定为目标发光延迟时间。在所述目标发光延迟时间为一个的情况下,将所述目标发光延迟时间确定为优选发光延迟时间。在所述目标发光延迟时间为多个的情况下,将所述多个目标发光延迟时间中的其中一个目标发光延迟时间确定为优选发光延迟时间;所述优选发光延迟时间所对应的最小闪烁值的个数,大于或等于其他目标发光延迟时间所对应的最小闪烁值的个数。
在一些实施例中,所述参数调节方法还包括:设定第一子初始化信号的初始值;所述第一子初始化信号为在所述刷新帧发光器件所接收的初始化信号。基于所述第一子初始化信号的初始值,步进式调整所述第一子初始化信号,直至调整后的第一子初始化信号超出第一子初始化信号的预设范围,得到在所述第一子初始化信号的预设范围内的多个第一子初始化信号;所述多个第一子初始化信号的数量为N个。
设定第二子初始化信号的初始值;所述第二子初始化信号为在所述保持帧发光器件所接收的初始化信号。基于所述第二子初始化信号的初始值,步进式调整所述第二子初始化信号,直至调整后的第二子初始化信号超出第二子初始化信号的预设范围,得到在所述第二子初始化信号的预设范围内的多 个第二子初始化信号;所述多个第二子初始化信号的数量为K个;N个第一子初始化信号和K个第二子初始化信号形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号和一个第二子初始化信号。
在所述优选发光延迟时间,及所述N×K个第二参数组合中每个第二参数组合下,获取所述显示模组在所述多个指定灰阶下的多个闪烁值。从所述多个指定灰阶中,选取一个指定灰阶作为目标灰阶;所述目标灰阶在任一第二子初始化信号下所对应的N个第一子初始化信号下,最大闪烁值与最小闪烁值之差在第一预设阈值范围内;和/或,在任一第二参数组合中,闪烁值在第二预设阈值范围内。从所述多个第二子初始化信号中,找出所述显示模组在所述目标灰阶下的闪烁值的范围最大的第二子初始化信号,作为优选第二子初始化信号。
在一些实施例中,所述第一预设阈值范围为10dB~15dB;和/或,所述第二预设阈值范围为-40dB~-70dB。
在一些实施例中,所述参数调节方法还包括:设定第一子初始化信号的初始值;所述第一子初始化信号为在所述刷新帧发光器件所接收的初始化信号。基于所述第一子初始化信号的初始值,步进式调整所述第一子初始化信号,直至调整后的第一子初始化信号超出第一子初始化信号的预设范围,得到在所述第一子初始化信号的预设范围内的多个第一子初始化信号;所述多个第一子初始化信号的数量为N个。设定第二子初始化信号的初始值,并从所述多个指定灰阶中选取一个指定灰阶作为目标灰阶;所述第二子初始化信号为在所述保持帧发光器件所接收的初始化信号。
基于所述第二子初始化信号的初始值,步进式调整所述第二子初始化信号,直至调整后的第二子初始化信号超出第二子初始化信号的预设范围,得到在所述第二子初始化信号的预设范围内的多个第二子初始化信号;所述多个第二子初始化信号的数量为K个;N个第一子初始化信号和K个第二子初始化信号形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号和一个第二子初始化信号。在所述优选发光延迟时间,及所述N×K个第二参数组合中每个第二参数组合下,获取所述显示模组在所述目标灰阶下的多个闪烁值。
从所述多个第二子初始化信号中,找出所述显示模组在所述目标灰阶下的最小闪烁值所对应的第二子初始化信号,作为优选第二子初始化信号。
在一些实施例中,所述参数调节方法还包括:基于所述优选第二子初始化信号,将所述显示模组在所述多个第一子初始化信号下,所述目标灰阶的 最小闪烁值所对应的第一子初始化信号,确定为优选第一子初始化信号。
在一些实施例中,所述参数调节方法还包括:设定数据保持信号的初始值;所述数据保持信号为在所述保持帧中像素驱动电路的数据信号端所接收的数据信号。基于所述数据保持信号的初始值,步进式调整数据保持信号,直至调整后的数据保持信号超出数据保持信号的预设范围,得到在所述数据保持信号的预设范围内的多个数据保持信号。在所述优选发光延迟时间、所述优选第一子初始化信号和所述优选第二子初始化信号、及每个数据保持信号下,获取所述显示模组在所述目标灰阶下的闪烁值。将所述多个数据保持信号下,所述目标灰阶对应的最小闪烁值所对应的数据保持信号,确定优选数据保持信号。
在一些实施例中,所述第一子初始化信号的预设范围为-1V~-6V。
在一些实施例中,所述第二子初始化信号的预设范围为-1V~-6V。
在一些实施例中,所述数据保持信号的预设范围为1V~8V。
在一些实施例中,所述发光延迟时间的预设范围为0~30个行扫描时段。
另一方面,提供一种电子设备,包括处理器和存储器,所述存储器存储有计算机程序指令,所述计算机程序指令在所述处理器上运行时,使得所述处理器执行如上所述的参数调节方法中的一个或多个步骤。
又一方面,提供一种显示模组的参数调节系统。所述显示模组的参数调节系统包括处理器、测试设备和检测设备。所述处理器被配置为执行如上所述的参数调节方法中的一个或多个步骤。所述测试设备与所述处理器耦接;所述测试设备被配置为,根据来自所述处理器的第一子初始化信号、第二子初始化信号、发光延迟时间和数据保持信号,发出用于控制显示模组显示的控制指令。所述检测设备与所述处理器耦接;所述检测设备被配置为,测量所述显示模组显示时的闪烁值,并将所述闪烁值发送给所述处理器。
又一方面,提供一种显示模组。所述显示模组包括显示面板和驱动芯片;所述驱动芯片中存储有优选发光延迟时间,所述优选发光延迟时间根据上述任一实施例所述的参数调整方法得到;所述驱动芯片被配置为,根据所述优选发光延迟时间,生成发光信号,并将所述发光信号传输至所述显示面板。
在一些实施例中,所述驱动芯片中还存储有优选第一子初始化信号、优选第二子初始化信号和优选数据保持信号中的至少一者;所述优选第一子初始化信号根据上述实施例所述的参数调整方法得到,所述优选第二子初始化信号根据上述实施例所述的参数调整方法得到,所述优选数据保持信号根据上述实施例所述的参数调整方法得到。
再一方面,提供一种显示装置。所述显示装置包括上述任一实施例所述的显示模组。
再一方面,提供一种计算机可读存储介质。所述计算机可读存储介质存储有计算机程序指令,所述计算机程序指令在处理器上运行时,使得所述处理器执行上述任一实施例所述的参数调节方法中的一个或多个步骤。
又一方面,提供一种计算机程序产品。所述计算机程序产品存储在非暂态的计算机可读存储介质上。所述计算机程序产品包括计算机程序指令,在计算机(例如,显示装置)上执行所述计算机程序指令时,所述计算机程序指令使计算机执行上述任一实施例所述的参数调节方法。
又一方面,提供一种计算机程序。当所述计算机程序在计算机(例如,显示装置)上执行时,所述计算机程序使计算机执行如上述任一实施例所述的显示模组的参数调节方法。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的显示装置的结构图;
图2为根据一些实施例的显示模组的结构图;
图3为根据一些实施例的显示面板的结构图;
图4为图3中沿剖面线A-A'处的剖视图;
图5为根据一些实施例的子像素的电路图;
图6为根据一些实施例的像素驱动电路的一种时序图;
图7为根据一些实施例的像素驱动电路的另一时序图;
图8为根据一些实施例的参数调节系统及显示模组的结构框图;
图9~图18为根据一些实施例的显示模组的参数调节方法的流程图;
图19为根据一些实施例的显示模组在多个发光延迟时间、多个第一子初始化信号、及多个指定灰阶下的闪烁值数据图;
图20为根据一些实施例的显示模组在多个发光延迟时间、及多个指定灰阶下的闪烁值数据图;
图21为根据一些实施例的显示模组在多个第一子初始化信号、多个第 二子初始化信号、及多个指定灰阶下的闪烁值数据图;
图22为根据一些实施例的显示模组在多个第一子初始化信号、及多个第二子初始化信号下的闪烁值数据图;
图23为根据一些实施例的显示模组在多个数据保持信号及目标灰阶下的闪烁值数据图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A 和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供了一种显示模组的参数调节方法、电子设备、显示模组的参数调节系统、显示模组、显示装置、计算机可读存储介质及计算机程序产品。以下对显示模组的参数调节方法、电子设备、显示模组的参数调节系统、显示模组、显示装置、计算机可读存储介质及计算机程序产品分别进行介绍。
如图1所示,本公开的一些实施例提供一种显示装置100,该显示装置100可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
在一些实施例中,该显示装置100包括显示模组110和壳体130。
在一些实施例中,如图2所示,显示模组110包括显示面板10、柔性电路板20、驱动芯片以及其他电子配件等。
上述显示面板10的类型包括多种,可以根据实际需要选择设置。
示例性地,上述显示面板10可以为电致发光显示面板,例如,可以为有机发光二极管(Organic Light Emitting Diode,简称OLED)显示面板、量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)显示面板等,本公开实施例对此不做具体限定。
下面以上述显示面板10为OLED显示面板为例,对本公开的一些实施例进行示意性说明。
在一些实施例中,如图2和图3所示,上述显示面板10具有显示区A,以及设置在显示区至少一侧的周边区B。图2和图3中均以周边区B围绕显示区A为例进行示意。
其中,显示区A为显示图像的区域,显示区A被配置为设置子像素P。周边区B为不显示图像的区域,周边区B被配置为设置显示驱动电路,例如,栅极驱动电路和源极驱动电路。
示例性地,如图2和图3所示,上述显示面板10包括设置在衬底1的一侧、且位于显示区A的多个子像素P。该多个子像素P排列为多行和多列,每行包括第一方向X排列为的多个子像素P,每列包括沿第二方向Y排列的多个子像素P。其中,每行子像素P可以包括多个子像素P,每列子像素P可以包括多个子像素P。
此处,第一方向X和第二方向Y相互交叉。第一方向X和第二方向Y之间的夹角可以根据实际需要选择设置。示例性地,第一方向X和第二方向Y之间的夹角可以为85°、89°或90°等。
其中,如图3和图4所示,子像素P包括设置于衬底1上的发光器件11和像素驱动电路12,像素驱动电路12包括多个薄膜晶体管121。薄膜晶体管121包括有源层1211、源极1212、漏极1213和栅极1214,源极1212和漏极1213分别与有源层1211接触。沿垂直于衬底1且远离衬底1的方向,发光器件11包括依次设置的第一电极层111、发光功能层112以及第二电极层113,第一电极层111和多个薄膜晶体管121中作为驱动晶体管的薄膜晶体管的源极1212或漏极1213电连接,图4中以第一电极层111和薄膜晶体管121的源极1212电连接进行示意。
需要说明的是,上述源极1212和漏极1213可以互换,即图4中的1212表示漏极,图4中的1213表示源极。
在一些实施例中,发光功能层112仅包括发光层。在另一些实施例中,发光功能层112除包括发光层外,还包括电子传输层(election transporting layer,简称ETL)、电子注入层(election injection layer,简称EIL)、空穴传输层(hole  transporting layer,简称HTL)和空穴注入层(hole injection layer,简称HIL)中的至少一个。
在一些实施例中,如图4所示,显示面板10还包括像素界定层114,像素界定层114包括多个开口区,一个发光器件11设置于一个开口区中。
在一些实施例中,如图4所示,显示面板10还包括设置于薄膜晶体管121和第一电极111之间的第一平坦层115。
在一些实施例中,如图4所示,显示面板10还包括设置于发光器件11远离衬底1的一侧的封装层2。其中,封装层2可以为封装薄膜,还可以为封装盖板。
在一些实施例中,如图2和图3所示,上述显示面板10还可以包括设置在衬底1的一侧、且位于显示区A的多条栅线GL以及多条数据线DL。其中,该多条栅线GL沿第一方向X延伸,该多条数据线DL沿第二方向Y延伸。
示例性地,可以将沿第一方向X排列成一行的子像素P称为同一行子像素P,将沿第二方向Y排列成一列的子像素P称为同一列子像素P。同一行子像素P可以与一条栅线GL电连接,同一列子像素P可以与一条数据线DL电连接。
其中,一条栅线GL可以与同一行子像素P中的多个像素驱动电路12电连接,一条数据线DL可以与同一列子像素P中的多个像素驱动电路12电连接。
在像素驱动电路中,扫描晶体管与复位晶体管大部分时间都是关闭的,需要较低的漏电速度;开关晶体管和驱动晶体管大部分时间都是开启的,需要较高的电荷迁移率。结合铟镓锌氧化物薄膜晶体管(英文:Thin Film Transistor,简称TFT)在低刷新率下的稳定性高和制作成本较低的优点,以及低温多晶硅TFT高电荷迁移率的优点,产生了低温多晶氧化物(英文:Low Temperature Polycrystalline Oxide,简称LTPO)像素驱动电路。
在LTPO像素驱动电路中,扫描晶体管与复位晶体管采用N型的铟镓锌氧化物TFT,开关晶体管和驱动晶体管采用低温多晶硅TFT,这样可以以低生产成本实现高的电荷迁移率、稳定性和可扩展性。
上述像素驱动电路的结构包括多种,可以根据实际需要选择设置。下面结合图5和图6,以LTPO像素驱动电路包括8个晶体管T与1个电容器CST为例,对子像素P的结构及工作过程进行示意性说明。
示例性地,如图5所示,像素驱动电路12包括8个晶体管T与1个电容器CST。像素驱动电路12的第一晶体管T1和第七晶体管T7的控制极均与复 位信号端RESET耦接,第二晶体管T2和第四晶体管T4的控制极均与第一扫描信号端GATE1耦接,第八晶体管T8的控制极与第二扫描信号端GATE2耦接。第一晶体管T1和第七晶体管T7均为复位晶体管,第二晶体管T2、第四晶体管T4和第八晶体管T8为扫描晶体管。第三晶体管T3的控制极与电容器CST的一端耦接,第五晶体管T5和第六晶体管T6的控制极均与使能信号端EM耦接;第三晶体管T3为驱动晶体管,第五晶体管T5和第六晶体管T6为开关晶体管,第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6和第七晶体管T7均为P型的低温多晶硅TFT,第八晶体管T8为N型的铟镓锌氧化物TFT。
其中,一个帧周期(图6中以1F示意出)包括复位阶段P1、充电阶段P2和发光阶段P3。
在复位阶段P1,第一晶体管T1和第七晶体管T7均在来自复位信号端RESET的复位信号Reset的控制下导通,第八晶体管T8在来自第二扫描信号端GATE2的第二扫描信号Gate2的控制下导通,第一节点N1被重置为来自第一初始化信号端VINT1的初始化电压信号的电压,第二节点N2被重置为来自第二初始化信号端VINT2的初始化电压信号的电压。
在充电阶段P2,第二晶体管T2和第四晶体管T4均在来自第一扫描信号端GATE1的第一扫描信号Gate1的控制下导通,第八晶体管T8在来自第二扫描信号端GATE2的第二扫描信号Gate2的控制下导通,第三晶体管T3在第一节点N1的电压的控制下导通,电容器CST被写入来自数据信号端DATA的数据信号Data。
在发光阶段P3,第五晶体管T5和第六晶体管T6均在使能信号端EM的使能信号Em的控制下导通,第三晶体管T3在第一节点N1的控制下导通,以向发光器件输出驱动电流信号。
其中,为了降低显示面板10的功耗,显示面板10具有高频驱动模式和低频驱动模式,其中低频模式可用于静态画面的显示。在低频驱动模式中,一个低频周期包括一个刷新帧和多个保持帧。需要说明的是,一个刷新帧和一个保持帧可以均为上述一个帧周期。图7中以一个刷新帧和一个保持帧为例进行示意。
但是,在低频驱动模式中,由于显示面板的刷新频率降低,导致人眼对显示面板所显示的画面的闪烁的感知更加敏感,从而产生人眼能够感知到显示面板所显示的画面出现闪烁的问题。
经研究发现,参阅图6和图7,发光延迟时间Td(一帧的充电阶段开始 与发光阶段开始的时间差)、发光器件的阳极的电压VINT2、以及驱动晶体管T3的源极在保持帧1F(2)接收的来自数据信号端的保持电压V keep,这些参数会影响画面的闪烁值。其中,若要获得闪烁值较低的画面,不同的线路排布的显示面板10(参阅图2)所需要的上述参数可能不完全相同。
此处,如图5、图6和图7所示,发光延迟时间Td也是驱动晶体管T3的特性回复时间,该特性回复时间的长短影响驱动晶体管T3状态,进而影响发光器件11发光的亮度。发光器件11的阳极在一帧内的电压VINT2(包括在刷新帧1F(1)发光器件11所接收的初始化信号,即第一子初始化信号VINT 2-1,在保持帧1F(2)发光器件11所接收的初始化信号,即第二子初始化信号VINT 2-2),均会影响发光器件11的启亮速度,影响最终发光器件11的亮度。在保持帧1F(2)接收的来自数据信号端的保持电压V keep,同样会影响驱动晶体管T3状态,进而影响发光器件11发光的亮度。
基于此,参阅图8,本公开实施例所提供的显示模组110所包括的驱动芯片30,存储有优选发光延迟时间PR Td,驱动芯片30被配置为根据优选发光延迟时间PR Td,生成发光信号,并将发光信号传输至显示面板10,驱动显示面板10发光。在这种情况下,可以降低显示面板10在低频驱动模式中所显示的画面亮度的浮动,从而降低显示面板10的闪烁值(Flicker),改善人眼感知到显示面板10所显示的画面出现闪烁的问题。
其中,上述优选发光延迟时间PR Td可以根据本公开实施例所提供的显示模组110的参数调节方法得到,具体可以参考下文,本公开在此不做赘述。
在一些实施例中,驱动芯片30中还存储有优选第一子初始化信号PR VINT 2-1、优选第二子初始化信号PR VINT 2-2和优选数据保持信号PR V keep中的至少一者。示例性地,驱动芯片30中还存储有优选第一子初始化信号PR VINT 2-1、优选第二子初始化信号PR VINT 2-2和优选数据保持信号PR V keep。在这种情况下,驱动芯片30被配置为根据优选发光延迟时间PR Td、优选第一子初始化信号PR VINT 2-1、优选第二子初始化信号PR VINT 2-2和优选数据保持信号PR V keep,生成发光信号,将发光信号传输至显示面板10,驱动显示面板10发光。在这种情况下,可以通过优选第一子初始化信号PR VINT 2-1、优选第二子初始化信号PR VINT 2-2控制发光器件11的启亮速度,从而调整最终发光器件11的亮度,以进一步地降低显示面板10的闪烁值(Flicker),改善人眼感知到显示面板10所显示的画面出现闪烁的问题。并且,可以通过优选数据保持信号PR V keep控制驱动晶体管T3源极的电压,调整驱动晶体管T3的状态,从而调整最终发光器件11的亮度,以进一步地降低显示面板10的 闪烁值(Flicker),改善人眼感知到显示面板10所显示的画面出现闪烁的问题。
其中,上述优选第一子初始化信号PR VINT 2-1、优选第二子初始化信号PR VINT 2-2和优选数据保持信号PR V keep均可以根据本公开实施例所提供的显示模组110的参数调节方法得到,具体可以参考下文,本公开在此不做赘述。
本公开的一些实施例所提供的显示模组110的参数调节方法,参阅图7和图8,该显示模组110能够在低频驱动模式下工作,低频驱动模式包括多个低频周期,一个低频周期包括一个刷新帧1F(1)和至少一个保持帧1F(2)。
在此基础上,如图9所示,该参数调节方法包括S100~S400。
S100:设定发光延迟时间的初始值Td 0和多个指定灰阶1~S。
上述步骤中,S≥1,且S为正整数。发光延迟时间的初始值Td 0可以为0~30个行扫描时段。示例性地,发光延迟时间的初始值Td 0为0个行扫描时段、10个行扫描时段和30个行扫描时段中的任一者。多个指定灰阶1~S可以根据实际情况进行选择,本公开在此不做限定。图19中以5个指定灰阶进行示意。
需要说明的是,一个行扫描时段=1秒÷刷新频率÷扫描行数。示例性地,显示面板的刷新频率为120HZ,扫描行数为1000行,则一个行扫描时段为0.0083ms。
S200:基于发光延迟时间的初始值Td 0,步进式调整发光延迟时间Td,直至调整后的发光延迟时间Td m超出发光延迟时间的预设范围,得到在发光延迟时间Td的预设范围内的多个发光延迟时间Td 0~Td m-1
上述步骤中,m≥1,且m为正整数。发光延迟时间Td的预设范围为0~30个行扫描时段。其中,步进式调整发光延迟时间Td可以是,基于发光延迟时间的初始值Td 0,以第一设定步进值Step 1从低到高或从高到低调整发光延迟时间Td,每次调整均得到一个发光延迟时间Td m。此处,第一设定步进值Step 1可以为1h(行扫描时段)~5h,例如,第一设定步进值Step 1可以为1h、2h、3h、4h和5h中的任一者。
示例性地,发光延迟时间的初始值Td 0为0个行扫描时段,第一设定步进值Step 1为1h。在此情况下,从低到高调整发光延迟时间Td,每次调整1h,直至调整后的发光延迟时间Td m的值大于30h。
示例性地,发光延迟时间的初始值Td 0为30个行扫描时段,第一设定步进值Step 1为5h。在此情况下,从高到低调整发光延迟时间Td,每次调整5h, 直至调整后的发光延迟时间Td m的值小于0h。
S300:在每个发光延迟时间Td(Td 0~Td m-1)下,获取显示模组110多个指定灰阶1~S下的多个闪烁值。
上述步骤中,可以在每次步进式调整发光延迟时间Td之前,获取该调整前的发光延迟时间Td下,显示模组110在多个指定灰阶1~S下的多个闪烁值。
也就是说,在步进式调整发光延迟时间Td的过程中,同时获取每次调整前对应的发光延迟时间Td在多个指定灰阶1~S下的多个闪烁值,从而在得到多个发光延迟时间Td 0~Td m-1的同时,得到每个发光延迟时间Td(Td 0~Td m-1)下,显示模组110在多个指定灰阶1~S下的多个闪烁值。
其中,显示模组110在多个指定灰阶1~S下的多个闪烁值可以是,显示模组110在第一子初始化信号的初始值VINT 2-1.0以及多个指定灰阶1~S下的多个闪烁值;也可以是,显示模组110在多个第一子初始化信号VINT 2-1以及多个指定灰阶1~S下的多个闪烁值,具体可以参考下文,本公开在此不做赘述。第一子初始化信号VINT 2-1为在刷新帧发光器件11所接收的初始化信号。
S400:根据多个发光延迟时间Td 0~Td m-1对应的多个闪烁值,从多个发光延迟时间Td 0~Td m-1中确定优选发光延迟时间PR Td。
上述步骤中,在获取显示模组110在第一子初始化信号的初始值VINT 2-1.0以及多个指定灰阶1~S下的多个闪烁值的情况下,从多个发光延迟时间Td 0~Td m-1中确定优选发光延迟时间PR Td的方法,与在获取显示模组110在多个第一子初始化信号VINT 2-1以及多个指定灰阶1~S下的多个闪烁值的情况下,从多个发光延迟时间Td 0~Td m-1中确定优选发光延迟时间PR Td的方法并不相同,具体可以参考下文,本公开在此不做赘述。
此处,可以将该优选发光延迟时间PR Td存储至驱动芯片30中,驱动芯片30可以根据优选发光延迟时间PR Td,生成发光信号,并将发光信号传输至显示面板10,驱动显示面板10发光。在这种情况下,可以降低显示面板10在低频驱动模式中所显示的画面亮度的浮动,降低显示面板10的闪烁值(Flicker),改善人眼感知到显示面板10所显示的画面出现闪烁的问题。
在一些实施例中,如图10所示,上述S300包括S310~S330。
S310:设定第一子初始化信号的初始值VINT 2-1.0
上述步骤中,第一子初始化信号VINT 2-1为在刷新帧发光器件所接收的初始化信号。其中,第一子初始化信号的初始值VINT 2-1.0可以为-6V~-1V。示例性地,第一子初始化信号的初始值VINT 2-1.0可以为-1V、-3V、-5V和-6V中的任一者。
S320:基于第一子初始化信号的初始值VINT 2-1.0,步进式调整第一子初始化信号VINT 2-1,直至调整后的第一子初始化信号VINT 2-1.n超出第一子初始化信号VINT 2-1的预设范围,得到在第一子初始化信号VINT 2-1的预设范围内的多个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1
上述步骤中,n≥1,且n为正整数。多个发光延迟时间Td 0~Td m-1的数量为M个,多个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1的数量为N个,M个发光延迟时间Td 0~Td m-1和N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1组成M×N个第一参数组合,一个第一参数组合包括一个发光延迟时间Td和一个第一子初始化信号VINT 2-1
此外,第一子初始化信号VINT 2-1的预设范围为-6V~-1V。其中,步进式调整第一子初始化信号VINT 2-1是指,基于第一子初始化信号的初始值VINT 2-1.0,以第二设定步进值Step 2从低到高或从高到低或调整第一子初始化信号VINT 2-1,每次调整均得到一个第一子初始化信号VINT 2-1.n。此处,第二设定步进值Step 2可以为0.1V~0.5V,例如,第二设定步进值Step 2可以为0.1V、0.2V、0.3V、0.4V和0.5V中的任一者。
示例性地,第一子初始化信号的初始值VINT 2-1.0为-6V,第二设定步进值Step 2为0.1V。在此情况下,从低到高调整第一子初始化信号VINT 2-1,每次调整0.1V,直至调整后的第一子初始化信号VINT 2-1.n的值大于-1V。
示例性地,第一子初始化信号的初始值VINT 2-1.0为-1V,第二设定步进值Step 2为0.5V。在此情况下,从高到低调整第一子初始化信号VINT 2-1,每次调整0.5V,直至调整后的第一子初始化信号VINT 2-1.n的值小于-6V。
S330:在M×N个第一参数组合中的每个第一参数组合下,获取显示模组110在多个指定灰阶1~S下的多个闪烁值。
上述步骤中,可以在每次步进式调整发光延迟时间Td之前,获取该调整前的发光延迟时间Td下,显示模组110在N个第一子初始化信号VINT 2-1和多个指定灰阶1~S下的多个闪烁值。
也就是说,在步进式调整发光延迟时间Td的过程中,在每次调整发光延迟时间Td之前,先步进式调整第一子初始化信号VINT 2-1,并在每次步进式调第一子初始化信号VINT 2-1之前,同时获取该调整前的第一子初始化信号VINT 2-1下,显示模组110在多个指定灰阶1~S下的多个闪烁值,从而在得到多个发光延迟时间Td 0~Td m-1的同时,得到M×N个第一参数组合中的每个第一参数组合下,显示模组110在多个指定灰阶1~S下的多个闪烁值。
其中,一个第一参数组合对应的多个闪烁值为一组闪烁值。在此基础上, 如图11所示,上述S400包括S410~S430。
S410:从M个发光延迟时间Td 0~Td m-1中,确定每个第一子初始化信号VINT 2-1(VINT 2-1.0~VINT 2-1.n-1)对应的目标发光延迟时间AM Td。
上述步骤中,目标发光延迟时间AM Td为第一子初始化信号VINT 2-1在M个发光延迟时间Td 0~Td m-1下对应的M组闪烁值组中,收敛性最高的一组闪烁值所对应的发光延迟时间Td。
示例性地,如图19所示,闪烁值组的收敛性可以通过方差进行判定,方差越小,收敛性越高。例如,在第一子初始化信号为VINT 2-1.0+Step 2×3的情况下,其对应的目标发光延迟时间AM Td为Td 0+Step 1×2。此处,图19中十字交叉处为VINT 2-1.0+Step 2×3对应的闪烁值。
S420:从N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1中,确定优选第一子初始化信号PR VINT 2-1
上述步骤中,确定优选第一子初始化信号PR VINT 2-1,以便于S430中,通过该优选第一子初始化信号PR VINT 2-1确定优选发光延迟时间PR Td。其中,确定优选第一子初始化信号PR VINT 2-1,具体可以参考下文,本公开在此不做赘述。
S430:将与优选第一子初始化信号PR VINT 2-1对应的目标发光延迟时间AM Td,确定为优选发光延迟时间PR Td。
上述步骤中,可以根据上述S410所得到的第一子初始化信号VINT 2-1对应的目标发光延迟时间AM Td,找出优选第一子初始化信号PR VINT 2-1对应的目标发光延迟时间AM Td,作为优选发光延迟时间PR Td。
在一些实施例中,如图12所示,上述S420包括S421~S423。
S421:获取多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1,并从中确定优选第二子初始化信号PR VINT 2-2
上述步骤中,k≥1,且k为正整数。第二子初始化信号VINT 2-2为在保持帧发光器件11所接收的初始化信号。其中,获取多个第二子初始化信号VINT 2-2.0~VINT 2-1.k-1,并从中确定优选第二子初始化信号PR VINT 2-2的过程,具体可以参考下文,本公开在此不做赘述。
S422:基于优选第二子初始化信号PR VINT 2-2,获取N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1对应的目标灰阶的N个闪烁值。
上述步骤中,第二子初始化信号VINT 2-2为在保持帧发光器件11所接收的初始化信号,目标灰阶为多个指定灰阶1~S中的一个。一般来说,在优选第二子初始化信号PR VINT 2-2下,在目标灰阶的闪烁值满足要求的情况下, 多个指定灰阶1~S中的其他灰阶的闪烁值也都满足要求。其中,不同的线路排布对应的目标灰阶可能不同,这里该目标灰阶可以根据实际的线路排布进行选择,可以根据经验值直接设定,也可以基于多个闪烁值进行判定,具体可以参考下文,本公开在此不做赘述。
此外,在优选第二子初始化信号PR VINT 2-2下,N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1对应的目标灰阶的N个闪烁值,可以在S4213的过程中所获取的闪烁值中,找出在优选第二子初始化信号PR VINT 2-2下,N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1对应的目标灰阶的N个闪烁值,具体可以参考下文,本公开在此不做赘述。
S423:将N个闪烁值中的最小闪烁值所对应的第一子初始化信号VINT 2-1,确定为优选第一子初始化信号PR VINT 2-1
上述步骤中,如图19所示,在优选第二子初始化信号PR VINT 2-2为VINT 2-2.0+Step 3×3的情况下,优选第一子初始化信号PR VINT 2-1为VINT 2-1.0+Step 2×2。
在一些实施例中,如图13所示,S421包括S4211~S4215。
S4211:设定第二子初始化信号的初始值VINT 2-2.0
上述步骤中,第二子初始化信号的初始值VINT 2-2.0可以为-6V~-1V。示例性地,第二子初始化信号的初始值VINT 2-2.0可以为-1V、-3V、-5V和-6V中的任一者。
S4212:基于第二子初始化信号的初始值VINT 2-2.0,步进式调整第二子初始化信号VINT 2-2,直至调整后的第二子初始化信号VINT 2-2.k超出第二子初始化信号VINT 2-2的预设范围,得到在第二子初始化信号VINT 2-2的预设范围内的多个第二子初始化信号VINT 2-2.0~VINT 2-1.k-1
上述步骤中,k≥1,且k为正整数。多个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1的数量为N个,多个第二子初始化信号VINT 2-2.0~VINT 2-1.k-1的数量为K个,N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1和K个第二子初始化信号VINT 2-2.0~VINT 2-1.k-1形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号VINT 2-1和一个第二子初始化信号VINT 2-2
此外,第二子初始化信号VINT 2-2的预设范围为-6V~-1V。其中,步进式调整第二子初始化信号VINT 2-2是指,基于第二子初始化信号的初始值VINT 2-2.0,以第三设定步进值Step 3从低到高或从高到低或调整第二子初始化信号VINT 2-2,每次调整均得到一个第二子初始化信号VINT 2-2.k。此处,第三设定步进值Step 3可以为0.1V~0.5V,例如,第三设定步进值Step 3可以为0.1V、 0.2V、0.3V、0.4V和0.5V中的任一者。
示例性地,第二子初始化信号的初始值VINT 2-2.0为-6V,第三设定步进值Step 3为0.1V。在此情况下,从低到高调整第二子初始化信号VINT 2-2,每次调整0.1V,直至调整后的第二子初始化信号VINT 2-2.k的值大于-1V。
示例性地,第二子初始化信号的初始值VINT 2-2.0为-1V,第三设定步进值Step 3为0.5V。在此情况下,从高到低调整第二子初始化信号VINT 2-2,每次调整0.5V,直至调整后的第二子初始化信号VINT 2-2.k的值小于-6V。
S4213:在一个目标发光延迟时间AM Td,及N×K个第二参数组合中的每个第二参数组合下,获取显示模组110在多个指定灰阶1~S下的多个闪烁值。
上述步骤中,一个目标发光延迟时间AM Td可以为步骤S410中N个第一子初始化信号VINT 2-1对应的N个目标发光延迟时间AM Td中的任一个。
此外,可以在每次步进式调整第二子初始化信号VINT 2-2之前,获取该调整前的第二子初始化信号VINT 2-2下,显示模组110在N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1和多个指定灰阶1~S下的多个闪烁值。
也就是说,在步进式调整第二子初始化信号VINT 2-2的过程中,在每次调整第二子初始化信号VINT 2-2之前,先步进式调整第一子初始化信号VINT 2-1,并在每次步进式调第一子初始化信号VINT 2-1之前,同时获取该调整前的第一子初始化信号VINT 2-1下,显示模组110在多个指定灰阶1~S下的多个闪烁值,从而在得到多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1的同时,得到N×K个第二参数组合中的每个第二参数组合下,显示模组110在多个指定灰阶1~S下的多个闪烁值。
S4214:从多个指定灰阶1~S中,选取一个指定灰阶作为目标灰阶。
上述步骤中,目标灰阶在任一第二子初始化信号VINT 2-2(VINT 2-2.0~VINT 2-2.k-1中的任一个)下所对应的N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1下,最大闪烁值与最小闪烁值之差在第一预设阈值范围内,第一预设阈值范围例如可以为10dB~15dB,和/或,在任一第二参数组合中,闪烁值第二预设阈值范围,第二预设阈值范围例如可以为-40dB~-70dB。
示例性地,如图21所示,目标灰阶为指定灰阶5。
S4215:从多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1中,找出显示模组110在目标灰阶下的闪烁值的范围最大的第二子初始化信号VINT 2-2,作为优选第二子初始化信号PR VINT 2-2
上述步骤中,从多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1中,找出显 示模组110在目标灰阶下的闪烁值的范围最大的第二子初始化信号VINT 2-2,即在每个第二子初始化信号VINT 2-2(VINT 2-2.0~VINT 2-2.k-1)下,计算显示模组110在目标灰阶下的最大闪烁值与最小闪烁值之差,并将差值最大所对应的第二子初始化信号VINT 2-2,作为优选第二子初始化信号PR VINT 2-2
示例性地,如图21所示,在目标灰阶为指定灰阶5的情况下,优选第二子初始化信号PR VINT 2-2为VINT 2-1.0+Step 3
在另一些实施例中,如图14所示,上述S421包括S4216~S4219。
S4216:设定第二子初始化信号的初始值VINT 2-2.0,并从多个指定灰阶1~S中选取一个指定灰阶作为目标灰阶。
上述步骤中,第二子初始化信号VINT 2-2的含义和初始值的取值范围、以及目标灰阶的含义可以参考上文,本公开在此不做赘述。其中,不同的线路排布对应的目标灰阶可能不同,这里该目标灰阶可以根据实际的线路排布进行选择,即可以根据经验值直接从多个指定灰阶1~S中选取一个指定灰阶作为目标灰阶。
S4217:基于第二子初始化信号的初始值VINT 2-2.0,步进式调整第二子初始化信号VINT 2-2,直至调整后的第二子初始化信号VINT 2-2.k超出第二子初始化信号VINT 2-2的预设范围,得到在第二子初始化信号VINT 2-2的预设范围内的多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1
上述步骤中,多个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1的数量为N个,多个第二子初始化信号VINT 2-2.0~VINT 2-1.k-1的数量为K个,N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1和K个第二子初始化信号VINT 2-2.0~VINT 2-1.k-1形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号VINT 2-1和一个第二子初始化信号VINT 2-2
其中,第二子初始化信号VINT 2-2的预设范围可以参考上文。此外,步进式调整第二子初始化信号VINT 2-2,直至调整后的第二子初始化信号VINT 2-2.k超出第二子初始化信号VINT 2-2的预设范围的过程可以参考上文,本公开在此不做赘述。
S4218:基于一个目标发光延迟时间AM Td,在N×K个第二参数组合中的每个第二参数组合下,获取显示模组110在目标灰阶下的多个闪烁值。
上述步骤中,可以在每次步进式调整第二子初始化信号VINT 2-2之前,获取该调整前的第二子初始化信号VINT 2-2下,显示模组110在N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1和目标灰阶下的多个闪烁值。
也就是说,在步进式调整第二子初始化信号VINT 2-2的过程中,在每次调 整第二子初始化信号VINT 2-2之前,先步进式调整第一子初始化信号VINT 2-1,并在每次步进式调第一子初始化信号VINT 2-1之前,同时获取该调整前的第一子初始化信号VINT 2-1下,显示模组110在目标灰阶的多个闪烁值,从而在得到多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1的同时,得到N×K个第二参数组合中的每个第二参数组合下,显示模组110在目标灰阶下的多个闪烁值。
S4219:从多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1中,找出显示模组110在目标灰阶下的最小闪烁值所对应的第二子初始化信号VINT 2-2,作为优选第二子初始化信号PR VINT 2-2
上述步骤中,如图22所示,在目标灰阶为指定灰阶5的情况下,优选第二子初始化信号PR VINT 2-2为图22中圆圈内的最低点对应的第二子初始化信号VINT 2-2,即VINT 2-2.0+Step 3×2。
在另一些实施例中,如图15所示,上述S400包括S440~S460。
S440:将多个发光延迟时间Td 0~Td m-1下,显示模组110在每个指定灰阶(1~S)下的最小闪烁值所对应的发光延迟时间Td,确定为目标发光延迟时间AM Td。
上述步骤中,如图20所示,指定灰阶1所对应的目标发光延迟时间AM Td为Td 0+Step 1×2;指定灰阶2所对应的目标发光延迟时间AM Td为Td 0+Step 1×2;指定灰阶3所对应的目标发光延迟时间AM Td为Td 0+Step 1×3;指定灰阶4所对应的目标发光延迟时间AM Td为Td 0+Step 1×2。
其中,在目标发光延迟时间AM Td为一个的情况下,执行S450;在目标发光延迟时间AM Td为多个的情况下,执行S460。
S450:将目标发光延迟时间AM Td确定为优选发光延迟时间PR Td。
上述步骤中,所有的指定灰阶1~S的最小闪烁值均位于同一发光延迟时间Td下,该发光延迟时间Td即目标发光延迟时间AM Td,也即优选发光延迟时间PR Td。
S460:将多个目标发光延迟时间AM Td中的一个目标发光延迟时间AM Td确定为优选发光延迟时间PR Td。
上述步骤中,优选发光延迟时间PR Td所对应的最小闪烁值的个数,大于或等于其他目标发光延迟时间AM Td所对应的最小闪烁值的个数。如图20所示,优选发光延迟时间PR Td为Td 0+Step 1×2。
在此基础上,如图16所示,在一些实施例中,上述参数调节方法还包括S500~S560。
S500:设定第一子初始化信号的初始值VINT 2-1.0
上述步骤中,第一子初始化信号VINT 2-1的含义及初始值的取值范围可以参考上文,本公开在此不做赘述。
S510:基于第一子初始化信号的初始值VINT 2-1.0,步进式调整第一子初始化信号VINT 2-1,直至调整后的第一子初始化信号VINT 2-1.n超出第一子初始化信号VINT 2-1的预设范围,得到在第一子初始化信号VINT 2-1的预设范围内的多个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1
上述步骤中,多个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1的数量为N个。其中,第一子初始化信号VINT 2-1的预设范围可以参考上文,本公开在此不做赘述。此外,步进式调整第一子初始化信号VINT 2-1,直至调整后的第一子初始化信号VINT 2-1.n超出第一子初始化信号VINT 2-1的预设范围的过程可以参考上文S320,本公开在此不做赘述。
S520:设定第二子初始化信号的初始值VINT 2-2.0
上述步骤中,第二子初始化信号VINT 2-2的含义及初始值的取值范围可以参考上文,本公开在此不做赘述。
S530:基于第二子初始化信号的初始值VINT 2-2.0,步进式调整第二子初始化信号VINT 2-2,直至调整后的第二子初始化信号VINT 2-2.k超出第二子初始化信号VINT 2-2的预设范围,得到在第二子初始化信号VINT 2-2的预设范围内的多个第二子初始化信号VINT 2-2.0~VINT 2-1.k-1
上述步骤中,多个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1的数量为N个,多个第二子初始化信号VINT 2-2.0~VINT 2-1.k-1的数量为K个;N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1和K个第二子初始化信号VINT 2-2.0~VINT 2-1.k-1形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号VINT 2-1和一个第二子初始化信号VINT 2-2
其中,第二子初始化信号VINT 2-2的预设范围可以参考上文。此外,步进式调整第二子初始化信号VINT 2-2,直至调整后的第二子初始化信号VINT 2-2.k超出第二子初始化信号VINT 2-2.的预设范围的过程可以参考上文,本公开在此不做赘述。
S540:在优选发光延迟时间PR Td,及N×K个第二参数组合中每个第二参数组合下,获取显示模组110在多个指定灰阶1~S下的多个闪烁值。
上述步骤中,可以在每次步进式调整第二子初始化信号VINT 2-2之前,获取该调整前的第二子初始化信号VINT 2-2下,显示模组110在N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1和多个指定灰阶1~S下的多个闪烁值。
也就是说,在步进式调整第二子初始化信号VINT 2-2的过程中,在每次调 整第二子初始化信号VINT 2-2之前,先步进式调整第一子初始化信号VINT 2-1,并在每次步进式调第一子初始化信号VINT 2-1之前,同时获取该调整前的第一子初始化信号VINT 2-1下,显示模组110在多个指定灰阶1~S下的多个闪烁值,从而在得到多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1的同时,得到N×K个第二参数组合中的每个第二参数组合下,显示模组110在多个指定灰阶1~S下的多个闪烁值。
S550:从多个指定灰阶1~S中,选取一个指定灰阶作为目标灰阶。
上述步骤中,目标灰阶在任一第二子初始化信号VINT 2-2(VINT 2-2.0~VINT 2-2.k-1中的任一个)下所对应的N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1下,最大闪烁值与最小闪烁值之差在第一预设阈值范围内,第一预设阈值范围例如可以为10dB~15dB,和/或,在任一第二参数组合中,闪烁值第二预设阈值范围,第二预设阈值范围例如可以为-40dB~-70dB。
示例性地,如图21所示,目标灰阶为指定灰阶5。
S560:从多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1中,找出显示模组110在目标灰阶下的闪烁值的范围最大的第二子初始化信号VINT 2-2,作为优选第二子初始化信号PR VINT 2-2
上述步骤中,从多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1中,找出显示模组110在目标灰阶下的闪烁值的范围最大的第二子初始化信号VINT 2-2,即在每个第二子初始化信号VINT 2-2(VINT 2-2.0~VINT 2-2.k-1)下,计算显示模组110在目标灰阶下的最大闪烁值与最小闪烁值之差,并将差值最大所对应的第二子初始化信号VINT 2-2,作为优选第二子初始化信号PR VINT 2-2
示例性地,如图21所示,在目标灰阶为指定灰阶5的情况下,优选第二子初始化信号PR VINT 2-2为VINT 2-1.0+Step 3
在另一些实施例中,如图17所示,上述参数调节方法还包括S600~S650。
S600:设定第一子初始化信号的初始值VINT 2-1.0
上述步骤中,第一子初始化信号VINT 2-1的含义及初始值的取值范围,可以参考上文,本公开在此不做赘述。
S610:基于第一子初始化信号的初始值VINT 2-1.0,步进式调整第一子初始化信号VINT 2-1,直至调整后的第一子初始化信号VINT 2-1.n超出第一子初始化信号VINT 2-1的预设范围,得到在第一子初始化信号VINT 2-1的预设范围内的多个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1
上述步骤中,多个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1的数量为N个。其中,第一子初始化信号VINT 2-1的预设范围可以参考上文。此外,步进式调 整第一子初始化信号VINT 2-1,直至调整后的第一子初始化信号VINT 2-1.n超出第一子初始化信号VINT 2-1的预设范围的过程可以参考上文,本公开在此不做赘述。
S620:设定第二子初始化信号的初始值VINT 2-2.0,并从多个指定灰阶1~S中选取一个指定灰阶作为目标灰阶。
上述步骤中,第二子初始化信号VINT 2-2的含义和初始值的取值范围、以及目标灰阶的含义可以参考上文,本公开在此不做赘述。其中,不同的线路排布对应的目标灰阶可能不同,这里该目标灰阶可以根据实际的线路排布进行选择,即可以根据经验值直接从多个指定灰阶1~S中选取一个指定灰阶作为目标灰阶。
S630:基于第二子初始化信号的初始值VINT 2-2.0,步进式调整第二子初始化信号VINT 2-2,直至调整后的第二子初始化信号VINT 2-2.k超出第二子初始化信号的预设范围,得到在第二子初始化信号VINT 2-2的预设范围内的多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1
上述步骤中,多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1的数量为K个;N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1和K个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号VINT 2-1和一个第二子初始化信号VINT 2-2
其中,第二子初始化信号VINT 2-2的预设范围可以参考上文。此外,步进式调整第二子初始化信号VINT 2-2,直至调整后的第二子初始化信号VINT 2-2.k超出第二子初始化信号VINT 2-2的预设范围的过程可以参考上文,本公开在此不做赘述。
S640:在优选发光延迟时间PR Td,及N×K个第二参数组合中每个第二参数组合下,获取显示模组110在目标灰阶下的多个闪烁值。
上述步骤中,可以在每次步进式调整第二子初始化信号VINT 2-2之前,获取该调整前的第二子初始化信号VINT 2-2下,显示模组110在N个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1和目标灰阶下的多个闪烁值。
也就是说,在步进式调整第二子初始化信号VINT 2-2的过程中,在每次调整第二子初始化信号VINT 2-2之前,先步进式调整第一子初始化信号VINT 2-1,并在每次步进式调第一子初始化信号VINT 2-1之前,同时获取该调整前的第一子初始化信号VINT 2-1下,显示模组110在目标灰阶的多个闪烁值,从而在得到多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1的同时,得到N×K个第二参数组合中的每个第二参数组合下,显示模组110在目标灰阶下的多个闪烁值。
S650:从多个第二子初始化信号VINT 2-2.0~VINT 2-2.k-1中,找出显示模组110在目标灰阶下的最小闪烁值所对应的第二子初始化信号VINT 2-2,作为优选第二子初始化信号PR VINT 2-2
上述步骤中,如图22所示,在目标灰阶为指定灰阶5的情况下,优选第二子初始化信号PR VINT 2-2为图22中圆圈内的最低点对应的第二子初始化信号VINT 2-2,即VINT 2-2.0+Step 3×2。
在此基础上,如图17所示,上述参数调节方法还包括S700。
S700:基于优选第二子初始化信号PR VINT 2-2,将显示模组110在多个第一子初始化信号VINT 2-1.0~VINT 2-1.n-1下,目标灰阶的最小闪烁值所对应的第一子初始化信号VINT 2-1,确定为优选第一子初始化信号PR VINT 2-1
上述步骤中,如图22所示,在目标灰阶为指定灰阶5,及优选第二子初始化信号PR VINT 2-2为VINT 2-2.0+Step 3×2的情况下,优选第一子初始化信号PR VINT 2-1为VINT 2-1+Step 2×3。
在一些实施例中,如图18所示,上述参数调节方法还包括S800~S830。
S800:设定数据保持信号的初始值V keep.0
上述步骤中,数据保持信号V keep为在保持帧中像素驱动电路12的数据信号端所接收的数据信号。其中,数据保持信号的初始值V keep.0可以为1V~8V。示例性地,数据保持信号的初始值V keep.0为1V、3V、5V和8V中的任一者。
S810:基于数据保持信号的初始值V keep.0,步进式调整数据保持信号V keep,直至调整后的数据保持信号V keep.x超出数据保持信号V keep的预设范围,得到在数据保持信号V keep的预设范围内的多个数据保持信号V keep.0~V keep.x
上述步骤中,x≥1,且x为正整数。数据保持信号V keep的预设范围为1V~8V。其中,步进式调整数据保持信号V keep可以是,基于数据保持信号的初始值V keep.0,以第四设定步进值Step 4从低到高或从高到低调整数据保持信号V keep,每次调整均得到一个数据保持信号V keep.x。此处,第四设定步进值Step 4可以为0.1V~0.5V,例如,第四设定步进值Step 4可以为0.1V、0.2V、0.3V、0.4V和0.5V中的任一者。
示例性地,数据保持信号的初始值V keep.0为1V,第四设定步进值Step 4为0.1V。在此情况下,从低到高调整数据保持信号V keep,每次调整0.1V,直至调整后的数据保持信号V keep.x的值大于8V。
示例性地,数据保持信号的初始值V keep.0为8V,第四设定步进值Step 4为0.5V。在此情况下,从高到低调整数据保持信号V keep,每次调整0.5V,直至调整后的数据保持信号V keep.x的值小于1V。
S820:在优选发光延迟时间PR Td、优选第一子初始化信号PR VINT 2-1和优选第二子初始化信号PR VINT 2-2、及每个数据保持信号V keep(V keep.0~V keep.x)下,获取显示模组110在目标灰阶下的闪烁值。
上述步骤中,可以在每次步进式调整数据保持信号V keep之前,获取该调整前的数据保持信号V keep下,显示模组110在目标灰阶下的闪烁值。也就是说,在步进式调整数据保持信号V keep的过程中,同时获取每次调整前对应的数据保持信号V keep在目标灰阶下的闪烁值,从而在得到多个数据保持信号V keep.0~V keep.x的同时,得到每个数据保持信号V keep(V keep.0~V keep.x)下,显示模组110在目标灰阶下的闪烁值。
S830:将多个数据保持信号V keep.0~V keep.x下,目标灰阶对应的最小闪烁值所对应的数据保持信号,确定优选数据保持信号PR V keep
上述步骤中,如图23所示,优选数据保持信号PR V keep为图23中圆圈内的最低点对应的数据保持信号V keep,即V keep.0+Step 4×2。
本公开的一些实施例所提供的电子设备,包括处理器和存储器,存储器存储有计算机程序指令,计算机程序指令在处理器上运行时,使得处理器执行如上述任一实施例所述的参数调节方法中的一个或多个步骤。
如图8所示,本公开的一些实施例所提供的显示模组110的参数调节系统120,包括处理器40、测试设备50和检测设备60。
其中,处理器40被配置为,执行如上述任一实施例所述的参数调节方法中的一个或多个步骤。例如,处理器40可以为显示装置100(参见图1)的主板上的处理器40。测试设备50与处理器40耦接,测试设备50被配置为,根据来自处理器40的发光延迟时间Td、第一子初始化信号VINT 2-1、第二子初始化信号VINT 2-2和数据保持信号V keep,发出用于控制显示模组110显示的控制指令。例如,测试设备50为画面产生器。检测设备60与处理器40耦接。检测设备60被配置为,测量显示模组110显示时的闪烁值,并将闪烁值发送给处理器40。例如,检测设备60为色彩分析仪。
本公开的一些实施例所提供的计算机可读存储介质(例如,非暂态计算机可读存储介质),该计算机可读存储介质中存储有计算机程序指令,计算机程序指令在计算机(例如,显示装置)上运行时,使得计算机执行如上述实施例中任一实施例所述的参数调节方法。
示例性的,上述计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如, EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。本公开描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本公开的一些实施例所提供的计算机程序产品,存储在非暂态的计算机可读存储介质上。该计算机程序产品包括计算机程序指令,在计算机(例如,显示装置)上执行该计算机程序指令时,该计算机程序指令使计算机执行如上述实施例所述的参数调节方法。
本公开的一些实施例还提供了一种计算机程序。当该计算机程序在计算机(例如,显示装置)上执行时,该计算机程序使计算机执行如上述实施例所述的参数调节方法。
上述计算机可读存储介质、计算机程序产品及计算机程序的有益效果和上述一些实施例所述的参数调节方法的有益效果相同,此处不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种显示模组的参数调节方法,所述显示模组能够在低频驱动模式下工作,所述低频驱动模式包括多个低频周期,一个低频周期包括一个刷新帧和至少一个保持帧;
    所述参数调节方法包括:
    设定发光延迟时间的初始值和多个指定灰阶;所述发光延迟时间为一帧的充电阶段开始与发光阶段开始的时间差;
    基于所述发光延迟时间的初始值,步进式调整所述发光延迟时间,直至调整后的发光延迟时间超出发光延迟时间的预设范围,得到在所述发光延迟时间的预设范围内的多个发光延迟时间;
    在每个所述发光延迟时间下,获取所述显示模组在所述多个指定灰阶下的多个闪烁值;
    根据所述多个发光延迟时间对应的多个闪烁值,从所述多个发光延迟时间中确定优选发光延迟时间。
  2. 根据权利要求1所述的参数调节方法,其中,所述在每个所述发光延迟时间下,获取所述显示模组在所述多个指定灰阶下的多个闪烁值,包括:
    设定第一子初始化信号的初始值;所述第一子初始化信号为在所述刷新帧发光器件所接收的初始化信号;
    基于所述第一子初始化信号的初始值,步进式调整所述第一子初始化信号,直至调整后的第一子初始化信号超出第一子初始化信号的预设范围,得到在所述第一子初始化信号的预设范围内的多个第一子初始化信号;所述多个发光延迟时间的数量为M个,所述多个第一子初始化信号的数量为N个,M个发光延迟时间和N个第一子初始化信号组成M×N个第一参数组合,一个第一参数组合包括一个发光延迟时间和一个第一子初始化信号;
    在所述M×N个第一参数组合中的每个所述第一参数组合下,获取所述显示模组在所述多个指定灰阶下的多个闪烁值。
  3. 根据权利要求2所述的参数调节方法,其中,一个第一参数组合对应的多个闪烁值为一组闪烁值;
    所述根据所述多个发光延迟时间对应的多个闪烁值,从所述多个发光延迟时间中确定优选发光延迟时间,包括:
    从M个发光延迟时间中,确定每个第一子初始化信号对应的目标发光延迟时间,得到多个目标发光延迟时间;所述目标发光延迟时间为,所述第一子初始化信号在M个发光延迟时间下对应的M组闪烁值中,收敛性最高的一组闪烁值所对应的发光延迟时间;
    确定优选第一子初始化信号;所述优选第一子初始化信号为所述N个第一子初始化信号中的一个;
    将与所述优选第一子初始化信号对应的目标发光延迟时间,确定为优选发光延迟时间。
  4. 根据权利要求3所述的参数调节方法,其中,所述从N个第一子初始化信号中,确定优选第一子初始化信号,包括:
    获取多个第二子初始化信号,并将所述多个第二子初始化信号中的一个第二子初始化信号确定为优选第二子初始化信号;所述第二子初始化信号为在所述保持帧发光器件所接收的初始化信号;
    基于所述优选第二子初始化信号,获取N个第一子初始化信号对应的目标灰阶的N个闪烁值;所述目标灰阶为多个指定灰阶的一个;
    将所述N个闪烁值中的最小闪烁值所对应的第一子初始化信号,确定为优选第一子初始化信号。
  5. 根据权利要求4所述的参数调节方法,其中,所述获取多个第二子初始化信号,并将所述多个第二子初始化信号中的一个第二子初始化信号确定为优选第二子初始化信号,包括:
    设定第二子初始化信号的初始值;
    基于所述第二子初始化信号的初始值,步进式调整所述第二子初始化信号,直至调整后的第二子初始化信号超出第二子初始化信号的预设范围,得到在所述第二子初始化信号的预设范围内的多个第二子初始化信号;所述多个第一子初始化信号的数量为N个,所述多个第二子初始化信号的数量为K个,N个第一子初始化信号和K个第二子初始化信号形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号和一个第二子初始化信号;
    在所述多个目标发光延迟时间中的一个目标发光延迟时间,及所述N×K个第二参数组合中的每个第二参数组合下,获取所述显示模组在所述多个指定灰阶下的多个闪烁值;
    从所述多个指定灰阶中,选取一个指定灰阶作为目标灰阶;所述目标灰阶在任一第二子初始化信号下所对应的N个第一子初始化信号下,最大闪烁值与最小闪烁值之差在第一预设阈值范围内;和/或,在任一第二参数组合中,闪烁值在第二预设阈值范围内;
    从所述多个第二子初始化信号中,找出所述显示模组在所述目标灰阶下的闪烁值的范围最大的第二子初始化信号,作为优选第二子初始化信号。
  6. 根据权利要求4所述的参数调节方法,其中,所述获取多个第二子初始化信号,并将所述多个第二子初始化信号中的一个第二子初始化信号确定为优选第二子初始化信号,包括:
    设定第二子初始化信号的初始值,并从所述多个指定灰阶中选取一个指定灰阶作为目标灰阶;
    基于所述第二子初始化信号的初始值,步进式调整所述第二子初始化信号,直至调整后的第二子初始化信号超出第二子初始化信号的预设范围,得到在所述第二子初始化信号的预设范围内的多个第二子初始化信号;所述多个第一子初始化信号的数量为N个,所述多个第二子初始化信号的数量为K个,N个第一子初始化信号和K个第二子初始化信号形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号和一个第二子初始化信号;
    基于所述多个目标发光延迟时间中的一个目标发光延迟时间,在所述N×K个第二参数组合中的每个第二参数组合下,获取所述显示模组在所述目标灰阶下的多个闪烁值;
    从所述多个第二子初始化信号中,找出所述显示模组在所述目标灰阶下的最小闪烁值所对应的第二子初始化信号,作为优选第二子初始化信号。
  7. 根据权利要求1所述的参数调节方法,其中,所述根据所述多个发光延迟时间对应的多个闪烁值,从所述多个发光延迟时间中确定优选发光延迟时间,包括:
    将所述多个发光延迟时间下,所述显示模组在每个指定灰阶下的最小闪烁值所对应的发光延迟时间,确定为目标发光延迟时间;
    在所述目标发光延迟时间为一个的情况下,将所述目标发光延迟时间确定为优选发光延迟时间;
    在所述目标发光延迟时间为多个的情况下,将所述多个目标发光延迟时间中的其中一个目标发光延迟时间确定为优选发光延迟时间;所述优选发光延迟时间所对应的最小闪烁值的个数,大于或等于其他目标发光延迟时间所对应的最小闪烁值的个数。
  8. 根据权利要求7所述的参数调节方法,还包括:
    设定第一子初始化信号的初始值;所述第一子初始化信号为在所述刷新帧发光器件所接收的初始化信号;
    基于所述第一子初始化信号的初始值,步进式调整所述第一子初始化信号,直至调整后的第一子初始化信号超出第一子初始化信号的预设范围,得到在所述第一子初始化信号的预设范围内的多个第一子初始化信号;所述多 个第一子初始化信号的数量为N个;
    设定第二子初始化信号的初始值;所述第二子初始化信号为在所述保持帧发光器件所接收的初始化信号;
    基于所述第二子初始化信号的初始值,步进式调整所述第二子初始化信号,直至调整后的第二子初始化信号超出第二子初始化信号的预设范围,得到在所述第二子初始化信号的预设范围内的多个第二子初始化信号;所述多个第二子初始化信号的数量为K个;N个第一子初始化信号和K个第二子初始化信号形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号和一个第二子初始化信号;
    在所述优选发光延迟时间,及所述N×K个第二参数组合中每个第二参数组合下,获取所述显示模组在所述多个指定灰阶下的多个闪烁值;
    从所述多个指定灰阶中,选取一个指定灰阶作为目标灰阶;所述目标灰阶在任一第二子初始化信号下所对应的N个第一子初始化信号下,最大闪烁值与最小闪烁值之差在第一预设阈值范围内;和/或,在任一第二参数组合中,闪烁值在第二预设阈值范围内;
    从所述多个第二子初始化信号中,找出所述显示模组在所述目标灰阶下的闪烁值的范围最大的第二子初始化信号,作为优选第二子初始化信号。
  9. 根据权利要求5或8所述的参数调节方法,其中,所述第一预设阈值范围为10dB~15dB;和/或,所述第二预设阈值范围为-40dB~-70dB。
  10. 根据权利要求7所述的参数调节方法,还包括:
    设定第一子初始化信号的初始值;所述第一子初始化信号为在所述刷新帧发光器件所接收的初始化信号;
    基于所述第一子初始化信号的初始值,步进式调整所述第一子初始化信号,直至调整后的第一子初始化信号超出第一子初始化信号的预设范围,得到在所述第一子初始化信号的预设范围内的多个第一子初始化信号;所述多个第一子初始化信号的数量为N个;
    设定第二子初始化信号的初始值,并从所述多个指定灰阶中选取一个指定灰阶作为目标灰阶;所述第二子初始化信号为在所述保持帧发光器件所接收的初始化信号;
    基于所述第二子初始化信号的初始值,步进式调整所述第二子初始化信号,直至调整后的第二子初始化信号超出第二子初始化信号的预设范围,得到在所述第二子初始化信号的预设范围内的多个第二子初始化信号;所述多个第二子初始化信号的数量为K个;N个第一子初始化信号和K个第二子初 始化信号形成N×K个第二参数组合,一个第二参数组合包括一个第一子初始化信号和一个第二子初始化信号;
    在所述优选发光延迟时间,及所述N×K个第二参数组合中每个第二参数组合下,获取所述显示模组在所述目标灰阶下的多个闪烁值;
    从所述多个第二子初始化信号中,找出所述显示模组在所述目标灰阶下的最小闪烁值所对应的第二子初始化信号,作为优选第二子初始化信号。
  11. 根据权利要求9或10所述的参数调节方法,还包括:
    基于所述优选第二子初始化信号,将所述显示模组在所述多个第一子初始化信号下,所述目标灰阶的最小闪烁值所对应的第一子初始化信号,确定为优选第一子初始化信号。
  12. 根据权利要求4~7和11中任一项所述的参数调节方法,还包括:
    设定数据保持信号的初始值;所述数据保持信号为在所述保持帧中像素驱动电路的数据信号端所接收的数据信号;
    基于所述数据保持信号的初始值,步进式调整数据保持信号,直至调整后的数据保持信号超出数据保持信号的预设范围,得到在所述数据保持信号的预设范围内的多个数据保持信号;
    在所述优选发光延迟时间、所述优选第一子初始化信号和所述优选第二子初始化信号、及每个数据保持信号下,获取所述显示模组在所述目标灰阶下的闪烁值;
    将所述多个数据保持信号下,所述目标灰阶对应的最小闪烁值所对应的数据保持信号,确定优选数据保持信号。
  13. 根据权利要求2~7和9~12中任一项所述的参数调节方法,其中,所述第一子初始化信号的预设范围为-1V~-6V。
  14. 根据权利要求4~7和9~12中任一所述的参数调节方法,其中,所述第二子初始化信号的预设范围为-1V~-6V。
  15. 根据权利要求12所述的参数调节方法,其中,所述数据保持信号的预设范围为1V~8V。
  16. 根据权利要求1~15中任一项所述的参数调节方法,其中,所述发光延迟时间的预设范围为0~30个行扫描时段。
  17. 一种电子设备,包括处理器和存储器,所述存储器存储有计算机程序指令,所述计算机程序指令在所述处理器上运行时,使得所述处理器执行如权利要求1~16中任一项所述的参数调节方法中的一个或多个步骤。
  18. 一种显示模组的参数调节系统,包括:
    处理器,被配置为执行如权利要求1~16中任一项所述的参数调节方法中的一个或多个步骤;
    测试设备,与所述处理器耦接;所述测试设备被配置为,根据来自所述处理器的发光延迟时间、第一子初始化信号、第二子初始化信号和数据保持信号,发出用于控制显示模组显示的控制指令;
    检测设备,与所述处理器耦接;所述检测设备被配置为,测量所述显示模组显示时的闪烁值,并将所述闪烁值发送给所述处理器。
  19. 一种显示模组,包括显示面板和驱动芯片;所述驱动芯片中存储有优选发光延迟时间,所述优选发光延迟时间根据如权利要求1~16中任一项所述的参数调整方法得到;所述驱动芯片被配置为,根据所述优选发光延迟时间,生成发光信号,并将所述发光信号传输至所述显示面板。
  20. 根据权利要求19所述的显示模组,其中,所述驱动芯片中还存储有优选第一子初始化信号、优选第二子初始化信号和优选数据保持信号中的至少一者;所述优选第一子初始化信号根据如权利要求4~7、11和12中任一项所述的参数调整方法得到,所述优选第二子初始化信号根据如权利要求4~7、9~12中任一项所述的参数调整方法得到,所述优选数据保持信号根据如权利要求12所述的参数调整方法得到。
  21. 一种显示装置,包括如权利要求19或20所述的显示模组。
  22. 一种计算机可读存储介质,存储有计算机程序指令,所述计算机程序指令在处理器上运行时,使得所述处理器执行如权利要求1~16中任一项所述的参数调节方法中的一个或多个步骤。
  23. 一种计算机程序产品,存储在非暂态的计算机可读存储介质上,所述计算机程序产品包括计算机程序指令,在计算机上执行所述计算机程序指令时,所述计算机程序指令使计算机执行如权利要求1~16中任一项所述的参数调节方法。
PCT/CN2022/077770 2022-02-24 2022-02-24 显示模组的参数调节方法及系统、显示模组、显示装置 WO2023159447A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/077770 WO2023159447A1 (zh) 2022-02-24 2022-02-24 显示模组的参数调节方法及系统、显示模组、显示装置
CN202280000289.XA CN117337460A (zh) 2022-02-24 2022-02-24 显示模组的参数调节方法及系统、显示模组、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077770 WO2023159447A1 (zh) 2022-02-24 2022-02-24 显示模组的参数调节方法及系统、显示模组、显示装置

Publications (1)

Publication Number Publication Date
WO2023159447A1 true WO2023159447A1 (zh) 2023-08-31

Family

ID=87764474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077770 WO2023159447A1 (zh) 2022-02-24 2022-02-24 显示模组的参数调节方法及系统、显示模组、显示装置

Country Status (2)

Country Link
CN (1) CN117337460A (zh)
WO (1) WO2023159447A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677713B1 (en) * 2002-08-28 2004-01-13 Au Optronics Corporation Driving circuit and method for light emitting device
JP2014089279A (ja) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp 映像表示装置
JP2017037124A (ja) * 2015-08-07 2017-02-16 日本放送協会 画像表示装置
CN111862890A (zh) * 2020-08-28 2020-10-30 上海天马有机发光显示技术有限公司 显示面板其驱动方法及显示装置
CN113380193A (zh) * 2021-06-23 2021-09-10 合肥维信诺科技有限公司 驱动方法、像素驱动电路及显示装置
CN113793569A (zh) * 2021-10-27 2021-12-14 京东方科技集团股份有限公司 显示面板的控制方法、装置、设备和存储介质
CN113823224A (zh) * 2021-10-13 2021-12-21 合肥维信诺科技有限公司 Oled显示面板的驱动方法、驱动芯片及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677713B1 (en) * 2002-08-28 2004-01-13 Au Optronics Corporation Driving circuit and method for light emitting device
JP2014089279A (ja) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp 映像表示装置
JP2017037124A (ja) * 2015-08-07 2017-02-16 日本放送協会 画像表示装置
CN111862890A (zh) * 2020-08-28 2020-10-30 上海天马有机发光显示技术有限公司 显示面板其驱动方法及显示装置
CN113380193A (zh) * 2021-06-23 2021-09-10 合肥维信诺科技有限公司 驱动方法、像素驱动电路及显示装置
CN113823224A (zh) * 2021-10-13 2021-12-21 合肥维信诺科技有限公司 Oled显示面板的驱动方法、驱动芯片及显示装置
CN113793569A (zh) * 2021-10-27 2021-12-14 京东方科技集团股份有限公司 显示面板的控制方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN117337460A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
US20220139321A1 (en) Pixel circuit and method of driving the same, display device
US11670247B2 (en) Display panel and method for driving the same, and display device
US20240119897A1 (en) Pixel Circuit and Driving Method Therefor and Display Panel
WO2019205898A1 (zh) 像素电路及其驱动方法、显示面板
US20240062721A1 (en) Pixel Circuit and Driving Method Thereof, and Display Panel
US11869426B2 (en) Pixel driving circuit and driving method thereof, shift register circuit and display apparatus
US10770000B2 (en) Pixel circuit, driving method, display panel and display device
US11935470B2 (en) Pixel circuit and driving method thereof, and display device
US20210005137A1 (en) Pixel circuit, display device, driving method of pixel circuit, and electronic apparatus
CN113053301B (zh) 像素驱动电路、像素驱动方法、显示面板及显示装置
KR20200033359A (ko) 표시 장치 및 이의 구동 방법
US10140922B2 (en) Pixel driving circuit and driving method thereof and display device
CN111785212A (zh) 一种像素电路、其驱动方法及显示装置
US20230260461A1 (en) Pixel circuit and driving method thereof, display panel and display apparatus
WO2023231742A1 (zh) 像素驱动电路及其驱动方法、显示面板、显示装置
WO2023159447A1 (zh) 显示模组的参数调节方法及系统、显示模组、显示装置
CN116508092A (zh) 显示面板的控制方法及控制装置、显示装置
WO2024041217A1 (zh) 像素电路及其驱动方法、显示面板、显示装置
US20240078948A1 (en) Display panel and display device
US20240071312A1 (en) Shift register circuit and driving method thereof, gate driving circuit, and display device
US20240135875A1 (en) Pixel Circuit and Driving Method Therefor, and Display Panel
WO2023240457A1 (zh) 像素电路及其驱动方法、显示面板和显示装置
WO2023184279A1 (zh) 显示装置及其驱动方法
CN118116331A (zh) 显示面板及其控制方法、显示装置
CN115512631A (zh) 像素驱动电路及其驱动方法、显示面板及终端设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000289.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927733

Country of ref document: EP

Kind code of ref document: A1